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Network Quantile Autoregression– Supplementary

Material

There are 3 Appendixes in this supplementary material. The technical proofs

related to model stationarity and estimation are presented in Appendix A and B. The

extensive numerical studies are given in Appendix C.

APPENDIX A

In Appendix A, we are going to prove the stationarity results (Theorem 1) and

Theorem 2 in Appendix A.1. The verification of (2.7) and (2.8) are given in Appendix

A.2. The proofs of Theorem 2 and 3 are given in Appendix A.3 and A.4 respectively.

We first list necessary notations as follows. Let |M |a = (|mij|) ∈ Rm×n for any

arbitrary matrix M ∈ Rm×n. For any two arbitrary matrices M1 = (m1,ij) ∈ Rm×n

and M2 = (m2,ij) ∈ Rm×n, define M1 � M2 as m1,ij ≤ m2,ij for 1 ≤ i ≤ m and

1 ≤ j ≤ n. In addition, for a p-dimensional vector Y = (Y1, · · · , Yp)> ∈ Rp, denote

|Y |δa = (|Y1|δ, · · · , |Yp|δ)> ∈ Rp for any finite real value δ > 0.

Appendix A.1: Proof of Theorem 1

By iteration, we obtain the NQAR solution of model (2.1) as

Yt =
L−1∑
l=0

ΠlΓ + ΠLYt−L +
L−1∑
l

ΠlVt−l =
∞∑
l=0

ΠlΓ +
∞∑
l=0

ΠlVt−l, (A.1)

where Πl
def
= GtGt−1 · · ·Gt−l+1 for l > 0 and Π0 = 1. We now prove Theorem 1 in

two steps. In the first step, we prove the covariance stationarity of the solution (A.1).

Next, we prove the uniqueness of the stationary solution (A.1).
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Step 1. (Proof of Covariance Stationarity) In this step, we show the covari-

ance stationarity by calculating E(Yt) and Cov(Yt,Yt−h) respectively. Denote λi(M) as

the ith eigenvalue of any arbitrary matrix M ∈ RN×N such that |λ1(M)| > |λ2(M)| >

· · · > |λN(M)|. Recall that E(Gt) = G = b1W + b2I. We firstly verify that E(Yt) = µY

for 1 ≤ t ≤ T . To this end, note that |λ1(W )| = 1 by Banerjee et al. (2014), we have

|λ1(G)| ≤ |b1||λ1(W )|+ |b2| < 1 (A.2)

due to the stationarity condition in Theorem 1 (note that |b1| is bounded by b̃1). Then

it could be computed that E(Yt) =
∑∞

l=0 G
lΓ = (I − G)−1Γ due to the independence

of Gts over t, and E(Vt−l) = 0 for l ≥ 0. Recall that we have Γ = c01N . Then it is

straightforward to have µY = c−1
1 c01N , where c1 = (1−b1−b2)−1 is defined in Theorem

1.

We next calculate the covariance of Yt. Specifically, it can be expressed as

Cov(Yt) =Cov(
∞∑
l=0

ΠlΓ) + Cov(
∞∑
l1=0

Πl1Γ,
∞∑
l2=0

Πl2Vt−l2)

+ Cov(
∞∑
l2=0

Πl2Vt−l2 ,
∞∑
l1=0

Πl1Γ) + Cov(
∞∑
l=0

ΠlVt−l). (A.3)

Recall that G∗ = E(Gt⊗Gt) = E{B1(Ut)⊗B1(Ut)}(W⊗W )+E{B1(Ut)⊗B2(Ut)}(W⊗

I) +E{B2(Ut)⊗B1(Ut)}(I⊗W ) +E{B2(Ut)⊗B2(Ut)}(I⊗ I), b̃1 = {Eβ2
1(Uit)}1/2, and

b̃2 = {Eβ2
2(Uit)}1/2. Then we have

|λ1(G∗)| ≤ b̃2
1|λ1(W )|2 + 2b̃1b̃2|λ1(W )|+ b̃2

2 ≤ (̃b1 + b̃2)2 < 1, (A.4)

by the fact that |λ1(W )| < 1 and the stationarity condition in Theorem 1. Note

the matrix G∗ can be represented in the Jordan canonical form as PΛP−1, where Λ
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is a matrix of the Jordan block diagonal form with diagonal elements being λi(G
∗)

(1 ≤ i ≤ N) and P is an invertible matrix. Then by (A.4), (G∗)l converges to zero at

a geometric rate as l→∞ and therefore we have

∞∑
l=0

(G∗)l = (I −G∗)−1. (A.5)

Similarly, by (A.4) we have
∑∞

l=0G
l = (I − G)−1. We then calculate the terms of

Cov(Yt) in (A.3) one by one.

For the first term it can be calculated Cov(
∑∞

l=0 ΠlΓ) = E{(
∑∞

l1
Πl1Γ)(

∑∞
l2

Γ>Π>l2)}−

µY µ
>
Y =

∑∞
l1,l2=0 E(Πl1ΓΓ>Π>l2) − µY µ

>
Y . Firstly we have vec(Πl1ΓΓ>Π>l2) = (Πl2 ⊗

Πl1)vec(ΓΓ>). Without loss of generality, we assume l1 ≥ l2. Then it can be obtained

that E(Πl2 ⊗ Πl1) = (G∗)l2(IN ⊗G)l1−l2 and

E(Πl2 ⊗ Πl1)vec(ΓΓ>) = (G∗)l2(b1 + b2)l1−l2c2
01N2 (A.6)

due to that vec(ΓΓ>) = c2
01N2 , (IN ⊗ G)1 = (b1 + b2)1. Therefore, by (A.4), (A.5),

and (A.6) we have
∑∞

l1,l2=0 E{vec(Πl1ΓΓ>Π>l2)} = {
∑∞

l2=0(G∗)l2
∑

l1>l2
(b1 + b2)l1−l2 +∑∞

l1=0(G∗)l1
∑

l1≤l2(b1 +b2)l2−l1}c2
01 = M11N2 , where M1 = c−1

1 c2
0(1+b1 +b2)(I−G∗)−1.

As a result, we have vec{Cov(
∑∞

l=0 ΠlΓ)} = M11N2 − c−2
1 c2

01N2 .

Next, for the second term, it can be derived that Cov(
∑∞

l1=0 Πl1Γ,
∑∞

l2=0 Πl2Vt−l2) =∑∞
l1,l2=0 E(Πl1ΓV

>
t−l2Π

>
l2

), due to E(
∑∞

l2=0 Πl2Vt−l2) = 0. It is straightforward to veri-

fy that for l2 ≤ l1, we have E(Πl1Vt−l1Γ
>Π>l2) = 0. Therefore, by (A.4) and (A.5),

one could verify that
∑∞

l1,l2=0 E{vec(Πl1Vt−l1Γ
>Π>l2)} =

∑∞
l1=0

∑∞
l2=l1+1(G∗)l1E{(Gt−l1⊗

I)(G⊗I)l2−l1−1(I⊗Vt−l1)}Γ =
∑∞

l1=0

∑∞
l2=l1+1(G∗)l1(b1 +b2)l2−l1−1vec(Σbv) = c−1

1 c0(I−

G∗)−1vec(Σbv). Similarly, one could verify the third term Cov(
∑∞

l1=0 Πl1Vt−l1 ,
∑∞

l2=0 Πl2Γ)

is also equivalent to c−1
1 c0(I −G∗)−1vec(Σbv).
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For the last term, we have Cov(
∑∞

l=0 ΠlVt−l) =
∑∞

l=0 E(ΠlVt−lV
>
t−lΠ

>
l ) due to that

E(Πl1Vt−l1V
>
t−l2Π

>
l2

) = 0 for any l1 6= l2. Also note that E{vec(ΠlVt−lV
>
t−lΠ

>
l )} =

E{(Πl⊗Πl)vec(Vt−lV
>
t−l)} = (G∗)lvec(ΣV ). Then by (A.5) we have Cov(

∑∞
l=0 ΠlVt−l) =∑∞

l=0(G∗)lvec(ΣV ) =
∑∞

l=0 PΛlP−1vec(ΣV ) = (I − G∗)−1vec(ΣV ). Consequently, by

(A.4) one obtains that vec{Cov(
∑∞

l=0 ΠlVt−l)} = (I − G∗)−1vec(ΣV ). As derived in

the previous paragraph, vec(ΣY ) takes the form (I − G∗)−1vec(ΣV ) + 2c−1
1 c0(1 −

G∗)−1vec(Σbv) + (M1 − c−2
1 c2

0)1N2 . To prove the covariance stationary, it suffices

to prove that Cov(Yt,Yt−h) only depends on h. As we can see that for h ≥ 1,

Cov(Yt,Yt−h) = E(YtY
>
t−h) − E(Yt)E(Yt−h)

> = E{E(Yt|Ft−h)Yt−h} − µyµ
>
y . Further-

more one can obtain that E(Yt|Ft−h) =
∑h−1

l=0 G
lΓ +GhYt−h. So it is straightforward to

conclude that Cov(Yt,Yt−h) = GhΣY , which is only related to h. This completes the

proof of Step 1.

Step 2. (Uniqueness of the Solution) Assume that Y∗t is another covariance

stationary solution to the NQAR model. Then we know that E|Y∗t |a � C11N for some

constant C1. Similarly we have Y∗t =
∑m−1

l=0 Πl(Γ + Vt−l) + ΠmY∗t−m. To calculate the

difference between Yt and Y∗t , we have E|Yt − Y∗t |a = E|(
∑∞

l=m ΠlΓ +
∑∞

l=m ΠlVt−l) −

ΠmY∗t−m|a � C2(
∑∞

l=m E|Πl|a + E|Πm|a)1N , where C2 = max{C1, c0,E|Vit|}. It can be

verified that E|Πl|a1N = E|β1(Uit)W + β2(Uit)IN |la1N � (̃b1 + b̃2)l1N . Therefore we

have (
∑∞

l=m E|Πl|a + E|Πm|a)1N � C3(̃b1 + b̃2)m1N for some positive constant C3. As

this holds for any m, we can then prove that Yt = Y∗t with probability 1 due to the

stationary condition that b̃1 + b̃2 < 1. This completes the proof.

Appendix A.2: Verification of (2.7) and (2.8)

Assume b̃1 = |
∫ 1

0
β2

1(u)2du|1/2 = O(1). Recall that b̃22 =
∫ 1

0
β2

2(u)du, b̃12 =∫ 1

0
β1(u)β2(u)du. By the stationary condition we have b̃22 < 1, then by the Cauchy’s
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inequality we have |̃b12| ≤ b̃1|̃b22|1/2 = O(1). Recall that vec(ΣY ) = S1 + S2 + S3,

where S1 = M11N2 − c−2
1 c2

01N2 (M1 = c−1
1 c2

0(1 + b1 + b2)(I − G∗)−1), S2 = 2c−1
1 c0(1 −

G∗)−1vec(Σbv), and S3 = (I −G∗)−1vec(ΣV ). Next, we approximate ΣY by neglecting

higher order terms of b1, b̃12, b̃1. To this end, we first approximate (I −G∗)−1 and c−1
1

as follows

(I −G∗)−1 ≈ (I − B̃22)−1(I +M12), (A.7)

c−1
1 ≈ (1− b2)−1

{
1 + (1− b2)−1b1

}
, (A.8)

c−2
1 ≈ (1− b2)−2

{
1 + 2(1− b2)−1b1

}
, (A.9)

where M12 = (I − B̃22)−1{B̃12(W ⊗ I) + B̃21(I ⊗W )}, B̃22 = E{B2(Ut) ⊗ B2(Ut)},

B̃12 = E{B1(Ut)⊗B2(Ut)}, and B̃21 = E{B2(Ut)⊗B1(Ut)}.

Recall that b̃01 = E{β1(Uit)(β0(Uit) − b0)} and b̃02 = E{β2(Uit)(β0(Uit) − b0)}.

Then, by (A.7)-(A.9) one could verify that S1 ≈ (I − B̃22)−1{(1 + 2b1 − b2
2)I ⊗ I +

(1− b2
2)(I − B̃22)−1(B̃12 + B̃21)}(1− b2)−2c2

01N2 − {1 + 2(1− b2)−1b1}(1− b2)−2c2
01N2 ,

S2 ≈ 2(1−b2)−1(I− B̃22)−1{b̃02I+(1−b2)−1b1b̃02I+ b̃02M12 + b̃01I}c0vec(IN), and S3 ≈

(I−B̃22)−1(I+M12)vec(ΣV ). Let Sj = vec(Σj) for j = 1, 2, 3 and Σj = (Σj,kl) ∈ RN×N .

