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Abstract 

In this paper the performance of a compressive sensing (CS)-based vis-à-vis a power 

spectrum blind sampling (PSBS)-based spectral estimation approach is numerically assessed 

in undertaking operational modal analysis (OMA) using the frequency domain decomposition 

algorithm. The examined approaches consider response acceleration measurements sampled 

non-uniformly in time at sub-Nyquist average rates at random time instants (the CS-based), 

and at deterministically defined time instants through a multi-coset sampling strategy (the 

PSBS-based), aiming to reduce power consumption in arrays of wireless sensors used in 

OMA. The modal assurance criterion is adopted to gauge the effectiveness of the two 

approaches using acceleration time-histories with and without additive Gaussian white noise 

taken from 15 equidistant recording locations on a white-noise excited linear finite element 

model of a simply supported beam. It is shown that for a given sub-Nyquist sampling rate the 

capability of the CS-based approach to extract quality estimates of mode shape depends 

heavily on the sparsity of the acceleration signals in the frequency domain, which is low for 

the noisy signals, in relation to the target sparsity level that needs to be assumed in the CS 

signal reconstruction step. However, the PSBS-based approach, pioneered by the authors, 

performs equally well and consistently better than the CS-based approach in extracting mode 

shapes even for noisy signals (at SNR=10db) and for a sampling rate as low as 11% the 

Nyquist rate. This is because the latter approach is signal agnostic and does not necessitate 

any target sparsity assumption. Overall, the herein reported numerical results demonstrate 

that the PSBS-based approach is rather advantageous in practical applications where 

achieving high signal compression levels is desirable irrespective of the additive noise level. 

 

1 INTRODUCTION 

Operation modal analysis (OMA) is a widely used vibration-based approach for condition 

assessment, design verification, and health monitoring of civil engineering structures [1]. It 

relies on deriving structural dynamic properties (e.g. natural frequencies, damping ratios, and 

mode shapes), by acquiring and processing acceleration signals from vibrating linear 

structures excited by low-amplitude ambient dynamic loading. The latter is assumed to have 

a sufficiently flat spectrum across all frequencies of interest and is modelled as clipped white 

noise. From a technological viewpoint, the use of wireless sensor networks (WSNs) has been 
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an important development in OMA in the past 15 years (e.g., [2]). Compared to arrays of 

wired sensors, WSNs allow for more economical and rapid implementation of OMA. 

However, wireless sensors do require frequent battery replacement while the amount of data 

that can be reliably transmitted within WSNs is subjected to bandwidth limitations. Still, the 

current consensus is that WSNs will become more preferable for OMA once the above 

practical issues are addressed in a cost-effective and robust manner.  

In this regard, recent studies [3-10] explored the potential of sub-Nyquist sampling 

techniques to reduce the local energy consumption in wireless sensors, associated mostly 

with data acquisition and wireless transmission rates. In particular, in [3-7] sub-Nyquist non-

uniform random sampling techniques are first employed, based on the compressive sensing 

(CS) theory, to acquire structural acceleration response signals at an average rate below the 

Nyquist rate. Next, a signal reconstruction step is undertaken to the compressed 

measurements to extract the underlying signal either in the time or, if desired, in the 

frequency domain. Typically, these steps involve the solution of an underdetermined set of 

linear equations tackled by computationally intensive optimization algorithms. Further, 

according to the CS framework, the achieved (sub-Nyquist) average sampling rate depends 

strongly on the sparsity (or compressibility) of the acceleration signals in the frequency 

domain. In this regard, although linear response acceleration signals are inherently sparse in 

the frequency domain as most of their energy is clustered about their natural frequencies, 

additive broadband measurement noise reduces their level of sparsity and, therefore, impacts 

negatively the effectiveness of CS-based techniques to achieve low sampling data rates. 

An alternative approach for cost-efficient OMA supporting sub-Nyquist data acquisition 

rates was recently developed by the authors in [8-10] which does not pose any sparsity 

conditions to the acquired signals (signal agnostic) and, therefore, enjoys additive 

measurement noise immunity. This approach couples a deterministic periodic non-uniform-

in-time sampling strategy (multi-coset sampling [11]) with a power spectrum blind sampling 

(PSBS) technique [12], to estimate the covariance function (or equivalently the power 

spectrum) of the input signal treated as a wide sense stationary stochastic process. The latter 

consideration is in alignment with the OMA theory. Further, the PSBS step involves the 

solution of an overdetermined system of linear equations which can be efficiently solved. 

