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A B S T R A C T

Neural models describe brain activity at different scales, ranging from single cells to whole brain networks.
Here, we attempt to reconcile models operating at the microscopic (compartmental) and mesoscopic (neural
mass) scales to analyse data from microelectrode recordings of intralaminar neural activity. Although these two
classes of models operate at different scales, it is relatively straightforward to create neural mass models of
ensemble activity that are equipped with priors obtained after fitting data generated by detailed microscopic
models. This provides generative (forward) models of measured neuronal responses that retain construct
validity in relation to compartmental models. We illustrate our approach using cross spectral responses
obtained from V1 during a visual perception paradigm that involved optogenetic manipulation of the basal
forebrain. We find that the resulting neural mass model can distinguish between activity in distinct cortical
layers – both with and without optogenetic activation – and that cholinergic input appears to enhance
(disinhibit) superficial layer activity relative to deep layers. This is particularly interesting from the perspective
of predictive coding, where neuromodulators are thought to boost prediction errors that ascend the cortical
hierarchy.

1. Introduction

Multi-electrode shanks and multi-unit probes provide a unique
window on the functional microarchitecture of cortical and subcortical
structures, like V1, temporal cortex, the hippocampus or the cerebel-
lum, see e.g. (Olsson et al., 2005; Obien et al., 2014; Kelly et al., 2007;
Ulbert et al., 2001). These recording techniques have found a wide
range of applications, including brain-machine interfacing (Hiremath
et al., 2015) and seizure localization (Halgren et al., 2015). They allow
for simultaneous recordings from different layers within a single brain
region and offer insights into the functional architecture, physiology
and anatomy of cortical microcircuitry.

Laminar array recordings can be obtained using thin probes with
multiple contacts that penetrate (almost) vertically the cortical surface.

These recordings can be used to reconstruct synaptic activity and
dendritic currents flowing between different layers. This reconstruction
entails an (ill posed) inverse problem of mapping responses to laminar-
specific neuronal sources. This mapping has been addressed using
methods like Current Source Density (Freeman and Nicholson, 1975;
Koo et al., 2015; Mitzdorf and Singer, 1977; Sakamoto et al., 2015) and
more recently Laminar Population Analysis (Einevoll et al., 2007; Ness
et al., 2015).

Here, we suggest an alternative approach to estimating layer-
specific activity using Variational Bayesian deconvolution. We first
obtain simulated responses from a compartmental model that has been
previously shown to faithfully represent the cortical microarchitecture
– and has been used to model MEG responses during a tactile
stimulation paradigm (Bush and Sejnowski, 1993; Jones et al.,
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2007). We then use these simulated data to optimise the mean-field
(lumped) parameters of a homologous neural mass model. The
resulting parameters provide prior constraints on neural mass models
that can be used for subsequent dynamic causal modelling of empirical
responses. This approach ensures the neural mass model has construct
validity, in relation to more detailed (compartmental) models of
cortical microcircuitry.

The resulting neural mass model can be combined with an
observation model that allows one to simultaneously fit predicted time
series from different subpopulations within the same neural circuit.
This contrasts with the current use of mean field models to generate
(weighted) mixtures of responses in different populations, thereby
providing a single time series for each cortical or subcortical source.
The implicit mixing is appropriate for non-invasive electromagnetic
recordings that cannot resolve the cortical depth of sources; however,
for laminar data one needs to equip the observation model with spatial
parameters that associate each population with a particular cortical
layer. This leads to the natural question: do the neural masses that
model superficial and deep pyramidal populations actually occupy
supragranular and infragranular positions in the cortex? Hitherto, in
the dynamic causal modelling literature, the designation of a popula-
tion as superficial (or deep) is based purely on their characteristic time
constants and connectivity, without any explicit reference to their
spatial deployment. In this paper, we ask whether functional attribu-
tions like superficial and deep are justified, when one can actually
measure neuronal responses at different cortical depths.

Our approach to this question relies upon Bayesian model compar-
ison and assumes that a Bayes optimal explanation (model) of data
exists for some prior distribution of mean field parameters. To ensure
the prior constraints properly accommodate spatiotemporal dynamics
within the cortical microcircuit and its neuronal compartments (e.g.
delays due to spread of current throughout the dendritic arbours), the
priors in this work were obtained by fitting a neural mass model to data
generated by a validated compartmental model. In other words, we use
the mean field homologue and its compartmental variant to find the
prior distribution that renders both models functionally equivalent:
i.e., find priors that produce the same responses. This enables us to
model laminar responses using a relatively small number of parameters
that can be estimated more efficiently, using the mean field homologue
of the compartmental model. The empirical data used to illustrate this
approach were recorded during a visual perception paradigm – with
optogenetic manipulation – and were analysed here by inverting cross
spectral density data features using DCM (Friston et al., 2007; Pinotsis
et al., 2013, 2012a).

In summary, the key innovation described in this paper is to equip
standard neural mass models with laminar specific forward models that
enable the fitting of laminar recordings. To lend the neural mass model
construct validity – in relation to more detailed compartmental models
that accommodate neuronal interactions between layers – we opti-
mised the (prior) parameters of a standard neural mass model to
reproduce the behaviour of more detailed, compartmental models.
Effectively, we are repurposing established neural mass models to
explain the laminar specific recordings. The empirical analyses based
upon the ensuing model, although purely illustrative, establish a degree
of face and construct validity for this approach.

In what follows, we first provide a brief review of compartmental
modelling of laminar specific and non-invasive electromagnetic re-
sponses. We then consider mean field approximations to compart-
mental models; with a special focus on homogenous and symmetric
coupling among cortical mini columns. These mean field approxima-
tions allow us to fit neural mass models of the sort used in dynamic
causal modelling to simulated data generated by detailed compart-
mental models. The subsequent sections of this paper consider two
issues: first, how to construct a neural mass model that inherits
biological plausibility from compartmental models. This issue is
addressed by fitting a standard neural mass model to data generated

by compartmental models – and using the resulting posterior para-
meter estimates as priors for subsequent neural mass modelling of
empirical data. The second issue is how to establish the validity of the
resulting neural mass model. Here, we provide some provisional
analyses of empirical data looking at its ability to correctly identify
laminar-specific neuronal activity – and to detect the cholinergic
neuromodulation of superficial pyramidal cells.

