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Abstract 

Memories are assumed to be represented by groups of co-activated neurons, called neural 

ensembles. Describing ensembles is a challenge: complexity of the underlying micro-

circuitry is immense. Current approaches use a piecemeal fashion, focusing on single 

neurons and employing local measures like pairwise correlations.  We introduce an 

alternative approach that identifies ensembles and describes the effective connectivity 

between them in a holistic fashion. It also links the oscillatory frequencies observed in 

ensembles with the spatial scales at which activity is expressed.  Using unsupervised 

learning, biophysical modeling and graph theory, we analyze multi-electrode LFPs from 

frontal cortex during a spatial delayed response task. We find distinct ensembles for 

different cues and more parsimonious connectivity for cues on the horizontal axis, which 

may explain the oblique effect in psychophysics. Our approach paves the way for 

biophysical models with learned parameters that can guide future Brain Computer 

Interface development. 

 

 

Introduction 

Memories are assumed to be represented by groups of co-activated neurons, called neural 

ensembles. How to identify and describe neural ensembles has long been a central issue in 

neuroscience (Hebb, 1949).  It is not an easy task: one has to deal with an immensely 

complex system where billions of neurons are linked to each other through trillions of 

connections. A further complication is that neurons can have multiple functions, especially 

in higher level cortex (Fusi et al., 2016; Rigotti et al., 2013). Thus, the same neurons may 

participate in many different ensembles and, conversely, different ensembles might share 

some of the same neurons. Clearly, the structure of these ensembles cannot be described in 

terms of anatomical connectivity only: if anatomical connectivity was all there was to 

ensembles, then activating one would activate others leading to a jumble of ensembles. 

Further, anatomy alone seems to preclude a hallmark of higher cognition: flexibility.  

Ensembles should be able to break apart and re-form from moment to moment without 

changing the underlying anatomy.  Finally, ensembles are functional units and thus defining 

them based on anatomy alone is not possible in a behavioral context.  
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Previous work has attempted to identify neural ensembles using electrophysiological 

measures (Brown et al., 1998; Diba and Buzsáki, 2007; Johnson and Redish, 2007) and 

more recently optogenetics and immediate early gene (IEG) labelling (Ryan et al., 2015).  

However, due to slow dynamics, these approaches can only provide limited insights into 

fast activity and neural oscillations that are thought to play a key role in memory function 

and ensemble formation (Buschman et al., 2012; Fries et al., 2007; Fusi et al., 2016; 

Haegens et al., 2011; Miller and Buschman, 2013).  Thus far, electrophysiology studies have 

only considered neural ensembles in a piecemeal fashion, that is, using pairwise 

correlations. They have focused on single neurons and/or functional connectivity between 

pairs of neurons and/or recording sites; the existence of an ensemble is thus inferred 

indirectly (Buschman et al., 2012; Gray, 1999; Modi et al., 2014).   

 

Here, we suggest an alternative approach to identifying ensembles based on effective 

connectivity. We describe ensemble properties using neurophysiological data combined 

with ideas from biophysical modelling, unsupervised learning and complex systems theory.  

We analysed multiple-electrode recordings obtained during a classic test of working 

memory: spatial delayed response (Funahashi et al., 1990; Fuster et al., 1985). We 

examined LFPs between simultaneously recorded electrodes in dorsolateral prefrontal 

cortex (PFC), supplementary eye field (SEF), and frontal eye fields (FEF).  Our goal was to 

identify neural ensembles carrying spatial information in a holistic, not piecemeal, fashion 

and describe the connections that form them.   

 

We used brain decoding algorithms, graph theory and spectral analysis to understand the 

structure of neural ensembles that give rise to observed patterns of LFP responses.  This 

allowed us to treat neural ensembles as complex networks and to describe properties of the 

underlying connectivity.  We obtained the estimates of effective connectivity underlying the 

ensembles by training a biophysical neural field model as a particular type of deep neural 

network called an auto-encoder. We found that we could describe ensemble properties and 

use them to decode the spatial location held in working memory using only a few 

parameters, which makes this approach computationally tractable. Further, it also revealed 
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ensemble properties that cannot be observed using pairwise correlations.  For example, 

using topological measures, we found that network connectivity in the spatial delayed 

response task was different for different cued locations.  Cues on the horizontal axis had 

shorter characteristic path lengths (the least number of steps between different network 

nodes) than others.  This could explain the oblique effect (psychophysics performance is 

better for stimuli on than off the horizontal/vertical axes).  We also found connectivity and 

corresponding oscillatory dynamics across different spatial scales and different frequencies 

within cortical areas, which gives a new dimension to cortical network interactions. 

 

Materials and Methods 

Experimental Data and Recording Setup 

Two adult male monkeys (monkey C, Macaca fascicularis, 9kg; monkey J, Macaca mulatta, 

11kg) were handled in accordance with National Institutes of Health guidelines and the 

Massachusetts Institute of Technology Committee on Animal Care.  They were trained to 

perform an oculomotor spatial delayed response task.  This task required the monkeys to 

hold the location of one of six randomly chosen visual targets (at angles of 0, 60, 120, 180, 

240 and 300 degrees, 12.5-degree eccentricity) in memory over a brief (750 ms) delay 

period and then saccade to the remembered location.  If a saccade was made to the cued 

location, the target was presented with a green highlight and a water reward was delivered 

otherwise the target was presented with a red highlight and reward was withheld. Three 

32-electrode chronic arrays were implanted unilaterally in PFC, SEF and FEF in each 

monkey (Figure 1A).  Each array consisted of a 2 x 2 mm square grid, where the spacing 

between electrodes was 400 um.  The implant channels were determined prior to surgery 

using structural magnetic resonance imaging and anatomical atlases. From each electrode, 

we acquired both threshold-crossing spike waveforms and local field potentials (extracted 

with a fourth order Butterworth low-pass filter with a cut-off frequency of 500Hz, and 

recorded at 1 kHz) using a multichannel data acquisition system (Cerebus, Blackrock 

Microsystems). We analyzed local field potentials (LFPs) during the delay period when 

monkeys held the cued locations in memory.  We assumed that each electrode sampled LFP 

activity from a neural population in its proximity and modelled each brain area as a cortical 
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area sampled at 32SN =  locations.  LFP activity was modelled by a mathematical model of 

wave dynamics known as a neural field. Electrodes were numbered in a monotonic fashion; 

neighbouring electrodes had adjacent numbers.  

 

 

 

 

 
 

 

 
Figure 1. A. Recording setup. Three 32-electrode chronic microelectrode arrays were implanted in 

dorsolateral prefrontal cortex (PFC), supplementary eye field (SEF), and frontal eye field (FEF) in each 

monkey.  Each array consisted of a 2 x 2 mm square grid, where the spacing between electrodes was 400 um. 

Ps: principal sulcus; As: arcuate sulcus. One monkey received implants in the left hemisphere and the other in 

the right hemisphere. These were located near Ps and As in both monkeys. B. Neural field model and 

connections. Neural fields provided a quantitative way to describe each ensemble’s network interactions and 

patterns of activity across simultaneously recorded sites. The same model can describe different ensembles. 

Each electrode occupies a position on a cortical manifold (line) W parameterized by the variable υ   and is 

connected to all other electrodes with connections whose strength follows a Gaussian profile (coloured solid 

and dashed lines), see also Equation (4).  
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Neural ensembles for memory maintenance 

Using a neural field model allowed us to use patterns of LFP activity across recording sites 

to infer the underlying effective connectivity for each of the cued locations.  Neural fields 

provided a quantitative way to describe each ensemble’s network interactions and make 

predictions about patterns of activity that correspond to different attractor states, see 

Figure 1B.   Each attractor state can be considered to reflect an ensemble or engram (Liu et 

al., 2012). This is also related to chimera states and metastability (Martens et al., 2016). Our 

goal was to obtain learned connectivity parameters that can describe the structure of 

neural ensembles activated while remembering different stimuli. The spacing between 

electrodes was larger (400um) than what is thought to be the origin of the LFP signal 

(250um, see Katzner et al., 2009). Using brain decoding algorithms and graph theoretic 

measures (centrality) we quantified the separability of neural ensembles in SEF and FEF 

(see below). However, volume conduction could in principle introduce confounds. These 

can be accommodated by using the effective connectivity parameters obtained here as 

priors to fit a more complicated biophysical model that accounts for volume conduction 

effects (Pinotsis et al., 2014). As it is common in computational neuroscience and modern 

machine learning approaches, we describe neural activity using a one dimensional model. 

