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Abstract 

The focus of the present study was on the spray characterization of an outwards 

opening pintle-type injector to be used for spray-guided direct injection spark-ignition 

(DISI) engines. This spray-guided approach requires excellent spray performance and 

stability over a wide range of operating conditions. To achieve these goals it is 

necessary to have a good understanding of the internal nozzle flow and its link with 

the spray characteristics. In particular, the knowledge of the in-nozzle two-phase flow 

structure (air entrainment and cavitation), the spray development (spray angle, 

penetration and recirculation zones) and droplets velocity and size distribution is 

essential. Therefore, this study was planned and carried out in three main phases: 

The first phase of the investigation was focused on a comprehensive study of the 

internal flow of the injector in order to understand not well-clarified flow/spray 

phenomena such as the longitudinal string formation and the spray-to-spray variation 

(flapping) which play a very important role in the behaviour of the overall spray

guided DISI system. To overcome the problems related to the small dimension of the 

injector and its optical accessibility, an enlarged transparent model about 23 times the 

real size injector was manufactured. Quantitative flow analysis performed with the 

Laser Doppler Velocimetry (LDV) technique was matched with 3D Mie scattering 

visualization to provide full information about the internal flow behaviour and allow 

correlation of the flow upstream and downstream of the nozzle exit. 

Th~ flow between the needle guide and the nozzle seat in the enlarged injector 

consisted of four liquid jets and four pairs of unstable counter rotating vortices which 

were found to be responsible for the tangential oscillation of the flow downstream of 

the nozzle exit. The emerging hollow cone spray exhibited a string type structure 

similar to that of the real size injector with the string spacing depending on the flow 

velocity. The origin of these strings has been attributed to the formation of a two

phase flow inside the nozzle due to flow separation just upstream of the nozzle exit 

giving rise to air entrainment in the form of small bubbles. The presence of these 

bubbles in the nozzle outlet was correlated with the exiting flow and the formation of 

large longitudinal strings. The initiation and development of cavitation at the nozzle 

seat was also identified and was found to enhance the spray breakup and droplet 

atomisation. 

The second part of the investigation was focused on the spray characterization of the 

real size injector by 3D Mie scattering visualization and a parametric study of the 



velocity field and droplet size by Phase Doppler Anemometry (PDA), Particle Image 

Velocimetry (PIV) and LDV measurements. The post processed data have 

characterised the string-to-string velocity a droplet size distribution as a function of 

injection and backpressure, injection duration, chamber temperature and pintle needle 

lift. An alternative arrangement set up made it possible to overcome problems 

associated with the signal attenuation due to the high spray density and also allow 

characterisation of the internal and external spray recirculations where ignition takes 

place. By introducing very low velocity atomized water mist against the spray, the 

velocity field of the air entrainment around the nozzle exit of the injector was 

measured and showed the flow development during the spray injection process which 

may influence the string instability and contribute to the primary droplet break up 

phenomenon. Validation of the results concerning recirculation and air entrainment 

was obtained by a PIV investigation. 

The performance of three prototype pintle-type injectors having different nozzle exit 

designs was investigated and, in particular, the interaction of the spray with the in

cylinder flow was observed by mounting the injectors in an optical engine and 

visualizing the effects of the injection and engine parameters on the spray stability, 

spray angle variation and spray flow recirculation. Overall, the classification of the 

three prototypes has shown that the Inward Seal Band positive step design produced 

the most robust spray angle which is ideally suited for stratified fuel mixture 

formation in spray-guided configurations for DISI engines which offer promise for 

outstanding efficiency and reduced C02 emissions, approaching the levels of 

passenger car diesels. 
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Chapter 1. 

Introduction 

1.1.MoTIV ATION 

This study covers the experimental work carried out at City University in 

collaboration with Siemens and BMW AG during a period of 3 years in which it was 

studied the in-nozzle flow and spray characteristics of the Siemens pintle-type injector 

expected to be used by BMW AG for its 3rd generation spray-guided DISI engines. 

The topic became the focus of many car manufacturer and related industries research 

activities which involved many research centres and Universities all around the world 

in the effort of developing more efficient and environmentally friendly propulsion 

systems. At the current situation, the direct injection spark-ignition (DISI) engines are 

probably among the top solutions to achieve a significant improvement in terms of 

fuel efficiency and power output without radically moving away from the internal 

combustion technology. Such a result was achieved by controlling the amount of 

injected fuel at part load and directing the ignitable mixture around the spark plug 

area. Half of the last century improvements in stratified charge technology were 

necessary to move to the next step in fuel injection. While this technology had been in 

use for many years in diesel applications, the continued dependence on expensive 

(and somewhat imprecise) mechanical injection systems prevented its wide spread use 

in gasoline-powered passenger cars. One notable exception to this was the 1955 

Mercedes Benz 300 SL which used a very effective, though extremely costly, 

mechanical gasoline injection system. After a long path of investigation on the direct 

injection system started in the beginning of the century, finally the technology was 

mature to develop a reliable DISI engine. Many other solutions have been object of 

studies in the past decade but still the optimum stratified charge at part load has not 

been achieved completely. In the earliest DISI models, the stratification was a~hieved 

by wall guiding the injected fuel, redirecting the mixture by piston impingement. 

However, it was seen that the fuel film produced by the impingement was producing 

liquid film with an increase of unburned HC and emissions. As the target of most of 

the automotive companies are strictly ruled by environmental laws it was fundamental 

that alternative solutions have to be developed. 

In the latest decades the Kyoto Protocol stated that the industrialized countries have to 
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reduce their collective emissions of greenhouse gases by 5.2% compared to the year 

1990 (note that, compared to the emission levels that would be expected by 2010 

without the Protocol, this target represents a 29% cut)[I]. The goal is to lower overall 

emissions of six greenhouse gases - carbon dioxide, methane, nitrous oxide, sulphur 

hexafluoride, HFCs, and PFCs - calculated as an average over the five-year period of 

2008-12. National targets range from 8% reductions for the European Union and 

some others to 7% for the US and 6% for Japan and permitted increases of 8% for 

Australia and 10% for Iceland. The next step in the improvement of DIS I technologies 

would benefit the fuel consumption and in addition would decrease considerably the 

emission in the sphere of a more and more worrisome and important issues like the 

level of petroleum reserves, and the reduction of C02 as one of the greenhouse gases 

contributing to the global warming [Kyoto Protocol, [1, 2] 

The recent developments on the direct-injection systems put a strong effort in the 

achievement of the stratified fuel charge by spray-guided mode which gives relevant 

benefits in terms of efficiency, power output and above all gas emissions[2]. The 

spray-guided injection removes the fuel film formation that was causing problems in 

the previous DIS I generation, and it provides the fuel mixture cloud uniquely by the 

characteristics of the spray which it produces the necessary fuel atomisation and it 

places the stoichiometric cloud around the ignitable area. The task covered by the 

injector thus becomes more demanding and complex and it requires specific technical 

characteristics that are still under investigation in most of the direct injection projects. 

The purpose of this investigation is to give a contribution in understanding relevant 

issues regarding the spray-guided technology for pintle-type injector leading toward 

the completion and optimisation of a more efficient and clean combustion technology. 

The pintle-type injector used in the present study is a new injector designed by 

Siemens based on new concept of nozzle geometry and needle opening and it needs to 

be characterized in terms of stability, spray shape, atomisation and more generally in 

the flow dynamics that rules its behavior under different parametric conditions. 

In order to observe the complete behaviour of the injector the study was undertaken in 

three stages: at first, it was analyzed the internal nozzle characteristic by observing the 

flow behaviour in a large-scale transparent model. It followed the analysis of the 

spray in the real size injector tested in a constant volume chamber first and then in an 

optical engine later. 
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1.2. INTRODUCTION 

Taking a brief look at the history of internal combustion engines it can be seen how 

engines evolved rapidly through time from the first internal combustion engines such 

as the steam-powered and coal powered engines to the recently and most commonly 

used spark-ignition and compression-ignition engines, then finally, to the latest 

engines powered by electricity, hydrogen cells and other fuels [1]. These 

achievements have been obtained after years and years of experimentation, trials and 

testing, from scientists and engineers. These engines will continue to be developed as 

our knowledge and understanding of engine processes has increased, as new 

technologies have become available, as the demand for more efficient engines has 

arose and as the enormous constrains imposed by stringent emission regulations has 

called for radical changes in the automotive productions throughout the world. The 

industries designing, developing and producing internal combustion engines play a 

significant role in the fields of power, propulsion and energy. In recent years the 

growing awareness of environmental issues has seen an explosive growth in engine 

research and development as the need to conserve limited fossil energy resources and 

the issues of pollution, fuel cost~, and market competitiveness have become 

increasingly important. The strict requirements to lower pollutant emissions alone has 

caused a significant shake up in the automotive industry as leading companies such as 

Mitsubishi, Ricardo, Toyota, Mercedes and BMW alone have poured enormous 

amounts of money in researching new engines that will meet today's Euro 5 and 

tomorrow's emission regulations. European Union plans to adapt a low carbon 

energy system that starts from its member states to commit themselves to lower their 

vehicle fleets' C02 emissions to a maximum average of 120g/km by 2012 as set by 

the E~opean Automobile Manufacturers Association (ACEA) [2]. To achieve such 

targets in terms of emission a big effort has been put on the development of more 

efficient injection systems. The success of its development is mainly due to the high 

contribution of the electronic technology which permitted a more effective and 

flexible control of metering issues. 

1.3. PRE EMISSION PERIOD 

History of pre emission periods ofIC engines has been given in many literatures and a 

full history is given in Wikipedia [http://en.wikipedia.org/wikilFuel_injection]; here a 
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brief history of the events is provided. The first experiments about fuel injection were 

carried out by Frederick William Lanchester by the Forward gas Engine Company 

Birmingham in the 1889. Until the 1920s fuel injection was employed commercially 

in Diesel engines and during World War II it was adapted for use in petrol-powered 

aircraft. Direct injection was employed for the first time in some notable design like 

the Daimler-Benz DB 603 and later on the version of the Wright R-3350 used in the 

B-29 Superfortress. 

The very first commercialised direct injection system mechanically controlled was 

developed by Bosh and introduced in 1955 on Mercedes-Benz 300SL. 

This new injection system, a first in any gasoline-powered car allowed a top speed of 

260 Km/h depending on gear ratio, making the 300SL the fastest production car of its 

time. 

Another mechanical fuel injection design was introduced by Chevrolet in 1957 and 

was developed by General motor' Rochester division for its 283 V8 engine. In this 

model, the intake air was directed across a "spoon shaped" plunger, which was 

displacing proportionally to the air volume. The plunger is connected to the metering 

system and it mechanically dispensed fuel to the cylinders through distribution tubes. 

In the 300SL design, Mercedes adopted six individual plungers to delivery fuel to 

each of six cylinders. 

In the 1960s, other injection systems mechanically controlled such as Hilborn were 

occasionally used on modified American V8 engines mainly in racing applications 

like oval racing, drag racing and road racing. However, these racing prototype system 

were not suitable for utilitarian streetcar use. In the 1957, Electrojector was one of the 

first electronic injection system developed by Bendix Corporation. AMC introduced a 

special edition Ramble rebel with a 288 horsepower engine (5400cc), optionally 

equipped with Electrojector. This was suppose to be the first electronic production of 

electronic fuel injector (EFI) but several teething problems caused the release of this 

model only in few cars so equipped and all retrofitted with-4 barrel carburettors 

before they were first commercialized. In the 1958, Chrysler offered Electrojector 

(DeSoto Adventurer) arguably the first commercialized production car equipped with 

throttle body and Electronic fuel injection system, but the early electronic components 

were too slow to keep up with the demands of "on the fly" engine control. The patent 

of the Electrojector system was then sold to Bosh which developed a new system 

called D-letronic and commercialized on the VW 1600TL in the 1967. This injector 
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system was adopted by Mercedes-Benz, VW, Porsche, Saab, Citroen, and Volvo; it 

consists in a speed/density system which uses engine speed and intake manifold air 

density to calculate "air mass" flow rate and thus fuel requirements. The system used 

mainly discrete electronics, analog, and electro-mechanical pressure sensor. In the 

1974, the K-Jetronic and L-Jetronic systems superseded the D-Jetronic (apart from 

several cars such as Volvo164 which continued with the D-Jetronic and Cadillac 

which adopted a similar copy of D-Jetronic) which first appeared on the 1974 in the 

Porsche 914. The working principle of such a design differs from the D-Jetronic 

equipped with a mechanical air flow meter which gives an output signal proportional 

to the air volume. To calculate the air mass, the flow meters required additional 

sensors to evaluate the atmospheric pressure and temperature. L-J etronic was 

distributed in large-scale on the European market of that period and a short time later 

also in few Japanese models. 

1.4. EARLY FUEL METERING SYSTEMS 

Since the earliest spark-ignition engines prototypes, the fuel metering systems went 

through a long process of modifications and development which enhanced 

significantly the engines performance.'" 

Before the advent of the largely diffuse electronic fuel injector (EFI) the carburetors 

was the primary method to meter fuel. Nevertheless, widespread variety of injection 

systems have been developed since the earliest models of spark-ignition engines. 

1.4.1. Carburetor 

A good history of the development of this device is given in Wikipedia 

[http:/(en.wikipedia.org/wikilCarburetor.] and here a brief review is provided. 

Carburetors were employed in the earliest gasoline engine to blend fuel and air to be 

introduced in the combustion chamber. It was designed by Hunganan scientist Donat 

Banki and Janos Csonka in 1893 and successfully developed by Frederick William 

Lanchester' and his brother who incorporated the complete version in a 1 OOO-mile. tour 

in the 1900 contributing to an important step forward in automotive engineering. 

For, specialised automobiles such those designed for stock car racing and small 

engines, ~arburetors are sill employed mainly due to its economical convenience, and 

also the majority of motorcycles are still carbureted even though since 2005 the new 

, models are gradually being introduced with fuel injection. The majority of carbureted 

engines use a single carburetor, only few exceptions employ multiple carburetors. The 
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earliest carburetors were designed according to an updraft drawing which allowed the 

air to be drawn in from the bottom of the carburetor and exiting through the top. The 

advantage of such a design consisted in preventing the engine from being flooded by 

fuel droplets falling out of the carburetor instead of into the intake manifold. It gives 

also the possibility to be matched with an oil bath air cleaner, which was employed 

when yet the paper air filter did not exist. Since the 1930s, downdraft carburetors 

were the most diffuse type in United States whereas in Europe, for reason of free 

space in the engine bay, the side craft model substituted the downdraft. Few small 

propeller-driven aircraft engines still utilize the updraft type, however the latest 

design have used a more modem device as for example the CV Bing model. 

B 

D 

A:Alrhorn 
B: (hok~ plat~ 
(: Ext~rnal bowl vent 
D: Choke pull-off 
E:Throttl~ body & mounting base 
f: float bowl 
G: fuel inlet 
H: Idle mixture adjusting screw 
J:Vacuum nippl~s 
K: f ast-Idl~ cam 
l: Throttle lev~r 
M: Idl~ speed adjusting crackscrew 
N: Internal bowl vent 

K 

Figure 1-1 Carburetor: schematic [http://en.wikipedia.org/wikilCarburetor.] 

J 

The working principle of the carburetor is based on the law of Bernoulli which uses 

the increase of air velocity to create a drop of pressure. The throttle valve does not 

directly control the fuel amount but only the mechanism which meter the mixture 
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being inhaled into the engine. The speed of the flow therefore determines the fuel 

ratio drawn into the air stream. 

The main tasks of a carburetor are the followings: 

• Meter the airflow of the engine 

• Deliver a stoichiometric air fuel ratio in a range adjusted according external 

factors (such as atmospheric pressure and temperature) 

• Prepare a fine and even mixture between fuel and air 

Because of the deviation from the ideal fluid behaviour of air and gasoline then the 

viscosity, drag forces and flow momentum are actually quite distant from the actual 

values and vary significantly according the engine working conditions and the 

ambient parameters. Despite these deviations, the carburetor must provide the 

stoichiometric fueVair mixture through the wide range of the aforementioned 

variables, cold and hot start, idling or part load, acceleration, high or low speed close 

or full open throttle. In addition, modem carburetors are required to work within these 

parameter ranges while maintaining low rates of exhaust emissions. 

To undertake correctly such a strict requirement the carburetors contain a complex set 

of mechanism to support all the operating condition and engine modes. 

AIR Basic Carburetor 
(Cross Section) 

Air Cleaner 

Arm 

Figure 1-2 Carburetor working principles [http://en.wikipedia.org/wikilCarburetor.] 
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A carburetor is composed of a pipe (throat or barrel) through which the air passes to 

the cylinder manifold. The throat presents a Venturi shape with a narrow section in 

the middle where the airflow increases in speed. The throttle valve is located below 

the Venturi and is a rotating disc, which allows the airflow passes trough according is 

opening angle that can vary from 00
, for close throttle, to 900

, for wide-open throttle 

(WOP). Controlling the airflow through the carburetor throat and thus the Fuel/air 

ratio it regulates the engine power and the speed. Through calibrated bores at the 

Venturi location, fuel is sucked by the pressure drop produced by the airflow passage. 

As the throttle varies the opening angle and consequently the air velocity increases the 

fuel flow responds to the variation of pressure drop adjusting by means of the 

calibrated orifices, referred to as jets, in the fuel path of Figure 1-2. The minute air 

pressure difference emulsify (premix fuel with air) the fuel, and then acts as the force 

to push the mixture from the carburetor nozzle into the induction air stream. As more 

air enters the intake, a greater pressure drop is generated, and a bigger amount of fuel 

is metered into the cylinders. 

In the 1980s, a new device that could adapt the base mixture according the signal 

response from a gas Oxygen sensor placed in the exhaust was introduced in the 

American-market vehicles. Due to the low cost and the practical adaptability to the 

existing carburetor, it was distribute for a decade until the hardware prices and the 

improvement of the electronic technology promoted the diffusion of the fuel injection. 

Since the 1970s and 1980s, the increasingly stringent US regulation on emissions 

forced the automotive companies to modify the carburetors with more and more 

complex and expensive equipment. Such a situation was thus eroding the original 

advantages of simplicity and cost that carburetors had offered since its introduction in 

the automotive market. In contrast with the carburetor in the 1950s the first fuel 

injection appeared for the first time on American-made cars (the Rochester Fuel 

Injected Chevrolet) Corvette, manufactured from 1957 till 1965) and it was produced 

in Europe in the 1960s and distributed in the market in the 70s and 80s at an 

accelerating rate, with German and American markets leading whereas the 

Commonwealth and UK markets delayed its diffusion until the early 1990s. Since 

then, almost all gasoline passenger cars distributed in the markets of US, Europe, 

Japan, Australia were equipped with electronic fuel injection (EFI). 
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1.4.2. Fuel Injection 

The characteristics of a fuel injector can vary considerably for the different systems 

still having the common task of supplying fuel for the combustion process [3]. 

However, the differences on the designs can playa significant role in the optimization 

of the injector performance such as: 

• Power output 

• Fuel consumption 

• Emissions performance 

• Possibility to employ alternative fuels 

• Cost 

• Maintenance cost 

• Diagnostic capability 

• Range of environmental operation 

Unfortunately, not all these targets are achievable simultaneously since most of them 

are in conflict with each other. The optimization of these criteria requires a tough goal 

and the recent digital EFI systems can fulfil its objectives much more competitively 

than a carburetor. 

Fuel Injector 
(Cross Section) 

Atomised Fuel 

. Solenoid Components .Fuellnjector Assembly 

Figure 1-3 Fuel Injector scheme [http://en.wikipedia.org/wikilFuel_injection] 
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In order to achieve the desired engine performance of driveability, efficiency, and of 

emission, the air/fuel ratio in an engine must be accurately controlled in a wide range 

of operating condition [2, 4]. The recent EFI system has the ability to meter the 

injected fuel very precisely and their accuracy is even increased when they are 

matched with an Exhaust Oas Oxygen Sensor (EOO Sensor). The distribution of 

digital fuel control in a closed loop, based on feedback from an EOO, sensor certainly 

marked the superiority of EFI in the comparison with the carburetor. 

The two main improvements are: 

1. The amount of fuel distributed in the several cylinders can be equally metered 

resulting in a significantly improving on the cylinder-to-cylinder fuel 

distribution of the engine 

2. The engine response time to a sudden throttle change is very short 

The effects of the aforementioned improvements lead to the following benefits: 

Exhaust Emissions reduction 

Significantly reduced feed gas emissions (which are the combustion products) and in 

the final tailpipe (combustion gas rate 99.9%) the feed gas are properly conditioned 

according to a stoichiometric condition in order to make the catalyst as effective as 

possible. 

Engine Operations 

Improved performance at engine starting and at extreme weather condition, smoother 

response at a quick throttle variation and control of the amount of fuel injected to 

match the engine's needs across a wide range of operating conditions such as engine 

load, ambient air temperature, engine temperature, fuel octane level, and prevailing 

barometric pressure which leads to an overall decrease of the fuel consumption. 

Power Output 

The size of the carburetor is bigger in comparison with the injector size. In addition 

the restrictions due the limited mounting options to orient the carburetor according to 

the gravity and the necessity to keep a constant distance between the carburetor and 

each cylinder which can otherwise impose a restriction to the airflow into the engine. 

In contrast, the EFI system allows a high level of freedom in the intake system 

improving the air's path and thus the volumetric efficiency. A less significant reason 
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of pressure loss in the carburetor also occurs when the airstream flows into the narrow 

cross section of the Venturi duct that is no longer present in the EFI system. 

In general, the benefit in tenns of increased efficiency in a fuel injection system is 

much more significant than the carburetor due to the better atomisation which offers a 

more homogeneous fuel mixture. The improvement in the cylinder-to-cylinder fuel 

distribution produces a decrease in fuel consumption for the same power output. This 

concept can be explained by the mechanism of fuel supply and its effect in an 

unbalance cylinder-to-cylinder fuel distribution. In a non ideal case, where the power 

output is asymmetrical with respect to air/fuel ratio (which is even worse in the case 

of carbureted engine), some cylinders receive excess fuel as a side effect of ensuring 

that all cylinders receive sufficient fuel. The extra fuel burned in the rich cylinders 

does not affect the power nearly as much as burning too little fuel in a lean cylinder. 

However, in general the calibration is set to deliver extra fuel to lean cylinders or less 

fuel to the richer cylinders to provide stoichiometric air/fuel ratio to all cylinders. In 

this way, the net power output improves with all the cylinders at an optimised power. 

Another benefit of EFI is associated with a better fuel atomisation in the intake; 

constant-choke carburetors give poor atomisation at low air speed, needing particular 

design such as sequential twin-barrel. ' " 

The evolution of the injection system since the 1980s is quite significant. The modem 

Electronic Fuel Injection Systems provide a cost effective and accurate method of 

metering fuel. Subjective perfonnance and emission have improved with the 

development of the modern digital control. For this reason, by now the EFI systems 

have almost completely replaced the carburetor in the automotive market. 

EFI is more and more economically convenient and reliable through widespread 

usage. In contrast, carburetors are becoming less available and thus more expensive. 

As the reliability has improved, the EFI systems are diffusing even in marine 

applications and according this trend it is conceivable the possibility that all SI 

engines, including snow throwers and garden equipment, will eventually use EFI 

systems. 

Injection system components and function 

The process of metering which detennines the amount of fuel delivered into the 

engine was controlled in all early injection systems mechanically. Nowadays, almost 

all the current systems are electronically controlled and they use an electronic 
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solenoid to actuate the needle lift and so the injection event. The injected fuel mass is 

calculated by the engine control unit (ECU) which can be hardware based or recently 

also software based. The fuel is injected directly into the intake air stream and for a 

certain opening time an external pump is generally coupled to the fuel injection 

system controlled by the ECU to provide the right pressure to inject the mapped 

amount of fuel. The engine sensors (throttle position, lambda, engine speed, 

thermocouples, pressure sensors, etc.) acquire the parameters needed by the ECU to 

calculate by mean of mapped functions the amount of fuel to be injected and therefore 

the injector opening time. The optimum fuel amount depends on running conditions 

such as engine and ambient temperatures and pressure, torque, engine speed and 

exhaust gas composition. The pintle of the fuel injector is closed during idle phase 

and as soon as electricity flows through the solenoid, a force is applied to the needle 

which opens it to allow the injection. Alternatively, the needle may be actuated by 

piezo bodies which react to a voltage by changing their volumes producing the pintle 

displacement. The amount of fuel injected depends on the injector opening time 

which is proportional to the pulse width. The number of the injections may be 

controlled sequentially on each individual cylinder injection event, or according a 

batch fire system which supplies the p'ulses to groups of injectors. In the batch fire 

injection the ECU calculates the overall fuel quantity required by groups of cylinders 

and deliver a correspondent train of pulses to deliver that amount. In a sequential 

system, the amount of fuel is customised for each individual cycle. The fuel for each 

induction event, cylinder and injector is calculated separately and a different pulse 

width is introduced based on that specific fuel requirement. To perform these 

calculations, it is necessary to know the mass of air (engine breathes) during each 

cycle which is proportional to the intake manifold's air temperature/pressure, 

depending on the throttle angle. One of the targets of an optimized injection is to 

achieve a complete combustion in which all the carbon and hydrogen combined with 

the oxygen present in the air charge are fully reacted chemically. Such a condition can 

only be achieved if the fuel and air are present in a stoichiometric ratio, and the ECU 

uses this information to obtain such a ratio in real time. 

Since this ratio for gasoline is 14.64:1, the mass of fuel is equal 14.64 times the mass 

of air. Once the fuel mass is known the pulse width is calculated and sent to the 

injector driver to actuate the needle lift. In several particular conditions such as cold 

start or heavy load, the air-to-fuel ratio can range from 10:1 to 18:1 (for gasoline). 
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The pulse width is calculated taking into consideration the pressure drop upstream and 

downstream of the injector. If for example the injector pressure increases and lor the 

backpressure decreases, a smaller pulse width will supply the same fuel mass. 

Alternatively, a pressure regulator will provide a fix pressure drop through the 

injector leaving the injector opening the only parameter defining the fuel amount. 

Fuel injector are available in a wide spread range of size and spray characteristics and 

compensation for these and other factors are mapped in to the ECU's software. 
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1.4.3. Alternative Injector Schemes 

1.4.3.1. Throttle body injection 

As a transient device from the carburetor to Port Fuel Injection, general Motors and 

Ford introduced an injector system injecting in the throttle body in the same position 

where the carburetor introduced fuel. The air-fuel mixture flows through the intake 

runner like in a normal carburetor. 

Figure 1-4 Throttle body injection 

The main advantage of the TBI systems was the low cost, which permitted the 

adoption of many components still used in the carburetor system such as fuel line 

routing, intake manifold and air cleaner. This prevented the car companies from 

redesign further components until the next generation of fuel injection system known 

as EFI took over in the automotive market. TBI was employed in heavy-duty trucks 

and on passenger cars during the middle 80's until the 1995. 

1.4.3.2. Continuous Injection 

In 1974, the system Bosh'K-Jetronic was introduced in the car market and used for 

many years by Ferrari, Lamborghini, Mercedes-Benz, Ford, Volkswagen, Porsche, 

Volvo, Saab and Audi. It consisted in a system constantly spraying from the injectors 

rather than releasing a pulse during the intake strokes. Gasoline comes from the fuel 

tank to a fuel distributor which is a large control valve separating the tank from the 

single fuel injectors and each of them supplies fuel into smaller pipes, one for each 
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injector. The intake air must pass through a control vane located beneath the fuel 

distributor. According to the angle of air vane the system supplies fuel to the injectors, 

which are simply actuated by a spring loaded check valve with nozzle. The valve 

opens as soon as the pump pressurised the fuel at a pressure higher than the counter 

spring force. The variant to the K-Jetronic system was called KE-Jetronic with 

electronic trim instead of the mechanical pressure control that enabled the use of a 

catalytic converter. 

1.4.3.3.Central Port Injection (CPI) 

Another system introduced by general Motors was the Central Port Fuel Injection 

(CPFI) with the injector pack and assembly centrally located. The CPI system uses 

tubes with poppet valves from a central injector to spray fuel at each intake port rather 

than the central throttle-body. When the pressure inside the lines reaches the opening 

pressure of the poppet valves (43 psi), fuel sprays out of the nozzles into the engine's 

intake ports. Thus injecting in each intake port, on the cylinder heads, the manifold 

tuning valve regulates the airflow depending on rpm, Manifold Absolute Pressure 

(MAP) and Throttle Position Sensor (TPS) to open the valve to full flow and help the 

breathing when the throttle position is above 36%. The first CPI fuel injection intakes 

1992-93 had this valve controlling the full flow of the air in the fuel injection intake, 

excluding the Cyclone and Typhoon models. This type of injection is a batch fire, 

speed density, fuel injection which also refers to as "Central Multi-point Fuel 

Injection" (CMFI). However, fuel is continuously injected to all ports simultaneously, -

which is less than optimal besides this system presents a high failure rate. 

1.4.3.4.MtiItipoint fuel Injection (MPFI) 

The Multi-Point Fuel Injection system differs from the central port injection system 

from the injection position which is located into the intake port just upstream of the 

cylinder's intake valve rather than within an intake manifold like the CPI system. 

MPFI can be sequential, batched or Simultaneous. In the first case, the injection is 

timed and synchronized with each cylinder intake stroke whereas in the Batched 

design, the injected fuel does not have any synchronization and is injected into the 

cylinder in groups without precise synchronisation to any particular cylinder's intake 

stroke. Finally, in the Simultaneous design, the fuel is injected at the same time to all 

the cylinders. 
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From the 1970s to the early 90, several Toyota's and other Japanese cars employed a 

multipoint L-Jetronic system manufactured under licence by DENSO which uses a 

vane-type Air Flow Meter (AFM). 

1.S. EMISSIONS IN INTERNAL COMBUSTION ENGINES 

In the 1975, the Californian State (California's Air Resources Board, CARB) issued 

new stringent emission rules and regulations, which required a dramatic reduction of 

exhaust gases. It included three components of regulation: (1) emissions regulation, 

(2) zero-emissions vehicles mandate, which requires approximately 40% of all 

vehicles sold in the state to certify to the zero-emissions vehicles standards, and (3) 

C02 regulations. The only feasible solution to achieve a satisfying emission reduction 

was the development of the catalytic converter. Only recently, General Motor has 

developed the automotive exhaust catalyst and rushed this new technology into 

production. 

The emissions of an engine playa key defining part in any engine concept. Emissions 

in today's world are one of the main drivers of the automotive industry'S funding and 

development of engines. In fact, it has alrriost become an obsession with the industry, 

as it is a key step for the success of any new engine. All engines at present undergo 

intense scrutinising in terms of emissions before they enter the market. It has become 

the main policy for many countries to reduce emissions, which are included in many 

current regulation standards. (Kyoto, EUROI-6,ACEA, etc.). 

The emissions that play the biggest role in internal combustion engines are 

Hydrocarbons (HC), nitrogen oxides (NOx), Carbon monoxide (CO) and Particulate 

matter (PM). Many other emissions are formed in the chamber but they consist of 

very small quantity and thus do not playa significant role in the emission regulation. 

In DISI engines the main sources ofUBHC during stratified and homogeneous-charge 

operation is produced during flame quenching on the cylinder walls from th~ 

unburned mixture in the crevices escaping combustion and from fuel wall wetting due 

to the overly rich region formed on the piston wall. Another source of hydrocarbon 

formation· is ,also associated to a substantial temperature drop of the exhaust gas 

around the EVO period, which significantly degrades the conversion efficiency of the 

catalyst system. 
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HC fonnation does not only occur during hot operating modes but it is also an effect 

of cold starting. However, SIDI engine has been proven to show less HC during cold 

starting than the PFI engine. In fact, in the PFI engines, the initial fuel is injected onto 

the intake valve and port wall where the fuel mass entering the cylinder is not 

necessarily what is being metered by the injector on that cycle. Whereas SIDI engines 

utilize a stoichiometric or lean mixture during cold starting thus reducing cold

enrichment and acceleration-enrichment compensation, which in turn reduces HC 

emissions. 

The CO and NOx fonnations are dependant on the gas temperature and on the level of 

excess air. The temperature in SIDI engines operating with stratified charge remains 

high within the reaction zone due to the presence of a stoichiometric or slightly rich 

mixture in the core region of this stratified charge; therefore, NOx is not avoidable 

because there is combustion of near stoichiometric mixtures which produce high 

temperature zones. PM will definitely be fonned if high temperature and rich 

mixtures co-exist and for DISI engines the conditions of PM fonnation is 

unavoidable, especially at high load conditions. Particulates in DI injection engines 

are produced at a lesser degree than a tradit~onal diesel engine but are of much smaller 

size, and therefore more dangerous to human health as it becomes readily airborne 

and enters into the body undeterred. This is why the industry has introduced additives 

in the mixture to reduce particulates as they tend to auto burn at lower temperatures. 

Over the past two decades, the attempt to reduce engine out emissions has been the 

main agenda for the automotive industry and countries alike. Therefore, these -

countries and the related industries fonned bodies to regulate and measure these 

emissions, such as the European Emissions Regulations, Kyoto Convention, 

Environmental Protection Agency (EPA), European Automobile Manufacturers' 

Association (ACEA) and various other bodies around the world. This in turn leads us 

to the latest European Emissions Regulations for passenger cars, light and heavy 

commercial vehicles for Euro III and Euro IV (Tables 1.1 & 1.2) [1, 5]: 
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I 

Euro III 1999 (EEVs) 3.0 0.40 0.65 2.0 

2000 5.45 0.78 1.6 5.0 

Euro IV 2005 4.0 0.55 1.1 3.5 

Table 1-1 Engine emissions standards for heavy-Duty diesel and petrol engines. 

Effective d3te. MY Category/class 

2000 M2 

NI I/l 

NII/2 

N13/3 

2005 M2 

N13/1 

Nm 
Nm 

Euro III (2000) and Euro IV (2005) Emission Standards 
For Passenger Cars and Light Commercial Vehicles 

Ref mass Fuelt~ CO gJkm HCgIkm NOx g/km 

AIF Petrol 2.3 0.20 0.15 
Diesel 0.64 - 0.50 

SI,305 kg Petrol 2.3 0.20 0.15 
Diesel 0.64 - 0.50 

>I,305S 1,760 kg Petrol 4.17 0.25 0.18 
Diesel 0.80 - 0.65 

>1,760 kg Petrol 5.22 0.29 0.21 
Diesel 0.95 - 0.78 

AW Petrol 1.0 0.10 0.08 
Diesel 0.50 - 0.25 

SI,305 kg Petrol 1.0 0.10 0.08 
Diesel 0.50 - 0.25 

>1.3(E~ 1}60 kg Petrol 1.81 0.13 0.10 
Diesel 0.63 - 0.33 

>1,760 kg Petrol 2.27 0.16 0.11 
Diesel 0.74 - 0.39 

HC+NOx gJkm 

-
0.56 

-
0.56 

-
0.72 

-
0.86 

-
0.30 

-
0.30 

-
0.39 

-
0.46 

Table 1-2 Engine emissions regulations for Euro III (2000) and Euro IV (2005) 

0.02 

0.16 
0.213 
0.03 

PM' gJkm 

-
0.050 

-
0.050 

-
0.070 

-
0.100 

-
0.025 

-
0.025 

-
0.040 
-
0.06 

The particulate emission of a Diesel engine is very high compared to those of gasoline 

engines. With the introduction of the GDi engine this values varies from the gasoline 

standards as during the stratified mode operation with rich AFR, particulate emissions 

can increase. 

A test on the rolling road shows that the mass of particulate emissions in a SIDI 

engine is higher than a Multi-Point Injection (MPI) engine but much lower than 

modem diesel engine and it meets the future stringent US ULEV levels (0.01 g/mile) 
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Figure 1-5 Particle emissions for different concepts (updated on 2000) [6, 7] 

Fulfilling the actual regulations on gas emission is strictly essential for the future 

engine design. In order to justify the manufacturing investments the investigation 

purpose must have the potential to achieve future emission levels. Currently the fuel 

efficiency potential of a SIDI cannot be achieved under European and US boundary 

conditions. In this situation of tension between lowest fuel consumption and lowest 

emission, the different DI concepts have their specific points of weakness and 

strength. Several approaches have been compared to conventional MPI engines. The 

combustion systems for both stoichiometric and lean concepts are the core element for 

good fuel efficiency and low emissions. For instance, particulate emissions have to be 

avoided in both concepts with careful combustion development and to achieve this it 

is necessary to develop different combustion methods over a short period. 

For stoichiometric concept, SIDI technology does not produce high fuel economy 

improvement, but can be employed with conventional aftertreatment technology, 

which in turn helps to keep low the emission level. Double or multiple injections give 

a new flexibility during start or warm up phases contributing to improve emission 

behaviour. 

F or lean operation, it is possible to achieve the highest fuel economy potential but the 

required aftertreatment technology needs special fuel quality and a specific on-board 

device (OBD) system. The percentage of short term and mid term content of sulphur 

on the US market brings several obstacles. 

However, the relevant progress in the storage catalysts development during the last 

years causes optimism as long as it will be shortly determined where and when will be 

available extra sulphur fuel. [6] 
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1.6. DIRECT INJECTION 

1.6.1. Background history and diffusion of direct injection technology 

Direct-injection spark-ignition (DISI) is an alternative injection system to PFI 

employed in the four-stroke, two-stroke gasoline or biobutanol engines. Instead of 

injecting the fuel in the intake port or throttle body like the Port injection the fuel is 

injected right into each cylinder. The main improvement of the GDI system is the 

possibility to enable the formation of an ultra lean bum mode (stratified charge) to 

improve the fuel efficiency and emission levels at part load. 

As aforementioned in the pre-emission period the technology of the direct injection 

was first applied in the gasoline-powered car Mercedes-Benz 300SL with Bosh fuel 

injectors placed into the bores used by the spark plugs in previous six-cylinder 

engines. However, with the early technology of that period the DIS I system resulted 

expensive and the development of less expensive indirect injection systems froze 

further D lSI engine development. 

Figure 1-6 Mercedes-Benz 300SL 
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Mercedes-Benz 30USl 

M a nuta cturer ",.1 e rce d e s-8 e nz. 

Also called ~ lercedes 8enz. 300 SLR 2-

door coupe 

Production 1952-1963 

Predecessor none 

Successor r'.·lercedes-8enz. 230SL 

Class sports car 

Body sty'e 2 door coupe, roadster 

Engine Mercedes 2995cc, SOHC 

Transmission 4-speed '1 .. 1.A,NUAL 

Vl/heeJbase 2400 mm r94.5 in 

Length 4520 mm (178 in 

W.idth 

Height 

Curb weight 
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Only forty years later, gasoline direct-injection was reintroduced in the market by 

Mitsubishi Motors in the GalantlLegnum's 4G93[8] which was the first GDI engine 

released by Japanese companies. The same GDI engine was subsequently distributed 

in Europe in 1997 in the Mitsubishi Carisma[9], however the high sulphur 

concentration in the European fuel caused problem of emissions and fuel 

efficiency[IO]. Mitsubishi applied this GDI technology widely, distributing over a 

million of direct-injection engines in four families by 2001[11], Hyundai Motors and 

PSA Peugeot Citroen both licensed Mitsubishi's GDI technology, the former using 

the first GDI V8[12]. In 2000, Daimler Chrysler produced a special engine distributed 

only in countries with low sulphur fuel. 

Since then, other companies developed gasoline direct injection technology but GDI 

(with capitalised "I") remains a tnlde mark of Mit sub is hi Motors[13]. 

Further improvement on GDi technology was brought forward by Volkswagen! Audi 

in the 2001, which led the trend with their direct-injection engine under a different 

trademark FSI (Fuel Stratified Injection). BMW introduced a low-pressure injector 

GDi system in a V 12 engine, which due to its poor fuel atomisation could not enter in 

lean-bum mode. In the 2006 a second GDi version was introduced by BMW with a 

high precision injection system on the updat~ N52 stright-6 which surpassed many 

other direct injection system with a wider envelope of lean bum time resulting in an 

overall improved efficiency [14]. In the 2002, General Motors planned to produce a 

full range of GDi engines but till now only two engine models have been introduced. 

