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Abstract 

Analyzing the depth structure implied in two-dimensional images is one of the most active research areas in computer vision. Here, we 
propose a method of utilizing texture within an image to derive its depth structure. Though most approaches for deriving depth from a 
single still image utilize luminance edges and shading to estimate scene structure, relatively little work has been done to utilize the 
abundant texture information in images.  Our new approach begins by analyzing the two cues of local spatial frequency and orientation 
distributions of the textures within an image, which are used to compute the local slant information across the image. The slant and 
frequency information are merged to create a unified depth map, providing an important channel for image structure information that 
can be combined with other available cues.  The capabilities of the algorithm are illustrated for a variety of images of planar and curved 
surfaces under perspective projection, in most of which the depth structure is effortlessly perceived by human observers. Since these 
operations are readily implementable in neural hardware in early visual cortex, they therefore represent a model of the human perception 
of the depth structure of images from texture gradient cues. 

 

1 Introduction 

Recovering depth information from 2-D images is a basic 
problem for computer vision which has profound applications 
in object identification, scene reconstruction, and scene 
understanding.  As stated in the Gibsonian ecological theory of 
development, our natural ability to perceive the world in 3-D is 
essential for us to process our environment and for our survival 
[1]. Embedding our capability to visualize the world into a 
computer involves challenging problems, but can be useful in 
computer perception and analysis.  Most work on recovering 
3D information involves using either multiple images or stereo 
cues to recreate depth, with relatively less emphasis being 
placed on monocular cues.  As we humans perceive the world 
through smoothly combining monocular cues (shading, 
occlusion, relative size, defocus, haze, texture, etc.) with stereo 
cues (disparity), these monocular cues also play a huge part in 
our perception [2]. 

2 Stereo Cues 

In stereopsis, each eye receives a slightly different view of the 
world and the disparity between the views is used to perceive 
3-D [3].   Disparity is the misalignment between the two views 
based on the shifted views in the left eye and right eye of the 
same environment. Through triangulating the angles of view 
and disparity, it is possible to see the relative distance between 
objects in high precision. However, the vast majority of images 
employed in computer vision, and a large proportion of medical 
images, are single images of relevant objects without 
stereoscopic information. 

3 Monocular Cues 

Aside from common disparity, humans use a large array of 
monocular cues such as shading, defocus blur, motion parallax, 
perspective, occlusion, texture gradients, etc.  For example, in 
the case of occlusion, when one object blocks another, the 
blocked object must be farther away. This allows humans to 
understand the relative ordering of objects in visual space. 
Shading also performs a key role in depth perception, as the 
illumination reflected from objects can also help identify depth 
[4].  Most monocular cues, however, require contextual 
information, and they must be assessed in global relation to 
each other across the image space. 

4 Textural Approach 

As brought out by Gibson [1], the texture gradients in images 
of textured objects provide a primary cue to ascertain the depth 
structure of object in natural images. When a grass field is 
viewed, the image of the nearby texture is much coarser than 
the farther texture. Thus, the change in detail within the texture 
can be used to determine relative distance of different regions 
of the same texture. Gibson did not, however, actually study the 
kinds of neural computations that would be needed to extract 
the shape information from natural textures.  Despite his 
emphasis on the natural world, he restricted his investigations 
to artificial constructions of simple texture gradients, as in the 
examples in Figure 1. 

Note, however, that Gibson offers these as two examples of 
linear texture gradients without commenting on the analytic 
differences between them, which occur on five different 



dimensions or organization: (1) The texture in the left panel is 
a semi-regular texture, whereas that in the right panel is 
irregular but statistically self-similar.  (2) The texture in the left 
panel is sparse, whereas that in the right panel is dense. (3) The 
texture in the left panel is locally isotropic, whereas that in the 
right panel is locally oriented. (4) Conversely, the texture in the 
left panel is globally anisotropic (with the elements arranged in 
approximately horizontal lines), whereas that in the right panel 

is isotropic (though randomized). (5) The texture in the left 
panel is a flat 2D texture, whereas that in the right panel is a 
thick 3D texture. This last feature has the consequence that the 
slant of the one in the left panel can be assessed from the 
distortion of the individual elements, whereas the elements in 
the right panel are locally frontoparallel, requiring a global 
analysis of the relationships among the elements to assess the 
slant. 

 

Figure 1.  Two examples of simple artificial texture gradients from Gibson (1955). Left panel: linear gradient of a regular sparse texture. Right 
panel: linear gradient of an ergodic dense 3D texture.  