Specifically, one can verify for the diagonal elements that Σ1,ii ≈ [(1− b̃22)−1{1− b2
2 +

2b1+2(1− b̃22)−1(1−b2
2)̃b12}−(1−b2)−1(1−b2+2b1)](1−b2)−2c2

0, Σ2,ii ≈ 2(1− b̃22)−1(1−

b2)−2{σbv(1− b2) + b1b̃02}c0 (σbv = b̃01 + b̃02), Σ3,ii ≈ (1− b̃22)−1σ2
V . Similarly, we have

Σ1,i1i2 ≈ {(1−b2)−2(1−b2
2)−2(1−b2

2 +2b1 +2b1b2)− (1−b2)−3(1−b2 +2b1)}c2
0, Σ2,i1i2 ≈

2(1− b2
2)−2(1− b2)−1c0b1b2b̃02(wi1i2 +wi2i1), Σ3,i1i2 ≈ (1− b2

2)−2b1b2(wi1i2 +wi2i1)σ
2
V for

i1 6= i2, where wi1i2 = n−1
i1
ai1i2 is the (i, j)th element of W . This leads to the desired

results.
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Appendix A.3: Proof of Theorem 2

In this subsection, we establish the asymptotic normality of Yt. Define Ỹt =

Yt − µY = (Ỹ1t, · · · , ỸNt)> ∈ RN . We then adopt the dependent Lindeberg central

limit theorem (theorem 2) in Bardet et al. (2008) on (NT )−1/2Ỹt. We verify the two

conditions in the following two parts. Step 1 is concerning moments bounds, and Step

2 is regarding the time dependency.

Step 1. (Bounding Moments) First, it suffices to show that there exists 0 < δ ≤ 1

satisfying

ST = (NT )−(2+δ)/21>N

T∑
t=0

E|Ỹt|2+δ
a → 0 (A.10)

as T →∞. Then, one can verify that E|Ỹt|2+δ
a = E|

∑∞
l=0(ΠlΓ + ΠlVt−l)−µY |2+δ

a . Fur-

ther by the Jensen’s inequality ST = (NT )−(2+δ)/21>N
∑T

t=0 E|Ỹt|2+δ
a ≤ (NT )−(2+δ)/21>N∑T

t=0{E|
∑∞

l=0 ΠlVt−l|2+δ
a +E|

∑
l ΠlΓ|2+δ

a +E|µY |2+δ
a }(32+δ/3). It is not hard to see that

(NT )−(2+δ)/21>N
∑T

t=1 |µY |2+δ
a → 0. Let δ = 1 and STv = N−3/2T−1/21>NE|

∑∞
l=0 ΠlVt−l|3a.

It suffices to show STv → 0. We then have STv = STv1 + STv2 + STv3 + STv4, where

STv1 = N−3/2T−1/21>NE
{∑

l

|ΠlVt−l|3a
}
,

STv2 = 3N−3/2T−1/2
∑
l1

∑
l2>l1

E
{
|Πl1Vt−l1|2a ◦ |Πl2Vt−l2 |a

}
,

STv3 = 3N−3/2T−1/2
∑
l1

∑
l2>l1

E
{
|Πl1Vt−l1|a ◦ |Πl2Vt−l2|2a

}
,

STv4 = 6N−3/2T−1/2
∑
l1

∑
l2>l1

∑
l3>l2>l1

E
{
|Πl1Vt−l1 |a ◦ |Πl2Vt−l2|a ◦ |Πl3Vt−l3|a

}
,

and ◦ means point wise product. We then verify the terms STvj → 0 for j = 1, · · · , 4

as follows.

Firstly we have STv1 ≤ N−3/2T−1/2
∑∞

l=0 E|Πl(Vt−1)|3a � N−3/2T−1/2
∑∞

l=0 C3E|(|Πl|a
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1N)|3a, where C3 = maxit E|Vit|3 is finite by Theorem 2. Further, the above ter-

m is elementwisely bounded by C3N
−3/2T−1/2

∑∞
l=0 C

l
b1N , where Cb = E(|β1(Uit)| +

|β2(Uit)|)3 < 1 by Theorem 2. Consequently we have STv1 → 0. Next we look at the sec-

ond term in STv. It can be firstly verified that E(3
∑

l1

∑
l2>l1
|Πl1Vt−l1|2a◦|Πl2Vt−l2|a) �

3Cv
∑

l1

∑
l2>l1

E(|Πl1Vt−l1|2a ◦ |Πl21N |a) � 3Cv (̃b1 + b̃2)l2−l1
∑

l1

∑
l2>l1

E(|Πl1Vt−l1|2a ◦

|Πl1−11N |a) due to the independence of Πl1−1 and
∏l2−l1

k=1 Gt−l1−k, and the inequality

E(
∏l2−l1

k=1 |Gt−l1−k|a1N) � (̃b1 + b̃2)l2−l11N , where Cv = maxi E(|Vit|). Further it can be

derived that 1>NE(|Πl1Vt−l1|2a ◦ |Πl1−11N |a) =

E(|Πl1Vt−l1|2>a |Πl1−11N |a) ≤ CbvE(|Πl11N |2>a |Πl11N |a) ≤ NCbvC
l1
b , (A.11)

where Cbv = (E{V 4
it})1/2[E{(|β1(Uit)|+ |β2(Uit)|)2}]1/2. As a result, we have STv2 → 0.

Then, by iteratively applying (A.11), one could obtain STv3 → 0 and STv4 → 0, where

the details are omitted here. As a result, (A.10) can be obtained.

Step 2. (Time Dependency) Next, we verify conditions imposed on the dynamic

dependency structure of Ỹt. To this end, we show the definition of λ dependency as in

Bardet et al. (2008).

DEFINITION 1. (λ dependency) A process Xt in Rd is said to be λ dependent if

there exists a sequence {λr} such that λr → 0 when r →∞ satisfying

∣∣∣Cov{f(Xm1 , Xm2 , · · · , Xmv), g(Xs1 , Xs2 , · · · , Xsu)}
∣∣∣ ≤ (uvLfLg + vLf + uLg)λr,

for all v, u ∈ N∗×N∗ (N∗ denotes the natural number space), Lf and Lg as constants,

where v, u are two integers corresponding to support of f and g respectively.

Next we prove that T−1/2Ỹt is λ dependent with a satisfactory rate. For this propose,

7



we rewrite the NQAR model to be Ỹt = GtỸt−1 + V ′t , and V ′t = Vt + (Gt − G)µY .

Then we have Ỹt =
∑∞

l ΠlV
′
t−l. For convenience, we define ỸL

t =
∑L

l ΠlV
′
t−l as the

truncated form of Ỹt.

First of all define =v = {Ỹm1, Ỹm2, · · · , Ỹmv} and =u = {Ỹs1 , Ỹs2 , · · · , Ỹsu}. Fur-

ther denote =Lv = {ỸL
m1
, ỸL

m2
, · · · , ỸL

mv
} and =Lu = {ỸL

s1
, ỸL

s2
, · · · , ỸL

su}. We then

have Cov
(
f(=v), g(=u)

)
= Cov

(
f(=v)−f(=Lv ), g(=u)

)
+Cov

(
f(=Lv ), g(=u)−g(=Lu)

)
+

Cov
(
f(=Lv ), g(=Lu)

)
. Define f̃(X) = f(X) − E(f(X)). Without loss of generality, we

set L = r − 1. Then Cov(f(=Lv ), g(=Lu)) = 0, and |Cov(f(=v), g(=u))| can be bounded

by ‖g̃‖∞E|f̃(=v) − f̃(=Lv )| + ‖f̃‖∞E|g̃(=u) − g̃(=Lu)| ≤ c(vLf + uLg)1
>
NE|Ỹm − ỸL

m|a,

where m = m1 ∧ m2, c is a constant and ‖ · ‖∞ is the uniform norm of a function,

which takes the supremum of the absolute value of a function on its support. Then

it can be verified that E|Ỹm − ỸL
m|a = E|

∑∞
l=L+1 ΠlV

′
t−l|a ≤

∑∞
l=L+1Cv′E|Πl1N |a �∑∞

l=L+1Cv′ [E{|β1(Uit)| + |β2(Uit)|}]l1N ≤ Cv′ (̃b1 + b̃2)L+1(1 − b̃1 − b̃2)−1, where Cv′ =

E(|Vit|)+2(̃b1 + b̃2). As a result, it can be concluded Cov
(
f(=v), g(=u)

)
→ 0 as r →∞.

This completes the proof.

Appendix A.4: Proof of Theorem 3

The proof follows the conclusion of Theorem 3.3 in Zhang and Cheng (2014), and

one could find a more general result by Zhang and Wu (2015). To this end, first define a

Gaussian counterpart of Ỹt by a sequence of Gaussian random vectors {Y∗t}Tt=1, which is

independent of {Ỹt}Tt=1. Particularly, {Y∗t}Tt=1 preserves the autocovariance structure of

{Ỹt} in the sense that E(Y∗t ) = 0 and Cov(Y∗t ,Y∗t−h) = Σ(h). Let Z(T ) = T−1/2
∑T

t=1 Y∗t .

To accomplish our goal, we break the proof into two steps. Firstly we show that

ρ(T−1/2
∑T

t=1 Ỹt, Z
(T )) → 0 based on to verify the assumptions. Secondly, we show

that ρ(Z(T ), Z)→ 0.
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Step 1 (Proof of ρ(T−1/2
∑T

t=1 Ỹt, Z
(T ))→ 0)

Before we go into the details, we first give some notations to facilitate the proofs.

Let Σ∗Y = (σ∗ij) and Σ∗Y = (σ
∗(T )
ij ). In addition, define Σ(h) = (σ

(h)
ij ) for −∞ <

h < ∞. Following Zhang and Cheng (2014), Ỹt has a causal representation as Ỹt =

G(· · · ,Ut−1,Ut), where Ut = (U1t, · · · , UNt)> is the iid noise vector at time t, and

G(·) is the representation function. Next, define an iid copy of U0 as U′0, and with U′0

we define Ỹ∗t = G(· · · ,U′0,Ut−1,Ut). The new dependency measure is defined as,

%t,i,m = (E|Yit − Y ∗it |m)1/m and ρt0,i,m =
∞∑
t=t0

%t,i,m.

We then aim to verify the following conditions.

(a) Both E(Y 4
it ) and max1≤i≤N σ

∗
ii are bounded. Moreover, σ

∗(T )
ii is bounded from above

and below for 1 ≤ i ≤ N .

(b) There exists lt such that max1≤i≤N t%t,i,2 ≤ `t, with
∑∞

t=0 `t <∞.

(c) There exists a constant ρ < 1 such that max1≤i≤N ρt0,i,2 = O(ρt0).

We next verify the conditions one by one in the following.

Verification of (a): First, similar to the proof of (A.10) in Theorem 2, we have

E(Y 4
it ) to be bounded. Hence it is not hard to see σ

(0)
ii is bounded. Let maxi σ

(0)
ii ≤ cσ.

Suppose l > 0, we then have |σ(l)
ii | = |e>i Σ(l)ei| = |e>i GlΣY ei| ≤ ccσc

l
βe
>
i 11

>ei =

ccσc
l
β, where ei is a zero vector with only the ith element being 1, and c is a finite

constant. Subsequently we have |σ∗ii| = |
∑∞

l=−∞ σ
(l)
ii | to be bounded by 2ccσ/(1 − cβ)

for 1 ≤ i ≤ N since cβ < 1. Similarly, one could see |σ∗(T )
ii | ≤

∑T−1
l=−(T−1) |σ

(l)
ii |, which is

obviously bounded by the previous argument. For the lower bound, it can be derived

mini σ
∗(T )
ii = mini e

>
i Σ
∗(T )
Y ei ≥ λmin(Σ

∗(T )
Y ) ≥ τ , where ei is an N dimensional vector

with all elements being 1 but only the ith element being 1, and the last inequality is

9



implied by condition in Theorem 3.