2. Materials and methods

2.1. Compartmental models and mean field approximations

We first briefly review an established compartmental neural model
(Bush and Sejnowski, 1993). These authors show how a detailed multi-
compartmental model can be reduced to a simpler model with fewer
compartments. This model was later extended to a network model of a
cortical column in a key paper by (Jones et al., 2007). The resulting
network model provides detailed descriptions of intracellular (long-
itudinal) currents within the long apical dendrites of synchronized
cortical pyramidal cells, see e.g. (Bazhenov et al., 2002; Einevoll, 2014;
Krupa et al., 2008; Lindén et al., 2010; Ramirez-Villegas et al., 2015;
Roth and Häusser, 2001; Santaniello et al., 2015; Dayan and Abbott,
2001). In these compartmental models, neuronal populations are
organised spatially into networks of mini-columns: each mini-column
consists of principal neurons (PNs) whose somata are placed in
supragranular and infragranular layers. The resulting pairs of cells
are connected with each other and also with principal cells in
neighbouring mini-columns – and receive inhibitory input from
interneurons that are shared between mini-columns. In summary,
the model described in (Jones et al., 2007) embodies the laminar
structure of a cortical column and can characterize the cellular and
circuit level processes that are measured with multielectrode arrays,
MEG or electrocorticography. It also provides characterizations of
neuronal morphology and how neurons are grouped together to form
spatially extended networks of mini-columns with well-behaved in-
trinsic (inter-and intra-laminar) connectivity.

The network model we consider here was originally used to explain
somatosensory evoked responses measured with MEG during a tactile
stimulation paradigm (Jones et al., 2007). When challenged with the
appropriate sequence of exogenous input, the model accurately repro-
duces the S1 evoked response to a tap on the hand. Furthermore, the
compartmentalisation of the PNs allowed the authors to make accurate
predictions about the origin of each peak. For instance, it led to the
prediction that the evoked response was generated by a sequence of
feedforward (FF) input from the lemniscal thalamus to the granular
layer, followed by feedback (FB) drive from higher order cortex and a
late thalamic input to L4. Importantly, the model accurately describes
the intracellular currents that give rise to signal polarity. In later
studies, the model was extended to 100 pyramidal neurons (PNs) per
cortical layer, and has been used to investigate the emergence of beta
and gamma rhythms (Jones et al., 2009; Lee and Jones, 2013).

The current dipole approach used in (Jones et al., 2007) has been
shown to be a good approximation for analysing MEG or EEG data, see
e.g. (Murakami and Okada, 2006) although less so for local field
potentials (LFPs), see (Lindén et al., 2010). Below we use a mean field
model to explain invasive data using DCM: see, (Brunel and Wang,
2003; Deco et al., 2008; Marreiros et al., 2015; Moran et al., 2015) and
(Friston et al., 2015) for a review of mean field approaches to this sort
of modelling. Mean field or neural mass approaches generally assume
that dendritic and other microscopic effects do not dominate the LFPs.
Furthermore, they can only model axonal and dendritic arbours as
passive cables and cannot capture properties of active media, like back-
propagation of action potentials. These are clearly simplifying assump-
tions; indeed, several studies have considered alternative models of
LFP signals, e.g. (Holcman and Tsodyks, 2006; Mazzoni et al., 2008;
Touboul and Destexhe, 2010).
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In what follows, we construct a variant of the (Jones et al., 2007)
model that assumes inhibitory and excitatory cells are uniformly
distributed in space. Furthermore, we adopt symmetry constraints on
horizontal connectivity (within each cortical layer) of the sort assumed
in neural and mean field models (Pinotsis et al., 2015). This means that
inhibition is homogeneously distributed over the cortical surface – as
in neural field models – as opposed to inhibitory interneurons being
shared between mini-columns – as in the original compartmental
model. In other words, we assume that laminar specific populations are
distributed uniformly within a local cortical manifold and render the
network homogeneous. The assumption of homogenous coupling
means that compartmental and mean field models can, in principle,
explain the same responses. In turn, this implies that mean field
models of the sort considered below provide sufficient descriptions of
neural tissue activity, provided single units oscillate synchronously
(Hämäläinen et al., 1993).

In terms of solving the inverse problem, this homogenous coupling
assumption means that one can substitute a myriad of coupled
equations for multiple compartments in multiple mini-columns by a
few integrodifferential equations of the sort used in mean field theory –
and consider an alternative (but equivalent) parameterization in terms
of lumped model parameters. Using this mean field reduction one
obtains a model which can be fitted to empirical data very efficiently.
To test the assumption that a mean field model can reproduce ERPs
obtained from a compartmental model with multiple mini columns, we
compared the responses of both models to the same input to ensure
that they are formally equivalent.

2.2. DCM for microelectrode data

Compartmental models of the sort discussed above yield precise
descriptions of the anatomy, morphology and biophysical properties of
the underlying neuronal populations. Crucially, they produce neuronal
dynamics that embody detailed spatiotemporal processes like currents
flowing along dendrites and axons. For example, we will see below that
both the original model and its mean field or neural mass variant can
explain the M25 and M135 peaks in evoked responses obtained during
the somatosensory task analysed in (Jones et al., 2007). These response
components are generated by currents flowing towards the superficial
layers, i.e., toward the apical dendrites.

In brief, neural mass models that are not equipped with distinct
neuronal compartments cannot describe these detailed (dendritic or
axonal) delays and back propagation. However, by fitting data gener-
ated by compartmental models using equivalent neural mass models –
with the same number of populations and connectivity architecture –

one can identify a prior distribution over model parameters that can
reproduce the equivalent dynamics. This model is shown in Fig. 1 and
comprises two pairs of coupled excitatory and inhibitory populations
occupying the superficial and deep layers.