 

A final aspect of texture gradients that deserves comment is that 
the retinal gradient of texture density is defined with respect to 
the angle of the visual rays to the eye.  However, a linear 
gradient of uniform texture in the world does not project to a 
uniform texture gradient on the retina due to the curvature of 
the retina.  This transform is complex and can be broken into 
two aspects, size and shape. To the extent that the nodal point 
of the eye (roughly, the pupil) is in the surface of the sphere 
defined by the shape of the retina, the optical transform from 
the world to the eye is a stereographic transformation, which 
has the property that frontoparallel circles in the transform to 
circles everywhere on the retina. Although this simple 
description does not apply so well to other geometric figures, it 
does mean that orientational properties are roughly preserved 
through the stereographic transform. Relative sizes in this 
projection are not, however, preserved, but scale inversely with 
the cosine of the angle of projection relative to the visual axis. 

An early attempt to compute the texture cue [4] used only the 
size cue of peak horizontal spatial frequency. A more 

comprehensive attempt was made by Blake & colleagues [5], 
but they defined the shape-from-texture cue in terms of ideal 
observer computations rather than providing an algorithm for 
the extraction of the shape from images of textured objects. 
Malik & Rosenholtz [6] demonstrated  a method of deriving 
texture gradients from “singular value decomposition of the 
linear parts of the affine transforms through the low-frequency 
regions of the Fourier Transform of the texture”, but they did 
not use the whole Fourier spectrum or apply their method to 
continuous fields of artificial or natural texture gradients. 

Within approaches using texture, most involve some type of 
contour detection (edge detection) that is used to derive shape, 
where edges are defined as sharp changes in illumination within 
the image. These sharp changes can mark important features 
such as discontinuities in depth, in surface orientation, and 
reflectance changes within or between objects [7]. Although 
they provide some meaningful information, edges are far from 
sufficient to create the full depth structure by themselves 
without providing any information across the surfaces between 
the edges, due both to the ambiguity of the depth that the edges 



represent as well as to the sparseness of the edge information. 
It is therefore timely to develop a more comprehensive 
algorithm for 3D shape from texture, taking into account both 
the orientation and scaling modulations of the texture due to the 
3D shape of the textured surfaces, for both isotropic and 
anisotropic textures, with provision for transitions from one 
texture to another both within and between objects. 

In this paper, we propose a way of using textural cues, to 
recover depth information from single-frame still 
images.  Texture, is defined here as any surface pattern that is 

self-similar over translation up to some scale of analysis, 
namely, the size of the window within which the n-gram 
statistics are evaluated [8]. To put it simply, the histogram of 
any feature in a texture, should be locally similar between 
adjacent blocks.  It is assumed in this report that viewpoint for 
viewing the image/scene is relatively close, so that a uniform 
physical texture projects with a texture gradient (perspective 
transform) into the picture plane. Failures of self-similarity are 
assumed to imply the transition from one distinct texture to 
another, as will frequently occur at the boundaries between 
objects. 

 
5 Methodology  

5.1 Assumptions 

The primary assumption of the approach is that the texture of a 
given natural object to be reconstructed is homogenous, or in 
statistical terms ergodic. That is, it does not need to be a regular 
repeating pattern, but has to have the property specified above, 

that the nth-order histogram of n-gram statistics for any local 
patch of texture is similar within some statistical criterion to any 
other patch of the texture.  Other depth cues that might 
introduce non-structural changes in the image of the texture, 
such as shading cues, are assumed to be absent. 

5.2 Approach 

In this method, we separate the image into overlapping blocks, 
calculate the spatial frequencies in every block and change in 
frequency, f (slant, k) with respect to adjacent blocks. Under the 
assumptions of the perspective transform of an eye viewing a 
world, a uniformly slanted surface should show a decrease in 
size, s, inversely with distance, d, such that 𝑠 = 𝑘/𝑑 , where  
𝑓 = 	1/𝑠 , and thus distance is proportional to spatial frequency 
scaled to a constant for any given slant (k). For a linear slant in 
perspective projection, we know that the spatial frequency 
scales with distance such that  𝑓)/𝑑) = 	 𝑓*/𝑑* . We also know 
that the slant is given by		𝑘 = 	 	𝑑* − 𝑑)/𝑝* − 𝑝), where 𝑝* and 
𝑝)  are two block positions. Thus by substituting 		𝑑* =
	𝑑). 𝑓*/	𝑓) , it follows that 𝑘 = 𝑑) ∗ (𝑝* − 𝑝))/(𝑓*/	𝑓) − 1) . 
Since the image frequencies can be found and the block 
positions are specified by the algorithm, assigning an arbitrary 
𝑑) value allows the slant value at each location of the image to 
be calculated.  Using the slant value, we can derive the 
directional change in depth at every given sampling point of the 
image, which is integrated to create a depth map with one free 
parameter of its absolute distance.  The base depth values are 
obtained from the frequency map, using the perspective 
assumption that higher frequencies are farther away.   