The first was made in the 2004, which was a version of the 2.2 L Ecotec adopted in 

the Opel Vectra followed in the 2005 by the 2.0L Ecotec with VVT technology 

mounted in Pontac Solstice GXP. 

The first engine sold in America for a mainstream vehicle was produced by Isuzu in 

the 2004. The main innovation of Isuzu GDi system was given by the cooling effect 

produced by the in-cylinder injection, which allowed a higher compression ratio (10.3 

versus the previous ratio of 9.1). 

Toyota's 2GR-FSE V6 released in the 2006 a combined injection system with direct 

and indirect injection, which uses a traditional injector in the port and a new direct 

injection per cylinder. 

In the 2006, Mazda referred to its GDi system as Direct Injection Spark-ignition 

(DISI) and was mounted in Mazdaspeed 3 and in Mazdaspeed 6 / Mazda 6 MPS, the 

CX-7 sport-ute engines. 
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In the 2002, Colorado State University sponsored EnviroFit, a non-profit corporation 

to develop a direct injection retrofit kits for two-stroke motorcycles in an 

environmental project finalized to reduce the pollution in Southeast Asia. The 

technology used in this GDi kit uses a patent developed by Orbital Corporation 

Limited of Australia and is based on a mixed injection of compress air and fuel. The 

injection of compress air in the cylinder promotes the fuel break up thus improving 

the combustion efficiency. The kits were so installed in millions of two-stroke 

motorcycles taxi (big sidecars) and the Philippines EnviroFit claim a reduction in fuel 

consumption of the 35 percent, in particular, 76 percent of carbon monoxide 

reduction, 26 percent carbon dioxide reduction and 89 percent hydrocarbon emissions. 

Orbital's OCP GDi Kits was also employed in Tohatsu's TLDI DFI outboard engines, 

Mercury's Optimax DFI outboard engines in Bombardier's SeaDoo personal 

watercraft and in the mscooter by Piaggio, Aprilia, Kymco and Peugeot. Research and 

development of OCP system applied in four stroke engines is currently in progress 

1.6.2. From DISC to DISI Engines 

DISI engines are essentially the evolution of the Direct Injection Stratified Charge 

(DISC) gasoline engines, a concept of the early 20th century, enabling technologies 

such as the high pressure, common rail, gasoline injection system and advanced 

computer control. In a way similar to the diesel quality control, also the power output 

of the DISC engines is controlled by varying the amount of fuel injected into the 

cylinder. The air induction is not significantly throttled, thus the negative work 

associated with the pumping loop of the cycle is dramatically reduced [15]. The 

principal target of DISI concept is fuel efficiency improvement, which is mainly 

achieved by the possibility to inject in different modes according the engine operating 

conditions. More specifically as direct injection enables extreme lean combustion 

mode it is poss~ble to minimize charging losses during part load operation. This 

characteristic gives DISI the outstanding base as the most effective contribution for a 

fuel economy idea. 

From a historical perspective, dual stratified chamber"was the subject of research by 

British, German, French, Russian, American, and other developers in the early 20th 

century. It used two separate chambers with a rich air/fuel ratio in one (usually a small 

pre-chamber containing the spark plug) and a very lean mixture in the other (or main) 

combustion chamber. In most such engines, a relatively homogeneous gasoline-air 
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mixture is fed into both chambers; the flame from the fuel-rich pre-chamber ensures 

ignition and complete combustion of all of the lean mixture in the main chamber [16]. 

The first application of gasoline direct-injection was the Daimler-Benz DB 60, a 

German aircraft engine built during World War II. It was a liquid-cooled inverted V12 

which powered the Messerschmitt BF 109. This was a 33.9 litre engine (Figure 1-7), 

with two spark plugs, 4-valves per cylinder using direct fuel injection and a single 

stage supercharger. 

Figure 1-7 First gasoline direct-injection application (Daimler-Benz DB 601-1933) 

The first attempt in automotive applications was made in the 1952 by Mercedes with 

the 300SL (Figure 1-8). The 300SL racing sports car featured innovative technology 

such as the world's first automotive four-stroke gasoline engine with direct 

mechanical fuel injection and it won the famed Le Mans 24-hour race in its debut 

season. In 1954, the company entered the car into production series. 

Figure 1-8 Mercedes 300SL system configuration 
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This engine, 3-litre inline 6 cylinder design, used early direct injection during the 

induction stroke to achieve homogeneous air fuel mixture. However, utilising a low

pressure mechanical fuel injection system, its high fuel consumption and the cost 

forced the company to stop its production 3 years later. 

Figure 1-9 (a) The Mercedes 300SL gasoline direct-injection engine. (b) The Mercedes 300SL 

"Gull wing" 

68 6'9 

During the period 1950-1980, extensive research in the capabilities of DISC spark

ignition engines took place. Several combustion strategies were proposed and 

implemented by various companies and researchers, including the Texaco Controlled 

Combustion System (TCCS) in 1951 (Figure 1-11), the MAN FM (Maschienenfabrik 

Augsburg-Nurnberg A. G) (Figure 1-10), GM DISC (General Motors Direct Injection 

Stratified Charge) and the Ford Programmed Combustion Control system (PROCO) 

in 1968 (Figure 1-12). Most of these earlier systems were based upon engines having 

two valves per cylinder and incorporating a bowl in piston combustion chamber. Late 

injection operation was achieved by employing mechanical pump-line-nozzle fuel 

injection systems for engine applications [ 16]. 
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Figure 1-10 MAN FM combustion system 

Late 
injection 

Figure 1-11 Texaco TCCS Combustion 

system 

In these systems, unthrottled operation was obtained over most of the load range and 

low BSFC values were achieved, making DISC engines competitive against the 

indirect-injection diesel engine of that era. A major drawback was the lack of control 

on the injection duration on the late injection mode at part load which was maintained 

even at full load due to limitations of the mechanical (non-electronic) fuel injection 

system. This resulted in smoke limited combustion for air/fuel ratios richer than 

approximately 20: 1 [17]. 

The necessity of using diesel fuel injection equipment coupled with the need for a 

turbocharger to provide adequate power output, resulted to an engine that exhibited 

perfonnance characteristics similar to those of a diesel engine, but showed poor 

emission at part-load with high unburned hydrocarbon (HC). 
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Figure 1-12 The FORD PROCO combustion system 

The PROCO combustion system was a DISC alternative design which utilised a 

centrally located injector to provide a hollow cone spray with injection occurring 

early in the compression stroke. Even in such a system, the control of HC emissions 

was extremely difficult at light load operation (Figure 1-12) and the combination of 

relatively poor air utilisation with the use of mechanical fuel injection equipment 

limited in speed range resulted in an engine with low specific power. Research 

continued in the late 70s, on the development of two stroke direct gasoline injection 

engines, employing air assisted atomisers. 

Figure 1-13 Cut-away view ofthe Mitsubishi GDI system 

Upright 
Straight Po rt 

Hig h-Pressure 
Swirl In jecto r 

Compact 
Pisto n Cavity 

In 1996 competition among automotive industry was intensified, with Mitsubishi 

being the world's first car maker to commercialise a 1.8 It, 4 cylinder GDI engine, 
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with four valves per cylinder and a compression ratio of 12:1 (Figurel-8). This engine 

enabled reverse tumble using a wall guided system, to achieve stratified charge which 

adopt late injection strategy for part load and homogeneous charge using early 

injection for full load operations. 

GDI Engine 

Layer separation of 
air and mIxed air 

sparl 
1l.,~.'U_~ . r ~ Injector . 

•. . . ~ 
J . " ;. + ; 0 .. Inject ion : 

.' . " compression process 

Figure 1-14 Mitsubishi GDI combustion system 

New technologies and computer control strategies, such as laser techniques and CFD 

(computational fluid dynamics), are currently being invoked by a number of 

automotive companies to re-examine the extent to which the potential benefits of DIS I 

engines can be accomplished in production engines. The targets in the development of 

DISI engines are to exceed the fuel economy of diesels at part load, their mixture 

preparation and combustion control strategies, emissions characteristics and deposit 

formation mechanism[17]. 

Many of the basic limitations encountered in the earlier work on DISC engines can 

now be circumvented due to advances in electronics and computer control. This is 

particularly true for the significant control limitations that existed on the direct

injection systems, in particular, the fuel injectors and pump controls around two 

decades ago. 

1.6.3. Gasoline Direct Injection versus Port Fuel injection 

The main difference between port fuel injected (PFI) and DISI engines lies in the 

mixture preparation strategies. In the PFI engines fuel is injected into the intake port 

of each cylinder, and there is an associated time lag between the injection event and 

the induction of the mixture into the cylinder. Most of the current automotive PFI 
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engines worldwide perform timed fuel injection on the back of the intake valve 

occurring before the opening event. 20% of the PFI engines adopt an injector mounted 

on the cylinder head upstream of the intake valve, while the remaining 80% of the PFI 

applications mount a single injector on the intake manifold near the cylinder head 

[17]. The former configuration presents the drawback of a transient film of liquid fuel 

formation in the intake valve area during cranking and cold start. Some portion of this 

film is drawn into the cylinder during the induction event and consequently the fuel is 

metered rather inaccurately from the pool created in the film, which acts as a 

capacitor, and not from the injector itself, causing a fuel delivery delay and an 

associated metering error due to the partial vaporization of the spray. This effect, 

coupled with the relatively poor vaporisation from the cold puddle of fuel, creates the 

need for a larger supply of fuel for cold start, which exceeds significantly the amount 

of fuel required for a stoichiometric ratio, leading to unstable burn on the first 4 to 10 

cycles of a cold start and to a significant increase in the unburned hydrocarbons 

(UHC) emissions. On the other hand, injecting fuel directly into the cylinder does not 

only avoid fuel wall-wetting formation in the ports but it also enhances the control of 

the metered fuel by reducing transport time. DISI engines can be started cold using a 

stoichiometric or even slightly lean mixture. This gives DIS I engine a significant HC 

emission reduction potential, especially during cold start and warm up. However, this 

is very much dependent on the quality of spray delivered from the fuel system. The 

fuel pump and fuel rail pressure need to be able to generate quickly high pressures 

during cold start, in order to achieve high level of atomisation. With common rail high 

pressure system, the' actual mass of fuel entering the cylinder can be more accurately 

controlled giving potential for leaner combustion, less (cycle or cylinder) air/fuel ratio 

variations and reduced BSFC. 

It is well established that direct injection of gasoline with insignificant enrichment can 

provide starts on the first cranking cycle, exhibiting significant reductions in 

hydrocarbon spikes during load transients. The difference in the minimum fuel 

requirement for cold start becomes greater as the ambient temperature decreases. 

However, injecting directly into the cylinder reduces the time available for 

evaporation and mixing, which leads to the requirement for high-level fuel spray 

atomisation. This is (;ichieved by adopting an injection pressure of the order of 100 to 

200bar which is substantially higher than the injection pressure of 6bar operated on 

the PFI system. The significant increase in atomisation and fuel vaporisation rate 
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produced by the high injection pressure consents to achieve stable combustion at cold 

start during the first or second injection cycle without the need to supply fuel excess 

and therefore giving the potential to achieve a level of HC emissions similar to that at 

steady operating conditions. The evaporation of the finely atomized fuel injected 

directly into the cylinder, also contributes in the increase of volumetric efficiency, by 

substantially cooling the inducted charge of air in the cylinder. A penalising limitation 

of the PFI engine is the throttling operation that is required for basic load control. 

Although throttling is a reliable and well-established load control mechanism in the 

PFI engine, it also represents a substantial thermodynamic loss associated with it. The 

thermodynamic loss is associated with the negative pumping loop and results in 

thermal efficiency degradation particularly at low levels of engine load. In the DISI 

stratified charge mode, the engine load is controlled by varying the amount of fuel 

injected into the cylinder reducing considerably or abolishing the throttling operation 

with its associated pumping losses and therefore enhancing the thermodynamic 

efficiency of the engine. 

Another potential advantage of the DIS I engine is the option of inserting fuel cut-off 

on deceleration providing additional improvements in fuel economy and HC 

emissions. In the PFI engine, which operates from an established fuel film in the 

intake port, fuel cut-off during deceleration is not a viable option, as it reduces or 

even eliminates the liquid fuel film in the port. If this happens, the reestablishment of 

the film would origin a transient event lasting several engine cycles, which can result 

in lean mixtures in the combustion chamber that may lead to a misfire or backfire[17]. 

The advantages of the PFI engines over the DISI engines are limited and focus on the 

fact that their intake system acts as a prevaporising chamber. In direct-injection 

engines, the mixture preparation time is reduced dramatically, especially in stratified 

mode, resulting in a high atomisation requirement aiming to droplet size small enough 

to enable a fast evaporation in the limited time between injection and ignition. Fuel 

droplets that do not vaporize are very likely to bum with diffusion and exit the engine 

as HC and PM emissions. Also, when injecting fuel directly in the cylinder, an 

unintended fuel impingement may occur, on the piston crown and/or the cylinder 

wall, contributing to increase the level of HC and particulate emissions and also to 

increase the level of cylinder bore wear[17]. 

Some other advantages of PFI engines are the use of a low-pressure fuel system and 

the feasibility of using three way catalysts (TWC) providing higher exhaust 
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temperatures for improved catalyst efficiency. Generally, NOx formation is favoured 

by the increased in-cylinder temperature, especially in the maximum reaction zone 

[18]. PFI engines exhibit their NOx emission peak when burning leaner than 

stoichiometric (air fuel ratio 1.25 times higher than stoichiometric) and as the air fuel 

ratio increases the maximum reaction zone temperature reduces with consequent 

decrease of NOx formation. However, DISI engines operating with stratified charge 

produce a high reaction zone temperature due to the stoichiometric or slightly rich 

mixture in the stratified charge region. Due to the cooling effect of the in-cylinder 

vaporisation and to the intrinsic characteristic of the stratified charge, DISI engines 

are usually more robust against knocking enabling higher compression ratios with 

consequent increase in thermal efficiency but also in peak temperatures and therefore 

NOx formation [17]. Finally, the high local NOx production under part load operation 

in DISI engines results in infeasibility of utilising three way catalysts to full 

advantage. Operating the DIS I engine under overall lean conditions does reduce the 

engine NOx emissions, but this cannot achieve the minimum 90% reduction level that 

can be attained using TWC [17]. The excessive HC emissions at part load also 

represent an important research task for DISI engines development. 

In spite of these concerns and difficulties, the DISI engine offers a horizon for future 

applications that expands beyond that of a well developed PFI engine. The current 

high technology PFI engine, although highly evolved has nearly reached the limit of 

its potential. For the same reasons that port fuel injection gradually displaced 

carburetors and throttle body injectors, a DISI combustion configuration will 

dominate and gradually displace the PFI applications. 
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Advantages GDI 

-No transient film so less misfire, less UBHC emission in the cranking period and 
during load variation 

-Better delivery control 
-Fuel cut-off during deceleration 
-Small fuel transport time 
-Potential for leaner combustion 
-Less cylinder to cylinder variation in the air fuel ratio 
-Lower operating BSFC values (brake specific fuel consumption) 
-The higher pressure produce a better atomisation, less gasoline required in the 

starting 
-Inlet unthrottled so absence of pumping work and therefore improved fuel economy: 

(25% potential improvement) 
1. less pumping loss 
2. Volumetric efficiency increasing 
3. less heat losses 
4. higher compression ratio 
5. lower octane requirement 

Table 1-3 Advantages ofGD-I systems Vs PFI systems [19] 

Disadvantages GDI 

- Presence of variable fuel films in the chamber (piston) and consequently UBHC 
increasing (for piston guided combustion concept) 

- Short vaporization time which results in a low participation in burning diffusion and 
consequently high UBHC at the exhausts. 

- High full-load UBHC, part-load NOx (due to stratified operation), soot formation 
full-load particulate, deposit formation in the,injector 

- No use of three way catalysis due to the lean composition of the exhaust gas at part 
load operation 

- Increased electrical power and voltage required 
- Problem of lubrication in the pumping system 
- Elevated fuel system pressure and fuel pump parasitic loss 
- Difficulty in controlling the stratified charge 

Table 1-4 Disadvantages ofGD-I systems Vs PFI systems [19]. 

Requirements of G~I injector not present in PFI systems 

• Significant enhancement of atomisation spray. 
• More emphasis in spray penetration control, sac volume spray control 
• Enhanced resistance to deposits formations 
• Smaller flow variability under high pressure gradients 
• Combustion sealing capability , 
• Avoidance of needle bounce that create unwanted secondary spray( uncontrolled 

atomisation or anatomised ligaments. and loss in metering 

Table 1-5 Requirements, of GDI injector not present in the PFI. 
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1.6.4. Strategies and approaches to achieving Stratified charge 

Many different approaches have been developed over the years, for D lSI combustion 

systems. These comprise of a wide range of combinations of in-cylinder charge 

motion (swirl, tumble and squish), chamber and piston geometry and spark plug and 

injector position. Spray structure/shape, mean droplet size, spray penetration and fuel 

delivery rate must be matched with air-flow field, piston bowl geometry, and spark 

location. The injection strategy is also one of the main parameter and its optimisation 

play an important role in the operation of the DISI concept. For instance, in order to 

improve warm up operation Mitsubishi made the late injection during the expansion 

stroke in order to increase the temperature of the exhaust and improve the catalysis 

operation during cold starting. 

One of the goal in DISI engine optimisation is to provide operation in both 

homogeneous and stratified mode as well as a smooth transition between them [20] . 

To improve the transition between low and high load, Toyota introduced two stage 

injections; early injection and late injection during intake stroke and compression 

stroke respectively. 

The methods of stratified charge preparation have seen the evolution of different 

injection strategy generations. Wall-guided and air-guided were the strategies 

employed in the first generation DISI engine whereas spray-guided is currently 

adopted by the second Generation DIS I engines (Figure 1-15). For wall guided DISI 

injection, as their name imply, the charge stratification is achieved by spray 

impingement on the piston surface, whereas the air guided take advantage of the 

charged flow field velocity and the spray dynamics to redirect the stoichiometric 

plume toward the spark [17, 18]. The two modes of the first generation concept 

provided the best solution for mass production and robustness in terms of component 

an.d manufacturing tolerances. On the other hand, they are inherently limited from a 

thermodynamic point of view since the stratified mixture formation is directly linked 

to the piston motion. Additionally under homogeneous operation, quenching is also 

increased due to the higher surface to volume ratio of the combustion chamber (piston 

bowl) which is required for the stratified operation. Furthermore, the stratified 

operating range is limited by smoke emission due to the formation of liquid film on 

the piston surface. From this issue the second generation DI systems are addressing 

their effort to overcome' this problems whilst still achieving an advantageous cost

benefit ratio [21]. 
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Figure 1-15 Spray-guided, Wall-guided and Air-guided combustion systems [22] 

Wall-guided systems: this type of configuration (1 st generation) is associated with the 

"wide spaced" gap between the injector and the sparg plug. The concept uses spray 

impingement on a piston cavity in order to achieve stratified mixture. The injector is 

mounted at a greater distance from the spark plug, compared to spray-guided systems, 

and more time is given to the mixture to be formed and well atomised at the expense 

of some loss in combustion stability. 

A well designed piston cavity can offer a high efficient air entrainment in the cylinder 

resulting in a system being more robust and less dependent on spray characteristics. 

The main concerns to achieve stratified combustion in this type of systems are the 

piston bowl design and the balance of tumble and swirl in the cylinder. On the other 

hand, the spray impingement on the walls increases soot formation and wall wetting, 

which leads to increased He emissions. The efficiency at high cylinder pressure is 

influenced by combustion phasing, heat release rate and wall heat losses. The 

combination of these aspects combined with high charge motion and high surface-to

volume ratio, increases considerably wall heat losses and is detrimental for the overall 

combustion efficiency. However, Wall-guided wide spaced systems have been frrst 

used successfully by Mitsubishi on their first production GD! engines (Figure 1-16). 

The idea was then extended, adopting reverse tumble to create stratified charge near 

the spark gap [23]. 
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Trough-shaped 
piston floor Wail -guided gasoline 

direct injection 

Figure 1-16 Representation of the 1st generation "wall-guided" configuration 

Air-guided systems: This type of configuration is also associated with the "wide 

spaced" and the 1 sI generation of injection strategy. It relies on the coupling of the fuel 

spray with air tumble motion to create stratified charge and redirect it toward the 

spark plug. A wide spacing configuration is used, as in wall-guided systems, but no 

assistance is required from wall surface. Any concerns associated with wall wetting 

and He increase, are thus avoided. However, the disadvantage of this system consists 

of its dependency on the in-cylinder air flow which may cause unstable combustion at 

part load when air flow is weak. 

Although a piston cavity is not essential to air-guided systems, a well designed piston 

will help homogeneous combustion. Other concerns for an effective air guided system 

are the spray characteristics and the cylinder geometry which must promote tumble 

formation but still avoiding spray impingement. 

Spray-guided systems: Stratified lean combustion is achieved by spray-guided 

strategy by mean of a narrow spaced configuration, with the spray boundary and the 

spark gap operating within a very small distance. The mixture is not affected by 

cylinder charge motions or piston cavity design and is controlled mainly by the spray 

dynamics. 

However, the requirement for very close spacing of the injector and spark plug results 

in a reduction of the intake valves sizes. The vicinity of the injector to the spark plug 

may also result in misfiring due to the very short interval between them or even soot 

formation due to the possible impingement of the spray on the spark plug or valves. 
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Figure 1-18 Averaged Fuel economy improvement of spray-guided systems[22]. 

1.7. TYPES OF D lSI INJECTORS 

Injectors can be classified by actuation method and more specifically by several 

parameters such as nozzle and spray configuration, atomisation method, or pintle 

opening. Many combinations of these characteristics have been attempted by swirl

type atomiser, the most widely used in DISI applications, with an inwardly opening 

pintle. Swirl injectors are used to enhance atomisation, due to the additional rotational 

momentum applied to the fuel which promotes the secondary break up of the spray. 

Also Multi-hole nozzles, like those used in diesel engines, have been developed by 

several manufacturers for DISI applications and are characterised by enhanced air 

utilization for early injection improving thus the flame propagation, however the 

small size of the holes and their external position were creating problems of carbon 

deposits and penetration control in early injection. 

Significant research is taking place on outwardly opening injectors which exhibit 

certain advantages versus the inwardly opening ones. Due to their geometry, these 

injectors are effectively more robust to deposit formation and seal very firmly 

ensuring minimal leakage. The outwardly opening injectors have no sac volume, 

which is associated with fuel residuals: These injectors offer a better control over the 

spray angle and penetration, which is also one of the topics of this investigation. 

Furthermore, the hollow cone spray produced by this type of injectors presents a 

better air utilization than the multi-hole with good control on penetration during early 
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and late injection and a low dependence of spray structure on the backpressure. In 

terms of actuation method the injectors can be classified as single or double solenoid, 

piezoelectric, hydraulic or cam actuated [17]. It is in this area that most of the rapid 

developments are taking place and with the current state of the art, piezoelectrically 

actuated injectors can achieve very fast time response and therefore are mainly 

preferred for multiple injection strategies. 

LOCAT INO SlA'"o\CE 

(a) (b) 

Piezoelectric 
Stack 

Figure 1-19 (a) Schematic of Siemens Inward Seal Band piezo injector, (b) Schematic of 

piezoelectrically actuated DI injector 

Piezoelectrically Actuated Injector: Piezoelectric injectors used in DISI engines, 

contain crystals with non-uniform charge distribution within the crystal lattice. When 

exposed to an electric field, this charge distribution shifts rapidly and the crystal 

changes its shape. The pintle of the DIS I injector is actuated by the rapid change of 

the lattice dimensions ofa stack of crystals, when voltage is applied. This results in 

rapid actuation response of the needle providing an opening time which is more than 

one order of magnitude faster than typical solenoid systems. In this way, atomisation 

level is improved and furthermore the injector's dynamic range is enhanced. Piezo 
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injectors have the ability to use much shorter pulse widths with a repeatable, well

controlled performance which are characteristics necessary for multiple injections 

implementation [17]. 

In the following section a description of the main injector types currently in 

production and their important role in mixture preparation will be briefly presented. 

Flexibility of 
spray: pattern 

Costs 

Robustness against 
,o.....-~~d~ep.oslts 

Sac volume presence 

Penetration control 

OilO 

Table 1-6 Comparison among swirl, multihole and outward opening atomisers [22]. 

1.7.1. Swirl Injector 

The most diffuse DISI injector type currently used by most of the automotive 

companies is the pressure single-hole swirl injector with inwardly opening needle. 

The main characteristic on the atomisation strategy of a swirl injector consist of 

turning pressure energy of the liquid in angular momentum. The fuel under pressure 

coming from the common rail enters in a conical swirl chamber through tangential 

slots with either cylindrical or conical cross section. From a single discharge hole the 

liquid emerges as an annular cylindrical sheet spreading radially outwards and 

forming a hollow cone spray: 

The swirl injector presents flexibility on the discharge directions which means that 

according the required air utilization in the chamber and the spark plug position the 
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nozzle can be designed with either axial or slightly off-axis spray direction. In general 

the use of an offset axe injector reduce the perfonnance of the injector (penetration, 

atomisation ... etc) and in order to overcome this inconvenient it is necessary to 

increase the injection pressure [17]. Furthennore, skewing the injection axis can be 

associated with asymmetrical wall impingement on the piston which fonns uneven 

thickness and consequently different time of evaporation with increasing of UBHC. 

(a) 

Figure 1-20 (a) schematic of a swirl injector, (b) Swirl spray structure 

Further changes in atomisation level are caused also by altering the swirl ratio which 

in addition affects the penetration curve. By keeping constant the atomisation level 

and increasing the spray swirl-ratio the required injection pressure decreases 

promoting the air entrainment in the vortex. 

The axial velocity decreases with the distance from the injector due to the drag effect 

of the air opposing to the axial motion, whereas the swirl velocity remains almost 

constant since the near field environment swirls together with the droplets. 

The conical spray produced by a swirl atomizer under ambient backpressure is 

composed by a very fine mist of droplet within the spray having a relatively low 

penetration, thus ideal for the early injection strategy. On the other hand, it was 

observed. a strong dependency of the spray angle on the air density and therefore on 

backpressure which is crucial for late injection operation. In general, the increase in 
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backpressure intensifies the polar field gradient of the density transforming the hollow 

cone structure into a compact solid plume. The penetration and velocity of the spray 

reduce monotonically with cylinder pressure increase and ultimately the spray 

collapses. Furthermore, the poor atomisation encountered at the early injection stages, 

known as pre-spray, has led manufacturers towards the development of alternative 

injector types such as the close cap slit, the multi-hole type and the outwards opening 

needle for the next generation of DISI engines. These are mainly the reasons for 

which the majority of the wall-guided combustion systems are currently employed 

and the swirl injector is only used for homogeneous strategy at early injection 

operation. 

1. 7.2. MuItihoIe Injector 

This injector type has been utilized extensively in diesel engines for many years, for 

this reason the knowledge in the technology of this injector is relatively developed. 

An important advantage of the multihole is given by the flexibility in terms of spray 

orientation and structure as the number bf holes can be varied from 5 up to 12 holes. 

The holes are generally placed in a peripheral location with the extra possibility to 

include holes in the centre as well. In particular it was seen that the ratio of hole

length over hole-diameter (LID) affects considerably the characteristics of the 

emerging spray jet in terms of air entrainment, atomisation quality and penetration 

length. 

The nozzle of the multihole atomizer produces thus a series of thin jets with average 

cone angle of approximately 10°. Each jet presents a remarkable spray stability and 

cycle-to-cycle repeatability with penetration dependent only on the room condition 

[17, 24, 25]. All these advantages make the multihole a good candidate for the spray

guided application. On the other hand, for a rail pressure of 100bar multihole injector 

presents a poorer atomisation quality than the swirl atomizer which improves at a 

satisfying level by increasing the injection pressure. However beyond a certain 

pressure (....,200bar) the spray over penetrate leading to excessive wall impingement. 
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is most suitable for multiple injections and for stratify mode at very late injection. 

The spray produced by a pintle-type injector has the shape of a hollow cone with an 

angle mainly controlled by the nozzle exit geometry and the initial liquid sheet 

thickness directly controlled by the pintle lift. The spray structure of the pintle-type 

injector is composed by many longitudinal filaments presenting a non-uniform 

atomisation level in the different locations of the string cross-section. Such a spray 

reminds the structure of a multihole having a number of jets as large as the number of 

string in the spray cone of the outward opening injector. 

(a) 

Figure 1-22 (a) Model of an outward opening nozzle injector (b) hollow cone spray under 

atmospheric pressure produced by an outward opening nozzle. 

One of the main advantages of this atomizer is the absence of the stagnant liquid mass 

lying externally in the sac volume generated by most inward opening atomizers. The 

outward opening injector offers a design flexibility to allow spray angle and droplet 

size to be controlled independently so that it is possible to have a comparable 

atomisation quality for different cone angles and same injection pressure [17]. In 

addition the design without micrometric holes presents the advantage to be very 

robust against soot deposition ~hich makes the outward opening atomizer resistant to 

high temperature peaks. Nevertheless, a problem strongly penalizing this injector is 
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represented by the cycle-to-cycle variation (flapping) of the spray shape which may 

cause the displacement of the ignitable mixture from the spark plug resulting in 

misfire. Such a problem becomes severe when this injector is to be used in spray

guided concept as it has been developed. 

1.S. OBJECTIVES OF THE INVESTIGATION 

The objectives of the current investigation focused on the observation of the spray 

characteristics of the pintle-type injector primarily aiming to observe the main 

phenomena driving the flow dynamic behaviour of the spray and ultimately to have a 

better understanding of several practical aspects directly implicated with the 

functionality and the performance of the outward opening injector. A brief description 

of the main objects of the investigation is given as follow: 

In-nozzle flow, correlation between internal flow and spray structure: 

One of the weak points of the spray performance of the Siemens pintle-type is the 

spray instability associated with spray-to-spray variation. By visualizing the internal 

flow through the large-scale model it was possible to identify the correlation between 

vortex upstream of the nozzle and tangential oscillation of the emerging spray. 

Analysis and observation of the string structure 

The spray produced by the pintle-type injector is characterised by a typical string 

structure which stands at the base of the atomisation and break up process for this 

kind of spray. The presence of these filaments produces a heterogeneous droplet size 

distribution through the string cross section. The string characteristics and their 

dependence from the operating parameters were observed according a statistical 

analysis. 

AnalYSis and observation of the multi-phase flow (cavitation and air 

entrainment) in the nozzle exit 

The presence of a second phase was observed in the nozzle passage caused by air 

entrainment and/or cavitation. This gas phase was found to be responsible for the 

Spray angle variation and string formation. As aforementioned, string structure has 

.. been for long time object of investigation and hereby it was possible to speculate a 

model which may contribute to a trustworthy explanation of such behaviour. 
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Velocity field distribution and parametric study 

To characterise the air utilization, spray development and to gather infonnation on the 

actual spray displacements it was necessary to detennine the velocity field. A detailed 

scan of the string cross section was perfonned in different condition of temperature, 

needle lift, injection pressure and backpressure. 

Droplet size distribution and parametric study 

The droplet size distribution covers a role of primary importance in the mixture 

fonnation since the fuel vaporisation strictly depends on the surface-volume ratio. For 

this reason it was studied the droplet size dependence from the operative parameters 

in order to establish droplet break up occurrence and the size distribution with respect 

of space and time in the same condition of the velocity scan. 

Spray recirculation 

In the outward opening injector the ignitable mixture is fonned primarily in the spray 

recirculation which takes place on the surface of the hollow cone and it develops as 

the spray penetrate into chamber. The vortex evolution cov~rs a main role in the study 

of the ignition phase. A measure of the spray recirculation was thus assessed in the far 

field of the injector by mean of Phase Doppler Anemometry (PDA) and Particulate 

Image Velocimetry (PIV). 

Air entrainment in the spray near-nozzle field 

From CFD calculation, it seems that the air entrainment has an important role in the 

spray stability and in the secondary break up. In the case of the outward opening 

injector, several studies. claim the air entrainment to have a role on the phenomenon of 

string fonnation. To have a better understanding the air velocity characteristics in the 

near field of the injector was measured. 

Spray behaviour operating in a optical engine 

Finally, a visualization of spray structure in actual condition was carried out inside 

of an optical engine supplied by BMW. The spray stability in tenns of cone angle and 

spray recirculation was observed through 2D and integral Mie scattering. 
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1.9.THESIS OUTLINE 

The current thesis comprises of six chapters subdivided according the experimental 

phases carried out along the course of the investigation. At the beginning of the main 

chapters, the experimental set up is described followed by the results and analysis. 

Chapter 1 presents a paragraph summarizing the motivation and the objectives of this 

thesis followed by an introductive description of the fuel metering systems from the 

carburetor until the current DISI system. The brief explanation comprises drawbacks, 

benefits and targets of the new direct injection systems including the descriptions of 

the DI injector currently under investigation. 

Chapter 2 contains a table with the description of the literature reviews and findings 

about gasoline direct injection. More specifically, it reports the review of literature 

about investigation on enlarged models, spray characterisation and publications on the 

pintle-type and air entrainment. Every paper or document reported includes the list of 

Authors, the description of experimental set up, Technique and the main conclusions. 

Chapter 3 reports the results observed on the large-scale model of the pintle-type 

injector. The first part describes the internal flow behaviour and its correlation with 

the flow characteristics in the nozzle exit, in the second part the phenomena regarding 

the presence of gas phase in the nozzle exit is analysed and its correlation with string 

formation and spray angle behaviour is discussed. . 

After a qualitative investigation on the scaled model, chapter 4 describes the PDA 

results and Mie scattering images obtained in the parametric study on the real size 

injector tested in a constant volume chamber under different operating conditions. The 

velocity of the near and far field of the spray and air entrainment is analysed by mean 

of different techniques and where possible correlated with the previously observed 

scaled model. 

Chapter 5 shows the actual behaviour of the spray in the optical engine analysing the 

angle statistic and spray recirculation in a parametric study. 

Chapter6 concludes the thesis with the summary of the major findings of the results 

described through chapter 3 to 5. Recommendations for further work in the area of 

experimental research on the pintle-type injector are also given in Chapter 6. 

Chapter 7 reports the bibliography of the references of publication and documentation 

cited throughout the thesis. 
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Chapter 2. 

Literature Review 

2.1. INTRODUCTION 

This chapter provides a collection of the literature review concerning the state of art 

on the direct-injection technology. As the research on the Piezo Injector started just 

recently and is still at the beginning of its development, it was not possible to find a 

relevant amount of material on this specific prototype. However, the techniques of 

investigation used in the characterisation of other atomisers provided useful 

information on the understanding of similar flow mechanisms. Other publications, 

listed in tables 2.1 to 2.7, show experimental methodologies used in the investigation 

of the pintle-type injector and it was found to be very useful in terms of comparison 

and as outline of the techniques employed in this project. 

The paper collection was subdivided in six sections retracing the experimental stages 

of the thesis: 

- Internal flow characterisation in large-scale models. This table collects a list of 

papers which describes the results visualized in scaled model of different type of 

injector. 

- Spray flow characterisation in Real size models. It was the second phase of the 

investigation and the papers listed in the second table described mainly results 

focusing on the spray characteristics generated from different type of real size 

~njectors tested in constants volume chamber in terms of spray structure, fuel droplets 

size/velocity distribution and fuel vapour structure. 

- Spray recirculation and air entrainment The literature review collected in this 
" 

section presents the results of several studies on the air interaction with the spray and 

the spray recirculation on the far spray field. 

- Investigation in optical engin~. As the final stage of this investigation is concerned 

about the study and characterisation of the Spray under real condition then this section 

presents the papers related to spray investigation in optical engines. 

- pintle-type Injector. This type of injector was recently introduced in the direct

injection gasoline engines. For this reason the state of the art and the review of 

literature on this injector is limited. Thus, this section provides most of the currently 

available literature/information on the pintle-type Piezo Injector. 
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- Miscellaneous on DISI concept. Finally the last group of papers describes general 

characteristics of the DISI technology. 

The tabular fonnat provides an easily readable list which swnmarises the papers 

related with the present investigation. The columns of the tables are subdivided for 

Authors and year of publication , Experimental Set-up and equipment, experimental 

techniques or processing procedures and in the last column the major conclusions and 

findings of the investigation. 

2.2. INTERNAL FLOW CHARACTERISATION IN LARGE-SCALE MODELS 

Authors and Experimental 
Techniques Major Findings 

Year Set-up 

1. M. Nouri, Steady state flow • Mie Scattering • The visualisation revealed that the flow 
N. Mitroglou, test rig with into the nozzle holes is originated either 
Y. Yanand C. large-scale from the incoming annular flow above 
Arcoumanis model injector the six injection holes or from the 
(2007) [7] (Multihole six- deflected annular flow in-between two 

hole mini sac adjacent injection holes. 
type nozzle) • This seemed to be the cause for the 

formation of vortices in the sac volume 
between the needle face and the two 
adjacent injection holes. 

• Needle strings appeared fIrst in the multi-
hole gasoline injector prior to any 
cavitation hole structures. 

• Onset cavitation starts for cavitation 
number approaching 0.7 to 0.9 and 
presents a well developed structure for 
CN higher than 1 when needle string 
start to disappear. 

• Fo]]owing the disappearance of the 
needle strings, another type of string 
known as 'vortex string' . 

Nouri, 1.M., Steady state flow • Imaging of • Four jet-like flows were identifIed 
Abo-Serie, E. , test rig with internal nozzle interna]]y and upstream the valve seat due 
Marchi, A., large-scale flow patterns and to the design confIguration of the needle. 
Mitroglou, N. model injector cavitation • In the mixing chamber of the four jet-like 
Arcoumanis, (outward structures with flows just upstream the valve seat, four 
C. (2005) [26] opening gasoline CCD and high- pairs of counter-rotating vortices were 

direct injector) speed video identifIed with highly unstable patterns 
cameras • The aforementioned instability can be 

• Laser Doppler seen downstream the valve seat on the 
Velocimetry spray itself 

• ConfIrmed the existence of cavitation 
initiated on the valve seat. 
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Matsumura Enlarged model • Mie Scattering • Unsteady flow forms were developed 
E., of a slit nozzle. due to periodic vortices generated in the 
Tomita T., Argon ion laser sac. 
TakedaK., CCD and high • The smaller the disturbances in the seal, 
Furuno S., speed video such as injection pressure, needle lift and 
Senda J., camera seal shape, the smaller the scale vortex in 
(2003)[27] the sac. 

• Sac flow fluctuation and variation had a 
large effect on flow in the slit nozzle. 

• Spray angle was found dependent upon 
the vortex in the sac. A small vortex 
resulted in reduced spray angle, stronger 
penetration and fme atomisation. 

• Spherical seal was found to suppress the 
scale of the vortex within the sac and 
promote penetration as well as 
atomisation. 