In the second part of our analysis, we consider the dynamic causal
modelling of oscillatory responses using a neural mass model that
inherits (prior) constraints from more detailed compartmental models.
We analyse empirical recordings obtained from different cortical layers
of the visual cortex using depth electrodes, during optogenetic stimula-
tion of the basal forebrain. Our analysis focuses on the quantitative
analysis of intrinsic (inter-and intra-laminar) connectivity and the
effect of (putative) cholinergic stimulation. We restrict ourselves to
describing and validating the neural mass model in this paper. This
paper demonstrates that a neural mass model can be used to explain
lamina-specific spectra observed during baseline and optogenetic
manipulation. In a subsequent paper, we will use Bayesian model
comparison to make inferences about the synaptic connections affected
by cholinergic stimulation – and the resulting changes in cross spectral
density.

In summary, we use the DCM in Fig. 1 to explain two different
datasets: first, simulated data obtained from the Jones et al. model that

has been shown to faithfully explain somatosensory evoked responses
obtained with MEG during a tactile simulation paradigm. Second, LFP
data obtained from V1 during optogenetic stimulation of the basal
forebrain. The first dataset is used to establish that the DCM model can
explain the same data as the model by Jones et al. The second dataset is
used to test whether this DCM can also predict responses recorded
from different cortical layers and the increase in prediction error
activity due to cholinergic effects as suggested by the theory of
predictive coding.

2.3. Local field potential data

We reanalysed data collected during a previously reported study;
for more details see (Pinto et al., 2013). Briefly, 32 channel LFP data
were acquired at a sampling rate of 581 Hz from Neuronexus A1×32-
Poly2-5mm-50s-177 silicon probes implanted into V1 in 14 awake
mice. Probe microelectrodes were arranged in two columns of 16.
Spacing within columns was 50 μm, with a 25 μm between columns,
giving a total length of 775 μm, sufficient to span the entire cortical
thickness (approximately 800 μm in mice).

Data were acquired while the mice ran on a spherical treadmill and
viewed a 7” LCD screen. The grating was static for 1 s, and then drifting
for 4 s, giving a total trial length of 5 s. Gratings could be moving either
sideways or upwards, and were presented at three contrast levels (20,
40, and 100%). 8 blocks of trials were presented. During four blocks,
cholinergic neurons in the basal forebrain were optogenetically acti-
vated with five-second square laser pulses that accompanied the
stimuli. LFP data were referenced to create 16 bipolar channels, and
notch filtered at 60, 120 and 180 Hz to remove line noise. The cross
spectral density was calculated separately for each trial, for the
4 second period between the onset of stimulus motion and stimulus
offset, and averaged across trials.

2.4. Compartmental modelling

To construct a homogenous or symmetric compartmental model,
we adapted NEURON code for the (Jones et al., 2007) model from the
link below.3 Jones et al. (2007) modelled primary somatosensory
cortex (S1) using reduced compartmental PNs, which allowed for an
accurate description of dendritic currents (Bush and Sejnowski, 1993),
and single compartment inhibitory interneurons (INs). These authors
focused on simulating an evoked response to tactile stimulation of the
hand, and computing the resulting current dipole (CD) signal – in
order to characterise the local cortical dynamics that give rise to the
MEG signal recorded over S1 during tactile stimulation. The model
comprised 10 PNs in layers 2/3, 10 PNs in layer 5, and 3 INs in both
layers. The synaptic architecture followed general tenets of cortical
micro-circuitry (Douglas and Martin, 2004; Felleman and Van Essen,
1991), where FF connections target the granular layer and FB connec-
tions target agranular layers.

To determine whether the symmetric and original compartmental
model generated the same responses, we increased the number of
inhibitory units from three to 10 per layer, so that their number
equalled the number of the principal cells within each mini-column. To
ensure that relative differences in interneuron densities were accom-
modated, we multiplied the maximum conductance values of the
corresponding connections by a factor of 0.3. Modelling of single
neuron morphology and physiology followed (Bush and Sejnowski,
1993), using the same parameters as in (Jones et al., 2007). Following
these earlier studies, input was provided by stochastic spike generators.

3 https://senselab.med.yale.edu/ModelDB/showmodel.cshtml?model=113732.
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2.5. Single neuron morphology and physiology

Neocortical pyramidal neurons were modelled using reduced
compartmental models with Hodgkin-Huxley type currents (Bush
and Sejnowski, 1993; Jones et al., 2009; Jones et al., 2007; Lee and
Jones, 2013)

∑I g V E= ( − )m
l

l l
(1)

where gl is the maximal conductance for channel l,V is the membrane
potential and El is the reversal potential. The superficial and deep PNs
consisted of 8 or 9 compartments respectively, with compartment sizes
and resistances as reported in Jones et al. (2007). PNs in both layers
contained a fast sodium current (INa), an adapting potassium current
(IM), a delayed rectifier current (IKdr) and a leak current (IL). In the L5
PNs a calcium-dependent potassium current (IKCa) and a calcium decay
current (ICa) with a decay time constant of 20 ms were present. The INs
comprised a single compartment and contained only fast sodium (INa)
and potassium (IKdr) currents. The reversal potentials and conductance
for each current were identical to (Jones et al., 2007).

2.6. Local synaptic connections

Superficial and deep layers contained 10 PNs and 10 INs, and the
location of synaptic inputs followed Jones et al. (2007). The synaptic
dynamics of each connection were determined by their rise (τ1) and
decay (τ2) time constants and reversal potential E. the synaptic current
Is is given by the following equations:

I g V E
g wf e e

= ( − )
= ( − )

s s

s
t τ t τ− / − /2 1 (2)

where f is a normalising factor and gs is the synaptic conductance.
Excitatory connections are mediated by AMPA (τ1=0.5 ms, τ2=5 ms,
E=0 mV) and NMDA (τ1=1 ms, τ2=20 ms, E=0 mV) receptors.
Inhibitory connections are mediated by GABAA (τ1=0.5 ms, τ2=5 ms,
E=−80 mV) and GABAB (τ1=1, τ2=20, E=−80 mV) receptors. The
weights of the synaptic connections w follow a Gaussian profile and
an inverse Gaussian delay profile such that connections are stronger
and faster for nearby cells, that is for connections between neurons at
positions i and j the strengths and delay constants are given by

w w e

d d e

=

=

i j C

i j C

max
− − /

min
(− − / )

s

d

2 2

2 2 −1
(3)

Fig. 1. The Bush and Sejnowski (neural mass or mean field) model. This figure shows the evolution equations that specify a neural mass model of a single cortical microcircuit source.
This model contains four populations occupying different cortical layers: the pyramidal cell population of the Jansen and Rit model is here split into two subpopulations allowing a
separation of the sources of forward and backward connections in cortical hierarchies. Firing rates within each sub-population provide inputs to other populations and convolution of
presynaptic activity produces postsynaptic depolarization. We consider separate time series of activity from superficial and deep populations as opposed to usual treatments that use
weighted sums of activity from all subpopulations. Here red denotes inhibitory populations and connections, while black denotes excitatory cells and connections. Note that all recurrent
or self connections are inhibitory.

