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Abstract

Instabilities in the price dynamics of a large number of financial assets are a clear
sign of systemic events. By investigating a set of 20 high cap stocks traded at the Italian
Stock Exchange, we find that there is a large number of multiple cojumps, i.e. minutes in
which a sizable number of stocks displays a discontinuity of the price process. We show
that the dynamics of these jumps is not described neither by a multivariate Poisson nor
by a multivariate Hawkes model, which are unable to capture simultaneously the time
clustering of jumps and the high synchronization of jumps across assets. We introduce a
one factor model approach where both the factor and the idiosyncratic jump components
are described by a Hawkes process. We introduce a robust calibration scheme which is able
to distinguish systemic and idiosyncratic jumps and we show that the model reproduces
very well the empirical behaviour of the jumps of the Italian stocks.

Keywords: cojumps, Hawkes processes, systemic shocks, high frequency data

1 Introduction

Modelling the dynamics of security prices is of paramount importance for risk control, deriva-
tive pricing, trading, and to understand the behaviour of markets. The most popular class
of stochastic models for security prices is certainly the class of jump-diffusion models, where
the price is described by a continuous diffusive part plus a jump component, modelling dis-
continuities in asset prices. In the majority of models the jump component is described by
a compound Poisson process. In a multi-asset setting the classical jump diffusion models as-
sumes that the jump component of different assets are independent Poisson processes and the
only dependence is possibly in the size of the jumps. An incomplete list of recent studies on
jumps following this approach includes theoretical work on nonparametric jump identification
[1, 2, 3, 4, 5, 6, 7], as well as empirical analysis [8, 9, 10, 11, 12, 13], and applications to asset
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pricing [14, 15, 16, 17, 18]. General review on jumps are [19] and [20]. However, there has been
less research on cojumps (i.e. simultaneous jumps in two or more stock prices) and most are
of empirical nature such as [21, 22, 23, 24]; exceptions are the papers of [25, 26] and [27] on
cojump estimation and modelling.

Poisson jump processes have the great advantage of being analytically tractable. However
one might argue that the jump component of the price process could be described instead by
a process where jumps are clustered in time. The same objection emerges when one considers
many assets. Markets are nowadays more and more interconnected and it is a priori reasonable
to expect that some sort of synchronization between the jumping times of different asset is
present.

This synchronization effect had its most spectacular appearance during the May 6, 2010
Flash Crash. According to the SEC-CFTC, the crash started from a rapid price decline in
the E-Mini S&P 500 market [28, 29]. However in a very short time the price drop propagated
towards ETF, stock indices and their components, and derivatives. For example, the Dow Jones
Industrial Average plunged about nine percent, only to recover those losses within minutes.
The contagion effect can be extremely rapid in liquid markets [30, 31] and leads to a strongly
synchronized discontinuous movement of the price of many assets. This type of systemic events
can not be described by a model where prices jump following independent processes.

In this paper we show that indeed the dynamics of jumps of a portfolio of stocks deviates
significantly from a collection of independent Poisson processes. The deviation that we observe
is twofold. On one side, by considering individual assets, we find evidence of time clustering of
jumps, clearly inconsistent with a Poisson process. This means that the intensity of the point
process describing jumps depends on the past history of jumps, and a recent jump increases
the probability that another jump occurs.

The second deviation from the Poisson model is probably more important, especially in a
systemic context. We find a strong evidence of a high level of synchronization between the
jumping times of a portfolio of stocks. In other words, we find a large number of instances
where several stocks (up to 20, the size of our set) jump at the same time (by using a resolution
of a minute). This evidence is absolutely incompatible with the hypothesis of independence of
the jump processes across assets.

Taking together these empirical deviations from the independent Poisson model, there is a
need of a suitable modelling of the multi-asset jump process and this is the main methodological
contribution of this paper. In order to model the time clustering of jumps for individual assets
we propose the use of a class of self-exciting point processes, termed Hawkes processes. These
processes were introduced more than forty years ago [32], and have been widely employed to
model earthquake data [33, 34, 35]. In the last years, Hawkes processes have experienced an
increasing popularity in mathematical finance and econometrics. One of the first applications
to financial time series is due to [36], and a wide literature review in this context is collected
in [37]. Among more recent developments not covered by the latter reference we mention [38]
where these processes are applied to the order flow in a continuous double auction market, [39]
for the modelling of trades-through orders in a limit order book, [40] where Hawkes processes
are used to introduce a new stochastic model for the variation of tick-by-tick asset price both in
one and two dimension able to reproduce the strong microscopic mean reversion and the Epps
effect, and [41], which introduces a measure of the market activity providing a direct access to
the level of its endogeneity and as a potential predictor of market micro instabilities.

In this paper we use Hawkes processes for modelling the dynamics of jumps of individual
assets and we show that they describe well the time clustering of jumps. However the di-
rect extension of the application of Hawkes processes to describe the dynamics of jumps in
a multi-asset framework is highly problematic and inconsistent with data. In fact, from a
methodological point of view, even by using a simple two parameter kernel (for example, ex-
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ponential) of the process, the number of parameters to estimate a Hawkes process on N assets
is N(2N + 1) ∼ O(N2), which is clearly too high. Moreover, even when we consider N = 2
stocks, we empirically find that a bivariate Hawkes model is unable to describe the empirical
data, especially to replicate the high number of synchronous jumps that we observe. This is
due to the fact that the kernel structure of Hawkes is more suited to model lagged jumps than
synchronous jumps.

For this reason, the main methodological contribution of this paper is the introduction of
Hawkes factor models to describe systemic cojumps. We postulate the presence of an unob-
servable point process describing a market factor. When this factor jumps, each asset jumps
with a given probability, which is different for each stock. In general, an asset can jump also
by following an idiosyncratic point process. In order to capture also the time clustering of
jumps, we model the point processes as Hawkes processes. We show how to estimate this
model and discriminate between systemic and idiosyncratic jumps. We show that the model
is able to reproduce both the longitudinal and the cross sectional properties of the multi-asset
jump process.

Recent approaches sharing some aspects with the current paper are discussed in [27, 42]
and [24]. The former design a model of asset returns able to capture periods of crisis character-
ized by contagion and consider it to solve the problem of optimal investment-consumption for
a log-utility investor. The jump-diffusion component of the dynamics is described in terms of a
class of multi-dimensional Hawkes models, and the authors discuss an estimation methodology
based on the Generalized Method of Moments. Not surprisingly, when they estimate the model
on real data, they face the problem of the curse of dimensionality and limit most of the study
to the two asset case. Our one factor approach solves the calibration issue in a natural way and
therefore represents a viable alternative to their model. By using data sampled at a frequency
of eleven minutes the authors of [24] find empirical support to the hypothesis that stocks tend
to be involved in systematic cojumps 2, rejecting an assumption of independence in jump ar-
rival times among stocks. We find strong evidence of this result also at the frequency of one
minute and furthermore we extensively investigate the properties of self and mutual excitation
possessed by the jumps series of different stocks.

The paper is organized as follows. In Section 2 we present our dataset and in Section 3 we
summarize our jump detection method (detailed in Appendices). The identification of jumps is
a delicate topic and therefore we are careful in using a robust identification method in order to
minimize the number of false positives. In Section 4 we provide empirical evidence of the large
number of systemic cojumps and we describe some simple statistical properties. In Section 5
we present the statistics we use to test our models in their ability of reproducing the multiple
jumps of a single stock in a given time window and the cross jumps, i.e. the occurrences of
jumps in two different stocks in a given time window. Section 6 discusses how Hawkes processes
fit the jump process in a univariate and in a multivariate setting. In Section 7 we present the
Hawkes factor model approach, showing how to estimate it and the results obtained in the
investigated dataset. Finally, in Section 8 we draw some conclusions.

2 Data description and data handling

The analyses reported in this work are performed on tick-by-tick transaction data for the period
from 5th March 2012 to 9th July 2012 that have been made available to us by LIST S.p.A. 3.

2From a terminological viewpoint, authors of [24] define a systematic cojump as an instance when one stock
and a market index jump at the same time. In this paper we use the term systemic cojump to indicate a
sizeable number of stocks jumping simultaneously. In Section 7 we show how to identify systemic cojumps in a
self consistent way.