I.S. Carvalho The 2-D liquid Back light and • The disintegration of the liquid sheet is 
a,M.V. film generator laser light sheet associated with a periodic process, which 
Heitoyr b, D. consists of: (i) an illumination, to is mainly dependent on the absolute air 
Santos (2002) inner liquid flow, visualise the velocity and the air-liquid momentum 
[28] with an exit instability ratio. 

thickness of tl= amplitudes, which • An extended analysis of the non-
0.7 mm, and an leads to the liquid dimensional breakup lengths and breakup 
aspect ratio of film disintegration frequencies showed the importance of 
Lltl = 114, that and the spray the ,air-to-liquid momentum ratio group, 
is, 80 mm wide; formation; MR, as the parameter that allows to 
and, (ii) two co- strobe light correlate the present results, 
current air flows, illumination, for 
with a thickness the quantification 
tg=7 mm, which of either breakup 
are passed along lengths and 
both sides of the frequencies, 
liquid .1m to a laser attenuation 
produce a shear technique for 
force at the air- frequency 
liquid interface. measurements 
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Roth et al. Steady-state and • Refractive index • Vortex flow inside nozzle tip volume is 
(2002) [29] quasi transient matching prerequisite for string cavitation 

flow test rig with technique • Cavitation strings in the nozzle tip 
large-scale • Laser Doppler volume can induce hole cavitation 
model injector Velocimetry • Strong helical flow and 'needle strings' 
(transparent 6- measurements in inside injection hole ofVCO nozzle 
hole conical mini-sac nozzle identified 
mini-sac and • Imaging of • Cavitation initiation at side comers of 
VCOtype cavitation hole inlet possible 
nozzle) structures in both • Higher needle lift results in more stable 

nozzle types with cavitation flow structures for both nozzle 
high-speed digital types 
video • No appreciable liquid movement 

identified in lower nozzle tip volume 
• Non-cavitating flow conditions result in 

reduced recirculation zones close to the 
injection hole entrance for higher needle 
lifts 

• Turbulence levels increase in lower part 
of injection hole with increasing 
cavitation numbers at moderate flow rates 

• At moderate as well as increased flow 
rates the normalized RMS are higher at 
low needle lifts compared to those at high 
needle lifts due to bottleneck effect 

• Increasing cavitation and Reynolds 
numbers result in higher turbulent kinetic 
energy in the injection hole bulk flow 
although this increase is less apparent 

,. 

further downstream 
• Close to ~e hole exit the averaged TKE 

decreases asymptotically to the 
turbulence level of the non-cavitating 
flow due to cavitation bubble breakup 
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Soteriou et al. Steady-state flow • Refractive index • Flow through throttled model orifices and 
(2000) [30] test rig with matching emerging j etsl sprays are significantly 

transparent 20x technique different compared to those produced by 
scaled up models • Laser light sheet conventional sac or VCO type nozzles 
of plain orifices illumination and • Fan-shaped jets, horseshoe-shaped jets 
employing either still imaging of and quasi-normal sprays were observed 
variable non-cavitating for decreasing degree of exit throttling; 
throttling of the flow (seeded with cavitation is suppressed for most of the 
injection hole hollow glass investigated conditions 
exit or the hole spheres) • In the case of hole entry throttling, hollow 
inlet; injection • Laser Doppler non-circular, non-circular, two-jet and 
into atmosphere Velocimetry rotated non-circular sprays were 

measurements identified with progressive opening of the 
close to hole exit hole; cavitation occurred at reduced 

• Spray levels compared to normal nozzles and 
visualisation and produced bushy opaque sprays in some 
determination of cases 
spray angle • Overall, inlet throttling causes spray 

angles to be significantly wider than with 
normal orifices, but not as large as with 
exit throttling 

• Entry throttling causes the flow velocity 
to drop appreciable inside the orifice, 
while exit throttling seems to have a 
smaller effect on the velocity; thus, for 
the same degree of throttling, partially 
open entry throttled holes produce lower 
spray velocities than partially open exit 
throttled holes 

David P. flat nozzle • 2D simulation • Photographs revealed that the liquid-
Schmidt, C. J. design between • Mie Scattering vapor interface is smooth near the inlet 
Rutland and two thick corner and becomes rough and 
M.L. quartz glass convoluted near the end of the cavitation 
Corradini windows. A steel region. 
P. Roosen and lamella is placed, • The occurrence of cavitation at the inlet 
O. Genge creating the corner was found to be similar to that of 
(1999) [31] contour of the axisymmetric nozzles. The occurrence of 

ejection canal separation at the nozzle exit was found to 
after a long, be a function of Reynolds number for 
large, inlet flow low cavitation numbers and a function of 
cross section. cavitation number for high Reynolds 
The liquid is fed number. 
through a 
hole in one of the 
quartz windows 
.The "bore hole" 
consists of a 
rectangular-
shaped canal 

75 



Afzal et al. Steady-state flow • Refractive index • Initiation and development of cavitation 
(1999) [32] test rig with matching structures inside the injection holes and 

enlarged model technique nozzle volumes were visualized and this 
injector • Flow rate and revealed different patterns in terms of 
(transparent 6- pressure spatial and temporal development of the 
hole conical measurements cavitation bubbles as a function of needle 
mini-sac and • Imaging of lift and needle eccentricity 
VCOtype cavitation • Discharge coefficient decreases 
nozzle) structures with asymptotically to its minimum value for 

CCD camera increasing cavitation numbers 
• Calculations for • Over a wide range of nozzle operating 

non-cavitating conditions significant transient pressure 
conditions variations (5-10% of the mean) have 

been recorded for the difference between 
upstream and downstream pressure 

• From the various images obtained, 
comprehensive sketches were drawn 
summarising the most important 
observations of the cavitating flow 
structures in the two nozzles 

• CFD calculations of velocity flow field, 
pressure and turbulent kinetic energy 
distribution for varying needle lift and 
nozzle -.&eometries 

Yule et al. Large-scale • High-speed video • Interesting aspects of internal flow 
(1998) [33] axisymmetric imaging of development occurred during first third of 

models ofVCO developing injection duration 
nozzle orifice orifice flow for • Recirculation zone at the orifice inlet 
(sharp and different injection contains cavitation bubbles above a 
rounded orifice . pressures and certain pressure drop 
inlet edge) under atmospheric • Movement of the pulsing recirculation 
transient flow backpressure zone near 'the orifice wall towards the 
conditions due to • Valve opening orifice exit is believed to cause hydraulic 
fast valve rate flip above a certain Reynolds number 
(needle) determination even without occurrence of cavitation 
movement; from image data • Atomisation occurred more rapidly for 
various working • Pressure the orifice with sharp inlet edge compared 
fluids were measurements to the rounded one under the same 
utilised and calculation of pressure conditions 

discharge 
coefficient 
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Soteriou, C. Steady-state flow • Refractive index • Downstream, close to orifice inlet, is a 

Smith, M. test rig with a matching strong flow recirculation area and 

Andrews, R.J scaled up plain technique separation of the boundary layer for non-

(1998) [34] orifice nozzle; • Laser light sheet cavitating flow conditions 
injection with illumination and • This separated flow strongly influences 
un-submerged still imaging of the cross-sectional velocity profiles 
and submerged cavitation • Formation of hole cavitation structures 
outlet • Laser Doppler depends on Reynolds number of flow 

Velocimetry upstream of orifice: 
measurements in ~ Laminar flow allows large voids to 

non-cavitating form 
flow ~ Turbulent flow encourages formation 

• Pressure of small bubbles 

measurements • Cavitation within attached boundary layer 
causes emerging spray to become slightly 
bushy and increases the spray angle 

• When plug cavitation extends to orifice 
outlet the angle and bushiness of spray 
increases significantly 

• Flow in cavitating plug is more turbulent 
than non-cavitating flow which is 
believed to be a reason for improved 
spray development 

Arcoumanis Steady-state flow • Refractive index • Flow rate shows asymptotic behaviour 

et al. (1998) test rig with matching for needle lifts higher than a value that is 

[35] enlarged model technique still "far" below full lift 
injector • Laser Doppler • Even for symmetric nozzle conditions 
(transparent 6- Velocimetry the individual hole flow rates can vary 
hole conical • Flow rate noticeably due to small differences in 
mini-sac type measurements hole size, wall roughness and hole inlet 
nozzle) • Imaging of shape 

cavitation • CFD calculations of velocity flow field, 
structures with pressure and turbulent kinetic energy 
CCD and high- distribution for varying needle lift and 
speed camera nozzle geometries as a parametric study 

• Calculations for • CFD calculations confirmed that 
non-cavitating manufacturing tolerances iIi the geometry 

conditions of the nozzle from its nominal geometric 
characteristics result in unequal flow 
distribution between the injection holes 

• LDV results from measurements of local 
mean velocities and RMS values were 
used to validate CFD calculations; 

.. predictions are generally in good 
agreement with experimental values, but 
do not capture well the recirculation zone 
at the hole inlet 

• Initiation and development of cavitation 
structures inside the injection hole were 
visualized and this revealed different 
patterns in terms of spatial and temporal 
development of the cavitation bubbles as 
a function of needle lift and needle 
eccentricity 
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He and Ruiz Enlarged two- • Laser Doppler • Turbulence after cavitation zones was 
(1995) [36] dimensional Velocimetry found to be higher that after recirculation 

channel flow rig • Flow rate zones 
with liquid into measurements • Noticeable pressure losses were caused 
liquid injection; by increased turbulent kinetic energy in 
working fluid is case of cavitating flow 
water • Cavitation has strong influence on 

velocity profiles across the flow area near 
the channel inlet 

Soteriou et al. Steady-state flow • Mie Imaging • Investigation of large-scale nozzle flow 
(1993) [37] rig with large- • pressure and spray characteristics considered to be 

scale model measurements a valuable tool when cavitation and 
nozzles; transient and calculation of Reynolds number are matched 
injection test rig nozzle discharge simultaneously to those found in real-size 
with various coefficients flows 
real-size nozzles; • Overall, results from investigations in 
injection into large-scale and real-size nozzles in good 
liquid and into agreement 
gas • Cavitation in injection holes to be found 

the predominant mechanism causing 
spray atomisation 

• Cavitation encourages separation in the 
boundary layer of the nozzle hole flow 

• Higher turbulence levels in nozzle flow 
can prevent occurrence of hydraulic flip 
phenomenon 

• Hydraulic flip is believed to cause 
unequal sprays from VCO nozzles 

• VCO nozzles with eccentric needle 
produce hollow cone sprays 

• Discharg~ coefficient only depends on 
cavitation number and not on Reynolds 
number 

• Cavitation characteristics do not change 
beyond a specific cavitation or Reynolds 
number and above a certain pressure 

Arcoumanis Steady-state flow • Laser Doppler • Simulating Diesel fuel with a mixture of 
et al. (1992) test rig with Velocimetry hydrocarbons having the same refractive 
[38] enlarged model index as the acrylic model nozzle proved 

injector to be a useful tool in characterizing the 
(transparent internal flow in Diesel injectors 
single-hole • Three-dimensional components of mean 
nozzle) velocities and RMS values measured for. 
Refractive index Re = 18800 
matching • The measured flow field provided insight 

into the dependence of the injector flow 
on nozzle geometry, needle lift and 
injection pressure 

• The results are useful for validating 
multi-dimensional CFD models 
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Laurent Water at room Integral Mie • Preliminary results show that the jet 
Pouvreau [39] temperature is Scattering coming out of a nozzle is highly 

pressurized depending on the internal flow. Though 
within an high pressure atomisation is the usual 
accumulator process, low pressure atomisation can be 
using an air achieved by using a cavitating flow. 
pomp. An However, this flow is unstable and as the 
adjustable heater cavitation extends might lead to the 
gives the hydraulic flip, where the flow is 
possibility to completely detached from the wall and 
study the effect atomisation does not occur anymore. The 
of water coming step will now be an attempt to 
temperature. correlate the proprieties of the jet with 
Four types of the turbulence within the nozzle. 
nozzles are being 
used. 

Table 2-1 Internal flow characterisation in large-scale models 

2.3. SPRAY FLOW CHARACTERISATION IN REAL SIZE MODELS 

Authors and Experimental 
Techniques Major Findings 

Year Set-up 

Roland Spray produced • Droplet Sizing • The results presented in this article 
Domann, by a atomizer, • Planar Droplet conftrm that accurate, quantitative 
Yannis which injected Sizing technique information can be obtained from Planar 
Hardalupas liquid on the Droplet Sizing if careful image pre-
(2002) [40] centreline of an processing is applied, the correct dye 

industrial burner concentration is chosen and the 
calibration is adapted according to the 
characteristics of the scattered and 
fluorescence light dependence on droplet 
diameter. 
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Hyeonseok A solid-cone • Planar imaging • The mass distribution of a solid-cone 
Koh, Kihoon spray was used Techniques spray was obtained using laser induced 
Jung and to obtain the fluorescence signal since the 
Youngbin uniform volume fluorescence signal is proportional to the 
Yoon [41] distribution. The volume or the mass of spray. 
(2002) spray was • It was found that if the signal was 

injected attenuated asymmetrically due to the 
vertically at an viewing perspective or the significant 
atmospheric non-uniformity of spray pattern, the 
condition. In single-image detection may not give 
order to obtain accurate information on the local fuel 
fluorescence mass distribution either quantitatively or 
signals, a qualitatively. 
methanol/water • The size distribution is also affected by 
solution the signal attenuation, because the 
containing 30 attenuation coefficient may be dependent 
mgll upon the wavelength of the signal. 
fluorescence in 
dye (Aldrich 
F245-6, 
C20H1205) was 
used as a 
test fluid. 

z. Dai, G.M. The tests were • Single- and • With increasing Weber numbers, the 
Faeth carried out in a double-pulse multimode breakup regime begins at the 
(2001) [42] rectangular shadowgraphy end of the bag breakup regime at We = 

shock tube with and holography 18 and ends at the start of the shear 
the driven breakup regime at We = 80. 
section open to • With increasing We in the range 18±80, 
the atmosphere tlt_ at the onset of breakup decreases 
and the side from a value of3.0 to a value of2.0 at 
walls windowed the onset of shear breakup. The end of 
to provide breakup has values of tlt_ = 4.0 and 5.0 
optical access. A • Drop deformation and drag properties 
vibrating prior to the onset of breakup appear to be 
capillary tube relatively universal for We of 13±150 
drop generator. 
and an 
electrostatic drop 
selection system. 

Nouri J.M., Prototype swirl • Mie Scattering • It was found that the shape of the spray is 
BrehmC, injector In a • Phase Doppler almost independent of the injection 
Whitelaw J.H Constant volume Anemometry pressure (30,70 and 100bar). However, 
(1999)[43] chamber .. 

the spray penetration was found to 
increase by increasing the injection 
pressure. 

• The maximum droplet velocities were 
found to increase from 50 mls to 70 mls 
by increasing the injection pressure from 
30 bar to 70 bar respectively while the 
arithmetic as well as the Sauter mean 
diameters (30 and 60Jlm respectively) 
were found to be nearly independent of 
the injection pressure. 

80 



Kashdan J.T., Constant volume • Spray imaging • High chamber pressure under quiescent 
Shrimpton J., chamber. • Mie scattering conditions was found to suppress both 
Arcoumanis Single cylinder • Phase Doppler the axial and radial spray penetration of a 
C. spray-guided Anemometry swirl injector spray. Increasing the 
(1999)[44] optical engine pressure from 1 to 5 bar led to a reduced 

with flat piston spray penetration by 25% by the end of 
the injection and decreased cone angle 
from approximately 60° to 49°. 

• In-cylinder spray visualisation showed 
that for central positioning of the 
injector, (a) During the intake stroke the 
airflow has relatively little effect on the 
generated spray structure in terms of 
spray dispersion, repeatability and 
symmetry. However the toroidal vortex 
becomes distorted as a result of a 
combined air motion induced by the 
tumble and the secondary flow caused by 
the downward moving piston. 

• (b) For the late injection strategy the 
higher in-cylinder pressures caused 
significant contraction of the spray which 
resembled more a solid than a hollow 
cone type. Spray images revealed that 
piston impingement occurred with 
resulting liquid film. 

• An increase in the chamber pressure 
from 1 bar to 7 bar caused significant 
reduction in the droplet velocities and 
resulted in increased mean droplet 
diameters. 

Abo-Serie E., Constant volume • Mie Scattering • The spray development generated by a 
Arcoumanis chamber high pressure swirl injector was analyzed 

C., CCD camera and four stages were identified. The first 
Gavaises M. two correspond to the period prior to the 
(1999)[45] liquid film formation, in the nozzle hole, 

while the other two to the period of film 
development. 

• A very early asymmetric purely atomised 
bulk of liquid located at the centre of the 
injection hole 

• An asymmetric non-hollow spray 
• A swirl developing hollow-cone spray 

" 
with a multi layer structure 

• A fully developed and well-atomised 
hollow cone spray with cone angle nearly 
independent of injection pressure. 

• High magnification images revealed 2 
modes of droplet formation, through 
ligaments in the direction of injection and 
through wave crest stripping in the radial 
direction. 
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AdomeitP., Spray • Computational • CFD provides valuable information on 
LangO., visualisation Fluid Dynamics the spray propagation and mixture 
Pischinger S., CCD camera • Mie scattering formation when validated models of 
(2000) • Phase Doppler atomisation and spray generation are 

Anemometry used. 
• The validation of the current model was 

achieved by comparing the calculated 
results with Schlieren visualization and 
PDA measurements. 

• The simulation reveals the importance of 
the pre-jet on penetration as well as on 
the overall spray behaviour as it carries a 
sufficient momentum to induce a 
secondary recirculation gas flow which 
strongly contracts the main conical spray. 

• In-cylinder CFD analysis, for particular 
air guided engine, shows that the tumble 
charge motion strongly affects the spray 
propagation and mixture formation in the 
stratified operation mode by transporting 
the fuel vapor cloud towards the spark 
plug. 

Miyajima A., High pressure • Mie scattering • A method of controlling the fuel spray 
Okamoto Y., chamber • Computational pattern was developed. A swirl type DI 
Kadomukai CCD camera Fluid Dynamics fuel injector with L-cut orifice nozzle (L-
Y., type) and a taper-cut orifice nozzle (taper 
Togashi S., type) were designed. The fuel spray 
Kashiwaya patterns of these injectors were measured 
M., experimentally for different ambient and 
(2000)[46] .. 

fuel pressures and simulated numerically . 
• Experim~ntally and numerically it was 

confirmed that the L-type and the Taper-
type nozzles produced inclined spray 
pattern. 

• The Spray angle of the L-type nozzle 
decreased by 0.5 0 and that of the taper-
type by 2.60 degree respectively as 
ambient pressure increased from 0.1 to 
0.6 MPa. 

• The influence of the fuel pressure was 
minor for both nozzles. 

• The spray pattern was found to be 
controllable by changing the depth of the 

.. orifice. The general trend was that by 
increasing the L\D the cone angle as well 
as the penetration of both nozzles 
decreased. 

• CFD code show that the fuel velocity 
contours and the air void shapes inside of 
both orifices are inclined which results in 
inclined fuel sprays. In addition it could 
predict the spray angle with reasonable 
accuracy. 

'---

-------------------------------------------------------------------------
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VanDerWege Modified flat • Phase Doppler • The spray structure and droplet diameter 

B., head and piston particle analysis distribution were observed over a wide 

Hochgerb S., single cylinder (PDPA) range of engine temperatures and sub-

(2000)[47] optical engine atmospheric ambient pressures in a DISI 
with square cross engine. 
section which • Droplet mean diameter was found to 
allows optical decrease substantially with increasing 
access through fuel temperature and decreasing ambient 
three quartz density. 
windows • Under conditions with high potential for 

vaporization (low pressure, high 
temperature), an additional droplet size 
reduction mechanism was observed 
which was associated with flash boiling 
or evaporation of the volatile components 
in the fuel. 

• A good correlation was found between 
the spray cone angle expansion and the 
decrease in the measured droplet diameter 
under high volatility conditions. This 
suggests that expansion of the initial cone 
angle, thinning liquid sheet, may be 
dominant mechanism leading to increased 
atomisation. 

• Spatial and temporal variations in droplet 
diameter were found to be relatively 
small compared with changes due to 
operating conditions while variation in 
droplet velocity behave as expected 

.. (decrease after the end of injection) . 

NouriJ.M., High pressure • Mie scattering • The photographic investigation of a 

Whitelaw J., chamber • Phase Doppler prototype swirl injector indicated delay 

(2002)[48] Intensified CCD Anemometry times of 0.225 and 0.2ms due to the 

Camera opening and closing of the needle of the 

Argon-ion laser injector. 
sheet • The shape of the sprays was nearly 

independent of injection pressure at all 
chamber pressures. 

• The effect of chamber pressure was 
considerable with large reduction in 
droplet mean velocity by up to 50%, 
spray cone angle by 35%, suppression of 
the droplet velocity fluctuations by 40% , 

.. and an increase in the droplet arithmetic 
Sauter mean diameters by up to 20% 
with an increase in the chamber pressure 
from 1 to 12 bar. 
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Mitroglou N., Constant volume • Mie scattering • The overall angle of each spray from the 

Nouri 1.M., chamber • Phase Doppler injector axis was found to be 400 and 

Arcoumanis Common rail Anemometry almost independent of the injection 

C., system pressure (120,200 bar). 

(2002)[49] Six hole • The effect of chamber pressure was to 
multihole reduce the spray tip penetration of each of 
injector the six sprays due to the increased drag. 
CCD camera • Temporal velocity profiles revealed that 
Strobe light the droplet velocities increased sharply at 

the start of injection to a maximum value, 
then remained unchanged, during the 
main part of injection, before decreasing 
rapidly towards the end of injection. 

• The spatial velocity profiles were jet-like 
at all axial locations with the maximum 
values on the spray axis. 

• The Sauter mean diameters in the main 
spray at 10mm plane form the nozzle exit 
were of the order of 19 and 14J..lm at 
injection pressure of 120 and 200 bar 
respectively under atmospheric chamber 
pressure. 

• The effect of injection pressure on the 
droplet size was small while the increase 
in chamber pressure resulted in smaller 
droplet velocities by up to fourfold and 
larger droplet sizes by up to 400/0 

Miyajima A., High pressure • Mie scattering • The spray pattern of swirl type injectors 

Okamoto Y., chamber • Phase Doppler with a V -groove cut orifice nozzle and a 

Kadomukai particle analysis U-groove nozzle were investigated 

Y., experimentally by accounting for the 

Kashiwaya influences of ambient pressure and fuel 

M., pressure. 

KuboH., • V -groove nozzle produced flat hollow 

Fujii H., cone spray pattern while U-groove nozzle 

(2003)[50] produced flat solid cone spray pattern. 
• The spray angle in the flat cross section 

of the V -groove nozzle decreased by 11 0 

and that of the U-groove nozzle by 10 for 
an ambient pressure increase of 0.5 MPa 
while the penetration of both nozzles 
degreased by 16mm for the same pressure 
rise. 

• By increasing the injection pressure from 
5 to 12 MPa the spray cone angles of both 
the V -groove and U-groove decreased 
less than 30 while penetration increased 
by approximately 6mm. 

• Measurements showed that the spray 
pattern could be controlled by the orifice-
depth 

• SMD increased by, increasing ambient 
pressure or decreasing injection pressure. 

84 



Tanaka Y., Constant volume • Schlieren • The spray behaviour produced by four 
Takano T., chamber Shadowgraphy swirl nozzles with designed cone angle 
SamiH., CCD camera 40°,60°,900 and 1100 and a slit nozzle 
SakaiK., with 600 spray angle were studied using a 
OsumiN., constant volume chamber and three kinds 
(2003) [51] of single component fuels as well as 

gasoline . 
• The sprays penetrate at a constant speed 

for a while after the injection start and 
the inside of these was found no to be 
hollow. This indicates that spray does not 
entrain air and the widening after the 
injection start is caused by fuel 
vaporization inside the spray. 

• The sprays begin to decelerate at a 
certain time and the deceleration time 
coincides with the turbulence occurring 
time, ascertained in the spray behaviour 
obtained by Shadowgraph images. 

• A breakup theory was proposed and a 
non-dimensional equation was 
introduced which describes the breakup 
conditions in relation to various 
parameters such as ambient pressure and 
temperature, fuel properties, and nozzle 
specifications. 

Pontoppidan High pressure • Spray imaging • The main objective of the particular 
M., flow rig based on study was to isolate the fundamental 
Gaviani G., High pressure .. continuous or injector atomizer parameters to optimize 
Bella G., chamber phase controlled within the frame of physical phenomenon 
De Maio A., Firing engine flash illumination of mixture preparation in a high-speed 
(2004)[52] • Particle Image spray-guided wide spacing racing engine 

Velocimetry operating at homogeneous stoichiometric 
• Phase Doppler mode. 

Anemometry • The data collected form visualisation 
• Computational measurements, PIV and PDA on various 

Fluid Dynamics sprays produced by a swirl, a closed cap 
slit, a multihole, and a colliding jet 
multihole injector were used as inputs to 
the CFD optimization code. 

• A 4 hole multihole injector with the holes 
located in a linear array with a maximum 
angular separation of the outer jet axis of 

.. 
800 was found to give the best results 

, 
which were also validated during the 
firing engine tests. 

• Although the colliding multihole injector 
had the potential to give the best 
performance results, as it promotes a 
secondary break up, it did not give any 
improvement compared to the multihole 
injector due to the very limited free path 
space available in the racing engine 
around the intake TDC. 

• The work done showed that it is possible 
to obtain a potential 2% high-end 
performance gain with DI-technology 

'---- compared to PFI-technology. 

--------------------------------------------------------------------------------------------------------------------------
85 



Choi J., Lee Wind tunnel • Mie scattering • High pressure swirl injection 
S., used for the • Shadowgraphy characteristics of a GDI injector in a 
BaeC., simulation of a • Phase Doppler cross-flow up to 15m1s were investigated 
(2004)[53] range of in- Anemometry to study the interaction between flow 

cylinder flow field and spray. 
conditions. • The sac spray penetration (pre spray) 
High pressure depth varied with injection but the main 
swirl injector. spray penetration depth and spray width 

were not affected by the injection 
pressure or the cross-flow velocity. 

• Fuel vaporization rate was found to be 
proportional to cross-flow velocity. 

• Liquid and vapor fuel were distinguished 
by Mie scattered images and 
shadowgraphy. 

• The PDA velocity measurements showed 
the existence of vortices with different 
motion at various cross-flow velocities. 

• Acceleration of the fuel droplet 
vaporization by increasing cross-flow 
veloc!!y was confirmed by PDA. 

Hung L.S., High pressure • Mie scattering • The Presence Probability Image (PPI) 
Chmiel M.D., flow rig • Cylinder head technique was demonstrated for the 
Markle L.E., Delphi single flow bench evaluation of the macroscopic spray 
(2004)[54] cylinder spray- testing variations of a swirl injector, both at 

guided optical • Particle Image atmospheric as well as in-cylinder engine 
engine with flat Velocimetry conditions. 
piston • In addition to the standard spray 

.. characteristics, such as spray tip 
penetration and spray cone angle the 
two-dimensional global spray structure 
variation was also revealed by using the 
probability approach. Therefore multiple 
spray characteristics could be examined 
simultaneously. 

• By overlaying an individual spray 
boundary on the PPI a visualisation of 
the two-dimensional spray structure 

- variation can be obtained. 
AbeM., High pressure • Mie scattering • Two new nozzles with new spray pattern 
Okamoto Y., chamber were developed for meeting the needs of 
Kadomukai CCD camera the wide spacing and the close spacing 
Y., spray-guided DISI configurations. 
Tanabe Y., 

.. 
• An L-cut orifice nozzle that produces a 

Ishikawa T., horseshoe spray pattern was used to 
(2004)[55] create a rich and lean concentration 

region. The spray shape and the fuel 
distribution was found to be controllable 
by configuring the L-cut step walls. 

• The rich portion within the horseshoe 
spray fuel distribution is created from the 
vertical side edge of the L-step while the 
lean portion is crated by the obstruction 

'-- of the L-step wall 
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Kubo.M., Spray • Particle image • The developed CFD code for analyzing 

Sakakida. A., visualization of Velocimetry the flow through the swirl injector can be 

Iiyama. A., three prototype (Ply). used to calculate the spray formation 

(2001)[56] nozzles, (strong • Computational process to some extent, from the 
swirl, weak Fluid Dynamics development of the initial spray to the 

swirl, strong main spray. 
swirl tapered), in • Properties critical to the nozzle design 
a high pressure such as the flow coefficient, cone angle 
chamber using and cavity factor can be calculated with 
laser sheet and relatively good accuracy, at atmospheric 
twoCCD as well as backpressure conditions, in 
cameras comparison with the theoretical formula 
operating with a proposed by Tanasawa. 
slight delay • Increasing the fuel injection pressure 
produced by a promotes better atomisation leading to a 
highly accurate smaller mean droplet size and more 
delay system. homogeneous spray distribution. 

However that effect is reduced under a 
condition of high backpressure. The 
mechanism of atomisation is closely 
related to the spray flow velocity 
distribution during fuel injection. 

• The reason why a nozzle with a tapered 
tip produces a spray shape that is 
laterally asymmetrical is the flow rate 
distribution toward the circumference of 
the nozzle hope exit. 

Seoksu Wind tunnel with • 2d Mie Scattering • Injector temperature showed an influence 

Moon, optical access " and not only on the macroscopic structure but 

Jaejoon Choi, allowed by an Shadowgraphy also on the droplet diameter distribution 

EssamAbo acrylic • Phase Doppler within the free spray. 

Serie and transparent Anemometry • Increasing the injector temperature 

Choongsik window. The decreases the spray penetration and 

Bae (2005) injectors tested increases the spray width for slit injector. 

[57] were a slit However when using the swirl injector 

injector and a the reverse trend was observed. A 
swirl injector reduction in diameter was found when the 
The Injectors . injector temperature increases for both 
were heated by injector. 
circulating water 
inside an injector 
adapter. 

Eriko '10 and 2.2 times .2D Mie scattering • The vortices that form within the sac 

Matumura, enlarged Slit .. • 3D Mie scattering continuously propagate in a periodic 

Tomojiro Injector .To shadowgraphy manner within the sac. 

Sugimoto, Visualize the fuel • Phase Doppler • The streamline of fuel that flows from the 

Mutsumumi flow within the Anemometry sac to the slit is influenced by the 

Kanda (2006) sac, a polyamide continuous vortices within the sac. 

[58] resin tracer was • The smaller the scale of vortices that form 
mixed into the within the sac, the thinner the liquid film 
compressed fuel region at the edge of the slit and the larger 

the cavitation region in the central portion 
of the slit. 
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Yan-jun Swirl spray in a • Computational • Spray penetration increases with 
Wang,Jian- High Pressure Fluid Dynamics injection pressure while the impact of 
Xin,Shi-Jin, chamber (KIVA program) injection pressure on the main cone are 
Xiao-Hu Lei • Mie scattering little comparatively; higher surrounding 
and Xin- pressure leads to the shorter penetration 
Liang An distance. 
(2005) [59] • There is an optimal injection timing 

which result in better injection 
performance and more homogeneous 
charge. Too early injection result in 
piston impingement and too late injection 
results in cylinder impingement. 

• The second injection timing can be 
optimised to form a reasonable mixture 
concentration distribution in the spark-
ignition timing and rich mixture at the 
periphery of the spark plug which can 
benefit the stable ignition and quick 
combustion 

• Different mass ratio between first and 
second injection have significant effect 
on engine performance . 

• By the optimization of the fuel injection 
parameters a simple TSGDI combustion 
system can achieve a fuel consumption 
15%-24% lower than PFI 

Anand H., Constant volume • Mie scattering • The cone angle typically enlarged as the 
Corey E. chamber with MAP decreased 
Weaver and ambient • The profile of the cone angle as a 
Eric temperature kept function of time after SOF resembled a 
W.Curtis, at 20 °C. and logarithmic function with an asymptote 
Terrence F. Optical motored of45-50deg 
Alger, Carl engine, Pressure • Counteracting effects on the cone angle: 
L.Anderson, swirl hollow as the fuel pressure increased the effect 
Duane L. cone injector of reducing MAP (increased cone angle) 
Abata (2006) was amplified. As the fuel pressure 
[60] increased, the spray developed vortices 

along its edges which had a narrow effect 
on the cone angle 

• Sufficient space is required on either side 
of the spray for vortices to fully develop. 

• The penetration increases slightly as the 
MAP decreases. 

.. • The frequency of injection was not a 
significant factor in spray development. 
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AnandH. Constant volume • Phase Doppler • Counteracting effects on cone angle due 
Gandhi, chamber with Particle to MAP and fuel pressure. As the fuel 
CoreyE. ambient Anemometry pressure increased, the effect of reducing 
Weaver, Eric temperature kept MAP was amplified. 
W. at 20 °C. • The spray velocity was generally 
Curtis, Terren Pressure swirl constant between 0 -7.5mm from the 
ce F. Alger, hollow cone injector axis regardless of MAP or fuel 
Carl L. injector pressure. The velocity versus pressure 
Anderson, difference across the fuel injector profile 
Duane L. resembled a logarithmic function for all 
Abata (2006) MAP values 
[61] • The SMD typically increased as the 

radial distance increased from the 
injector axis 

• As the pressure difference across the fuel 
injector increased, the SMD decreased in 
a profile resembling exponential decay at 
each position considered. 

• As the MAP decreased, the SMD 
generally decreased and the velocity 
typically increased. The SMD and 
velocity profile were generally inversely 
related. 

Table 2-2 Spray flow characterisation in Real size models 

2.4. SPRAY RECIRCULATION AND AIR ENTRAINMENT 

Authors and Experimental Techniques Major Findings 
Year Set-up 

G.E.Cossali Spray injected • Laser Doppler • Most of the gas is entrained during the 
A.Gerlaand vertically into a Anemometry main injection period, after the passage of 
A.Coghe confmed the spray head. 
G.Brunello quiescent • The non dimensional entrainment air 
(1996) [62] atmosphere and averaged over a time interval 

the air corresponding to the main injection 
entrainment was period clearly depends on the axial 
measured by distance and both gas density and 
evaluating the temperature 
velocity • The gas temperature affects the air 
component entrainment directly in fact the gas 
normal to a temperature the mass flow rate increases 
cylindrical at constant density 
geometric • the non dimensional entrainment rate 
surface increases with the nozzle distance 
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Andriani, R. Gas or liquid • Constant • A transient period: caused by the passage 
Coghe,A. Fuel were temperature of the jet head vortex and characterized 
Cossali, injected in a thermometer by a strong similarity between jets and 
G.(1996) [63] close cylindrical • Laser Doppler sprays when appropriate dimensionless 

chamber with Anemometry variables were introduced. The jet head 
variable internal vortex was found to move almost at 
pressure and almost constant velocity Vt 
temperature • A quasi-steady period: this was reached 

quickly after the passage of the head 
vortex, when the gas entrainment begins 
and the nondimensional entrainment rate 
depends on the nozzle distance for both 
jet and diesel sprays. 

Cossali, G. E. Close cylindrical • laser Doppler • The presence of the wall affects the 
Coghe,A. chamber and a Anemometer entrainment by increasing the entrained 
Brunello, G standard Diesel mass flow rate in the region close to the 
(1993)[64] injector mounted wall during the main injection period. By 

with nozzle flush increasing the wall angle, the 
with the inner entrainment decreases, thus partially 
wall of the compensating the effect of the presence 
cylinder head, of the wall 
and injecting • The asymmetry of the impingement 
vertically geometry (tilted wall) produces an 
downward along asymmetry in the entrainment through 
the chamber different parts of the cylinder 
axis. To simulate surrounding the spray 
the fuel • The entrainment rate was found to be 
impingement dependent from the experimental 
was used an geometry and axial coordinate z 
a4justableplate 

Cossali, G. E. Close cylindrical • laser Doppler • The present study demonstrated the 
Brunello, G. chamber and a Anemometer possibilitY of detailed, space and time 
Coghe, A. standard Diesel resolved measurement of entrainment 
(1991) [65] injector mounted rates in transient diesel spray. 

with nozzle flush • The radial distribution of the entrainment 
with the inner velocity U was modeled in function of 
wall of the the time and coefficients depending on 
cylinder head, space, time and injection pressure 
and injecting' history. 
vertically • The entrainment process takes place 
downward along mainly during the main injection period 
the chamber that, for the present experiment lasts 
axis. The injector about 80% of the entire injection 
system was .. duration . 
operated in a • The entrained mass flow rate increases 
controlled. with the injected mass flow rate 
continuous mode • The entrainment in the near field zone of 
at variable pump transient liquid jet appears to be lower 
speed than that in steady liquid jets. 

Siebers, D. L. Constant volume Development of a • A law correlating the normalize 
(1999) [66] combustion computational penetration with the time was modeled 

vessel with a model and for a diesel jet. As a consequence of the 
top-hat injection comparison with scaling law it was modeled the relation 
rate profile . the penetration between the air entrainment flow rate and 

measured in the the fuel mass flow rate. 
chamber. 
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J. J. Sutherla Air collected and Air Entrainment • The appropriate experimentally 
ND,P.E. measured in an into steady two- determined entrainment number, E, for 
SojkaandM. inverted phase jets where ligament -contro lIed effervescent 
W. Plesniak graduated the gas and liquid atomizer produced sprays is 0.15 + 
(1999) [67] cylinder placed streams exhibit 0.056. This value ofE predicts 

in a water bath. interphase velocity entrainment to within 40% for sprays 
cylindrical slip can be considered in this study. 
housing that modeled using the • Entrainment depends on the structure of 
enclosed a momentum rate the spray present at the atomizer exit, as 
nozzle mounted approach of Ricou shown by a comparison of results from 
to a back plate. and Spalding this study with those of Bush (1994). 
Effervescent (1961), although 
atomizer with their entrainment 
porous medium number value is no 
to control the longer applicable. 
diameter of The experimentally 
ligaments determined 
Matheson 602 entrainment 
rotameter with a number for the 
stainless steel two-phase jets 
float Omega studied here 
Engineering FL- increases with 
1503A rotameter ALR. 
and controlled by 
a needle valve 

S. KrOger and Measurements .2D laser-Based • In comparison to well-established 
G. GrUnefeld performed in a Flow Tagging techniques, such as PDA and PIV, the 
(1999) [67] hollow-cone present techniques are much less affected 

gasoline direct- by multiple light scattering, beam 
injection spray' steering and beam attenuation in 
operated with optically ~ick two-phase flows. 
50bar rail • The present techniques yield the 
pressure in room possibility to study the interactions of 
air. maximum dispersed and continuous phase in highly 
droplet ... density is particle-laden, evaporating and non-
about 5106/cm3 evaporating gas flows. 
in the probe 
volume. 

K.D. Driscoll, All • Particle Imaging • A new technique was demonstrated for 
V. Sick, C. measurements Velocimetry the simultaneous determination of 
Gray (2003) were performed (PIV) entrained air velocities and fuel velocities 
[68] using a pressure- in a dense spray. This method allows for 

swirl GDI spray unambiguous phase separation and 
(60_ cone angle), optimal adaptation to best velocity 
which was· resolution through the adjustment of laser 
injected into a delay times. The ability to achieve 
static test cell simultaneous velocity measurements 
(1000 cm3 test with l-mm resolution will assist efforts 
volume) at room to model atomisation and mixing in 
temperature and dense sprays. 
ambient 
pressure. 
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Nauwerck, A. Pressurized • Laser light sheet • In the beginning, frictional effects 

Pfeil, J. chamber with visualization. predominate, so both spray width and 

Velji, A. optical access. • Phase Doppler length reduce. At later point of time, due 

Spicher, U. The investigated Anemometry to inertia of the fuel mass a widening of 

Richter, injectors were • Particle Image the jet was observed, while its length 

B.(2005) [69] high pressure Velocimetry remained nearly constant. This effect 

hole type increases with the pressure. 

injectors with a • The basic composition of the airflow 
nominal cone with torus-like vortex, entrainment flow 
angle of 90° and centre flow has been investigated. 

An increase of maximal velocities in the 
entrainment flow with higher injection 
pressure was detected. 

• Droplet dimension does not increase in 
the same was as the fuel pressure. High 
gradients of velocities were detected 
inside the spray. The smallest droplet 
diameter was detected at the highest fuel 
pressure. The Sauter mean diameter was 
about 13 Jlm at 10 MPa and 6 Jlm at 
50MPa. 

Cossali, G. E. model for • Computational • The model developed here allows the 

(2001) [70] predicting Fluid Dynamics prediction of some important features of 

entrainment into the gas entrainment mechanism in steady 

full cone non- full cone sprays. 

evaporating • The entrained mass flow rate depends on 
steady spray the distance from the nozzle in a way 

quite different from that found in steady 
gaseous jets. In the near-field the 
entrained mass flow rate follows a 3/2-
power law, which leads to a 1I2-power 
law of the normalized entrainment rate, 
whereas in the far field the linear 
dependence of the entrained mass flow 
rate on nozzle distance (as in gas jets) is 
recovered. 

• Comparison with available experimental 
data seems to confirm this dependence 
on nozzle distance in the near field with 
acceptable accuracy. 

• Two new non-dimensional parameters 
are found to characterize the entrainment 
process, namely the non-dimensional 

.. mean drop diameter d=D and the 
nondimensional group JlD= _mo. This 
explains why the experimental results 
reported in the form of jet entrainment 
coefficient or normalized entrainment 
rate (which do not contain such 
parameters) under different conditions do 
not show consistency. 