Herein, the performance of the standard CS-based approach in [4], vis-à-vis the PSBS-

based approach in [9,10] is numerically assessed by relying on the modal assurance criterion 

(MAC) of mode shapes obtained from the standard frequency domain decomposition (FDD) 

algorithm [13]. Section 2 briefly reviews the mathematical details of the two approaches. 

Section 3 furnishes comparative numerical results pertaining to sub-Nyquist sampled 

acceleration response signals under different compression and noise levels pertaining to a 

white-noise excited linear finite element model of a simply supported beam. Finally, Section 

4 summarizes concluding remarks. 

2 THEORETICAL BACKGROUND 

2.1 Multi-coset data acquisition and Power Spectrum Blind Sampling (PSBS)  

Let x(t) be a continuous in time t real-valued wide-sense stationary random signal (or 

stochastic process) characterized in the frequency domain by the power spectrum Px(ω) band-

limited to 2π/T. It is desired to sample x(t) at a rate lower than the Nyquist sampling rate 1/Τ 

(in Hz), and still be able to obtain a useful estimate of the power spectrum Px(ω). To this aim, 

the multi-coset sampling is adopted [11], according to which the uniform grid of Nyquist 

sampled measurements [ ] Nx n  , is first divided into Z blocks of N  consecutive samples, 
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where /N N Z . From each block, a number of M  samples ( M N ) is selected at a 

deterministically pre-specified position, same for all blocks, which further defines the 

compression ratio (CR), /M N . In this manner, the adopted sampling strategy yields non-

uniform-in-time deterministic N -periodic samples. In [14], a discrete-time model of an ideal 

multi-coset sampler is discussed in which the signal x[n] enters M channels and at each m 

channel (m= 0,1,…, 1M  ), x[n] is convolved with an N -length sequence cm[n] and down-

sampled by N . The selection of M  samples within each N -length block is defined by the 

sampling pattern T

0 1 1
[ ] ,

M
n n n


n  and is governed by the filter coefficients cm[n], 

where cm[n]=1 for n=-nm and cm[n]=0 for n  -nm with ,
i jm m i jn n m m   . The output of the 

m-th channel of the considered sampling device is given by 
0

1
[ ] [ ] [ ]m mn N

y k c n x kN n
 

  .  

For the multi-sensor case treated in [9],[10], and [15] an array of D identical multi-coset 

samplers with M  channels each is assumed and the cross-correlation function 

 y,
[ ] E [ ] [ ]a b

a b
i ji j

d d

m my y
r k y l  y l k   of the output signals [ ]a

i

d

my l , [ ]b

j

d

my l  acquired from all mi, mj= 

0,1,…, 1M   channels of the da,db=1, 2,…, D is computed, where Ea{·} is the mathematical 

expectation operator with respect to a. Further, the following relation holds [10],[11],[15]  

cy
= ,a b a by x x

r R r  (1) 

where 
2 (2 1)

a b

M L D

y y

 r  is a matrix collecting the sequences 
,

[ ]a b
i jy y

r k  computed within the 

range (support) −L ≤ k ≤ L outside which 
,

[ ]a b
i jy y

r k  take on negligible values, 
(2 1)

a b

N L D

x x

 r  is a matrix collecting the input cross-correlation sequences, 

 [ ] E [ ] [ ]a b
a b

d d

xx x
r k x n  x n k  , computed for all da and db devices in the above range, and 

2 (2 1) (2 1)M L N L
c

  R  is the pattern correlation matrix populated with the cross-correlations 
0

, 1
[ ] [ ] [ ]

i j i jc c m mn N
r c n c n 

 
  , as detailed in [12]. Note that Eq. (1) defines an 

overdetermined system of linear equations which can be solved for a by y
r  without any sparsity 

assumptions, provided that cR  is full column rank. The latter is satisfied for 
2M N . 