3www.list-group.com
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Company ISIN code trades per day (×103)

Assicurazioni Generali IT0000062072 7.5
Mediobanca IT0000062957 3.6
Banca Popolare di Milano IT0000064482 4.9
Saipem IT0000068525 5.4
Intesa Sanpaolo IT0000072618 18.1
Mediaset IT0001063210 3.1
Banca Monte dei Paschi di Siena IT0001334587 9.2
Fiat IT0001976403 9.6
Enel IT0003128367 10.7
Eni IT0003132476 10.4
UBI Banca IT0003487029 3.0
Telecom Italia IT0003497168 6.3
Finmeccanica IT0003856405 4.7
Prysmian IT0004176001 2.8
Banco Popolare IT0004231566 4.2
Pirelli & C. IT0004623051 4.6
Fiat Industrial IT0004644743 5.1
UniCredit IT0004781412 27.4
Tenaris S.A. LU0156801721 3.3
STMicroelectronics N.V. NL0000226223 4.3

Table 1: List of the twenty investigated stocks, with the ISIN code and the average number of
transactions per day.

In this work we investigate 20 among the most liquid stocks of the FTSE MIB index of the
Italian stock exchange Borsa Italiana. We sample prices at a frequency of one minute, taking
the last executed price, to obtain 1-minute logarithmic returns. The total number of days in
the period is 88, with 505 intraday returns each day.

In Table 1 we list the twenty stocks, along with the ISIN code and the average number of
trades per day. From the last column we see that the assets are characterized by a certain level
of heterogeneity, since the trade activity varies between 2.8 and 27.4 thousand transactions per
day. A low level of activity implies in general a higher probability for the absence of transactions
inside a given sampling interval, and this effect has important implications for the methodology
that we use for the detection of jumps.

The process from tick-by-tick data to jump identification can be described as follows. First,
anomalous values in tick-by-tick price data are detected and removed. The algorithm for
the outliers detection that we use is due to Brownlees and Gallo [43] and it is explained in
Section A.1 of the Appendix. We find no outliers at all for 13 stocks and few units for the other
7, for the vast majority concentrated on the very first minute of the day. Removing outliers
can in principle introduce a distortion in the analysis. However, the number of anomalous
prices that we identify is extremely low, and the probability of an actual distortion of returns,
computed at the minute level, is negligible. Cleaned prices are then sampled at a frequency
of one minute and logarithmic returns are calculated carrying forward to the next sampling
instant the last price observed within the sampling window.

In the identification of jumps, an important care should be devoted to the way in which
intervals without trades are treated. In fact, jump detection methods typically compare returns
with local volatility. In periods of low liquidity (or missing observations) one risks to underes-
timate volatility and to identify relatively small price returns as jumps. There are two different
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situations which lead to having no price observations in a given time interval.
The first one occurs in correspondence of volatility auction phases. According to the rules

of the market and the accompanying instructions [44, 45], whenever the price exits a reference
interval, reaching too high or too low levels, the continuous double auction phase of the exchange
is suspended and a volatility auction starts. In such a phase we consider the related returns
as not available. We do not have direct information on volatility auctions, but we infer their
presence from market data. Since the investigated stocks are among the most liquid ones, we
are reasonably sure to be able to distinguish volatility auction phases from continuous double
auction phases of low liquidity. For more details, see the discussion in Section A.2 of the
Appendix.

The second mechanism for missing price observations is when the stock is available for
trades, but still there are no transactions in that particular minute. There are several ways to
treat these cases. To fix the notation, let i and i + 1 label two consecutive sampling instants
between which no trade has been made. The most common way to deal with the missing
observation of the price between times i and i + 1 is to bring forward the last recorded price.
This means setting the price pi+1 = pi and the log-return ri+1 = 0. Sampling intervals with
no transactions in them are therefore given a zero return. This is our first method of dealing
with Missing Observations, which we call MO1. An alternative method of treating gaps in
available data made of missing observations is simply to consider the corresponding returns
as not available data (ri+1 = NA), thus avoiding to give them a numerical value. The next
available return will be at the first sampling time after the next available observation. It can
be defined as the usual difference of the sampled logarithmic prices after and before the gap
(method MO2) or as this quantity rescaled by the square root of the time between the two
sampling times (MO3). For instance, for the price series p0, p1,−,−, p4, p5 we construct the
following three returns series:

MO1 log p1
p0
, 0, 0, log p4

p1
, log p5

p4
;

MO2 log p1
p0
, NA, NA, log p4

p1
, log p5

p4
;

MO3 log p1
p0
, NA, NA, 1√

3
log p4

p1
, log p5

p4
.

The reason for the rescaling of the over-gap return in method MO3 is that we do not want to
identify as a jump a price change that is compatible with a diffusive random movement of the
efficient price.

Once the returns are defined according to one of the three possible methodologies discussed
above, they are checked in order to eliminate possible large values due to stock splits or merges.
We further check for the presence of stock splits in our data through the detection of returns
greater than 0.2 in absolute value. This would detect, for example, a 3-for-2 split or a 4-for-5
merge. In our data we do not find any such return.

The last step to perform is the removal of daily seasonalities, by filtering out the intraday
pattern from raw returns. As it is well known, intraday returns show significant seasonal
behaviour, as the dynamics of markets is greatly variable during the day. Opening and closing
periods generally show a higher volatility than the rest of the day, since traders are more active
during these phases. If these daily seasonalities are not properly filtered out, spurious jump
detection may happen in correspondence of these periods. We describe the details of how we
deal with this issue in Section A.3.

3 Jump identification

After performing the data cleaning procedures explained in Section 2 and detailed in Ap-
pendix A, we proceed with the detection of jumps. Following a standard approach, we estimate
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the local volatility σ and then test whether the ratio between absolute returns and local volatil-
ity is above a given threshold, that is, if

|r|
σ
> θ.

In this work we take θ = 4 as in [46] and return series are obtained from historical prices as
reported in Section 2. In order to estimate the local volatility, we can follow several strategies
available in literature. We base our approach on the realized absolute variation and the realized
bipower variation, whose asymptotic theory is treated for example in [47]. Our estimators of
local volatility based on these quantities are defined by the exponentially weighted moving
averages

σ̂abs,t = µ−11 α
∑
i>0

(1− α)i−1|rt−i| (1)

and
σ̂2
bv,t = µ−21 α

∑
i>0

(1− α)i−1|rt−i||rt−i−1|, (2)

where µ1 =
√

2
π
' 0.797885 and the parameter of the exponential averages is α = 2

M+1
, with

M = 60, which corresponds to a characteristic time of 30.5 minutes. In order to avoid biased
estimates due to the presence of jumps in past returns, we actually use modified versions of the
estimators (1) and (2) that use only returns where no jump is detected. In fact the presence
of a jump in the estimation window leads to an overestimation of the volatility. We refer the
reader to the Appendix A.4 for the details on the implementation of our estimators and the
asymptotic properties of the realized absolute variation and the realized bipower variation.

Since we construct three series of returns (which differ only in correspondence and proximity
of missing observations), for each of which we obtain the volatility estimates σ̂abs and σ̂bv, we
have six volatility-normalised series

{
rt
σt

}
, each of which with its own set of detected jumps. In

order not to be sensitive to the choice of how to treat missing observations nor to the choice of
volatility estimation, we take as final series of jumps the intersection of the six sets of jumps.
This should also minimize spurious jump detection, as suggested in [48].

3.1 Performance of the jump detection methods on simulated data

In the next section we will discuss the results that we have found about identified jumps.
Preliminarily, we conduct a simulation study to assess the effectiveness of our entire procedure
from data cleaning to jump detection. The usual approach is to assume the observed log-price
p(t) as coming from the sum

p(t) = X(t) + ε(t) (3)

of an efficient log-price X(t), following a simple jump-diffusion model

dX(t) = µ(t) dt+ σ(t) dW (t) + κ(t) dJ(t), (4)

where the three terms on the right hand side are the drift, diffusion and jump components, and
a microstructure noise εt ∼ i.i.d. N (0, η2). Following Fan and Wang [49], for the dynamics of
the volatility σ(t) we take the Geometric Ornstein-Uhlenbeck model

d log σ2(t) = −(0.6802 + 0.1 log σ2(t)) dt+ 0.25 dW ′(t) , (5)

with correlation between the Wiener processes W (t) and W ′(t) equal to -0.62. Simulating
model of Equations (3) and (4) we fix the drift term µ equal to 0, and the microstructure noise
standard deviation η to 10−5dt. As far as the process Jt is concerned, we set its rate equal to
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three jumps per day, and the size κ as a multiple of the spot volatility bootstrapped from the
sample of the empirical data. Using the Euler discretization scheme we obtain simulated high-
frequency log-prices from the model at a frequency of one minute, which corresponds to the
sampling frequency of our data. The time convention that we adopt fixes the one day horizon
equal to one, so we have dt = 1/1440. We simulate data for a period 50 times longer than
that of the sample data, that is, 88 × 50 = 4400 days. We preliminarily draw a Monte Carlo
simulation of the process (5) and then we rescale it by adding the intraday volatility pattern.
The seasonal volatility is used in (4) to generate one realization of the process Xt. Finally, for
each day we discard some observations in order to reproduce the observed intertrade times,
thus introducing artificial missing observations to investigate the role of methods MO1, MO2,
MO3 of Section 2 in the jump detection tests. This operation is performed through a random
sampling from the empirical distribution of the intertrade times two examples of which are
shown in Figure 11.