Table 2-3 Spray recirculation and air entrainment 
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2.5. INVESTIGATION IN OPTICAL ENGINE 

Authors and Experimental 
Techniques Major Findings 

Year Set-up 

YYan, S Piezo pintle-type • Planar Laser • The airflow motion around the tip of the 
Gashi, JM injector installed Induced spark plug was measured at engine 
Nouri, RD inside a 4-valve Fluorescence speeds of 1000 and 1500 RPM, with 
Lockett and C optical engine • Laser Doppler mean and rms values of up to 16 and 
Arcoumanis with pentroof Velocimetry 7Vp, respectively, during early induction 
(2005) [71] design. The back stroke, while the corresponding values 

of the piston was towards the late compression stroke were 
elongated and 0.7 and 0.7Vp where a low tumbling 
hollowed to motion exists. 
allow for a fixed • The mean droplet velocity in the annular 
45° mirror to be spray jet 16 mm from the nozzle exit was 
positioned found to be high during late compression 
directly under injection with maximum value of around 
the cylinder axis. 73 m/s for both engine speeds. The effect 
The piston crown of increasing the in cylinder backpressure 
has a flat design caused substantially reduction in droplets 
and offers a good mean and rms velocities, for example, a 
optical access to delay in injection from 310° CA to 320° 
obtain horizontal CA reduced the mean and rms by 10.5 
images. and 27%, respectively. 

• Hollow conical spray structure had a 
.. tendency of bending inwards against an 

elevated backpressure; therefore, the 
design for spark plug location should 
accommodate the curvature of the spray. 

• Spray structure was not affected by the 
tumble motion of air during the 
compression stroke as at these times the 
tumbling flow velocity was too low 
compared to that of spray droplets 
velocity with the highest maximum 
velocity ratio of 0.048. 

Himes. M., Hydra single • Mie Scattering • At high loads the spray pattern differs 
Farrel. P.V. cylinder, four • Laser Doppler considerably from the more symmetric 
(1999)[72] valve, pent-roof, Velocimetry spray observed for lighter loads 

direct injection • Comparing three loading conditions, 
optical engine. (low, medium, high), it was observed that 
(close - the swirl motion changes during the 
spacing). compression from counter-clockwise (low 

load) to clockwise (high load). 
• As the load increased the RMS 

fluctuations around the injection timings 
were also increased which is considered 
in favor to the mixing process. 

• The increased airflow at high load 
conditions caused convection of the fuel 

'- to the r~ion between the intake valves. 
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Kakouhou. Four valve single • Laser Doppler • The combined effect of the swirl motion 
A., cylinder optical Velocimetry in the cylinder head the cylindrical piston 
Urushihara. engine with • Particle Image bowl positioned eccentrically to the 
T., Itoh. T., pentroof type Velocimetry cylinder central axis forms an upward 
Takagi. Y. chamber, piston • Laser Induced flow that rises from the piston crown near 
(1999)[73] crown bowl and Fluorescence the cylinder centre area to the cylinder 

swirl control head in the latter half of the compression. 
valve. (wide • The fuel injected directly into the cylinder 
spacing) initially enters the piston bowl and then 

transported to the vicinity of the spark 
plug by the upward flow forming mixture 
stratification . 

• The ideal injection timings are 
determined from the balance between fuel 
trapping in the piston bowl and fuel film 
formation on the piston crown . 

• Too early injection timing results in a fuel 
spray that is not trapped in the piston 
bowl and travels towards the exhaust side 
of the combustion chamber which 
precludes mixture stratification and 
causes a large fluctuation in the mixture 
concentrations in the vicinity of the spark 
plug thus resulting in unstable 
combustion . 

• Too late injection timing results in higher 
mixture concentration in the vicinity of 

00 the spark plug however results in 
increased liquid film on the ~ston bowl. 

B.Befrui et al Single cylinder • Phase Doppler • Combustion stability and efficiency over 
(2002)[74] optical engine, Anemometry a wide window of injection and spark 

DISAC • Planar Laser timings 
combustion Induced • Significant charge stratification potential 
system, Fluorescence • Significant optimisation potential 
High pressure • Planar Laser 
swirl injector Induced Exciplex 
Investigation of Fluorescence 
spray structure 
and an its 
temporal 
development3w2 

Salters; D. et Single cylinder • High-speed video • Early spray injection impacted the piston, 
al research GDI imaging and wad deflected towards the cylinder 
(1996)[75] engine walls, although significant impaction of 

High pressure the walls was not identified 
liquid fuel 
injector 
Fuel spray 
behaviour 
invest!gation 
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Julian T. Optical engine • Laser Induced • Under stratified conditions, the structure 
Kashdan, single cylinder Fluorescence of the combustion zone is highly wrinkled 
Jerome with 4 valve • Planar OH LIF and inherently inhomogeneous. , this is 
Cherel and pentroof cylinder • Planar Laser believed to be due predominantly to local 
benoist head and flat Induced fuel mixture stratification and the 
Thirouard piston geometry. Fluorescence presence of high fuel concentration 
(2006) [76] Swirl Injector gradients. The flame propagation pathway 

and Piezo is ultimately determined by these local 
actuated injector. fuel mixture inhomogeneities. 

Furthermore the flame front and burned 
gases appear to enclose the fresh gases 
which are locally either too lean or too 
rich to maintain flame propagation, 
resulting in bulk quenching. 
After the end of the primary combustion, 
it was observed a strong oxidation due 
either to remaining unburned fuel from 
the bulk-quenched zones or following 
evaporation of liquid film on the piston 
top surface. 
Under homogeneous charge conditions, 
the structure of the combustion zone has 
been significantly different to that 
observed under stratified operation. The 
flame consumes the unburned mixture as 
it expands toward the combustion 
chamber without leaving pockets of 
unburned fuel behind. Flame wrinkling 
appeared to be significantly lower under 
homogeneous operation whilst the 
structure of the combustion zone 
resembled a deformed sphere. Post 
oxidation was identified possibly caused 
by re-ignition of unburned or which it 
flows out from the crevice volumes. 

Table 2-4 Investigation in optical engine 
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2.6. PINTLE-TYPE INJECTOR 

Authors and Experimental Techniques Major Findings 
Year Set-up 

Brad A. test single- e Computational e. An 18% fuel consumption reduction over 

VanDerWege, cylinder engine Fluid Dynamics a test cycle compared with a PFI 

Zhiyu Han, with bore and e High-speed video baseline. 

Claudia o. stroke of 89 and camera e. An additional 4-7% fuel consumption 

Iyer, Ruben 79.5 mm, reduction over a wall-guided DI system. 

H. Mufioz and respectively. It The primary reasons for this are 

Jianwen Yi features a pent- improved combustion efficiency and 

(2003) [77] roof phasing, which result from the ability to 
Combustion provide an improved fuel-air mixture 
chamber with later in the compression stroke. 
four valves and a e. Stratified-charge operation up to high 
swirl-control loads (about 5 bar BMEP) and speeds 
valve (SCV) that (about 4000 rpm). Potential for even 
can partially or higher load unthrottled operation was 
totally block one shown through split injection. 
of the two intake e. Potential for improved full-load 
ports. performance due to improved 

homogeneous mixing. The central 
injector location and the wide cone angle 
spray aid the mixing. 

M. Gavaises, Eulerian and e Computational e The exiting flow has been found to vary 

s. Tonini and lagrangian near- Fluid Dynamics considerably around the nozzle periphery, 

A. Marchi nozzle model both in terms of actual velocity 

(2006) [78] and spray model magnitude but also in flow direction. 

of an Outward This, in turn, has been found to affect the 

Opening Piezo- dispersion of the injected droplets in the 

driven pintle inner and outer recirculation zones 

injector formed at the two sides of the developing 
spray. Those recirculation zones, which 
are known to result to the so-called 
' collapsing' or ' opening', spray types, 
where found to be affected not only by 
the internal nozzle flow but also from the 
outside nozzle shape and the boundary 
conditions. Finally, evidence was 
provided for the formation of the ' string' 
type spray structure produced by such 
nozzles both from experimental images 
and multi-phase flow calculations. It has 
been demonstrated that the formation of 
strings is due to the liquid separation from 
the surface of the cartridge, which is due 
to its expansion in the radial direction. 
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Sudhakar Das The existing • Computational • Based on the simulation study, collapsing 
and Paul G. Taylor Analogy Fluid Dynamics spray can be influenced by the following: 
VanBrocklin Breakup (TAB) •. Seat angle 
(2003) [79] atomisation •. Streamwise velocity/tangential velocity 

model in KIV A- •. Nozzle exit diameter 
3V code was 
used for 
atomisation 
(droplet 
breakup). The 
basic structure of 
the code is for 
spray originating 
from an orifice. 

Ch.Schwarz, Spray test • Mie imaging • DI specific spark plug and double 
E. Chamber, optical • Laser Induced V ANOS variable cam timing is well 
Schunemann, engine. Fluorescence suited for the combination with 
B. Durst, J. Multicylinder • High-speed innovative supercharger technology 
Fisher and A. engine test Videoscopy which provides highest dynamic 
Witt (2006) bench. 

• 3D 
performance and response, while at the 

[80] Combination Computational same time offering additional fuel 
with Turbo- Fluid Dynamics consumption potential by enhancing 
charging calculations of stratified operation. 
Variable valve in-cylinder 
cam timing charge motion 

Stan C., Pressure pulse • Free spray Mie • The development of a gasoline direct 
Troeger R., direct injection scattering injection system for engines with 
Stanciu A., system with an • Computational compact combustion chambers requires 
(2002)[81] outwardly Fluid Dynamics special attention on the interaction 

opening poppet • In-cylinder Mie between the movement of piston, valves 
valve type scattering and the time and space related spray 
injector. • Pressure analysis development. 
Single cylinder • HC,CO • Generally a spray directed on the piston 
four valve four emissions provides the best results for engines with 
stroke analysis compact combustion chambers where a 
motorcycle specific chamber shape is not possible. 
engine. • CFD simulation is an effective tool for 

achieving the optimum result in a 
relatively short time. 

.. • The optimum injection start is not always 
the one providing the minimum 
interaction between spray and piston. 

• The optimized set up, central injector 
with twin lateral spark plugs, show 
considerable improvement in terms of 
HC and CO emission behaviour by an 
average reduction of 14 % and 60% 
within the operating regime compared to 
the stock arrangement. 
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JMNouri, M Piezo pintle-type • Phase Doppler • Spray visualization illustrated that the 
A Hamid, Y injector installed Anemometry spray was string structured and that the 
Van and C inside a constant- • Mie scattering locations of the strings did not change 
Arcoumanis volume chamber from one injection to the next. The string 
(2005) [82] structure remained the same in elevated 

back-pressure from 1 bar to 12 bar. The 
overall spray cone angle was stable and 
independent of back-pressure, a 
significant advantage relative to swirl 
pressure atomisers. The effect of 
backpressure was to reduce the spray tip 
penetration due to the increased drag so 
that the averaged vertical spray tip 
velocities . 

• Detailed PDA measurements were 
carried out under atmospheric condition 
with an aid of spray visualization to 
locate a particular string in the spray 
cone. The maximum axial mean droplet 
velocity reached, was 155 mls at 2.5 mm 
from injector which was reduced to 140 
mls at z = 10 mm. The string spacing was 
determined from PDA measurements to 
be around 0.375 and 0.6 mm at z=2.5 and 
10 mm, respectively. The maximum 
mean droplet diameter was found to be in 

.. the core of the strings with values up to 
40 J.lm at z=2.5 mm reducing to 20 J.lm at 
z=IOmm. 
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A. Marchi, J. Large-scale • Mie Scattering • Spray visualization of the cavitating 
M. Nouri, Y. transparent nozzle revealed the presence of gas-
Yan and C. model of pintle- phase in the near nozzle exit region. This 
Arcoumanis type Injector could be either cavitation under 
(2007) [83] conditions where the pressure drop 

corresponded to a cavitation number of 
1.1 and above, or air entrainment into the 
nozzle due to the liquid flow separating' 

• cavitation and air entrainment were two 
separate phenomena occurring under 
different operating conditions 

• For the case of air entrainment, the 
emerging spray can have two distinct 
large and small cone angles 

• The surface structure of the sprays 
corresponding to the two cone angles 
consisted of longitudinal strings due to 
the profiling effect of the liquid flow 
around the entrained air pocket; 

• it is still risky to speculate that air 
entrainment is the only mechanism 
responsible for the string-type spray 
structure since a fmer string structure has 
been observed in a non-cavitating nozzle 
tested previously 

• The dynamics of cavitation vapour 
.. pockets proved to be much faster than 

those of the entrained air bubbles 
• Limited tests at low lifts and very high 

flow rates, where air entrainment and 
cavitation bubbles could co-exist, 
revealed that the main mechanism for the 
formation of a string-type structure was 
still the entrainment of air bubbles, but 
that the presence of enhanced cavitation 
at high liquid velocities could create a 
string-type spray structure which was 
very similar to that of the real size 
injector. 

• Overall, the results presented above 
suggest that, apart from air entrainment, .. 
there may be other mechanisms that 
might either hinder or enhance the 
formation of string-type spray structures 
like the balance between dynamic, 
surface tension and aerodynamic forces 
due to the induced air recirculation near 
the nozzle exit. 
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B.Befrui, G. Side illumination • Mie Scattering • The jet-string structure formation is 
CorbineIli, D. is used for • CFD (VOL- primarily a hydrodynamic characteristic 
Robart and imaging of the LES simulation) of the high pressure conical sheet 
W. Reckers longitudinal breakup and is a feature of the injector 
[84] spatial-temporal valve group design 

development of • There is a transition in the spray breakup 
the spray mechanism between the Kelvin-
geometry, while Helmholtz and jet string break up regime 
the "frontal" • The VOF-LES simulations, for an 
il1umination is injector valve group design with "coarse" 
employed to jet-string spray structure, reveals that the 
examine the liquid flow detachment (separation) from 
spray the nozzle wall, upstream of the nozzle 
circumferential exit, is the primary cause of formation of 
structure. the ''jet-string'' flow structure. The fluid 

dynamic origin of the flow detachment is 
separate from flow cavitation in the 
nozzle . 

• The liquid flow detachment from the 
nozzle wall engenders "ingestion" of the 
ambient air into the nozzle that promote 
the near field irregular circumferential 
break up of the conical liquid sheet, 
through irregular growth of Kelvin-
Helmholtz waves at the liquid-air 
interface. 

Table 2-5 Pintle-type Injector 

2.7. MISCELLANEOUS ON DISI CONCEPT 

Authors and Experimental 

Year Set-up and Major Findings 
Measurement 

Henning Test bench with Turbo • Several methods to decrease the turbo lag effect have 
Kleeberg charged Direct Injected been found: 
,Dean Gasoline Engines: -variable valve timing 
Tomazic, Charge air cooling, -Charge air cooling 
Oliver Lang electrically assisted -Additional air charging 
,Knut supercharger placed • The investigation on these concepts have shown that 
Habermann upstream ()fthe high boost levels at low engine speeds can lead to 
(2006) [85] turbocharger compressor, abnormal combustion events like pre-ignition 

and possibility of 
utilizing a series of two 
differently sized 
turbochargers. 
Compressor map, lMEP 
and torque measurement. 
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Alasdair Turbo charged four Benefits ofEGR in a turbocharged DI gasoline engine: 
Cairns, Hugh cylinder gasoline direct • At part load, high amounts of internal and external 
Blaxill and injection research engine. EGR were used to invoke CAl combustion and achieve 
Graham Irlam The original pent-roofed up to 10% reduction in CO2 over the New European 
(2006) [86] engine was of naturally Drive Cycle. 

aspirated wall-guided • Further Fuel saving of3% were also made at moderate 
design, with injector engine output using reduced EGR flow rate in spark-
located between the two ignition condition 
inlet valves • Cooling external EGR helps suppressing knock more 

than excess of air, with increased charge specific heat 
capacity, combustion phasing further advanced toward 
the optimum timing and improved combustion stability 
over a wide operating range. 

• The cooled EGR makes tolerable higher compression 
ratios in boosted downsized engines . 

Philip Price, Wall guided DISI optical • The PM emissions from the SGDI engine tested were 
Richard engine with swirl significantly lower than a similar engine with a wall 
Stone, Tony atomizer, guided combustion system. Unlike wall guided DIS I, a 
Collier, Spray-guided DIS I significant accumulation mode was not detected, but 
Marcus optical engine with the number concentration of nucleation mode PM was 
Davies (2006) multihole atomizer similar to a PFI engine; and the number concentrations 
[87] generally similar and less than an order of magnitude 

more. The improvement is attributed to the higher fuel 
pressure, reduced impingement of fuel on the 
combustion chamber surfaces and generally better 
mixture propagation 

.. • PM number was shown to depend on fuel composition; 
and the highest PM emissions were measured when 
toluene was used as the fuel. 

• Advancing the ignition timing increased the number 
concentration of PM emissions . 

• For SGDI with toluene a monotonic increase in PM 
mass concentration over one order of magnitude was 
measured when sweeping the injection timing from 60 
CAD a TDC to 160 CAD a IDC. The same trend was 
measured when using isooctane, but the increase in PM 
mass concentration was smaller 

• Fuel Type had biggest effect on PM emissions 
followed by air-fuel ratio, injection timing and ignition 
timing 

Yang J., Single cylinder direct • A split injection strategy in the intake and the 
Aderson injection engine. compression strokes realized both the volumetric 
R.W., Pressure analysis efficiency and the knock suppression benefits 
(1998)[88] In-cylinder temperature. increasing the full load IMEP by a further 3 % 

• When the first injection contained more than two thirds 
of the total fuel injected the combustion stability was 
insensitive to the timing of the second injection 

• An increase in the second injection fuel ratio relative to 
the fIrst, dictated the use of the earlier second injection 
timing of 1500 BTDC 

Table 2-6 Miscellaneous on DISI concept 
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2.S.LITERATURE REVIEW SUMMARY 

The primary step on the investigation of the flow characterization of an injector 

consists of the understanding of the internal behaviour in order to be able to explain 

and optimise the spray characteristics. Several attempts have been made in real size 

nozzles by replacing a nozzle portion in quartz thus gaining optical accessibility to a 

hole [89]. Nevertheless, this approach was causing a deformation of the internal 

geometry and to the adjacent holes adding unexpected behaviour in the internal flow 

characteristics. Furthermore, this approach was preventing the observation of the flow 

behaviour in the sac volume and the simultaneous visualization of the injector holes. 

To overcome this inconvenient, the whole transparent nozzle was to be manufactured 

in transparent material like quartz or Perspex to provide an overall 3-D view of the 

internal behaviour [90]. 

The high complexity of the set up arrangement and the low optical accessibility due to 

the very small size of the nozzle, made it difficult to go for real size model for this 

investigation and the preferred choice was to do the internal observation in a larger 

scale model for preliminary investigation under steady state flow condition. The 

simple arrangement set up with lower cost and the high optical accessibility offered 

by the large-scale used in this investigation provided a large amount of information 

which gave guideline mechanisms that were kept in consideration in the subsequent 

study in the real size model. 

Few analogies between previous large-scale findings and the current injector model 

are here summarised. In the experiment from Nouri et. al. [7] on cavitation in the 

large scale multihole mini-sac type nozzle, onset of cavitation was observed 

approaching a cavitation number of 0.7 to 0.9. These values are very close t~ the onset 

of cavitation observed in the large-scale model of the pintle type injector with an 

onset cavitation of 0.5 which is slightly lower probably due to the different onset 

detection technique implied in the two experiments. Similar findings were also 

observed in the experiments from Matsumura et. al. [27] where the mechanism of 

vortex were linked to the downstream flow behaviour in a large scale slit nozzle 

model. It was found that the formation of small vortices forming in the sac had large 

effect on the flow fluctuation and in the spray angle. Similarly, in the large-scale 

pintle type model the dependency of downstream flow tangential fluctuation could be 

linked to the oscillation to the 8 counter rotating vortices occurring upstream in the 

body of the injector. 
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An important finding is also given by Carvalho et. al. [28] who observed the structure 

of a flat liquid film in a 2-D liquid film generator. It is interesting to notice that in 

such a structure no string filament formation could be observed under any operating 

condition. This outcome proves that the strings formation observed in the conical 

hollow spray of the pintle type injector are strictly associated to the conical shape of 

the liquid sheet and the instability originated from the progressively decreasing of the 

film thickness as it expands with downstream distance. 

An important phenomenon associated with the string formation and described in the 

third chapter is the hydraulic flip, which consists in the flow separation from the 

nozzle wall occurring at the injector exit. 

Evidence of flow separation were identified by Schimdt et. al. [31] and Yule et. al. 

[33]. In the experiment of Schmidt the nature of the separation was cavitation driven 

as a function of cavitation number and Reynolds number. In the large-scale pintle type 

nozzle it was not possible to investigate flow separation in the presence of cavitation, 

however, its occurrence and development in the absence of cavitation was 

investigated and its link to the filament formation outside the nozzle was established. 

The same phenomenon of hydraulic flip was observed in the absence of cavitation by 

Yule et. al. [33] in a large scale model of a veo muItihole injector and its effect was 

found to be related to the Reynolds number. Soteriou et. al. [37] has also investigated 

and analysed the phenomenon of hydraulic flip in VCO nozzles and suggested that 

they can cause unequal spray from one nozzle to another in the absence of flow 

cavitation. In the large-scale cavitating model of pintle type injector, the current data 

showed that the hydraulic flip occurrence was diminishing with Reynolds number but 

only at high needle lift. 

Pouvreau [39] showed how hydraulic flip can be an undesired phenomenon as it 

enhances spray instability with no clear evidence of any further improvement in 

atomisation. The angle analysis in the large-scale model reported in Chapter 3 of the 

current thesis has also revealed the high level of instability associated with hydraulic 

flip as a function of position of the air trap attachment to the needle wall or injector 

body inside the nozzle, causing two distinct large and small spray angle modes, 

respectively. 

In the scaled up model of gasoline multihole nozzles, the phenomenon of cavitation 

and it's effect on the spray characteristics was fully identified [30]. In order to 

correlate the model with the real injector, geometrical, kinematical and dynamical 
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similarity were respected. However, due to the non-linearity of pressure ratios 

between the two scales, it was not possible to maintain the same similarity with 

cavitation number (CN) and the enlarge CN values were in general much smaller than 

the CN in the real size operating under real conditions. Several general conclusions 

could be drawn from the reviewed papers in the open literature regarding the effect of 

cavitation mainly in multihole models. It was established the positive effect of 

cavitation on the spray atomisation which was related to the decrease of discharge 

coefficient and the consequent velocity increase in the non cavitating areas ([33], 

[37]). Those effects were then validated also in the real size pintle-type injector where 

it was noticed a small decrease of the fuel rate per injection beyond an injection 

pressure of 160bar thus suggesting a discharge coefficient reduction probably due to 

an increase of cavitation. In addition to experimental results, further CFD calculation 

confirmed the presence of cavitation for same operating conditions and also air 

entrainment was identified in the simulation from the. presence of adverse gradient 

around the nozzle exit [15]. The phenomenon of cavitation was split in two main 

philosophical opinions between cavitation supporter stating the benefit of cavitation in 

terms of increased in-nozzle turbulence and spray atomisation and non-cavitation 

supporters claiming the strong instability and unpredictable nature of the cavitation 

phenomenon. 

In fact, a crucial feature of the pintle type injector consists in the stability and 

repeatability of the spray characteristics over different operating conditions. 

Historically many injector showed shape and pattern variation with the backpressure. 

For instance a contraction of the spray cone is well established for the swirl type 

injector up to 35% of the cone angle at ambient condition [44, 45, 48]. Kasdhan et. al. 

[44] also observed a progressive distortion of the toroidal vortex, an increase in mean 

droplet diameter and a decrease in spray penetration, the last effect mainly occurring 

for every injector type as affect of the increase drag effect. The multihole shape was 

found to be very robust against injector pressure however the penetration is highly 

variable as a function of back pressure so that spray impingement maybe an issue 

[49]. 

The angle analysis on the pintle type injector by mean of Mie scattering in the optical 

engine has revealed a high robustness of its shape under ambient with an angle 

variability of ± 20 for an injector pressure of 200bar. The penetration decreases with 

the backpressure however the controllable needle lift due to the multiple piezo 
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crystals activation allows high degree of freedom to avoid wall impingement. 

The level of atomisation observed by Mitroglou et. al. [49] on a multihole injector 

reported a variation of order of 19J.lm and 14J.lm at injection pressure of 120bar and 

200bar respectively under atmospheric back pressure. 

The current investigation applied to the pintle type has shown a mean droplet 

diameter in a range within 8J.lm an 14J.lm for the same operating condition described 

in [49] at 10mm from the injector exit. These results suggest that the atomisation 

perfonnance of the pintle type is higher than the atomisation of the multihole injector. 

At the same distance from injector, the PDA parametric analysis perfonned in the 

constant volume chamber revealed a growing trend of droplet size as the injection 

pressure decreased or as the chamber pressure increased. A similar droplet size trend 

was observed in the PDA experiments of Anand et. al. [60] perfonned on a swirl 

hollow cone injector where an increase in injection pressUre was associated with an 

SMD decrease. On the other hand, a decrease in backpressure in the swirl type 

injector was associated with an SMD decrease and vice versa, i.e. an increasing in 

backpressure results in larger SMD due to increased drag. However, when increasing 

the backpressure, droplets evaporation become significant and its effect on SMD size 

is opposite to that of drag. As the backpressure increases, it reduces the droplets 

velocity and therefore increased droplets resident time, which leads to enhanced 

vaporisation. The spray shape of the swirl type is highly sensitive to the chamber 

pressure and when this increases, the PDA measurement point measure the velocity in 

a different relative radial position (as the spray cone has contracted) and thus it detects 

a larger droplet size. In fact, another conclusion from Anand PDA assessment [60] is 

that SMD typically increases as the radial distance increases from the injector axis. 

The studies on the air entrainment and recirculation was largely studied by Cossali et. 

al. [62-64] and modelled according a scaling law by Siebers et. al. [66]. 

The flow characteristic of the air entrainment on the spray near nozzle field was 

observed in this study giving introductory experimental infonnation which could be 

used for the comparison between the air recirculation from the spray on a single hole 

of the multihole. injector and the air recirculation on the longitudinal filaments 

(strings) present in the spray structure of the pintle-type injector. In fact, the spray 

structure fonned in the outward opening injector can be associated to those of a 

Multihole having as many holes as the strings number of the pintle-type. This 

approach may provide a link .for the behaviour of the two injector types giving a better 
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understanding on the air entrainment and recirculation area in the near and far spray 

field. 

LDV measurement performed by Cossali et. al. [65] characterised the air entrainment 

of a Diesel injector and observed the relation between the growth of injected mass and 

the growth of the air entrained flow rate. Same result with a different measurement 

technique was also achieved by Nauwerck et. al. [69] who measured the air 

entrainment of high pressure hole type injector in a pressurised chamber with optical 

access by both PIV and LDV techniques. Nauwerck et. al. [69] as Cossali [65] 

observed an increase of the maximal velocities in the entrainment flow with 

increasing injection pressure. 

The same approach was adopted in the current study where LDV diagnostic 

confirmed the PIV assessment performed on the air entrainment of the pintle type 

injector spray. The parametric study revealed a linear law of proportionality between 

air entrainment velocity and injection pressure in the near-field for a range between 

50 to 200bar. 

On the optical engine, the review of the literature covers for different engine operating 

conditions and engine configurations. Previous experiments on the pintle-type shown 

the robustness of the spray shape against the tumble motion at late injector and engine 

speed [71]. In the present investigation, the pintle-type injectors showed enhanced 

behaviour in terms of spray angle, shape and overall spray angle stability. In 

particular, it was observed for two Inward Seal Band prototypes the influence of 

several injector parameters which showed a robust behaviour against injection to 

injection variation. However, in previous performance analysis of similar injector in 

the optical engine, for different cylinder pressure the hollow cone shape exhibited a 

variation on its curvature, more specifically the spray was bending inwards against an 

elevated backpressure [71]. 

The review of the literature shows adequate experimental investigation on multi-hole 

and swirl injectors for the gasoline direct-injection engines but the information on 

pintle-type outward opening injector are limited and sparse. 

However the overall performance of the injector under investigation were assessed by 

Brad et. al. [77] who describes the combustion system concept and an initial 

assessment of it, performed on a single-cylinder test engine. Their testing result on the 

Vortex Induced Stratification (which is the mixture formation method for the pintle 

injector spray type) have indicated that an 18% fuel consumption reduction can be 
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achieved, compared with a baseline PFI engine, over a drive cycle and an additional 

4-7% fuel consumption reduction can be achieved over the wall guided strategy. 

These benefits are shown to arise from improved combustion phasing, reduced 

unburned hydrocarbon emissions, and an enlarged window of stratified operation 

[77]. 

The results presented in subsequent chapters of this thesis and related publications are 

aimed to improve the literature on these topics, and also to allow further development 

in gasoline direct-injection engines and eventually establishment of a "cleaner" 

internal combustion gasoline engine. 
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Chapter 3. 

Large-scale Model 

3.1. INTRODUCTION 

The internal flow and the spray structure of a pintle-type injector have been 

investigated in an enlarged model in this chapter to have a better understanding of 

many aspects still not well understood like in-nozzle flow structure, longitudinal 

string formation of spray and its link to in-nozzle flow and spray stability, in 

particular, spray-to-spray variation (flapping). These phenomena have an important 

role in the behaviour of the overall spray-guided DISI system and they are still 

investigated extensively. The use of a transparent enlarged model helped to overcome 

the difficulties encountered in the observation of the internal flow in a real size 

injector. Quantitative flow analysis performed with LDV technique was matched with 

3D Mie scattering visualisation to give information about the internal behaviour and 

the correlation of the flow upstream and downstream the nozzle exit. 

3.2. EXPERIMENTAL TECHNIQUES 

3.2.1. Mie-scattering 

Mie-scattering is technically a simple method that takes advantage of a high

resolution CCD camera and a simple optical set up. Using laser sheet imaging of the 

Mie scattered light, cross-sections of the spray can be imaged to reveal the internal 

structure by observing the scattered light (optical density) from the particles surface 

area. 

One of the most frequently used techniques for the extraction of qualitative 

information regarding the fuel droplet behaviour of a high-pressure liquid spray inside 

a transparent model, a constant volume chamber or even an engine's cylinder is the 

Lorenz-Mie scatt~ring technique. More specifically, Mie· scattering is an elastic 

scattering technique 'where light of same wavelength to the incident radiation is 

scattered from particles or droplets, which move with the flow [16, 26]. The light 

intensity according to Lorenz-Mie theory is a complex function depending upon the 

droplet diameter, the scattering angle, and the refractive index of the droplet, the 
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polarisation and the wavelength of the incident radiation. Because of several 

problems, the Mie technique has found limited use as a quantitative technique and is 

instead more frequently used to visualise spray and even flame structures. 

Forward illumination imaging and shadowgraphy techniques are two simple forms of 

Mie-scattering and they were the methods chosen for this experiment in order to 

visualise the spray morphology and provide details of the transient structure and 

temporal development of sprays. These particular methods focus on the overall shape 

of the spray rather than just the particles. The methods will be discussed further in the 

processing of experimental data section. 

3.2.2. LDV (Laser Doppler Velocimetry) 

Laser Doppler Velocimetry (LDV) is a tool for acquire flqw velocities. The technique 

is based on the determination of the velocity of fine tracer particles that follow the 

fluid flow with virtually no delay. The technique is well established and has been used 

by many researches in different subject areas, for example, Hockey and Nouri (1996) 

[91], Arcoumanis et aI. (1997 & 1998) [18, 35]. Here a brief introduction is given and 

the readers are referred to references given below. The velocity is determined for a 

single point of the flow field. For the evaluation of the whole flow field velocity, the 

velocity has to be measured at many different points. The spatial resolution is given 

by the size of the measurement volume, which is defined by the intersection of two 

laser beams. The beams are produced by splitting one laser beam into two parallel 

beams, which are focused symmetrically by a lens at its focal point to form the 

measuring volume. At the measuring volume, the interface of the two beams produces 

a fringe pattern of bright and dark region. When a tracer particle passes through the 

fringes in the measuring volume, it will scatter light with a frequency modulation 

linearly related to the tracer velocity. A photomultiplier with its collecting optics 

(comprised collimating and focusing lenses, a 100 J.lm pin hole and a photomultiplier 

equipped with amplifier) was located in front of the measuring volume collects the 

scattered light. The signal from photomultiplier was fed into the processor interfaced 

to a PC and led to time-average values of the mean and RMS velocities. 
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3.3. DESCRIPTION OF THE TEST RIG AND OF THE EXPERIMENTAL SET UP 

A large-scale nozzle (23.3: 1) has been manufactured from Perspex simulating the 

outward opening DISI injector as shown in Figure 3-2. 

(To the IlljE"Ctol'/ /FI'om the IlljE'ctOli 

A=_ 
-'I:XJ- -

Filter BW3SS 
(2-way valve) 

FLO\V 
CONTROL PANEL 

c----.L..-'To the tauk--

®Dl ........ t-__ {f[aJ_· -------,FroJU the tallk---

L...-----------Totbetauk-----

Figure 3-1 Schematic of the flow diagram showing the pumps, pipelines and valves used to 

control the flow admitted to the injector. 

The model was designed based on geometric, kinematic and dynamic similarity. 

Specifically to preserve the dynamic similarity all operating conditions aimed to 

achieve Reynolds numbers as for the real injector at the nozzle exit. The flow through 

the enlarged nozzle injector was operated under steady flow condition by fixing the 

needle position to different lifts. The water flow passes through the nozzle at a pre

specified lift using two electrical pumps (Figure 3-1). The nozzle internal flow was 

visualized using a high resolution CCD camera 1280xl024 pixels and to capture the 

dynamic evolution of the flow a high-speed video camera with acquisition rate up to 

180000 frame per second was used. 
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(a) Injection into air (b) Injection into water 

Figure 3-2 Schematic diagram shows the main components of the large-scale model. 

LDV system was also employed to measure the circumferential flow velocities at the 

nozzle exit as shown in Figure 3-2. It was not possible to measure this flow velocity 

component at the nozzle exit if the water is injected into air due to the liquid surface 

shape dynamics that causes the laser beam to be scattered all over. Therefore, the 

measurements across the main jet were achieved by projecting the laser beam through 

a closed Perspex chamber filled with water while having the control volume within 

the water jet. It should be noticed that thi~ flow velocity may not be equal to the free 

surface velocity (when the water is injected into air) because of the different viscous 

effect. Nevertheless, the velocity measurements in the vicinity of the nozzle exit is 

less affected by the external different boundary condition and could provide useful 

information that helped to understand the internal mechanism of the flow inside the 

injector. 

All the transparent components, nozzle-block, the last section of the needle and lower 

chamber have been manufactured from acrylic (Perspex), while the rest of the needle 

and the needle casing (cartridge) were machined from stainless steel. 

The valve lift was measured and adjusted at the top of the rig by a micrometer and a 

fine screw thread respectively. 

Needle 

Figure 3-3 Schematic of the nozzle exit showing convergent-divergent region at the valve seat 
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A viewing window cut-out was located on the same horizontal plane, and almost 

parallel with, the valve seat. Pressure tapings located upstream and downstream of 

the nozzle exit enabled the injection pressure and backpressure to be measured. 

The upper part of the cartridge featured a cylindrical bore that encased a square needle 

guide. This arrangement provided four equally spaced flow passages for the liquid to 

flow through before mixing in the region between the square-section needle guide and 

the valve seat. Figure 3-4 shows schematically the needle guide cross-section with the 

flow passages. 

Figure 3-4 Upper cartridge flow passages 

At the inlet to the model injector, a mixing chamber was installed and water was fed 

into this chamber through four pipes equally spaced around the chamber (Figure 3-5) 

to insure thorough mixing and uniform flow into the model injector. 

Needle 

(a) (b) 

Figure 3-5 (a) Schematic diagram of the injector assembly mounted onto the rig; (b) the rig 

assembly. 
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3.3.1. Injectors under investigation 

Two different designs of transparent model injectors were investigated based on their 

ability to generate cavitation and will be referred to as cavitating model and non

cavitating model. After completing the investigation in the non-cavitating model, 

further investigation has been performed in the cavitating model with a modified 

nozzle in order to investigate the effect of cavitation on the spray characteristics. The 

two types of injector present several geometrical differences. More specifically, the 

non-cavitating nozzles were designed with a profile following different angles of 80 

degree and 90 degree, as shown in Figure 3-6 (a) and (b) and had a parallel nozzle 

passage between the needle and cartridge. The needle of the cavitating model, which 

will be referred to as the inward seal band, has been designed differently and it is 

shaped with triple angle profile to produce a nozzle with variable gap. Its passage has 

an initial convergent section followed by a short constant seat region where the cone 

angles of the needle and the cartridge are parallel and the sealing takes place. Finally, 

the nozzle termitlates with a divergent se<?tion where the outer edge of the needle is 

aligned with the cartridge edge. 

(Non cavitating models) 

(a) (b) 

(c) 

Inward seal bend (cavitating model) 

Figure 3-6 Comparison of three enlarged models: Comparison of three enlarged models: (a) and 

(b) non-cavitating model; (c) cavitating model. 
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This particular shape designed for the inward seal band type creates a loss of pressure 

of the flow passing through the narrow section, which consequently under certain 

conditions (when the liquid pressure goes below its vapour value) makes the liquid to 

cavitate. Besides the cavitation, it could be observed that such geometry has also 

additional effects on the spray structure and in particular on the spray angle, which 

has been the object of further investigations. The new cavitating prototype was 

composed by a cartridge with conical internal surface. The needle surface was shaped 

as three subsequent truncated cones with progressively decreasing angle and with the 

sealing surface being the central cone. 

3.3.2. Flat window for in-nozzle visualisation. 

In the large-scale cavitating model, the investigation focused on the observation of the 

flow behaviour inside the nozzle and its correlation to the spray structure. To visualize 

these phenomena the rig was set up without lower part chamber. In this way, the 

injector was spraying inside a barrel (FigUre 3-7 (a»; i.e. injection into ambient air. 

When cavitation was being studied, the injector was arranged with the bottom 

chamber for injecting liquid into liquid in order to visualize the gas phase without 

ambiguity of secondary air entrainment (Figure 3-7(b». 

(a) (b) 

Figure 3-7 Injector model: (a) with lower chamber; (b) without the lower chamber. 
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Figure 3-8 Schematic diagram of the flow passage between needle and cartridge of the cavitating 

nozzle; the arrangement of the flat window is shown. 

The initial visualisation of in-nozzle flow experiments in the large-scale transparent 

model were presenting several optical problems of image distortion due to the curved 

and conical profiles of the interface surfaces with large difference in refractive index 

between fluids and boundaries (Perspex) which caused substantial light reflection and 

refraction. To overcome this difficulty the cartridge was externally provided with a 

flat window of 10 mm width and 20 mm long, to insure a clear view of the nozzle seat 

region. The window was machined on the outside surface of the cartridge, as shown in 

Figure 3-8. 

With this solution it was possible to minimize the image distortion and optimise the 

scattered light from the gaseous bubble inside the nozzle and thus to visualise the flow 

through the narrow passage between the needle and cartridge and observe unexpected 

phenomena which ·are directly related to the formation of string structure of the spray. 

3.3.3. Spray visualisation 

The images have been taken with a high-speed CCD camera (having a 12bit fast 

shutter Sensicam and a resolution of 1280xl024 pixels) with an exposure time of 0.7-

3 JlS. The camera was fitted with a zoom lens and connected to a PC via an image 

acquisition card. The PC also had a timer card installed that triggered both the flash 

lamp illumination and the camera. All internal camera settings could be adjusted with 

the image acquisition software. The spray was illuminated by a Xenon spark light 

equipped with two flexible optical fibbers which increased the effectiveness of the 
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imaging set-up; the spark light intensity was of the order of 200 J/pulse with a pulse 

duration of lOllS. To visualise the gaseous bubbles inside the nozzle, a zoom lens was 

used to produce high-magnified images at the nozzle exit. Shadowgraphy method was 

employed so that the presence of the gas phase was identified as a black shadow. To 

relate these occurrences to the spray structure it was necessary to match forward 

illumination for the nozzle flow with the backward illumination for the spray 

structure, as shown in the schematic of Figure 3-10. This was achieved by using two 

optical fibres connected to the spark light. A signal produced by a pulse generator was 

giving an output towards the spark light and at the same time was triggering the 

camera. Since the capacitor of the spark light needs 12 seconds to get fully charged, 

the trigger frequency was set to 0.08 Hz. 

