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Abstract

The complex tail dependency structure in a dynamic network with a large num-
ber of nodes is an important object to study. Here we propose a network quantile
autoregression model (NQAR), which characterizes the dynamic quantile behavior.
Our NQAR model consists of a system of equations, of which we relate a response
to its connected nodes and node specific characteristics in a quantile autoregression
process. We show the estimation of the NQAR model and the asymptotic properties
with assumptions on the network structure. For this propose we develop a network
Bahadur representation that gives us direct insight into the parameter asymptotics.
Moreover, innovative tail-event driven impulse functions are defined. Finally, we
demonstrate the usage of our model by investigating the financial contagions in the
Chinese stock market accounting for shared ownership of companies. We find higher
network dependency when the market is exposed to a higher volatility level.
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1. INTRODUCTION

Quantile regression is an increasingly popular tool for modern econometric analy-

sis. Instead of studying the conditional mean function of the response variable, quantile

regression is concerned with estimating the conditional quantile function. It has been

applied to a wide range of econometric applications, such as labor economics (Koenker

and Hallock, 2001; Fitzenberger et al., 2013) and financial risk management (Gaglianone

et al., 2011; Härdle et al., 2016). Particularly, the linear quantile model has been studied

by a seminal work by Koenker and Bassett (1978), and the asymptotic theory has been

developed by Portnoy (1991, 1997). See Koenker (2005) for a comprehensive summary of

the methods and applications.

Following the development of quantile methods in the existing literature, the quantile

regression in time series is of particular interest. An early stream of researches such as

Hasan and Koenker (1997) deal with linear quantile autoregression models, which focus

on independent identically distributed (iid) innovations in a relatively restrictive loca-

tion shift model. In another approach, Engle and Manganelli (2004) propose a set of

autoregressive forms (the CaViaR model) for value-at-risk (VaR), which models directly

the dynamics of the conditional quantiles. The framework is easy to apply but is quite

difficult to directly infer the underlying process. As an alternative, Koenker and Xiao

(2006) consider a quantile autoregressive method to model the conditional quantile func-

tion, which allows to study the asymptotic properties of the underlying process and does

not assume an iid underlying process. This provides us with an interesting framework to

understand the risk propagation within a complex financial system. We consider therefore

a parametric approach involving a system of dynamic quantile autoregression equations.

Thus our methodology characterizes a dynamic tail dependency graph, which facilitates

tail event driven forecasting and impulse analysis in a complex financial system. This

is in particular important in a financial network and complements to the literature on

systemic risk; see for example Billio et al. (2012), Diebold and Yılmaz (2014).

The rapid development of modern data technology has allowed us to have access to

large amount of data with possible network structures. On one hand, this poses serious

challenges to the analysis of dynamic tail behavior especially within a network composed

of a large number of nodes. On the other hand, the data structure bears the opportunity

for naturally embedded network information. We take this opportunity of employing

network structures, and propose a tail event driven network quantile autoregression model

(NQAR), which allows us to make inference based on the underlying processes and to
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estimate the network dependencies.

In the existing literature, great efforts have been taken to incorporate network infor-

mation into an econometric framework. For instance, Sewell and Chen (2015) incorporate

network information to study the dynamic social behavior of students in a Dutch class by

a latent space model. Community detection and extraction methods are studied by Zhao

et al. (2011), Amini et al. (2013), and Sewell et al. (2017) using a block structure. Compa-

rably, our proposed framework is related to the recent autoregressive models in large-scale

social networks. Based on the cited literature, it is assumed that the behavioural patterns

of network users are related to their connected friends (Zhang and Chen, 2013; Zhu et al.,

2017). Estimation and computation issues for this situation are intensively discussed

(Zhou et al., 2017; Zhu et al., 2018).

A recent paper by Zhu et al. (2017) on network autoregression provides a modelling

framework at the mean level. In this work, we extend this to a network quantile au-

toregression (NQAR) model in order to study conditional quantiles in complex financial

networks. Consider a network of firms, connected by their shareholder relationships.

Specifically, a nodal connection between two firms can be established if they share major

common shareholders. In this context, it makes sense to assume that the conditional

quantile function of the response variable (e.g., volatility of stock returns for the firms) is

related to underlying exogenous factors. These may include nodal specific variables (e.g.,

firm specific variables), the lagged response of the same node (e.g., volatility of the same

stock in the previous time point), and the lagged responses of other connected nodes. To

estimate the parameter, a minimum contrast method is introduced, which is applied to

a large-scale network. The corresponding asymptotic properties are established, where

the conditions on network structures are given and discussed. Moreover, the stationarity

of the NQAR model is investigated, and an impulse analysis under the NQAR model is

discussed. Empirically, we discover strong asymmetric network effects of shocks at dif-

ferent quantile levels of stock volatilities in the Chinese financial market. Namely, the

network dependence among the volatilities becomes stronger at the tail level, while at

normal times it is not significant.

Finally, our paper is closely related to the recent emerging literature on modeling

tail dependence in a complex financial system. Examples include the quantile LASSO

framework discussed by Hautsch et al. (2014) and Härdle et al. (2016), where the net-

work relationship is estimated among the financial institutions by imposing an L1-penalty.

Their estimation framework considers a more flexible network formation at the cost of s-
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lower convergence rate, as it is in nature a nonparametric estimation. Furthermore, there

is also a literature on the tail dependence in multi-dimensional dynamic settings. For

example, Cappiello et al. (2014) develop an econometric measure for the comovement of

quantiles. In addition, White et al. (2015) provide a very innovative vector autoregres-

sive model for the dynamics of quantiles. Chavleishvili and Manganelli (2016) propose

a framework related to the CaViaR process to identify the structural quantile shock-

s. Comparably, our approach is different mainly in the following three aspects. First,

the proposed NQAR model embeds the observed network structure, which provides a

parametric estimation framework. Second, it admits trackable quantile dynamics, which

facilitates to conduct stationary and impulse response analysis. Third, the model allows

for modeling a large number of nodes (a high dimensional setup), and controlling for the

observed nodal heterogeneity.

Lastly, we summarize our contribution as follows. Firstly, we provide a novel net-

work quantile model that characterizes the dynamic quantile behavior, which incorporates

valuable network information from data. Secondly, we give new definitions of tail-event

driven impulse functions under this innovative modeling framework. Thirdly, the asymp-

totic theories are derived for both the underlying process and estimated parameters. The

model stationarity is discussed with insights on its relationship with the given network in-

formation. Moreover, detailed conditions on the network structures are derived to ensure

the consistency and asymptotic normality of the estimator.

The rest of the paper is organized as follows. Section 2 introduces the network

quantile autoregression model and its stationarity properties. Section 3 proposes a novel

impulse analysis framework for the network quantile autoregression model. The parameter

estimation method is given in Section 4, where the asymptotic properties are presented.

An empirical analysis for stocks in Chinese financial markets are conducted in Section

5. Lastly, a conclusion is discussed in Section 6. Extensive numerical studies and all

technical details are delegated to the supplementary material.