In this model, space is defined along the line traced out by the electrodes. This is similar to 

ring models (Ben-Yishai et al., 1997; Somers et al., 1995),  recurrent neural networks 

(Botvinick and Plaut, 2006; Sak et al., 2014; Shriki and Yellin, 2016) and deep convolutional 

neural networks (Krizhevsky et al., 2012). Also, one dimensional neural field models have 

proven very useful for explaining brain dynamics (Deco et al., 2008; Pinotsis et al., 2013; 

Robinson et al., 2014). 

 

The neural field model describes transient fluctuations of neural activity around baseline. 

These fluctuations are similar to spontaneous fluctuations in resting state networks that 

are often described by neural fields (Pinotsis et al., 2013), but at the micro-scale. Similar 

patterns at a much larger spatial scale have been obtained with fMRI, e.g. (Sporns, 2013). In 

the classical neural field approach, current fluxes are considered as continuous processes 

on the cortical manifold described via partial differential or integro-differential equations 
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depending on space and time (Jirsa and Haken, 1996; Coombes and Owen, 2004; 

Breakspear et al., 2006; Breakspear and Jirsa, 2007; Bressloff, 2010; Jirsa et al., 2010; 

Grindrod and Pinotsis, 2011; Pinotsis et al., 2012a). We here combine neural fields with 

unsupervised learning to obtain the cortical connectivity underlying interactions at the 

microscale (within a neural ensemble). This is different from earlier work in the biophysical 

modeling literature where the connectivity weights are usually chosen ad hoc so that model 

predictions resemble observed activity, e.g. large scale resting state activity measured with 

fMRI.  

 

 

 

Deep neural fields for memory representations  

We assumed that each of the three areas we recorded from (SEF, FEF and PFC) comprised a 

large number of neural populations (indexed by 1,..,i N= ,N=32), that was equal to the 

number of electrodes we sampled from. These populations were sensitive to different cued 

locations (values of the visual angleθ ). Each of these populations can be thought of as 

centered around a point υ . They also interact with other populations located at points ψ , 

via a connectivity function ( ), , ,K t tυ ψ ′ . Our neural field model describes these interactions 

and its state represents cue maintenance. 

  

Mathematically, we obtained the attractor state by perturbing around baseline. Attractor 

states are solutions of neural fields together with spatially and temporally periodic patterns 

beyond Turing instabilities; for example, localised regions of activity such as bumps and 

travelling waves, e.g. (Pinto and Ermentrout, 2001;Laing and Troy, 2003). Attractor states 

have been shown to describe patterns of neural activity observed during the memory delay 

(Hansel and Sompolinsky, 1998; Tsodyks and Sejnowski, 1995). We performed a linear 

stability analysis and expanded in a Taylor series with respect to the space variable. Then a 

simple reformulation of the neural field as a Gaussian model resulted in a model of the sort 

considered in deep neural networks like variational auto-encoders:  
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k k
k

Y G z R= +∑                                (1) 

 

where  the constant R will be defined below (see Equation 9) and kG are the derivatives of  

the vector-valued function of perturbations X̂ of depolarizations 
1( , )

( , )
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x t
X t

x t
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υ

υ

 
 =  
  

  around 

baseline activity 0
ˆ( , ) ( ) ( , )X t X X tυ υ υ= + , with respect to the variable Wυ∈  that 

parameterizes the cortical manifold W occupied by the neural field,  
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=
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                             (2) 

 

 

The functions kG  are the principal axes. kz are the latent variables, which we call the 

connectivity components. These functions are defined by the following equations 
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k Wk

z df B K d

z B K d

υ ψ υ ψ

υ ψ υ ψ υ ψ

−

−

=

= −

∫
∫

                                                                                             (3) 

 

 

Neural fields predict average firing rate or depolarization. To obtain Equation (1), we start 

from an equation  describing the general mathematical form of neural fields 

 

 

*X BX K f X S U= − + +

                                                                                                        (4) 

 

 

where   * denotes the integral 
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( )* , , , ( , )K Q K t t Q t d dtυ ψ ψ ψ′ ′ ′= ⋅∫∫                (5) 
 
 

ψ  is the location where afferent input originates from and B is a matrix encoding the rate-

constants of postsynaptic filtering.  

 

Equation (4) says that the rate of change of depolarization X  of a neural population 

occupying a location υ  comprises three terms; the first is a simple decay, the second is due 

to presynaptic inputs from other parts of the cortical manifold and the final part is due to 

external inputs U , where : n nS →   maps exogenous inputs to depolarization. Also, 

: ,n nf → 

1( )
1 exp( ( ))

f Q
Qγ η

=
+ −

 is a vector-valued transfer function that describes the 

mapping from postsynaptic potentials to average firing rate (Lipschitz continuous to 

guarantee local existence) of the population around point . Here,  γ  is synaptic gain 

and η   is the postsynaptic potential at which the half of the maximum firing rate is 

achieved, see e.g. (Pinotsis et al., 2012b) for more details.  

 

In the literature, the connectivity matrix ( ), , ,K t tυ ψ ′  often exhibits translational invariance, 

that is ( ) ( ), , , , ,K t t K t tυ ψ υ ψ′ ′= − . Here, we do not assume translational invariance. In 

other studies where there is no invariance constraint, entries of the connectivity matrix are 

chosen by hand. The novelty of our approach is that we obtained cue-specific entries for 

this matrix using a Bayesian algorithm.  This can be thought of as a probabilistic analogue 

of the classical principal component analysis (PCA): obtaining the connectivity components 

amounts to obtaining principal components. This also maximizes the mutual information 

between the cue and its representation.  

 

 

Obtaining efficient cue representations using neural fields 

A common mathematical simplification in fixed point networks is the assumption of 

Wυ∈
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stationarity. This eschews the need for explicit numerical integration. It also means that we 

can drop the explicit time dependence from the equations and functions, e.g. write ( ),K υ ψ  

instead of ( ), , ,K t tυ ψ ′ . In our analyses below, we consider a single activity variable 

1( , ) ( , )X t x tυ υ=  following a usual assumption sometimes known as a stable attractor 

(Brunel and Wang, 2001). This means that the variable ( , )X tυ  comprises both excitation 

and inhibition. This assumption does not exclude complex dynamics resulting from the 

interaction of excitatory and inhibitory populations: this was demonstrated by Brunel and 

Wang who considered mean fields of populations of spiking neurons based on the 

integrate-and-fire neuronal model.  It is the mean field of the population activity that 

demonstrates the attractor state, which is the level of description chosen here, see also 

(Pinotsis et al., 2013). Brunel and Wang showed that noise induced in a population of 

spiking neurons will change the spiking dynamics, but the mean field will have a particular 

constant value as long as all other characteristics stay the same and this noise is small. 