Verification of (b) and (c): It can be written that Ỹt =
∑∞

l=0 ΠlVt−l+
∑∞

l=0(Πl−

Gl)Γ, where Πl
def
= GtGt−1 · · ·Gt−l+1 for l > 0 and Π0 = 1. Similarly we have Ỹ∗t =

{
∑t−1

l=0 ΠlVt−l+
∑t

l=0(Πl−Gl)Γ}+{ΠtV
∗

0 +
∑∞

l=t+1 Π∗l Vt−l+
∑∞

l=t+1(Π∗l−Gl)Γ}, where Π∗l ,

V ∗t−l are to replace U0 with U′0 in the representations. Therefore we have |Ỹt− Ỹ∗t |2a 4

2
∣∣∣ΠtV0 +

∞∑
l=t+1

ΠlVt−l +
∞∑

l=t+1

(Πl −Gl)Γ
∣∣∣2
a

+ 2
∣∣∣ΠtV

∗
0 +

∞∑
l=t+1

Π∗l Vt−l +
∞∑

l=t+1

(Π∗l −Gl)Γ
∣∣∣2
a
.

The rest to prove the rate of each part follows the same idea as in the proof of (A.10).

That leads to the result that E|Ỹt − Ỹ∗t |2a 4 c∗c2t
β 1, where c∗ is a finite constant. Let

`t = c∗tc2t
β and then we have

∑∞
t=0 `t < ∞. Moreover, we have max1≤i≤N ρt0,i,2 ≤

c∗c2t0
β /(1− c2

β). The result in (c) can be achieved by letting ρ = c2
β.

Step 2 (Proof of ρ(Z(T ), Z)→ 0)

It can be easily verified that Σ
∗(T )
Y = T−1 Cov(Z(T )). According to Theorem 2 of

Chernozhukov et al. (2015), we have

ρ
(
Z(T ), Z

)
≤ c∆1/3

[
max

{
1, log(N/∆)

}]2/3

, (A.12)

where ∆ = max1≤j,k≤N |Σ∗(T )
Y,jk − Σ∗Y,jk| and c is a finite constant. We now prove that

∆(logN)2 = O(1). It can be calculated that

Σ
∗(T )
Y = Σ∗Y − T−1(I −G)−2(I −GT )GΣY − T−1ΣY (G>)2(I −GT )>(I −G>)−2.

Further we have |(I − G)−2(I − GT )GΣY |a 4 cσ|(I − G)−2(I + GT )1N1
>
N | 4 cσ(1 −

cβ)−2(1+cTβ )cβ1N1
>
N and |ΣY (G>)2(I−GT )>(I−G>)−2|a 4 cσ(1−cβ)−2(1+cTβ )c2

β1N1
>
N ,

where G = ‖β1‖4W + ‖β2‖4I. Therefore we have ∆ ≤ 2T−1cσ(1 − cβ)−2(1 + cTβ )cβ =

10



O(T−1). Recall that logN = O(T δ) where 0 ≤ δ < 1/11, hence it can be obtained

∆(logN)2 = O(1). We then have the right side of (A.12) tends to 0 as N →∞. This

completes the proof.

APPENDIX B

In Appendix B, we give the proof of the asymptotic properties in the estimation

part. Specifically, a lemma is first proved in Appendix B.1 as a useful tool. Next,

Theorem 4 and Theorem 5 are proved in Appendix B.2 and Appendix B.3 respectively.

Lastly, the misspecification of adjacency matrix A is discussed in Appendix B.4.

Appendix B.1: A Useful Lemma

In this section, we give the proof of a useful lemma, which is needed for a later

proof of the asymptotic properties.

LEMMA 1. Assume cβ < 1 and (C1)–(C2), where cβ is defined in (C1). Let

U = (U1, · · · , UN)> ∈ RN and V = (V1, · · · , VN)> ∈ RN , where Ui and Vi are iid dis-

tributed respectively for 1 ≤ i ≤ N , and independent with Πl. Assume E(U4
i )1/4 ≤ νu,

E(V 4
i )1/4 ≤ νv, Cov(Ui, Vi) 6= 0, and Cov(Ui, Uj) = 0 for i 6= j. Define G = ‖β1‖4W +

‖β2‖4I ∈ RN×N . Then the following results hold.

(a) For any integer l1, l2, l3, l4 > 0 we have

E(|Π>l1Πl2Π
>
l3

Πl4|a) 4 |Gl1>Gl2Gl3>Gl4|a. (B.1)

(b) There exists a finite integer K > 0, such that for any l > 0, we have

GlGl> 4 lKc2l
βM, (B.2)
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whereM = MM> with M = cm1π
>+
∑K

j=1W
j, cm > 1 is a constant, and π is defined

in (C2.1). Denote Mij as the (i, j)th element of M. We then have

N−21>M1→ 0, (B.3)

N−2 tr(M2)→ 0, (B.4)

as N →∞.

(c) For any integer l1 ≥ l2, it holds that

Var(U>Π>l1Πl2V ) ≤ 8ν2
uν

2
vc

2(l1+l2)
β l2K1 {1>M1 + tr(M2)}. (B.5)

(d) We have Ω̂0 →p Ω0 as min{N, T} → ∞.

Proof of (a). We first derive an inequality of E|Π>l1Πl2Π
>
l3

Πl4|a as

E|Π>l1Πl2Π
>
l3

Πl4 |a 4 E
{( l1−1∏

l=0

|Gt−l|a
)>( l2−1∏

l=0

|Gt−l|a
)( l3−1∏

l=0

|Gt−l|a
)>( l4−1∏

l=0

|Gt−l|a
)}
.

We first prove

E(|Gt|>a |Gt|aM |Gt|>a |Gt|a) 4 G>GE(M)G>G (B.6)

for an arbitrary elementwisely positive stochastic matrix M , where M = (mij) ∈ RN×N

is assumed to be independent with Gt. Let W11 = W>W , W10 = W>, W01 = W ,

W00 = I. Then one could verify that the (i, j)th element of E(|Gt|>a |Gt|aM |Gt|>a |Gt|a)

involves a sum of terms like E{|βk11 (Ui1t)β
k2
2 (Ui2t)β

k3
1 (Ui3t)β

k4
2 (Ui4t)|(Wq1q2MWq3q4)ij},

where q1, q2, q3, q4 ∈ {0, 1}, k1 + k2 + k3 + k4 = 4, 0 ≤ i1, i2, i3, i4 ≤ N , and k1, k2, k3, k4

are integers satisfying 0 ≤ ki ≤ 4. By Hölder’s inequality, we have for all i1, i2, i3, i4,

E|βk11 (Ui1t)β
k2
2 (Ui2t)β

k3
1 (Ui3t)β

k4
2 (Ui4t)| ≤ ‖β1‖k1+k3

4 ‖β2‖4−(k1+k3)
4 . By applying the in-

equality one could obtain (B.6). Subsequently, (B.1) can be derived by recursively

12



applying (B.6).

Proof of (b). Note we have ‖β1‖4+‖β2‖4 < 1. Then (B.2) can be obtained by (5.1) of

Lemma 2 (a) in the supplementary material of Zhu et al. (2017) by the condition (C2).

For the completeness of the proof, we briefly state the main idea as below. Firstly,

for any integer l > 0, we have Gl = (‖β1‖4W + ‖β2‖4I)l =
∑l

j=0C
j
l ‖β1‖j4‖β2‖l−j4 W j,

where Cj
l = l!/{j!(l − j)!}. Since W is an element-wise non-negative matrix, |Gl|a 4∑l

j=0 C
j
l ‖β1‖j4‖β2‖l−j4 W j. Then for l > K we have |Gl|a 4 (‖β1‖4 + ‖β2‖4)lC1π> +∑K

j=0 C
j
l ‖β1‖j4‖β2‖l−j4 W j, where this fact is due to W l 4 C1π> by the Markov property

in condition (C2.1). Further note that ‖β1‖j4‖β2‖n−j4 < clβ (0 ≤ j ≤ l), and CK
l ≤ lK .

As a result, for l > K we have,

|Gl|a 4 lK(‖β1‖4 + ‖β2‖4)lM, (B.7)

where recall that M = C1π> +
∑K

j=0 W
j. It is easy to verify that (B.7) also holds for

l = 1, · · · , K − 1. Then we have |Gl(G>)l|a 4 l2Kc2l
βMM> for any positive integer n.

As a result, (B.2) can be proved. Next, (B.3) and (B.4) can be obtained by (5.11) and

(5.12) of the supplementary material by Zhu et al. (2017) by condition (C2) respectively.

Proof of (c). We first prove that (B.5) holds for l1 = l2 = l, then extend the results

to l1 > l2. Let l1 = l2 = l, we have

Var(U>Π>l ΠlV ) = Var{E(U>Π>l ΠlV |Πl)}+ E{Var(U>Π>l ΠlV |Πl)}. (B.8)

We then derive the upper bound for E{Var(U>Π>l ΠlV )|Πl} and Var{E(U>Π>l ΠlV )|Πl}

in the following respectively.

(c.1) Upper Bound for E{Var(U>Π>l ΠlV )|Πl}. One could first verify that U>Π>l ΠlV =
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vec(Πl)
>(I ⊗Πl)vec(V U>). Denote V = vec(V U>) ∈ RN2

. As a consequence, we have

Var(U>Π>l ΠlV |Πl) = vec(Πl)
>(I ⊗ Πl)Cov(V)(I ⊗ Π>l )vec(Πl).

Further denote Cov(V) = (ΣV,ij) ∈ RN2×N2
, where ΣV,ij ∈ RN×N is the (i, j)th block

matrix of Cov(V). Further more, by the Cauchy’s inequality, the following bound can

be attained,

ΣV,ii = Cov(ViU) � 2ν2
uν

2
v11

>, (B.9)

ΣV,ij = Cov(ViU, VjU) � 2ν2
uν

2
v(I + ej1

> + 1e>i ) (B.10)

for i 6= j, where ei ∈ RN is a vector with all elements to be 0 but only the ith element

being 1. Denote Πl,·i as the ith column vector of Πl. Then we have |vec(Πl)
>(I ⊗

Πl)Cov(V)(I⊗Π>l )vec(Πl)| = |
∑N

i,j=1 Π>l,·iΠlΣV,ijΠ
>
l Πl,·j| = |

∑N
i=1 Π>l,·iΠlΣV,iiΠ

>
l Πl,·i+∑

i 6=j Π>l,·iΠlΣV,ijΠ
>
l Πl,·j| ≤ 2ν2

uν
2
v{3 tr(|Π>l Πl|a11>|Π>l Πl|a) + tr(|Π>l Πl|a|Π>l Πl|a)} ≤

6ν2
uν

2
v1
>|Π>l |a|Πl|a|Πl|>a |Πl|a1 + 2ν2

uν
2
v tr(|Π>l |a|Πl|a|Πl|>a |Πl|a). By taking expectation

on the right side we have

E
{
Var(U>|Π>l Πl|aV ||Πl|a)

}
≤ 6ν2

uν
2
vc

4l
β l

2K1>M1 + 2ν2
uν

2
vc

4l
β l

K tr(M2). (B.11)

(c.2) Upper Bound for Var{E(U>Π>l ΠlV |Πl)}. It can be calculated E(U>Π>l ΠlV |Πl) ≤

νuνv tr(|Πl|>a |Πl|a). Firstly we have Var{tr(|Πl|>a |Πl|a)} =

E[Var{tr(|Πl|>a |Πl|a)|Πl−1}] + Var[E{tr(|Πl|>a |Πl|a)|Πl−1}]. (B.12)

Write tr(|Πl|>a |Πl|a) =
∑

iG
>
t−l+1,·i|Πl−1|>a |Πl−1|aGt−l+1,·i. It can be derived Var{tr(|Πl|>a

|Πl|a)|Πl−1} =
∑

i Var(G
>
t−l+1,·i|Πl−1|>a |Πl−1|aGt−l+1,·i|Πl−1) ≤ 2

∑
i(G>·i |Πl−1|>a |Πl−1|a

14



G·i)2 ≤ 2c2
β

∑
iG>·i |Πl−1|>a |Πl−1|a11>|Πl−1|>a |Πl−1|aG·i = 2c2

β1
>|Πl−1|>a |Πl−1|aGG>|Πl−1|>a

|Πl−1|a1. By similar proofs of (B.1), we have E(1>|Πl−1|>a |Πl−1|aGG>|Πl−1|>a |Πl−1|a1) ≤

lKc4l−2
β 1>M1 by (B.1) and (B.3). Lastly, one could verify that E{tr(|Πl|>a |Πl|a)|Πl−1} ≤∑
iG>·i |Πl−1|>a |Πl−1|aG·i = tr(G>|Πl−1|>a |Πl−1|aG). Consequently, by (B.12) we have

Var{tr(|Πl|>a |Πl|a)} ≤ 2lKc4l
β 1
>M1+Var{tr(G>|Πl−1|>a |Πl−1|aG)}. By applying similar

technique of (B.12) to Var{tr(G>|Πl−1|>a |Πl−1|aG)}, one could have Var{tr(G>|Πl−1|>a

|Πl−1|aG)} ≤ 2lKc4l
β 1
>M1+Var{tr(G>2|Πl−2|>a |Πl−2|aG2)}. As a result, by using the d-

eduction recursively, one should have Var{E(U>|Πl|>a |Πl|aV |Πl)} ≤ 2ν2
uν

2
vc

4l
β l

K+11>M1.