In order to understand the dynamic behaviour and the temporal evolution of the flow 

phenomena inside the nozzle, a high-speed video recorder was used which could 

capture up to 40000 frames per seconds. 

Figure 3-9 The overall test cell set up showing the camera and image processor position in 

relation to the injector ~ssembly. 

Two 200Watts halogen spotlights have been employed as the constant and continuous 

light source. The video recorder was trigged by a remote control connected to a data 

store unit and then the images were transferred to the computer for the image 

processing. Similar flow conditions were considered as those observed with the 

Sensicam. 
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Figure 3-10: Schematic diagram of spark light, camera and PC set up, and their connections. 

In order to understand the flow phenomena inside the nozzle, images were taken with 

different magnifications with both camera and video camera using different zoom 

lenses assemblies. Three magnifications of spatial resolution 122, 15 and 6 mm were 

used to visualise respectively the overall image of the spray, nozzle flow and spray in 

the same image and the nozzle flow only, as shown in Figure 3-11. The high 

magnification images w~re found to be very useful as they revealed the correlation 

between the spray structure downstream of the nozzle and the flow through the 

nozzle. 

Figure 3-11 Different image magnifications for nozzle flow and overall spray. 
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3.4. NON CAVITATING MODEL: RESULTS AND DISCUSSION 

The results will be presented in the following two sections for the non-cavitating and 

cavitating models, respectively. In order to correlate the large-scale model with the 

real size injector, the operating parameters were chosen according to the geometrical 

and kinematical similitude by respecting the scaled dimensions and by fixing the same 

Reynolds number as the real size. Due to the pump system and the rig characteristic 

limitations it was not possible to keep the same pressure drop ratios across the nozzle 

seat as in the real size model. For that reason the cavitation number (CN) used in the 

current experiment is order of magnitudes lower than the real size injector. However, 

the qualitative information provided by the large-scale model was useful to speculate 

several flow mechanisms which may explain the behaviour of the real size injector. 

The Reynolds number, Re, for the following geometry was calculated as follows: 

2· PI' U;nj • Lift.· sina 
Re=--~--~-------- (3-1) 

PI 

_Q 
U .. - . 

111) A (3-2) 

(3-3) 

where PI and PI are the fuel density and dynamic viscosity, CN is the cavitation 

number, P u and P d are pressures respectively upstream and downstream of the nozzle, 

P v is the fluid vapour pressure and the geometrical symbols are shown in Figure 3-12. 

Given the flow rate (Q) and the flow cross-sectional area at the channel exit (A), the 

mean injection velocity, U;nj, and Reynolds number under steady flow condition can 

be calculated. Table 3-1 shows the operating conditions for three flow rates in the 

enlarged model and their corresponding values in the real size injector. All these flow 

operating conditions were performed under steady flow conditions by fixing the valve 

lift at a given value ~d running the flow continuously, which means that the transient 

effect of needle on the flow is absent. 
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Needle Lift Flow Rate Uinj 

Model Real Re Model Real Model Real 

(mm) (mm) (lis) (g/s) (m/s) (m/s) 

0.575 0.025 6513 0.95 11.9 8.8 88 

0.928 0.040 6526 0.95 11.9 5.5 54 

0.575 0.025 11793 1.72 21.5 16.0 159 

0.928 0.040 11815 1.72 21.5 9.9 99 

Table 3-1 Flow model operating conditions and its corresponding values for the real size nozzle 

R 

Figure 3-12 Geometry of the needle and its seat 

3.4.1. Near-nozzle flow visualisation 

0() 

I 
I 
I 
I 

In order to understand the structure of the liquid film injected from the nozzle, images 

have been obtained close to the nozzle exit of the non cavitating nozzle of Figure 3-6 

(a). The fIrst set of images was obtained for the liquid fIlm outside the nozzle (Figure 

3-13). The following structure and behaviour have been observed: 

• The conical liquid film was oscillating in the circumferential direction 

• The liquid fIlm spray was relatively uniform around the nozzle exit except at 

four locations where four distinct liquid jets can be seen with thicker strings 

compared to the rest of the liquid spray, and relatively longer penetration. 



These four locations correspond to the axis of the square guide locations. 

• The liquid film presents a string structure uniformly distributed which IS 

originated at the nozzle exit. 

• Liquid film spray cone flaps radially due to aerodynamic mechanism related to 

spray shape and the tank geometrical conditions. 

Figure 3-13 Flow imaging: Thick strings downstream of the nozzle exit originated from the pairs 

of counter rotating vortices. 

3.4.2. In-nozzle flow visualisation 

In order to trace the flow downstream of the square-section needle guide and 

upstream of the valve seat, a small amount of air has been introduced into the main 

delivery pipe through a needle of the non-cavitating nozzle of Figure 3-6(a). The air 

forms small air bubbles that follow the water flow streamlines and couId be visualised 

due to the difference in refractive index between air and water. Although special 

attention has been paid to reduce the air bubble sizes by changing the air needle size 

and the amount of injected air, it was not possible to have satisfactory small air 

bubbles at low flow rate. However, images obtained for both low and high flow rates 

showed similar flow patterns and dynamics. This method was successful to describe 

the mean flow pattern but not accurate to have any quantification for model 

validation. In order to collect quantitative data about the flow velocities inside the 

nozzle I-D LDV diagnostic was carried out and it will be described in the next 

paragraph. 
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Figure 3-14 Schematic representation of the camera locations for flow visualisation between the 

square-section needle guide and the valve seat for both (a) front and (b) side jet water flows. 

The flow is visualised upstream the valve seat using a high resolution CCD camera at 

random times with the camera facing the jet (front jet view) or the side of two jets 

(front guide view), as shown in Figure 3-14 (a) and (b). The side jet images revealed 

the presence of two counter-rotating vortices (re-circulation zones) formed by the 

interaction of two adjacent jets originating from the square cross-section needle guide. 

These side jet images can be seen in Figure 3-15 (a) and show clearly the presence of 

the coun.ter-rotating vortices which are highly unstable and their interaction causes an 

upward jet that is swinging from left to right. Figure 3-15 (b) shows the front jet 

images with the main jet in the centre moving down from the guide towards the 

nozzle seat and two main vortices on either side. 
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(a) Side jet images 

(b) Front jet images 

Figure 3-15 Images showing the flow between the square-section needle guide and the valve seat 

for both (a) side and (b) front jet water flows: needle Iift=O.57 mm and flow rate 1.7 lis. 

Overall, the flow between the valve seat and the square-section needle guide 

comprises four separated jet flows originating from the square cross-section needle 

guide and four pairs of counter-rotating vortices with each pair bounded in between of 

two adjacent jets. The counter-rotating vortices are highly unstable and are expected 

to affect the spray stability outside the nozzle. This instability is more evident from 

video record of the flow, which was presented in the conference presentation ( of 

ICOLAD 2005 [26J. A schematic description of flow pattern in this region is depicted 

in Figure 3-16 which shows how the two adjacent jet flows (yellow coloured) meet 

each other above the valve seat. This meeting point, (M in Figure 3-16) of the two jets 

is as unstable as the two vortices above it. 

The instability is visible in the form of oscillation in both longitudinal (along the axis 

of injector) and circumferential directions and further observation from the spray 

showed that the longitudinal mode of oscillation was suppressed as the flow passed 

through_ the narrow valve seat. On the other hand, the circumferential flow oscillation 

was transmitted by the liquid flow through the valve seat into the spray causing a 

similar oscillation on the spray. Simultaneous recording of liquid spray and internal 

flow (counter-rotating vortices) showed that both were oscillating with the same 

frequency. Similar flow pattern and instability were also observed in a wide range of 

examined flow rates, valve lifts, and it was observed that the change of these 

parameters has an effect only on the velocity of the liquid and not on the flow scene. 
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Figure 3-16: Schematic of the flow pattern between the valve seat and the square-section needle 

guide 

3.4.3. LDV measurements 

In order to link the effect of the above mentioned complex internal flow on the spray, 

I-D LDV system was aligned to measure the flow velocity in the non cavitating 

prototype of Figure 3-6 (b). Measurements were carried out inside in the nozzle, 

downstream of the square-section needle guide, upstream of the valve seat and outside 

the nozzle across the main jet. The measurements across the main jet were achieved 

by projecting the laser beam through the closed Perspex chamber filled with water to 

avoid air-liquid jet interface which causes light path disturbance. Axial, radial and 

tangential velocities have been measured at different locations as shown in 

Figure3-17. Different forward scattering angles have been used during the 

measurements depending on optical accessibility in order to minimise the noise to 

signal ratio while having a reasonable data rate. 

Axial and radial velocity at the 
nozzle exit 

Tangential velocity at the nozzle 
exit 

Figure3-17 LDV measurement locations inside and outside the nozzle 
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3.4.4. Nozzle exit frequency 

The tangential velocity of the exit liquid film at different axial locations was 

measured using the LDV system as shown in Figure 3-18. In general the magnitude of 

the mean tangential velocities is relatively small and close to zero as shown in Figure 

3-19. However, the temporal variation of the instantaneous velocity showed clearly 

that the flow in this direction oscillates around the zero value. By applying FFT 

analysis it was possible to estimate the dominant frequencies of the oscillation. 

.... ~-::::---Measurement 
points 

Figure 3-18 Control volume locations for 

LDV tangential velocity measurements 
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Figure 3-19 Tangential velocity 

measurements within the liquid jet at the 

nozzle exit. 

The FFT analysis showed that there are three dominant frequencies as shown in 

Figure 3-20. One of these three frequencies is always the most dominant than the 

other two. Moving the control volume vertically along the gap of exit nozzle does not 

affect the most dominant frequency; however, this is not the case when moving the 

control volume in radial direction. By moving the measuring point inside the gap 

closer to the nozzle axis, the most dominant frequency was shifted towards the lower 

value. The values of the three dominant frequencies are relatively small compared 

with the breakup frequency and their values are directly related to the flow 

oscillations occurring inside and outside the nozzle exit as was mentioned before. 

Although the control volume was considerably long, and the uncertainty was 

estimated to be o.s mm, it was clear that the higher frequency becomes more 

dominant when moving the control volume away from the nozzle. 
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Figure 3-20 Dominant frequencies of the flow at two vertical locations, Q=0.7I1s, lift= 0.93mm. 
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Figure 3-21 Dominant frequencies of the flow at two different vertical locations, Q=0.7I1s, lift= 

0.93mm 

In order to study the effect of flow rate (or Reynolds number) on the dominant 

frequencies, the three dominant frequencies were computed and plotted for different 

flow rates. The results showed a linear relationship between flow rate and frequencies 

and more specifically the dominant frequencies are directly proportional to flow rates 

as their extrapolation passes through the origin of the axes (Figure 3-22(a». Since the 

flow rate is calculated from injection velocity and needle lift, it was necessary to 

perfonn a sensitivity analysis to asses which of these two paraineters is more influent 

and therefore each factor was individually examined. The linear relationship with the 

frequencies was found for both injection velocity and needle lift and the plot shown in 

Figure 3-22(b) illustrates clearly this linearity. Since the range of Reynolds number 

was chosen similar to the typical values of the real size model similar frequencies are 

theoretically expected to be found in the real size injector. 
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Figure 3-22 Variation of dominant frequency with (a) flow rates and (b) Reynolds numbers. 

3.4.5. Flow filaments formation characteristics at the nozzle exit 

A sample of flow close to the nozzle exit is shown in Figure 3-23 where the overall 

and closed up images of the liquid film are presented. The images shows a wavy 

structure on the circumferential direction which produces streamwise interconnecting 

filaments on the liquid film surface. The existence of these filaments was observed to 

be dependent on injection velocity so that at very low flow rates the liquid film 

surface was very smooth with a tulip shape and no evidence of filaments structure. In 

general, the string structure could be observed in the whole range of flow rates with 

equivalent Reynolds number as the real size injector. The filament spacing seems to 

be relatively small in relation to the nozzle diameter, but comparable to the gap of the 

nozzle and therefore within the atomisation length scale. 

Accordingly, it was necessary to put more effort to examine the source of such strings 

and to identify the factors affecting their size. 

Figure 3-23 Images showing the stings on the surface of the liquid film close to the nozzle exit. 

The observation of filaments structure was important since a similar structure was 

observed in the real size injector as shown in Figure 3-24. The fact that the large-scale 
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model presents similar behaviour implies that these filaments can not be produced by 

surface roughness at the valve seat as the surface state of the large-scale model is 

marginal compared to the real size due to the manufacturing method and also to the 

material used (Perspex) which ensured smoother surface finish. 

E539:(1111) BackP 1 bar Inj.P 200bar (case 2) 

-10 -7.5 -5 -2.5 o 2.5 5 7.5 10 

Figure 3-24 Image of spray from a real size injector at 0.1 ms after the start of injection at 

injection pressure of 200 bar and atmospheric backpressure. 

In order to find the origin of these filaments the camera was focused to visualize the 

flow at the nozzle exit, in the narrow gap between the needle and its seat. By using 

back lighting technique and zoom lens to magnify the flow structure, it was possible 

to visualize clearly the filaments as can be seen in the image of Figure 3-23. The 

magnified image of the flow near the nozzle exit shows clearly the filament structure, 

which gives the possi~ility to identify the strings number over an imaging area 6 mm 

long. With this set up a series of test were carried out to investigate the effect of 

injection velocity and valve lift on filaments formation. 

Figure3-26 shows a sample of images displaying the flow structure produced by three 

different flow rates and two needle lifts. Although the mechanism of strings formation 

seems to be similar for these different operating conditions, the length scale of the 

whole structure becomes smaller as the liquid flow velocity increases. At higher 

liquid flow velocity, the string structure is converted into a more complex structure as 

shown in Figure3-26(c). The comparison of Figure3-26(c) and (f) for two needle lifts 
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at same flow rate indicates that despite the higher velocity through the nozzle at the 

lower lift (1.6 times) the string structure is well defmed. This may suggest that the 

appearance of this complex structure is related to the ratio between the needle lift and 

interspacing distance. If the needle lift becomes larger than the interspacing distance 

the probability of having such complex structure increases. The complex structure is 

associated with the formation of spanwise waves which may be caused by Kelvin

Helmholtz instability and superimposed on top of the main streamwise filaments as 

explained by Mansour and Chigier [20]. The growth of these waves gives rise to a 

type of distorted waves which looks like a corrugated surface as shown in the 

Figure3-26. These structures are similar to those presented by Arai and Hashimoto 

(1985) and more recently by Cavhalho et al.[92]. 

Metal Guide 

Ie Lift 

visualisation 

Figure3-25 Area of visualization 

Needle lift=0.93 mm Needle lift=0.57 mm 

Figure3-26 Images showing the filaments in the gap between the needle and its seat for different 

flow rates, injection velocities and needle lifts. 
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The number of strings was counted from 20 images within a field of 6 mm for each 

operating condition and a mean interspacing distance between two adjacent filaments 

was calculated and presented in Figure 3-27. 

The results show that the average strings interspacing distance decreases linearly with 

the increase of injection velocity whereas the needle lift was only producing minor 

effects on the strings number. Thus, it could be stated that the main factor affecting 

the string interspacing is the injection velocity and therefore the injection pressure. 

However it must be observed that the rate of reduction at higher injection velocity is 

probably not the same as for the analysed range in Figure 3-27(a) and there may be a 

threshold beyond which the velocity has no effect on the string spacing. 
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Figure 3-27 Variation of string spacing as a function of injection velocity and needle lift. 

3.4.6. Liquid film flapping 

Flapping of the liquid film was well evident downstream the nozzle and it was more 

pronounced under certain conditions and depending on the geometry of the space into 

which the spray is injected. To collect the water injected from the nozzle an open 

barrel partially filled ~th water was placed underneath the nozzle exit. It was found 

that the flapping increases at certain water level and specific operating conditions 

which emphasis the importance of the confined space geometry into which the spray 

is injected. Keepi!lg in mind that this tank is completely not geometrically related to 

the piston cylinder geometry in the engine it is difficult to find a relationship between 

the flapping and the existing geometry. It seems that the aerodynamic and pressure 

fluctuations inside the hollow cone structure are playing a major role in spray 

flapping. 

In a simple experiment, the closed liquid' surface of the hollow cone film was 
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intentionally opened at one plane allowing the trapped air inside the hollow cone to 

communicate with the air outside producing a more stable spray with considerable 

reduction in spray flapping. This approach could be achieved in real size injector, if 

similar geometrical confinement is encountered (which is quite rare) by blocking the 

nozzle at one point. However inserting a small part to partially block the nozzle could 

have drawbacks and may partially deteriorate the atomisation process. 

3.5. INWARD SEAL BAND (CAVITATING MODEL): RESULTS AND 

DISCUSSION 

The previous investigation in a non-cavitating model with a parallel nozzle section 

showed neither cavitation nor air entrainment under any operating conditions. The 

following results were carried out in the large-scale cavitating model (Inward Seal 

Band prototype) and will be presented in this session. 

The spray behaviour encountered in the large-scale model of the Inward Seal Band 

has been quite diff<?rent to those observed in the previous injector models. Due to the 

complexity of the spray structure of this injector the following effects have been 

investigated: 

a) Variation of the spray angle 

b) Presence of air pocket inside the nozzle seat 

c) Variation or. spray surface 

d) String structure analysis 

3.5.1. Flow operating conditions 

. The results correspond to different operating conditions of flow rate and needle lift 

and revealed that cavitation occurred only under certain operating conditions, 

particularly at high flow rates and very low needle lifts, while for different operating 

conditions the observed gas phase entrainment into the nozzle from outside had a 

relevant effect on the spray structure. The results of the air entrainment will be 

presented first followed by the cavitation results. 

To keep consistency with the previous experiments carried out on the non-cavitating 

model the same operating conditions have been used also in the tests on the cavitating 

model. Measurements were made for two valve lifts of 0.575 and 0.928 mm and for 

each lift three different flow rates (low, medium and high) were used as can be seen in 

the Table 3-2 

130 



Valve lift [mm] Flow Rate U1nj [m/s] 

Real Model Real Real Re eN 
Model size [Us] [g/s] Model 

size 

0.575 0.025 0.7 8.75 5.9 64.7 5383 0.184 

0.575 0.025 1.2 15 10.1 111 9228 0.29 

0.575 0.025 1.8 22.5 15.17 166 1384 0.474 

0.928 0.04 0.7 8.75 3.67 39.7 5393 0.093 

0.928 0.04 1.2 15 6.28 68 9246 0.17 

0.928 0.04 1.8 22.5 9.42 102 13868 0.31 

Table 3-2 Flow test conditions and their corresponding values for the real size nozzle. 

Preliminary observation of the spray in the new enlarged cavitating model showed a 

different structure to that observed in the previous non-cavitating injector model. The 

sample results, presented in Figure 3-28 shows the complex nature of the spray 

surface for different flow rates and valve lifts which suggests the existence of 

different spray structure depending on the operating conditions. These different flow 

dynamic aspects of the cavitating models have been object of the following 

investigation. First the internal annular nozzle flow behaviour was observed by 

visualising the flow through the flat window (Figure 3-8) when injected into air, and 

then the spray structure outside the nozzle exit was observed and correlated to the in

nozzle phenomena. 

Rough surface Smooth surface 

Flow rate 1.35 lis Flow rate 1.80 lis 
(a) Needle lift 0.93 mm 

Rough surface Smooth surface 

Needle lift 0.57 mm Needle lift 0.93 mm 
(b) Flow rate 1.8 lis 

Figure 3-28: Images of string-type spray structure: (a) Effect of flow rate at the full needle lift, 

O.93mm, and (b) effect of the needle lift at a flow rate of 1.8I/s. 
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3.5.2. In-nozzle flow 

Preliminary observations under normal operating conditions revealed the presence of 

gas bubbles inside the nozzle passage and therefore in order to identify the nature of 

this gas flow closer inspection was needed. For this purpose a series of highly 

magnified images of the flow in the nozzle seat area were obtained through the 

designed flat window shown in Figure 3-11 and a sample of them is presented in 

Figure 3-29 which shows clearly the presence of gaseous bubbles (the black area) just 

upstream of the nozzle exit. 

Figure 3-29 Presence of gas bubble inside the nozzle flow passage near the exit at a needle lift of 

0.57 mm and flow rate of 0.98 lis. 

The presence of these gas bubbles was seen at all investigated flow conditions even at 

very low flow rates. It was noticed that, in all cases, these bubbles were attached to 

the edge of the nozzle exit, with no bubbles detaching and moving upstream into the 

nozzle flow passage. This implies that their formation does not take place in the 

narrow section of the nozzle passage and that they were entrained into the seat region 

from outside the nozzle. 

To show the dynamic behaviour of these entrained gas bubbles, a high-speed camera 

was used and the results are shown in Figure 3-30; the images were related to an 

operating condition of 0.93mm needle lift, a flow rate of 1.2 lis, and a frame rate of 

9000fps. Figure 3-30(a) to G) shows the sequence of the real time images of the 

nozzle flow with a time interval of 0.55 ms which reveal the evolution of air 

entrainment as air is ·sucked into the nozzle from outside. The arrow in Figure 3-30(a) 

indicates the initial position of the developing air entrainment. It was very fortunate to 

capture the air trap development in the vicinity of the viewing window, since most of 

the air traps appeared at the window as soon as the flow was starting and were usually 

circulating around the valve'seat area. Nevertheless, the sequence of images in Figure 
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3-30 clearly demonstrates the formation of the air bubbles taking place at the edge of 

the nozzle exit. The bubble started to penetrate into the nozzle in Figure 3-30(b) and 

grew in time so that at 2.2 ms later, Figure 3-30(f), it is at its most developed phase; 

this gives an estimate of the overall time taken for a typical bubble to be fully 

developed, which is of the order of 2. 78ms. 

0) Frame 112 

Figure 3-30 Real time images of air entrainment evolution into the nozzle flow passage for a 

needle lift of 0.93mm and a flow rate is 1.2 Us; the time interval between each image is 0.55 ms. 

The exit flow velocity at this flow condition is 6.2 m/s which gives a mean flow time 

response of 0.1 06ms 'based on t=GlUinj where Uinj is the mean injection velocity and G 

is the gap between the needle and cartridge in the seat region defined by G=(needle 

lift)cos45 0. This indicates that the flow time response at this flow condition is about 

26 times faster than that of t4e bubble development. This suggests that, for the bubble 
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to be able to penetrate into the nozzle against such a high liquid jet flow momentum, 

there should be flow separation of the jet from either the cartridge or needle surfaces 

close to the exit, with a flow time response comparable to that of the bubble 

development. The bubble formation on the needle or cartridge surfaces has different 

implications, mainly on the spray cone angle, and will be discussed later. 

3.5.3. Injection into air, air entrainment 

After identifying the presence of air bubble entrainment into the nozzle, it was 

decided to visualise the in-nozzle flow and spray simultaneously in order to 

investigate the effect of the presence of these bubbles on the emerging liquid spray. 

This will help to clarify the string formation and also the spray instability known as 

'flapping'. Initial visual observation identified the presence of the latter phenomenon 

in the form of variation in the spray cone angle so that wide and narrow spray cone 

angles could be observed at the same operating condition of valve lift and flow rate. It 
"" 

was found that the occurrence of these wide and narrow cone angles under the same 

operating condition was entirely due to the in-nozzle flow conditions before switching 

on the pump. For example, if the flow inside the nozzle passage and upstream was full 

or partially-full of air pockets then, by switching on the pumps, the emerging spray 

would have a half cone angle of about 51 0 which is larger than the nominal value of 

450 as shown in Figure 3-31(a), and referred to as wide cone angle. Once created, this 

spray condition the wide cone angle was very stable and remained constant with time. 

But, on the other hand, if there was no air trapped inside the nozzle, i.e. the entire 

_ volume of the in-nozzle injector was filled with water, then by switching on the pump 

the emerging spray had a half cone angle of around 41 0
, Figure 3-31 (b), which is 

smaller than the nominal value and is referred to as the narrow cone angle. It was also 

observed that under certain conditions (small lift and high flow rate), it was very 

difficult for the flow to maintain this narrow cone angle structure and became 

unstable in such a way that the spray cone angle was constantly switching between a 

narrow and a wide angle. 
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(a) (b) 

Figure 3-31: A simple model for air traps attached on (a) the needle causing a wide spray 

deflection and (b) the cartridge causing a narrow spray deflection. 

Based on the results and discussion presented in the preceding paragraphs, it is clear 

that the presence of air bubbles entrained into the nozzle is responsible for the 

observed instability in the spray cone angle. To explain the flow mechanism under 

which the narrow and wide cone angle can be initiated, a simple flow model is 

proposed, as presented in Figure 3-31, in which the existence of different spray cone 

angles are linked to the position of the air bubbles with respect to the cartridge or the 

needle lift. When pockets of air are entrained into the nozzle then, depending on the 

location of flow separation, the air bubbles are attached to either the needle or the 

cartridge surfaces. When the bubbles are attached to the needle then they act as a 

cushion and deflect the liquid flow outwards, as shown schematically in Figure 

3-31(a), therefore producing a wider cone angle. On the other hand, when the bubbles 

are attached to the cartridge, the flow is deflected inwards and thus a narrower cone 

angle is formed, Figure 3-31 (b). 

There are several ways to identify whether the bubbles are attached to the needle or to 

the cartridge from the images. First, such distinction can be made from the quality of 

the bubbles shadow in the recorded images, which is related to the different type of 

light reflection/refraction, as 'the light path (for different refractive indices) in the two 
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cases would be different. In the case of bubbles attached to the cartridge, the observed 

shadow of the bubbles viewed from the window was uniformly black, while in the 

case of bubbles attached to the needle there were some discontinuities in the black 

shadow in the form of bright spikes, which can be due to internal light 

deflection/refraction on the unstable liquid/gas interface inside the nozzle seat. 

Valve lift 0.575 mm, flow rate 0.7L/s 

(a) narrow cone angle (b) wide cone angle 

Valve lift 0.575 mm, flow rate 1.2L/s 

(c) narrow cone angle (d) wide cone angle 

Valve lift 0.575 mm, flow rate 1.8L/s, 

(e) narrow cone angle (f) wide cone angle 

Figure 3-32 High-speed video images for comparison between the shadows of the air bubbles 

from the narrow and wide cone angles. 

These effects can be seen in almost all CCD and video recorded images and, as an 

example, Figure 3-32 provides such comparison. A comparison between wide and 

narrow angles is also shown in a high-speed video sequence captured at 15000 fps and 

are shown in Figure 3-33. 
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Time after 

trigger 

o sec (a) 

1.66e-4sec (b) 

3.33e-4 sec (c) 

S.OOe-4 sec (d) 

6.33e-4 sec (e) 

Narrow angle Wide angle 

Figure 3-33 Real time images of air entrainment evolution into the nozzle flow passage for a 

needle lift of O.55mm and a flow rate is 1.8 Us; and Injection pressure 2.16 bar. 
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From the magnified images comparison it is possible to distinguish the instability 

forming at the bubble surface probably due to the flow shearing at the interface of the 

two phases. For the narrow cone angle, the perturbation is mainly present on the 

profile of the bubble followed sometimes by the surface burst as shown in Figure 3-33 

(t). This behaviour agrees with the assumption that for the narrow angle the bubble is 

attached to the cartridge (window) thus the viewer is not exposed to the air/water 

interface and can only see the shadow of the bubble in contact with window seeing 

only the perturbation occurring behind or at the side of the bubble. 

For the wide cone angle shown in the right column of Figure 3-33 it can be observed 

that the bubbles have shorter penetration length and their surface are rather covered 

by fizzy white spikes. Following the same assumption, if the bubble is attached to the 

needle, the whole biphasic bubble interface is exposed to the viewer thus showing the 

instability caused by the liquid disturbance. 

Another way to distinguish between the two cases is by measuring in the images the 

projected length of.. bubble penetration into the nozzle. These measurements were 

made according to the procedure shown below in Figure 3-34 and the results are given 

in Table 3-3 which shows that for same operating condition the measured height of 

the bubble penetration for a wide cone angle (M) is always shorter than those for the 

narrow cone angle (8). Thus, when observing the air bubbles through the viewing 

window, longer bubble penetration implies bubble attachment to the cartridge while 

the shorter ones indicate bubble attachment to the needle. From the explanation given 

below in Figure 3-34, it should be noticed that the true measured value of the 

. penetration length .~or the wide cone angle given in Table 3-3 is W=M+L where L is 

- the needle lift. 

Another useful and consistent conclusion that can be drawn from Table 3-3 is that, 

within the measured range, the lower valve lift always gives longer bubble penetration 

for both narrow and wide cone angles. This suggests that the flow separation on either 

boundary is taking place closer to the needle seat region; this might be expected as the 

annular jet thickness at the lower lift is thinner resulting in stronger deceleration (or 

adverse pressure· gradient) close to the boundary as the flow expands in the 

divergence section of the nozzle. The comparison between the projected heights for 

wide and narrow angle shows a height difference of about the needle lift (Table 3-3) 

as if the bubble was displaced from needle to cartridge which agrees with the 

proposed flow model previously described. 
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W=M+L(Valve lift) 

S = Projected height of the air bubbles measured directly from the images for the small 
spray cone angle. 
M = Projected height of the air bubbles measured directly from the images for the wide 
spray angle. 
W = Projected height of the air bubbles for the wide spray angle; this has been 
calculated by adding the valve lift to the measured height from the images as this lower 
part of the gaseous body is hidden by the bright exit gap as shown in above. 

Figure 3-34 Bubble height as projected in a plane parallel to the injector axis. Schematic 

Bubble penetration Comparison (small -wide) 
Valve lift 0.92 mm 0.57 mm 0.92 mm 0.57 mm 0.92 mm 0.57 mm 
flow rate 
0.7 lis 1.0mm 1.6mm - 1.0mm - 0.6mm 
1.2 lis 1.7mm 2.0mm - 1.4mm - 0.6mm 
1.3 lis 1.7mm - 0.9mm 1.6mm O.Bmm -

small angle wide angle 

Table 3-3 Air bubble penetration into the nozzle for different operating conditions. The 

difference between narrow and wide angle is about equal the valve lift 

The height of the air bubble penetration depends also on the needle lift and the exit 

liquid velocity as will be discussed later. But in the case of velocity, in general it was 

found that, as the velocity increases, the pressure drop across the nozzle also increases 

with stronger suction created within the separated flow and, therefore, longer 

penetration of the bubble into the nozzle. However, beyond a certain threshold, 

penetration does not increase anymore and a further increase in velocity resulted in 

reduction of the pe,netration until the bubbles disappear from the viewing window. 

This may be due to the fact that the flow of higher momentum will expand more 

rapidly and it is covering the convergence exit section of the nozzle thus reducing the 

size of the separated flow. 

139 
----~~--------------~ 



3.5.4. Angle analysis 

A spray cone angle analysis has been carried out by a statistic out of 60 images for 

each operating condition. The cone angle was calculated by overlapping a line on the 

profile of the spray by mean of graphic software support. The shaded edge of the 

spray profile was introducing a margin of uncertainty depending on the pixel 

dimension and on the length of the matched line which was chosen at the same axial 

distance for all operating conditions. 

cartridge 

\. 
Jet velocity composed by stt~ms 
with parallel momentum 

cartridge 

Jet velocity composition of 
different flow streams 

Figure 3-35 Effect of needle lift on the cone angle for narrow angle case. 

For the narrow cone angle case, the results are presented in Figure 3-36 which show a 

slight angle increase with flow rate for both valve lifts. The results show also that at 

the smaller valve lift, · 0.57mm, the cone angle is to some extent lager than that at the 

full valve lift of 0.93mm by about 2 to 3 degree. This trend can be explained by the 

flow momentum direction, which might vary as the liquid passes through the small 

diverging passage of the nozzle exit for the two valve lifts. as shown in Figure 3-35. 

The liquid trajectory can be affected by the presence of flow separation, which, as it 

will be explained in the next paragraph, increases with the flow velocity. The 

possibility of flow separation on the needle surface is higher, since in the diverging 

section of the nozzle the cartridge surface is straight whereas the needle surface 

boundary deflects towards the injector axis. Another consideration from Figure 3-36 
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can be drawn by comparing the angle variation for same flow rates. The velocity in 

the passage restriction is higher at low needle lift, producing a higher momentum per 

cross-section unit. The liquid thus tends to preserve its momentum direction 

increasing flow separation from the needle surface and therefore increasing cone 

angle. 

.......-. 45 aJ 
CD 

-C Narrow cone angle 
~ 

CD 

aJ Valve lift 0.57 mm ::I 

c: 40 
CU ..; 

>a ~ • CU Valve lift 0.93 mm L-
a. 35 en 

0 0.5 1 1.5 2 

Flow rate ( lIs) 

Figure 3-36 Variation of narrow spray half cone angle as a function of flow rate for two valve 

lifts. 

Similar results can be seen for the wide spray angle in Figure 3-37 where an increase 

of order of 10degree can be observed for both valve lifts. In this case, the difference 

between the half cone angles of the two valve lifts is much less significant with a 

maximum difference of order of ± 1 degree whereas the gradient of angle increase 

with flow rate is more significant at lower lift. 

o 

Wide cone angle 

0.5 

Valve lift 0.57 mm 

--. Varve lift 0.93 ';m 

1 1.5 

Flow rate ( lis) 

2 

Figure 3-37 Variation of wide spray half cone angle as a function of flow rate for two valve lifts. 
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3.5.5. String structure analysis 

As mentioned above, a very important aspect of the spray characteristics with an 

outwards opening injector is the presence of the string structure which appears in the 

form of longitudinal filaments and it can be observed in the magnified spray images 

of real size injector shown in Figure 3-38 

-2.5 -2 -1 .5 -1 -0.5 0.5 
mm 

Figure 3-38: Full size and magnified images of string structure of real size injector. 
IOmm 

Figure 3-39 Full size and magnified images of string structure of large-scale injector 

The correlation between string structure and in-nozzle flow characteristics represents 

one of the main objectives of the present investigation and will be extensively 

analysed in this section. It is interesting to note that the observed string structure is 

similar to the jet spray produced by multi-hole gasoline/diesel injectors and is 

characterised by the well-known 'fish-bone' structure. A comparison between the real 

size spray, Figure )-38, and the spray in the enlarged model, Figure 3-39, shows 

clearly the presence of longitudinal liquid filaments in both scales which prove the 

consistency of the phenomenon against scale variation. Therefore, the investigation of 

the string phenomenon on the large-scale model can be useful to identify the 

mechanism responsible for the string formation in the real size injector. The two 
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magnified images of Figure 3-40 shows the string structure in the large-scale model 

which clearly indicate the existence of a link between the position of the air bubble 

inside the nozzle and the liquid filament outside the nozzle. 

ngs are set exactly n correspondence 
with the space amon2 the black bubbles 

Figure 3-40: Correlation between the strings and the in-nozzle air bubble in the large-scale 

model. 

In this case, the liquid is forced to go around the bubbles and forms an emerging 

liquid filament leaving the nozzle as a liquid string. Immediately below the air bubble, 

there is a thin liquid stream coming out of the nozzle which is the liquid flow passing 

over the bubble. If the air bubble fills the nozzle gap completely, then one would 

expect that the liquid spray emerges from the nozzle as a series of separated jet flows 

similar to multi-hole nozzle injectors. The results of this investigation under all 

operating conditions showed no such spray structure, which means that the air 

bubbles are always filling the nozzle gap partially; this implies that they are either 

attached to the needle or attached to the cartridge. The emerging liquid spray structure 

looks like a continuous hollow cone spray with alternating thin, below the bubbles, 

and thick, between the two adjacent bubbles, spray liquid jets. 

Figure 3-41 presents a third way for identifying the position of the air bubble with 

respect to the needle or cartridge surfaces. Again, as mentioned previously, the 

location of the air bubbles is important as it explains the mechanism under which the 

narrow and wide cone angles are initiated. Considering the thin liquid jet flow exiting 
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the nozzle, if the bubble is attached to the needle then part of the flow that passes over 

it will take the shape of the new boundaries (the flow is confined between the bubble 

and the cartridge) and the result to a viewer will be a thin spray jet (or film) with an 

outwards convex curvature emerging from the nozzle exit. On the other hand, if the 

bubble is attached to the cartridge, the thin liquid spray will have an inwards concave 

curvature as in this time the flow confinement is between the bubble and the needle. 

Close inspection of the images like those presented in Figure 3-41(a) and (b) reveals 

that the two types of convex and concave curvature can be distinguished which relates 

to the wide and narrow spray cone angles, respectively. It is clear that to be able to 

distinguish between these two types of curvature it is necessary to obtain highly 

magnified images with high resolution, such as those of Figure 3-41. 

Figure 3-41 Visual differences in the strings structure observed in the images for the (a) wide and 

(b) narrow cone angle at a needle lift of O.57mm and a flow rate of 1 I/s. 

To emphasize the effect of air entrainment on the string structure, it can be observed 

the spray structure in case there is no air entrainment into the nozzle. The test showed 

that in the absence of air bubbles the liquid spray structure, downstream of the nozzle 

exit, was very different with no longitudinal liquid filament. Instead, a complex 

structure was formed with a corrugated surface as shown in Figure 3-42 for the full 

valve lift and a flow rate of 1.61 Us. From the image, it is clear that there is no air 

bubble trapped inside the nozzle when viewed through the optical window. 

It can be argued that there is a possibility of tiny air bubbles being trapped right at the 

exit of the nozzle, which may not be visible through the window due to the 

obstruction by the bottom edge of the cartridge. The corrugated liquid spray emerging 
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from the nozzle has no defmed pattern, but right under the nozzle exit-line a pattern of 

string-like structures is visible which may support the presence of tiny air bubbles in 

that region. 

Figure 3-42 Image of corrugated liquid spray strings when there is no air bubble present in the 

nozzle at the full needle lift and a flow rate of 1.61 lis. 

The difference between these strings and those observed in the presence of air bubbles 

is their Reynolds number, which in the case of no air bubble is much higher. This type 

of smaller strings is very similar to those observed in the previous non-cavitating 

nozzle injector model with a parallel exit passage. However, with the present nozzle 

and over a short distance away from the exit-line (see Figure 3-42) these string-type 

structures become unstable and breakdown due to their strong interaction, forming the 

observed corrugated spray structure. In the non-cavitating nozzle, this breakdown of 

strings does not take place as early as for the cavitating nozzle and the strings 

preserve their stability, forming longitudinal strings further downstream. 

(a) Needle lift 0.93 mm (b) 

Figure 3-43 Effect of flow rate on surface quality at full needle lift for flow rates of (a) 1.3511s 

with air bubble (string structure) and (b) 1.81/s without air bubble (smooth or corrugated 

structure). 
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The transformation of the spray structure from longitudinal ligaments into a 

corrugated type depends on two parameters: the flow rate (or Reynolds number) and 

the needle lift. Both cases were studied by keeping one parameter constant and 

varying the other. In the first comparison, the effect of flow rate was considered at full 

valve lift and the results are shown in Figure 3-44 which present the overall spray 

structure. At low flow rates, the air bubbles present inside the nozzle and the spray 

cone had a string-type structure which is termed as 'rough surface'. The spray surface 

remained rough as the flow rate increased until a value of 1.35 lis after which the 

transition to a corrugated surface structure ( also termed as 'smooth surface' to 

emphasise the absence of strings) occurred with no air entrainment observed inside 

the nozzle. As the flow rate increased further, the spray structure remained the same. 

Rough surface 
Flow rate 1.80 lis 

Smooth surface 

(a) (b) 

Figure 3-44 Effect of the valve lift on surface quality at a flow rate of 1.8 Us ate valve lift O.57mm 

(a) and full lift O.93mm (b). 