These attractor states can be thought of as mediating the flexible formation of neural 

assemblies associated with different inputs or stimuli. This is not a new idea; attractor 

states are well known to mediate persistent activity in working memory and similar tasks, 

see e.g. (Wei et al., 2012). Under the above assumptions, it is straightforward to rewrite 

Equation (4) in the form of a Taylor expansion 

 

 

0 0 1 1 2 2
ˆ ... n nX z G z G z G z G≈ + + + +                                                (6) 

 

 

where we linearized 0( , ) ( , )f X t df X tυ υ≈ . This result was obtained by expanding with 

respect to the space variable υ . In the following, we adopted a probabilistic framework. We 

assumed that cortical activity ˆ ( , )X t Xυ ∈   was sampled from a random process X . This 

describes activity generated by the cue maintenance. It also means that different trials 

ˆ , 1,...lX l S=  correspond to different realizations of the process X , ˆ lX X∈  . Adding 

Gaussian noise ε  with precision 2 21/s sr s= , we obtained the following probabilistic model  
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0 0 1 1 2 2
2

ˆ ...

(0, )
n n

s

X z G z G z G z G
s I

ε

ε

= + + + + +



                                                                                   (7)  

 

 

We then assumed that  connectivity components were sampled from a normal distribution

(0, )Qz N I .  This ensured that they were uncorrelated. We also considered mean-centered 

activity  

 

 

ˆ

1 l

l

Y X m

m X
S

= −

= ∑
                               (8) 

 

 

We thus obtained Equation (1) where  

 

R m ε= +                                          (9) 

 

 

We then used a Restricted Maximum-Likelihood (ReML) algorithm to obtain Bayesian 

optimal values for the connectivity components kz  (Harville, 1977). This algorithm 

optimizes the objective function F   

 

 

2 2 2 11 ( ) ( ) ln ln co
2

T T
s s sF Y GZ r Y GZ s s Z Z nst−   = − − − + + ∆ + +    

                                            (10) 

 

where F is called Free Energy (Neal and Hinton, 1998) and  
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2

1

T
s

T

s I G G
Z G Y−

∆ = +

= ∆
                                            (11) 

 

The above expression of the Free Energy obtains from the sum  

 

log ( ) ( ) (0, )z Q KL QF E p Y z D Q z Y N I =   −   

                                                                          (12) 

 

under a Laplace assumption, where Q is the approximate posterior and after substituting 
2 1(0, ), ( , )Q sz I q Q z Z s −Ν ∆   and 2(0, )T

s PY GG s IΝ + , see also (Friston, 2008). Equation 

(12) is the objective function used in variational auto-encoders where the data is generated 

by a directed graphical model  ( )p Y z  and the encoder is learning an approximation q to 

the posterior ( )p z YΝ . 

 

In summary, we expressed a neural field model as a variational auto-encoder. This allowed 

us to project high dimensional data (electrophysiological time series) to low dimensional 

connectivity components z. We call a neural field model with parameters obtained by 

optimizing a  Free Energy cost function, a deep neural field model.  

 
 
 
 
 
 
Effective connectivity within a cortical area can be used for cue classification 
 
We used Naıv̈e Bayes and diagonal Linear Discriminant Analysis (LDA) to classify feature 

vectors comprising connectivity components (Witten et al., 2016). To classify a feature 

vector, diagonal LDA and Naıv̈e Bayes use a maximum likelihood decision rule  
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arg max log ( ) log ( )h p y p z y
θ

θ θ=  = + =  
                         (13) 

 

 

where h denotes the class (location or angle) and the first and second terms in the brackets 

are the class prior and the class conditional density respectively. Assuming a Gaussian form 

for the conditional density,  

 

 

( ) ( , )p z y N θ θθ µ= Σ
                          (14) 

 

 

results in a decision rule of the form 

 

 

arg min( ) ( ) logTh z zθ θ θ θθ
µ µ= − Σ − + Σ                         (15) 

 

 

Taking 2 2
1( ,..., )Ndiag ss ssθ θ θΣ =  yields Naıv̈e Bayes. Then, the class densities have diagonal 

covariance matrices and the decision rule is the sum of components from each sample 

vector  

 

 

( )2 2 2arg min / log
M

l l l l
l

h z ss ssθ θ θθ
µ= − +∑                         (16) 

 

 

If θΣ = Σ , the covariance matrix is "tied" across classes and the decision rule estimates a 

pooled covariance matrix. For independent features, the decision rule takes a rather simple 

form  
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( )2 2arg min /
M

l l l
l

h z ss
θ

µ= −∑                           (17) 

 

 

This is known as diagonal LDA.  

 

 

 

Obtaining the connectivity from its components  

We assumed a Gaussian connectivity profile for the connectivity ( , )K ψ υ  

 

 

( ) { }1
2 2( , ) 2 exp ( ) / 2K C Cψ υ p ψ υ ψ

−
= − − −                                  (18) 

 

 

where ψ and  C are the mean and standard deviation. These parameters can be readily 

obtained using the first three connectivity components 0 1,A A  and 2A 1 : 

 

 

 

1

0

2
0 2 01

0 0

A
A

A A AAC A A

ψ =ℜ

−
=ℜ

                                              (19) 

 

 

This follows standard results in the theory of linear inverse problems (Bertero et al., 1988) 

                                                 
1 ℜ denotes that we take the real part of the expression that follows it. 
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that occur in various branches of physics (Heinz, 2013; Mersmann, 1995). Below, we used a 

small number of connectivity components to obtain the weights, that is 0 1 2,  and A A A 2.  

 

 

Topological features of neural ensembles 

We used the connectivity matrices and graph theoretic measures to describe information 

flow within neural ensembles, cf. (Sporns, 2013). We first computed the characteristic path 

length 

 

 

,1 / ( 1)a a b
a b

L N L
≠

= − ∑                                             (20) 

 

 

We will see below that using this measure allowed us to quantify information transfer 

efficiency within neural ensembles.  

 

We also used betweenness centrality 

 

 

\

,
,

1 / ( 1)( 2) ab c
c

a b E ab
a b a c

KX N N
K∈

≠ ≠

= − − ∑                                           (21) 

 

 

where \ab cK  is the sum of shortest paths connecting electrodes a and b that do not cross 

electrode c and abK  is the sum of all shortest paths connecting electrodes a and b. This 

allowed us to characterize the degree of overlap between different neural ensembles (see 

below).  
                                                 
2  Our approach can be generalised to include different parameterizations for connectivity matrix (e.g. 
exponential or gamma functions) or numerically estimate each of the 1024 weights independently. 
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Results 

Identifying neural ensembles  

We first used the neural field model to characterise how different cued locations are 

represented in different cortical areas in a concise and holistic manner, in terms of a few 

parameters that describe microscale connectivity between recording sites within each area.  

The parameters that appear in the neural field model describe the dispersion and 

topography of neuronal connections that are likely to underlie observed patterns of LFPs 

across recording sites. To obtain them, we trained a neural field model using raw LFP time 

series and applied a PCA-type algorithm. This process yielded the principal components 

and axes. Mathematically, the latent variables in a linear model are the principal 

components. Here, the principal components describe the spatial information in the LFP 

data. That is, they describe the patterns of activity across recording sites. We focus on the 

principal components first. In the next section, we will consider another output of the PCA 

decomposition: the principal axes, which contain the temporal information. 