2. NETWORK QUANTILE AUTOREGRESSION

2.1. Model and Notations

Let Uit (1 ≤ i ≤ N , 1 ≤ t ≤ T ) be iid random variables following the standard

uniform distribution on the set of [0, 1]. Assume that a q-dimensional random nodal

covariate vector Zi = (Zi1, · · · , Ziq)> ∈ Rq is collected for each node. To record the
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network relationship, we define A = (aij) ∈ RN×N as the adjacency matrix, where aij = 1

if there is an edge from i to j, otherwise aij = 0.

Following the standard conventions, the nodes are assumed to be not self-related (i.e.,

aii = 0). Motivated by the univariate autoregression quantile model (Koenker and Xiao,

2006), we consider the network quantile autoregression model as

Yit = β0(Uit) +

q∑
l=1

Zilγl(Uit) + β1(Uit)n
−1
i

N∑
j=1

aijYj(t−1) + β2(Uit)Yi(t−1), (2.1)

where βjs (0 ≤ j ≤ 2) and γls (1 ≤ l ≤ q) are unknown coefficient functions from (0, 1)

to R1, and ni =
∑

j 6=i aij is the out-degree for the ith node.

Importantly, the NQAR model (2.1) induces a convenient form of the conditional

quantile function of Yit. Denote QY (τ |X) as the τth conditional quantile of Y seen as a

function of X. By assuming that the right side of (2.1) is monotonically increasing in Uit,

we can write the conditional quantile function of Yit given (Zi,Yt−1) as:

QYit(τ |Zi,Yt−1) = β0(τ) +

q∑
l=1

Zilγl(τ) + β1(τ)n−1
i

N∑
j=1

aijYj(t−1) + β2(τ)Yi(t−1). (2.2)

In (2.2), β0(τ) +
∑q

l=1 Zilγl(τ) reflects the nodal impact invariant over t, where β0(τ) is

referred to as the baseline function. The covariates Zil refer to node-specific variables, like,

size, leverage ratio, which are invariant in time. It is assumed that the nodal covariates

Zis are independent of the Uits. Next, the second term n−1
i

∑N
j=1 aijYj(t−1) characterizes

the network impact from the connected nodes (e.g., firms with common shareholders)

(Zhu et al., 2017). The corresponding coefficient function β1(τ) is then referred to as the

network function. Lastly, Yi(t−1) captures the impact from the response of the same node

in the previous time point. Accordingly, the coefficient function β2(τ) is then referred to

as the momentum function. The model (2.2) is related to the autoregression models in

spatial econometrics literature, e.g. Lee (2004); Lee and Yu (2009). Although they share

the similarity in the construction of the adjacency matrix A, the modelling interests are

different. Specifically, the spatial models mainly characterize the instantaneous spatial

effect across spatial locations, while our approach mainly focus on modelling the dynamic

patterns of the responses. To better understand the NQAR model (2.1), we have the

following remarks.

Remark 1. (Monotonicity) Monotonicity is a frequently discussed issue for the quantile
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autoregression model. A specific example for the monotonicity of (2.1) to hold is that

γl(·)s and βl(·)s are all monotone increasing functions, and Zils, Yits are positive random

variables. In other cases, certain data transformation techniques can be conducted to

ensure this assumption; see Koenker and Xiao (2006) and Fan and Fan (2010) for more

detailed discussions.

Remark 2. (Comparison with NAR Model) One certainly notes (2.2) to be an ex-

tension of the network vector autoregression (NAR) model proposed by Zhu et al. (2017).

First of all, the NQAR model has a varying coefficient structure which requires to signif-

icantly different tools for deriving theoretical properties. Emphatically, the conditional

quantile function in the NAR case is

QYit(τ |Zi,Yt−1) = β0 +

q∑
l=1

Zilγl + β1n
−1
i

N∑
j=1

aijYj(t−1) + β2Yi(t−1) + cτ ,

where cτ is the quantile of the error distribution, and all the parameters β1, β2, γl are not

related to τ . In contrast, the NQAR model allows coefficient functions to vary over τ .

This makes not only the location of the conditional density of Yit be determined by τ ,

but also the shape of QYit(τ |Zi,Yt−1) be τ -related. In practice, this model formulation is

of particular interest for financial risk management. Specifically, we discuss the following

two scenarios in which NQAR is more powerful than the mean case (i.e., NAR model).

Scenario 1. (Tail Behavior) The NQAR model captures asymmetric dependen-

cy between the responses at different quantile levels, especially at tail levels. For instance,

to measure the conditional VaR of a firm, one can adopt the stock volatility as Yits for

the ith firm and at τ = 0.95. In this case, an asymmetric pattern indicates whether the

financial institutions tend to have closer connections in the upper tail (e.g. when the

market exhibits high turbulences) than other levels.

Scenario 2. (Robust Estimation) General vector autoregression models are

usually sensitive to outliers, which leads to a serious distortion of the estimation (Abello

et al., 2013; Li et al., 2015). Consequently, compared to NAR, NQAR is more robust to

outliers since it is established on the quantile framework. Specifically, the robust median

estimation can be readily obtained by setting τ = 0.5.

Remark 3. (Heteroskedasticity) Heteroskedasticity is a pervasive phenomenon in

complex financial systems. The QNAR model could include a vector autoregression model

with heteroskedasticity as a special case. We take for example the classical location shift
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form as mentioned by Koenker and Hallock (2001) as

Yit = b0 + b1Y i(t−1) + b2Yi(t−1) + σiεit, (2.3)

where b0, b1, b2 are constants, Y i(t−1) = n−1
i

∑
j aijYj(t−1), σi = b0 + b1Y i(t−1) + b2Yi(t−1),

and εits are iid random variables with distribution function F (·). One could note that

Model (2.3) involves the heteroscedasticity in the innovation term. It can be rewritten

into,

Yit = b0(1 + εit) + b1(1 + εit)Y i(t−1) + b2(1 + εit)Yi(t−1).

Specifically, it is a special case of the NQAR model (2.1) by specifying β0(Uit) = b0(1+εit),

β1(Uit) = b1(1 + εit), and β2(Uit) = b2(1 + εit), where εit = F−1(Uit).

Remark 4. (Adjacency Matrix) It should be noted that the adjacency matrix A in

(2.1) is allowed to take flexible forms according to specific application scenarios. For ex-

ample, in social network analysis, the adjacency matrix is defined by the natural following-

followee relationship (Chen et al., 2013; Zhou et al., 2017; Zhu et al., 2017). Specifically,

aij = 1 if the ith node follows the jth node in the network; otherwise aij = 0. In eco-

nomic and financial applications, one can take several strategies. For instance, Acemoglu

et al. (2012) provide a characterization of intersectorial input-output linkage embedded

in a network relationship. Alternatively, the network structures of financial institutions

are usually constructed according to their financial fundamentals. Specifically, the indus-

trial background, financial statement, shareholder information are commonly employed

for network construction (Zou et al., 2017; Antón et al., 2018; Chen et al., 2018). In

spatial econometrics, the adjacency matrix can be related to spatial distances between

locations (or even economic distance such as a measure of trade flows, e.g., Novy (2013)),

where the weight (i.e., aij) are usually assumed to be monotone decreasing with distance

increasing (Cressie and Wikle, 2015; Lee, 2004). In addition, one could take a further

flexible approach to model the adjacency matrix A at the first step according to different

statistical models. Particularly, the random graph model (Hoff et al., 2012; Herz, 2015)

and statistical tests (Granger et al., 2000) can be applied.