By considering the unbiased estimator of the output cross-correlation function 

 

 1 min 0,

,
max 0,

1
ˆ [ ] [ ] [ ]a b

a b
i ji j

P p

d d

m my y
l p

r p y l y l p
P p

 



 


 , 

(2) 

together with the standard discrete Fourier transform (DFT) matrix, 
(2 1) (2 1)

(2 1)

N L N L

L N

  


F , 

the following estimate of the input cross-spectra a bx x
s  can be obtained at the discrete 

frequencies 0, 2 / ((2 1) ), 2 ((2 1) 1) / ((2 1) )L N L N L N          [12]  

 
1

T 1 T 1

(2 1)
ˆ ˆ

a b a bc c cL Nx x y y


 


s F R W R R W r . 

(3) 

In the above equation, W is a weighting matrix, and the superscript “−1” denotes matrix 

inversion. The solution of Eq. (3) relies on the weighted least square criterion 
2

c
ˆ ˆarg min ,a b a b a b

a bx x
x x y y x x

 
r

W
r r R r  in which the weighted version of the Euclidean norm is 

given by 
2 T|| a || a aW W . Notably, the cross-spectra in Eq. (3) are efficiently computed 

directly from the cross-correlation estimator ˆ a by y
r  obtained from the compressed 

measurements of the D sampling devices. This is achieved by exploiting the sparse structure 

of cR  as detailed in [12].  

2.2 Compressive Sensing (CS) and signal reconstruction  

Suppose now that the signal x[n] N , is sparse (or compressible) in the frequency 
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domain and is written as   

1[ ] [ ]N Nx n u n
 F , (4) 

where 
1 N N

N N
 
 F  is the inverse discrete Fourier transform (IDFT) matrix, and 

u[n]
N are the Fourier coefficients of x[n] having only K non-zero entries, with K N. 

The theory of compressive sensing (CS) [16,17] asserts that all information contained in the 

K-sparse signal x[n] can be retained by taking only M K log(N) non-uniform random 

measurements y[m]
M , where K<M N, and M/N is the CR. Mathematically, this can be 

achieved by employing a random measurement matrix Φ
M N  that satisfies, with high 

probability, the so-called restricted isometry property (RIP) [18], i.e., an orthonormality 

condition that enables exact recovery of the K-sparse signal x[n] from only M measurements 

y[m]. In this work, a random Φ matrix populated with incoherent measurements of zero-one 

entries that randomly selects M rows of the orthonormal IDFT matrix in Eq. (4) is assumed. 

In this manner, a partial Fourier matrix 1
M N

F

M N  that satisfies the RIP with high 

probability and I readily implemented in practical CS applications is defined (see also [4] and 

the reference therein). To this end, the compressed signal y[m] is given by 

1 1[ ] [ ] [ ]N N M Ny m u n u n 
  ΦF F . (5) 

It is desired to solve the above equation for u[n], that is, to retrieve the non-zero Fourier 

coefficients of x[n] from the compressed measurement y[m] (the so-called signal 

reconstruction problem). However, Eq. (5) represents an underdetermined system of linear 

equations and solving for u[n] is generally an ill-posed problem. To address this issue, 

numerous algorithms have been proposed within the CS framework (e.g. [19] and the 

references therein) to obtain a unique solution to the underdetermined problem of Eq.(5) by 

relying on the signal sparsity property. Herein, the CoSaMP algorithm in [19] is adopted for 

the task taking an iterative matching pursuit approach which is computationally less involved 

compared to other signal reconstruction algorithms [18], while it guarantees that a pre-

specified (target) level of sparsity KT is achieved in the output spectrum u[n]. CoSaMP takes 

as input the compressed observation vector y[m] in Eq. (5), the partial Fourier measurement 

matrix 1
M N

F , a target sparsity level KT which should be less than M/3, (i.e., KT<M/3), and a 

tolerance parameter η, to generate a KT-sparse estimate ˆ[ ]u n that satisfies the condition  

2 1

1
ˆ[ ] [ ] max , [ ] [ ]

TK

T

u n u n C u n u n
K


  

    
  

. (6) 