To derive the frequency values at each block of the image and 
form a depth map, we use a log-polar subsampling procedure 
on the block Fourier Transforms.  

 

 

 

5.2.1 Extraction of Spatial Frequencies 

The following is a detailed explanation of every stage of the 
process as shown in Figure 2. First, the program divides the 
image into overlapping subregions and applies a Gaussian fade 

to each block (of specified size) to eliminate edge artifacts., 
sampled every half width of a block to provide for the block 
overlap.  Parametric comparisons are then run across blocks, 
resulting in 𝑛 − 3 comparisons, 𝑛 being the number of indices. 

 

Figure 2: Flowchart of the algorithm 



Then, the 2D Fourier Transform is applied to each block of the 
image. The 2D Fourier Transform decomposes an image into 
its sinusoidal components, thus showing its spatial frequency 

composition, forming a frequency map of the information in the 
image block (See Figure  2).   

 

5.2.2 Conversion to Log-Polar Plane 

Figure 3Error! Reference source not found.B shows a 3D 
plot of the Fourier amplitude of a typical natural image (from 
[4]) illustrating its characteristic approximation to a 1/f  fall-off 

in amplitudes at all orientations (where f = ||u,v||). To focus the 
analysis on local variations from this fall-off property, the 
Fourier amplitudes in our 2D Fourier analysis were first 
multiplied by f to normalize them against this kind of fall-off.  

 

 
A              B 

Figure 3: Extraction of spatial frequencies. A: Rationale for 1/f frequency normalization based on typical 2D Fourier energy distribution for 
natural scenes (from [2]). B: Depiction of the block Fourier transform operation.   
 

The next operation is to run a log-polar transform of the matrix 
containing the spatial frequencies using custom code, as shown 
Figure 1. In this transform, the radius (distance with center as 
origin) and theta (angular change with center as origin) is 
derived for every pixel in the Fourier image utilizing the 

equations 𝑋 = 𝑅 ∗ 𝑐𝑜𝑠	(𝜃)		and 𝑌 = 𝑅 ∗ 𝑠𝑖𝑛	(𝜃). By mapping 
into the log-polar plane, the shift in frequency of the amplitude 
structure in the Fourier plane is converted to Cartesian 
coordinates., such that each block of the image produces a 
pattern of frequencies in the log-polar plane. 

 

Figure 1:  Conversion to log polar plane 

5.2.3 Generation of Frequency Map 

A primary texture cue to object distance is the peak spatial 
frequency of the texture, which increases with distance. Using 
the log polar matrices, the frequency map is derived as shown 

in Figure 5Error! Reference source not found.. The Fourier 
energy is averaged over orientation and the peak frequency of 
each block is computed and set as the characteristic frequency 
for each block. The inverse of this frequency is stored in the 

32	x	32 32	x	32

32	x	32

O
rientation



frequency map, such that the higher frequencies (close to black) 
indicate farther and the lower frequencies (close to white) 
indicate nearer. 

 

 

Figure 5: Creation of block spatial frequency map 

 

5.2.4 Extraction of the Shifts in Spatial Frequency 

To derive the tensor map of the 2D frequency gradient, he 
predominant frequency and orientation shift between adjacent 
blocks is measured by cross-correlation between adjacent log-
polar blocks, specified mathematically by 𝑓 ∗ (𝑡)𝑔(𝑡 +=

>=
𝜏)𝑑𝜏.  Since the pattern of Fourier frequencies within a given 
texture is similar at all locations (by the translation self-
similarity property of the texture definition), the peak shift of 
the cross-correlation will define the gradient of change in 

frequency. Thus, the cross-correlation itself shows the 
frequency or orientation difference as a peak shift from the 
center of the cross-correlation. Depending on the shift intensity 
and direction, one can determine where the gradient is going 
from coarse to fine, and vice versa. The two-dimensional 
(spatial frequency and orientation) shifts between log-polar 
blocks may then be plotted as a tensor map as shown in Figure 
6. 

 

 

Figure 6: Extraction of the spatial frequency gradients. 