Table 1
Synaptic connection parameters and strengths for the symmetric model.

Max conductance (μS) Weight space constant Min. Delay (ms) Delay space constant

L2/3 PN to L2/3 PN 0.001/0.0005 3 1 3
L2/3 PN to L2/3 IN 0.003 3 1 3
L2/3 PN to L5 PN 0.00025 3 3 3
L2/3 PN to L5 IN 0.000075 3 3 3
L2/3 IN to L2/3 PN 0.015/0.015 5 1 5
L2/3 IN to L5 PN 0.0003 5 1 5
L2/3 IN to L2/3 IN 0.0006 2 1 2
L5 PN to L5 PN 0.005/0.0005 3 1 3
L5 PN to L5 IN 0.0003 3 1 3
L5 IN to L5 PN 0.0075/0.0075 7 1 7
L5 IN to L5 IN 0.0006 2 1 2
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All local synaptic connection parameters and constants are listed in
Table 1.

2.7. Exogenous inputs

The inputs innervating the network were separated into feedfor-
ward (FF) and feedback (FB), based on the canonical microcircuit
(Douglas and Martin, 2004; Felleman and Van Essen, 1991). FF
connections were modelled as granular layer (L4) input, originating
in the thalamus (Jones et al., 2009, 2007). The FF drive comprised a
connection to the basal and oblique dendrites of L2 PNs (as well as the
L2 INs), and a delayed connection to the basal and oblique dendrites of
L5 PNs and to the L5 INs. FB drive modelled input from higher-order
cortex, and contacted the apical tufts of the PNs in both layers, as well
as the L2 INs.

We consider inputs of two sorts: first, inputs generating evoked
responses and second, ongoing subthreshold inputs that generate alpha
activity. This involved expanding the model of (Jones et al., 2007) to
produce oscillatory activity: following (Jones et al., 2009), 10 Hz
thalamic (forward) inputs were obtained by simulating groups of 10
bursts (each consisting of 2 spikes separated by a 10 ms interval) with
100 ms intervals between the burst groups (Andersen and Andersson,
1968; Contreras and Steriade, 1995). Model output included current
dipole sources that report the electrical activity of superficial and deep
layers.

Input timings were chosen as reported in (Jones et al., 2009, 2007),
and consistent with laminar recording data (Cauller and Kulics, 1991;
Kandel and Buzsáki, 1997). These followed a Gaussian distribution
across trials and consisted of an early FF drive around 25 ms (σ=2.5),
followed by a FB input around 70 ms (σ=6) and a later wave of FF input
(LFF) around 135 ms (σ=7). Each input comprised a single presynaptic
spike, with suprathreshold synaptic weights as listed in Table 2. Note
that contrary to Jones et al. (2007), the synaptic weights and delays of
exogenous inputs were homogenously distributed over all cells. Noise
or random fluctuations were modelled with a stochastic current
between −0.3 and 0.3 nA to each compartment.

Earlier extensions of the (Jones et al., 2007) model have demon-
strated rhythmogenesis and oscillations in the alpha, beta (Jones et al.,
2009) and gamma (Lee and Jones, 2013) bands. We focused on
reproducing alpha band activity with a symmetric model as follows.
The model was driven with ongoing rhythmic FF drive, where each
burst consisted of 2 spikes with an inter-spike interval of 10 ms, which
is consistent with recording data (Hughes and Crunelli, 2005), and an
inter-burst interval of (on average) 100 ms. The arrival time of each
burst followed a Gaussian distribution with a standard deviation of
20 ms. In addition, FB with the same temporal statistics, but a 5 ms
delay compared to the FF input, was added. The conductance was the
same for FF and FB inputs: 0.4 picosiemens (pS) for input to PNs and
0.8 pS to INs. These parameters were chosen to ensure that all
oscillations remained below the firing threshold.

2.8. Neural modelling and Bayesian Inversion

In addition to the symmetric compartmental model above, we
constructed a neural mass variant of the (Jones et al., 2007) model for
subsequent Dynamic Causal Modelling. Laminar-specific recordings
call for a novel parameterisation of the observation model or lead field
that changes with depth. In this setting, laminar LFP responses yi – of
the sort measured with multi-electrode shanks – are generated by
contributions from excitatory and inhibitory populations that occupy
one or more cortical layers, see also (Pinotsis et al., 2012b, 2014).

⎧
⎨
⎪⎪

⎩
⎪⎪

∑y t θ L φ v t m v κ v κ v

κ f v U θ f v U θ

a σ v a σ v U m
a σ v a σ v m

a σ v a σ v a σ v a σ v m
a σ v a σ v m

( , ) = ( ) ( ), = 1, ... ,4 ¨ = −2 −

+ ( , , ) ( , , )

=

⋅ ( ) − ⋅ ( ) + = 1
⋅ ( ) − ⋅ ( ) = 2

− ⋅ ( ) − ⋅ ( ) − ⋅ ( ) + ⋅ ( ) = 3
− ⋅ ( ) − ⋅ ( ) = 4

i
m

m m m m m m m

m m m m m

2

14 4 11 1

23 3 22 2

32 2 31 1 33 3 34 4

41 1 44 4 (4)

Here, L φ( )m is a lead field describing the spatial sensitivity (tangential
to the cortical penetration) of a microelectrode contact in layer m,
φ θ( , ) are lead field and neural mass parameters respectively, v t( )m is
the depolarization of the population in layer m, and σ is a sigmoid
operator transforming it into firing rate. κm is the matrix of rate
constants associated with postsynaptic processing and U stands for the
inputs to local cortical circuit, see Table 3 for a list of biophysical
parameters and their prior expectations.