In the last equation  
TKu n is the optimal KT-sparse approximation of the K-sparse u[n], C is 

the restricted isometry constant, and a
p

is the p  norm of a. In each iteration, CoSaMP 

aims to capture some part of the energy of the target signal by solving a least squares 

problem involving the pseudoinverse of the measurement matrix appearing in Eq. (5) under 

the assumption of a small C constant value [4,19]. The extracted energy is subtracted from 

the target signal and in the next iteration the residual signal becomes the target signal. This 

iterative process continues until any of three stoppage criteria is met: (i) the relative residual 

signal energy between two iterations is less than the tolerance η, or (ii) the total residual 

energy in the last iteration is smaller than η, or (iii) a predefined maximum number of 

iterations is reached. Note that the accuracy of the CoSaMP algorithm is significantly 

influenced by the adopted target sparsity level KT which should ideally be close to the true K 

sparsity level. However, K is unknown and, in practical terms, not well defined especially for 
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noisy signals x[n]. In this respect, the choice of KT is not a trivial task. Choosing KT>K results 

in unnecessarily high computational cost, as the dimensions of the (full) matrix that needs to 

be inverted in each iteration will be unnecessarily large. At the other end, choosing KT<K 

results in poor signal approximation. Further discussion on the influence of the adopted KT is 

included in a following section in view of numerical results pertaining to the quality of the 

achieved OMA. Nevertheless, it is important to appreciate that the previously reviewed 

PSBS-based spectral estimation approach does not require any sparsity assumption (i.e., is 

signal agnostic), and this makes it quite advantageous from a practical viewpoint.   

The above CS-based data acquisition and signal reconstruction approach is herein applied 

to an array of D identical CS-based samplers that compressively sense the input signals xd[n], 

d=1,2,…,D and wirelessly transmit  dy m  compressed measurements to a base station. Next, 

signal reconstruction is undertaken to derive D signal estimates  ˆdx n  at Nyquist rate 

following the steps taken in [4]. Finally, the estimate 
ˆ ˆa bx x

s  of the power spectrum density 

matrix of all xd[n] signals is obtained using the standard Welch’s periodogram collecting all 

possible auto and cross spectral density functions from the D sensors.  

3 COMPARATIVE NUMERICAL ASSESSMENT AND DISCUSSION 

3.1 Structural response acceleration signals  

To assess the performance of the PSBS-based spectral estimation approach reviewed in 

sub-section 2.1 vis-à-vis the CS-based approach discussed in sub-section 2.2 for OMA, 

simulated response acceleration signals from a white noise excited linear finite element 

model (FEM) of a steel simply supported beam are considered. The considered beam is 

IPE300-profiled with 5m length and flexural rigidity EI=1678103 kNm2 assumed to be 

instrumented with an array of D=15 sensors measuring vertical acceleration and being evenly 

distributed along the length of the beam (see also [10]). The considered FEM is base-excited 

by a low-amplitude Gaussian white noise of 4s duration with time discretization step 0.0005s 

applied along the gravitational axis. Assuming a critical damping ratio of 1% for all modes of 

vibration, linear response history analysis is conducted and the 15 generated vertical 

acceleration response signals are recorded at the Nyquist sampling rate of 2000Hz (i.e., 8000 

“Nyquist samples” per signal). Gaussian white noise is added to the obtained measurements 

at signal-to-noise ratios (SNRs): 1020dB (i.e., practically noiseless case), and 10dB (noisy 

case). Figure 1 plots a typical noisy acceleration response signal with SNR=10dB in time (left 

panel), its single-sided magnitude Fourier spectrum (middle panel) normalized to its peak 

value, as well as the normalized magnitude Fourier coefficients sorted in descending order 

(right panel).  

 

Figure 1: Typical noisy acceleration response signal with SNR=10dB; (left panel): time history; (middle panel): 

normalized single-sided Fourier spectrum magnitude; (right panel): Normalized magnitude Fourier coefficients 

in descending order. The red broken line signifies an arbitrary threshold at normalized Fourier spectrum of 0.05. 
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Clearly, three dominant harmonics are included in the signal, corresponding to the three 

first flexural mode shapes of the beam, on top of broadband noise. By inspection (i.e., 

heuristically), a threshold is set in Fig. 1 (red broken line) to indicate that the significant 

signal energy/information is captured from about 500 Fourier coefficients and thus, a sparsity 

level of K=500 may be assumed for the noisy signals herein considered (see also [4]). 