 
To eliminate unnecessary DC frequencies, which would 
degrade the peak-shifting assessment, the mean is removed 
from the image block. By running the block analysis both 
vertically and horizontally, the shift in spatial frequency 
throughout the image is captured in two dimensions. The 
estimated frequency and orientation shift is graphed in vector 

format as tensor map (see Figure 6), mapping the gradient 
changes throughout the image. Transitions from one texture to 
a different texture may be signaled by demarcating a texture 
boundary if the peak cross-correlation falls below a criterion 
correlation level, such as 0.5.  

5.2.5 Combining the Tensor and Frequency Maps 



To this point, we have been treating gradients as involving a 
frequency variation. There is a subtlety here, however, since 
this logic depends on the form of perspective involved. In 
parallel (isometric) perspective there is no frequency variation 
with distance, whereas natural images always have some degree 
of convergent perspective. This means that any slanted surface 
will have some degree of frequency gradient to it, which is our 
primary cue to depth from texture.  

However, there is also an overall frequency compression 
resulting from a texture gradient d(x,y) as a function of the angle 
of view to the line of sight, or foreshortening, implying that the 
frequency estimate for a uniform gradient will show a degree of 
frequency compression proportional to the steepness of the 
gradient. 

The use of the frequency map per se is still suboptimal, 
therefore, as it does not take into account the frequency 
compression resulting from a texture gradient as a function of 

the angle of or foreshortening.  The frequency coding principle 
treats such compression for oblique gradients as a region of 
uniformly greater distance.  The gradient approach can correct 
for the lack of a gradient estimate in the frequency image, but it 
needs to also provide a correction to the frequency estimate 
based on the presence of the local gradient (Figure 7).  

Thus, the frequency information is proportional to distance d 
with an arbitrary scaling factor defined by the nature of the 
texture, fT, with an additional term defined by the absolute value 
of the surface gradient, |f(x,y)’|.  Since the same degree of 
foreshortening is provided by both a positive and a negative 
slant to the line of sight, the sign of the slant is ambiguous in 
terms of its effect on frequency, and is given by its absolute 
value:  F(x,y)  =  fT / (d(x,y) + k.|d(x,y)’| ). Thus, in order to 
compensate the frequency estimate of distance D for the 
foreshortening effect, we need to subtract the absolute value of 
the local frequency gradient from it:  d(x,y)  =  fT / F(x,y)  - 
k.|d(x,y)’|. 

 

 

Figure 2: Creation of final depth map 

 

6 Results 

The following figures provide a compilation of some of the 2D 
depth images that were analyzed through the program.  In the 
following depth maps, white represent absolute closeness and 

dark represents absolute distance (scale bar). These results 
reinforce the notion that texture is a strong perceptual cue that 
can be used to extract depth information from single 2D depth 
images. 

6.1 Simple artificial images 

Figure 7 is a good example of a simple anisotropic frequency 
gradient validating the primary algorithm by showing how the 

oblique near-to-far gradient implied by the image (and 
perceived by the viewer) is captured in the oblique light-to-
dark gradient of the depth map. Note that the algorithm does 



not require the assumption of local isotropy of the texture, but 
works equally well for anisotropic texture. 

 

  A B C  D 

Figure 7.   A. Oblique frequency gradient in a one-dimensional texture. B. Frequency map. C. Slant-corrected depth map. D. Scale bar: 
brightness represents estimated distance, with farther coded as darker as indicated by the depth bar at right. 

 

 
Figure 8 is a more complex one-dimensional gradient (‘Fission 
by Bridget Riley, 1962) based on a two-dimensional dot pattern, 
illustrating that the algorithm can handle regular isotropic 
texture gradients. Notice also that the depth reconstruction 

captures the uniformity of the gradient in the vertical direction, 
and also the subtle difference between the longer gradient on 
the left side and the shorter gradient on the right side, which is 
difficult perceive with the human eye without careful scrutiny. 

 

 A B C D 

Figure 8.  Two-dimensional texture with an anisotropic, one-dimensionally modulated gradient. Coding as in Figure 7. 

 

 

6.2 Complex artificial images 

Figures 9 and 10 are examples of complex texture gradients for 
which the approach was able to detect the gradient changes in 
all directions. In Figure 9, the structure is given mainly by 

texture gradients, while in Figure 10 the main changes are in 
texture orientation. Bothe are captured well by the algorithm, 
illustrating the flexibility of the algorithm capabilities. 