 

The spatial principal components are matrix-valued functions with dimensionality equal to

T SN xN , where 600TN =  is the number of trials. We call each entry in these matrix 

functions the component strength. This expresses the sum of all connectivity weights that 

target the neurons that contribute to the LFPs observed from each electrode.   The 

connectivity weights are parameters in the neural field model that describe the strength of 

the effective connections between the recording sites within each cortical area.  They 

describe how the signal is amplified or attenuated when it propagates between recording 

sites.   Large positive weights of connections targeting a certain electrode implies that large 

LFP responses would be expected from that recording site. These weights are the entries of 

the connectivity matrix K  that multiplies input signal from other electrodes (second term 

in Equation 4). These recording sites  also show high values of functional connectivity (see 

Supplemental Figure 1).  Because the principal components describe the effective 

connectivity between sites we call them connectivity components. 
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In each panel in Figures 2A-C, we plotted the across-trial averages of the first four 

connectivity components (blue, orange, yellow and magenta lines, respectively) for all three 

areas.  We will see in the next section that these correspond to the connectivity patterns 

that are expressed at four different spatial scales.  The different panels show connectivity 

components for the different cued locations.  In all these panels, the horizontal axis 

represents the electrode number and the vertical axis is the strength of the connectivity 

components.   
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Figure 2. A. Trial average estimates of FEF connectivity components. Connectivity components are matrix-

valued functions with dimensionality equal to T SN xN . These describe patterns of activity across recording 

sites and the connectivity underlying neural ensembles maintaining different cued locations. Red arrows and 

blue dashed lines indicate peaks of these components. These correspond to most activated electrodes and 

define neural ensembles. These ensembles are not due to between-trial variability; they reflect components 

that are consistently activated for a specific cued location. The value of the cue (angle) is shown in insets on 

the top left corner of each panel. B.-C. Connectivity components for SEF and PFC respectively. Order of cued 

locations follows that of Figure 2A. 

 

Red arrows and blue dashed lines indicate peaks of these components that correspond to 

the recording sites that are most strongly activated: we call these “peak” sites.  We suggest 

that these peak sites describe part of an ensemble for each cued location.  Because we took 

trial-averages of connectivity components, these ensembles are not due to between-trial 

variability; instead they reflect components that are consistently activated for that cued 

location.  

 

We then focused on the spatial structure of ensembles and asked whether they showed any 

traits of topographic clustering. In other words, that cues adjacent in the visual field induce 

responses that are also adjacent on the cortical surface (Vaina et al., 2014).  Our focus was 

not on optimizing clustering but on preserving the spatial order of recording sites in the 

connectivity components. This is crucial for comparing and contrasting results from 

different brain areas3. Traits of topographic clustering can be observed by revisiting the 

results of Figure 2. We saw above that large component strengths imply high levels of 

activation for the corresponding recording sites (peak sites).  To test for topographic 

clustering, we need to consider the connectivity component strengths that correspond not 

only to peak sites but also their neighbouring sites. To this end, the overall shape of the 

connectivity components can be quite informative: the FEF and SEF connectivity 

components have a regular shape that resembles waves (Figure 2A-B), while PFC 

                                                 
3 See section Between-area differences in topography and topology of ensemble connectivity below.This also 
justifies our choice not to use modularity maximization or similar algorithms for optimizing clustering. 
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components have only local (isolated) peaks (they lack the waves, Figure 2C).  Considering 

this together with the fact that large component strengths imply high levels of activation, 

we concluded that recording sites that are nearby to peak sites will show similar levels of 

activation as peak sites. This can be seen in the panels of Figure 2 as follows: connectivity 

component strengths that correspond to sites adjacent to peak sites, are depicted by 

coloured line segments that lie inside the red circles in panels 2A(i),(iv) and (vi) and 2B(i). 

Because these segments are smooth and (approximately) horizontal, sites adjacent to peak 

sites correspond to the same values of the component strength (depicted on the vertical 

axis) and therefore exhibit the same levels of activation as the peak sites. In other words, a 

continuous shape of the connectivity component strength implies a continuous activation 

profile as we move along electrodes placed on the x-axis in the panels of Figure 2.  All in all, 

the regular, wave-like form of the FEF (and to a lesser extent, SEF) connectivity components 

taken together with the fact that sites that are nearby on the cortex are also adjacent on the 

horizontal axes of the panels in Figure 2 imply that FEF (and to a lesser extent, SEF) 

responses will show traits of topographic clustering.  This could be explained by the 

stronger retinotopy in FEF (Funahashi et al., 1989). This can also be seen in the 

corresponding functional connectivity matrices that show traits of lattice or block structure 

(Supplemental Figure 1). 

 

To sum so far, we have looked at the organisation of neural activity induced by different 

cued locations within cortical areas. We used connectivity components to identify neural 

ensembles associated with these locations. This also allowed us to characterize clustering 

within the cortical area.  

 

 

Neural ensembles oscillate at theta, alpha and beta frequencies  

In the previous section, we focused on the principal components obtained after training the 

neural field model on LFP data using a PCA-type algorithm.  Next, we turn to principal axes. 

These contain temporal information (they are the only time-dependent terms in the linear 

Gaussian model). They predict the oscillatory profile of fluctuations around baseline. These 

fluctuations can be thought of as transient non Turing patterns (patterns that decay back to 
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baseline) whose Lyapunov exponents determine the frequencies observed in sampled LFP 

activity. 

 

To understand how the principal axes describe these fluctuations consider an analogy with 

the physical quantities of velocity and acceleration: velocity describes the distance over 

which a vehicle has moved in unit time. Then acceleration captures changes in velocity in 

unit time. This means that, for a vehicle moving at an arbitrary velocity, acceleration will 

vary faster than velocity over time because it is sensitive to changes in velocity. This means 

that it will operate at a finer temporal scale. Now, one could replace the word “temporal” 

with “spatial” and think of the second and third principal axes as velocity and acceleration 

over space instead of time: the first principal axis is a linear approximation to fluctuations 

around the mean and captures activity changes at the largest spatial scale. Then, the second 

is sensitive to changes of the first axis at a smaller scale, the third is sensitive to changes of 

the second at an even smaller scale and so on. Mathematically, they are the partial 

derivatives of neural activity with respect to the spatial parameter in the neural field model 

(this parameter describes the location of an electrode). Thus, each principal axis operates 

at a distinct spatial scale. This also means that the corresponding connectivity component 

is associated with a certain spatial scale. This follows simply from the usual 

correspondence between principal axes and principal components in common PCA. 

Principal axes and connectivity components are thus associated with a hierarchy of spatial 

scales: each scale being finer than the previous one.  

 

Principal axes revealed characteristic frequencies in the LFP activity induced by a particular 

cue (similar to the modes of a spring that is perturbed from its original position and then 

exhibits transient oscillations). Principal axes are matrix-valued functions of dimensionality 

TN xT , where T=720ms is the length of the raw LFP time series. We call each entry in these 

matrices the axis strength. This corresponds to an instantaneous scale factor with which the 

corresponding component strength must be multiplied to reconstruct the observed LFP. 

Taking across-trial averages of the first four principal axes for different cues and areas, we 

obtain the upper left panels of Figures 3-5.  
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Figure 3. Trial averages of FEF principal axes and corresponding power spectra. Upper left panels: The first 

axis is depicted with a thick blue line. Orange, yellow and magenta lines depict the second, third and fourth 

principal axes. Each of the six upper left panels corresponds to a different cued location. Upper right panels: 

Spectral power associated with the first axis in FEF for all six cued locations seems to be expressed in the 

theta range: the abscissa of the red dashed line in these panels corresponds to 6Hz (upper right panel). This is 

the power we expect to dominate at large spatial scales because the spectra associated with the first axis 

operate at the largest spatial scale. Each of the six upper right panels corresponds to a different cued location. 

Bottom panels: Power spectra associated with the second, third and fourth principal axes and for all cued 

locations. Since each higher order axis operates at a finer spatial scale than the previous one, these 

correspond to more localised responses. The bottom panels reveal local beta band activity (depicted with red 

arrows). In all panels in this figure order of cued locations follows that of Figure 2A. 
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Figure 4. Trial averages of SEF principal axes and power spectra following the format of Figure 3. Similarly to 

power spectra in FEF, SEF spectral power associated with the first mode is expressed in the theta range while 

spectra of higher order principal axes also include beta activity. Order of cued locations for each panel follows 

that of Figure 2A. 
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Figure 5. Trial averages of PFC principal axes and power spectra following the format of Figure 3. In contrast 

to the power spectra of figures 3 and 4 that exhibited global theta activity, theta activity in PFC appears to be 

localised: theta peaks appear only in the spectra of higher order axes and are absent in the spectra of the first 

axis. Order of cued locations for each panel follows that of Figure 2A. 