The second comparison showed the dependency of this transitional spray on the 

variation of the valve lift at the high flow rate of 1.80 lis, as shown in Figure 3-44. 

Although at this flow rate for the full needle lift the spray structure has already 

transformed into the corrugated surface (smooth), it proved possible to obtain a string

type spray (rough surface) for a needle lift of 0.57 mm Figure 3-44(a). Based on 

measurements of the air bubble penetration presented before and the related 

discussion, this eff~ct was anticipated and suggests that lower needle lifts produce 

stronger suction and therefore higher flow separation than larger lifts. 

In order to identify more precisely the operating conditions in which the string type or 

smooth type structures exist, a map was constructed from measured data of the 

transition points of flow rate against lift as presented in Figure 3-45. The experiment 
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was carried out by setting a fixed lift and gradually varying the flow rates until the 

spray structure started presenting sign of instability. By increasing the flow rate for 

different valve lifts within a range of 1 to O.67mm, it was found a transition curve 

from string type to smooth type structure. In the same way, by decreasing the flow 

rate for a valve lift in the same range another transition curve from smooth to string 

type structure could be identified. Above Imm it was not possible to have string type 

structure for any flow rate as well as it was not possible to observe smooth structure 

for a valve lift below O.67mm. 

Between these two thresholds, two transitional curves define a tiny area of instability 

where the spray switches between the two structures and presents different spray 

patterns along the spray cone. 
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Figure 3-45 Spray structure map 

smooth surface 
(a) 

0.5 1.5 

Flow Rate [I/s] 

Transition String 
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• SJlX)oth 

String type structure 
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Figure 3-46 Overall snapshots of surface type transition from smooth (or corrugated) to string 

type (rough) 
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Figure 3-46 shows 3 snapshots of a transformation between smooth (Figure 3-46(a)) 

to string type (Figure 3-46 (c)) through a transitional phase (Figure 3-46 (b)) where 

the string structure advance in anticlockwise development (from left to right of the 

image) showing the boundary of separation of the two modes. 

Another phenomenon characterising the spray of the cavitating model is the 

dependency of the number of strings on the flow rate and needle lift which was also 

previously observed for the non-cavitating model. The same effect produced by the 

flow rate is visible in the cavitating prototype also and it can be observed by 

comparing' images of Figure 3-43(a) with Figure 3-44(a). The comparison clearly 

show that higher flow rate produces an increase in the number of strings (Le. smaller 

space between two adjacent strings) and suggests that, as the velocity of the liquid 

increases, a breakdown of the larger air bubbles into smaller ones takes place. Also 

the number of strings at two needle lifts is different in such a way that smaller lifts 

produce a larger number of strings; however, a clear trend can not be deduced since 

the flow rates are different and therefore it could still be indirectly the effect of the 

velocity. 

In order to quantify the effect of flow rate (Reynolds number) and needle lift on the 

string structure, the average string spacing has been estimated from the magnified 

images obtained inside the nozzle seat, under a wide range of operating conditions. In 

this way it was possible to count the number of strings within a distance of 6 mm and 

therefore the average distance between two strings which was obtained from each 

image and finally averaged over 40 images. The results are presented in Figure 3-47 

and show the v~iation of string spacing as a function of Reynolds number, Re, for a 

gi ven valve lift. 
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Figure 3-47 Variation of string spacing as a function of Reynolds number at a valve lift of 

O.57mm. 
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The results reveal that string spacing decreases linearly with Reynolds number so that 

the string spacing is reduced by about 37% when Re is increased from 5000 to 12000. 

Since the valve lift has been kept constant, the observed effect should be due to the 

change of liquid flow rate or velocity. Within the measured range, an empirical 

relationship can be obtained from the linear trend line interpolation of the measured 

data that relates string spacing to Re (Figure 3-49) 
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Figure 3-48 Variation of string spacing as a function of the needle lift at a constant velocity of 
8.4m/s. 

The variation of string spacing as a function of the needle lift at a constant velocity is 

presented in Figure 3-48 and it shows a small increase in string spacing, (or decrease 

in number of strings) with needle lift. Another representation of the dependence of 

needle lift on string spacing, S, is shown also in Figure 3-49 where the string spacing 

variation is presented as a function of Reynolds number at a constant velocity and for 

different needle lifts. 
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Figure 3-49 Variation of string spacing as a function of Reynolds number at a constant velocity 

for different needle lifts. 
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It can be observed that the dependence of string spacing on the needle lift (Figure 

3-49) is mach smaller than the dependence on the velocity as it can be seen also from 

the order of magnitude of the gradients for lift variation compared with velocity 

variation in Figure 3-47 (-0.0001 Vs. 0.00006). However this slow growing trend 

suggests that at lower needle lift the circumferential size (or diameter) of the air 

bubbles is smaller producing a slightly higher number of strings. This reduction in 

bubble size is also supported by the previous results which showed that at lower lifts 

bubble penetration is longer. Overall, it can be stated that the driving parameter 

mainly affecting the strings number is the flow velocity whereas the valve lift only 

produces marginal variation. 

Comparison between string spacing, S, in the non-cavitating nozzle injector and the 

present cavitating nozzle design shows similar dependency of S on flow rate (by 

velocity variation). The results for the non-cavitating nozzle showed almost no 

dependency of string spacing with valve lift while with the present cavitating nozzle 

string spacing increased slightly with needle lift. Another difference between the two 

nozzles is in the number of strings which, as mentioned earlier, is much higher in the 

non-cavitating nozzle by up to 3 times. 

As it was previously analysed, the emerging spray structure from the cavitating nozzle 

looks like a continuous hollow cone spray with alternating thin and thick liquid 

filaments forming a string-type structure with a rough surface as can be seen in Figure 

3-50(a). It was also observed that when the air bubble was pushed out of the nozzle at 

higher flow rates, the surface became smoother, as shown in Figure 3-50(b). A similar 

spray structure was observed in the non-cavitating nozzle but with a different string 

thickness, which are much fmer than in the cavitating nozzle, thus forming a much 

smoother surface, Figure 3-50(c). 

(a) Cavitating Nozzle 
with air bubble; Rough Surface 

(b) Cavitating Nozzle 
no air bubble; Smooth Surface 

(c) Non-Cavitating Nozzle 
no air bubble; Smooth Surface 

Figure 3-50 Comparison of spray surface quality obtained for cavitating and non-cavitating 

nozzle models. 
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The discussed results have shown that the mechanism of string formation in the 

cavitating nozzle is due to the presence of air trapped inside the nozzle in its diverging 

section and the link between these air bubbles and the emerging liquid spray was 

established. With the non-cavitating nozzle a similar mechanism responsible for the 

formation of strings is expected but with the entrained air bubbles being much smaller 

in size, penetrating less and trapped towards the exit of the nozzle, which justifies the 

observed higher number of strings. 

3.5.6.Cavitation 

There is a need to compare the results obtained for the case of air bubbles entrained 

into the nozzle with gas vapour produced by means of the cavitation process. With the 

previous set up for the cavitating nozzle and under all operating conditions, no 

cavitation was observed due to the insufficient pressure difference across the nozzle 

model, as a result of the limited pump power. In order to distinguish between the 

phenomena of air entrainment and cavitation, it has been necessary to isolate the 

nozzle so that no air could be entrained into the nozzle. To achieve this, the lower 

chamber was added to the cartridge casing to allow injection of water into water, as 

shown in Figure 3-2(b). 

To initiate cavitation it was necessary to push the operating conditions by increasing 

the flow rate and reducing the needle lift in order to increase the pressure drop across 

the nozzle. By lowering the valve lift below 0.5 mm it was possible to identify vapour 

presence emerging from the injector nozzle, in contrast, the previously observed 

phenomenon of air entrainment was observed for much higher lift and lower flow 

rates. To achieve the required pressure difference across the nozzle, it was necessary 

to connect two pumps in the flow circuit so that the first pump acts as the delivery 

pump and was connected upstream of the nozzle, and the second one was connected 

to the exit of the chamber to create suction at the exit of the nozzle. The flow 

operating conditions included three different needle lifts and it was observed by mean 

of a high-speed camera at different frame rates as show in ,Table 3-4. 

The onset of cavitation was investigated first and its dependency on parameters such 

as eN, 'Re and needle lift was established. To identify the onset of cavitation, the 

following procedure was carried out since the determination of the occurrence of 

cavitation was quite subje~tive. Since at the onset of cavitation, the number of vapour 

bubbles was very small, it proved very difficult to observe them either by naked eyes 
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or in the images, despite the sound of pinging noise being audible. It was thus decided 

to defme the onset of cavitation from the identification of the pinging noise rather 

than from visual observation. The cavitation number, eN, for different operating 

conditions was calculated from the relationship given earlier on for three needle lifts 

of 0.35, 0.4 and 0.5mm. The results of eN as a function of the Reynolds number 

showed that the on set of cavitation occurred at almost the same cavitation number for 

all valve lifts, independently of the Reynolds number, with a average eN value of 

0.53. From a qualitative analysis within the observed range it is possible to conclude 

that the onset of cavitation mainly depends on the pressure difference across the 

nozzle which is represented by a unique cavitation number. 

valve lift Flnv rate CN Camera Speed 
[mm) [lis) [iPs) 
0.3 0.80 3.12 27000 
0.3 0.80 3.12 18000 
0.4 0.94 1.22 27000 
0.4 1.12 1.3 27000 
0.4 1.12 1.3 18000 
0.5 1.05 1.04 27000 
0.5 1.34 1.29 27000 

Table 3-4 Flow tests conditions for cavitation. 

Figure 3-51 Image of a cavitating jet spray emerging from the nozzle at L=O.4 mm, Q=1.12 lis 

and CN=1.3. 
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A typical example of cavitation inside the nozzle is presented in Figure 3-51 which 

shows clearly very small (like mist) vapour bubbles exiting the nozzle into the 

chamber. This suggests that when the pockets of vapour were initiated inside the 

nozzle they undergo extensive breakdown within the nozzle passage so that by the 

time they have reached the exit are fully disintegrated, appearing as mist of vapour at 

the exit. To gain more insight into vapour initiation and its development, it was 

decided to obtain highly magnified images inside the nozzle through the viewing 

window. 

Vapour formation and its development were visualized through the viewing window 

in the cartridge by means of the high-speed video recorder; a sample of the results is 

presented in Figure 3-52 for a needle lift of OAmm, flow rate of 0.94 lIs, a eN value 

of 3.12 and a framing rate of 18000 fps. The aim of the sequence of Figure 3-52(a)

(n) is to show the location of cavitation and its development inside the nozzle. Even 

with this high framing rate, it proved very difficult to follow the dynamics of the 

vapour and a higher framing rate was required; however, at a rate of 27000fps the 

better dynamic resolution was gained at the expense of lower spatial resolution 

without considerable result improvement. 

From the sequence of images, it was also possible to obtain a typical time scale 

required by the vapour pockets to emerge and disappear; this time response is useful 

for the behavio~ of isolated pockets of vapour that can be identified, but is not 

representative of the dynamic of the vapour development and should be considered 

with care . 

. The arrow in Figure 3-52(a) indicates the area where cavitation is about to initiate. As 

soon as vapour pockets reach a certain size, they are quickly broken down 

and convected downstream, either disappearing completely or disintegrating into a 

number of smaller pockets (in a cascade process) that tends to move sideways. The 

mean flow velocity· in the nozzle for the case shown in Figure 3-52 is 12.9m1s. 

Therefore, applying the same procedure as for the air entrainment process, it was 

found that the mean flow time response was of the order of 0.023ms. This suggests 

that, to resolve the vapour dynamics, the framing rate has to be more than 44,000 fps. 

The time response from the emerging pockets of vapour bubbles until their extinction 

was about 0.66ms (within 12 frames for a camera speed of 18000fps), which is much 

faster than that of the air entrainment development by about 4 times, and much slower 

than the flow time response by about 28 times. This suggests that as soon as vapour is 
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formed it is subjected to a flow at high velocities and strong shear across the nozzle 

which deforms, breaks up and convects the vapour pockets downstream so fast that 

they emerge from the nozzle as a monodispersed vapour bubble. The presence of 

vapour inside the nozzle at this flow condition with a cavitation number of 3.12, 

(Figure 3-52), was charcterised by a continuous plum and thereby the nozzle can be 

considered to be at full cavitation state. 
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Figure 3-52 Images of cavitation development inside nozzle seat at L=0.3 mm, Q=0.8 lis, CN=3.12 

and a framing rate of 18000 fps. 

From the images, it is also clear that cavitation (unlike the phenomenon of air 

entrainment) forms and develops away from the nozzle exit; close to the nozzle seal 

band where the liquid pressure-drop is highest. It initiates at a point and disperses 

quickly downstream, forming a triangular shape with its apex being the location of the 

initiation of cavitation. Dark areas in the flow indicate where the vapor bubbles are 

forming as a result of the, boiling process. Closer inspection of the images revealed 
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that the starting point of cavitation was along a horizontal line across the window 

which coincided with the edge dividing the constant (parallel) nozzle passage and the 

beginning of the diverging part of the nozzle exit, as shown in Figure 3-52. This was 

expected because, as the flow undergoes extensive acceleration within the converging 

section and into the parallel section of the nozzle, the pressure drops progressively 

with minimum pressure towards the end of the parallel section and just upstream of 

the converging section. The results of Figure 3-52 suggest that this pressure drop was 

large enough to lower the liquid pressure below the liquid vapour pressure of the fluid 

and to initiate cavitation. 

A comparison between the air-entrained and the cavitation bubbles is presented in 

Figure 3-53 which shows clearly the different flow structures between the two 

phenomena. 

(b) Cavitation: 0=0.81/5; L=O.3 mm; CN=3.12; frame rate 18000 fps. 
Figure 3-53 Close up Comparison between the air bubbles entrainment and cavitation structure. 
(image width 6mm) 

The effect of the time scale is obvious with sharp images of the air bubbles, 

continning the singularity of the air trapped; this suggests that the framing rate 

adopted was enough to freeze the bubble movement. However, this is not the case for 

the vapour bubbles which are very difficult to be distinguished from each other; this 

highlights the problem mentioned earlier that a much higher framing rate camera is 

required to capture the dynamics of the vapour bubbles. However, the close-up image 

clearly shows the presence of vapour pockets forming a triangular shape structure 
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with the onset of cavitation at its apex. 

(30) (31) (32) (33) 

Figure 3-54 Images of cavitat~on development inside nozzle seat at L=0.4mm, Q=1.60I/s, CN=2.1 

and a time step of 80 p.1S (25000 fps). 
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The initiation of cavitation can also be seen in Figure 3-54, which represents another 

sequence of flow images at a larger needle lift, O.4mm, than that of Figure 3-52 and a 

much smaller cavitation number, eN, of 2.1. Figure 3-54(1)-(33) show clearly the 

initiation of cavitation bubbles well within the nozzle seat which then break up, 

disperse and move fast towards the nozzle exit. Since the pressure is unstable and 

varies around the liquid vapour pressure, Pv, then as soon as the pressure recovers and 

goes above Pv cavitation stops causing intermittent cavitation. The results of Figure 

3-54 show that the time between the onset of cavitation and its extinction was about 

2.3ms for the left cavitation development (Figure 3-54 (2)-(33) ) and 1.lms for the 

right cavitation development (Figure 3-54 (5)-(20) ) , which is longer than that of 

Figure 3-52, as expected. 

Another distinctive feature of the cavitation bubbles is characterized by their 

detachment from the nozzle exit line, attribute that can be observed from the images 

presented in Figure 3-55(a) and (b) and their corresponding schematic representation. 

This characteristic is in contrast to the air bubbles entrainment, which was found to be 

always attached to the nozzle exit line. This difference in the behavior of cavitation 

and air bubble entrainment can be used to distinguish between the two phenomena 

apart from their appearance which in the case of air entrainment bubbles are 

uniformly dark. 

viewing window 

Air entrainm ent 

-r-
~.-..II<:U->M ~ 

valve seat region 

(a) Air entrainment 

viewing window 

(b) Cavitation 

Figure 3-55 Schematic representations of air entrainment and cavitation. 
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It proved impossible to assess the quality of the spray under cavitation because 

injection took place into water. Also, as mentioned previously, it was very difficult to 

initiate cavitation when injecting water into air. However, using the two pumps in 

series to boost the delivered pressure difference across the nozzle, a condition that 

satisfied the cavitation criteria, i.e. at CN=1.6, could be achieved for a needle lift of 

0.57mm and the results is presented in Figure 3-56. 

Figure 3-56 Image of spray and in-nozzle flow at a valve lift of O.57mm, a flow rate of 2.6 I/s and 

a eN of 1.6 (image width 6mm). 

Although the phenomena of air entrainment and cavitation were described separately, 

it was identified a transition range where the two phenomena co-exists at the same 

time creating a multi-phase flow condition. Figure 3-56 shows the simultaneous 

presence of air entrainment and cavitation. The results clearly show the immediate 

effect of increased .velocity and pressure drops across the nozzle by means of a 

significant increase in the spray atomisation downstream of the nozzle exit, as 

compared to those of Figure 3-40 and Figure 3-41. Here, the thin liquid ligaments 

below the air pockets are almost fully broken and the same can be seen on the outer 

surface of the thick ligaments. The flow structure inside the nozzle shows the 

presence of the entrained air bubbles in terms of the sharper black shadow and their 

attachment to the nozzle exit-line. In addition, the presence of brighter and fizzy 

coloured shadows is evide~t which resembles those of the cavitation vapour cloud that 
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could rapidly disperse. It can also be observed that although the presence of cavitation 

seems breaking the flow downstream, it is still possible to distinguish a string type 

structure which is similar to the previously observed in the real size injector of Figure 

3-38. 

To have a better understanding of the dynamic of this particular operating condition it 

was captured a high-speed video at 30000fps where a frame out of two was reported 

in the sequence of Figure 3-57. The images show the presence of three air bubble and 

two filaments downstream based at the side of the central bubble which slowly fades 

down until completely disappearing in the darken area immediately before the exit 

line in Figure 3-57 (11). Subsequently the two air bubble at the side start approaching 

causing the two strings merging in a single filament. Finally after Figure 3-57 (28) it 

can be observed the onset of cavitation represented by very fast white spot moving 

downstream as indicated by the red arrow in Figure 3-57 (28). The impact of the 

cavitation on the exiting flow breaks the filament type structure causing a completely 

corrugated surface similar to that seen in Figure 3-56. 

The presence of the two phenomena and the increase in the relative velocity between 

the liquid flow and air outside the injector, gives rise to a higher Weber number which 

enhances atomisation as evident in the relevant images. 
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(1) (2) (3) (4) 

(9i) (10) (11) (12) 

(13) (14) (15) (16) 

(17) (18) (19) (20) 

160 



(25) (26) (27) (28) 

(29) (30) (31) (32) 

(33) (34) (35) (36) 

(37) (38) 

Figure 3-57 Real time 'images at 30kfps o.f air entrainment and cavitatio.n evo.lutio.n into. the 

nozzle flo.w passage for a needle lift of 0.55mm, a flow rate is 1.211s and cavitation number of 0.47. 

(image width 7mm) 
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3.6. REAL SIZE SPRAY CORRELATION 

In order to correlate the characteristics of the large-scale model with the real size 

injector several quantification were carried out on the pintle-type inward seal band 

injector and compared with the results found on the large-scale model. 

3.6.1. Inward Seal Band - needle position 

As described in the first chapter, one of the advantages of the Piezo injector is the 

option to set up the max valve lift according the energy level of its piezo bodies. 

Figure 3-58 Injector control panel 

Four switches can be activated in a binary order (1 =on, O=off) to obtain 24lift 

positions from low energy level set up by deactivating all the four switches (0000) to 

maximum energy level which is characterised by the activation of all four switches 

(1111). 

The minimum energy level (0000) actuates the lowest needle lift whereas the 

maxImum energy level (1111) actuates the highest needle lift available for the 

injector. 
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Figure 3-59 Magnified image of the needle lift. (Image width 1.13mm) 

The value of the needle lift was determined by cross correlating magnified images of 

the injector tip when it is open to that magnified images of the injector tip when 

closed. The analysis was performed automatically by a Matlab code, which was 

correlating 20 images of the closed injector with 20 images of the open injector, 

Figure 3-59. In this way the needle lift can be quantified for different energy levels as 

a function of time and the results are presented in Figure 3-60 with a measurement 

uncertainty within ± 3 !J.m ( ....... STD). The injector holder oscillation is filtered out in the 

analysis by the large amount of cross image correlation between open and close 

needle lift however tip bouncing or a discontinuity in the energy level during the open 

phase could cause a discontinuity in the lift position. 
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-+- lift 1001 (9) 
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Figure 3-60 Variation of needle lift as a function of time for different switch positions. 
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The results show the needle lift variation for each energy level, from a minimum 

value of 0000 bits to a maximum of 1111 bits. To represent these results in a simpler 

way, the lift at each energy level was averaged over the measured time and then 

plotted versus switch position and are presented in Figure 3-61. The plot shows the 

linearity between lift and energy level with a mean lift value of 19 J.lm at minimum 

energy level which increased to 36 Ilm at the highest energy level. However, for the 

above mention needle lift uncertainty a margin of ± 3 J.lm should be accounted when 

considering the values in Figure 3-61. 
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Figure 3-61 Variation of needle lift as a function of switch position calculated from image cross 

correlation. 

3.6.2. Inward Seal Band - Fuel mass rate 

, In order to compare the effect of the flow rate between large-scale model and real size 

injector the fuel mass rate of the inward seal band injector was measured for different 

operating conditions and averaged against time. The analysis was performed by 

metering the fuel m~ss out of 3000 injections. The parametric study was made as a 

function of injection pressure and needle lift and the results are presented in Figure 

3-62. In order to account for the different mass rate during opening and closing phases 

the mean mass rate was corrected by a factor of K=( to+ti)/ti where to and ti are 

respectively the rainp(opening/closing) duration and the injection. The factor was 

calculated assuming a linear increase/decrease of the mass rate during needle opening 

and closing phases. 
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Figure 3-62 Variation of real size injector mass rate as a function of injection pressure for 

different needle lift set up. 

As it could be expected, (Figure 3-62), the mean mass rate increases with injection 

pressure and also with the needle lift as a result of the increase in the discharge 

coefficient. Note that the mass flow rate at 200bar injection pressure includes all eight 

different lifts which follows the same increasing trend. 

What is less evident is the decrease of flow rate at low lift for injection pressures 

higher than 160bar which may suggest that phenomena affecting the discharge flow 

coefficient due to the formation of the air entrainment or cavitation occurs. 
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Figure 3-63 Averaged flow velocity variation through the nozzle with injection pressures. 

This effect is even more evident by observing the mean velocity of the out coming 

flow which shows a decrease in flow rate after 160bar for needle lift 0100 (24.2Ilm) 

and 1001 (29.5Ilm). On the other hand, the velocity at higher needle lift seems less 
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affected by the decrease of the discharge coefficient as it can be understood in Figure 

3-63. In the previous analysis on the large-scale model, it was observed that the 

phenomenon of air entrainment is more pronounced at low lift for a given flow rate as 

well as for cavitation, which suggests that both phenomena may also occur in the real 

size injector at high pressure and low needle lift. 
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Figure 3-64 Variation of needle lift as a function of injection velocity: comparison of (a) CFD 

simulation [78] for injection pressure 160bar and (b) experimental tests at different injection 

pressures. 

Another possibility, which could explain the drop in velocity, could be due to the 

experimental method. As the speed was calculated by the measurement of the amount 

of fuel injected in an interval of time divided by the geometrical cross section area, 

and since second phases (air entrainment and/or cavitation) may reduce the actual 

liquid passage cross section area then the calculated mean velocity will tend to be 

under estimated. However, the comparison of the spray CFD results at 160 bar 

(Figure 3-64 (a» with the curve of the test data at 160 bar (blue curve in Figure 3-64 

(b» provide a partial validation of the reliability of these test data which show a good 

matching at low needle lift (range 20-35Jlm). 

3.6.3. Inward Seal Band - string analysis 

In the large-scale model, the strings number was previously quantified, as well as 

their behaviour as a function of velocity, needle lift and Reynolds number. It has been 

shown that string variation was mainly depending on velocity and nearly independent 

on the lift position (at constant velocity) in the range of experiment. In order to 
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investigate the string behaviour in the real size injector a statistical analysis was 

performed by post processing magnified images of a portion of the spray taken at 

different operating conditions as shown in Figure 3-65 

Figure 3-65 Real size spray magnification at injection pressure of 200bar and needle lift energy 

level "1001" (-30,..m). (image width 3.5mm) 

Figure 3-65 clearly shows the presence of the filament type structure uniformly 

distributed and also the well known fish bone structure as seen with jet spray from 

multihole injectors. In the large-scale model, the parameters defining the operating 

condition were needle lift and flow rate. As it was not possible to directly fix the flow 

rate in the real size injector the two parameters defining the operating condition were 

the maximum needle lift and the injection pressure. From these two parameters and 

from the previous mass flow analysis it was possible to work out the estimated flow 

rate and velocity at the different operating conditions. 

For each operating condition of pressure and lift, 20 images were taken for each of 

two injector positions. In order to overcome the human eye subjectivity in counting 

the strings, their calculation was performed automatically by post processing the 

images with a Matlab code. Given the uniform and defmed disposition of the 

filaments, the idea was to compute the grey level on each row of the image and 

average it for all the available rows. However, the conical shape of the spray results in 

an expanding effect of the strings producing a projected image of diverging strings 

(beams) which would fuse. the vertical location of the grey level peaks for each image 

row. To overcome this problem the image was transformed from a rectangular system 
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in to a polar system in which the pole was calculated from the projection of the strings 

upward. The result of the transformation is shown in 

Figure 3-66 which shows the transformation in polar system of the image of Figure 

3-65 where the strings are now parallel and following a vertical development. 

After the polar transformation, the pixel grey level was averaged for all the rows of 

the area included in the red rectangle shown in Figure 3-66. The results of the 

averaged grey levels are shown in Figure 3-67 where each main peak represents a 

string. The counting · process was first filtering the irrelevant peaks produced by 

irregularities and noise in the image and then the strings number was again averaged 

for the whole set of images for one operating condition. Finally, the calculation was 

repeated again after rotating the injector of a random angle (approximately 180°) and 

averaged one more time with the previous result. The final number of string of the 

image was then extended to the whole spray circumference for which scale and image 

position were previously determined. 

Figure 3-66 Polar transformation of Figure 3-65 in order to obtain a vertical representation of 

the string structure. 
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Figure 3-67 Averaged pixel grey level distribution of Figure 3-66. 

In this way, the error produced in the calculation is considerably reduced by the 

several times averaging different feature of the estimation. However as the analysis is 

applied to a small portion of spray and consequently extended to the whole 

circumference by simple arc proportion it implies that the error also increases for a 

factor equal to the circumference divided by the image width. More precisely at 3.5 

mm from the injector tip the spray cone has a cross section circumference of about 

28mm which contains about 9 times the visualize image width (3mm) of the pray 

portion. The mean standard deviation for sets of 40 images is about 1.5 strings which 

mean that the total number of strings is subjected to an overall STD of ± 13.5 strings. 
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Figure 3-68 Strings number along the whole spray circumference as a function of injection 

pressure for different needle lift set up. 
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The plot of total strings number against injection pressure of Figure 3-68 shows a 

constant trend of about 80 strings at low pressure followed by an increase up to 135 

strings at 200bar. It is not possible to distinguish significant differences from the 

comparison of four different needle lifts as the biggest difference (at 140bar) is within 

the error range and the results for the four lift points do not follow any particular 

trend. 

This outcome is in agreement with the trend seen for the large-scale model (Figure 

3-47) where it was shown that the string spacing (inversely proportional to total 

strings number) decreases with the Reynolds number at constant needle lift and so 

with flow velocity. In the real size injector, the velocity increases as consequence of 

the increase in injection pressure. More precisely from the previous fuel mass 

analysis it was possible to correlate the injection pressure to the estimated fuel 

velocity and plot strings number versus velocity and Reynolds number as presented in 

Figure 3-69 and Figure 3-70. 

In general, the trend of the points plotted in Figure 3-69 shows an increase of the total 

strings number except at the lowest needle lifts for velocity higher than 120mls which 

shows similar number of strings or a small reduction at the lowest lift; this behaviour 

is not fully understood and it needs further investigation. At low velocity, none of the 

four sets of points seems to be particularly affected by the velocity variation and the 

results suggest that the strings number tends to have a minimum value of about 80 

strings which may depend on the conical configuration of the internal geometry and 

on the overall size of the injector dimensions. 
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The number of strings counted on the large-scale model are almost double than those 

counted on the real size injector which means that the strings number does not respect 

the similitude properties and is affected by the increase in size of the injector. A direct 

comparison between real size and large-scale injector can be seen from Figure 3-70 

and Figure 3-71. The Reynolds numbers for the real size injector were calculated from 

velocity and needle lift according the relation described in paragraph 3.4. The 

Reynolds number range for the two injector sizes are roughly the same however only 

for the large-scale model the linear growth is extended for the whole range of 

measurement. For the real size, a resemblance of linearity can be observed only at 

high Reynolds number corresponding to full needle lift (1111). 

It can also be observed that for low needle lift the strings number increases at a 

constant velocity (Figure 3-69) or Reynolds Number (Figure 3-70). This type of 

result, as explained for the fuel rate analysis, can be due to presence of cavitation or 

air entrainment which may cause an under estimation of the actual velocity. In fact 

such effect is mainly evident at low lift and high injection pressure which are the most 

favourable conditions for cavitation and air entrainment. 
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of 0.57mm corresponding to 0.025mm lift in the real size injector (0100). 

Another similarity between real size and large-scale injector can be observed by 

comparing the trend of string spacing versus needle lift in Figure 3-48 and in Figure 

3-72. It was previously seen that the large-scale model is not particularly affected by 

needle lift when the flow velocity is kept constant, a similar result can be observed in 

Figure 3-72 where the total strings number is plotted for different injection pressure. 

For all lifts the total strings number fluctuates within the measurement uncertainties 

around a fixed value which increases for each set with higher injection pressure. 

However, it is not possible to state that the velocity remains constant for each fixed 

injection pressure. That is true only at low injection pressure as was shown in Figure 

3-64. 
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Figure 3-72 Variation of the strings number as a function of needle lift for different injection 
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3.7. SUMMARY 

The test rig with the transparent enlarged nozzle proved to be an extremely useful tool 

in understanding the internal nozzle flow patterns and relevant flow phenomena, such 

as counter rotating vortices and their mutual relation with spray oscillation 

frequencies, air entrainment and cavitation. The model was based on a prototype of 

pintle-type outward opening injector for gasoline direct-injection engines provided by 

Siemens VDO Automotive. In-nozzle flow visualization with a high-resolution CCD 

camera coupled with a high-speed digital video technique provided valuable 

information about the overall flow patterns, mechanisms of air entrainment and 

cavitation development and, in particular, the dynamics of the gas-phase inside the 

nozzle. The following is a summary of the main findings: . 
The flow between the end of the square needle guide and the nozzle exit is of a 

complex nature, which consists of four high velocity jets and four pairs of counter

rotating vortices (unstable zone). These four vortices are highly unstable and could 

break down into more vortices. The images indicate that the instability in the spray 

may be attributed to the flow upstream the needle seat. 

LDV measurements showed that the emerging flow oscillate tangentially with 

dominant frequencies linked with the upstream vortical structure. All these low 

dominant frequencies were found to increase linearly with: 

1- Flow rate (exit bulk velocity) 

2 - Needle lift at constant velocity 

3 - Velocity at constant needle lift 

Spray visualization of the cavitating nozzle revealed the presence of gas-phase in the 

near nozzle exit region. This could be either cavitation under conditions where the 

pressure drop corresponded to low cavitation number, or air entrainment into the 

nozzle due to the liquid flow separating from the needle or cartridge surface 

boundaries; the latter occurred under most operating conditions for cavitation 

numbers well below 1. 

High quality flow images proved that cavitation and air entrainment were two 

separate phenomena occurring under different operating conditions with a different 

structure and dynamic range. 

For the case of air entrainment, the emerging spray can have two distinct large and 

small cone angles according to the attachment of the air bubbles to the cartridge and 

needle surfaces, respectively. The large and small spray angles were found to be 
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increasing slightly with flow rate but decreased with valve lift. 

The surface structure of the sprays corresponding to the two cone angles consisted of 

longitudinal strings due to the profiling effect of the liquid flow around the entrained 

air pocket. 

A statistical analysis of the strings counted on images captured through the 

transparent window shown that the number of these strings increases with flow 

velocity (Reynolds number). In particular, the string spacing was found to be slightly 

increasing with valve lift but almost uniform at constant velocity whereas it reduces 

linearly as the injection velocity increases. 

Although a similar spray structure has been observed in the real size injector, it is still 

risky to speculate that air entrainment is the only mechanism responsible for the 

string-type structure since a finer string structure has been observed in a non

cavitating nozzle previously tested. However, with the non-cavitating geometry, it can 

be argued that smaller size bubbles, that are unable to penetrate deeply into the 

nozzle, can in principle be generated at the exit of the nozzle, due to the geometric 

restriction, and therefore initiate finer strings. 

For the small angle and at full lift, the amount of air bubbles increased with flow rate 

up to 1.45 Us then the bubbles suddenly disappear switching the spray structure from 

string type to a smooth one. A parametric study of flow rate and valve lift variation 

showed that a flow with high momentum beyond a certain critical flow rate becames 

more dominant and it fully expands to occupy the diverging section of the nozzle, 

thus preventing flow separation in that section. 

Initiation of cavitation in the present nozzle and with the present set up proved 

possible only al low lifts, with full cavitation occurring towards the lower range of 

needle lifts. After the inception of the vapour pockets, these quickly disintegrated, 

dispersed and they were convected downstream towards the nozzle exit forming a 

triangular vapour shape with its apex being the point of inception of cavitation close 

to the sealing edge of the nozzle. The dynamics of cavitation vapour pockets proved 

to be much faster than those of the entrained air bubbles so that to capture their 

movement require~ a higher framing rate camera. 

Limited tests at low lifts and very high flow rates, where air entrainment and 

cavitation bubbles could co-exist, revealed that the main mechanism for the formation 

of a string-type structure was still the entrainment of air bubbles, but that the presence 

of cavitation at high liquid velocities and could create a string-type spray structure 
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which was very similar to that of the real size injector. The high-speed sequence has 

shown also how the cavitation contributes to liquid flow structure brake up 

downstream the nozzle exit which enhanced the atomisation considerably and 

suggests how cavitation could improve atomisation in the real size model. 

The analysis on the real size injector has shown that the total number of strings is 

almost constant for low injection pressure and grows by increasing the injection 

pressure above lOObar. The total number of strings in the real size injector presents a 

similar trend to the large-scale model only at high needle lift however, at low velocity 

the strings number tends asymptotically to a minimum constant number. At constant 

injection pressure, the total number of string presents small variation with lift, a 

similar trend was previously observed in the large-scale model for different lift and 

fixed flow velocity. 

For the real size injector it is not possible to state that velocity is the only parameter 

driving the string phenomenon like for the large-scale model. In fact, such a variable 

does not necessarily obey to the laws of geometrical and dynamical similitude. 

However, for several operating condition the behaviour of the two model sizes has 

proved to be very similar suggesting that similar mechanisms could occur at least 

partially on both injector sizes. Considering the absence of the needle transient phase 

in the enlarged model the obtained results are quite satisfactory. 

Overall, the presented results suggest that, apart from air entrainment, there may be 

other mechanisms that might either hinder or enhance the formation of string-type 

spray structures like the balance between dynamic, surface tension and aerodynamic 

forces due to the induced air recirculation near the nozzle exit. 
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Chapter 4. 

Spray Cllaracterization under atmosplleric and Iligll 

pressure conditions 

4.1. INTRODUCTION 

An important operating criterion of a well-designed GDI engine is that the fuel must 

be sufficiently vaporised before the ignition event occurs in order to minimise UBHC 

emissions to an acceptable level. Moreover, the complete evaporation of the fuel can 

make the ignition process more robust. One of the major factors influencing 

vaporisation of the fuel is the standard of atomisation. Effective atomisation increases 

the specific surface area of fuel droplets permitting high rates of mixing and 

evaporation of the fuel. 

In the present investigation, the performance of this pintle-type injector was 

characterized for different operating conditions. The injector was tested in a constant 

volume pressurized chamber, which has full optical access and is equipped with 

special control system to adjust chamber ambient temperature and pressure; in case of 

injection into atmosphere, the injector was mounted on a purposed designed 

adjustable support, which allowed turning the injector axis with respect of the optical 

axis. 

The first part of the investigation consisted of integral and 2D Mie scattering 

visualisation to determine spray structure characteristics in terms of shape, penetration 

and dynamic and also to optimize the second phase of the experiment by helping to 

locate the best measuring zones for the following laser diagnostics. The spray imaging 

was also useful to give a qualitative meaning to the quantitative results outcome of the 

PDA experiment. 

The second part of the investigation covers the quantitative study of the spray 

including simultaneous measurements of droplets diameter and velocity distribution 

using Phase Doppler Anemometry (PDA). In the same section it is also included some 

result obtained from PIV measurement which gave an overall view of the velocity 

field previously quantified by PDA diagnostic. 
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4.1.1. Atomisation 

The process of atomisation consists in liquid jet or sheet disintegration by kinetic 

energy of the liquid itself, either by the interaction with high-velocity air or gas, or, as 

a result of mechanical energy applied externally through a rotating or vibrating device 

[93]. 

The surface tension acting on a liquid suspended freely in space will tend to pull the 

liquid into a sphere since this geometry has the minimum surface energy. If external 

aerodynamic forces act on the droplet (as in the case of fuel being injected into a 

cylinder) exceed the consolidating surface tension force, break up of the droplet 

occurs. This mechanism can be described as atomisation. 

Under equilibrium conditions the internal pressure at any point on the drops surface, 

Pi, is just sufficient to balance the external aerodynamic pressure P A and the surface 

pressure P a so that, 

Pi = PA + Pa = Constant (4-1) 

4.1.2.Disintegration of liquid sheets 

Multi-hole injectors produce liquid jets, whereas pressure-swirl type atomisers, and 

outwardly opening pintle-type injectors, aim to form conical liquid sheets. When a 

sheet of liquid. emerges from a nozzle, its subsequent development is mainly 

influenced by its initial velocity, the physical properties of the fuel, and the 

thermodynamic conditions of the ambient gas. In order to expand a sheet against the 

contracting surf~ce tension force, a minimum sheet velocity is required. The initial 

~ velocity is determined by the injection pressure and nozzle geometry. Increasing the 

initial velocity expands and lengthens the sheet until a leading edge is formed where 

equilibriUm exists between surface tension and inertial forces. 

In 1953, Fraser and Eisenklam [94] defined three modes of sheet disintegration, they 

are, rim, perforated, and wave sheet disintegration. It is possible for two different 

modes to occur simultaneously. In the rim mode, forces created by surface tension 

cause the free edg~ of the liquid to contract into a thick rim; the rim is then broken 

down by a mechanism corresponding to the disintegration of a free jet. The resulting 

drops continue their traj ectory but remain attached to the receding surface by thin 

threads that also rapidly break up into rows of drops. In perforated sheet 

disintegration, holes appear in the sheet. The holes grow rapidly in size until the rims 
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of holes coalesce with the rims of adjacent holes, producing ligaments of irregular 

shape that finally break up into drops. 

Wave disintegration occurs in the absence of perforations where a half or full 

wavelength oscillation is tom away by the aerodynamic forces before the leading edge 

is reached. Wave-sheet disintegration is highly irregular and consequently the range 

of drop sizes is larger. 

Studies of Dombrowski and Johns (1963), Dombrowski and Fraser (1954) [95] and 

Crapper and Dombrowski (1984)[96], established that ligaments are caused 

principally by perforations in the liquid sheet. If the holes are created by other means, 

such as turbulence in the nozzle, of rough nozzle surfaces, then the ligaments are 

broken more slowly. From a number of tests on a wide variety of liquids, they 

concluded that: 

1. Liquid sheets with high surface tension and viscosity are most resistant to 

disruption. 