2.2. Vector Formulation of NQAR

Next, we organize the NQAR model in (2.1) into vector forms to facilitate further

discussions. Define Yt = (Y1t, · · · , YNt)> ∈ RN . Let B0t =
(
β0(Uit) +

∑
l Zilγl(Uit), 1 ≤

i ≤ N
)>∈ RN , B1t = diag{β1(Uit), 1 ≤ i ≤ N}∈ RN×N , B2t = diag{β2(Uit), 1 ≤ i ≤
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N}>∈ RN×N . One can easily verify that Γ = E(B0t) = c01N ∈ RN , where c0 = b0 + cZ ,

b0 =
∫ 1

0
β0(u)du and cZ = E(Z1)>r with r =

( ∫ 1

0
γl(u)du, 1 ≤ l ≤ q

)> ∈ Rq. Then the

NQAR model (2.1) can be re-written in a vector form as

Yt = Γ +GtYt−1 + Vt, (2.4)

where Gt = B1tW + B2t ∈ RN×N , W = (wij) = (n−1
i aij) ∈ RN×N is the row-normalized

adjacency matrix, and Vt = B0t−Γ ∈ RN is iid over t with mean 0 and covariance ΣV =

σ2
V IN ∈ RN×N with σ2

V = σ2
b0

+ E{γ>(U1t)Σzγ(U1t)}, σ2
b0

=
∫ 1

0
β2

0(u)du − {
∫ 1

0
β0(u)du}2,

and Σz = Cov(Z1) ∈ Rq×q.

Note that (2.4) is written in the form of a vector autoregression model (Lütkepohl,

2005) with a stochastic coefficient matrix Gt depending on t. It is not hard to see that Gt

is linear in the adjacency matrix W . This form borrows the strength of network structure

information (i.e., W ), and greatly reduces the dimensionality of estimated parameters.

For convenience, we discuss the model stationarity based on the vector form (2.4).

2.3. Covariance Stationarity

Given the NQAR model (2.4), it is then of great interest to check the stationarity

of Yt. A process {Yt}+∞
−∞ is covariance stationary if (a) E(Yt) = µY for a constant vector

µY ∈ RN ; (b) Cov(Yt,Yt−h) = E{(Yt−µY )(Yt−h−µY )>} = Σ(h) with Σ(h) ∈ RN×N only

related to h. For convenience, let b1 = E{β1(Uit)}, b2 = E{β2(Uit)}, b̃1 = {E β2
1(Uit)}1/2,

b̃2 = {E β2
2(Uit)}1/2, G = E(Gt) = b1W + b2I, and G∗ = E(Gt ⊗ Gt). Then we have the

following theorem.

THEOREM 1. Assume b̃1 + b̃2 < 1 and E |Vit| < C for some positive constant C. Then

the following conclusions hold.

(a) There exists a unique covariance stationary solution to the NQAR model (2.4) with

finite first moment as

Yt =
∞∑
l=0

ΠlΓ +
∞∑
l=0

ΠlVt−l, (2.5)

where Πl =
∏l

k=1 Gt−k+1 for l ≥ 1 and Π0 = I.

(b) Denote ΣY = Σ(0) = Cov(Yt). The stationary mean is µY = c−1
1 c01N and

vec(ΣY ) = (M1 − c−2
1 c2

0)1N2 + 2c−1
1 c0(I −G∗)−1vec(Σbv) + (I −G∗)−1vec(ΣV ), (2.6)

where c1 = (1 − b1 − b2)−1, M1 = c−1
1 c2

0(1 + b1 + b2)(I − G∗)−1, Σbv = σbvIN , and
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σbv = E[{β1(Uit) + β2(Uit)}Vit]. Moreover, we have Σ(h) = GhΣY for any integer h > 0,

and Σ(h) = ΣY (G>)−h for h < 0.

The proof of Theorem 1 is given in the supplementary material (Appendix A.1). It

provides the unique covariance stationary solution of (2.5).

Remark 5. It is straightforward to verify b̃1 = (b2
1 + σ2

b1
)1/2, where σ2

b1
= Var{β1(Uit)}.

Similarly one can define σ2
b2

= Var{β2(Uit)} and b̃2 = (b2
2 + σ2

b2
)1/2. Therefore the sta-

tionarity assumption in Theorem 1 essentially sets constraints on the expectation and

variance of the network and momentum functions (i.e., β1(·) and β2(·)). It is noteworthy

that the assumption does not require |β1(τ)| + |β2(τ)| to be strictly less than one for all

τ ∈ (0, 1). Instead, it imposes an upper bound in L2-norm, which allows for some “ex-

plosive” cases at a specific quantile (i.e., |β1(τ)|+ |β2(τ)| > 1 for some τ). Particularly, if

the network and momentum functions are constants, i.e., β1(τ) = b′1 and β2(τ) = b′2 (for

some constants b′1 and b′2), the stationarity assumption reduces to |b′1| + |b′2| < 1, which

corroborates to the stationary condition in the mean case (Zhu et al., 2017).

Remark 6. Let us look at the stationary mean µY and covariance ΣY . First, note that

µY = c−1
1 c01N , thus the stationary mean is the same for all the nodes, and unrelated

to the network structure. By contrast, the analytical form for the covariance ΣY is

more complicated. To better understand how ΣY is affected by the network structure,

we approximate ΣY in the case that β1 is small (Chen et al., 2013; Zhou et al., 2017;

Zhu et al., 2017), namely, b̃1 = O(1). For convenience, define b̃12 = E{β1(Uit)β2(Uit)},
b̃01 = E{β1(Uit)Vit}, and b̃02 = E{β2(Uit)Vit}. Employing the Taylor’s expansion, ΣY can

be approximated by

Var(Yit) ≈ cb1c
2
0 +

1

1− b̃2
2

[
2(1− b2)−2{(1− b2)σbv + b1b̃02}c0 + σ2

V

]
, (2.7)

Cov(Yi1t, Yi2t) ≈ cb2c
2
0 +

1

(1− b2
2)2

{
2(1− b2)−1b̃02c0 + σ2

V

}{
b1b2(wi1i2 + wi2i1)

}
, (2.8)

where cb1 = [(1−b̃2
2)−1{1−b2

2+2b1+2(1−b̃2
2)−1(1−b2

2)̃b12}−(1−b2)−1(1−b2+2b1)](1−b2)−2

and cb2 = (1 − b2)−2(1 − b2
2)−2(1 − b2

2 + 2b1 + 2b1b2) − (1 − b2)−3(1 − b2 + 2b1). Detailed

verifications of (2.7) and (2.8) are given in the supplementary material (Appendix A.2). It

is worth noting that the variance of Yit is mainly determined by the momentum function

β2(·) and the baseline function β0(·). Particularly, a larger b̃2 will result in higher variance

of Yit. Next, the covariance between Yi1t and Yi2t is not only related to β2(·), but is also

related to the network function β1(·). Nodes have a higher correlation with each other if b1
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is larger. Moreover, note that wi1i2 +wi2i1 = n−1
i1
ai1i2 +n−1

i2
ai2i1 . Therefore, the correlation

between node i1 and i2 is higher if (a) they connect to each other in the network (i.e.,

ai1i2 = ai2i1 = 1) and (b) they both have small out-degrees (i.e., small ni1 and ni2).