Table 2 shows the performance of our jump detection procedure for simulations calibrated
on two stocks: Intesa Sanpaolo, the second most liquid stock among our data, and Banco
Popolare, which has a much lower liquidity. The performance is presented in terms of size
and power of the test, for the jumps series coming from methods MO1, MO2, MO3, with the
two different estimates of volatility σ̂abs and σ̂bv. In the last column and row we report the
intersections between the different methods. Simulation calibrated on Intesa Sanpaolo shows
small differences among the three methods of dealing with the missing observations in sampled
data. This is expected, since there are relatively few points on which the corresponding return
series differ. Also taking the intersection of jumps detected in methods MO1, MO2, MO3 has
performances comparable to those of each of the three methods.

A benchmark simulation calibrated on the stock Banco Popolare shows instead a very dif-
ferent picture, namely it highlights the significance of the way of filling the missing observations
for a stock of low liquidity. If such missing observations are filled with zeroes (method MO1),
volatility estimates from past returns are lower than for methods MO2 and MO3. This trans-
lates into detecting much more jumps, both true and spurious. In absolute terms, average
counts of right and false positives are respectively 189 and 143 for method MO1, 146 and 45
for method MO2, 147 and 10 for method MO3, 134 and 7 for the intersection of all methods.
Thus, results of this simulation clearly show that taking the intersection of jumps detected in
methods MO1, MO2, MO3 drastically reduces the number of false positives, although this is
accompanied also with a significant reduction of right positives. Taking a conservative point
of view, we are ready to miss the detection of some true jumps as long as this procedure al-
lows minimizing false positive hits. This simulation also demonstrates in a very clear way how
the method MO3 is effective in detecting much fewer false positives than method MO2, still
detecting the same amount of true jumps.

4 Basic statistics of jumps of individual stocks and of

systemic jumps

In this section we present some basic statistical properties of detected jumps. In particular we
will consider the restricted set of jumps identified simultaneously by all methods, in order to
minimize the number of false positives. We then consider some simple statistical characteri-
zation of cojumps, i.e. instances in which the price of at least two stocks jumps in the same
minute.
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MO1 MO2 MO3
⋂

MO1,MO2,MO3

Size Power Size Power Size Power Size Power

σabs 0.036% 63.1% 0.033% 62.5% 0.029% 62.7% 0.028% 62.1%

σbv 0.039% 63.4% 0.037% 62.7% 0.033% 62.7% 0.032% 62.3%⋂
abs,bv 0.031% 61.6% 0.029% 61.0% 0.026% 61.0% 0.025% 60.6%

MO1 MO2 MO3
⋂

MO1,MO2,MO3

Size Power Size Power Size Power Size Power

σabs 0.369% 72.9% 0.110% 56.4% 0.027% 58.0% 0.019% 52.3%

σbv 0.390% 74.7% 0.135% 59.7% 0.031% 58.3% 0.025% 55.1%⋂
abs,bv 0.324% 71.7% 0.102% 55.2% 0.023% 55.8% 0.016% 50.9%

Table 2: Size and power of jump tests, determined on a simulation calibrated on real data of
Intesa Sanpaolo (top) and Banco Popolare (bottom). The size is the ratio between the number
of false positives and the number of minutes when the jump is not present. The power is one
minus the ratio between the number of right positives and the number of real jumps.

4.1 Jumps of individual stocks

In the previous sections we have introduced several methods to identify jumps in price time
series. By using Monte Carlo simulations of a realistic model of price dynamics, we have shown
also that different methods display different ability to identify jumps correctly, both in terms of
false positives and in terms of false negatives. The use of the intersection among the different
methods improves significantly the identification procedure, at least on simulated data.

Table 3 shows the number of jumps for the stock Monte dei Paschi di Siena, detected with
the six different methods. For this specific stock, the number of jumps ranges from 200 to 281,
showing a significant dependence on the used method. The table shows also the size of the
intersection of the sets of detected jumps. When one considers jumps detected by all methods
the number of jumps falls to 178. This is the restricted set of events that we will consider. We
notice that, in this case, by estimating the volatility as σ̂abs we find more jumps than when
using σ̂bv, regardless of what the method of treating missing observation is. However this is
not always the case. For the stock Intesa Sanpaolo it is the other way round: more jumps are
detected when we estimate local volatility by σ̂bv than when we use σ̂abs, in methods MO1,
MO2 and MO3. It is not clear to us whether there are features of the return series (such as
quantity and position of the missing observations) which are systematically responsible for the
first or the second scenario to happen.

MO1 MO2 MO3
⋂

MO1,MO2,MO3

σ̂abs 281 228 217 205
σ̂bv 260 208 200 190⋂
abs,bv 239 196 186 178

Table 3: Summary table of the number of detected jumps by using different methods and of
the size of their intersection. The investigated stock is Monte dei Paschi di Siena.

We extend this analysis to the whole set of 20 stocks. In Table 4 we report simple statistics
about the jumps identified on the 20 stocks by using the intersection of the six methods. The
number of jumps detected in the 88 days of our sample varies between 59 and 188 across the

8



twenty stocks (that is, between 0.67 and 2.14 jumps per day per stock), with an overall average
value of 108, corresponding to 1.23 jumps per day per stock 4.

Five stocks show a statistically significant difference in the number of positive and negative
jumps (at 10% significance level), when one assumes a null model in which stocks have the same
probability of jumping up and down. In such a model, the number of jumps in either direction
has a binomial distribution. Interestingly, in all five cases the number of negative jumps is
greater than that of positive jumps. Statistically significant asymmetry in the jumping direction
is also found in the overall jump count (at 1% significance level). The twenty stocks have also
variable proportions of “single jumps”, that is, jumps that do not occur simultaneously to
jumps of other stocks, with two having even a greater number of cojumps than single jumps.

ISIN jumps jumps up jumps down single jumps cojumps

IT0000062072 103 48 (47%) 55 (53%) 53 (51%) 50 (49%)
IT0000062957 63 29 (46%) 34 (54%) 38 (60%) 25 (40%)
IT0000064482 121 60 (50%) 61 (50%) 97 (80%) 24 (20%)
IT0000068525 93 46 (49%) 47 (51%) 56 (60%) 37 (40%)
IT0000072618 127 67 (53%) 60 (47%) 55 (43%) 72 (57%)
IT0001063210 59 28 (47%) 31 (53%) 44 (75%) 15 (25%)
IT0001334587 178 73 (41%) 105 (59%) 150 (84%) 28 (16%)
IT0001976403 123 61 (50%) 62 (50%) 76 (62%) 47 (38%)
IT0003128367 188 81 (43%) 107 (57%) 107 (57%) 81 (43%)
IT0003132476 155 66 (43%) 89 (57%) 95 (61%) 60 (39%)
IT0003487029 70 28 (40%) 42 (60%) 41 (59%) 29 (41%)
IT0003497168 129 74 (57%) 55 (43%) 79 (61%) 50 (39%)
IT0003856405 95 50 (53%) 45 (47%) 74 (78%) 21 (22%)
IT0004176001 74 41 (55%) 33 (45%) 46 (62%) 28 (38%)
IT0004231566 103 50 (49%) 53 (51%) 72 (70%) 31 (30%)
IT0004623051 115 47 (41%) 68 (59%) 85 (74%) 30 (26%)
IT0004644743 100 51 (51%) 49 (49%) 65 (65%) 35 (35%)
IT0004781412 118 49 (42%) 69 (58%) 57 (48%) 61 (52%)
LU0156801721 59 27 (46%) 32 (54%) 32 (54%) 27 (46%)
NL0000226223 86 39 (45%) 47 (55%) 51 (59%) 35 (41%)

total 2159 1015 1144

average 108.0 50.8 (47%) 57.2 (53%)

Table 4: Number of detected jumps for the twenty stocks, with direction and cojumping in-
formation. Bold values are inconsistent (at 10% significance level for single stocks, at 1%
significance level for the total counts) with a null assumption of equal probability of jumping
up and jumping down. Single jumps occur at a time when no other stock jumps, while cojumps
occur simultaneously with jumps in other stocks.