By combining the results of (B.11), we have

Var(U>|Πl|>a |Πl|aV ) ≤ 2ν2
uν

2
vc

4l
β

{
3l2K1>M1 + lK+11>M1 + lK tr(M2)

}
. (B.13)

Consequently (B.5) holds.

(c.3) Extend to l1 > l2. For l1 > l2, it can be derived that Var(U>Π>l1Πl2V ) =

Var{E(U>Π>l1Πl2V |Πl1)}+E{Var(U>Π>l1Πl2V |Πl1)}. For E{Var(U>Π>l1Πl2V |Πl1)}, it can

be directly calculated that E{Var(U>Π>l1Πl2V |Πl1)} ≤ 2ν2
uE(V >|Πl2|>a |Πl1|a|Πl1|>a |Πl2|aV )

≤ 2ν2
uν

2
vc

2(l1+l2)
β lK1 1>M1, which can be achieved by (B.1) and (B.2) similar to the

case of l1 = l2. For Var{E(U>Π>l1Πl2V |Πl1)}, we have Var{E(U>Π>l1Πl2V |Πl1)} ≤

2ν2
u Var(1

>|Πl1|>a |Πl2 |aV ). So we have Var(U>|Πl1|>a |Πl2|aV ) ≤ 2ν2
uν

2
vc

2(l1+l2)
β lK1 1>M1+

ν2
u Var(1

>|Πl1|>a |Πl2 |aV ). Note 1>|Πl1|>a |Πl2 |aV = B>t−l1+1|Πl1−1|>a |Πl2|aV . Then by let-

ting U = Bt−l1+1 one could obtain the result that Var(U>|Πl1|>a |Πl2|aV ) ≤

2ν2
uν

2
vc

2(l1+l2)
β {lK1 + (l1 − 1)K}1>M1 + ν2

uc
2
β Var(1

>|Πl1−1|>a |Πl2|aV ). (B.14)

By applying the recursive formula (B.14), we have Var(U>|Πl1|>a |Πl2|aV ) ≤ 2ν2
uν

2
vc

2(l1+l2)
β∑l1

k=l2+1 k
K1>M1 + ν2

uc
2(l1−l2−1)
β Var(B>t−l2|Πl2|>a |Πl2 |aV ). The deduction of the upper
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bound of the second term Var(B>t−l2|Πl2|>a |Πl2 |aV ) reduces to the case l1 = l2 pre-

viously. By combining the results from (B.13), we have Var(U>|Πl1|>a |Πl2|aV ) ≤

2ν2
uν

2
vc

2(l1+l2)
β {(lK+1

1 + 3lK2 )1>M1+ l2K2 tr(M2)} ≤ 8ν2
uν

2
vc

2(l1+l2)
β l2K1 {1>M1+ tr(M2)},

which proves (B.5).

Proof of (d): Write Ω̂0 =

1

NT

T∑
t=1

N∑
i=1

X>itXit =



1 S12 S13 S14

S22 S23 S24

S33 S34

S44


,

where

S12 =
1

N

N∑
i=1

Z>i , S13 =
1

NT

T∑
t=1

N∑
i=1

w>i Yt, S14 =
1

NT

T∑
t=1

N∑
i=1

Yit,

S22 = N−1

N∑
i=1

ZiZ
>
i , S23 =

1

NT

T∑
t=1

N∑
i=1

w>i YtZi, S24 = (NT )−1

T∑
t=1

N∑
i=1

YitZi,

S33 =
1

NT

T∑
t=1

N∑
i=1

(w>i Yt)
2, S34 =

1

NT

T∑
t=1

N∑
i=1

w>i YtYit, S44 =
1

NT

T∑
t=1

N∑
i=1

Y 2
it .

One can directly conclude that S12 →p 0>q and S22 →p Σz by the law of large

numbers. Recall that κ1 = limN→∞N
−1tr(ΣY ), κ2 = limN→∞N

−1tr(WΣY ), κ3 =

limN→∞N
−1tr(WΣYW

>), κ4 = limN→∞N
−1tr{(I−G)−1}, and κ5 = limN→∞N

−1tr{W

(I−G)−1}. We first list the component-wise limit for each element in Ω̂0 in expectation,

and then verify that the variances of these components converge to 0 in the next steps.

Denote Z = (Z1, Z2, · · · , Zn)> ∈ RN×q and recall that r = (
∫
γ1(u)du,

∫
γ2(u)du, · · · ,
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∫
γq(u)du)>. It can be derived that E(S22) = Σz, E(S23) = N−1E{Z>W (I−G)−1Zr} →

κ5Σzr, E(S24) = N−1E(Z>(I −G)−1Z)r → κ4Σzr, E(S33) = N−1 tr{W>WΣY }+ c2
b →

κ3 + c2
b , E(S34) = N−1 tr{W>ΣY } + c2

b , and E(S44) = N−1 tr{ΣY } + c2
b → κ1 + c2

b by

condition (C2.3).

We next verify Var(Sij) → 0 for 1 ≤ i, j ≤ 4. Since the proofs are quite similar,

we show S44 →p κ1 + c2
b for simplicity. The proof contains two steps. In the first

step, we prove that for any fixed t, Var(S44) → 0 as N → ∞. Next, we deal with the

dependence over time (i.e., 1 ≤ t ≤ T ). Specifically, the near epoch dependence of

Yit and its functional forms are presented and consequently the desired law of large

numbers results are established.

Step 1. Proof of Var(S44)→ 0. Recall that Yt has the decomposition in the (A.1).

Without loss of generality, assume Γ = 1N . Then we have Y>t Yt =
∑∞

l1,l2=0(1>Π>l1Πl21+

21>Π>l1Πl2Vt−l2 + V >t−l1Π
>
l1

Πl2Vt−l2). By the Cauchy’s inequality, it suffices to show

N−2 Var
(∑∞

l1,l2=0 V
>
t−l1Π

>
l1

Πl2Vt−l2
)
→ 0, N−2 Var

(∑∞
l1,l2=0 1

>Π>l1Πl2Vt−l2
)
→ 0, and

N−2 Var
(∑∞

l1,l2=0 1
>Π>l1Πl21

)
→ 0 as N →∞. Since their proofs are almost the same,

we prove N−2 Var
(∑∞

l1,l2=0 1
>Π>l1Πl21

)
→ 0 in the following for simplicity. To this

end, first it can be shown that Var(
∑∞

l1,l2=0 1
>Π>l1Πl21) =

∑∞
l1 6=l2 Var

(
1>Π>l1Πl21

)
+∑∞

l1,l2=0 Cov
(
1>Π>l1Πl11,1

>Π>l2Πl21
)
. Then it suffices to show that

N−2

∞∑
l1 6=l2

Var
(
1>Π>l1Πl21

)
→ 0, (B.15)

N−2

∞∑
l1,l2=0

Cov
(
1>Π>l1Πl11,1

>Π>l2Πl21
)
→ 0 (B.16)

N → ∞. We then prove (B.15) and (B.16) separately as follows. Write 1>Π>l1Πl21 =

B>t−l1+1Π>l1−1Πl2−1Bt−l2+1, where Bt−l1+1 = B1(t−l1+1)1N + B2(t−l1+1)1N . It can be cal-

culated
∑∞

l1 6=l2 Var
(
B>t−l1+1Π>l1−1Πl2−1Bt−l2+1

)
= 2

∑∞
l2=0

∑
l1>l2

Var
(
B>t−l1+1Π>l1−1Πl2−1
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Bt−l2+1

)
. By (B.5) we have Var

(
B>t−l1+1Π>l1−1Πl2−1Bt−l2+1

)
≤ 8c

2(l1+l2−2)
β l2K1 {1>M1 +

tr(M2)}. Then we have (B.15) due to
∑∞

l2=0

∑
l1>l2

c
2(l1+l2−2)
β l2K1 <∞ andN−2{1>M1+

tr(M2)} → 0 by (B.3) and (B.4). For (B.16), it can be shown by Cauchy’s inequality

that Cov(1>Π>l1Πl11,1
>Π>l2Πl21) ≤ Var(1>Π>l1Πl11)1/2 Var(1>Π>l2Πl21)1/2 ≤ 8c

2(l1+l2)
β lK1 l

K
2

{1>M1 + tr(M2)} by (B.5). Then (B.16) holds since
∑

l1,l2
c

2(l1+l2)
β lK1 l

K
2 < ∞ and

N−2{1>M1 + tr(M2)} → 0 as N →∞. This completes the proof.

Step 2. L1 Near Epoch Dependence. In this step, we further prove that

N−1
∑

i Y
2
it satisfies near epoch dependence for 1 ≤ t ≤ T . First we give the defi-

nition of L1 near epoch dependence as below.

DEFINITION 2. (L1 near epoch dependence) A triangular array Uit in R1 is

said to be L1 near epoch dependent (NED) if there exists constants cit and a sequence

{vJ , J ≥ 1} such that vJ → 0 when J →∞ satisfying

E
∣∣(Uit)− E(Uit|Ft−J , · · · ,Ft, · · · ,Ft+J)

∣∣ ≤ citvJ .

Given the definition, we firstly prove that Yits are L1 NED by Andrews (1988). Next,

according to Chapter 7 Lemma 1 of Gallant (2009), the smooth transformations of Yits

(e.g., N−1
∑

i Y
2
it ) are also NED. Since Yit has finite forth moment, then by Gallant

(2009) we have N−1
∑N

i=1 Y
2
it is a uniformly integrable L1 mixinggale. Consequently,

according to Theorem 1 of Andrews (1988), we could have (NT )−1
∑T

t=1

∑N
i=1 Y

2
it con-

verge in probability as N → ∞ and T → ∞. We then prove that Yit is NED in the

following.

Denote F t+Jt−J = {Ft−J , · · · ,Ft, · · · ,Ft+J} and Πt2
t1 =

∏t2
t=t1

Gt. We then have the
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following inequality as

E
{
e>i
∣∣Yt − E(Yt|F t+Jt−J )

∣∣
a

}
≤ E

[
e>i
{ ∞∑
l=J+1

ΠlVt−l +
∞∑

l=J+1

ΠJ+1(Π
t−(J+1)
t−l−J −Gl−J−1)Γ

}]
≤

∞∑
l=J+1

(ba1 + ba2)lcv +
∞∑

l=J+1

2(ba1 + ba2)lc0,

where cv = E|Vit|. Let vJ = (ba1 + ba2)J+1 and cit = (1 − ba1 − ba2)−1(2c0 + cv). By

condition (C1) we have ba1 + ba2 < 1, thus Yits are L1 NED according to Definition 2.

This completes the proof of Step 2.

Appendix B.2: Proof of Theorem 4

Recall that Vitτ = Yit − X>i(t−1)θ(τ) and define v̂ =
√
NT

(
θ̂(τ) − θ(τ)

)
. Then we

have ρτ
(
Yit−X>i(t−1)θ̂(τ)

)
= ρτ

(
Vitτ−(NT )−1/2X>i(t−1)v̂

)
, where Vitτ = Yit−X>i(t−1)θ(τ).