2.4. Asymptotic Stationary Distribution

Given the established covariance stationarity, it is then natural to derive the asymp-

totic stationary distribution. We focus on the long run average of Yt, namely, YT =

T−1
∑T

t=1 Yt. It reflects the average performance of Yt over the whole time period T ,

and its asymptotic properties are going to be investigated as T → ∞. In this regard,

two types of asymptotics exist. The first type is fixed N asymptotics, and the second

one is N →∞ asymptotics. In the following theorem, we first give the result of fixed N

asymptotics.

THEOREM 2. Assume cβ < 1 and E(|Vit|4) < M , where cβ = ‖β1‖4 + ‖β2‖4 with

‖βj‖4 = E{βj(Uit)4}1/4 (j = 1, 2), and M is a finite positive constant. Then the average

of Yt converges in law to a normal distribution,

√
T (YT − µY 1)

L−→ N(0,Σ∗Y ) as T →∞, (2.9)

where Σ∗Y = G(I −G)−1ΣY + ΣY (I −G>)−1.

The proof of Theorem 2 is deferred to the supplementary material (Appendix A.3).

Via (2.9), the asymptotic normality of
√
T (YT − µY 1) is provided. One could see

that the corresponding asymptotic covariance is equal to the long run covariance Σ∗Y =∑∞
h=−∞Σ(h) = (σ∗ij) ∈ RN×N .

Note that the Theorem 2 is established for a fixed N . However, one might consider to

extend the result directly to the case N →∞. On general grounds, this can be difficult,

since the convergence in distribution in high dimensions is not well defined. As one possible

solution, we discuss the problem under the framework of Gaussian approximation theory,

which is formulated by Zhang and Cheng (2014) and Zhang and Wu (2015) for time series

analysis. Before we introduce this N → ∞ asymptotics, we first give definition of a

convenient distance between two high dimensional vectors. Specifically, the Kolmogorov

distance is employed and defined as follows.

DEFINITION 1. Let X = (X1, · · · , XN)> ∈ RN , Y = (Y1, · · · , YN)> ∈ RN be N-
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dimensional random vectors. The Kolmogorov distance between X and Y is defined as

ρ(X, Y ) = sup
t∈R

∣∣∣P (‖X‖∞ ≤ t)− P (‖Y ‖∞ ≤ t)
∣∣∣,

where ‖X‖∞ denotes max1≤i≤N |Xi| for any arbitrary vector X.

The Kolmogorov distance can be seen as a distance between two distribution function-

s. Using it, we are able to quantify the distance between
√
T (YT−µY 1) and a given Gaus-

sian random vector. Specifically, define Ỹt = Yt−µY , then we have Cov(Ỹt, Ỹt−h) = Σ(h).

Accordingly, let Z ∈ RN be an N -dimensional Gaussian random vector with covariance

equal to the long run covariance of Ỹt as Σ∗Y (defined in Theorem 2). For a finite sample,

the long run covariance is usually approximated by Σ
∗(T )
Y =

∑T−1
h=−(T−1) T

−1(T − |h|)Σ(h).

We then have the following.

THEOREM 3. Assume the same conditions as in Theorem 2. Further assume λmin(Σ
∗(T )
Y )

≥ τ for a positive constant τ . In addition, N = O{exp(T δ)} for 0 ≤ δ < 1/11. Then as

T →∞, we have

ρ
(
T−1/2

T∑
t=1

Ỹt, Z
)
→ 0. (2.10)

The result (2.10) can be seen as an analogue of the central limit theorem in a high

dimensional version. It should be noted that to guarantee the
√
T convergence rate of

T−1
∑T

t=1 Ỹt, the network size N is required to expand in a rate not faster than exp(T δ);

see Appendix A.4 for more proof details.

3. PARAMETER ESTIMATION

In this section, we provide an estimation method to the NQAR model (2.1). The

asymptotic properties are also established. Let θ(τ) = [β0(τ), γ>(τ), β1(τ), β2(τ)]> ∈ Rq+3

be the parameter vector. In addition, define Xit = (1, Z>i , n
−1
i

∑N
j=1 aijYjt, Yit)

> ∈ Rq+3.

Then θ(τ) is estimated by

θ̂(τ) = arg minθ

N∑
i=1

T∑
t=1

ρτ

{
Yit −X>i(t−1)θ(τ)

}
, (3.1)

where ρτ (u) = u{τ − 1(u < 0)} is the contrast (check) function for quantile regression.

Note that the estimation problem given by (3.1) is equivalent to estimating the quantile

regression problem, where Yit is the response variable and Xit is the explanatory vari-

able. Consequently, the standard algorithms to estimate the quantile regression model
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(e.g., simplex methods or interior point methods) can be employed. With regards to the

computational perspective, we refer to the Chapter 6 of Koenker (2005) for more details.

Let the conditional density function of Yit given Ft−1 be fi(t−1)(·). To facilitate the

study of the asymptotic properties, define Ω̂0 = (NT )−1
∑N

i=1

∑T−1
t=0 XitX

>
it and Ω̂1(τ) =

(NT )−1
∑N

i=1

∑T−1
t=0 fit

{
X>it θ(τ)

}
XitX

>
it for τ ∈ (0, 1). Computationally, fit

(
X>it θ(τ)

)
is

approximated by f̂it
(
X>it θ̂(τ)

)
= {X>it (θ̂(τl)− θ̂(τl−1))}−1(τl− τl−1) for τ ∈ [τl−1, τl], where

{τl} is a chosen grid. Next, to prove the asymptotic properties of the estimated parame-

ters, the following assumptions are required.

(C1) (Moment Assumption) Assume cβ < 1, where cβ is defined in Theorem 2. Fur-

ther, assume that Zis are iid random vectors, with mean 0, covariance Σz ∈ Rq×q

and finite fourth order moment. The same assumption is needed for Vit, 1 ≤ i ≤ N

and 0 ≤ t ≤ T . Lastly, assume that {Zi} and {Uit} to be mutually independent.