 

 

 

 

 

In the upper left panels, the first mode is depicted with a thick blue line. Orange, yellow and 

magenta lines depict the second, third and fourth modes. The power spectra associated 

with different cued locations and each of these modes are shown in the upper right and 

three bottom panels of Figures 3-5. The upper right panels of Figures 3 and 4 reveal that 

spectral power associated with the first mode in FEF and SEF seems to be expressed 
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primarily in the theta range: the abscissa of the red dashed line in these panels corresponds 

to 6Hz. This line corresponds to the peak frequency in the first mode power spectra. This is 

the power we expect to dominate at large spatial scales because the first mode spectra 

operate at the largest spatial scale. Also, alpha activity operates at the same scale.   In the 

bottom panels, we plotted the power spectra associated with the second, third and fourth 

modes for different cue locations. In FEF and SEF, we notice beta rhythms (bottom panels of 

Figures 3 and 4). Since each higher order mode operates at a finer spatial scale than the 

previous one, beta rhythms correspond to more localised responses.  In PFC spectra, theta 

peaks appear only in the higher order modes and are absent in the first mode (compare the 

upper right panel with the bottom panels of Figure 5). This means that theta responses in 

PFC are more localised than in the other two areas.  

 

To sum up, our approach allowed us to look at oscillatory dynamics across different spatial 

scales and different frequencies. Our approach also gives a new dimension to cortical 

interactions by linking functional connectivity in different frequency bands to the spatial 

scales that generate it. This link can be established through the use of connectivity 

components.  Each connectivity component expresses the functional connectivity between 

sites in one or more frequency bands. These are the bands in which characteristic 

frequencies appear in the corresponding principal axis. This follows from the usual 

correspondence between principal axes and connectivity components in PCA-type 

algorithms. Since the first and second FEF and SEF principal axes seem to be primarily 

expressed in the theta band (top right and bottom left panels of Figure 3), it follows that the 

first and second FEF and SEF connectivity components describe the connectivity in the 

theta band. In other words, FEF and SEF functional connectivity in the theta band results 

from interactions at the largest and second largest spatial scales. FEF functional 

connectivity matrices in the theta band for different cued locations are shown in the left 

panels of Figure 6. Here, different matrices depict functional connectivity of different neural 

ensembles. We also looked at functional connectivity in the beta band. This is described by 

the second and higher order connectivity components (beta band activity seems prominent 

in second and higher order principal axes, bottom panels of Figure 3). This is shown in the 

right panels of Figure 6. We noticed that functional connectivity strengths in the beta band 
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are much weaker than in the theta band. Most electrode pairs have strengths around zero 

with a few electrode pairs with strength 0.05 (orange and yellow) or -0.05(dark blue).  

There is little synchronised beta activity between electrodes. This result confirmed our 

earlier conclusion that beta activity corresponds to more localised responses. 

 

 

 

 

 

 
Figure 6. FEF Functional Connectivity in the theta (left) and beta (right) bands for different cued locations. 

Notice the block structure that is reminiscent of retinotopy. Also, functional connectivity values for the beta 

band are relatively weak. This is because beta oscillations are localised. 

 

 

 

Neural ensembles for different cued locations do not overlap  

Earlier, we described spatial aspects of neural ensembles in terms of connectivity 

components. In other words, we showed that cue maintenance is sub-served by different 
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neural ensembles that are linked together via sets of connectivity patterns described by 

connectivity components.  However, we have not yet tested the degree to which differences 

among neural ensembles are expressed by these components. Can we distinguish between 

memorized cues based on connectivity components?  Earlier, we noted that many neurons 

may participate in multiple ensembles.  A large degree of overlap between ensembles might 

mean that the connectivity components between different recording sites could overlap for 

different ensembles to the extent that we could not detect any difference in connectivity for 

the different cues.  If, on the other hand, we can, it would help establish this approach as a 

means for detecting and describing ensembles.  Below, we show that we can. This process 

also allows us to determine whether only a few connectivity components might be 

sufficient for decoding ensemble activity.  From a computational perspective this is 

important, as having to use too many components would be computationally intractable.  

 

To formally test which and how many connectivity components can sufficiently characterise 

differences in connectivity for different remembered cues, we used their entries (the 32 

connectivity strengths) as classification features of different trials by cued location4. Recall 

that each strength expresses the sum of all connection weights that target the neurons that 

contribute to the LFPs from each of the 32 electrodes.  

 

For our classification analyses, we varied the total number of classification features used by 

including a different number of connectivity components: the total number of classification 

features was equal to 32 cxN  , where 1,..., 4cN = is the number of connectivity components 

considered. Letting 1cN = meant that we only used one connectivity component, while 

4cN = meant that we used all four shown in Figure 2 and so on.  The specific goals of this 

analysis were: 1. To determine whether we can predict the location of the cue on each trial; 

2. To appraise the predictive power (relative accuracy) of each of the connectivity 

                                                 
4 A difference in our approach in comparison to similar work is that we used model parameters (the 
connectivity components shown in Figure 2) for classification as opposed to raw time series or some data 
features like oscillatory power or average firing rate, as is often used in the literature (De Martino et al., 2008; 
Formisano et al., 2008; Misaki et al., 2010;Jia et al., 2017).    
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components (the curves of different colours shown in the panels of Figure 2) and their 

combinations. In other words, we wanted to test whether some connectivity components 

might be more informative than others and whether accuracy would increase when we 

considered different or more connectivity components for classification (varied cN ).  We 

used two different methods for classification, namely Naıv̈e Bayes and diagonal LDA. We 

used data from 600 trials (450 trials for training and 150 trials for testing. Naıv̈e Bayes and 

LDA are among the most commonly used classification algorithms.  

 

 

 

 

 
  
Figure 7. A. - C. Classification of different trials by cued location for each of the three brain areas. We varied 

the total number of classification features used by including a different number of connectivity components 
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and used Naı̈ve Bayes and diagonal LDA as classification algorithms. Either a single component or multiple 

components were used (see the numbers above each bar). We obtained significant results for both FEF and 

SEF. Maximum accuracy in FEF was obtained with the second connectivity component (A), while the first 

connectivity component yielded maximum accuracy in SEF (B). PFC accuracy estimated appear to be less 

satisfactory, however the second component resulted in above chance level accuracy (C). 

 

 

The results of our analysis are shown in Figure 7.   The blue dashed line depicts chance 

level (0.1667). Results obtained using diagonal LDA are shown on the left while accuracy 

obtained after applying Naıv̈e Bayes is shown on the right of each panel.  Using both 

methods, we tested whether seven different combinations of connectivity components can 

be used for classification of the trials by cue location.  Either a single component or multiple 

components were used (see the numbers above each bar, e.g. “1+2” means that we used the 

first and second components). Overall, both methods gave qualitatively similar results in 

terms of which features are informative for classification.  

 

We obtained significant results for both FEF and SEF. This revealed which spatial scales of 

LFP activity are most informative for distinguishing between ensembles corresponding to 

different cued locations. As we saw in the previous section, each connectivity component 

corresponds to a spatial scale: the component of highest accuracy corresponds to the most 

informative spatial scale. In FEF, the second connectivity component (orange curve in the 

panels of Figure 2A) appears to be most informative (Figure 7A, , cf. the third green-brown 

bar from the right in the top left panel with the number “2” on top) for distinguishing 

between various cues maintained in FEF.  This means that using a few components is 

sufficient for describing unique ensemble activity for different cues. It also means that we 

expect differences in FEF functional connectivity between neural ensembles to be 

expressed in a fine spatial scale.  