Then the minimization of (3.1) is equivalent to minimizing for a fixed τ ,

ZNT (v, τ) =
N∑
i=1

T∑
t=1

{
ρτ
(
Vitτ − (NT )−1/2X>i(t−1)v

)
− ρτ (Vitτ )

}
,

One could verify that v̂ = arg minv ZNT (v, τ). The objective function ZNT (v, τ) is a

convex random function. Recall that ψτ (u) = τ − I(u < 0). Let νit = (NT )−1/2v>Xit,

and one could further write ZNT (v, τ) as ZNT (v, τ) =

−
∑
i,t

[
(NT )−1/2v>Xi(t−1)ψτ (Vitτ ) +

∫ νi(t−1)

0

{
1(Vitτ ≤ s)− 1(Vitτ < 0)

}
ds
]

def
= v>ξ1 + ξ2. It is implied by (C3) the Σθ(τ) is with uniformly bounded eigenvalues

over τ ∈ B. According to Kato (2009), in order to prove that v̂ takes the representation

in (3.2), it suffices to prove (a) ξ2 →p v
>Ω1v with Ω1 defined in (C3) being a positive

definite matrix with uniformly bounded eigenvalues on B. Also we would like to prove
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(b) ξ1 is tight for τ ∈ B ∈ (0, 1), and ξ1 converges weakly to a Brownian Bridge.

Note that (a) and (b) ensure the objective function supτ∈B |ZNT (v, τ)| is convex

in v for each τ and bounded in τ for each v. (a) would lead to supτ∈B |ξ2| = Op(1),

and (b) would lead to supτ∈B ‖ξ1‖ = Op(1) by continuous mapping theorem. We then

prove (a) in what follows and then prove (b) in the Appendix B.3.

Define ξ2it =
∫ νi(t−1)

0

{
1(Vitτ ≤ s)−1(Vitτ < 0)

}
ds. To prove ξ2 =

∑N
i=1

∑T
t=1 ξ2it →p

v>Ω1v, we decompose ξ2it as ξ2it = E(ξ2it|Ft−1)+ξ2it, where ξ2it = ξ2it−E(ξ2it|Ft−1). We

then prove
∑N

i=1

∑T
t=1 E(ξ2it|Ft−1)→p 2−1v>Ω1v and

∑N
i=1

∑T
t=1 ξ2it →p 0 respectively

as follows.

We first evaluate
∑N

i=1

∑T
t=1 E(ξ2it|Ft−1). It can be expressed that

∑
i,t E(ξ2it|Ft−1) =∑N

i=1

∑T
t=1 E[

∫ νi(t−1)

0
{1(Vitτ ≤ s)−1(Vitτ < 0)}ds|Ft−1] =

∑N
i=1

∑T
t=1

∫ νi(t−1)

0
{Fi(t−1)(s+

F−1
i(t−1)(τ))− Fit−1(F−1

i(t−1)(τ))}/s · sds. This yields that

∑
i,t

E(ξ2it|Ft−1) =
∑
i,t

∫ νi(t−1)

0

fit−1(F−1
it−1(τ))sds+ Op(1)

=
∑
i,t

(2NT )−1fi(t−1)

(
X>i(t−1)θ(τ)

)
v>Xi(t−1)X

>
i(t−1)v + Op(1)→p 1/2v>Ω1v (B.17)

according to condition (C3).

Next, we prove
∑

i,t ξ2it →p 0. It is not difficult to see that ξ2it is a martingale

difference sequence, which can be written as ξ2it =
∫ νi(t−1)

0
δitτ (s) − δitτ (0)ds, where

δitτ (s) =
{
1(Vitτ ≤ s) − Fi(t−1)(s + X>i(t−1)θ(τ))

}
. It suffices to show E(|

∑
i,t ξ2it|)2 =∑

i1,i2

∑
t1,t2

E(ξ2i1t1ξ2i2t2) → 0. Importantly, recall that Vitτ = X>i(t−1)(θ(Uit) − θ(τ)),

therefore Vitτ and Vjtτ would be conditionally independent on Ft−1. Thus it can be

shown that E{
∫ νi(t−1)

0
δitτ (s)ds

∫ νj(t−1)

0
δjtτ (s)ds} = E[E{

∫ νi(t−1)

0
δitτ (s)ds

∫ νj(t−1)

0
δjtτ (s)ds

|Ft−1}] = 0 due to the conditional independence of δitτ (s) and δjtτ (s) given Ft−1. Simi-
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larly, for t1 > t2 we have E{
∫ νi(t1−1)

0
δit1τ (s)ds

∫ νi(t2−1)

0
δjt2τ (s)ds} = E[E{

∫ νi(t1−1)

0
δit1τ (s)ds∫ νi(t2−1)

0
δjt2τ (s)ds|Ft1−1}] = 0. Therefore, we have E{ξ2i1t1τξ2i2t2τ} = 0 for i1 6= i2

or t1 6= t2. Then
∑

i1,i2

∑
t1,t2

E(ξ2i1t1ξ2i2t2) =
∑

i

∑
t E(ξ

2

2it). Next, write E(ξ
2

2it) =

E(ξ2
2it) − E{E(ξ2it|Ft−1)}2. Further it can be derived that E(ξ2

2it) = E|
∫ νi(t−1)

0
{1(Vitτ ≤

s)− 1(Vitτ ≤ 0)}ds|2 ≤ |νi(t−1)|E
∫ |νi(t−1)|

0
{1(Vitτ ≤ s)− 1(Vitτ ≤ 0)}2ds by the Cheby-

shev’s inequality. Further we have |νi(t−1)|E[
∫ |νi(t−1)|

0
{1(Vitτ ≤ s) − 1(Vitτ ≤ 0)}ds] =

|νi(t−1)|E[
∫ |νi(t−1)|

0
{Fi(t−1)(s + F−1

i(t−1)(τ)) − Fi(t−1)(F
−1
i(t−1)(τ))}/s · sds]. By similar tech-

nique with (B.17), one could obtain
∑

i,t E(ξ
2

2it) ≤ E{
∑

i,t 2−1(NT )−3/2|fi(t−1)(X
>
i(t−1)v)|

|X>i(t−1)v|3/2}+O(1). Since we have fit(·) is bounded and (NT )−3/2
∑

i,t E(v>XitX
>
it v)2 =

O
(
(NT )−1/2

)
→ 0, then it can be obtained that

∑
i,t E(ξ

2

2it)→ 0. Lastly, following sim-

ilar argument of tightness as in Wagener et al. (2012), we can prove that
∑

i,t ξ2it →p 0

uniformly over τ ∈ B. This completes the proof of ξ2 →p v
>Ω1v for any τ ∈ (0, 1).

Appendix B.3: Proof of Theorem 5

In this section, we are going to show that ξ1 converges in distribution to a Brownian

Bridge Ω
1/2
0 Bq+3(τ), where Ω0 is defined in (3.3), and Bq+3(τ) is a (q+ 3)-dimensional

Brownian bridge. To prove this conclusion, we adopt two steps:

(I) For an arbitrary k-dimensional vector (τ1, τ2, · · · , τk)> ∈ Rp and η ∈ Rq+3,(
ξ1(τ1), ξ1(τ2), · · · , ξ1(τk)

)>
η ∈ Rk converge to a k-dimensional multivariate nor-

mal distribution.

(II) η>ξ1(τ) for τ ∈ B ∈ (0, 1) is tight, where B is a compact set in (0, 1).

Step I. Denote ψt =
(
ψ(V1tτ ), · · · , ψ(VNtτ )

)> ∈ RN for convenience. We then have

E(X>t−1ψt|Ft−1) = 0. Therefore, X>t−1ψt is a martingale difference sequence for 1 ≤ t ≤

T . To prove (B.1), we define ζt = (NTN)−1/2η>X>t−1ψt and SNt =
∑t

s=1 ζηt. Then one
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can see that {ζt,Ft−1,−∞ < t < TN , N ≥ 1} is a martingale array, where the number

of observed time points TN is assumed to depend on N with TN →∞ as N →∞. As

a result, the double sequence {SNt,Ft,−∞ < t ≤ TN , N ≥ 1} is a martingale array.

As a consequence, the martingale difference central limit theorem can be applied (Hall

and Heyde, 2014). Specifically, it requires two conditions as follows. First we have

TN∑
t=1

E{ζ2
t 1|ζ2

t | > δ|Ft−1} ≤ δ−2

TN∑
t=1

E(|ζt|4|Ft−1)

≤ δ−2τ 2(1− τ)2(NTN)−2

TN∑
t=1

(η>X>t−1Xt−1η)2 →p 0, (B.18)

where the last inequality is due to Eψ4(Vitτ ) ≤ τ 2(1 − τ)2. Since by the proof of (d)

of Lemma 1, we have (NTN)−2
∑TN

t=1 E(η>X>t−1Xt−1η)2 → 0. Therefore (B.18) can be

implied. Secondly, we also have the condition

TN∑
t=1

E{ζ2
t |Ft−1} =

τ(1− τ)

NT

TN∑
t=1

η>X>t−1Xt−1η →p τ(1− τ)η>Ω0η, (B.19)

by (d) of Lemma 1 in Appendix B.1. Therefore, by the central limit theorem for

martingale difference sequence in Hall and Heyde (2014), we have that ξ1(τ) converge

in distribution to Gaussian distribution N(0, τ(1−τ)η>Ω0η) for fixed τ . The conclusion

also holds for any finite dimensional vector (τ1, τ2, · · · , τk)>, which proves (B.1).

Step II Then we prove that η>ξ1(τ) for τ ∈ B ∈ (0, 1) is tight. The definition of

tightness is given as follows.

DEFINITION 3. A process WNT (τ) is said to be tight if and only if for any δ > 0

there exists a compact set E such that supτ∈EP(WNT (τ) ∈ E) > 1− δ.

Define ψ1(D) = −(NT )−1/2
∑

i,tXi(t−1){ψτ2(Vitτ2)−ψτ1(Vitτ1)} for any interval D =

(τ1, τ2]. To show the tightness, we adopt Theorem 15.6 in Billingsley (1968) and prove
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a sufficient Chentsov-Billingsley type of inequality as follows.

LEMMA 2. For any two intervals D1 = (τ1, τ2] and D2 = (τ2, τ3], we have

E
[{
η>ξ1(D1)

}2{
η>ξ1(D2)

}2
]
≤ C(τ3 − τ1), (B.20)

where C is a finite positive constant.

To prove Lemma 2, we have E[{η>ξ1(D1)}2{η>ξ1(D2)}2] = (NT )−2E[{
∑

i,t η
>Xi(t−1)

δit(τ1, τ2)}2{
∑

i,t η
>Xi(t−1)δit(τ2, τ3)}2], where δit(τ, τ

′) = ψτ ′(Vitτ ′)−ψτ (Vitτ ). Next, by

Cauchy’s inequality, we have E[{
∑

i,t η
>Xi(t−1)δit(τ1, τ2)}2{

∑
i,t η

>Xi(t−1)δit(τ2, τ3)}2] ≤

[E{
∑

i,t η
>Xi(t−1)δit(τ1, τ2)}4]1/2[E{

∑
i,t η

>Xi(t−1)δit(τ2, τ3)}4]1/2. Since it can be derived

E{δit(τ, τ ′)|Ft−1} = 0, then E[{η>Xi1(t1−1)δi1t1(τ, τ
′)}{η>Xi2(t2−1)δi2t2(τ, τ

′)}{η>Xi3(t3−1)

δi3t3(τ, τ
′)}{η>Xi4(t4−1)δi4t4(τ, τ

′)}] is non-zero only if (a) i1 = i2, t1 = t2 and i3 = i4 6=

i1, t3 = t4 6= t1 or (b) i1 = i2 = i3 = i4 and t1 = t2 = t3 = t4. It is straightforward to

verify (NT )−2E{
∑

i,t η
>Xi(t−1)δit(τ1, τ2)}4 =

(NT )−2
[∑

i,t

E
{

(η>Xi(t−1))
2δ2
it(τ1, τ2)

}]2

+ (NT )−2
∑
i,t

E
{

(η>Xi(t−1))
4δ4
it(τ1, τ2)

}
.

By the proof of (d) in Lemma 1, we know that E(η>Xit)
2 = O(1) and E(η>Xit)

4 = O(1).