(C2) (Network Structure)

(C2.1) (Connectivity) Treat W as the transition probability matrix of a Markov

chain, whose state space is defined as the set of all the nodes {1, · · · , N}.
Assume the Markov chain to be irreducible and aperiodic. In addition, define

π = (π1, · · · , πN)> ∈ RN to be the stationary distribution vector of the Markov

chain (i.e., πi ≥ 0,
∑

i πi = 1, and W>π = π). It is assumed that
∑N

i=1 π
2
i → 0

as N →∞.

(C2.2) (Uniformity) Assume |λ1(W ∗)| = O(logN), where W ∗ is the symmetric

matrix as W ∗ = W +W>.

(C2.3) (Convergence) Assume that the following limits exist and finite: κ1 =

limN→∞N
−1tr(ΣY ), κ2 = limN→∞N

−1tr(WΣY ), κ3 = limN→∞N
−1tr(WΣYW

>),

κ4 = limN→∞N
−1tr{(I −G)−1}, and κ5 = limN→∞N

−1tr{W (I −G)−1}.

(C3) (Eigenvalue-bound) Let Ω̂1(τ)→p Ω1(τ) as min{N, T} → ∞ for any τ ∈ (0, 1),

where Ω1(τ) ∈ RN×N is a positive definite matrix. Moreover, there exists positive

constants 0 < c1 < c2 < ∞ such that c1 ≤ λmin(Ω1(τ)) ≤ λmax(Ω1(τ)) ≤ c2 for any

τ ∈ (0, 1).

(C4) (Monotonicity) It is assumed that X>it θ(τ) (1 ≤ i ≤ N, 1 ≤ t ≤ T ) is a monotone

increasing function with respect to τ ∈ (0, 1).
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To gain insights into the conditions, we comment as follows. Condition (C1) is stan-

dard conditions on the noise term Vits, nodal covariates Zis and β(Uit)s for the parameter

consistency results. This condition can be relaxed to allow for the weak dependence or

mixing case over time as long as the asymptotic normality still holds. Condition (C2) is

set for the network structure. Specifically, condition (C2.1) ensures the connectivity on

the network structure. It implies that all nodes in the network could connect each other

within a finite number of steps. This condition can be supported by the empirical phe-

nomenon named as “six degrees of separation” (Newman et al., 2011). Condition (C2.2)

assures that the network has certain uniformity properties, i.e. the divergence rate of

λ1(W ∗) should be of the same rate or slower than log(N). Consider a fully connected

network for example, it can be verified in such a case λ1(W ∗) is of order O(1), which

satisfies the condition perfectly. However, this assumption might be violated if huge het-

erogeneity occurs among nodes (e.g., a “super star” shaped network). Condition (C2.3)

states the convergence assumption, which are the values related to network structure. To

better understand the condition, we take κ1 for illustration proposes. It can be written

as N−1 tr(ΣY ) = N−1
∑

i ΣY,ii, where ΣY,ii is the variance of node i. Consequently, this

assumption is satisfied if the average variations of all the nodes in the network converge

to a finite constant. Subsequently, condition (C3) assures that the law of large number

assumption holds for Ω̂1(τ). Moreover, the condition guarantees that eigenvalues of the

asymptotic covariance matrix in Theorem 4 are bounded from above and below for any

τ ∈ B. Lastly the monotonicity assumption is imposed by condition (C4) to ensure the

validity of the quantile regression. Given the conditions, we provide a theorem named

as Network Bahadur Representation, which leads to the consistency of the parameter

estimation.

THEOREM 4 (Network Bahadur Representation). Under conditions (C1)–(C4), the

following representation holds uniformly over τ ∈ B (i.e., B is a compact set in (0, 1)),

θ̂(τ)− θ(τ) = (NT )−1Ω1(τ)−1

N∑
i=1

T∑
t=1

Xitψτ (Vitτ ) + rNT (τ), (3.2)

where ψτ (u) = τ − I(u < 0), Vitτ = Yit − X>i(t−1)θ(τ), and The remainder term satisfies

supτ∈B|rNT (τ)| = Op{(NT )−1/2
}

. Therefore, we have θ̂(τ)
p→ θ(τ) uniformly for τ ∈ B

as min{N, T} → ∞.

The proof of Theorem 4 is given in the supplementary material (Appendix B.2). With

the consistency of the parameters, we may now present the asymptotic distribution of the
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estimated parameters.

THEOREM 5. Under conditions (C1)–(C4), we have

√
NTΣ

−1/2
θ (τ)

{
θ̂(τ)− θ(τ)

} L−→ Bq+3(τ)

as min{N, T} → ∞, where Σθ(τ) = Ω−1
1 (τ)Ω0Ω−1

1 (τ) with

Ω0 =



1 0> cb cb

0 Σz κ5Σzr κ4Σzr

cb κ5r
>Σz κ3 + c2

b κ2 + c2
b

cb κ4r
>Σz κ2 + c2

b κ1 + c2
b


(3.3)

cb = c−1
1 c0, and Bq+3(τ) is a (q + 3)-dimensional Brownian bridge.

The proof of Theorem 5 is given in the supplementary material (Appendix B.3). In

Theorem 4 and Theorem 5, both N and T are required to diverge to infinity to obtain a
√
NT -consistent result. Although the NQAR model requires that the adjacency matrix to

be correctly specified, it is found that the consistency result still holds if the the magnitude

of mis-specification is under control. See Appendix B.4 in the supplementary materials

for a discussion. It is noteworthy that since the nodal covariates Zi are invariant to time,

the minimum requirement is N →∞ to obtain the consistent estimation of γ(τ).

To better understand the convergence result given in Theorem 5, consider the case

that for any fixed τ , Bq+3(τ) reduces to N(0, τ(1 − τ)Iq+3). Specifically, we have the

following Corollary on the asymptotic result for fixed τ .

COROLLARY 1. Under conditions (C1)–(C4), for any fixed τ ∈ B we have the result
√
NT

{
θ̂(τ)− θ(τ)

} L−→ N
(
0, τ(1 − τ)Σθ(τ)

)
as min{N, T} → ∞, where B ⊂ (0, 1) is a

compact set.

Corollary 1 is a direct implication of Theorem 5. Indeed, by Corollary 1, the asymptotic

normality can be obtained at any arbitrary fixed τ . This enables us to conduct pointwise

(for any fixed τ) inference on the estimated parameters.

Remark 7. Given the estimated QNAR model, one is interested in measuring goodness-

of-fit of the model. A possible solution is based on the approach of Koenker and Machado

(1999) who looks at:

R1(τ) = 1− Q̂(τ)/Q̃(τ),
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where Q̂(τ) =
∑N

i=1

∑T
t=1 ρτ{Yit−X>i(t−1)θ̂(τ)} and Q̃(τ) = minβ0

∑N
i=1

∑T
t=1 ρτ (Yit− β0).

Similarly, a goodness-of-fit measure can be defined for model prediction, which could also

be used for model comparison.

To corroborate the theoretical results, we conduct a number of simulation studies.

The details can be found in the Appendix C.1 and C.2 in the supplementary material. In

the next section, we discuss an important aspect of the NQAR model: impulse analysis.