For the neural mass models used below, we assumed that there was
a one-to-one mapping between the recordings from an electrode in
layer i and the depolarisation of the corresponding population. In other
words, L φ φ i j( ) = : ∀ =i j and zero otherwise. In other words, the
indices in Eq. (4) play the same role; i m≡ . This allows one to
characterize activity from different neuronal populations in terms of
cross-spectral density responses between the contacts of multi-unit
probes occupying different layers:

∑

FT

g ω Y ω θ Y ω θ L k φ T k ω g k ω

T k ω L k φ T k ω K τ K τ y t θ

U t τ

( ) = ( , ) *( , ) = ( , ) ( , ) ( , )

( , ) ( , ) ( , ) = ( ( )) ( ) = ∂ ( , )

/∂ ( − )

Y i i j
k

i u

j i i i i
† †

(5)

where gu is the spectral density of endogenous neuronal input (para-
meterised as scale free noise as described in Pinotsis et al., 2014) and Ti

is the transfer function associated with the neural source; i.e., the
Fourier Transform of impulse response function. This is known as the
first order Volterra kernel Ki. Here, FTY ω θ y t θ( , ) = ( ( , ))i i is a Fourier
transform of the equivalent time-series. Similarly to the neural mass
model (4), compartmental models can describe activity from cortical
columns consisting of excitatory and inhibitory populations. However,
they consider this activity in more detail as generated by an ensemble
of smaller structures called mini-columns. Below we will consider ten
such mini-columns. In this setting, activity predicted from the com-
partmental model of (Jones et al., 2007) is a simple superposition of
minicolumn activities

Table 2
Suprathreshold synaptic weights for exogenous input.

Maximal conductance (μS)

FF to L2/3 PN 0.002
FF to L2/3 IN 0.0012
FF to L5 PN 0.001
FF to L5 IN 0.0006
FB to L2/3 PN 0.004/0.004
FB to L2/3 IN 0.0006/0.0006
FB to L5 PN 0.004/0.004
LFF to L2/3 PN 0.08
LFF to L2/3 IN 0.024
LFF to L5 PN 0.04
LFF to L5 IN 0.012

Table 3
Prior expectations of parameters in the neural mass model of Fig. 1.

Parameter Physiological interpretation Prior mean

κ κ κ κ, , ,1 2 3 4 Postsynaptic rate constants 1/2, 1/36, 1/16, 1/28
(ms−1)

α α α, ,11 14 12 4,4,8
α α α α, , ,22 21 23 33 Amplitude of intrinsic connectivity

kernels
4,4,2,4 (a.u)

α α α, ,41 32 44 (×200) 4,8,8
r η, Parameters of the postsynaptic firing

rate function
0.6, 0 (mV)
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where the index q q′ ⊆ runs over a subset of compartments q that
defines each mini-column and j = 1, ... ,10 runs over the mini-
columns. In our case, each mini-column comprises the compartments
of 1 superficial PN, 1 deep PN and superficial and deep interneurons,
and Q J L a( , , , ϑ)k k kj stands for the exogenous input – that depends on
activity in proximate compartments that is indexed by k q k q∈ { }, ≠ ′.
The argument in the factor Q in Equation 6.2 above simply means that
this input depends upon the current density in the adjacent mini-
columns, their lead fields, anatomical parameters ϑ and the strength of
their connections akj.

Below, we assume that akj are the same between any mini-column
pair and that all mini-columns have the same structural characteristics.
Intuitively, this could be thought as establishing an identity mapping
between the activity of any pair of mini-columns j and j’, that defines an
invariant subspace y y=j j′ in the full phase space of the network; see
also Fig. 2. The rigorous proof of existence of such a subspace is a hard
problem that goes beyond the scope of the current paper; see e.g.
(Breakspear and Terry, 2002; Fujisaka and Yamada, 1983; Pecora and
Carroll, 1990) for a discussion of this active area of research
(Afraimovich et al., 2001; Breakspear et al., 2003).

In the first step of our analysis below, we first ensured that the
symmetric version of the compartmental model produced the same
responses as the original compartmental model used by (Jones et al.,
2007). We then derived the homologous (neural mass) model by
inverting the model in Fig. 1 to obtain (neural mass) parameters that
best explain compartmental model responses in the Fourier domain.
This exploits stationarity and ergodicity assumptions that allow us to
quantify brain responses in terms of spectral densities. In the final step,
we use these parameters as prior expectations for dynamic causal
modelling of empirical data, using the neural mass or mean field
model; see Fig. 2. This allowed us to establish the face validity of our
model using responses recorded with laminar probes originating from
different cortical layers; with and without experimental manipulation
(optogenetics) – and investigate whether the model parameters show
the expected experimental effects. A schematic summarising these
steps is provided in Fig. 2.

The inversion of mean field models above uses the standard DCM
approach, where inference on parameters and models is based on
optimizing a free energy bound on the model log-evidence. Under
Gaussian assumptions about the variational density q θ μ C( ) ∼ ( , )
and observation noise ε μ I Σ ω λ( ) ∼ ( , ( , )), the free energy has a very
simple form:

Fig. 2. Schematic of the validation steps. A. We first establish the functional equivalence between the model of Jones et al. (2007) and its symmetric variant. Here horizontal arrows of
different widths in the left panel denote asymmetric connectivities and delays between mini-columns depicted as rectangles containing Superficial and Deep Pyramidal cells (SP and DP)
and Inhibitory Interneurons (II). In the right panel a symmetrisation of the model reveals a setup similar to one considered in mean field (neural mass) models B. We then demonstrate
the construct validity of the corresponding mass model in relation to mean field model above. This is achieved by fitting the model to synthetic data obtained from its compartmental
homologue. C. Finally, we show how this model can distinguish between superficial and deep responses obtained with laminar probes and consider the concomitant changes in model
parameters with and without optogenetic manipulation. We exploit Bayesian model selection and compute the relative log-evidence for plausible (left) and implausible (right)
experimental setups, where the probes of laminar sensors are considered in right and reversed locations, see the Results section.
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Here, g ω μ g ω μ( , ) + ( , )Y N are the predictions of the data features ωg ( )Y
and ρ μ( ) ∈ are prediction errors on the parameters, in relation to
their prior density p θ m ϕ Ω( | ) = ( , ) and is the Gibb's energy of the
system.