We investigate the distribution of jumps during the trading day. The left panel of Figure 1
shows the histogram of the time of the day when a jump occurs. The figure is obtained by
including all the jumps of the 20 stocks, but we count only once a minute where multiple stocks
jump simultaneously. We observe that there is no clear periodicity in the number of jumps,
indicating that our careful intraday pattern removal is quite effective. Moreover, apart a spike

4It is worth noticing that in a recent study [46] authors found more than seven jumps per stock per day
when investigating a relatively large set of US stocks. Even if the threshold used is the same as ours, i.e. θ = 4,
they use only one method, they do not detail the data cleaning procedure, and they investigate a much larger
universe of stocks. These might be reasons for the difference in the typical number of detected jumps.
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observed at the beginning of the day, there is no evidence of minutes of the day when it is more
likely that one stock jumps.

4.2 Systemic jumps
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Figure 1: Left panel: intraday distribution of the time of the day when a jump occurs. The x
axis is the number of minutes from the beginning of the trading day. Notice that if more than
one stock jump in a given minute, we count the minute only once in the histogram. This is
done in order to avoid to count N times an event when N stocks jump simultaneously. Right
panel: same figure as the left panel, but considering only cojumps of more than 5 stocks.

The main topic of this paper is systemic cojumps, i.e. minutes when the price of a (possibly
large) number of stocks displays a jump. For this reason it is important to investigate how
frequently cojumps occur and to compare the observed statistics with those expected under
some null hypotheses.

We start with some simple visualization of the occurrences of multiple cojumps. Figure 2
shows the dynamics of the number of cojumps, indicating also the number of stocks that display
a jump in a given minute. We notice that there are several occurrences where more than 8
stocks jump simultaneously (big circles). For example, we observe one case each when 10, 12,
13, 15, 16, 17, and 20 stocks jump simultaneously. Also the number of cases where more than
3 stocks jump (medium-sized circles) is quite high. For example, we observe 22 cases with 4
stocks, 15 cases with 5, 2 cases with 6, 4 cases with 7, 5 cases with 8, 3 with 9, and 2 with 11.
Finally, there is a significant background of cases where two (136) or three (44) stocks jump
simultaneously.

By considering all the 240 events in which multiple stocks jump, we find only 7 cases in
which not all the jumping stocks follow the same direction. There are 6 cases in which 2 stocks
jump in opposite direction and 1 case in which two stocks jump down and one stock jumps
up. The fact that when several stocks simultaneously jump they all move in the same direction
suggests that a single common factor explains the jumping probability. In Section 7 we will
develop this idea more formally by introducing models that capture this important feature of
real data.

It is worth noticing that the Figure 2 also indicates that there are no specific times of the
day (for example corresponding to pre-announced news or opening of other markets) where the
systemic cojumps are more frequent. This qualitative statement can be made more precise by
drawing the histogram of the time of the day when a systemic cojump with more than 5 stocks
jumping simultaneously (see right panel of Figure 1). Therefore systemic jumps do not occur
at preferential moments of the trading day.
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Figure 2: Time series of the cojumps observed in the set of 20 investigated stocks. The
horizontal axis is the time of the day and the vertical axis is the day. The size of the circle
codes the number of stocks simultaneously jumping in a given minute.

In order to compare the pattern observed in Figure 2 for the systemic cojumps with a null
hypothesis, we perform a bootstrap analysis. Specifically, we construct a bootstrap replica
independently for each stock. Therefore our replicas are consistent with a model of 20 inde-
pendent but not identical Poisson processes for the jumps. In the next section we will use this
model as the simplest benchmark model. In the left panel of Figure 3 we show the analogous
of Figure 2 for one of the bootstrap replicas of the real data. As it can be seen, in this replica
there are no cases where more than three stocks jump simultaneously, a result that is clearly
inconsistent with the real data. To be more quantitative, in the right panel of Figure 3 we
show the histogram of the number of stocks jumping in a minute (in which at least one stock
jumps) for real data (solid line). We compare it with the curve obtained by taking the 0.01%
confidence interval from bootstrap analysis. It can be seen that already the observed number
of cojumps of two stocks is incompatible with the one observed in bootstrap test at the 0.01%
confidence. Moreover in 10, 000 bootstrap replicas we never observe a cojump with more than
4 stocks (observed only once) while in real data we have several cases with the price of many
stocks simultaneously jumping.

In conclusion, our preliminary analysis shows that (i) jumps are relatively frequent, even
when one considers relatively strict detection criteria, (ii) there is a large number of cojumps,
i.e. minutes when a sizable number of stocks (up to 20!) simultaneously jump, (iii) these co-
jumps show no clear timing inside the day, and, more important, (iv) they are absolutely not
compatible with a null model of independent but not identical Poisson processes. In Section 7
we will introduce models able to describe the jump dynamics of a set of stocks.
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Figure 3: Left panel. Time series of the cojumps observed in a bootstrap replica of the real data
preserving the jump intensity of each stock. The horizontal axis is the time of the day and the
vertical axis is the day. The size of the circle codes the number of stocks simultaneously jumping
in a given minute. Right panel. Histogram of the number of stocks simultaneously cojumping
in a minute (solid line). For comparison the dashed line shows the 0.01% confidence interval
for the counts under the null hypothesis of independent but not identical Poisson processes.

5 A multi-scale statistical test based on multiple jumps

and cross jumps detection

The empirical observation of a large number of cojumps requires a rigorous statistical test to
compare the observed behaviour of jumps with the prediction of multivariate point processes.
The main problem in working with jumps is that their number is relatively small, and therefore
the statistics must be suited to work on small samples. Moreover, we want to use a multi-scale
statistical test, i.e. a test that is able to identify deviations from models at different time scales.
A correlated point process can be undistinguishable from a Poisson process if the observation
time is much larger than the correlation time of the process. Therefore we use a test that
considers simultaneously different time scales. Finally, even if the main topic of this paper is
cojumps of different stocks, we are also interested in investigating deviation from a Poisson
behaviour at the individual stock level. Therefore we shall introduce two related statistics, one
for consecutive jumps of the same asset and one for jumps of different stocks occurring at close
times.

Since the distributional and time correlation analysis is unfeasible with small samples of
jumps we will consider the following statistics that measures the frequency of multiple jumps
occurring in the same time windows.

Specifically, when considering individual stocks, we define a multiple jump (MJ) as an event
which occurs when at least two jumps of the same stock price happen inside a time window of
a fixed length w. Let us call si the number of jumps inside the i-th window. An estimator of
the MJ probability in a window of length w over a sampling period of length N is given by

p̂MJ
w =

∑bNw c
i=1 1si≥2⌊

N
w

⌋ , (6)

where 1A is the indicator function of the event A, and the symbol bN/wc corresponds to the
integer part of the ratio N/w.

The same idea can be extended to capture also the cross sectional clustering of jumps, in
particular the evidence of a large number of simultaneous jumps of different stocks. The second
notion which we will work with is therefore that of cross jumps (CJ) between two stocks defined
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when both stocks jump at least once inside a given time window of fixed length w. With the
same notation as before, the estimator of the CJ probability between stock l and k is given by

p̂CJ
w =

∑bNw c
i=1 1sli≥11ski≥1⌊

N
w

⌋ . (7)

Our statistical procedure consists in estimating these quantities in real data and compare
them, at each time scale, with the 99% and 95% confidence bands of the tested model obtained
analytically (when possible) or via Monte Carlo simulations. It should be noted that, since
the number of windows that we are considering is greater than one, we are indeed performing
a multiple hypothesis test and we have to correct the significance level accordingly. Among
the possible approaches discussed in literature, we decide to adopt the most conservative one,
namely the Bonferroni correction. This correction amounts to divide the significance level of
the single hypothesis by the total number of tested hypotheses in order to achieve a global
significance at least of the pre-fixed level. Therefore when the empirical points of p̂MJ

w and p̂CJ
w

fall inside the confidence bands of a given model we can not reject the null hypothesis with the
given confidence level.