4. IMPULSE ANALYSIS

Given the NQAR structure (2.1) it is vital to check marginal influence via an impulse

analysis: how does a node in the network react to an exogenous shock imposed on the other

nodes at different quantile levels? Particularly, consider a stimulus ∆ = (δ1, · · · , δN)> ∈
RN imposed on Vt, i.e. shock to Vt + ∆. Note here we do not consider the structural

shock analysis to facilitate a simple discussion.

Then, the response for the ith node at time point t (i.e., Yit) will grow to Yit + δi.

Following the NQAR model (2.4), the response at time point (t + l), l ≥ 1 (i.e., Yt+l) is

increased by

IEt(l) =
l−1∏
k=0

Gt+l−k∆, (4.1)

where IEt(l) refers to the impulse effect from time t to t + l. For instance, if ∆ =

(1, 0, · · · , 0)>, then the IEt(l) is the first column of
∏l−1

k=0Gt+l−k. Note in the a s-

tandard impulse analysis of VAR model, the autoregression matrix Gt+l−k is a con-

stant matrix. Take the NAR model proposed by Zhu et al. (2017) for example, i.e.,

Yt = β0 +β1WYt−1 +β2Yt−1 +Z>i γ+Et, where all the coefficients are constants. Immedi-

ately one could obtain the autoregression matrix G = β1W +β2I. However, in the NQAR

model, the autoregression matrix Gt is a stochastic matrix related to {Uit : 1 ≤ i ≤ N}.
As a result, IEt(l) cannot be directly evaluated as it is a random process. Therefore, we

propose various impulse effects at any tail level in a tractable way.

4.1. Measurements of Impulse Effect

Before we go into the details, we discuss a straightforward way to measure the impulse

effect, which can be referred to as average impulse effect (AIE). Naturally, the AIE is

directly defined as the expectation of IEt(l) as E(IEt(l)) = Gl∆ = (b1W + b2IN)l∆.

Specifically, the AIE is only related to the average network (b1) and momentum effect
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(b2). It is noteworthy that the AIE is no longer related to t but only depends on the time

lag l. It can be further derived |1> E(IEt(l))| ≤ N (̃b1 + b̃2)lC∆, where C∆ = maxi |δi|.
Therefore, it can be concluded that the AIE will reduce to 0 as l →∞, if the stationary

condition in Theorem 1 is satisfied. Although the AIE is easy to understand, it could only

measure the average level of impulse effect. As an extension, we propose the following

three quantile specific measurements to measure the impulse effect.

Type I. (Interval Impulse Effect) It can be noted that the AIE can characterize

the impulse effect on average. However, it cannot capture asymmetric effects between

different tail levels. To this end, we define the interval impulse effect (IIE) from t to t+ l

within the interval [τ1, τ2], (0 < τ1 < τ2 < 1) as

IIEτ1τ2(l) = E
{ l−1∏
k=0

Gt+l−k∆
∣∣Uim ∈ [τ1, τ2], 1 ≤ i ≤ N, t+ 1 ≤ m ≤ t+ l

}
= (cβ1,τ1τ2W + cβ2,τ1τ2IN)l∆,

where cβ1,τ1τ2 =
∫ τ2
τ1
β1(u)du and cβ2,τ1τ2 =

∫ τ2
τ1
β2(u)du. As one can see, the size of IIE is

determined by the integration of β1(u) and β2(u) within any selected [τ1, τ2]. For example,

to measure the effects in the upper tail, at the middle level and in the lower tail, one can

split (0, 1) equally into three intervals (i.e., (0, 1/3), [1/3, 2/3), [2/3, 1)) and compare the

IIEs for different intervals respectively.

Type II. (Impulse Effect Intensity) IIE can distinguish effects at different

quantiles. However, due to the unknown function forms of β1 and β2, the integration can

still be hard to compute. On the other hand, note that the IIE can be defined in any

interval in (0, 1). Motivated by this, we consider a sufficiently small interval [τ, τ +δ], and

define the impulse effect intensity (IEI) at τ as

IEIτ (l) = lim
δ→0

δ−l E
( l−1∏
k=0

Gt+l−k∆
∣∣Uim ∈ [τ, τ + δ], 1 ≤ i ≤ N, t+ 1 ≤ m ≤ t+ l

)
=

{
β1(τ)W + β2(τ)IN

}l
∆,

where β1(u) and β2(u) are assumed to be continuous at τ . By definition, IEIl,τ can reflect

the impulse impact at the τth quantile, and is easy to compute as long as the estimates

of β1(τ) and β2(τ) are obtained.

Type III. (Pseudo Quantile Impulse Response Function) Similar to White

et al. (2015), we can define the pseudo impulse response function. Recall that we impose
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a stimulus on Yt and turn it to Yt + ∆, and the l-step ahead the impulse effect IEt(l)

is given by (4.1). We are interested in checking the change to the conditional quantile

QYi(t+l)
(τ |Yt+l−1, Zi), which is the pseudo quantile impulse response function according to

White et al. (2015). From (2.2), we have

QYi(t+l)
(τ |Zi,Yt+l−1) = β0(τ) +

q∑
l=1

Zilγl(τ) + β1(τ)
N∑
j=1

wijYj(t+l−1) + β2(τ)Yi(t+l−1).

Therefore, the pseudo quantile impulse response function is given by

QỸi(t+l)
(τ |Zi, Ỹt+l−1)−QYi(t+l)

(τ |Zi,Yt+l−1) = β1(τ)
N∑
j=1

wijIEt,j(l − 1) + β2(τ)IEt,i(l − 1),

where IEt,j(l−1) is the jth element of IEt(l−1). Due to the randomness of IEt(l−1), the

pseudo quantile impulse response function can be measured by the above two methods

(Type I and II).

Given the different types of impulse effect measurement, a cross-sectional impulse

analysis can be conducted. Assume that one unit stimulus is imposed on the ith node,

a cross-sectional impulse analysis aims to analyzing its impact on the other nodes. For

instance, the impulse analysis can be critical in a network of financial institutions. It

delivers an important message on the systemic risk spillover of an institution. Take the

IEI as an example and assume ∆ = (δi)
> with only δi = 1 and δi′ = 0 (for all i′ 6= i).

The IEI from node i to j can be defined by the jth element of IEIτ (l), which is then

denoted as IEI(i,j)
τ (l). Equivalently, IEI(i,j)

τ (l) is equal to the (j, i)th element of the matrix{
β1(τ)W + β2(τ)IN

}l
. If IEI(i,j)

τ (l) is sufficiently large and decays slowly as l → ∞, the

jth node (e.g. risk factor) can be seriously affected by the shock on the ith node for a

long time.

4.2. Influential Node Analysis

The impulse effect measures the impact from t to t + l given a stimulus ∆ = (δi)
>.

Specifically, consider that one unit stimulus is imposed on the node i with δi = 1 and

δj = 0 for all j 6= i. As a result, the impulse impact of that unit stimulus could be

measured with respect to a particular node i. Such amount of influence could reflect

the influential power of the node, which leads to a quantification of influential nodes.