2. The effect of liquid density on sheet disintegration is negligibly small [74]. 

4.1.3. Drop size distribution 

There are a wide range of drop sizes in a typical spay formation. It is beneficial to 

classify the spread of drop sizes within .the spray in order to make comparisons 

between sprays. The Sauter Mean Diameter (SMD), Mass Median Diameter (MMD) 

and Arithmetic Mean Diameter (AM D) are terms used to measure the spread of 

droplet sizes in the spray. The SMD is the diameter of a droplet whose surface-to-
.. 

volume ratio is equal to that of the entire spray. The symbol describing the SMD is 

D32 , its application is for mass transfer, and can be expressed as 

SMD= ~NID\ 
~NID21 

Where N 1 is the number of droplets and Dl is the droplet diameter. 

(4-2) 

The Mass Median Diameter is the diameter of a droplet, below or above which, 50% 

of the total mass (volume) of droplet lies. The Arithmetic Mean Diameter (AMD) is 

the Arithmetic mean value of a considered group of droplets. 

The SMD provides a better representation of the fuel volume than both the Arithmetic 

Mean Diameter (AMD), and route mean squared (RMS) which is mainly used as a 

measure of diameter fluctuations, when analysing sprays. For example, if 1,000 

droplets are collected, 990 of which are small and 10 are large, then an average 
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diameter value will be biased towards the small droplet diameters and an unrealistic 

representation of the fuel volume will be given. 

No single parameter can completely define a drop size distribution. For example, two 

sprays are not necessarily similar because they have the same (SMD) or the same 

(AMD). In many practical applications, it is the smallest drop sizes in a spray or the 

largest drop sizes that are of paramount importance, and neither SMD nor AMD can 

provide this information. 

The AMD may not in fact be the single best indicator of the spray quality required for 

the ODI engine, as a very small percentage of large droplets is enough to degrade the 

engine UBHC emissions even though the AMD may be quite small. 

4.1.4. Typical Droplet sizes 

The pressure swirl type atomizer used in wide spaced ODI engines is required to 

provide a highly atomised fuel spray having a SMD of generally less than 25 Jlm [19]. 

The close spaced injector on the other hand, is required to produce an even finer 

spray, and therefore lower SMD values, since the time available for evaporation in its 

stratified mode is much less. 

According to Xu and Markle, experiments conducted in 2000, showed that the 

outward opening injector was able to produce a spray with an SMD of less than 15J..lm 

as measUred by laser diffraction at 30 mm downstream from the nozzle and a 

maximum limiting penetration of70mm into atmosphere[19]. The pintle-type injector 

is now expecting produce droplets as small as 10J..lm, particularly in the vicinity of the 

- spark plug (point of ignition) during standard temperature and pressure tests. (Note, 

for normal operating temperatures within the engine, they expect only vaporised fuel 

in this area). 

Each 50Jlm fuel droplet in a spray having an SMD of 25 Jlm not only has eight times 

the fuel mass of the mean droplet, but also will remain as liquid long after the 25 Jlm 

droplet has evaporated. In fact, when all of the 25 Jlm droplets have evaporated the 

original50Jlm droplets will still have a diameter of 47Jlm [19]. 

For a gasoline droplet with a diameter of 80Jlm, vaporisation under typical 

compression conditions takes tens of milliseconds, corresponding to more than 100 

crank angle degree at an engine speed of 1500 rpm. By contrast, the vaporisation of a 

25 Jlm droplet requires only several milliseconds, corresponding to tens of crank angle 

degree [19]. This is the essence of the degradation of ODI engine combustion 
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characteristics for sprays in which the droplet mean diameter exceeds 25 Jlm for wide 

spaced GDI, and 15J.1m for close spaced GDI. 

Generally, the smaller the droplet sizes, the quicker the droplets will vaporise. The 

rapid vaporisation of very small droplets helps to make the GDI concept feasible. 

Therefore, many techniques have been proposed for enhancing the spray atoinisation 

of GDI injectors. Fuel injectors used in GDI engines are expected not only to break up 

the fuel into droplets but also to distribute the drops uniformly into the surrounding 

gaseous medium at a highly repeatable rate. 

4.2. EXPERIMENTAL TECHNIQUES AND EQIDPMENT DESCRIPTION 

The following paragraphs describe the experimental proceedure and the techniques 

used in the current experimental phase. 

The main experimental system used in this investigational phase was PDA technique, 

which gave the possibility to identify droplet diameter and at the same time two 

velocity components. However, its principle is based on single point measurement 

which does not give an overall view of the whole velocity field. 

The PIV system, on the other hand, despite its limitation in dense spray measurement 

was found to be a useful technique to have a global overview of the instantaneous 

velocity field of air entrainment and recirculation occurring after the trailing edge of 

the spray. Spray imaging methods and their explanation were given in the third 

chapter of this thesis so here only the experimental arrangement will be briefly 

described. 
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4.3.TEST RIG STRATEGIES 

Due to its safety and its consistent property Iso-octane is preferable than gasoline for 

optical studies and therefore it was chosen as fuel flow for the current experiments. 

Nevertheless, the physical property of the Iso-octane are very similar to those of the 

gasoline and more specifically it has a density, kinematic viscosity and surface 

tension of 692kg/m3
, 0.78cSt and 0.0188N/m, respectively. Spray images were 

obtained using a 12-bit CCD camera (Sensicam) with a time resolution of 50f.ls, a 

spatial resolution of 512 x 640 pixels and minimum exposure time of lOOns. A strobe 

light of 20J.ls duration was used as the light source, which was synchronised to the 

camera. A high-speed video camera acquiring at a rate up to 40k fps was used to 

visualize the dynamics of the phenomena occurring during the spray evolution. To 

contain the heat rate radiated against the injector a continuous 200W HMI lamp 

(ARR! light) with low heat diachronic reflector was employed as light source. 

(a) Flexible injector holder (b) constant volume chamber set up 

Figure 4-1 Experimental set up for variable and ambient backpressure PDA measurement 

As the investigation involved different set of parameters, the experiments required 

two different injector assembly arrangements. In the first approach, (Figure 4-1 a) the 

spray was studied for different operating conditions at ambient pressure. The 

mounting set up consisted of a rotating support, which allowed a flexible positioning 

of the injector. The purpose of the rig was to give full optical access to the laser, 

scattered light path, and thus perform a complete set of measurement through the 
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spray thickness without facing problem related with light attenuation due to dense 

spray. With the same rig arrangement, PIV measurements were performed for the 

determination of the velocity field of air entrainment and spray recirculation by 

suspending atomised water droplets as seeding samples. 

The second approach (Figure 4-1 b) focused on the observation of the effect of 

surrounding temperature and backpressure on the spray, which required a rig capable 

to artificially modify the surrounding thermodynamic conditions by controlling the 

ambient parameters. For this purpose, a constant volume chamber with variable 

ambient pressure and temperature was employed. The chamber was equipped with 

four quartz windows and connected to a pressurised bottle of nitrogen to maintain the 

required high pressure inside the chamber up to 2Sbar by mean of an accurate 

pressure regulator. The fuel pressure regulator attached to the common rail, the 

solenoid valve in the exhaust pipe of the chamber and the injector were all controlled 

electronically. In order to simulate high temperature of the gas inside the chamber, 

two heating plates were installed in the walls of the constant volume chamber and the 

nitrogen was heated before entering the chamber. Several thermocouples were 

installed inside the chamber at different locations, which were giving feedback to the 

temperature control system to ensure constant temperatures were maintained within 

± I.SCo; with this setup a maximum temperature of 180Co could be achieved. 

4.3.1.PIV Experimental set up 

The PIV technique was used to investigate two different phenomena. The first 

experiment aimed to observe the air entrainment behaviour at the near nozzle area of 

the injector. The second PIV investigation focused on the measurement of the velocity 

field of the spray recirculation SOmm away from the injector tip and beyond in the 

final phase of the spray evolution. 

In order to measure the air entrainment velocity it was necessary to produce special 

flow seeding with sizes small enough the follow the flow stream without slipping and 

large enough to scatter sufficient light that can be captured by the camera. Therefore, 

a purposed built water atomiser was employed to produce very fine droplets with size 

of order of 2J.lm. The water droplets were blown into the region of interest around the 

nozzle tip with a mean velocity in the absence of spray of about O.3m/s. These details 

on the water droplets were assessed by LDV measurement and will be presented later 

in this chapter. The velocity range of the suspended water droplets is well below the 

air-entrained motion and far below the spray droplets velocity with no effect on the 
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dynamics of the spray and therefore this seeding produces reliable results. 

The second phase of PIV measurements focused on the investigation of the spray 

recirculation in which the water atomiser was no longer needed as the object of the 

velocity field was the fuel droplets motion and not the surrounding air. In this setup, 

the investigation area lies well away from the injector tip and takes place during the 

final phase of injection when the spray is no longer dense. Consequently, high-speed 

PIV system can be employed to obtain instantaneous spray velocity field with a 

sensible resolution in terms of droplet samples per velocity spots (interrogation area). 

Figure 4-2 shows schematically the PIV system (TSI) setup of the latter configuration 

incorporating the injector system. 

High-Repetition 
Double-Pulsed 
Nd:YAG Laser 

High-Speed 
PIV Camera 
and Image Buffer • 

t 
Camera 
Synchroniser 

Sys em Control 
and 

Data Processing 

Figure 4-2 Schematic of experimental setup of the high-speed PlY system with incorporated 

Injector system 

A pulsed Nd:YAG laser unit illuminated the area of interest with a planar laser sheet 

corresponding with the symmetry plane of the spray and the camera was oriented with 

its axis perpendicular to the laser sheet. Due to technical limitation with the processor 

memory, the recorded frame rate was also limiting the maximum spatial resolution. 

The pair of images was captured by a high-speed video camera with a relatively long 

shutter time whereas the time step between the two image of the pair was defined by 

two laser pulses at a frequency of 50 kHz (time step = 20 f.ls). Laser and shutter are 

internally synchronized by a synchroniser box in order to shoot a pulse during each 

exposure interval. The image pairs were recorded with frequency of 3000Hz for high 

183 



image resolution and 5000Hz for high time resolution. The images stored in the image 

buffer memory of the camera had to be downloaded to the PC for further processing 

after each set of measurements taken for each spray case. 

Figure 4-3 Test rig for ambient condition PIV measurement 

The PIV system came with a powerful software package that made all the necessary 

data processing possible in an automated batch mode after the optimum parameters 

were set individually. However only part of the processed results will be presented in 

this thesis as the analysis of the complete set of acquired PIV measurement goes 

beyond the scope of the current investigation. 

4.3.2. PDA Measurements under Atmospheric Condition: Experimental set up 

The PDA set up at this stage of the experiment (injection into ambient condition) was 

set according to Figure 4-4 where the characteristics of the transmitting and receiving 

optics are also given. The transmitting laser beams and the receiving optics were set 

up to minimize the effect of beam and scattered light attenuation to collect full spray 

signal near the injector exit where the spray is very dense. The data were collected 

over a time window of 0.2 ms to 2.4 ms during the injection process and up to 15000 

samples were collected over many injection cycles for each measuring location. The 

measurements were synchronised with needle lift by an external reset pulse and 

restricted to the first 1ms after the start of the injection (ASOI) up to 2.4ms ASOI at a 

axial distance of 50 mm from the injector tip. The collected information of time, 

velocity and the size were. resolved over a time interval of 0.1 ms to obtain the 

ensemble-averages. The number of validated samples in 0.1 ms time interval varied 
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from 250 to 1500 with maximum statistical uncertainty of --2.5% in the mean velocity 

value. 

Receiving Optics 

Collecting lens 310 rnm 

Collecting angle 300 

Mode of scattering Refraction 

Size range: 95/-Lm 

Transmitting Optics 

Laser wavelength 514.5 run 

Laser power 700 mW 

Focusing lens 310 rnm 

Beam separation 26 mm 

Half angle of beam intersection 2.4 0 

Number of fringes 7 

Figure 4-4 Purposed design setup to minimize attenuation of laser beams and scattered light to 

allow full spray measurements inside the central region of the spray thickness. 
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Figure 4-5 Experimental set-up schematic of fuel injection system and optical devices. 
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The complete PDA experimental set-up is shown schematically in Figure 4-5 

including all optics, control systems, processor and instrumentation. The laser 

transmitting and receiving optics were mounted on an adjustable platfonn with three 

axis of movement, which allowed the control volume to be located to any positions 

within the spray as shown in Figure 4-6. Before starting the PDA measurement 

acquisition it was necessary to set up the experimental rig and to align the 

instrumentation. The optical receiver and the transmitting optics were set up 

according angle and focal distance as shown in Figure 4-4, the fmal adjustment were 

then carried out by purposed screw in order to achieve the highest burst signal 

possible. After the optics were set, the zero reference point was aligned with the 

control volume, which was chosen on the centre of the injector exit. Once the centre 

of the injector and nozzle exit had been detennined, then three digital gauges (x,y,z) 

were installed and reset to zero creating a reference origin. 

Figure 4-6 Test rig arrangement with 3-D traverse for ambient condition PDA measurement 

In previous FDA measurements perfonned on this injector, several difficulties in 

measurements were, encountered during the main injection period in the centre of the 

spray due to the attenuation of the laser caused by the high concentrations of droplets. 

This is a common source of uncertainty in the near-injector region of dense sprays as 

was reported by [97, 98], and although it had no effect on size measurement accuracy 

[97], the effect of high droplet density can be considerable causing the system to fail 
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in detecting droplets during the main injection period. 

In order to achieve good results, it was necessary to minimise attenuation of the laser 

beam and the most appropriate way of achieving this without using a sharp edge 

splitter (which opens the pray cone to allow beams pass through), was to turn the 

injector at 45° angle with respect of the transmitter axis. Therefore, one side of the 

cone profile described a horizontal trajectory, clear of the beam, and the other side a 

vertical trajectory where the measurement took place. All measurements were taken 

along the centre line of the vertical trajectory, see Figure 4-7 and Figure 4-11. 

Finally, once the set up had been completed, the data recording began. Droplet 

velocity and size were measured across spray strings, first locally along the y-axis to 

determine the centre of the string (the centre position was defmed as the point where 

maximum average velocity occurs), and then in the x -plane, from the inner to outer 

edges The horizontal scan was then repeated along 13 vertical positions from 

z=3.54mm (z'=2.5mm along injector axis), to z=70.71mm (z'=50mm along injector 

axis). 

Figure 4-7 Injector holder built and installed into the test rig 

Signal processing by the PDA flow software produces data, such as mean droplet and 

RMS velocities (horizontal and vertical planes), and droplet diameter distribution, 

either graphically or in numerical values. Figure 4-8 shows a screen printout of the 

raw data graphs produced by the PDA software. About 15000 samples are required 

for each measured location. The green graph represents the droplets vertical 
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velocities, the blue graph represents the droplets horizontal velocities, and the red 

graph represents the droplet size distribution. The accuracy of the measurement and 

the detailed error analysis can be found in the appendix at the end of the thesis. 

The text files can then be exported into a Matlab code to obtain a more detailed 

analysis of the raw data. Post-processing of the acquired data was done by in-house 

developed software which allowed formatting and plotting the raw data obtained from 

the PDA acquisition in a more convenient way. Functions were written within a 

Matlab code to produce histograms, temporal and special graphs for velocity and 

diameter distributions, to determine mean and RMS velocity values, and other 

statistical data. The main graphs produced by Matlab and presented in this 

investigation are temporal variation graphs, (droplet size or velocity vs. time), and 

spatial graphs (droplet size or velocity vs. control volume position). Spatial graphs are 

particularly useful to compare spray characteristics across the whole cross-section 

(profile) of the spray. 
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Figure 4-8 Screen print out of the PDA software while acquiring data. 

The development of a temporal graph is described graphically in Figure 4-9. 

Graphs representing spatial distribution are dependent on information provided In 
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X 

temporal graphs. The relationship between these two graphs is described in Figure 

4-10, which represent the spatial distribution at 0.5 ms ASOI. 

Control volume position ex = 0 mm, ¥= 0 mm, 
Z= 3.54) r!: 

Temporal 
Velocity/Diameter 
gr~hX= Omm 

Figure 4-9 The development of a temporal graph 
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Figure 4-10 Development of a spatial graph. 
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4.3.3. String Identification 

Before starting the PDA measurements it was necessary to identify a representative 

string to analyse and then to rotate the injector position to expose the selected string in 

the measurement area. The position of the control volume relative to a string was 

identified using spray visualization in presence of the laser beams. The CCD camera 

and mirror were therefore used for this stage of the experiment. The injector was then 

rotated around its axis in order to match the control volume with the selected string. In 

order to locate the most suitable Cartesian reference for the PDA measurement it was 

first visualized the spray structure in the area of the control volume with the CCD 

camera. The centre of the string was thus set as the origin of the coordinate system of 

the PDA measurement as shown in Figure 4-11 with the axial origin (z=O) starting 

from the nozzle exit. 

The measuring axial locations were chosen at different distance from the injector tip 

along the axis of the jet (z) each of which corresponds to positions along the injector 

axis (z ' = zcos45), ranging from 2.5mm up to 50mm. In each z position, a cross 

centred (x, y) scan was made in the string centre in order to measure the absolute 

velocity and droplet distribution throughout the string. In order to refer the axial 

coordinate to the jet rather than the spray cone, the axial position in the results 

presented in this chapter is referred to z 

PlEVip 

. Figure 4-11 PDA Coordinate system 
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Figure 4-12 (a) to Figure 4-12(d) show the control volume produced by the crossing 

points of the two laser beams positioned on a particular string within the spray whilst 

the spray develops; the location of the control volume (laser spot) is identified by a 

red circle in Figure 4-12 (a-d). The images show the outer surface of the spray taken 

directing the camera towards the laser coming from the transmitting optics through a 

45-degree mirror. 

(c) t= O.4ms (d) t=O.5ms 

Figure 4-12 Visualisation of control volume with respect of the string position 

Figure 4-13 shows side views of Figure 4-21 where the injector plane lies in the same 

plane as the optical axis so that the vertical spray jet is perpendicular to the beams. 

The images were taken directly and no mirror was required. The frames show the 
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control volwne produced by the converging laser beams, intercepting the vertical 

spray cone, right below the nozzle exit and at z coordinates 3.S6mm. 

Figure 4-13 Laser beams converging in the vertical edge of the spray during PDA measurement 

F our operating conditions were analysed, one of which was chosen as reference 

condition and is referred to as standard condition. The remaining three conditions 

were obtained by varying one of the parameters with respect to the standard one. The 

following nomenclature will be adopted during the discussion of the PDA results. The 

reference condition referred as "Standard" is set at 200bar injection pressure, high 

needle lift set up (l001), and injection duration 0.6ms. For all the other cases, the 

modified parameters will be explicitly specified. 

4.3.4. Results and discussion 

The first set of results is based on the analysis of the standard conditions, which show 

in details several aspects of the spray characteristics in terms of spray structure, 

droplet diameter and velocity. These three aspects will be analysed and correlated 

with a special effort in trying to connect qualitative information from spray 

visualisation and quantitative data from the PDA measurement occurring during the 

development of a spray event. As it was seen in the previous chapter, one of the most 

important attribute of the pintle-type injector spray is its typical filamentous structure 

(strings). Strings are characterised by a non-homogenous velocity and droplet size 

throughout its cross-~ection with a distribution very similar to that of the individual jet 

of a multihole injector. 
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STANDARD CONDITIONS, Pb=1bar, Pi=200bar, TI=O.6ms, z=35.35mm (25mm), Y=O, BIT POS.(1001) 

30 

35 

40 

45 

·30 ·20 ·10 o 10 20 
mm 

Figure 4-14 Front view of the spray turned 45°. The white spot is the reflected laser light of the 

control volume. The ticks along the yellow line represent the measurement locations. 

F or this reason a more careful and detailed study was carried out here to characterise 

the structure of a single string. Three different string structures were identified for 

different phases of the injection during the spray evolution, as shown in Figure 4-15. 

• The first phase is described by the leading edge of the spray, which is composed by 

the spray front, which is broken by the shearing action between liquid and 

surrounding gas. 

• The second phase is characterised by a steady and well-defmed structure of strings. 

The strings are very straight and defmed showing a very clear and nit fishbone 

structure. 

• After a fixed interval of time, the nit and clear strings observed in the second phase 

lose their individuality and become rapidly distorted to form an amorphous shape 

which lasts until the end of injection. 
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(a) bulky leap at leading edge (b) Fish bone structure (c) unstable string structure 

Figure 4-15 Three phases of the spray structure at 3.5mm from the nozzle exit 

4.3.4.1. First phase structure. Bulky leap at leading edge of the spray 

A magnified visualization of the spray at standard conditions shows in Figure 4-1 7 the 

emerging spray at the very early phase of the injection when the needle is still in 

process of opening. The magnified image at such an early stage and close needle 

position was achieved by a fortunate lighting set up and by inclining the camera 

toward the nozzle passage to visualise through a mirror the nozzle exit as shown in 

Figure 4-16. 

In the first snap shot of Figure 4-17 the flow has just emerged and the rim produced 

by the sharing action with the air is not formed yet however, a hint pre-announcing 

the string formation is already visible in both images showing the same profile pattern 

even though the snap shots do not belong to the same injection. Such a consistency 

suggests that the string formation is completely unrelated to the upstream turbulence, 

which has random and chaotic nature. 

The second snap shot taken just few IlS after the first one shows the onset formation 

of the bulky leap where the rim of the liquid sheet start thickening due to the 

interaction with the surrounding air. 

It is also interesting to note that even when the liquid sheet is still intact, the strings 

already possess their· individuality and they are visible immediately after emerging 

from the injector, which means that they are not the results of liquid sheet break up in 

ligaments. 
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Figure 4-16 Camera, mirror and injector layout for the spray visualisation of emerging flow 

Figure 4-17 Emerging spray at start of injection: Pi=200bar, Needle lift = 29J1m (1001). 

The following set of images in Figure 4-18 shows the evolution of the spray at the 

initial stage of the injection when the formation of the first phase structure and the 

filaments start being more defined. In the three images in Figure 4-18, to represents 

the start of the injection with respect to the electrical pulse from injector driver 

whereas the actual injection timing t - to is respectively 15Jls, 25Jls and 35Jls after 

start of the injection (ASOI). 

The first picture in Figure 4-18 shows the leading edge as fuel emerging from the 

injector at 15Jls after the start of injection where the spray rim is affected by the 

impact against the surrounding air and forms a bulky lip. As the leading edge 

advances downstream (second image t=25 Jls) the preceding liquid catch up the 

leading sheared front which extends its length backward initiating a tendency for the 

liquid sheet to breakup mainly in between two adjacent strings. 
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STANDARD CONDITIONS, PtF1bar, Pi=200bar, Ti=O.6ms, BIT POS.(1001) 
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STANDARD CONDITIONS, PtF1bar, Pi=200bar, Ti=O.6ms, BIT POS.(1001) 
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STANDARD CONDITIONS, Pb=1bar, Pi=200bar, Ti=O.6ms, BIT POS.(1001) 
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Figure 4-18 Spray structure at start of injection: Pi=200bar, Needle lift = 2911m (1001) at 15,25, 

35 ItS ASOI. 
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As the spray develops, secondary break up takes place and the small droplets with 

lower momentum disperse towards inner and outer surface of the spray jet. These fine 

droplets are trapped in the surrounding air wakes or simply are slowed by the air 

moving in the opposite direction. The backward extension of this cloud of sheared 

droplets gives origin to this starting structure referenced in this chapter as first phase 

structure. 

A particular feature that can be observed in the two first images (15 - 25~s ASOI) are 

the leap between consecutive strings which looks like a liquid sheet in process of 

breaking which is shown more clearly in Figure 4-19. That suggests that in this phase 

the primary break up is occurring and liquid sheet and ligaments are not completely 

broken into droplets yet. 

Figure 4-19 Leap between strings (particular of Figure 4-18 at 25 J.1S ASOI). 

Leap between 

strings typical of a 

rim type Jiq uid 

sheet break up [93] 

The PDA results, (Figure 4-21) at O.2ms ASOI (when the rim of the spray hits the 

control volume) show a uniform mean velocity distribution through the whole string 

thickness (x-direction) with large droplet sizes with SMD up to 30~m, (Figure 4-20 at 

0.2ms). In general, as it will be described, a variable distribution is expected through 

the spray thickness with the peak mean velocity occurring at the jet centre and the 

minimum in proximity of the surface. The uniform mean velocity through the rim 

thickness can be due to the residual fuel trapped outside the nozzle sealing in the 

divergent part of the nozzle of the injector sealing (Figure 3-8) which does not go 

through the same nozzle path and therefore it is not affected by the same wall friction 

as the following fuel flow. Another reason can also be attributed to initial uniform 

shearing effect of surrounding air at the leading edge of the jet, which slows the 

emerging droplet uniformly across the spray thickness. Immediately after the bulky 

spray rim, the drop size at z=4.2mm reduces to an SMD between 8-12~m and it 

remains similar until the end of injection. 
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Figure 4-20 Velocity and droplet diameter vs. time at z=4.24mm from the tip and on the external 

surface of the jet. It shows the presence of highly spread velocity and big droplet size when the jet 

tip passes through control volume. 
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Figure 4-21 Spatial velocity distributions at the start of the injection across the tip of the spray. 

By examining the velocity distribution immediately after the aforementioned spray 

rim the temporal variation in Figure 4-22 shows a zone with lack of droplets and a 

certain amount of droplets with negative velocity. These are typical characteristics of 

a wake region, which can be present behind the bulky leap of the spray with small 

droplets as shown in .Figure 4-22 
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Small droplets dragged by recirculation 

motion caused by the wakes behind the bulk 

tip spray. 
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Figure 4-22 Temporal droplet velocity and size distribution on the outer surface of the spray. 

Schematic representation of wakes behind the spray rim. 

4.3.4.2. Second phase structure: Fish bone structure 

At O.3ms ASOI (0.1 ms after the first phase of the spray structure) the big droplets of 

the first phase of the spray structure passed over the control volume or the observed 

spot. The following spray structure is made by a more stable and well-defined string 

pattern composed by straight and clear strings, which resemble the well-known 

fishbone structure, observed with the jet sprays produced by multi-hole injectors. 

(Figure 4-23); this stable pattern persists up to an axial location of z = 21.2mm 

(z'=lSmm). 
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STANDARD CONDITION.S, Pb=1bar, ~=200bar, Ti=0.6ms, z=14 .• 14mm (1~,!,,), Y=O, BIT POS.(1001} 
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Figure 4-23 Magnified visualisation of the spray structure at 0.36 ms ASOI: fish bone structure. 

The red spot represent the CV location at z=3.S4mm (z'=2.Smm). The white spot is the CV (the 

actual image of the CV) at a location ofz=14.14mm (z'=10mm). 

From the temporal plot of Figure 4-24, it is possible to describe the characteristics of 

this stable phase. The two temporal plots are taken at the jet centre at axial positions 

of z'=2.5mm and z'=10mm which correspond to the two spots positions presented in 

Figure 4-23. During the main part of injection (0.3 to 0.45ms ASOI), when the needle 

is fully open the velocity fluctuates through a very narrow velocity range with a low 

RMS level which is an indication of the level of string stability. Further downstream, 

at an axial position of 10mm, the stability is slightly reduced due to the higher 

fluctuation in the jet direction and to the stronger interaction of the air entrainment 

with the spray droplets (Figure 4-48). The PDA plots during the same interval 

considered at z'=2.5mm exhibit a higher velocity fluctuation which is also reflected in 

high level ofRMS velocity. 
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Figure 4-24 Temporal variation of droplets mean velocity and AMD diameter at the string centre 

for z= 3.54mm (z'=2.5mm) and z=14.14mm (z'=10mm) from injector nozzle. The magenta line 

corresponds to the time of the snap shot of Figure 4-23. 

Another characteristic that can be observed at the centre of the string in this phase of 

the spray structure (Figure 4-24) is the peak velocity occurring at O.36ms (needle fully 

open) which is also associated to an AMD peak at the same instant. The peak 

matching between velocity and diameter can be explained by the higher momentum 

possessed by the larger droplets which tend to loose their velocity more slowly. The 

velocity peak formation could be produced by the pressure wave associated with the 

hammer effect occurring during the needle-opening event. That would explain why it 

is particularly pronounced at an axial location very close to the nozzle exit and why 

such an effect is bar~ly observable further downstream at z'=lOmm (z=14.14mm). It 

is also evident that droplet sizes at lOmm from injector are considerably lower than 

that those at 2.5mm, especially during the main injection period. This indicates that at 

2.5mm, secondary breakup has not fully started yet and it certainly takes place within 

2.5mm and lOmm. 
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Figure 4-25 Velocity and droplet size distribution on the outer 

surface of the spray. 
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Figure 4-27 X distribution of Mean droplet velocity and size at 

O.46ms ASOI, immediately after the spray leading edge. 

Figure 4-26 Scheme 

showing the velocity 

distribution through the 

spray thickness after the 

leading edge 

At 0.45 ms ASOI the spray flaps outwardly (the spray cone opens) and this can be 

observed from the analysis of Figure 4-25 where the CV is positioned just at the outer 

surface of the spray jet (x=-O.2mm). A variation in the velocity distribution can be 

observed between the droplets at the outer spray surface (in the wake of the spray rim) 

composed by small slow-moving droplets and the main jet (centre of the jet thickness) 

composed by large droplets with higher momentum (Figure 4-26). 

Therefore, during the injection event the control volume initially fixed at the outer 
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surface detect the low velocity of the external fine droplets and as the spray flaps 

outwardly, faster and larger droplets belonging to the central stream of the spray jet 

cross the control volume at 0.5ms ASOI when the PDA records a velocity as high as 

150m/s. 

At z=7.07mm, the main body of the jet spray is evident in Figure 4-27 from x=-- -0.2 

to -1.lmm with a peak mean velocity in the centre of about 170m/s at 0.46 ms ASOI. 

The drop size distribution across the spray thickness follows the same trend of the 

velocity profile with a maximum AMD value of 12 J!m at the centre of the jet. Unlike 

the outer spray surface, the velocity at the inner surface reduces to almost zero at x=-

1.5mm and the mean droplet size reduces to a uniform value of 3 J!m at x=-1.2mm. 

At the outer surface of the spray, PDA results show a thick cloud of droplets with a 

uniform mean velocity of 60 m/s whereas at the inner spray surface the velocity 

approaches zero. The spatial distribution at z=7.07mm of Figure 4-27 shows this 

extended cloud which covers a distance from x= 0 to 0.6 mm at the outer spray 

surface with fine droplet size of '" 7 J!m and proceeds downward maintaining uniform 

mean velocity and droplet size during the whole injection duration ( 0.8ms ASOI). 

This may be due to the interaction between the air shear with the down going jet, 

which produces a thick highly atomised layer. This droplet clouds can be observed on 

the surface of the spray in the Mie-scattering visualisation of Figure 4-28 which looks 

like an avalanche around the spray cone. 

This represents an important aspect of the spray characteristics where a fine 

atomisation plays an important role in the fuel vaporisation as the outer region of the 

spray is close to the spark plug. This aspect is also evident in Figure 4-33 where it can 

be observed the full velocity distribution at different z-locations and the downward 

propagation of the above-mentioned cloud. 

4.3.4.3. Third phase structure: unstable string structure 

The peculiarity of this structure derives from the sudden string distortion, which 

comes from the alteration of straight and stable filaments to irregular and shapeless 

flow as shown in Figure 4-28. The followings PDA results, Figure 4-29 and Figure 

4-30, show the velocity and droplet distribution for this spray phase as represented in 

Figure 4-28 by the red spot. 
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Figure 4-28 Magnified image of the spray structure at 0.53 ms: unstable string structure. The red 

spot represent the CV location at z'=3.54 (z=2.5mm). 

At the centre of the jet (x=-OAmm, z=3.54mm), it was previously observed the fish 

bone structure (second phase structure) characterised by well-defmed filaments and 

low velocity range (Figure 4-29) occurring after the spray leading edge (first phase 

structure) and lasting until 0.53 ms ASOI. At this time, although the mean velocity 

remains almost constant, the instantaneous droplet velocity distribution shows a wide 

spread of velocity which is also a good indication of secondary breakup process. The 

spray at this stage of the injection is characterised by different droplet sizes and 

trajectories, which defines the starts to the third phase. The same trend is followed 

also by the droplet size distribution, which reveals a peak of higher AMD of about 28 

J.lm decreasing in the third phase structure to a value of just above 15 J.lm. The higher 

flow turbulence occurring during this unstable phase promotes probably the secondary 

break up with consequent decrease in droplet size. However, the change in phase 

structure is not evident for the SMD trend, which appears quite high (up to about 65 

J.lm) and in general relatively scattered during the whole injection event. 

At the inner surface of the spray (x=0.3mm), the three phase are well defmed and can 

be observed in Figure 4-30. Higher velocity and large droplet diameter for the spray 

front (first phase), RMS velocity reduction (0.2 to O.3ms ASOI) characterises the 

narrow velocity band of the compact fish bone structure (second phase). Just before 

the beginning of the third phase the high spray density causes a lack of signal which 

right away recovers showing the highly spread velocity observed for the third phase 

structure. It can be noticed that at the inner edge, the secondary break up is almost 

completed as the SMD for second and third phase is as low as 8 J.lm. 
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Figure 4-29 Temporal velocity and droplet size distribution at the spray centre (x=-
0.4mm) at standard condition 
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Figure 4-30 Temporal velocity and droplet size distribution at the inner edge of the 
spray (x=0.3mm) at standard condition 

The inner surface of the spray was visualised by the camera arrangement shown in 

Figure 4-31 and the sequence of the images is presented in Figure 4-32. The following 

spray visualisation shows the string development during the spray evolution and in 

particular, it can be observed the transition between the second and the third spray 

structure, which occurs between 37411S and 41511S in agreement with the PDA results. 

If the set of images of Figure 4-32 could be viewed in continuous sequences then the 

start of instability could be observed revealing a gradual shifting of strings in 

tangential direction which lose their individual fixed angular position. This outcome 

could also be explained by the results seen in Chapter3 in the large-scale model where 

it was observed the tangential shifting caused by the turbulent oscillation of the eight 

counter rotating vortices forming downstream of the needle guide. 
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Figure 4-31 Camera and injector layout for the spray visualisation of inner spray surface. 

558 JlS 

Figure 4-32 High-speed video of inner spray surface. Standard conditions: Injection duration 

Ims, Pi 200bar, Needle lift (1001) 
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However, as it will be shown in the PIV results, the air entrainment interaction 

becomes consistent roughly at the same time as the start of the described instability 

and therefore could highly contribute to the third phase structure formation. 

From PDA and spray images, it can be concluded that the transition from second to 

third phase is mainly associated by considerable secondary break up which generate 

new smaller droplets with different velocities and trajectories that can initiate 

tangential oscillation with droplets deviating from their original longitudinal path. 

The overall droplet velocity distribution (temporal and spatial) is given in the 

sequence of velocity field presented in Figure 4-33 from 0.2ms to 0.84ms ASOI, 

within a radial range from x=-3.5 mm to x=11.2 mm and an axial distance from 

injector tip from 2.5mm to 8mm. From 0.2ms to 0.32ms, ASOI the front of the spray 

is propagating downward with almost a uniform profile of about 50mls which goes 

beyond the visualised field at a time of 0.32ms ASOI. Just after the above mentioned 

spray rim the velocity assumes the usual jet-like profile until O.4ms when the string 

instability takes place (according Figure 4-32) and the peak velocity flaps outwardly 

(the spray cone opens) up to 0.50ms at z=8.5mm. The displacement can be observed 

by comparing the peak against the dashed line of the sequence from O.4ms to 0.5ms in 

Figure 4-33. The jet like profile is similar to those observed with multi-hole injector 

with a peak value in the centre of the spray reducing towards the inner and outer spray 

swface. 
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Figure 4-33 Vector velocity distribution for standard condition from O.2ms to O.84ms ASOI 
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It was seen that when the transition from second and third structure takes place, the 

formation of a cloud of fast small droplets on the outer surface side proceed 

downward with a uniform velocity profile of 50 m/s for all the spray duration as 

indicated by circles at 0.44ms to 0.52ms. The comparison of the droplet sizes in 

relation to their velocity reveals a disproportion between the two sides of the spray 

surface, which suggests that the motion of this cloud (outer side) is due to a drag 

rather than original spray momentum. That explanation copes with the previously 

defmed "third phase structure", with the visualisation of the ring clouds of Figure 

4-28 and as it will be observed with the results revealed by the PIV analysis on air 

entrainment and spray recirculation. The SMD distribution in Figure 4-34 exhibits the 

downward propagating cloud. Due to the SMD definition, their values result much 

larger than the AMD values shown in the spatial plots at z=7.07mm. 
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Figure 4-34 Mean Velocity and SMD distribution from z=3.0mm to 11.2mm. SMD distribution in 

the outer cloud with flat velocity profile. 

The plots exhibited to this point have only taken in consideration the velocity 

distribution through the spray thickness (i.e. x-scan). In order to have an overall view 

of the string and inter-string characteristics the droplet size and velocity distribution 

were measured by PDA diagnostic along the tangential coordinate (y-scan 

distribution). Figure 4-35 (a), (b), (c) shows the velocity and AMD distribution at 

three different axial (vertical) locations along the tangential coordinate. The 
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measurement trace was chosen at the x location corresponding to maximum peak 

velocity, which was defined as spray centre. 

The graph of velocity and diameter in Figure 4-35 (a) at z=4.23mm shows a wavy 

profile which evidences the presence of two peaks correspondent to two adjacent 

strings. At this axial location, the string distribution around the spray cone is very 

packed and the two adjacent peaks representing the string centre are about 0.2mm 

distant apart. The droplet diameter varies from 20Jlm in the middle to 10Jlm in the 

trough with a fluctuation of about 50%, which follows perfectly that of the velocity 

profile. Such a trend confirms as previously observed that the higher momentum is 

possessed by the larger droplets at the string centre while around the periphery the 

droplets are finer with lower momentum. 
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Figure 4-35 (a) Velocity and AMD distribution along the Y coordinate at z=4.23mm 

Further downstream, 14.14.mm far from the injector tip, (Figure 1 37 (b)), due to 

secondary breakup the split droplet have lost their momentum. Droplet Area/volume 

ratio decreases, drag effect increases and therefore the split droplets at the centre 

decrease their velocity. The velocity profile tends to become uniform and as a result, 

the peak to trough v~locity ratio decreases. Furthermore, downstream the spray cone 

expands and the strings diverge from eachother however it is still possible to 

distinguish the trend observed at z=4.23mm with two strings profile. The PDA data at 

14.14mm only show one peak within the measured range of2mm, but the two troughs 

around the periphery at y=0.6 and -0.4 are evident suggesting a distance between the 
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two string of about Imm which is five time larger than that at z=4.23mm. 

Alternatively, the next peak can be extrapolated from the plot to be at y=1.2mm 

suggesting a distance of 1.2mm between two adjacent strings. From the previous and 

the current string distance, it is then possible to estimate the angle between the two 

filaments, which was found to be 5.7°. 
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Figure 4-35 (b) Velocity and AMD and distribution along the Y coordinate at z=14.14mm. 

Finally at z = 28.28 the velocity profile is almost completely flat and it is no longer 

possible to distinguish more than one string peaks. The diameter distribution it is also 

uniform with AMD from 7J.lm to lOJ.lm. 
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Figure 4-35 (c) Velocity and AMD distribution along the Y coordinate at z=2S.2Smm. 
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4.3.4.4. Analysis of droplet diameter distribution 

A wider view of the diameter distribution (temporal and spatial) is displayed from the 

PDA results as a series of image sequences in Figure 4-36 where velocity and AMD 

are shown up to 70mm away from the injector exit. Following the image sequence 

from O.24ms, the presence of large droplets can be seen in the spray rim propagating 

downward up to the last z location of the measured data. This could represent a 

problem even in homogeneous mode as these big droplets could impinge the cylinder 

boundaries causing a harmful liquid film on the liner or piston surface. After the spray 

is completely developed and the spray front is at lower vertical location a clear picture 

of the droplet AMD distribution gives a better idea of the position in which secondary 

break up takes place. 