The free energy bound is optimized with respect to a variational
density q θ( ) on the unknown model parameters. By construction, the
free energy bound ensures that when the variational density maximizes
free energy, it approximates the true posterior density over parameters,
q θ p θ g ω m( ) ≈ ( | ( ) , )Y i . At the same time, the free energy itself

g ω q p g ω m( ( ) , ) ≈ ln ( ( ) | )Y i Y i approximates the log-evidence (marginal
likelihood) of the data. In our final analysis below, we use the (relative)
log-evidence to test whether our model can recover the sources of
laminar recordings (originating from superficial and deep pyramidal
cells). In Bayesian statistics, the relative log-evidence BFR plays a
similar role to p-values in classical statistics. We computed BFR by
fitting data to the neural mass model using: (i) the actual experimental
setup (plausible spatial arrangement, m F= ) and (ii) after reversing
the mapping between superficial (deep) signals and deep (superficial)
electrodes (implausible spatial arrangement, m R= ). See also Fig. 2.
The relative log-evidence is evaluated using the following expression
(Kass and Raftery, 1995)

B
p g ω m F
p g ω m R

= ln
( ( ) | = )
( ( ) | = )FR

Y i

Y i (8)

where p g ω m( ( ) | )Y i is the evidence for the setup m. A relative log-
evidence BFR > 3 is taken as strong evidence for the forward (plausible)
setup F over the implausible (reverse) setup.

3. Results

In the first part of analyses we repeated the analysis of (Jones et al.,
2007) and modelled somatosensory evoked responses during a tactile
stimulation paradigm. For these analyses we used two models: the model
of (Jones et al., 2007) and a modified (simplified) version, which we call
the symmetric model, see below. Our goal was to establish the equivalence
between the original and simplified variants. This equivalence was
established quantitatively by simulating responses of both models to the
same input and ensuring that they generate the same evoked responses.

Both models were integrated 100 times and a simulated evoked
response was obtained by averaging over trials as in (Jones et al.,
2007). Fig. 3 (top row) shows the evoked response of the original model
(left) and the symmetric model (right). The correlation coefficient
between the two time series was r=0.9343, p < 0.001, suggesting that
the symmetric model was able to reproduce the evoked response to
tactile stimulation as in (Jones et al., 2007). Crucially, the M25, M35,
M50, M70, M100 and M135 peaks observed experimentally were all
present in the simulated signal. Note that the response magnitude of
the models has been multiplied by a scaling factor of 3000 to match the
magnitude of the MEG response.

Fig. 3 (bottom row) shows the contributions to the net current
dipole (CD) from each cortical layer. L5 PNs contribute more to the net
CD than the L2 PNs, because of their longer apical dendrites.
Furthermore, specific peaks in the net evoked response can be assigned
to activity in specific cell types. For instance, the M25 peak seems to be
primarily induced by activity in the L2 cells, while the large M70 peak
can be attributed to activity in L5.

A more detailed picture emerges by studying the responses of
specific dendritic compartments. Fig. 4 (top row) shows the contribu-

tions of apical and basal compartments to the CD of L2 and L5 PNs.
The somatic potentials of both cells are plotted in the bottom row to
illustrate the relationship between spikes and current flow. This is
useful for characterising the origin of the peaks in the evoked response
from the symmetric model and is very similar to the corresponding
results that were obtained using the original model; see Jones et al.
(2007).

The above analysis establishes the functional equivalence of the
symmetric model (used below to simulate oscillatory responses) and
the original Jones et al. model.

In the second part of our analyses, we asked whether the symmetric
model can produce alpha activity. This investigation was motivated by
the original (Jones et al., 2007) model which had been shown to
produce alpha oscillations when a 10 Hz thalamic input was added to
baseline noise (Jones et al., 2009). We reproduced the results of (Jones
et al., 2009) using the symmetric model and obtained the simulated
responses shown in the left panel of Fig. 5 (dashed lines). These
responses were elicited by perturbing the local circuitry with ongoing
rhythmic FF drive, where each burst consisted of 2 spikes with an inter-
spike interval of 10 ms – and an inter-burst interval of (on average)
100 ms. We then focused on responses to thalamic input to the
superficial and deep pyramidal cells. Fig. 5 shows the power spectra
for both populations. These are the spectra generated by current
flowing up and down the apical dendrites of the PNs.

Finally, we used the data from V1 during optogenetic stimulation of
the basal forebrain (reported in the right panel of Fig. 5) to invert the
neural mass model of Fig. 1 that is driven by endogenous noise. The
resulting model fits are shown as solid lines in Fig. 5 (left panels).
Interestingly, the 10 Hz peak evident in the simulated data is also
captured in the predicted spectral responses. This reflects the fact that
thalamic input to the neural mass model contains a specific 10 Hz peak.
Following (Jones et al., 2009) we included a parameterised endogenous
input to accommodate both the thalamic 10 Hz drive and baseline
noise. In summary, we used responses generated by detailed dendritic
morphologies to estimate the parameters of a mean field model, so that
it could reproduce these spectral responses (cf. Table 3). We now
consider the analysis of empirical data, using this mean field (neural
mass) model.

3.1. Dynamic causal modelling of empirical data

In the final part of our analyses, we focused on real LFP data from
(Pinto et al., 2013). These included power spectra obtained from the
primary visual cortex during optogenetic stimulation of the basal
forebrain. This allowed us to test two predictions from the DCM model
of Fig. 1: whether it produces responses recorded from different
cortical layers – and the increase in the excitability or gain of super-
ficial pyramidal cells, due to cholinergic effects, as suggested by
predictive coding.