Empirically, the influential nodes in a complex financial system should be paid particular

attention with financial regulation.
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To facilitate the analysis, first define the total network average impulse effect (T-

NAIE) as the summation of the cumulated AIE as TNAIE(∆) =
∑∞

l=0 1
> E(IEt(l)) =∑∞

l=0 1
>Gl∆ = 1>(I − G)−1∆. Note that the definition is given by using the impulse

measurement AIE, but it would be similar to use the other impulse measures (IIE and

IEI). Further write TNAIE(∆) as TNAIE(∆) =
∑N

i=1 νiδi, where νi is the ith element of

the vector ν = (I − G>)−11. Then we have TNAIE(∆) = νi if we set δi = 1 and δj = 0

if j 6= i. It measures the effects of one unit perturbation from the node i on the whole

network. We thus define νi as the influential power of node i.

However, in practice, νi can be hard to compute, as the calculation of ν involves the

inverse of a high dimensional matrix (I −G>) ∈ RN×N . Following the idea of Remark 4

of Theorem 1, we can approximate νi by the first order Taylor’s expansion, which would

lead to

νi ≈ 1/(1− b2) + (1− b2)−2b1

∑
j

n−1
j aji.

Suppose b1 > 0, then the influential power of node i is mainly determined by the quantity∑
j n
−1
j aji, which is referred to as the weighted degree of the node i. Generally speaking,

the weighted degree is an approximation to the influential power of the nodes. Therefore

one may rank the nodes’ influences based on the weighted degrees. Computationally, the

calculation of this weighted degree does not involve complex computation of inverse of a

high dimensional matrix (I − G>), as well as specific values of b1 and b2, but only the

network structure information. As a result, nodes with larger weighted degrees tend to

be followed (connected) by a large amount of nodes (i.e.,
∑

j aji). Moreover, at the same

time, the connected nodes should have less out-degrees (i.e., small njs).

5. FINANCIAL CONTAGION AND SHARED OWNERSHIP

In this section, we study financial risk contagion mechanisms arising from the common

shared ownership information. Specifically, we focus on the Chinese Stock Market in 2013.

The dataset consists of N = 2, 442 stocks in the Chinese A share market, which are traded

in the Shanghai Stock Exchange and the Shenzhen Stock Exchange. Here N = 2, 442 is

the size of cross section. For each stock, the weekly price is recorded for T = 52 weeks.

The Yit is the log-transformed weekly absolute return volatility, where the absolute return

volatility is calculated as the absolute stock return for t = 1, · · · , T . The average volatility

of all stocks at t = 1, · · · , T is calculated and visualized in the left panel of Figure 1. A

relatively higher volatility level can be captured in May and July. To describe the cross
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sectional information, we average for each stock the volatilities over time. That leads to a

median volatility level of 0.014. In addition, we calculate the cross sectional correlations

for all the stocks, which leads to N(N−1)/2 correlations. The histogram of cross sectional

correlations is given in the right panel of Figure 1, where the mean correlation level is

0.105. This implies on average the stocks tend to be positively correlated.

To construct the network structure, the top ten shareholders’ information for each

stock are collected, which are referred to as major shareholders of the stock. For the ith

and jth stock, aij = 1 if they share at least one major common shareholder, otherwise

aij = 0. The shareholder network reflects an important information of inter-corporate

dependence. Particularly, this is an important research problem of financial risk manage-

ment. Corsi et al. (2016) argue about the common shareholder effect from the perspective

of the diversification cost. They discovered that a reduction of diversification cost will

lead to increasing level of diversification and thus increases the degree of overlap (common

shareholder). This explains that why financial institutions, who have common sharehold-

ers are more likely to be highly correlated. We visualize the network structure among

the top 100 stocks ranked by market values in Figure 2. The resulting network density

is 3.9%. In addition, we would like to comment that one could construct the adjacen-

cy matrix by other approaches (e.g., according to their industrial background) and the

proposed method could still be applied.

Besides this shared ownership information, firm specific variables are also taken into

consideration. Motivated by Fama and French (2015), consider the following K = 6

covariates to represent stocks’ fundamentals: SIZE (measured by the logarithm of market

value), BM (book to market ratio), PR (increased profit ratio compared to the last year),

AR (increased asset ratio compared to the last year), LEV (leverage ratio), and Cash

(cash flow of the firm). Eventually all covariates are normalized within the interval [0, 1].

We then proceed with the network analysis using the NQAR model. The results of

our NQAR model yields Table 1. Both the estimates and the p-values are reported at

quantiles τ = 0.05, 0.30, 0.50, 0.70, and 0.95 (from left to right). One could discover

that the estimated network effect and momentum effect are stronger in the upper tail

(i.e., τ = 0.95) than the other quantiles. This indicates that stocks tend to have higher

dependence through the network when the market is exposed to a higher volatility level.

While on normal occasions (e.g., τ = 0.5), the network effect tends to be insignificant.

Besides, the size (i.e., CAP), the book to market ratio (BM), and the leverage ratios (LEV)

are shown to have negative correlations with the conditional quantile level of the volatility
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at τ = 0.95 and τ = 0.5. To access the model fitting level, we apply a model diagnosis

procedure on residuals by using the QACF (quantile ACF) measure proposed by Li et al.

(2015). The details and discussions are given in Appendix C.3 in the supplementary

material. There is no strong evidence showing dynamic and cross-sectional dependence

remained in the residuals.

Lastly, we include the NAR model (Zhu et al., 2017) for a comparison. The corre-

sponding estimation results are given in Table 2. It can be seen that the network effect

(i.e., β̂1) is no longer significant with p-value much larger than 10%. That implies the

NAR model might not be suitable to detect the asymmetric effects in this volatility au-

toregression problem. Next, we compare the NQAR model with the LASSO method in

multivariate quantile regression QLASSO (The tuning parameter is chosen to maximize

R1(τ) of (5.1)) see Hautsch et al. (2014). Specifically, we use the time periods with

t = 1, · · · ,m for model training and the remaining for prediction. Following Koenker and

Machado (1999), we define the prediction goodness-of-fit measure as

R1(τ) = 1− Q̂(τ)/Q̃(τ), (5.1)

where Q̂(τ) =
∑N

i=1

∑T
t=m+1 ρτ{Yit−X>i(t−1)θ̂(τ)} and Q̃(τ) = minβ0

∑N
i=1

∑T
t=m+1 ρτ (Yit−

β0). Since for the LASSO method it is required that the number of nodes should be less

than the total time periods for feasible estimation, we then randomly select n = 40 nodes

each time, and keep m = 46 for training and the last 5 weeks for prediction. In addition,

we set τ = 0.95 to compare the prediction accuracy for the tail event. The experiment is

repeated for R = 500 times to obtain reliable results. The goodness-of-fit measures are

reported in Figure 5. It is evident that the NQAR model has better prediction power

than the QLASSO model.