Moreover, it can be verified E{δ2
it(τ1, τ2)} ≤ τ2 − τ1 and E{δ4

it(τ1, τ2)} ≤ τ2 − τ1. By

combining the results together, we have

E
[{
η>ξ1(D1)

}2{
η>ξ1(D2)

}2
]
≤ C(τ2 − τ1)(τ3 − τ2) ≤ C|τ3 − τ1|,

for some positive constant C. This completes the proof of Lemma 2. We then conclude

that the ξ1(τ) converge weakly to a (q+3)-dimensional Brownian bridge. Consequently,

the Theorem 5 can be proved.
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Appendix B.4: Mis-specification of A

Suppose Yit is generated by the true adjacency matrix A. From the theoreti-

cal results in Section 3, it is shown that θ̂(τ) is
√
NT -consistent. However, the

consistency result might not hold when the adjacency matrix A is mis-specified to

be A∗ = (a∗ij). Accordingly, let W ∗ = (w∗ij) be the row-normalized A∗ and X∗it =

(1, Z>i , n
−1
i

∑N
j=1 a

∗
ijYjt, Yit)

> ∈ Rq+3. The estimator is then given by

θ̂∗(τ) = arg minθ

N∑
i=1

T∑
t=1

ρτ

{
Yit −X∗>i(t−1)θ(τ)

}
.

Define Ω̂∗0 = (NT )−1
∑N

i=1

∑T−1
t=0 X

∗
itX

∗>
it and Ω̂∗1(τ) = (NT )−1

∑N
i=1

∑T−1
t=0 fit

{
X>∗it θ(τ)

}
X∗itX

∗>
it for τ ∈ (0, 1). To perform the asymptotic analysis, the conditions associated

with the misspecified coefficients are listed below.

(C3*) (Eigenvalue-bound) Let Ω̂∗1(τ) →p Ω∗1(τ) as min{N, T} → ∞ for any τ ∈

(0, 1), where Ω∗1(τ) ∈ RN×N is a positive definite matrix. Moreover, there exists

positive constants 0 < c1 < c2 <∞ such that c1 ≤ λmin(Ω∗1(τ)) ≤ λmax(Ω∗1(τ)) ≤

c2 for any τ ∈ (0, 1).

(C4*) (Monotonicity) It is assumed that X>∗it θ(τ) (1 ≤ i ≤ N, 1 ≤ t ≤ T ) is a

monotone increasing function with respect to τ ∈ (0, 1).

Then we have the following result.

COROLLARY 1. Assume (C1), (C2), (C3*), (C4*). Let V ∗itτ = Yit−X∗>i(t−1)θ(τ). In

addition, define δ(W ∗,W ) =
∑

i,j |w∗ij−wij| to be the total magnitude of misspecification

of W . We then have

θ̂∗(τ)− θ(τ) = −(NT )−1{Ω∗1(τ)}−1
∑
i,t

X∗i(t−1)ψτ (V
∗
itτ ) + r∗NT (τ) (B.21)
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with supτ ‖r∗NT (τ)‖ = Op((NT )−1/2). In addition, further assume δ(W ∗,W ) = O(
√
N/T ),

then we have θ̂∗(τ)− θ(τ) = Op((NT )−1/2).

Consequently, it shows that when the misspecification magnitude is under control

δ(W ∗,W ) = O(
√
N/T ), the resulting estimator is still

√
NT -consistent. We give a

proof as follows.

PROOF. The proof is similar to the proof of Theorem 4 and therefore is only briefly

shown here. In the following we break the proof into two parts. In the first part we

show the representation of (B.21). Next, we show that the consistency result for θ̂∗(τ).

Part I. (Proof of (B.21)) Define ∆∗(τ) = θ̂∗(τ)− θ(τ). Then we have

ρτ
(
Yit −X∗>i(t−1)θ̂

∗(τ)
)

= ρτ
(
V ∗itτ −X∗>i(t−1)∆

∗(τ)
)
, (B.22)

where recall V ∗itτ = Yit −X∗>i(t−1)θ(τ). Then the minimization of (B.22) is equivalent to

minimizing for a fixed τ ,

Z∗NT (∆, τ) = (NT )−1

N∑
i=1

T∑
t=1

{
ρτ
(
V ∗itτ −X∗>i(t−1)∆

)
− ρτ (V ∗itτ )

}
,

One could verify that ∆∗(τ) = arg min∆ Z
∗
NT (∆, τ). The objective function Z∗NT (∆, τ)

is a convex random function. Recall that ψτ (u) = τ − I(u < 0). Let νit = ∆>Xit, and

one could further write Z∗NT (∆, τ) as Z∗NT (∆, τ) =

−(NT )−1
∑
i,t

[
∆>X∗i(t−1)ψτ (V

∗
itτ ) +

∫ νi(t−1)

0

{
1(V ∗itτ ≤ s)− 1(V ∗itτ < 0)

}
ds
]

def
= ∆>ξ∗1 + ξ∗2 . By Theorem 1 of Kato (2009), we have ∆̂∗(τ) = −{Ω∗1(τ)}−1ξ∗1 + r∗NT (τ)

with supτ ‖r∗NT (τ)‖ = op((NT )−1/2) if we further assume
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(a) ξ∗2 →p ∆>Ω∗1∆ with Ω∗1 is a positive definite matrix with uniformly bounded eigen-

values on B;

(b) ξ∗1(τ) is a sequence of bounded stochastic processes.

Part II. (Consistency) Note that the asymptotic bias of θ̂∗(τ) is given by−{Ω∗1(τ)}−1

E(ξ∗1). We next calculate the amount of E(ξ∗1).

Denote E(·|Ft) = Et(·). It can be derived E{ξ∗1(τ)} = E{Et−1(ξ∗1)}. Further we have

Et−1(ξ∗1) = −(NT )−1
∑
i,t

X∗i(t−1)

{
τ − Fit

(
X∗>i(t−1)θ(τ)

)}
. (B.23)

Define δ∗i(t−1) = {X∗i(t−1) −Xi(t−1)}>θ(τ) = (w∗i − wi)>Yt−1β(τ). It can be derived

Fit
(
X∗>i(t−1)θ(τ)

)
= Fit

(
X>i(t−1)θ(τ) + δ∗it

)
= Fit

(
X>i(t−1)θ(τ)

)
+

∫ 1

0

fit
(
X>i(t−1)θ(τ) + tδ∗i(t−1)

)
δ∗i(t−1)dt.

Note that Fit
(
X>i(t−1)θ(τ)

)
= τ . By substituting into (B.23) one could obtain that

Et−1(ξ∗1) = (NT )−1
∑

i,tX
∗
i(t−1){

∫ 1

0
fit
(
X>i(t−1)θ(τ) + tδ∗i(t−1)

)
dt}δ∗i(t−1). Since the densi-

ty function fit ∗ (·) is bounded, then for any η ∈ Rq+3 we have |E{Et−1(η>ξ∗1)}|a 4

c1(NT )−1
∑

i,t E(|η>X∗i(t−1)||w∗i −wi|>a |Yt−1|a), where c1 is a finite positive constant. In

addition, one could note E(|η>X∗i(t−1)||Yi(t−1)|) ≤ c2 for a finite constant c2. Therefore

we have (NT )−1E(|η>X∗i(t−1)||w∗i −wi|>a |Yt−1|a) ≤ c2N
−1δ(W ∗,W ). Since it is assumed

δ(W ∗,W ) = O(
√
N/T ), then it can be concluded that θ̂∗(τ) is still

√
NT -consistent.

APPENDIX C

In Appendix C, we conduct a number of numerical studies. Appendix C.1 and
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C.2 present the simulation models, performance measurements, and numerical results.

Appendix C.3 gives a model diagnosis procedure and applies it the real data example.

Appendix C.4 conducts the sub-sample analysis of the real data.

Appendix C.1: Simulation Models

We consider three simulation settings in this subsection to illustrate the finite

sample performance of the proposed NQAR model. The main difference lies in the

generating mechanism of the network structure (i.e, A).

Before we state the details of the network structure specification, we first give

the forms of the coefficient functions. For convenience, we denote βj,it = βj(Uit) for

0 ≤ j ≤ 2 and γj,it = γj(Uit) for 1 ≤ j ≤ 5 in this section. Following Koenker and Xiao

(2006), we generate the random coefficients as follows,

β0,it =uit, β1,it = 0.1Φ(uit), β2,it = 0.4{1 + exp(uit)}−1 exp(uit),

γ1,it =0.5Φ(uit), γ2,it = 0.3G(uit, 1, 2), γ3,it = 0.2G(uit, 2, 2),

γ4,it = 0.25G(uit, 23, 2), γ5,it = 0.2G(uit, 2, 1),

where uits are iid random variables, Φ(·) is the standard normal cumulated distribution

function (cdf), G(·, a, b) is the Gamma cdf with shape parameter a and scale parameter

b. We generate uit either from (a) the standard normal distribution (i.e., N(0, 1)) or

from (b) the t-distribution with 5 degrees of freedom. It can be noted the Uit in (2.1)

can be transformed as Uit = F (uit), where F (·) is cdf of uit. By this way, Uit will

be assured to follow a uniform distribution. Given the random coefficients, we futher

generate observations from the NQAR model (2.1). Next generate the nodal covariates

Zi = (Zi1, · · · , Zi5)> ∈ R5 from a multivariate normal distribution N(0,Σz), where
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Σz = (σj1j2) and σj1j2 = 0.5|γ1−γ2|. Then, we generate Yts according to (2.1), where

Y0 = 0. To check the finite sample performance of the proposed method, we adopt

three kinds of adjacency matrix structures that are well-known in the literature. The

details are given in the following.

Example 1. (Dyad Independence Model) Holland and Leinhardt (1981) introduce

a Dyad Independence Model with a Dyad defined as Dij = (aij, aji) for 1 ≤ i < j ≤ N .

It is assumed that Dijs are independent. Specifically, we set the probability of mutually

connected dyads to be P{Dij = (1, 1)} = 20N−1 to ensure the network sparsity.

Besides, set P{Dij = (1, 0)} = P{Dij = (0, 1)} = 0.5N−0.8, which implies that the

expected degree for each node is O(N0.2). Accordingly, we have P (Dij = (0, 0)) =

1− 20N−1 −N−0.8, which is close to 1 as N →∞. The simulated dyad independence

network is visualized in the left panel of Figure 1.

Example 2. (Stochastic Block Model) The Stochastic Block Model (Wang and

Wong, 1987; Nowicki and Snijders, 2001) has important applications in community

detection (Zhao et al., 2012). To generate the block network structure, we follow

Nowicki and Snijders (2001) to randomly assign each node a block label indexed from

1 to K, where K ∈ {5, 10, 20}. We then set P (aij = 1) = 0.3N−0.3 if i and j are in the

same block, and P (aij = 1) = 0.3N−1. This indicates that the nodes within the same

block have higher probability to connect with each other than between blocks. Lastly,

the simulated stochastic block network is displayed in the middle panel of Figure 1,

where a clear cluster effect can be visualized.

Example 3. (Power-law Distribution Network) According to Barabási and Albert

(1999), it is a common phenomenon that the majority nodes in the network have small

links, while a small amount of nodes have large number of links. The degrees of nodes

could then be characterized by the power-law distribution. To generate the network
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Figure 1: Left panel: dyad independence network; middle panel: stochastic block network;
right panel: power-law distribution network. The larger and darker points imply higher
in-degrees.

structure following this phenomenon, we simulate A as in Clauset et al. (2009). For

each node, we generate the in-degree as di =
∑

j aji according to the discrete power-law

distribution as P (di = k) = ck−α, where c is a normalizing constant and the exponent

parameter α is set to be α = 2.5 by Clauset et al. (2009). Finally, for the ith node, we

randomly select di nodes as its followers. The power-law distribution network structure

is depicted in the right panel of Figure 1. It can be seen that only a limited number of

nodes have high degrees.

Example 4. (Common Shareholder Network) To mimic the real data example,

we consider the common shareholder network among stocks in the real data example in

Section 6. The dataset contains N = 2, 442 stocks traded in Shanghai Stock Exchange

and the Shenzhen Stock Exchange. To construct the network structure, the top 10

shareholders’ information is collected for each stock, which are referred to as major

shareholders. Specifically, let aij = 1 if the two stock share at least one common

major shareholder, otherwise aij = 0. The resulting network density is 3.9%. In the

simulation study, we randomly sample a subset of stocks for the experiment, and the

use their network relationships for the corresponding network structure.