5.1 A benchmark case: the Poisson model

In order to show how our testing procedure works, we consider here an important benchmark
case, in which the jumps process of each stock is described by an independent Poisson process.
Under this model, the mean and variance of both previous estimators can be computed. For
the MJ estimator we have

E[p̂MJ
w ] = pw,λ , Var[p̂MJ

w ] =
pw,λ − p2w,λ⌊

N
w

⌋ ,

where pw,λ = P({s ≥ 2}) = 1 − Poisλw(s = 0) − Poisλw(s = 1), and λ is the intensity of the
Poisson process.

Analogously for the CJ estimator, we obtain

E[p̂CJ
w ] = qw,λlqw,λk , Var[p̂CJ

w ] =
qw,λlqw,λk − q2w,λlq

2
w,λk⌊

N
w

⌋ ,

where qw,λi = P({si ≥ 1}) = 1− Poisλiw(s = 0).
Since both quantities in Equation (6) and (7) correspond to the sum of a large number of

indicator functions, the Central Limit Theorem implies that their distribution is well approxi-
mated by a Normal law whose p-values are readily available, allowing the analytical computation
of the confidence bands. As usual, the value of the intensity of the Poisson process given by
the maximum likelihood estimator is λ̂ = #jumps/N .

In Figure 4 we show the result of our test on the Italian asset Assicurazioni Generali,
for which λ = 2.4 × 10−3 min−1. The filled circles correspond to the empirical values of the
estimator, the solid line to the theoretical mean, while the dashed and dotted lines establish the
boundaries of the 99% and 95% confidence bands, respectively, adjusted with the Bonferroni
correction. The figure shows that the Poisson model is rejected for both levels. In our data
sample this is the typical situation, which occurs for 18 stocks out of 20 (the two exceptions are
represented by the assets Mediobanca and Finmeccanica). We therefore conclude that there is
a strong evidence of time clustering of jumps and violation of the univariate Poisson model.
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Figure 4: MJ probability test under Poisson null for the Italian asset Assicurazioni Generali.

5.2 Block bootstrap

At this stage, the natural step to proceed would be to assume a more sophisticated model
for the jump process, and to test it as an alternative hypothesis. The Poisson hypothesis can
be relaxed in several respects: among the possible alternatives we can weaken the assumption
of identically and independently distributed waiting times, for example modelling them either
as Markov processes or as realizations of a time inhomogeneous Poisson process. In the next
Section we will consider the class of point processes known as self-exciting processes. However,
before doing so we approach the problem in a model independent way and try to grasp the
typical time scale at which the clustering of jumps takes place.

Our approach is simple and based on a block bootstrap technique. We fix the length of the
block LB and we draw NB = 104 synthetic copies sampling with repetition from the original
sequence of zeros and ones which corresponds to the point process of the jumps. On each copy
we evaluate the estimator, we sort all the values and compute the bootstrap estimate of the
confidence bands. The comparison of the empirical estimate with the bootstrap bands allows
us to ultimately accept or reject the model-independent null hypothesis. For LB = 1, our
procedure destroys any existing autocorrelation, and the confidences we find correspond to the
theoretical Poisson levels. In this case, for 18 stocks out of 20, the null is rejected. When we
increase the value of LB, the clustering structure with typical scale equal to or smaller than
LB is preserved. Therefore, we expect that for values of LB below a critical level, dependent
on the specific asset, we will reject the null, but when the length of the block is larger than
the critical level, the estimate will be compatible with the null. Figure 5 confirms the expected
behaviour for Generali 5. We see that by increasing the value from LB = 1 to LB = 7 the level
of the bootstrap confidences increases and the empirical points become fully compatible with
the hypothesis. For the specific asset under consideration we have evidence of a time scale of
few minutes, but the same result still holds for all the assets.

6 Modelling jumps with Hawkes processes

The evidences that we have described above play in favour of a null model which should be
able to describe the tendency of jumps to cluster over a time scale of few minutes. A natural

5We report the analysis only for low values of the time windows lengths.
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Figure 5: MJ probability test under block bootstrap null for the Italian asset Assicurazioni
Generali.

extension of the homogeneous Poisson process, where the intensity is itself stochastic and tends
to increase when a new jump arrives, is the class of point processes known has Hawkes processes.

6.1 Univariate case

In this section we provide the main results needed for the remaining of the paper, but for a
complete mathematical treatment of Hawkes and more general point processes we refer the
reader to the comprehensive textbook [50].

A univariate point process Nt
6 is called a Hawkes process if it is a linear self-exciting process,

defined by the intensity

I(t) = λ(t) +

∫ t

−∞
ν(t− u)dNu = λ(t) +

∑
ti<t

ν(t− ti) , (8)

where λ is a deterministic function called the base intensity, ν is a positive decreasing weight
function, and ti are the jumping times. The most common parametrization of ν is given by
ν(t) =

∑P
j=1 αje

−βjt, for t > 0, where αj ≥ 0 are scale parameters, βj > 0 control the strength
of decay, and the positive integer P is the order of the process. A particular advantage of the
linear Hawkes process of order P = 1 is that the log-likelihood function can be computed as

L(t1, . . . , tn) = (1− λ)tn −
α

β

n∑
i=1

(
1− e−β(tn−ti)

)
+

n∑
i=1

ln(λ+ αRi) ,

6If {ti}i=1,...,n represents the random sequence of increasing event times 0 < t1 < . . . < tn associated with
the point process, then Nt

.
=
∑

i≥1 1ti≤t defines the right continuous counting function. In what follows we will
refer equivalently to the process and its counting function.
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Assicurazioni Generali Intesa Sanpaolo

λ (min−1) (2.1± 0.2)× 10−3 ∗∗∗ (2.5± 0.2)× 10−3 ∗∗∗

α (min−1) (3.1± 1.3)× 10−2 ∗ (5.9± 2.1)× 10−2 ∗∗

β (min−1) (2.5± 0.9)× 10−1 ∗∗ (4.3± 1.2)× 10−1 ∗∗∗

Table 5: List of the parameters of the one dimensional Hawkes processes. Significance codes:
pvalue < 0.001 ‘∗∗∗’, 0.001 ≤ pvalue < 0.01 ‘∗∗’, 0.01 ≤ pvalue < 0.05 ‘∗’, and pvalue ≥ 0.05 ‘ ’.

where the R function satisfies the recursion Ri = e−β(ti−ti−1)(1 + Ri−1) for i ≥ 2 and R1 = 0.
In Ref. [32] it is shown that the stationarity of the process is guaranteed when

∫∞
0
ν(s)ds < 1,

which in our case reduces to the requirement α/β < 1. If stationarity holds and under the
further constraint that the base intensity is constant, the expected number of jumps in an
arbitrary time interval of length T is given by λT/(1 − α/β). The latter observation will
be useful for the calibration of the factor models that we will discuss in Section 7 of this
paper. The theoretical characterization of the maximum likelihood estimator of the Hawkes
process parameters that we employ in this paper has been developed in [51] and [52], while the
simulation algorithm we use is based on the procedure discussed in [53], which directly derives
from the Shedler-Lewis thinning algorithm, [54].
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Figure 6: MJ probability test under Hawkes null for the assets Assicurazioni Generali (left)
and Intesa Sanpaolo (right).

We estimate the Hawkes processes on the univariate series of jumps of the investigated
stocks. In Table 5 we report the parameters values with the associated errors and significance
values for Generali and Intesa Sanpaolo. All the values are statistically significant. It is worth
noting that the value of β for both assets confirms the empirical evidence enlightened by the
bootstrap analysis. Indeed, the kernel relaxation times, given by β−1, are in full agreement
with clustering scales of few minutes identified with the bootstrap.