The impulse analysis as discussed in Section 4 is applied for stocks of five well-known

banks in China. They include Bank of China (BOC), China Merchants Bank (CMB),

Industrial and Commercial Bank of China (ICBC), Ping An Bank (PAB), and Shanghai

Pudong Development Bank (SPDB). Specifically, IEIτ (l) (τ = 0.05, 0.5, 0.95) in Section

4.1 is computed within 5 banks at time lags l = 1, · · · , 10, which are plotted in Figure

3. The (i, j)th panel in Figure 3 denotes the impulse impact of the jth bank on the

ith bank (i.e., IEI(j,i)
τ (l)). Significant asymmetric effects across different quantiles can

be observed, where larger IEI can be detected in the upper tail (τ = 0.95). Note that

the estimated network effect β1(τ) is very small at τ = 0.05 and τ = 0.5. Therefore,

the resulting impulses IEI(j,i)
τ (l) is much smaller than the higher quantile level τ = 0.95,
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which results in an almost flat impulse line in Figure 3. Moreover, it is observed that the

mutual impulse impacts between BOC, CMB, and ICBC are much stronger than between

the other two banks. Next, to evaluate the nodal influence, the influential node analysis

is conducted. By Section 3.2, the influential power can be calculated by ν̂ = {(1− b̂2)IN−
b̂1W

>}−11, where b̂1 = 10−1
∑9

m=0 β̂1(0.05 + 0.1m) and b̂2 = 10−1
∑9

m=0 β̂2(0.05 + 0.1m)

are computed as the numerical approximations for b1 and b2. Subsequently the influential

power is plotted against the weighted degrees on the right panel of Figure 4, where a

strong linear pattern is detected. In addition, the histogram of the weighted degrees is

given on the left panel of Figure 4, where a skewed distribution pattern can be noticed.

This indicates that a small portion of nodes possesses a large amount of influential power.

6. CONCLUSION

In this article, we propose a network quantile autoregression framework, which models

network dynamics in a complex tail event-driven system. The stationarity of the model

is discussed by considering the underlying stochastic process. To estimate the NQAR

parameters, a minimum contrast estimation is employed. The asymptotic properties of

the resulting estimators are investigated, which are closely related to the given network

information. We illustrate the performance of the NQAR model via simulation studies

and an application in the Chinese stock markets. In particular, significant asymmetric

dependency at different levels of quantiles can be detected. Specifically, a stronger network

effect can be found between stocks when higher volatility level is exposed to the market.

This further confirms the usefulness of our proposed methodology.

We discuss here several potential future research topics. First, we comment on pos-

sible extensions of the model forms. First, it could be noted that the responses of the

NQAR model are continuous. As a natural extension, a quantitative framework can be

established for discrete response variables. Second, it should be noted that the NQAR

model focus on lagged dependence. Thus an alternative modelling framework is to con-

sider the contemperaneous correlation of nodes at the same time period, which would lead

to the spatial quantile autoregression model. Next, suggested by the empirical evidence,

we find that the dynamic patterns could be different during different time periods. See

Appendix C.4 in the supplementary materials for discussions. Particularly, one tends

to see stronger asymmetric network effects when the market exhibits higher turbulence.

Therefore, more flexible model forms can be designed to model this phenomenon. Lastly,

heteroskedasticity is a pervasive phenomenon in financial data and should be taken into

21



consideration. Although it has been shown in Remark 3 that the NQAR model could al-

low for certain types of heteroskedasticity, however, it is still worthwhile to discuss more

general settings. In addition, with respect to the model form, one could consider allow-

ing node specific network and momentum functions to reflect more heterogeneity in the

network.

Next, the specification of the adjacency matrix should be investigated. It is found that

the estimation would be biased when the network relationship is seriously mis-specified.

As a complement to the NQAR model, one could consider the approach of Hautsch et al.

(2014) to estimate the network relationship among the nodes. In addition to that, bias

correction methods should be developed accordingly. Another flexible approach is to make

the adjacency matrix to be time varying and related to exogenous covariates. Under that

specification, new estimation methods should be discussed.

Thirdly, note that the NQAR model (2.1) requires continuous observations for each

subject i. This may not be applicable in some scenarios. For example, the daily stock

price will be missing when the stock market is closed on weekends. The model should be

further adjusted to allow for missing values in such scenarios.

Lastly, the impulse analysis should be further investigated to allow for possibly struc-

tural shocks. Consider the NAR model for example, i.e., Yt = β0 + β1WYt−1 + β2Yt−1 +

Z>i γ+Et, where the coefficients are constants and Cov(Et) = Σε. By conducting a Cholesky

decomposition on Σε and assuming an empirical causal chain of the nodes on the identi-

fication of the structural model, we could have Σε = LL>. An equivalent structural VAR

form is L−1Yt = β0L
−1 +L−1GYt−1 +L−1Z>i γ+et, where G = β1W +β2I and et = L−1Et.

Further it can be transformed to Yt = (I − L−1)Yt + β0L
−1 + L−1GYt−1 + L−1Z>i γ + et.

Given this form, one could be able to analyze the instantaneous effect by making an im-

pulse on Yt. We refer to Lütkepohl (2005) for more discussions. However, in the case of

NQAR model, it is not so straightforward. That is because that the NQAR model has a

non-linear model structure. Furthermore, it is assumed the underlying random variable

Uits are independent over i, t. A possible extension is to allow dependency across nodes

for Uit. That will facilitate the discussion of the structural shock for the NQAR mod-

el. However, in such a case, the dependency structure will exist simultaneously among

{βk(Uit), 1 ≤ i ≤ N} for k = 0, 1, 2. The analytical form of the impulse function would

thus not be explicit. Since the extension is highly non-trivial and out of the scope of our

paper.
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Table 2: The NAR analysis results for the Chinese Stock dataset. The parameter estimates
(×10−2) and the standard error (×10−2) are reported. The p-values are also given.

Estimate SE p-value

Baseline β̂0 1.19 0.04 < 0.01

Network β̂1 0.22 0.67 0.74

Momentum β̂2 36.79 0.27 < 0.01

SIZE γ̂1 -1.60 0.10 < 0.01

BM γ̂2 -0.35 0.08 < 0.01

PR γ̂3 -0.03 0.10 0.75

AR γ̂4 -0.19 0.15 0.19

CASH β̂0 0.02 0.11 0.82

LEV β̂1 -1.34 0.10 < 0.01
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Figure 1: Left panel: the average stock volatility of Chinese A stock market in 2013. Higher
volatility level can be captured in the first half of 2013; right panel: histogram of cross sectional
correlations for the stocks. The average correlation level is 0.105.
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Figure 2: The common shareholder network of top 100 market value stocks in 2013. The larger
and darker points imply higher market capitalization.
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Figure 4: Left panel: the histogram of the weighted degrees; right panel: the influential power
against weighted degrees.
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Figure 5: The prediction goodness-of-fit measure R1(τ) at τ = 0.95 for the QNAR model and
the QLASSO methods. Better prediction performance can be detected for the QNAR model.
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