Image Frequency Map Slant-Corrected Depth Map



 

 A B C D 

Figure 9.  Complex rotational frequency gradient. Coding as in Figure 7. 

 
 A B C D 

Figure 10.  Complex orientation gradient – ‘Fall’ by Bridget Riley (1963). Coding as in Figure 7. 
 

6.3 Natural images 

The final two images are natural images, showing how the 
algorithm can handle the variety of textural properties 
generated by the variety of the natural world. Figure 11 is the 
uniform texture gradient of a lawn containing much fine detail. 

The algorithm captures the primary near-to-far distance (light-
to-dark gradient) represented by the depth structure of the lawn, 
although this is overlaid with some noisy structure that is less 
evident to the human eye.   

 
 A B C D 

Figure 11.  Simple natural texture gradient of a grassy field. Coding as in Figure 7. 
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Figure 12 is a natural image of a face illuminated artificially by 
a linear graticule to define the facial contours, which would be 
essentially invisible in uniform illumination. This approach is 
used in some medical applications to bring out the depth 
structure of bodily images, which can be ill-defined even in 
stereoscopic view due to the sparsity of the contours over the 

natural curved surface of the face and body. The algorithm does 
a respectable job of defining the overall curvature of the face 
and the hollows of the eyes and mouth, although the graticule 
density in this example is not sufficient to provide a high-
resolution reconstruction. 

 

 

 A B C D 

Figure 12. Natural image of a face illuminated by a contouring graticule. Coding as in Figure 7. 

 
Finally, Figure 13 depicts a gloved hand with one striped 
texture is grasping a stockinged leg of another texture under a 
skirt of a third striped texture. It is noteworthy that the 
frequency algorithm captures the curvature of the leg and 
crinkles in the skirt while successfully delineating the three 

different texture regions with darker outlines.  This version of 
the algorithm does not parcellate the different texture into 
separate regions, but it is clear that it is tracking regions of 
similar texture through large gradient changes while strongly 
demarcating the boundaries between changing textures. 

 

 A B C D 

Figure 13. Quasi-natural image of a textured hand grasping a textured leg. Coding as in Figure 7. 
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7 Discussion 

As in the results shown above, this texture gradient based 
approach has succeeded in creating accurate depth maps for 
textured surfaces that correspond with the ground truth for 
many different artificial and natural images.  This is proof of 
principle that the 2D peak Fourier frequency approach to 3D 
shape from texture has much to offer in terms of decoding 
object structure in both artificial and natural scene images. 

 As stated earlier, most approaches in computer vision, utilize 
cues other than texture. Depth from stereo, depth from defocus, 
and depth from shading. are the main cues used to form depth 
maps. Even within textural approaches, most approaches are 
based on edge detection [7], which, although it does provide 
useful clues, cannot be used to understand a full map of depth 
within an image because it provides no information about the 
regions between the edges. The present texture gradient based 
approach is a valuable addition to the more popular approaches 
because it is derived from a single scene image, but it also has 

its own requirements and assumptions. First and foremost, 
textural information must be well-defined, in that a high 
resolution natural image is required. This also means that, for 
non-textural images, such as the sky, depth cannot be extracted. 
The base depth is extracted using the perspective assumption 
that the frequency of a homogeneous texture increases with 
distance, which necessarily applies to natural images derived 
from a focal optical system. 

This approach is different from most previous approaches 
utilizing texture because it provides the estimated textural map 
with less restrictive assumptions. Our approach can also be used 
easily to enhance various other forms of depth maps. The 
frequency map can and integrated with the base depth map from 
any other depth cue to enhance the overall depth map. As a 
result of this, various cues such as shading and stereopsis can 
be integrated to form more accurate depth maps, extending this 
approach to not only single images, but multiple images.  

 
8 Applications 

This 3D shape from texture computational method has powerful 
applications in the world of image understanding.  As shown in 
Figures 11-13, this approach can be used in natural images, and 
can be a powerful extension and enhancement to a binocular 
disparity map.  

Aside from applications in real life, this approach can be useful 
in approximating local depth. The ability to coarsely identify 
depth in anatomical structures such as faces, skulls, and bodies 
(see Figure 12-13) has medical applications, as depth can be 
achieved through one image without using complex and 

complicated sensors. This method could also be used for virtual 
reality with 360° capture to create multiple views from 
sufficient number of cameras. In all the applications that would 
require more accurate depth maps, the texture gradient analysis 
can be used to improve the differential depth maps in regions of 
ambiguous correspondence matching in complex self-similar 
textures.  
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