Example 5. (Comparison With NAR) In this example, we compare the perfor-
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mance between the NAR model (Zhu et al., 2017) and the proposed QNAR model.

Specifically, the data is generated by the NAR model with the true parameter fixed as

β = (0, 0.1,−0.2)> and γ = (−0.5, 0.3, 0.8, 0, 0)>. For each model, the innovation term

εit is independently sampled from (a) a standard normal distribution N(0, 1), and (b)

t-distribution with 2 degrees. For the NQAR model, the median regression is fitted by

fixing τ = 0.5 to compare the estimation accuracy with the NAR model.

Example 6. (Mis-specification of A) We consider the misspecification of A in

this example. Specifically, two possibly mis-specified patterns are evaluated, which is

partial misspecification and complete misspecification. Let n =
∑

i,j aij be the total

number of edges. We first generate the true adjacency matrix A according to Example

1–3 respectively. We then construct the mis-specified A∗ = (a∗ij) in the following. For

the partial misspecification, we first set A∗ = A and then randomly select [0.1n] edges

in the set {(i, j) : aij = 0}, and change them from 0 to 1. In this way, all the edges in

the true adjacency matrix A are reserved but with few edges added. Second, for the

complete misspecification, we randomly generate a new A∗ according to the power-law

distribution network. Therefore, the resulting mis-specified adjacency matrix A∗ is

non-related to the true adjacency matrix A.

Appendix C.2: Performance Measurements and Simulation Results

We consider different network sizes (i.e., N = 100, 500, 1000) and let T = N/10.

For each case, the numerical performance is evaluated at τ = 0.1, 0.2, · · · , 0.9 respec-

tively. The experiment is randomly replicated for R = 1000 times. Specifically, we use

θ̂(r)(τ) = {β̂(r)
0 (τ), β̂

(r)
1 (τ), β̂

(r)
2 (τ), γ̂(r)>(τ)}> to be the estimator from the rth replica-

tion. To evaluate the finite sample performance, the following measures are considered.

Firstly the root mean square errors (RMSE) for βj(τ)s (0 ≤ j ≤ 2) are calculated by
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RMSEj(τ) = {R−1
∑R

r=1(β̂
(r)
j (τ) − βj(τ))2}1/2. Besides, for the nodal effect function

vector γ, the RMSE is given by RMSEγ(τ) = {(5R)−1
∑

r ‖γ̂(r)(τ) − γ(τ)‖2}1/2. For

Example 6, the estimation bias is further reported as Biasj(τ) = R−1
∑R

r=1(β̂
(r)
j −βj(τ))

to compare the estimation accuracy. In addition, to compare the goodness-of-fit, we

record R1(τ) and R1∗(τ) by using A and A∗ for model fitting. The average ∆R1(τ) =

R1(τ) − R1∗(τ) is calculate and reported. Secondly for each βj(τ), a 95% confidence

interval is constructed as CI
(r)
j (τ) = (β̂

(r)
j (τ) − z0.975ŜE

(r)

j (τ), β̂
(r)
j (τ) + z0.975ŜE

(r)

j (τ)),

where ŜE
(r)

j (τ) is the jth diagonal element of (NT )−1τ(1−τ)Σ̂θ(τ), Σ̂θ(τ) = Ω̂−1
1 Ω̂0Ω̂−1

1 ,

and zα is the αth quantile of the standard normal distribution. Then, the cover-

age probability (CP) can be computed as CPj(τ) = R−1
∑R

m=1 I{βj(τ) ∈ CI
(r)
j (τ)},

where I(·) is the indicator function. Eventually the network density (ND) is given by

{N(N − 1)}−1
∑

i1,i2
ai1i2 .

The detailed results of the simulation Example 1–4 are given from Table 1 to 4.

It can be found that for a fixed τ the RMSE is decreased as N and T increased. For

example, the RMSE of β̂1(τ) drops from 11.22 × 10−2 to 4.90 × 10−2 at τ = 0.1 as

N is increased from 100 to 500 in Example 1 for the t-distribution. It can also be

noted that the RMSE for t-distribution of same network size N is slightly larger than

standard normal distribution. Moreover, it can be concluded the computed coverage

probabilities for βj(τ)s are stable at the nominal level 95%, which corroborates with the

theoretical results. In addition, we plot the estimated β̂j(τ) with the 95% confidence

interval against τ in Figure 2. A monotonic increasing pattern can be detected. Lastly,

the network is becoming sparser as N increases (e.g. ND drops from 2.4% to 0.2% for

the power-law distribution network from N = 100 to 1000).

The simulation result of Example 5–6 is given in Table 5, 6 and 7. First, it is

found that compared to the maximum likelihood estimation of the NAR model, the
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estimator (3.1) of the QNAR model shows lower efficiency if the innovation is sampled

from normal distribution. However, when the innovation term εit is sampled from a fat

tail distribution (e.g., t-distribution), the QNAR model is able to produce more robust

estimation results and overperforms NAR in terms of estimation efficiency. Next, for

the model misspecification, it is observed that the bias of the complete misspecification

is more severe than the partial misspecification (especially for the network effect β1(τ)).

In addition, it is found that the difference of goodness-of-fit measure ∆R1(τ) is larger

with the the complete misspecification. This suggests that the goodness-of-fit measure

R1(τ) is an informative tool to select different adjacency matrices.

Appendix C.3: Model Diagnosis

In this subsection, we conduct a model diagnosis for the NQAR model, and apply

it to the real data example. Note that a direct residual analysis similar to the mean

case of VAR is not feasible, as the error terms Vitτ = Yit − X>it θ(τ) are supposed to

the correlated measuring by Pearson correlation. As an alternative, we follow Li et al.

(2015) to use the QACF to measure the quantile correlation. The diagnosis procedures

of the dynamic dependence and cross-sectional dependence are given as follows.

C.3.1. Dynamic Dependence. Assume the QNAR model is estimated with the

fitted value for node i at time point t as Ŷitτ . Therefore, the residuals can be computed

as V̂itτ = Yit − Ŷitτ . Specifically, for each node i, we estimate the QACF according to

Li et al. (2015) as follows

ρ̂
(k)
iτ =

1√
(τ − τ 2)σ̂2

v

· 1

T

T∑
t=k

ψτ (V̂itτ )(V̂i(t−k)τ − µ̂v),

where µ̂v and σ̂2
v are mean and variance estimates of V̂itτ . Note that the theoretical
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value ρ
(k)
iτ = 0 as

ρ
(k)
iτ = E{ψτ (Vitτ )(Vi(t−k)τ − µv)} − E{ψτ (Vitτ )}E{Vi(t−k)τ − µv} = 0.

We plot all ρ̂
(k)
iτ s with k = 1 in a histogram in Figure 3. It can be visualized that the

ρ̂
(k)
iτ s are around 0.

To test the significance of temporal dependence of residuals, we adopt a multiplier

bootstrap procedure. We formulate the null hypothesis as H0 : ρ
(k)
iτ = 0 against the

alternative HA : ρ
(k)
iτ 6= 0 Here we set k = 1 without of loss of generality. For each i,

the multiplier bootstrap procedure is as follows.

*Bootstrap Steps.

(1) Generate i.i.d standard normal random variables ε
[b]
it for each bootstrap sample

b.

(2) Compute θ̂[b](τ) and V̂
[b]
itτ as

θ̂[b](τ) = θ̂(τ) + (NT )−1Ω̂1(τ)−1
∑
i,t

ε
[b]
itXitψτ (V̂itτ )

V̂
[b]
itτ = Yit −X>it θ̂[b](τ)

(3) Compute ρ
[b]
ikτ as

ρ̂
(k)[b]
iτ =

1√
(τ − τ 2)

· 1

T − k

T∑
t=k

{
ψτ (V̂

[b]
itτ )

V̂
[b]
i(t−k)τ − µ̂

[b]
v

σ̂
[b]
v

− ψτ (V̂itτ )
V̂i(t−k)τ − µ̂v

σ̂v

}
,

where µ̂
[b]
v and (σ̂

[b]
v )2 are mean and variance estimates of V̂

[b]
itτ for t = k, · · · , T .

(4) For the significance level α, calculate the α/2 and 1 − α/2 quantile of ρ̂
(k)[b]
iτ to
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produce the (1 − α)-confidence interval. Check whether the confidence interval

contains 0.

The procedure is conducted for i = 1, · · · , N . For the stock data with N = 2442, it

is found that all the 95% confidence intervals cover 0. This illustrates a good fitness

level of the NQAR model.

C.3.2. Cross-sectional Dependence. Similar to the test of the dynamic de-

pendence of Vitτ , we could define the cross sectional quantile correlation as

ρ̂ijτ =
1√

(τ − τ 2)σ̂2
j

· 1

T

T∑
t=1

ψτ (V̂itτ )(V̂jtτ − µ̂j),

where µ̂j and σ̂2
j are mean and variance estimates of V̂jtτ . By similar bootstrap pro-

cedure, this leads to (N2 −N)/2 test statistics. It is found that the 99.65% of all the

95% confidence intervals cover 0. This illustrates that the cross-sectional dependence

is almost ignorable after fitting the NQAR model.

Lastly, to elaborate on the above test procedure, a multiple testing procedure can

be developed and this is beyond the scope of the article. We leave it as a future research

topic.

Appendix C.4: Sub-sample Analysis of the Real Data

In this section, we explore the empirical data performance when the NQAR model

applied to sub-samples. Specifically, we have splitted the data in 2013 into the first

half of the year and the second half of the year. Note that the returns are more volatile

in the first half (as shown in the left panel of Figure 1). The results are shown in

Table 8 and Table 9, which show different phenomenons. The network effect β1(τ)
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is still significantly positive for the first half at τ = 0.95; while for the second half

the phenomenon does not exist. The empirical analysis suggests that one tends to see

stronger asymmetric network effects when the market exhibits high turbulence.
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Table 1: Simulation results for dyad independence network with 1000 replications.
The random variable uit is generated from standard normal distribution (i.e., Z) and
t-distribution with 5 degrees of freedom (i.e., T ). The RMSE (×10−2) and the coverage
probability (%) for the 95% confidence interval are reported for β0 to β1. The RMSE
is also reported for γ. Lastly, the network density is computed and given.

N Dist. β0 β1 β2 γ ND

τ = 0.1

100 Z 2.60(95.0) 10.10(95.8) 2.47(94.3) 3.09 22.7

T 3.43(96.4) 11.22(95.2) 2.37(95.6) 4.17

500 Z 1.08(96.2) 4.61(95.4) 1.04(96.0) 1.32 4.7

T 1.51(95.4) 4.90(95.9) 1.03(96.1) 1.82

1000 Z 0.77(95.8) 3.29(95.0) 0.80(94.0) 0.93 2.4

T 1.06(95.8) 3.66(95.0) 0.75(95.0) 1.29

τ = 0.5

100 Z 1.90(95.5) 6.62(95.4) 1.65(96.7) 2.11 22.7

T 1.99(95.7) 5.67(94.5) 1.32(93.3) 2.15

500 Z 0.84(94.4) 2.99(95.5) 0.79(94.9) 0.87 4.7

T 0.90(94.9) 2.43(96.2) 0.55(92.3) 0.91

1000 Z 0.59(94.7) 2.17(95.0) 0.53(95.7) 0.63 2.4

T 0.62(94.2) 1.77(95.0) 0.37(93.5) 0.66

τ = 0.9

100 Z 2.57(95.3) 9.96(95.1) 2.49(94.1) 2.92 22.7

T 3.61(95.0) 10.61(95.4) 2.41(94.5) 3.98

500 Z 1.08(96.3) 4.27(95.8) 1.10(94.0) 1.30 4.7

T 1.53(95.6) 4.75(94.8) 1.11(93.9) 1.75

1000 Z 0.78(95.5) 3.14(95.5) 0.76(95.0) 0.90 2.4

T 1.09(95.9) 3.41(96.0) 0.84(93.5) 1.26
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Table 2: Simulation results for stochastic block network with 1000 replications. The
random variable uit is generated from standard normal distribution (i.e., Z) and t-
distribution with 5 degrees of freedom (i.e., T ). The RMSE (×10−2) and the Coverage
Probability (%) for the 95% confidence interval are reported for β0 to β1. The RMSE
is also reported for γ. Lastly, the network density is computed and given.