A crucial (empirical) validation of the neural mass model rests on
showing that the distinction between superficial and deep populations
– based on their physiology and connectivity but not their spatial
deployment – is valid in light of spatially resolved laminar data.
Therefore, we compared a forward (F) model, in which superficial/
deep populations are correctly assigned to supragranular/infragranular
measurements, with a reverse (R) model, in which the assignment of
modelled populations to their corresponding measurements has been
switched.

Additionally, the optogenetic manipulation allowed us to address
the face validity of the model using the natural (Laser OFF) and
stimulated conditions (Laser ON); this allowed us to ask whether the
model parameters change between conditions as we expected them to.
In particular, cholinergic input to the cortex is known to disynaptically
disinhibit layer 2/3 pyramidal cells through activation of layer 1 and
vasoactive intestinal peptide-expressing inhibitory interneurons (Alitto
and Dan, 2012; Fu et al., 2014; Lee et al., 2013; Letzkus et al., 2011; Pi
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et al., 2013). These are key tests for the validity of the neural mass
model: whether it successfully distinguishes between the activities of
superficial and deep pyramidal cells, and whether changes in con-
nectivity model estimates capture the effects of cholinergic manipula-
tion.

To address these questions, we inverted the neural mass model
using the empirical LFP responses acquired from different depths (with
and without optogenetic stimulation). For this analysis, we selected
LFP channels 2 and 15 (second channels from the top and bottom of
the array) from supragranular and infragranular layers respectively.
The results of this inversion are shown in the right panels Fig. 5. To
demonstrate that the model can successfully reproduce distinct deep
vs. superficial activities, we used Bayesian model comparison. This
allowed us to assess the quality of plausible and implausible spatial
arrangements of the deep and superficial pyramidal cells and evaluate
relative log-evidences as described above: equation (8).

Table 4 shows the results of Bayesian model comparison in terms of
relative log-evidence, evaluated independently under both conditions
(with and without optogenetic activation of the basal forebrain) when
we swapped superficial and deep recordings around; i.e., fit the model
with a plausible (forward) and implausible (reverse) laminar assign-
ment of superficial and deep neuronal populations.

As noted above, a relative log-evidence (i.e., log Bayes factor) of
three or more is taken as strong evidence for one model over another
(Kass and Raftery, 1995). Bayesian model comparison suggests that the

neural mass model distinguishes between responses originating from
different layers, with substantially greater evidence for the plausible
assignment of superficial pyramidal cells to supragranular layers. This
was true with and without optogenetic manipulation. To ensure this
result generalised over electrode pairs, we repeated the analysis for
different deep and superficial channels and obtained the same result for
every combination tested (results not reported). Finally, a quantitative
comparison of the parameter estimates on and off stimulation sug-
gested that cholinergic input enhances superficial relative to deep layer
sensitivity (Fig. 6).

In the preceding analyses, we inverted both conditions separately
(ON and OFF optogenetic stimulation) and compared models with a
correct and incorrect laminar architecture. Our aim was to see if the
model with the correct laminar disposition was selected by a Bayesian
model comparison. In the final analysis, we illustrate the application of
the neural mass model to answer questions about condition specific
effects. In this instance, we model both conditions with the same
(average) connectivity and test hypotheses about the condition specific
effects by allowing them to operate on a subset of connections. This
enables us to identify the precise changes in connectivity seen
anecdotally in the condition specific versions.

In brief, the influence from superficial inhibitory populations on
deep pyramidal cells increased by 113%, while the excitatory activity
from superficial pyramidal cells increased by 400% during cholinergic
stimulation. This was accompanied by a disinhibition of superficial

Total activity

Laminar activity

SymmetricOriginal

M25

M35

M70

M70

M100 M135

M25

Fig. 3. (Top) Simulated evoked responses of (left) the model used in Jones et al. (2007); (right) its symmetric variant. (Bottom) Contributions to the net dipole per layer for the same
models; see Jones et al. (2007) for the corresponding results for the original model.
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pyramidal cells (decrease in self inhibition) by 32%. These self
connections stand in for recurrent connections via inhibitory inter-
neurons (e.g., parvalbumin positive Basket cells).

This is consistent with the emerging picture about the effects of
cholinergic input and the experimentally observed facilitation of
superficial-layer activity that could also be due to increased direct

Fig. 4. Activity of both PNs in the symmetric model. The top row shows the current dipoles of L2 and L5 neurons. The bottom row shows voltage responses; see Jones et al. (2007) for
the corresponding results under the original (compartmental) model.

Fig. 5. Left panel: Cross spectral density data from superficial and deep populations of the compartmental (Jones et al., 2007) model and model fits using its neural mass homologue.
Model predictions are shown with solid lines and simulated data with dashed lines. Note the peaked responses at 10 Hz that are reminiscent of spiking burst input that are also captured
by the mean field model responses. Right panel: Exemplar spectral responses and model fits obtained during the visual perception paradigm of (Pinto et al. 2013) from pairs of
superficial and deep contacts across the thin laminar probe. These used bipolar data from V1 during optogenetic stimulation of the basal forebrain. Solid and dashed lines represent
model fits and data. Red and green curves correspond to the real and imaginary parts of the cross spectral density respectively.
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drive from layer 4 neurons (Douglas and Martin, 2004; Pluta et al.,
2015), since feedforward thalamic input is enhanced by acetylcholine
(Disney et al., 2007; Metherate and Ashe, 1993). These provisional
results suggest that the segregation of ascending and descending
streams of information might become less pronounced during optoge-
netic manipulation of cholinergic neurons, as a result of gain modula-
tion of superficial principal cells through polysynaptic connections: in
future work, we will investigate this hypothesis further using Bayesian
model comparison: see also (Moran et al., 2013).

4. Discussion

We have introduced a neural mass model that can explain data
obtained with thin laminar probes penetrating the cortex and sampling
different cortical layers. We have tried to establish the construct
validity of this neural mass model – in relation to more detailed
compartmental models – by showing that the response profiles are
formally equivalent in terms of evoked responses. We then addressed
the face validity of the ensuing DCM by showing that it could identify
the correct assignment of superficial pyramidal cells to supragranular

layers and deep pyramidal cells to infragranular layers; irrespective of
whether cholinergic (optogenetic) stimulation was present or absent.