 

In SEF, the first connectivity component (blue curve in the panels of Figure 2B) yields 

accuracy well above chance, cf. the first (blue) bar from the left in the top right panel. Thus, 

in SEF, the most informative spatial scale is larger than in FEF.  This result fits nicely with 
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the greater degree of topographic organisation of FEF responses observed earlier.  A higher 

degree of topographic organisation of FEF in comparison to SEF responses would imply a 

more organised spatial structure that should be evident at a finer spatial scale.  

 

The differences in the most informative components in FEF and SEF described above imply  

differences in the way LFP electrodes capture information in different frequency bands in 

the two areas. Functional connectivity was not equally informative in both areas. We found 

that SEF functional connectivity was informative in more frequency bands than in FEF. It 

was more sensitive to differences between neural ensembles. We concluded this as follows: 

We computed pairwise differences in the SEF functional connectivity between neural 

ensembles in two different frequency ranges: 1. In a narrow range that only included the 

theta band (cf. Figure 7 left panels) 2. In a broader range that included both theta and alpha 

bands. We summed together all pairwise differences and obtained two matrices of 

functional connectivity differences between ensembles: one for the narrow and one for the 

broad frequency range. We then subtracted these two matrices from each other and 

thresholded the resulting matrix to focus on the top 50% of the entries5. The result is 

shown in the right panel of Figure 8.  We also computed the corresponding result for FEF 

(Figure 8, left panel). We noticed that including the alpha on top of the theta band when 

computing the functional connectivity in SEF (considering a broader frequency range) 

enhances the differences between ensembles: the right hand side matrix in Figure 8 

includes a larger number of non-zero entries in comparison to the left hand side matrix.  

This means that a larger number of SEF electrodes were sensitive to differences in 

functional connectivity between ensembles when we used both theta and alpha bands (to 

compute the functional connectivity) in comparison to FEF. Thus, a broader range of 

frequencies is informative for distinguishing between SEF ensembles (in comparison to 

FEF). This is because SEF activity in the theta and alpha frequency bands is most 

informative in the largest spatial scale. 

 

                                                 
5 Thresholding was done for visualisation purposes and we reached the same conclusion by just considering 
matrix norms without thresholding. 
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Figure 8. Changes in functional connectivity differences between ensembles when changing the frequency 

range.  We computed such differences for a narrow (theta band) range and a broader range that included both 

theta and alpha bands. We found that a larger number of electrodes were sensitive to changes in the 

differences in functional connectivity between ensembles when we included the alpha band in SEF in 

comparison to FEF. Thus, a broader range of frequencies is informative for distinguishing between SEF 

ensembles. 

 

Although most data features we used yielded results well above chance in both FEF and 

SEF, the maximum decoding accuracy obtained using FEF data features was higher than 

when using SEF features:  the accuracy achieved for the second FEF connectivity 

component (0.28) was higher than the accuracy achieved for the first SEF component 

(0.22), cf. the leftmost bar in the top right panel encircled (Figure7B). The bottom panel in 

Figure 7 shows the results for PFC.  The effects are weaker.  However, the second 

component (orange curve in the panels of Figure 2C) resulted in accuracy above chance 

level when used for classification with Naıv̈e Bayes; cf. the third bar from the right.  

 

Note that we did not consider the connectivity strengths of more than four components as 

classification features. Doing so, might have led to higher accuracies but we were not after 

the best accuracy; rather we wanted to test whether using only the first few connectivity 
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components might result in above chance classification accuracy.  If so, ensemble activity 

can be described by a biophysical, neural field model that is computationally tractable. Our 

results suggest that this is indeed the case: classification accuracy did not dramatically 

change when we varied the number of components between 1-4: the mean accuracy and its 

standard deviation after using all possible classification features based on these 

components and both methods for each area (the mean and standard deviation when we 

consider all accuracy estimates in the panels of Figure 7) was as follows: 0.162 0.07±  for 

FEF, 0.150 0.06±  for SEF and 0.117 0.05±  for PFC respectively. 

 

 

 

 

Between-area differences in topography and topology of ensemble connectivity 

As said, entries of the connectivity components shown in Figure 2 are sums of connectivity 

weights. To describe the connectivity patterns underlying ensemble activity we used a 

neural field. Each recording site (electrode) is connected to all other recording sites with 

connections whose strength follows a Gaussian profile.  However, neural fields (and similar 

biophysical models) are formulated in terms of connectivity weights, not their sums. 

Assuming a Gaussian connectivity profile, it is straightforward to obtain the connectivity 

weights from the components. The Gaussianity assumption is not restrictive; it is one of 

many possibilities, adopted here for the following three reasons: (i) Connectivity within the 

neural ensemble should aim to minimise metabolic cost. That is, it is metabolically 

advantageous to create connections between spatially adjacent network nodes (in the 

present case, electrodes) as opposed to connecting distant nodes together. This is the same 

fundamental constraint that has been shown to be crucial for explaining large scale 

connectivity between brain areas (Laughlin and Sejnowski, 2003; Sporns et al., 2004); (ii) It 

makes the model computationally tractable. The Gaussianity assumption reduces the 

problem of finding 32x32=1024 independent connectivity parameters (we are measuring 

activity from 32 electrodes) to finding only 64 parameters. (iii)  It provides a simple, 

intuitive explanation of the parameters of the connectivity matrix. Using these matrices we 

fitted our neural field model to the data and obtained the corresponding coefficients of 
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determination  2η  for all regions averaged over all stimuli and trials. This served as a 

validation of our model and the Gaussian assumption for the connectivity profile. The 

results are shown in Figure 9 (mean and 90% confidence intervals). Variance explained for 

both FEF and SEF were around 41%, while PFC showed a lower coefficient 2η , around 14%. 

This fits comfortably with the traits of topographic clustering in FEF and SEF observed 

earlier. Had we used a larger number of connectivity components (instead of only three) 

and determined each of the 1024 strengths independently, we might have got better model 

performance. However, our current focus was on obtaining a computationally tractable 

model that involves a small number of parameters. In future work, we will use these 

parameters as priors to fit Dynamic Causal Models (DCMs), see (Pinotsis et al., 2014, 2015).  

These models could explain more variance in the data due to the increased number of 

parameters and description of neurobiological properties of different brain areas. 

 

 
Figure 9. Percent variance explained after fitting our deep neural field model to data and averaging across all 

stimuli and trials. 

 

 

Obtaining the connectivity matrices allowed us to address questions regarding cortical 

interactions at the microscale. The connectivity matrices can provide holistic measures for 

describing the large scale topography and topology of the observed patterns of LFP activity.  

Topography pertains to the spatial properties of LFP activity, for example, in which area 

does it occur, how extended it might be and how it is placed with respect to activity induced 
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by different stimuli or in different tasks in the same or different brain areas.  Topology on 

the other hand, is a notion borrowed from graph theory: Recording sites are thought to 

occupy the nodes of a graph and to be related to each other through edges that correspond 

to some pairwise relation measure – usually functional connectivity. Then the topology of 

cortical activity pertains to non–spatial aspects of relations between responses at different  

recording sites in terms of graph theoretic measures, like characteristic path length and 

betweenness centrality (Freeman, 1977).  Each site can be connected to any other site in the 

ensemble in multiple ways that are called paths. One of them is the shortest path. Paths are 

defined for any pair of sites. Thus each site participates in many shortest paths.  

Characteristic path length refers to the mean shortest path length between all pairs of sites. 

Sites that participate in a larger number of shortest paths are more important for the 

robustness of the neural ensemble.  These important sites are also called “central” sites. 

The term central is reminiscent of graph theory.  Betweenness centrality is the ratio of 

shortest paths in which any given site participates over all shortest path lengths in the 

ensemble. First, we will discuss the topography of brain activity. 