3.2 Multi-coset and random sub-Nyquist sampling and power spectral estimation 

The linear noisy and noiseless response acceleration response signals generated as detailed 

in the previous sub-section are compressively sampled at two different CRs of approximately 

31% and 11% (i.e., 69% and 89% fewer samples compared to the Nyquist samples) using the 

deterministic multi-coset sampling scheme of sub-section 2.1 and the random CS-based 

sampling scheme of sub-section 2.2. Table 1 reports the parameters considered for the sub-

Nyquist sampling. For example, for CR= 31% the multi-coset samplers comprise M =5 

channels and each channel samples uniformly in time with a rate N =16 times slower than 

the Nyquist rate. The adopted sampling pattern is n=[0 1 2 5 8]T. In this respect, only 

M=2500 samples are acquired by each sensor out of the N=8000 Nyquist samples. This exact 

pair of M, N values (i.e., M=2500, N=8000) is further used to define the partial IDFT matrix 
1 2500 8000

M N
 
 F  in Eq. (5) in the CS-based approach. Further, the accuracy of the CS-based 

approach is assessed for various assumed (target) sparsity levels KT in the range of [50, 500]. 

The case of CR=11% is also examined and the adopted parameters required in applying the 

two different sub-Nyquist approaches are defined in the same manner as above (see Table 1).  
 

Approach Compression ratio CR 31% 11% 

Multi-coset 

sampling 

& 

PSBS 

Number of channels M  5 14 

Downsampling N  16 128 

Sampling pattern n [0,1,2,5,8]T [0,1,2,6,8,20,29,  

38,47,50,53,60,63]T 

CS  

& 

CoSaMP 

Nyquist samples N 8000 8000 

Sub-Nyquist samples M 2500 875 

Target Sparsity Level KT 50-500 50-290 

Table 1: Parameters used within the multi-coset PSBS and the CS-based FDD approaches for two 

compression ratios at 31% and 11% respectively. 

Next, power spectral density matrices collecting estimates of the auto-and cross- power 

spectra of the acceleration signals from the D=15 sensors are obtained from the two 

considered methods as detailed in sections 2.1 and 2.2. Specifically, for the CS-based 

approach, the power spectral density functions are derived in three steps (see also [4]): (i) 

compressive sensing using the matrix in Eq(5); (ii) signal reconstruction using the CoSaMP 

algorithm in Eq.(6) and assuming a target sparsity KT; and (iii) power spectrum estimation 

using the standard Welch periodogram. The PSBS-based method estimates the same power 

spectral density functions in three different steps: (i) multi-coset sampling; (ii) Cross-

correlation estimation applied to the compressed measurements in Eq.  (2); and (iii) power 

spectrum estimation using Eq.(3), without assuming any target sparsity. 

3.3 Operational Modal Analysis using the Frequency Domain Decomposition algorithm 

The standard frequency domain decomposition (FDD) algorithm for OMA [13] is applied 

to the power spectral density matrices obtained from different sets of sub-Nyquist 
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measurements as described in the previous sub-section to extract the mode shapes of the 

considered beam. For illustration, in Fig. 2 all the three excited mode shapes derived from the 

noisy measurements (SNR=10dB) from the two different approaches (CS-based for KT=290 

and PSBS-based) are shown for CR=31%. In Fig.3 only the first two mode shapes are shown 

for CR=11% as the third one is not detectable from the noisy signals sampled at this low CR 

corresponding to almost 90% less than the Nyquist measurements. On all the above plots, the 

mode shapes extracted by application of the FDD to the Nyquist measurements (conventional 

approach) are also superposed for comparison. It is observed, from a qualitative viewpoint, 

that both sub-Nyquist approaches perform well for CR=31% in capturing the shape and 

relative amplitude of the modal deflected shapes compared to the conventional approach, 

with the PSBS-based method being slightly more accurate. For the higher CR=11%, the 

PSBS- based method clearly outperforms the CS-based method.         

 

Figure 2: Mode shape estimation for CR=31%, SNR=10dB and target reconstruction sparsity KT=290 in the CS-

based approach. 

 

Figure 3: Mode shape estimation for CR=11%, SNR=10dB and target reconstruction sparsity KT=290 in the CS-

based approach. 