We used data obtained during optogenetic activation of the basal
forebrain in a visual perception paradigm to provide proof of principle
that laminar specific recordings can be inverted using neural mass
models – and that models of microscopic (invasive) data can inform
hypotheses about interactions at a mesoscopic scale. A quantitative
comparison of the parameter estimates suggests that cholinergic input
enhances superficial activity, effectively boosting information ascend-
ing the cortical hierarchy. We hope to use the model introduced in this
(technical) paper to pursue the (microscopic) functional anatomy of
cholinergic modulation, using Bayesian model comparison in future
work.

This model has been implemented as part of the DCM toolbox in
the SPM freeware. The approach presented here can be used to address
questions regarding laminar cortical microcircuitry that have so far
remained inaccessible. In particular, we this model can be used to test
(i) hypotheses about the function and structure of different neuronal
populations at various depths of canonical microcircuits; (ii) functional
architectures following from the predictive coding hypothesis. In the
following, we consider these avenues for future research:

First, the neural mass model above may help us to better under-
stand cortical anatomy and information processing: it enables one to
test hypotheses about the function and structure of different neuronal
populations in various cortical layers; e.g., evaluate differences in
neural densities and cortical lamination (Balaram and Kaas, 2014;
Slomianka et al., 2011). This can be achieved by considering differ-
ences in the connectivity parameters for the deep and superficial
populations (parameters aij in Table 3). By extending the model to a
neural field similarly to (Pinotsis et al., 2012) one can also characterize
the topography of connections in cortical hierarchies (Gattass et al.,
2005).

Table 4
Log-evidence of neural models. This table reports the relative Log-evidence for the
forward (plausible) and reverse (implausible) model, using empirical data recorded
during the Laser On (optogenetics stimulation) and Laser Off (no cholinergic stimula-
tion) conditions.

Condition Laser ON Laser OFF

Forward Log-evidence
p g ω m Flog ( ( ) | = )Y i 1498 2334

Reverse Log-evidence
p g ω m Rlog ( ( ) | = )Y i 1394 2201
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Fig. 6. Left panel: Cross spectral density data responses and model fits obtained during the visual perception paradigm of (Pinto et al. 2013) from pairs of superficial and deep contacts
across the thin laminar probe for Laser ON and Laser OFF conditions. This figure follows the format of the Right Panel of Fig. 5. Green and yellow curves correspond to imaginary parts
of the cross spectral density for Laser OFF and Laser ON conditions respectively Right panel: Conditional parameter estimates and their trial specific changes: maximum a posteriori
estimates of changes in coupling obtained after inverting data acquired with and without cholinergic stimulation are shown by the connections in question (using the same format as the
insert in Fig. 1). Note the disinhibition of the superficial pyramidal cell population due to a decrease of inhibitory connectivity and the increase of the corresponding inhibitory influence
on deep pyramidal cell populations. Of the ten intrinsic connections (see Fig. 1) we model condition specific changes in three (solid lines). The remaining connections were assumed to
have the same values under both conditions, with prior expectations based upon the analysis of the compartmental model (dotted lines).
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Second, our model can be used to evaluate the evidence for – and
test functional architectures following from the predictive coding
hypothesis (Friston and Kiebel, 2009; Friston et al., 2015; Rao and
Ballard, 1999). In particular, one can address open questions regarding
a direct assignment of prediction error activity to a specific cortical
layer. Also, in the particular context of optogenetic activation studies,
as in the study by (Pinto et al., 2013) considered here, a detailed
analysis of model parameters could also allow us to understand cortical
circuit-level mechanisms of cholinergic modulation.

The key components of predictive coding – predictions, prediction
errors, and precision – are often empirically studied in paradigms
manipulating sensory expectation (Auksztulewicz and Friston, 2015) or
attention (Feldman and Friston, 2010). Laminar characteristics of
mismatch responses (Moran et al., 2013) and attentional effects
(Auksztulewicz and Friston, 2015; Brown and Friston, 2012) have so
far been inferred using DCM and non-invasively recorded data
(FitzGerald et al., 2015). These studies have been supported by direct
laminar recordings during attention tasks that yielded results consis-
tent with the dissociation between superficial and deep layers; see e.g.
(Buffalo et al., 2011). However, studies that exploit laminar recordings
to consider different paradigms like mismatch responses are less
conclusive (Fishman and Steinschneider, 2012; Natan et al., 2015),
with similar evoked responses to sensory deviants in both supragra-
nular and infragranular layers.

Using our model for the analysis of data from the sorts of studies
referred to above, one can address questions about predictions,
predictions errors and precision from a novel perspective: instead of
analysing non-invasive or spatially unresolved data, the model can be
used to exploit responses acquired at different cortical depths and
study laminar-specific effects of cortical excitability that are crucial for
understanding the balance between ascending and descending streams
of information in the cortex (Bastos et al., 2012; Friston, 2010; Rao and
Ballard, 1999). In summary, the new model presented may offer
insights regarding the effects of expectation, attention and cholinergic
neuromodulation.

Successfully addressing the questions described above rests upon
validating models of the sort presented here. This rests upon techno-
logical advances in the construction of laminar probes and microelec-
trodes and developments in compartmental modelling. Modelling data
recorded from penetrating microelectrodes promises a more direct
window into the function of cortical microcircuits than that derived
from recordings at the cortical surface (Bastos et al., 2015).
Furthermore, building detailed compartmental and mean field models
that capture important cortical computations and network biophysics
is crucial for the success of the approach presented above. Starting with
a new compartmental model one would then construct its mean field
homologue and then validate it using the Bayesian procedure sum-
marised in Fig. 2. This is the procedure we have applied for the case of
the Jones et al. model.

More generally, a fuller understanding of cortical function is likely
to depend upon successful characterization of the roles played by
neurons in different cortical layers, and dynamic causal modelling may
have the potential to further this aim. In future work, we will address
these questions and test whether the laminar topography of current
source density can be explained by interactions of superficial and deep
PNs, by modelling spatially distributed lead fields, distinct spectral
profiles and causal influences on network dynamics.
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