 

A Gaussian connectivity profile implies that the connection strength between two recording 

sites is described by two parameters: mean and dispersion. Dispersion is a measure of how 

extended the corresponding ensemble activity is.  The Gaussian connectivity matrices for 

the three cortical areas and all cued locations are depicted in Supplemental Figure 2. We 

performed a two-way ANOVA using brain area and cued location (six possible cues) as 

factor on the mean and dispersion of the connectivity matrices for all areas and possible 

cues. For each ANOVA we looked at pairwise differences for each possible combination of 

two brain areas. 

 

For SEF vs PFC, we found a significant main effect of area on connectivity dispersion, F(1, 

888) =  100.27, p <0 .0001.  Recall that the connectivity dispersion characterizes the extent 

of connections linking together neural ensembles across the cortical surface. The fact that 

we obtained a significant result for this main effect signifies a larger spread of  effective 

connections in PFC in comparison to SEF.  We did not find a significant effect of cue on 

dispersion, F(5, 888) =  0.6, p =0.7 nor an interaction between cue and area factors F(5, 888) 
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=  1.67, p =0.15. Connectivity dispersion in PFC was larger (C = 0.08± 0.004) than SEF (C = 

0.14± 0.004), see Figure 10.  A larger dispersion of PFC connectivity in comparison to SEF 

connectivity also means that PFC activity is more extended on the cortical surface in 

comparison to SEF activity. This fits nicely with an earlier result in section Neural ensembles 

oscillate at theta, alpha and beta frequencies above. There we found that power in PFC is 

concentrated in lower frequencies than in SEF. Had we not known that earlier result, we 

would have been able to predict it using the result we just found. Given that activity in PFC 

is more extended than in SEF, and that more extended activity might correspond to more 

power at lower frequencies (Leopold et al., 2003), it follows immediately that responses in 

PFC will be more extended than in SEF. This is an illustration of how the neural field model 

introduced here can link together –seemingly disconnected- spatial and temporal aspects of 

LFP responses. 

 

 
 
Figure 10. Differences in the average values of the mean and dispersion of Gaussian connectivity for SEF vs 

PFC using two-way ANOVA. Interactions between area and cue factors revealed a significant main effect of 

area on connectivity dispersion, F(1, 888) =  100.27, p <0 .0001.   

 

 

We then turned to topological aspects of neuronal organization. We first calculated the 

characteristic path length for each of the three areas and all cues. The results are shown in 

Figure 11. In complex systems theory, paths in a network are considered as routes along 

which information propagates (Sporns, 2013). Characteristic path lengths are used to 
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characterise how efficient information transfer within the network might be. Here, the 

characteristic path length of an ensemble describes how many processing steps, i.e. steps 

between recording sites, are required to maintain a cue in memory. Our use of path lengths 

is similar to their use in functional connectivity studies: instead of correlations, we here 

consider the effective connectivity weights obtained after training the neural field model as 

an auto-encoder. All results using graph theoretic measures below exploit the connectivity 

weight matrices found earlier after taking averages of connectivity components across all 

trials. 

 

 In FEF, we found a smaller characteristic path length for the neural ensembles that 

maintained cued locations on the horizontal axis. This means that a smaller number of 

processing steps is required for transmitting the information within those neural 

ensembles in comparison to cued locations on other directions. Also, information 

propagates faster when characteristic path lengths are smaller. This speaks to a general 

result in complex systems theory: a shorter characteristic path length implies that the 

network requires less energy and performs information processing faster (Laughlin and 

Sejnowski, 2003; Sporns et al., 2004).  In short, our results suggest that information flow 

might be faster and metabolically more efficient for cued locations on the horizontal axis.  

The brain seems to respond preferentially to horizontal cues. This conclusion of our model 

speaks to a result in psychophysics known as  oblique effect (Appelle, 1972) also observed 

in non-human primates (Bauer et al., 1979).  This effect states that better performance is 

achieved for horizontal (and vertical) contours in visual perception tasks (the vertical axis 

was not tested in these data). 
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Figure 11. A. Characteristic path length estimates for all FEF ensembles and cued locations. These appear to 

partition the space of possible cued locations into locations on the horizontal (red dashed lines) and in the left 

(green dashed lines) and right (blue dashed lines) hemisphere. Also the smallest estimates are obtained for 

horizontal cued locations; this is reminiscent of the oblique effect. B.-C. Characteristic path length estimates 

for SEF and PFC. Estimates for both cued locations on the horizontal direction are similar.  

 

We also found that characteristic path length values corresponding to other cued locations 

(not only the ones on the horizontal direction) also have behavioral relevance. 

Characteristic path length values appeared to partition the space of possible cued locations 

into three subsets: locations on the horizontal axis ( 0,180hθ =  degrees) and in the left (

120,240lθ =  degrees) and right ( 60,300rθ =  degrees), visual hemispheres. They were 

shortest for the horizontal axis, next shortest for locations in the right visual hemisphere, 

and longest for locations in the left visual hemisphere. The values of characteristic path 
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length corresponding to each of the two cued locations within each of the above three 

subsets are shown with dashed lines (red for hθ , green for lθ  and blue for rθ ). Note the 

similar path length values for cued locations within each subset in FEF.  Also note that the 

characteristic path length values for each pair of locations on the horizontal meridian  in all 

three areas are similar in value.    

 

We also evaluated the betweenness centrality for all areas and cues and found central sites. 

Betweenness centrality provides an alternative way to characterise overlap in ensembles: if 

central sites were the same different between different ensembles, this means that different 

ensembles would overlap. Earlier, we found that different ensembles for different cues do 

not completely overlap by decoding ensemble responses (Figure 7). This can also be found 

using betweenness centrality.  The results are shown in Figure 12. 
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Figure 12. A. Betweenness centrality estimates for all FEF ensembles and cued locations. Neural ensembles 

do not overlap. Central sites are different for different cued locations. B. SEF betweenness centrality 

estimates. Similarly to FEF, SEF neural ensembles do not overlap. Notice that SEF central sites are similar to 

FEF central sites for the same cued location. C. PFC betweenness centrality estimates. Neural ensembles 

overlap. Central sites are the same for multiple cued locations.  

 

Let us e.g. focus on FEF betweenness centrality values depicted in Figure 12A. Values 

corresponding to a cue at 180θ = degrees are shown by brown dashed lines and ellipses. 

These describe a neural ensemble comprising electrodes (9-13) on the left end of the 

figure. Electrode 10 is central in this ensemble. Different electrodes exhibited high 

betweenness centrality values for distinct cued locations: electrodes 14, 15, 17 and 18 

showed peak betweenness centrality values for cued locations at 120,300θ = or 60, 240  

and 0 degrees respectively.  Stars of different colours denote these central electrodes. So, 
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with the exception of electrode 15 the rest of the central electrodes correspond to different 

cued locations in a unique manner. The exception of electrode 15 is not surprising: in the 

deep neural field model, this electrode is placed in the middle of the cortical manifold, 

therefore its role as a hub of information flow for the maintenance of more than one cues is 

expected. 

 

In SEF, we found similar results to FEF: we observed a neural ensemble of electrodes (22-

25) on the right end of the figure that exhibits high values of betweenness centrality for 

0θ = degrees (blue dashed lines and ellipses in Figure 12B). Again, we found distinct 

central electrodes for different cued locations (shown by coloured stars): electrodes 10, 12, 

15, 19 and 23 showed peak betweenness centrality values for cued locations at 

60,120,300θ = or 180, 240  and 0 degrees respectively. Interestingly, there appears to be 

some homology between electrodes for which betweenness centrality values peaked for the 

same cued locations ( 120,300,240θ = and 0 degrees) in both areas: electrode 15 for 300θ =  

and then electrodes 14,17 and 18 in FEF as opposed to 12,19 and 23 in SEF for 120,240θ =  

and 0 degrees respectively. This means that there might be some structure in neural 

ensembles that is conserved across brain areas and might relate to topographic clustering 

we observed in the two areas. All in all, using graph theoretic measures, we found non-

overlapping stimulus-specific neural ensembles in FEF and SEF that maintain behaviourally 

relevant information efficiently.  In PFC, the situation is different from the other two areas: 

neural ensembles based on betweenness centrality appear to overlap more.  This is in 

accord with earlier results of lowest decoding accuracy achieved in PFC (Figure 7C). Many 

electrodes exhibited high betweenness centrality values for more than one cued locations 

and different neural ensembles obtained using betweenness centrality appeared to overlap 

with each other (Figure 12C).  
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Discussion 

We presented an approach for identifying and describing neural ensembles. Our approach 

applies ideas from statistical learning in neuroscience (Fiser et al., 2010; Hong et al., 2016, 

2016; Jazayeri and Movshon, 2006; Tacchetti et al., 2016; Tsai and Cox, 2015) and is based 

on a neural field model with learned parameters  (Olshausen, 1996; Simoncelli and 

Olshausen, 2001). 