To quantify the level of accuracy in the estimated mode shapes, the well-known modal 

assurance criterion (MAC) [13] is further employed, which measures the level of similarity 

between mode shape vectors estimated using all the Nyquist samples with modes estimated 

from the sub-Nyquist samples. A value of MAC=1 implies perfect matching. Focus is given 

on quantifying the performance of the CS-based approach to extract mode shapes for 

different assumed (pre-specified) values of the target reconstruction sparsity KT. Specifically, 

Figs. 3 and 4 plot the MAC for CR=31% and CR=11%, respectively, for mode shapes 

extracted by noiseless (SNR=1020 dB) and noisy signals (SNR=10 dB) as a function of the 

assumed target sparsity KT. It is confirmed that in all cases the PSBS-based approach 

developed by the authors outperforms in accuracy for mode shape estimation the CS-based 
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approach for the same number of acquired (and wirelessly transmitted) sub-Nyquist 

measurements. It is also noted that the MAC values of the PSBS-approach are the same for 

all KT values since this approach does not require to make any sparsity assumption (i.e., it is 

signal agnostic). Still, the CS-based approach does perform quite well at least for CR=31% 

even though its performance clearly depends on the assumed KT value. Importantly, for 

CR=31% higher accuracy is achieved for higher KT values at the cost of higher computational 

cost in the signal reconstruction step, however, this is not the case for CR=11% and for the 

second mode shape where the accuracy deteriorates with increase of KT. This is because at 

this high compression level (i.e., small number of sub-Nyquist measurements y in Eq. (5)) the 

CoSaMP algorithm becomes unstable, as shown in Fig. 5, since the underlying conditions 

are, purposely (i.e., for the sake of comparison), violated. In particular, note that for CR=11% 

only M=875 sub-Nyquist samples are acquired; fewer from the requirement of M 3K, where 

a representative (but heuristic) value of K=500 can be taken for the noisy signals (see Fig.1). 

 

 

 

Figure 4: MAC versus reconstruction sparsity level KT, obtained from the two considered approaches, PSBS-

based and CS-based FDD, for CR= 31% and SNR={1020,10}dB. 

 

 

Figure 5: MAC versus reconstruction sparsity level KT, obtained from the two considered approaches, PSBS-

based and CS-based FDD, for CR= 11% and SNR={1020,10}dB. 

 

Figure 5: Signal reconstruction error of CoSaMP algorithm with respect to the target sparsity level K. 

As a final remark, it is noted that both the adopted sub-Nyquist methods yield fairly 

accurate natural frequency estimates in all considered cases (error is less than 1% compared 

to the conventional approach at Nyquist rate) and therefore it was not deemed useful to be 

reported for comparative purposes.   
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4 CONCLUDING REMARKS 

The performance of two recently proposed in the literature spectral estimation approaches, 

namely a (CS)-based approach and a (PSBS)-based approach, was numerically assessed in 

extracting mode shapes from noisy response acceleration signals within an OMA framework 

using the FDD algorithm. To this aim, response acceleration signals with and without 

additive Gaussian white noise taken from 15 equidistant recording locations on a white-noise 

excited linear finite element model of a simply supported beam were considered. The MAC 

was adopted to gauge the effectiveness of the two approaches for the task at hand. Both the 

examined approaches consider response acceleration measurements sampled non-uniformly 

in time at sub-Nyquist rates. It was theoretically discussed and numerically verified that for a 

given sub-Nyquist sampling rate the capability of the CS-based approach to extract faithful 

estimates of the mode shapes depends heavily on the actual sparsity of the acceleration 

signals in the frequency domain and on the target sparsity level that needs to be assumed in 

the CS signal reconstruction step. This verification has been accomplished by considering 

two different compression ratios (i.e., sub-Nyquist sampling rates) of the same signals and by 

purposely violating the minimum required target sparsity constraint imposed by the adopted 

CS reconstruction algorithm for the high compression level and for the noisy acceleration 

signals. The latter signals are not significantly sparse (and, therefore, compressible in the CS 

framework) since they attain non-negligible magnitude Fourier coefficients across the full 

frequency spectrum and not only in the vicinity of the structural natural frequencies. More 

importantly, it was numerically shown that the PSBS-based approach which treats response 

acceleration signals as stochastic processes and estimates the power spectral density matrix in 

a computationally efficient manner without imposing any sparsity conditions, performs 

equally well and consistently better than the CS-based approach in extracting mode shapes 

for all the herein considered cases; even for the noisy signals (SNR=10db) and for sampling 

rate as low as 11% the Nyquist rate. Further, the fact that it does not necessitate any target 

sparsity assumption being genuinely signal agnostic renders the PSBS-based approach rather 

advantageous in practical applications where achieving high signal compression levels is 

desirable irrespective of the additive noise level to address energy consumption issues and 

wireless bandwidth transmission limitations.  
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