N Dist. β0 β1 β2 γ ND

τ = 0.1

100 Z 2.61(95.8) 3.29(94.9) 2.45(94.3) 3.03 2.6

T 3.33(96.7) 3.37(96.0) 2.40(94.2) 4.29

500 Z 1.14(94.3) 1.40(94.5) 1.08(94.9) 1.32 0.5

T 1.57(94.0) 1.50(95.1) 1.04(95.6) 1.82

1000 Z 0.79(94.6) 0.89(95.0) 0.74(95.9) 0.94 0.2

T 1.09(95.4) 0.95(94.9) 0.78(94.5) 1.28

τ = 0.5

100 Z 1.88(94.5) 2.15(94.2) 1.74(95.2) 2.07 2.6

T 2.03(94.0) 1.76(95.1) 1.28(93.4) 2.17

500 Z 0.84(94.5) 0.92(94.5) 0.77(94.9) 0.90 0.5

T 0.86(94.7) 0.75(94.5) 0.52(93.2) 0.90

1000 Z 0.59(94.4) 0.59(95.9) 0.53(95.6) 0.63 0.2

T 0.61(95.4) 0.47(95.6) 0.38(93.0) 0.64

τ = 0.9

100 Z 2.56(95.0) 2.91(96.0) 2.46(94.5) 2.94 2.6

T 3.44(95.8) 3.28(94.3) 2.39(94.3) 4.07

500 Z 1.08(95.4) 1.33(94.6) 1.07(95.3) 1.29 0.5

T 1.52(95.9) 1.45(95.8) 1.12(94.0) 1.78

1000 Z 0.80(95.2) 0.89(94.4) 0.75(96.0) 0.91 0.2

T 1.03(96.4) 0.90(95.3) 0.82(93.4) 1.23
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Table 3: Simulation results for power-law distribution network with 1000 replications.
The random variable uit is generated from standard normal distribution (i.e., Z) and
t-distribution with 5 degrees of freedom (i.e., T ). The RMSE (×10−2) and the coverage
probability (%) for the 95% confidence interval are reported for β0 to β1. The RMSE
is also reported for γ. Lastly, the network density is computed and given.

N Dist. β0 β1 β2 γ ND

τ = 0.1

100 Z 2.44(95.9) 2.95(95.4) 2.32(96.2) 3.08 2.4

T 3.45(96.3) 3.28(93.9) 2.36(95.1) 4.19

500 Z 1.09(95.5) 1.24(96.3) 1.07(95.4) 1.35 0.5

T 1.53(94.7) 1.42(94.8) 1.04(96.2) 1.79

1000 Z 0.76(95.8) 0.91(95.6) 0.77(94.7) 0.94 0.2

T 1.06(95.0) 0.99(95.5) 0.75(95.3) 1.28

τ = 0.5

100 Z 1.87(95.3) 1.96(95.7) 1.79(94.4) 2.07 2.4

T 1.94(96.4) 1.55(96.2) 1.29(93.1) 2.15

500 Z 0.82(95.7) 0.85(94.6) 0.77(95.8) 0.89 0.5

T 0.90(95.5) 0.71(94.0) 0.54(93.3) 0.92

1000 Z 0.58(95.1) 0.62(94.2) 0.54(96.0) 0.62 0.2

T 0.63(94.4) 0.51(92.2) 0.37(94.6) 0.64

τ = 0.9

100 Z 2.55(95.8) 2.94(93.5) 2.43(94.3) 2.91 2.4

T 3.53(95.3) 3.01(94.7) 2.43(94.1) 4.11

500 Z 1.12(95.1) 1.20(96.3) 1.09(95.1) 1.29 0.5

T 1.51(95.5) 1.33(95.1) 1.10(94.3) 1.80

1000 Z 0.79(95.2) 0.87(95.7) 0.76(95.1) 0.90 0.2

T 1.09(94.7) 0.98(95.3) 0.83(92.1) 1.26

38



Table 4: Simulation results for using the real data network with 1000 replications.
The random variable uit is generated from standard normal distribution (i.e., Z) and
t-distribution with 5 degrees of freedom (i.e., T ). The RMSE (×10−2) and the coverage
probability (%) for the 95% confidence interval are reported for β0 to β1. The RMSE
is also reported for γ. Lastly, the network density is computed and given.

N Dist. β0 β1 β2 γ ND

τ = 0.1

100 Z 5.35(94.0) 10.92(89.0) 5.66(93.0) 7.04 4.6

T 7.62(96.0) 11.48(89.0) 5.62(97.0) 9.20

500 Z 1.18(93.0) 2.82(91.0) 1.12(95.0) 1.45 4.0

T 1.44(96.0) 2.88(95.0) 1.05(98.0) 1.75

1000 Z 0.54(97.0) 1.52(96.0) 0.49(97.0) 0.66 3.9

T 0.73(92.0) 1.69(93.0) 0.49(96.0) 0.87

τ = 0.5

100 Z 3.76(97.0) 5.98(94.0) 4.19(96.0) 4.35 4.6

T 4.02(98.0) 5.28(95.0) 3.31(92.0) 4.95

500 Z 0.88(94.0) 1.64(96.0) 0.77(96.0) 0.85 4.0

T 0.84(97.0) 1.47(94.0) 0.49(96.0) 0.88

1000 Z 0.42(96.0) 0.91(93.0) 0.40(93.0) 0.45 3.9

T 0.38(96.0) 0.85(93.0) 0.25(92.0) 0.47

τ = 0.9

100 Z 5.68(95.0) 8.75(96.0) 6.09(91.0) 6.83 4.6

T 8.13(95.0) 8.86(95.0) 5.99(95.0) 9.39

500 Z 1.15(97.0) 2.46(96.0) 1.00(97.0) 1.24 4.0

T 1.27(98.0) 2.48(96.0) 1.02(94.0) 1.77

1000 Z 0.57(93.0) 1.40(95.0) 0.58(93.0) 0.66 3.9

T 0.67(98.0) 1.39(95.0) 0.63(90.0) 0.88
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Table 5: Simulation results with 500 replications for comparison between the NAR
model and QNAR model. For QNAR model, the estimation is conducted at τ = 0.5.
The RMSEs (×102) of β and γ are reported.

N Est. β0 β1 β2 γ1 γ2 γ3 γ4 γ5

Case 1: Normal Distribution

200 NAR 1.27 1.29 1.22 1.65 1.71 1.97 1.65 1.50

QNAR 1.62 1.61 1.51 2.04 2.12 2.43 2.15 1.92

500 NAR 0.79 0.90 0.85 0.97 1.16 1.20 1.08 0.96

QNAR 0.98 1.11 1.03 1.23 1.39 1.52 1.35 1.18

1000 NAR 0.62 0.61 0.55 0.70 0.74 0.80 0.76 0.68

QNAR 0.76 0.74 0.69 0.86 0.94 0.99 0.89 0.83

Case 2: t-Distribution

200 NAR 3.02 1.67 1.28 3.18 3.68 3.65 3.63 3.17

QNAR 1.79 1.08 0.85 2.16 2.30 2.39 2.24 2.09

500 NAR 1.78 1.00 0.85 2.11 2.29 2.31 2.34 1.94

QNAR 1.15 0.66 0.56 1.34 1.54 1.44 1.47 1.26

1000 NAR 1.26 0.73 0.58 1.53 1.59 1.63 1.55 1.46

QNAR 0.80 0.46 0.40 0.93 0.99 1.08 1.00 0.93
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Table 6: Simulation results for partially mis-specified A with power-law distribution
network with 500 replications. The random variable uit is generated from standard
normal distribution (i.e., Z) and t-distribution with 5 degrees of freedom (i.e., T ).
The Bias (×102) and the RMSE (×102) are reported for β0 to β1. The RMSE is also
reported for γ. Lastly, the average difference of the goodness-of-fit measures ∆R1(τ)
is also reported.

N Dist. β0 β1 β2 γ ∆R1(τ)

τ = 0.1

100 Z 0.15(5.4) 0.12(7.4) -0.62(5.8) 7.04 0.01

T -0.24(7.5) -0.64(8.3) -0.21(5.5) 9.38 -0.01

500 Z 0.02(1.1) 0.03(1.3) -0.04(1.1) 1.30 0.00

T -0.08(1.5) -0.01(1.5) 0.21(1.1) 1.81 0.00

1000 Z 0.01(0.5) 0.03(0.7) -0.01(0.5) 0.66 0.00

T -0.03(0.8) -0.01(0.8) 0.22(0.6) 0.88 0.00

τ = 0.5

100 Z -0.08(4.2) 0.15(5.1) -0.54(4.1) 4.85 0.00

T 0.17(4.4) 0.04(4.2) -0.11(3.1) 4.90 0.01

500 Z 0.01(0.8) 0.06(0.9) -0.03(0.8) 0.87 0.01

T -0.15(0.8) 0.01(0.7) 0.05(0.5) 0.93 0.01

1000 Z -0.04(0.4) 0.00(0.5) 0.02(0.4) 0.46 0.01

T -0.07(0.4) 0.04(0.4) 0.03(0.3) 0.46 0.01

τ = 0.9

100 Z -0.04(5.7) -0.66(7.0) -0.86(6.0) 6.56 0.01

T 0.19(7.6) -1.01(7.6) -1.59(5.5) 9.18 0.02

500 Z 0.05(1.1) 0.03(1.4) 0.00(1.1) 1.25 0.02

T 0.00(1.5) -0.04(1.4) -0.38(1.2) 1.83 0.02

1000 Z -0.01(0.5) -0.04(0.7) 0.01(0.5) 0.64 0.02

T 0.15(0.8) -0.06(0.7) -0.34(0.6) 0.87 0.02
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Table 7: Simulation results for completely mis-specified A with power-law distribution
network with 500 replications. The random variable uit is generated from standard
normal distribution (i.e., Z) and t-distribution with 5 degrees of freedom (i.e., T ).
The Bias (×102) and the RMSE (×102) are reported for β0 to β1. The RMSE is also
reported for γ. Lastly, the average difference of the goodness-of-fit measures ∆R1(τ)
is also reported.

N Dist. β0 β1 β2 γ ∆R1(τ)

τ = 0.1

100 Z 0.08(5.7) -1.33(7.0) -0.07(5.5) 7.14 0.01

T -0.25(7.6) -1.01(7.5) -0.07(5.8) 9.34 -0.01

500 Z -0.02(1.1) -1.01(1.6) 0.03(1.1) 1.32 0.00

T -0.02(1.5) -0.69(1.6) 0.18(1.1) 1.80 0.00

1000 Z -0.02(0.5) -0.98(1.2) -0.03(0.6) 0.66 0.00

T -0.07(0.7) -0.76(1.0) 0.20(0.6) 0.90 0.00

τ = 0.5

100 Z -0.25(4.4) -4.99(6.9) -0.37(4.2) 4.65 0.09

T -0.27(4.8) -5.05(6.4) -0.16(3.3) 4.83 0.09

500 Z -0.21(0.9) -5.05(5.1) 0.01(0.8) 0.88 0.09

T -0.40(1.0) -4.95(5.0) 0.11(0.6) 0.97 0.11

1000 Z -0.17(0.5) -4.99(5.0) 0.07(0.4) 0.48 0.09

T -0.32(0.6) -4.98(5.0) 0.09(0.3) 0.51 0.11

τ = 0.9

100 Z 0.18(6.1) -8.99(11.1) -0.69(5.8) 6.49 0.20

T 1.12(8.0) -9.24(11.8) -1.31(5.9) 9.11 0.18

500 Z 0.27(1.3) -9.01(9.1) -0.02(1.1) 1.29 0.23

T 0.36(1.7) -9.23(9.3) -0.33(1.2) 1.71 0.22

1000 Z 0.32(0.7) -8.94(9.0) 0.06(0.5) 0.66 0.24

T 0.55(1.1) -9.23(9.3) -0.28(0.6) 0.90 0.23
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Figure 2: The estimated β0 to β2 against τ for three different network structures. The

black line is the average estimated value over 1,000 replications, and the grey area is the

empirical 95% confidence band. The top panel: dyad independence network; The middle

panel: stochastic block network; the bottom panel: power-law distribution network.
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Figure 3: The histogram of QACF (ρ̂iτ ) of all nodes.
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