 

We focused on the connectivity patterns that underlie ensemble responses. The strengths 

of these connections (connectivity weights) were inferred by analysing LFPs recorded 

during a spatial working memory task.  One motivation for focusing on connectivity weights 

is recent evidence that working memories are stored in connectivity weights as opposed to 

neural activity per se (Lundqvist et al., 2011, 2016; Stokes, 2015).   The connectivity weights 

measured the effective connectivity between recording sites. Effective connectivity is a 

particular sort of functional connectivity where connectivity estimates appear as 

parameters in a model of observed brain activity.  Here, these estimates appear in a neural 

field model. Traditionally, effective connectivity has been used to describe mesoscale 

interactions between brain areas using neuroimaging (David et al., 2006; Friston, 1994).  To 

the best of our knowledge this is the first use of effective connectivity to describe 

microscale interactions underlying neural ensemble dynamics.  

 

To obtain the connectivity weights, we trained a neural field model as a particular type of 

deep neural network, called an auto-encoder using raw LFP data. Thus, our approach 

provides links between unsupervised learning literature and biophysical modeling.  It is the 

first illustration of how a neural field model can be used as an auto-encoder network that 

can learn and maintain its inputs.  We call this model a deep neural field.  As it is common, 

we use the term “deep” to describe a neural network architecture with multiple layers, like 

an auto-encoder.  Deep neural fields maximise the mutual information between the 

remembered cue and the ensemble activity.  Therefore, the connectivity weights we 

obtained are optimal in an information-theoretic sense. 

 

Computing the connectivity weights allowed us to address questions regarding the cortical 
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micro-circuitry and neuronal interactions. We found that the graph theoretic measures 

based on effective connectivity at the microscale captured behaviorally relevant 

information.  Characteristic path length estimates in FEF appeared to partition the space of 

possible cues into those located in the left and right visual field.  In addition, the 

characteristic path lengths were smaller for cues on the horizontal direction, that is, at an 

angle of 0 or 180 degrees. This means that propagation of information flow within the 

corresponding neural ensembles occurred faster and engaged shorter paths when storing 

memories of these cues. The brain seems more efficient on processing stimuli on the 

horizontal meridian (the oblique effect - Bauer et al., 1979). This in turn might be the result 

of more parsimonious micro-circuitry.   

 

We also obtained betweenness centrality estimates. These revealed that neural ensembles 

corresponding to different cued locations do not completely overlap in FEF and SEF (that is, 

we could detect distinct ensembles or each).  This was confirmed using brain decoding 

algorithms that used patterns of ensemble activity to predict the cued locations held in 

memory.  We concluded this was possible and found the best performance for FEF 

ensembles.   This may be related to the evidence we found for topographic clustering in the 

effective connectivity between FEF (and to a lesser extent, SEF) recording sites.  

Topographic clustering explained the  structure of the ensemble connectivity  and could 

also explain a homology between FEF and SEF central sites (recording sites that showed 

maximum betweenness centrality values) corresponding to the same cued locations. These 

central sites were near one another within FEF and SEF electrode arrays. They were 

indexed by adjacent electrode numbers, e.g. electrodes 17 and 19 were central for cued 

locations at 240 degrees in FEF and SEF respectively. This homology might be explained as 

follows. If topographic clustering is due to retinotopy, the way FEF and SEF responses are 

spatially distributed on the cortical surface would be similar. The way these responses are 

sampled by our multi-electrode arrays could also be similar: electrodes in FEF and SEF 

arrays are numbered in a similar (monotonic) fashion. Of course, the two arrays did not 

necessarily have the same orientation when placed on the cortical surface. However, such 

differences were not captured by the deep neural field model we used here and did not 

affect the betweenness centrality estimates of our model: the spatial variable appearing in 
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the deep neural field is one-dimensional. All in all, the similarity in the patterns of activity 

of neural ensembles corresponding to the same stimulus and the way activity is sampled in 

the two regions could explain the homology between the corresponding central sites. 

 

Finally, we considered oscillatory responses of neural ensembles recorded from different 

brain areas (Jones, 2016; Schroeder and Lakatos, 2009).  Theta rhythms seemed to be 

prominent in FEF and SEF and were expressed at the largest spatial scale. This is in accord 

with other studies where theta activity has been shown to be associated with spatial coding 

both in PFC (Jones and Wilson, 2005) and hippocampus (O’Keefe and Burgess, 2005).  We 

also found beta rhythms.  Beta activity has been observed in PFC (Antzoulatos and Miller, 

2016; Buschman et al., 2012; Kawasaki and Yamaguchi, 2012; Lundqvist et al., 2016; 

Stanley et al., 2016). Our approach further revealed connectivity across different spatial 

scales for theta vs beta frequencies. In FEF, beta was expressed in smaller spatial scales and 

had weaker functional connectivity than theta.  In PFC, power was concentrated in lower 

frequencies and had larger connectivity dispersion, i.e. extent (spread) of connections 

compared to SEF.  This is consistent with observations that power in lower frequencies is 

more extended on the cortical surface than power in higher frequencies (Leopold et al., 

2003).   

 

Although based on neural fields, our approach deviates significantly from existing work 

with such and similar biophysical models, see e.g. (Spencer, 2009).  To date, neural fields 

have been used to 1. simulate activity e.g. during sleep, anaesthesia (Hutt, 2013; Steyn-Ross 

et al., 2013; Suder et al., 2001) or cognitive tasks (Beim Graben et al., 2008; Potthast and 

Graben, 2009;Lipinski et al., 2009, 2012); 2. fit real data (Freestone et al., 2011; Pinotsis et 

al., 2012a, 2014).  A common assumption in all previous work is that connectivity matrices 

are homogeneous. This simply means that connectivity in these models depends only on the 

distance between neurons in the model. This is also the case in related approaches like ring 

models, recurrent and convolutional neural networks (Ben-Yishai et al., 1997; Shriki and 

Yellin, 2016; Somers et al., 1995).  In this work, connectivity weights are often postulated ad 

hoc.  Here, we deviated from these assumptions. 
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We considered inhomogeneous connectivity matrices and showed how these can be 

obtained after training a neural field as an auto-encoder.  Our approach yields connection 

weights that contain information about the particular cue maintained in memory. From a 

statistical learning perspective, these are learned parameters. From a neurophysiological 

perspective, they can be thought of as synaptic weights in an animal that has learned to 

remember the cues. Thus, our approach provides a principled way to obtaining learned 

connectivity parameters instead of setting them by hand. This paves the way for detailed 

biophysical models with learned connectivity parameters. Similarly to the deep neural field 

model introduced here, these models will be able to predict the dynamics of neural 

ensembles representing different stimuli. They have the potential to explain differences in 

brain activity associated with stimuli of different values or levels (e.g. cued locations or 

colours). Importantly, these models could reveal the principles underlying the biophysics 

and information processing in neural ensembles. These advances could also guide the 

future development of Brain Computer Interfaces and neuroprosthetics (Nicolelis and 

Lebedev, 2009). 
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