We then test the Hawkes model in its ability of reproducing the MJ probability at different
time scales. The left and right plots in Figure 6 are obtained after the calibration of a one
dimensional Hawkes process on the jumps time series of the assets Assicurazioni Generali and
Intesa Sanpaolo, respectively. The figure shows that we can not reject the null both at 1%
and at 5% significance levels (obtained from NMC = 104 Monte Carlo simulations). The result
holds both for short window lengths (as evidenced for Generali up to half an hour) and longer
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horizons (up to one day for Intesa Sanpaolo).
We therefore conclude that univariate Hawkes processes are able to capture the empirical

dynamics and time clustering of jumps for individual stocks.

6.2 Bivariate case
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Figure 7: CJ probability test under independent Hawkes null for the pair of Italian assets
Generali - Intesa Sanpaolo.

Are independent Hawkes processes able to describe the empirical behaviour of CJ proba-
bilities? In order to answer this question, we compute the estimator (7) on each pair of assets
and in Figure 7 we show an example of the results from the test computed on the pair Generali
- Intesa Sanpaolo. The figure shows that the independent Hawkes process miserably fails in
describing the CJ probability at all time scales. This is clearly due, at least in part, to a lack
of coupling between the two processes. In order to capture such a dependence we calibrate a
bivariate Hawkes process.

A K-dimensional Hawkes process is a linear self-exciting process defined by the multivariate
intensity I(t) =

(
I1(t), . . . , IK(t)

)′
, where the k-type intensity with an exponential kernel of

order one is given by

Ik(t) = λk(t) +
K∑
m=1

∑
tmi <t

αkme−βkm(t−tmi ) .

All the parameters which appear in the above expression are strictly positive, and the station-

arity of the process is guaranteed if the spectral radius of the matrix Γ =
(
αkm
βkm

)
k,m=1,...,K

is

strictly smaller than one. The parameters αkk are responsible for the self-exciting property of
the point process, while the remaining K − 1 αkm’s capture the cross exciting effect of a jump
in the stock m on the process of the asset k. When K = 2 the number of free parameters is
equal to ten, and the maximization of the likelihood becomes less trivial than the univariate
case. To optimize the likelihood, we initialize the parameters with the values suggested by
the one dimensional calibration, and we constrain their value to remain strictly positive. We
preliminarily perform NAnn = 100 searches of the maximum with the simulated annealing al-
gorithm, then, with the optimal candidate supplied by the stochastic search, we initialize the
deterministic search via conjugate gradient.
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λ1 (min−1) (2.0± 0.1)× 10−3 ∗∗∗ λ2 (min−1) (2.3± 0.2)× 10−3 ∗∗∗

α11 (min−1) (1.6± 0.9)× 10−2 ∗ α21 (min−1) (4.5± 0.1)× 10−4 ∗∗∗

α12 (min−1) (14 ± 0.1)× 10−4 ∗∗∗ α22 (min−1) (3.4± 1.3)× 10−2 ∗∗

β11 (min−1) (3.7± 1.6)× 10−1 ∗ β21 (min−1) (7.0± 18 )× 10−1

β12 (min−1) (3.2± 3.4)× 10−1 β22 (min−1) (4.9± 1.6)× 10−1 ∗∗∗

Table 6: List of the parameters of the bivariate Hawkes process for 1 Generali and 2 Intesa
Sanpaolo. Significance codes: pvalue < 0.001 ‘∗∗∗’, 0.001 ≤ pvalue < 0.01 ‘∗∗’, 0.01 ≤ pvalue < 0.05
‘∗’, and pvalue ≥ 0.05 ‘ ’.
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Figure 8: CJ probability test under bivariate Hawkes null for Generali - Intesa Sanpaolo.

In Table 6 we present the results of the calibration of a bi-dimensional Hawkes on the joint
jumps process of Generali-Intesa. We then use Monte Carlo simulations to compute confidence
bands for CJ probability as shown in Figure 8. It is clear from the figure that bivariate
exponential Hawkes fails to describe the cross sectional clustering of jumps observed in real data.
This might be due to several facts: the value of the cross exciting constants α12 and α21 is at least
of one order of magnitude smaller than that of the constants α11 and α22; moreover, the time
constants β12 and β21 associated to the cross excitations are poorly statistically significant. One
possible reason could be the non reliability of the parameters since the optimization procedure
is performed in a high dimensional space on a strongly non linear objective function. However,
in this respect, we perform numerous experiments in a Monte Carlo framework. One test is
the simulation of a bivariate Hawkes process, whose parameters are chosen equal to the values
of Table 6. On each random realization, we apply the above optimization scheme and record
the optimal values. With a statistics of 103 values per parameter, we measure no significant
bias induced by the multidimensional maximization procedure. Moreover, we simulate 103

independent pairs of univariate Hawkes of length 44440 minutes, whose parameters are given
in Table 5. We then perform the ten dimensional optimization on each copy, and find a
confirmation of the tendency of the cross-exciting constants to significantly decrease. In light
of these numerical evidences, we tend to marginalize the role played by the optimization scheme.
Finally, we believe that the very reason why Hawkes processes fail to describe the cross-sectional
dependence is that they are not designed by construction to capture synchronous effects, which
in the case under our consideration seem to dominate the dependence between jumps.
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7 A factor model approach to jumps

In this section we abandon the idea of an N dimensional point process, and we develop a
different approach, which we will refer to as a jump factor model. The intuition which drives
the modelling is that a stock jumps both because it is triggered by jumps of a market common
factor and because of an idiosyncratic term.

The first issue that we want to clarify is if, even in a Poisson framework, the factor mech-
anism is able to describe the empirical dependence structure. Then we will propose a scalable
model, which ideally should be effective and also sufficiently simple and robust.

7.1 Bivariate Poisson factor model

In order to illustrate the main idea, we start with a toy model which enlightens the role of the
market factor and clarifies the mechanism which generates the dependence structure. However,
this is an unrealistic model, where the behaviour of the assets is completely determined by the
evolution of the factor process.

We assume that there is one unobserved market factor point process. When the factor
jumps, the stock S1 jumps with probability p1 and the stock S2 jumps with probability p2. If
the factor does not jumped, neither the first nor the second stocks can jump; obviously the
converse is not true. If the market factor is described by a Poisson process of intensity λF , then
the expected number of factor’s jumps over the period T is given by λFT . In order to fix the
free parameters of the model, λF , p1, and p2, we use the following relations

p1 λFT = n1 ,

p2 λFT = n2 ,

p1 p2 λFT = n12 , (9)

where n1 and n2 are the realized number of jumps of the stock S1 and S2, respectively, while n12

represents the realized number of cojumps among S1 and S2 within the one minute sampling
interval. The first two equations thus require that the expected number of jumps of the single
assets matches the realized values; the latter relation guarantees that, on average, the realized
number of cojumps among the assets corresponds to the theoretical expectation. In terms of
the counting functions N1

t and N2
t , which describe the jumps processes of the stocks, we have

n1 = N1
T and n2 = N2

T . The system of Equations (9) can be inverted and provides a direct way
to express the parameters of the model in terms of the observable quantities T , n1, n2, and n12:

λF =
n1n2

n12

1

T
, p1 =

n12

n2

, and p2 =
n12

n1

.

In Figure 9 we show the result of the test of the cojumps estimator p̂CJ
w against a null

represented by the Poisson factor model that we have just described. The time period that
we consider corresponds to the usual interval of 88 days, during which Generali and Intesa
Sanpaolo jump 103 and 127 times, respectively, while the realized number of cojumps n12 is
equal to 26. From these values we obtain a Poisson intensity equal to λF = 1.1 × 10−2 per
minute, and probabilities p1 = 0.20 and p2 = 0.25. The confidence intervals for the null are
estimated drawing NMC = 104 paths from the Poisson factor process, and then thinning each
realization with Bernoulli variables of probability p1 and p2.

The results provided by this simple model are very satisfactory and should convince the
reader that the proposed mechanism is adequate to capture the cross dependence between
jumps. However, the model is quite unrealistic in several respects: (i) the assets can not
jump independently of the factor, (ii) the Poisson nature of the process leads to a severe
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Figure 9: CJ probability test under Poisson factor null for Generali - Intesa Sanpaolo.

underestimation of the realized number of multiple jumps of the same stock, and (iii) the
approach has not a straightforward extension to an arbitrary number of assets. In order to
amend all these drawbacks, in the next section we will discuss a more general and flexible
model, rooted on the factor idea, but able to achieve a higher level of realism and scalability.

7.2 N dimensional Hawkes factor model with idiosyncratic compo-
nents

We now consider a set of N assets. With respect to the previous model, we need to introduce
explicitly a proxy of the common factor process. The naif idea of a proxy of the factor based
on those events when a cojump among all the N stocks happens realistically does not work.
In the data sample of twenty stocks that we consider in the current study, we experience
just a single event when all the stocks jump simultaneously. The proxy that we propose is
characterized by a counting function which increases by one unit whenever we detect a cojump
which involves a group of assets whose number J conflicts with the null of independence. We
therefore need to identify the threshold value J̄ compatible with independence. In general it
will be time dependent, J̄t, and will vary between one and N . In order to detect J̄ we propose
a rigorous statistical methodology. However, we preliminarily want to convince the reader that
the range of variability of J̄ for the case under study N = 20 is quite narrow. First of all,
we can exclude the case J̄ = 1, since otherwise we would consider every jump that occurs
on the market as potentially systemic. On the other side, if we fix J̄ , by definition then we
would consider the events which involve J < J̄ jumps as likely occurrences. As shown by
the bootstrap experiment in Section 4.2, the probability associated with events involving more
than two stocks is extremely low, and this would fix J̄ = 3. However, the null represented
by the bootstrapped data is too extreme, since it does not take into account any effect of self
excitation. Heuristically, we conclude that J̄ ' 4.

We now present a rigorous procedure that supports the above heuristic argument. To each
stock in our sample we associate a finite number of event times {tsi}, where s = 1, . . . , N and
i = 1, . . . , ns label the assets and the asset specific jumps, respectively. In equivalent terms,
each asset is characterized by a counting function N s

t , and ns = N s
T is the realized number of

jumps of the stock s. According to the procedure of jumps’ identification, the tsi ’s are measured
in minutes and take only integer values running from one to T . A counting process N s

t is
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associated with an intensity function Ist defined by

P (N s
t has a jump in [t, t+ ∆t]|Ft) = Ist ∆t ,

for ∆t→ 0+, where P stands for the probability and Ft corresponds to the history of the process
up to present time t. We then assume that the counting processes which describe our assets
correspond to N independent univariate Hawkes processes and estimate the parameters which
characterize the intensities Ist for s = 1, . . . , N via maximum likelihood. We fix ∆t equal to one
minute and via Equation (8), for each t = 1, . . . , T , we can compute the vector of probabilities
pt =

(
p1t , . . . p

N
t

)′
=
(
I1t ∆t, . . . , INt ∆t

)′
. We test if the number of jumps that we observe at time

t is compatible with the cross independence among the processes. Under the null hypothesis,
the discrete probability of the event Jt = j reads

P (Jt = j) =
∑

1≤l1<...<lj≤N

pl1t . . . p
lj
t

∏
k∈{1,...,N}\{l1,...,lj}

(
1− pkt

)
.

Since we repeat the test T times, we adjust the significance level with the Bonferroni’s correc-
tion. If at time tF we reject the null, we attribute the event to a systemic shock, and we remove
it from the set {tsi}. The procedure has to be iterated as many times as required in order to
remove all the systemic jumps.

In Table 7 we detail the results of the identification procedure of the systemic factor per-
formed on our data set for the significance level 1%. We report the values of the event times
{tFi } identified at each iteration, and the associated threshold values J̄tFi = minj{j : P(JtFi >
j) ≤ 0.01/T}. It is worth noticing that the typical value of the time varying threshold is close
to four, as anticipated. Moreover, in order to better clarify our procedure, we comment more
extensively the case of the event times {30036, 30037, 30038} corresponding to the dates May
5th 2012 {13.01, 13.02, 13.03}, when we measured three events which had involved 20, 6, and
3 assets, respectively. The systemic shock which happened at 13.01 is an extreme event which
triggers all the assets. During the first iteration of the algorithm, it is correctly identified,
however his shock propagates via the self-exciting kernels to the minutes in the near future
and affects the intensities of all the N point processes. For this reason, the event happening
at 13.02, when six assets cojumped, is not recognized as extreme. When the first iteration
is completed and the event at 13.01 is removed, we recalibrate the N Hawkes processes and
proceed with a second iteration. This time the event at 13.02 is successfully identified, but
again its effect may condition the time points which follow, as confirmed by the third iteration.

The advantages of the above procedure are manifold. Specifically, the set of events {tFi }
with i = 1, . . . , nF identifies the proxy of the common factor, but not less important each
reduced set {tsi′} ⊆ {tsi} for s = 1, . . . , N and i′ = 1, . . . , ni′ corresponds in a natural way to
the idiosyncratic component. The latter result represents a second major improvement with
respect to the bivariate model. Moreover, the entire procedure is easy scalable, since it does not
depend critically on the dimension of the portfolio. Last, but not least, we are not a priori fixing
the nature of the point processes which describe the factor and the idiosyncratic components.
We can apply the log-likelihood approach described in 6 to the univariate sequence of the event
times, fix the value of the parameters of the factor, λF , αF and βF , and of the idiosyncratic
components, λs, αs and βs, for s = 1, . . . , N , estimate the associated p-values, and, eventually,
if it is the case, reject the Hawkes process in favour of the Poisson description.

To sum up, the multivariate model describes the extreme events which occur in a portfolio
of stocks as a superposition of systemic shocks, propagating to the s-th asset with probability
p̃s, and jumps specific of the single assets. In order to estimate the vector of probabilities
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p̃ = (p̃1, . . . , p̃N)′, we replace the system of equations given by (9), with the new relations

p̃1
λF

1− αF/βF
T = n1 − n1′ ,

...

p̃N
λF

1− αF/βF
T = nN − nN ′ ,

where λFT/(1−αF/βF ) corresponds the average number of factor’s jumps. The above equations
force the expected number of cojumps among the factor and the s-th stock to balance the
realized number of shocks.
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Figure 10: From the top left clockwise: MJ probability test under N factor model null for the
asset Generali; CJ probability test for the pairs Generali-Mediobanca, Generali-Banca Popolare
Milano, and Generali-Intesa Sanpaolo.

We test our model on the data set of twenty stocks analysed in the first part of this paper, and
we show in Figure 10 the results of the tests performed over the assets Generali, Mediobanca,
Banca Popolare di Milano, and Intesa Sanpaolo. The plots confirm the ability to capture both
the self and the cross dependence among jumps, which is a remarkable feature of a factor model
easy to implement and calibrate on the data. Moreover, by construction, the model is genuinely
scalable, and this fact makes it a viable alternative to more sophisticated but computationally
complex models. In Table 8 we present the value of the parameters of the common factor, with
the associated standard errors and p-values. From the measured confidence for the scale and
decay length we can reject the null hypothesis of a Poisson model. In Table 9 we report the
remaining parameters for the idiosyncratic components.

It is important to notice that we have performed a Monte Carlo experiment by drawing
NMC = 103 scenarios with the values given in Tables 8 and 9 and we have then re-estimated
the parameters on each copy. This experiment has shown that the entire procedure is quite
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Hawkes factor

λF (2.0± 0.2)× 10−3, p-value: < 0.001
αF (4.9± 1.9)× 10−2, p-value: 0.0105
βF (3.3± 1.1)× 10−1, p-value: 0.0021

Table 8: List of the parameters of the common factor process.

robust, but the comparison with the process NF
t , which is known in the artificial Monte Carlo

framework, evidences a systematic underestimation of the number of jumps of the common
factor. The mis-identification is due to the fact that even when the factor jumps, there is
always a small, but finite, probability that only a small number of assets below the detectability
threshold jumps too. In this case, our methodology does not detect a systemic event. The mis-
identification probability depends on the true values of (p̃1, . . . , p̃N), and for those fixed in the
Monte Carlo experiment, it amounts approximately to 7.5%. Nonetheless, the bias reduces
when the number of assets increases, and tends to zero for N →∞.

8 Conclusions and Perspectives

The detection techniques that we develop in Sections 2 and 3 show that a large number of
jumps is present in financial time series. Even though the identification process of the extreme
events suffers from some dependence on the details of the detection method, we believe that
the idea of intersecting the different methodologies partially amends this drawback. Relying
on the correct identification of jumps, we find that, as far as individual stocks are concerned,
jumps are clearly not described by a Poisson process. The evidence of time clustering can
be accounted for and modelled by means of linear self-exciting Hawkes processes. Moving
to a cross-sectional perspective, we identify a significant number of systemic events, especially
simultaneous cross jumps, that can not be reduced to a purely random effect. We have provided
quantitative arguments against the idea of modelling this effect in terms of multidimensional
Hawkes processes. The simultaneity of events is not captured by this class of point processes,
and the increase of dimensionality of the parameters space associated with the multivariate
model is discouraging. In Section 7.2 we propose a one factor model which is able to describe
the main features that characterize the departure from a random behaviour of jumps, namely,
the time clustering of jumps on individual stocks, the large number of simultaneous systemic
jumps, and the time lagged cross excitation between different stocks.

This work opens interesting perspectives for future research. It would be of great interest to
see whether these results would be confirmed by repeating the analysis on a wider collection of
assets. Promising directions could be enlarging the number of investigated stocks, extending the
analysis to other markets, or also considering different but related securities, such as equities,
futures, options and all derivative products. Another extension of this work could be the study
of the properties of jumps for a given group of securities in different periods, to assess for
example whether changes in the regulations of a market have an impact on the happening of
systemic events.

It would also be interesting to understand to what extent the jump detection procedure that
we use in this work is sensitive to the choice of building returns from last executed prices. Other
possible choices for a comparison could be employing ranges in place of returns or building the
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latter from the mid price. The latter possibility deserves particular attention, since the mid
price is always defined and there would not be any of the problems we face with the missing
observations of executed price. In this context, deeper research could be made on the frequency
of data sampling, an issue we never discuss in the present study.

Moving from a descriptive point of view to one that investigates the origin of the behaviour
of jumps and cojumps, the research direction we consider more promising is the study of the
order book in proximity of extreme systemic events, that is, cojumps involving a large number
of assets. The perspective to take should be to explore the cross direction at a fixed time,
more than the time direction for a single asset. The bid-ask spread, the depth of the book, the
asymmetry of buy and sell volumes are all quantities whose dynamics may reveal interesting
features related to systemic events.

The high level of synchronization between the jumps of different assets that we empirically
observe in our data calls for possible explanations. Even if our paper is mainly methodological,
we believe that some comments are needed in order to explain this fact observed in (modern)
financial markets. Financial markets are becoming increasingly interconnected at a high speed
due to several reasons, first of all the increased automation of the trading process and of the
information processing. High frequency trading strategies, statistical arbitrageurs, hedging
strategies could be partly responsible of the large number of cojumps we observe in our sample.
Certainly, we believe, a proper modelling of the jump process in a systemic context is important
for regulators and for investors in order to assess in a reliable way the level of risk of a market
or of a large portfolio of assets.
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A Data Cleaning

A.1 Outlier and split/merge detection

To detect and remove anomalous values (often referred to as outliers) that may be present in
recorded data, we use the cleaning algorithm proposed by Brownlees and Gallo in [43]. The
algorithm identifies the price records at tick-by-tick level which are too distant from a mean
value calculated in their neighbourhood. More precisely, a price observation pi is regarded as
anomalous and removed if

|pi − p̄i(k)| ≥ c si(k) + γ,

where p̄i(k) and si(k) denote respectively the δ-trimmed sample mean and sample standard
deviation of the closest k observations around i, c is a constant which amplifies the standard
deviation and γ is a granularity parameter useful in the case of k equal prices producing a zero
variance. We take k = 60, δ = 10%, c = 3, γ = 0.05.

A forward stock split (or, simply, a stock split) is an operation consisting in an increase of
the number of shares of a company and in a simultaneous adjustment of the price so that the
market capitalization of the company remains the same. A reverse stock split (also called a
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Figure 11: The distributions of intertrade times for stocks Fiat (left panel) and Telecom Italia
(right panel).

stock merge) is the opposite operation, leading to a decrease of the number of shares and to a
corresponding increase of the price. A split is m-for-n if m new shares are released for every n
old ones, with a simultaneous price change from p to p n/m.

A.2 Volatility auctions

According to the rules stated in Rules of the markets organised and managed by Borsa Italiana
S.p.A. and Instructions accompanying the Rules of the markets organised and managed by Borsa
Italiana S.p.A. ([44, 45]), whenever a stock’s price gets too far from a reference value, Borsa
Italiana is obliged to start a volatility auction phase. During this phase, which has a duration
between 10 and 11 minutes, trades are suspended and a new reference value for the price is
sought. Possibly, if no valid price is reached during the volatility auction phase, another such
phase starts immediately after the first one and so on. We treat all intertrade times of at
least ten minutes as volatility auction periods (the distributions of intertrade times shown in
Figure 11 suggest this is correct) and consider as not available the returns at the sampling times
falling in these periods. In Figure 11 we report the empirical distributions of the intertrade
times for the assets Fiat and Telecom Italia. In both histograms we can easily recognize the
presence of volatility auctions, which manifests in terms of the peaks appearing on the far right
tail in correspondence of intertrade times close to the multiples of eleven minutes.

A.3 Intraday pattern

We filter out the intraday volatility pattern from returns by means of a simple model with
intraday volatility factors. Returns at intraday time t are rescaled by a factor λt, which is
calculated as the average, over all days, of adjusted absolute returns at time t. More precisely,
if r̃d,t is the raw return of day d and intraday time t, we define the rescaled return

rd,t =
r̃d,t
λt
,

where

λt =
1

Ndays

∑
d′

|rd′,t|
sd′

,

with Ndays indicating the number of days in the sample and sd′ the standard deviation of
absolute intraday returns of day d′.
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Figure 13: Autocorrelation of absolute returns of Monte dei Paschi di Siena before and after
filtering the intraday volatility pattern.

We show in Figure 12 the intraday volatility pattern (that is, the factors λt) for Monte
dei Paschi di Siena. We notice that, although the profile is somewhat noisy because of the
relatively small number of days on which the average pattern is calculated, a clear change in
average intraday volatility is identifiable around time 15:30, that is, when the New York Stock
Exchange opens. In Figure 13 we show the effectiveness of the procedure of removing the
seasonality at daily level, through the plot of the autocorrelations of absolute intraday returns.

A.4 Volatility proxy

For estimating the local volatility, we use the realized absolute variation and the realized bipower
variation [55, 47]. Let the logarithmic prices p(t) be generated by a process

dp(t) = µ(t) dt+ σ(t) dW (t), (10)

with µ(t) a finite variation process, σ(t) a càdlàg volatility process, W (t) a standard Brownian
motion. Let the interval [0, t] be divided into subintervals of the same length δ and denote by
ri the return p(iδ) − p((i − 1)δ). Then the following probability limits hold for the realized
absolute variation and the realized bipower variation:

p− lim
δ↘0

δ
1
2

bt/δc∑
i=1

|ri| = µ1

∫ t

0

σ(s) ds,
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p− lim
δ↘0

bt/δc−1∑
i=1

|ri||ri+1| = µ2
1

∫ t

0

σ2(s) ds, (11)

where µ1 = E(|u|) =
√

2
π
' 0.797885, u ∼ N (0, 1). The asymptotic result (11) continues

to hold when a jump component is added to the continuous process (10). However, for finite
δ, price jumps are a source of bias in estimation of volatility through the realized bipower
variation. A solution to this problem is to use the threshold bipower variation (see [7]), which
takes into account only returns smaller than a certain threshold. We follow this idea and
estimate volatility through returns which are not identified as jumps, that is, returns whose
absolute value is not larger than 4 times the local volatility. Using exponentially weighted
moving averages instead of flat ones, our estimators are recursively defined by the equations

σ̂abs,t = µ−11 α|rt′ |+ (1− α)σ̂abs,t−1,

where t′ is such that t′ ≤ t− 1,
|rt′ |
σ̂abs,t′

≤ 4 and |rτ |
σ̂abs,τ

> 4 for each t′ < τ < t, and

σ̂2
bv,t = µ−21 α|rt′′ ||rt′ |+ (1− α)σ̂2

bv,t−1,

where t′′ and t′ are such that t′′ < t′ ≤ t − 1,
|rt′′ |
σ̂bv,t′′

≤ 4,
|rt′ |
σ̂bv,t′

≤ 4 and |rτ |
σ̂bv,τ

> 4 for each

t′′ < τ < t′ and for each t′ < τ < t. The value taken for the parameter of the exponentially
weighted moving average is α = 2

M+1
, with M = 60, corresponding to a characteristic time of

30.5 minutes.
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Financial Economics, vol. 96, pp. 271–290, 2010.
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