From O.52ms the spray front is beyond 30mm away from the injector exit and at 

z=lOAmm most of the droplets present an AMD of about 8 to l3f..1m. Just at the 

following vertical location of z=2lmm the secondary break up is completed, the 

AMD is decreased· and uniformly distributed with a diameter of about 5 to 7 f..1m. This 

situation occurs during the second string structure and it lasts up to O.6ms and then the 

instability phase (third structure) takes place with larger droplets .. This is clearly 

evident from the results that the droplets in front and behind of these fine droplets 

(second phase structure) are larger and are produced by first phase (spray front) and 

third phase (spray instability), respectively. The third unstable structure is propagating 

downstream with higher AMD, perhaps due to droplets coalescence or injection 

pr~ssure fluctuation. Finally, from O.84ms until 1.Oms it can be observed a tumble 

propagating downward which interacts with the droplets present in its centre and 

producing droplet break up. 

The analysed PDA data are the result of averaged values out of many injection events, 

which indicates that the observed recirculation is consistent phenomenon at least 

during the onset of its formation occurring from O.8ms to lms at a vertical location 

between 20mm to 30mm. This result predicts the outcome of the MIE scattering and 

PIV findings on the spray recirculation, which will be described in detail later on in 

this chapter. 

Far from the injector exit, beyond 70mm, the mean droplets diameter remains quite 

large with an AMD of about 15 f..1m. These big droplets could be the residual of the 

spray front which have lost their momentum and are unable to break up further. 
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However, the strong presence of recirculation can also suggests the possibility of 

coalescence occurrence due to droplet collision. 
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Figure 4-36 Velocity and AMD distribution for standard condition from O.24ms to 1.00ms ASOI. 

214 



4.3.4.5. Secondary breakup and Weber number analysis 

As observed in the Mie scattering images of Figure 4-17, primary breakup of the 

liquid jet/sheet occurs just downstream the nozzle exit. Near the injector tip the liquid 

velocity is maximum and secondary breakup tends to occur downstream of the nozzle 

exit at maximum Weber number. The Weber number is a dimensionless ratio of 

momentum force to surface tension force. It is possible that the droplets break up 

multiple times, if the momentum force is still sufficiently large compared to the 

surface tension force. The point when the fuel droplet's momentum runs out and 

Weber number goes below the critical number is where its smallest diameter is 

achieved. The Weber number is expressed as: 

• We = Inertia force/surface tension force = p~V(J (4-7) 

Where p is the fluid density, v is the average velocity of the droplets (or the relative 

velocity), I is the characteristic length (in this case average droplet diameter), and (J is 

the surface tension of the fluid. 
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Figure 4-37 Temporal distribution of Weber number for two different vertical locations (z=3.54 

and z= 14.14). 

Figure 4-37 presents the temporal distribution of Weber at different x-locations 

215 



(Figures (a) and (b)) and z-locations (Figures (b) to (d)) at the centre of the spray jet. 

The top two graphs of Figure 4-37 exhibits the Weber number at the outer spray 

surface (Figures (a)) and at the centre of the spray thickness (Figures (b)) near the 

injector at z=4.23mm. The Weber number distribution at the centre of the spray 

thickness follows the trend of mean velocity variation (Figure 4-29) with a maximum 

value of 40 at O.3ms ASOL Just at the outer spray surface (x=OAmm) the Weber 

number, We, is very low along the whole time range and drops to values lower than 1 

which suggests stable droplets with no possibility for further break up. However, the 

high values of the Weber number in the core region suggest that the droplets are 

breaking up and dispersing towards the string boundary. In all three vertical locations 

at core region (Figures (b), (c) and (d)), a similar trend can be observed in Weber 

number but with magnitude progressively reducing moving away from the injector 

exit so that the maximum value decreases from We=40 at z=3.S4mm to We=7 at 

z=14.14mm which is still high enough to initiate further breakup. 

The variation in Weber number along the jet spray is presented in Figure 4-38 and 

shows the highest value of 27 at z'=2.Smm (z=3.S4mm) decreasing rapidly with the 

axial location so that at z'=10mm the Weber number has already decreased by 80%. 

At z'= 20mm (z=28.3mm) the Weber number has reached a value of2 and it does not 

endure further reduction up to the lowest measured axial location. These results 

suggest the presence of a strong secondary breakup from tip of the injector up to 

z=10mm. From z'=10 to 20mm, deformation and possible breakup of droplets are 

expected, but from z'=20mm onwards it seems that all the droplets are stable except 

individual droplets that might have larger diameter with higher velocity. 
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Figure 4-38 Weber Number distribution along the axial location 
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Therefore, the following We distribution can be summarised: 

The Weber number at the outer spray surface is much lower than that at the spray 

centre and it decreases with the axial location away from injector. Since the droplets 

are more likely to break up for Weber number greater than 10, then it is expected that 

the droplets in these regions of the spray will not undergo any further break up; the 

Weber numbers at the outer spray surface for z=14.14mm and z=35.36mm is lower 

than 5 which confirms no further break up occurrence. 

4.3.4.6. Average Mean Diameter distribution along the axial direction. 

In order to have a statistical view of the droplet diameter the normalized probability 

density function (pdt) distribution of the diameter was analysed in the core region of 

the spray, when the needle is fully lifted and cutting the data at the leading and 

trailing edges of the spray as shown in Figure 4-48. In this way, a better 

representation and understanding of the phenomenon is therefore achieved w~en the 

comparison is based on the number of droplets that cross the measuring location 

during the main injection event. 
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Figure 4-39 Time range considered in the droplet size statistical analysis which excludes the 

leading and trailing edge of the spray. 

The comparison of the pdf histograms in Figure 4-40 shows differences in shape at 

different z locations. For instance, near the nozzle exit a jagged shape histogram can 
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be observed which gradually gets smoother and smoother moving away from the 

injector tip until an axial position of 40mm where the histograms again start showing 

an irregular profile. This behaviour can be due to the presence of more spray patterns 

in the same collected data group. In the near nozzle area, where the spray thickness is 

very thin, multiple peak profiles could be produced by the spray-to-spray variation, 

which would lead different flow streams through the control volume. Another reason 

could also be explained by the massive secondary break up which occurs within 

15mm from injector. As the spray develops downstream, the streams expand and the 

droplet size pattern is less affected by spray angle variation. Far from the injector, 

other phenomena like droplets coalescence and spray recirculation take place which 

makes the spray transient and therefore the collected data from CV is exposed to 

different spray stream types and these are evident in the last two histograms where the 

superimposition of more size distribution patterns can be observed. 

Another effect that can be clearly seen from the results of Figure 4-49 is the skewness 

of the histogram profiles towards the higher droplets size. The degree of skewness 

varies at different axial distances and follows the same pattern as mention above as 

the collected data are subjected to the same spray variation. The results show that the 

profiles at z=3.5 and 70mm give the highest skewed distribution and an almost 

Gaussian distribution at z=20mm. 

Another useful piece of information that can be obtained from the histograms of 

Figure 4-41 is given by the peak or the modal values (which corresponds to the 

diameter with highest number of droplets). These values are plotted in Figure 4-50 

together with the mean diameter and standard deviation at different axial positions. 

The trend of the modal diameter shows a reduction of 50% within 5mm (z= 7.1mm 

along the jet direction) and then it stabilises showing a further reduction at axial 

location of 30mm which suggest that the secondary break up takes place within the 

first 7mm distance. However the mean diameter shows a different trend in which it 

can be observed the secondary break up at 28mm far from the nozzle exit (axial z = 

20mm) where the mean decreases of about 50% from 14 J.lm to 7J.lm. 

The divergence between mean and modal diameter can be explained by the trend of 

the standard deviation, which show that when the modal value is about constant the 

STD and so the width of the histogram distribution reduces toward the lower 

diameters. At 56mm away from the injector tip the droplet diameter starts to increase 

again which means that the effect of the coalescence get more relevant probably due 
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to the higher effect of the spray recirculation at the far nozzle area. At this stage, the 

standard deviation also grows and in fact, the saw shape is extended further toward 

the higher diameters as it can be observed in the last two histograms of Figure 4-41. 
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different z locations. 
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Figure 4-41 Statistical values of mean droplet diameter, modal diameter and Standard Deviation 

in the string centre as a function of axial locations. 

4.3.4.7. Veiocity distribution summary 

The following sequence presented in Figure 4-42 summarises the droplets velocity 

characteristic at each measured vertical position. The plots show the spatial distribution along 

the thickness of the spray (the x coordinate) corresponding to the time bin within the main 

part of injection event when the droplet velocity is maximum. For each z position the 

following information are provided: 

o The x location of maximum velocity within the spray jet centre 

o The maximum velocity value (Vmax) and the corresponding instant of occurrence 

o The spray front velocity and the instant when the fIrst droplets hit the control volume 

(Vo) 

o The maximum velocity defmed along the y coordinate (tangential) and the 

corresponding instant of occurrence (Vmax,y). 

o Radial shifting which was defIned as the peak velocity displacement along the x 

coordinate 
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o Z' = 2.S mm x= -O.4Smm 
Vmax =190m/s at 0.34ms ASOI 

o Maximum spray front velocity 
Vo= 7Sm/s at 0.18ms ASOI 

o In V-Scan, 
Vmax,y=190m/s at 0.34ms ASOI 

o Radial shifting= O.lmm 

0 z' = 3 mm x=-0.6mm 
Vmax= 190m/s at 0.36ms ASOI 

0 Maximum spray front velocity 
Vo = 80m/s at 0.2ms ASOI 

0 In Y -Scan, y=O.OS to 0.2; 
Vmax,y=200m/s at 0.36ms ASOI 

0 Radial shifting=0.3mm 

o z' = 4 mm x=-0.5mm 
Vmax = 170m/s at 0.34ms ASOI 

o Maximum spray front velocity 
Vo= lOOmis at 0.2ms ASOI 

o In Y -Scan, y=O.l 
Vmax,y=17Sm/s at 0.36ms ASOI 

o Radial shifting=0.4mm 

o z' = S mm x=-0.7mm 
Vmax =17Sm/s at 0.36ms ASOI 

o Maximum spray front velocity 
Vo = lOOmIs at 0.22ms ASOI 

o In Y -Scan, y=-O.l 
Vmax,y=180m/s at 0.38ms ASOI 

o Radial shifting=0.4mm 
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Figure 4-42 velocity distribution summary 

The sequence of the summarised velocity distribution reveals the considerable loss of 

droplets momentum with axial distance. The maximum velocity of 200mls around the 

nozzle exit (z'=2.5mm) reduces of about 30mls at z'=30mm mainly due to the 

considerable secondary break up during which the droplets split their mass. As a 

consequence of droplet break up the surface to volume ratio increases and drag force 

imposed by the surrounding gas increases with respect of the droplet momentum. The 

corresponding values of the droplets diameter over the same axial distance are 27flm 

and 8flm, which corresponds to a reduction of about 19 flm. 
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4.3.4.8. Spray Recirculation 

It was mentioned earlier that the droplets at the outer spray surface are small with 

reduced velocity and are more likely to encounter resistance to motion by the 

surrounding air, and thus are most vulnerable to air entrainment, which forms 

localised recirculation. It has also been shown that the droplet velocity and droplet 

size reduces as the vertical distance from the injector increases. The droplets at the 

spray surface are therefore most likely to be entrapped by the air entrainment, or 

recirculation especially away from the injector at large z location where the air 

entrainment, or recirculation velocity are stronger. This can be confirmed when 

analysing the outer spray surface of the temporal mean velocity graphs for the three 

measured z 10cations.Figure 4-43 (a) shows a schematic of typical droplets velocity 

variation with time showing some negative velocities. The positive velocity indicates 

droplets are moving in the z direction and the negative average velocity suggests 

droplets are moving back towards the nozzle and forming a recirculation zone. 

Average 
Velocity 
m/s 

MaximumPositive 
Velocity 

~---

Negative 
Average 
Velocity 
Region 

V=Om/s ~------------------------~--+------

Timems 

Figure 4-43 (a) Schematic of a typical temporal velocity variation showing negative velocities 

indicative of the presence of a recirculation zone. 

Figure 4-43 (b), (c) and (d) show similar characteristics to the above schematic plot, 

and suggest that recirculation zones are present at the outer side of the spray. 

Although the data capture duration is not sufficiently long enough to record the extent 

of the recirculation 'in Figure 4-43 (d), it is assumed from the trend that the 

recirculation zone at z = 35.36mm will be the most severe. This supports the 

argument that the recirculation phenomenon becomes more enhanced as vertical 

distance from the injector exit increases. This is supported by results when comparing 

the magnitude of the negative velocity in Figures (b) and (c). 
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Figure 4-43 (b) recirculation (-ve velocity) X=-lmm, Y=Omm, Z=3.S4mm 
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Figure 4-43 (c) recirculation (-ve velocity) X=-4mm, Y=Omm, Z=14.14mm 

x=-3mm y=Onvn z=35.36mm 200bar O.Gms 1001 
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Figure 4-43 (d) recirculation (-ve velocity) X=-3mm, Y=Omm, Z=35.36mm 

225 



Localised recirculation in the region of the spark plug is desirable for the close spaced 

SIDI engines provided it could be controlled. Recirculation zone produces high rates 

of mixing as it was observed in the sequence of Figure 4-36 the recirculation entraps 

the broken up droplets with low momentum, promotes the fuel droplets interaction 

with the surrounding gas and therefore enhance the vaporisation of the fuel. 

Figure 4-44 shows a schematic of the recirculation mechanisms occurring at the inner 

and outer edges of the spray. The recirculation zones appear to become more 

enhanced as the vertical distance increases. 

Sm all RCI!Culation . 
at outer c-dge Inject<>T centre 1m e 

La!8! recirculation at IMer eqge 

/ 

Figure 4-44 Schematic presentation of recirculation zones at the inner and outer edges of the 

spray 

4.3.4.9. 2D Mie scattering 

In order to visualise the development of the recirculation, the spray evolution was 

recorded using 2D planar Mie scattering technique. This visualisation method differs 

from the integral Mie scattering by the light source, which is not a based on traditional 

white light source but instead employs a laser sheet of few millimetres thickness 

projected to the symmetry plane of the spray. The droplets moving in this thin 

intersection region scatter light, which is captured by the high-speed camera 

producing the image of the spray cone cross section. The schematic shown in Figure 

4-45 depicts the camera arrangement with respect of the spray and laser sheet in 
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axonometric and side view. 

Figure 4-45 Camera and injector layout for the 2D Mie scattering visualisation. 

(a) (b) 

Figure 4-46 Comparison between 2D and 3D Mie scattering 

In Figure 4-46 the difference between image obtained by 2D and integral (3D) Mie 

Scattering is shown. Figure 4-46 (a) is an image of the spray with integral light which 

clearly show the string structure and overall outer surface of the spray. On the other 

hand the 2D Mie images, Figure 4-46 (b), looses the surface details and instead shows 

the spray pattern, in particular, internal recirculation occurring in a symmetry plane 

illuminated by the laser sheet. It should be noted that 2D Mie method was not that 

successful for visualising the spray during the main part of injection, as the laser beam 

was not able to pass through the spray due to the severe beam attenuation caused by 

the dense spray. Thus, the images presented here belong to the phase close to end of 

injection (EOI) and beyond (in the wake of the spray) where the spray density is much 

lower. 

A sequence of 2D Mie scattering captured with a high-speed video recorder at frame 

rate of 7200fps is shown in the Figure 4-47. The spray is injected for Ims in ambient 

environment with an injection pressure of 200bar and needle lift set to a bit position 

of 100l. For shortness, only the most relevant shots from l.Oms to Sms ASOI will be 

shown in the sequence which ~overs the EOI and the wake of the spray. The image at 

1. Oms shows the first clear sign of recirculation formation, which occurs at about 
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20mm from the injector tip while the spray jet before this point near the injector 

appears to be undisturbed. This recirculation can be seen more clearly at 1.5ms ASOI, 

which also shows hat the centre of the outer recirculation is almost lying on the axis 

of the vertical jet spray and causing an inward flow deviation. 
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3.5ms 5ms 

Figure 4-47 2D Mie scattering: High-speed video of spray recirculation Pi=200bar, lms Inj. 

Duration, Bit pos.IOOI 

At 1.7ms ASOI the inward flow deviation has now evolved into an internal counter 

rotating vortex of smaller diameter than the external one. Following the rest of the 

sequence, it can be observed that the outer vortex propagates downward progressively 

and increases its diameter. A similar downward progression can be seen with the inner 

vortex but, at the same time, its centre is displaced toward the injector axis due to the 

dominating action of the outer recirculation. Similar effects were observed for longer 

injection duration and higher injection pressure but the aforementioned outcome at the 

vicinity of the injector axis was more pronounced. 

4.3.4.10. Particle Imaging Velocimetry of the spray recirculation area 

In order to have a better view and understanding of the velocity field previously 

visualised (Figure 4-47) by 2D Mie scattering method the end phase of the spray 

development was analysed with PIV technique. As mentioned before for 2-D Mie 

method, the application of PIV for the earlier phase of the spray (main part) was not 

possible as the spray was very dense and apart from beam attenuation, it caused 

strong background noise over saturating the groups of pixels locally. Full and proper 

PlY analysis is beyond the scope of this thesis and therefore the reported outcome 

represent only the initial phase of the result processing whereas the full description 

will be completed in, future PIV publications. Thus, the aim of the present PIV 

measurements is to provide an overview of the quantitative and qualitative 

instantaneous velocity field and flow stream patterns. 

For the sake of image resolution, the frequency of pair of images acquisition with PIV 

system could not be kept as high as the 2D Mie scattering and therefore it was chosen 

to collect images with a frequency of 1500 pairs per second with similar spatial 
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resolution as that of 2D Mie. A sample of such images is presented in Figure 4-48 and 

it shows the development of the spray wake velocity, which are superimposed on the 

processed images. Since the laser sheet was projected through the spray from left to 

right in a vertical plane (in reference to Figure 4-48) then some portion of the spray 

cone was less bright due to the insufficient scattered light for the PIV measurement 

and therefore those areas were not processed; only the lower half of the spray on the 

left hand side had sufficient data for PIV processing as presented in Figure 4-48. 

The image sequence shown in Figure 4-48 confirms the existence of two counter 

rotating vortices not symmetrical with respect to the jet axis and composed of a larger 

outer wake (in the figure rotating clock-wise) and a smaller inner wake (in the figure 

rotating anti-clock-wise). The sequence of velocity fields reveals that the outer wake 

moves downward along the spray trajectory whereas the smaller internal wake forms 

closer to the injector tip than the outer wake and it is pushed toward the injector axis 

by the action of the outer wake. This inward motion is evident from the velocity 

vector direction in the images of Figure 4-48. It should be mentioned that the overall 

structure of the external and internal wakes are in the form of ring vortices. 

The formation of the external wake is in agreement with the PDA results in the spatial 

map of Figure 4-36 at 0.9 ms, which reveal the presence of a vortex at about 20 mm 

from the tip. However, beyond 30mm from the injector exit the presence of 

recirculation is no longer visible in the PDA averaged velocity field suggesting that 

the recirculation near the nozzle-exit is highly repeatable thus appearing in the mean 

velocity measurement over many injections. On the other hand, the recirculation 

further downstream becomes much more unstable varying its position injection-by

injection, causing the smearing of PDA mean velocity measurement. Therefore, the 

presence of the late recirculation is revealed only in the instantaneous field presented 

in the PIV image. The instability of the external vortex could be related to the well

known issue of the spray-to-spray variation (flapping) as well as the unstable "third 

phase structure" as was previously described. In fact, the turbulent nature of the 
-

recirculation could produce radial expansion or contraction according to the vortex 

diameter variation, and at the same time, it could affect the continuity of the string 

propagation causing the unstable string structure. 
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Figure 4-48 Recirculation velocity field of spray injected in atmospheric condition with injection 

pressure of 200bar and needle set to 1001 bit position. 

The velocity fields presented in Figure 4-48 shows the effect of the mutual interaction 

of the two counter rotating vortices, generating a flow directed into the spray cone 

(this is particularly evident in the image at O.93ms ASOI). Another interesting feature 

that can be observed from the sequence of images is the expansion of the vortices 

radially toward the axis of the injector which can be observed clearly at 1.20ms ASOI 

and onwards. Because of inner ring vortex rotation an upward flow is built up in the 

central region of the spray cone. At 1.93ms ASOI, this ascending flow sucks droplets 

toward the injector tip with velocities of about 15 mls. 

At 1.60ms, ASOI it can be observed that the centre of velocity field of the outer 

vortex does not coincide with the centre of the background image which suggests that 

the vortex is not static and its centre translates with a sliding velocity. This sliding 

velocity is graphically described in Figure 4-49 and it shows the vectorial composition 

of the absolute velocity field as the summation of relative velocity (static) and rotating 

velocity (sliding). More specifically the schematic wants to show how the sliding 

velocity is always normal to the displacement between centre of the velocity field and 
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centre of the wake eye. Therefore, assuming the background image of the wake as 

static representation of the rotating field it can be stated that up to 1.60ms ASOI the 

outer wake moves toward the jet direction with a sliding velocity of about 10m/s. 

Finally, at 2.27ms ASOI the centre of the velocity field is almost overlapped to the 

centre of the wake image, which means that the vortex at this stage does not move any 

further. 
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Figure 4-49 Vectorial composition: Relative field + Sliding velocity = absolute rotating field 

4.3.4.11. Particle Imaging Velocimetry of the near nozzle area 

In the previous paragraph it was explained the development of the spray recirculation 

area by mean of visualisation of the wakes and analysis of the velocity field at the 

latest stage (EOI and wake) of the injection evolution. However, from the PIV 

analysis of the near nozzle air entrained motions it is possible to identify, in part, the 

mechanism of formation of the outer recirculation that was described in previous 

section. Besides, it should be added that in the direct-injection engines, the cylinder 

air motion plays a primary role in the dynamic of the spray evolution. Thus, it would 

be of great interest to observe how the air entrainment is acting and influencing the 

out coming spray. 

The airflow was seeded with fine atomised water droplets with sizes of the order of 

2~m and a mean settling velocity of 0.3 m/s ± 1.3m/s suspended around the spray jet 

toward the injector exit by a commercial purposed built ato.miser; when injection 

occurs these fine water droplets were used to trace the induced air motion. The PIV 

images presented in Figure 4-50 shows a sequence of the air entrainment velocity 

with a time step resolution ofO.lms on the left hand side of the spray evolution. 
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Figure 4-50 Air entrainment velocity field around spray when injected into air at ambient 

condition with injection pressure of 200bar and needle set to 1001 bit position. 
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Just from the very beginning of the injection, the direction of air entrainment clearly 

reveals a direction almost normal to the spray flow and exhibits a jet like profile 

within a distance of about 4mm from the injector exit. 

As the spray evolves the horizontal component of the air velocity increases in 

intensity with values up to 10m/s and hits the spray in the same near nozzle area, but 

its effect on spray is expanded further downstream so that at 0.33ms ASOI the air jet 

is distributed up to 8mm away from the nozzle exit. In this area, at 0.43ms ASOI, the 

onset of the outer recirculation can be seen at a distance of about 10-15mm from the 

nozzle; in fact, the faint bump on the spray profile represents the initiation of the 

external wake that was discussed in the previous section. At this stage, the air velocity 

profile becomes wider and takes a shape of double peak jet progressively extending 

downstream. 

As it was commented for Figure 4-48, the recirculation started at 0.43ms ASOI 

progressively slows down to 10 m/s at 1.60ms ASOI until it stops within 2.27ms 

ASOI. From 0.63ms ASOI onward the PIV images clearly shows how the air 

entrainment wraps the evolving external wake promoting its formation with a 

horizontal velocity of about 10m/s preceding its motion. Finally, 0.30ms after the end 

of the injection (0.90 ms ASOI), the spray starts loosing its density and therefore it is 

possible to visualise the internal cross-section of the spray and the full set of counter 

rotating vortices as was previously shown in Figure 4-48. The last image at 0.9ms 

ASOI, also reveals how the air entrainment is interacting on the wakes and more 

,specifically on the internal vortex, which explains its displacement toward the injector 

axis. 

4.3.4.12. Comparison of air entrainment velocity field for different injection 

pressure 

In Chapter 3, the mechanism of formation of the longitudinal filaments was 

investigated and it. was observed how the air entrainment into the nozzle was 

responsible for the formation of air pocket and therefore the strings structure. It was 

also observed that there was a direct correlation between the number of strings and the 

injection pressure. However, the mechanism linking cause and the effect is still 

unclear and it could be related either to the flow momentum variation which causes 

flow detachment or phenomena related with the dynamics of the liquid inside the 
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nozzle. 

It can be also speculated that the air entrainment may also playa role in the formation 

of the in-nozzle air bubble. The intensity of the velocity component hitting the 

proximity of the emerging spray could be associated with the amount of air pocket 

and therefore enhancing the breakdown of the bubbles into smaller sizes when the air 

velocity is increased with the effect of increasing the number of strings. As a increase 

in injection pressure results in a greater air entrainment velocity and this, in turn, is 

responsible for the breakdown of the air entrainment bubbles inside the nozzle it is 

then possible to associate the increase in strings number with injection pressure. 

To support this analysis, it is of interest to observe whether the increase in rail 

pressure actually causes an increase of the air entrainment velocity normal to the 

spray surface in the proximity of the injector exit. This was assessed in the following 

experiments with which the air entrainment velocity around the spray was measured 

at different injection pressures. 

Figure 4-51 LDV Set up for air entrainment investigation 

In order to assess the velocity of the air entrainment both PIV and LDV methods (as 

shown in Figure 4-51) were used to measure air velocity in the proximity of the 

injector exit; the LDV measurements were made at the same axial location as that of 

the opening edge of injector. 

The LDV set up was aligned in such a way to give the same velocity component as 

that of the PIV system with the only difference was that the measurement point was 

chose)) above the horizontal edge of the spray profile in order to measure both normal 

and longitudinal velocity components as shown in Figure 4-51 
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Figure 4-53 LDV air motion and spray droplet 
areas in the normal velocity component (V y) 

Figure 4-52 shows the LDV measurement when only the seeding (fine water droplets) 

flow is active (in the absence of the spray) and passing through the control volume 

area. As for the PDA plots, each sample represents the normal component of a droplet 

crossing the CV which was aligned in such way to give the x-component (the normal 

component) velocity with a mean velocity of 0.3 m/s ± l.3m/s as shown in Figure 

4-52. This suggests that the introduction of the water droplets caused no predominate 

flow motion. Figure 4-53 shows the same graph as Figure 4-52 but in this case the 

injection is taking place and the LDV records the water droplets in the presence of the 

spray. The two flow areas can be distinguished by the sign of the velocity as the fuel 

jet expands its velocity component is opposite to that of the entraining air. 

The velocity of the air entrainment was assessed for three different rail pressures of 

200bar, lQObar and 50bar and the results are presented in Figure 4-55. Each of the 

three different image rows in this Figure 4-55 corresponds to an injection pressure. 

The left images represent the PIV velocity field measurements and the right hand 

graphs show the temporal variation of LDV measurements for normal velocity 

components; LDV measurement is taken at a point which is identified in the PIV 

image (lhs plot) as a green dot. A comparison between PlY and LDV measurement is 

made first and the tesults at 0.23ms ASOI show good agreement between the normal 

velocity. component measured by the two methods with maximum difference of up to 

5%. 

The air entrained flow motion show a uniform and relatively strong velocity field near 

the nozzle exit, which is set up as soon as the injection process starts and remains 

active with almost the same strength during the entire injection period. 
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Figure 4-54 Air entrainment investigations: PIV velocity field, LDV normal velocity component. 

(The green dots in the PIV images represent the CV position for the LDV experiments) 
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The LDV results show clearly the uniformity of the entrained motion during the 

injection which also show the dependency of the strength of this motion to the 

injection pressure so that the velocity increases almost linearly with injection 

pressure. For example, the velocity at 50bar injection is 2m1s which increases to 4 and 

7m1s at injection pressures of 100 and 200 bar, respectively. 

It was argued by [26] that the impact of the entrained motion on spray aerodynamic 

force on the emerging liquid initiates a distortion on the outer surface of the liquid 

film which may lead to instability and then breakup. It can also be expected that the 

increase in intensity of the entrained air motion promotes and intensifies the air 

bubble trapped (or entrainment) inside the nozzle gap, which are responsible for the 

string formation, and may lead in the break down of the air bubbles to the smaller 

sizes and therefore more strings. 

The results of previous chapter showed that increase in injection pressure increases 

the number of strings, which supports the break up of the air bubbles to smaller one. 

4.3.5. Parametric investigation 

A parametric study of the spray characteristics for free injection in ambient condition 

was performed by selecting a common control volume locations and running several 

test cases; the fixed control volume was chosen at x =-0.8, y=Omm, and z=3.54 

(z'=2.5mm) which is a location within the centre of the spray near the injector exit. In 

the first case, the injection pressure was varied and the injection duration fixed at 

0.6ms. In the second case, the varying parameter was the injection duration whereas 

the rail pressure was fixed at 200bar. 

The same 2-D Phase-Doppler Anemometer (Dantec system) used in the test for free 

injection in ambient environment was used in the constant volume chamber for 

different operating conditions in order to asses the effect of injection pressure, 

backpressure, and chamber temperature on the spray velocity and droplet size 

distribution. 

4.3.5.1.Varying the injection pressure 

The results of temporal variation of mean droplet velocity for four injection pressures 

of 50, 100, 150 and 200 bar are presented in Figure 4-55. The first most obvious 

observation that can be deduced from Figure 4-55 is that an increase in injection 
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pressure produces higher mean spray velocity especially during the main part of 

injection event. However, an equal increment increase of pressure does not 

necessarily result in an equal incremental gain in spray velocity, as they are not 

directly proportional to one another. The maximum mean velocity achieved for an 

injection pressure of 200bar was 200m/s, with an average velocity over the bulk of the 

spray event of approximately 145m/s. The corresponding values at 150, 100 and 50 

bar were I75m/s-138m/s, I20m/s-I05m/s and 80m/s- 60m/s, respectively. 

The velocity variation is much greater for higher injection pressures (200bar and 

ISObar) with the initial peak of the leading edge being particularly prominent. The 

lowest injection pressure has a relatively uniform velocity variation over the main part 

of injection event, suggesting that pressure fluctuations, perhaps caused by the peak 

overshoot of the injector valve, are more apparent and stronger at high injection 

pressures. 
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Figure 4-55 Temporal variation of mean droplet velocity for different injection pressures. 

There is no sign of a negative velocity, hence no recirculation of the droplets, for any 

of the pressures tested. This result was expected, since the control volume was 

positioned at a point in the spray very near to the centre of the jet, and as shown 

earlier, recirculation zones take place further downstream and visible to the PDA only 
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at the outer edge. 
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Figure 4-56 Temporal variation of mean droplet diameter for different injection pressures. 

The mean droplet diameter variation with time ASOI is presented in Figure 4-56 and 

indicates that at z=3.54mm the droplet size is not very dependent on injection 

pressure especially at higher pressure values of 100, 150, and 200 bar where a similar 

trend in all three pressures can be seen. During the early part of the injection at 

maximum velocities, the droplets seem to be larger at larger injection pressure. This 

may be due to the fact that near the injector exit the secondary break up has not take 

place yet and the droplets injected at lower pressure will be affected by higher 

evaporation due to longer resident time during the slower journey from injector to 

control volume. Maximum droplet diameters of 22f..1m were achieved at the leading 

edge of the spray using injection pressures of 150 and 200 bar. Later on, measurement 

carried out in the constant volume chamber will show different trend for the mean 

droplet diameter with injection pressure at a location z=14.lmm (z'=10mm). 

For all the injection pressure, it can be observed that the mean droplet diameters 

reduce in size within the main part of the injection event showing a similar size 

distribution with an average value of around 12.5± 3 f..1m. The droplet sizes also appear 

to be sensitive to the pressure fluctuations, which seem to be occurring within the 

injector and follow similar behaviour to the velocity distributions. 
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4.3.5.2.Varying the injection duration 

The effect of injection duration was considered next and the results are presented in 

Figure 4-57 and Figure 4-58, which show the temporal variation of the mean droplet 

velocity and diameter, respectively. Figure 4-57 shows that the longer the injection 

duration, the longer the mean velocity is maintained as would be expected. Longer 

injection durations do not necessarily imply that a higher maximum mean velocity is 

achieved, since the 0.2 ms and 0.6 ms duration both display a maximum mean 

velocity of 200 m/s. 

In fact the droplet velocity characteristics at all injection durations display the same 

behaviour during the needle opening. The only exception that appears to not follow 

this pattern, especially not to achieve the same maximum mean velocity, is the lowest 

injection duration tested of 0.15ms. It is possible that this duration is not sufficiently 

long enough to allow the needle to open fully (achieving maximum lift), or perhaps to 

allow the fuel to build up enough momentum due to its own inertia. The maximum 

mean velocity achieved for the 0.15ms injection duration was only 165m/s. 
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Figure 4-57 Temporal variation of mean droplet velocity for different injection durations. 

The profile produced using the 0.6ms injection duration appears to be the most stable, 

possibly because there is sufficient time to allow the pressure fluctuations to dampen 
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down, following the suspected peak over shoot of the valve. The 0.33ms injection 

duration produced the most erratic profile. The 0.6ms injection duration is the only 

duration that displays an almost flat, uniform velocity variation during the injection 

period. 

The influence of the injection duration on droplets size is displayed in Figure 4-58 and 

shows that a maximum mean droplet diameter of 241lm is achieved for injection 

durations of 0.2ms and more. The lowest injection duration (0. ISms), however, 

produced a maximum mean droplet diameter of I71lm lower than other durations. 

Again it is suspected that this particular duration is not sufficiently long enough to 

allow maximum flow rate to take place due to the valve being unable to achieve its 

full lift, and therefore, resulting in a smaller cross sectional. 

In general, the longer the injection duration, the less fluctuation in the mean droplet 

diameters become. This suggests that the longer injection periods allow the pressure 

fluctuation to dampen out before the injector closes. This can be seen when observing 

the 0.6ms duration results as it features the most stable behaviour, i.e., least variation 

in droplet diameters. The results also show that the variation in droplet diameter with 

time follow the same pattern as that of mean droplet velocity profile. In all cases the 

final droplet sizes at the end of injection are 41lm ± Illm. 
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Figure 4-58 Temporal variation of mean droplet diameter for different injection durations 
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4.3.5.3. PDA Measurements in constant volume chamber: - Experimental Set-up 

The transmitting and receiving optics were installed in the same 3-D traverse 

mechanism with a resolution of 12.5J..lm in x, y-axis and 6.25J..lm in z-axis relative to 

the injector position. The same wall mounted Argon-Ion laser was used with a 

maximum power of around 1.5W and the output beam was aligned with the fibre 

optic unit. The transmitting and collecting optics and instrumentations are the same as 

those described in the early part of this chapter. Figure 4-59 shows the fuel injection 

system connected to the constant volume chamber, which is equipped with a heating 

control system capable of maintaining temperatures up to 180±3°C 

Pressure 
gauge [] 0 

COJltrolhox 

NitrogeJl 
Bottle 

- Lowpressure fuel 
- High pressure fuel 
- Fuel retumpipe 
- COJltrol Pulses 

Figure 4-59 Experimental set-up of constant volume chamber and fuel injection system 

4.3.5.4. Spray imaging in constant volume chamber 

In the case of spray visualisation only the effect of chamber pressure were considered 

for a range of 1 to 12bar. 

The image shown in Figure 4-60 and Figure 4-61 present the spray visualization in 

both vertical and horizontal planes, respectively. The spray visualization serves two 

purposes, one is to visualise the spray development in terms of shape, cone angle and 

penetration and the other is to locate the control volume of the PDA system on a 

chosen string as was discussed earlier on. Combining information from the spray 

visualization with that of the PDA measurement results will be used for studying the 

spray characteristics. 
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By observing the images, the first noticeable feature was the presence of a natural gap 

in the spray, which can be clearly seen from the horizontal images of spray in Figure 

4-61. The existence of such a gap is not a designed feature of the injector and it could 

be caused by a local surface condition inside the injector nozzle. This gap as a part of 

the string structure was very stable so that its location did not change at all; this was 

found to be very useful in the PDA measurement. It provided an opening passage for 

the incident laser beams to reach the other side of the spray cone surface without any 

attenuation of the laser beams by the spray. The dense feature of the spray caused so 

much laser beam attenuation that the PDA measurement was not possible to be 

achieved, especially in the centre of the spray, if either the incident laser beams or the 

scattering light from the control volume have to pass through the spray twice. Note 

that for injectors without this gap, the attenuation problem was addressed by setting 

up the injector in such a way to minimise the attenuation of laser beam and scattered 

light as fully described earlier in this chapter. 

Figure 4-60 and Figure 4-61 show the vertical and horizontal spray penetrations for 

three backpressures of 1, 4 and 12bar. The results clearly show the effect of 

backpressure on the spray penetration with higher chamber pressure causing a 

reduction (up to 50%) in spray penetration due to increased drag with higher chamber 

pressure. Details of vertical penetrations as a function of time are shown in Figure 

4-62 for the three backpressures. Similar effect of backpressure on the spray can be 

seen in horizontal images of spray, Figure 4-61. Reduced penetration at high 

backpressure is an advantage of an injector, which could avoid spray impingement on 

the piston crown at late injection when the piston is near TDC. 
" 

The locations of large strings, which can be easily identified in the string structure of 

the spray, do not change their locations with the backpressure. As· backpressure 

increases, the ambient air density increases causing a deceleration of the droplets, as a 

result the strings seem to be denser and the gaps between strings are less clear, in 

other words, the strings look cloudier and joined up. 
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(b) 0.15 ms ASOI 

Figure 4-60 Vertical images of spray penetration at different back-pressures, 200 bar injection 

pressure and 0.33 ms injection duration: (a) 0.075 ms ASOI; (b) 0.150 ms ASOI. 

(b) 0.15 ms ASOI 

Figure 4-61 Horizontal images of spray penetration at different back-pressures, 200 bar injection 

pressure and 0.33 ms injection duration: (a) 0.075 ms ASOI; (b) 0.150 ms ASOI. 

According to the gradients of the penetration graphs in Figure 4-62, the vertical spray 

tip velocity accelerates after leaving the injector nozzle as the injector needle opens 

up and then it starts to decelerate as the droplets loose their momentum further 

downstream. Averaged vertical tip velocities of 73 mis, 62 mls and 46m1s are found 
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from the gradient of the vertical penetration curves (Figure 4-62) at the time between 

50 J.ls and 150 J.ls under back-pressures of 1 bar, 4 bar and 12 bar, respectively. From 

Figure 4-62, the vertical distance penetration at 150 J.ls was found to be 10, 8.5 and 

6.2 mm for backpressure of 1, 4 and 12 bar, respectively; a maximum reduction of 

37% in penetration by increasing the backpressure from 1 to 12bar. The same 

reduction can be seen in the average tip velocity. 
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Figure 4-62 Effect of backpressure on the vertical penetration of the spray. 

The effect of injection pressure can be seen from the images of Figure 4-63 where a 

sample of spray image at 0.2 ms ASOI for 100 and 200 bar injection pressure are 

presented. As would be expected, the main effect is a reduction in spray penetration 

with lower injection pressure. 

(a) 200 bar Injection pressure (b) 100 bar injection pressure 

Figure 4-63 Horizontal images of spray penetration at lOOms after SOl, ambient back-pressure 

and 0.33ms injection dur~tion: (a) 200bar Injection pressure; (b) 100bar injection pressure. 
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4.3.5.5. PDA measurement in the constant volume chamber - Introduction 

After establishing the correct control volume location according to the previous spray 

visualisation, it was then possible to proceed to the PDA measurement. As it was 

observed 'in the spray imaging, the string position is quite insensitive to the several 

operating parameters therefore, it was possible to compare several series of data. To 

appreciate the variation of velocity and diameter as a function of time ASOI for 

different parameters the data are plotted in common graphs similar to those seen for 

the PDA measurement in ambient injection. 

As the chamber offers the option to vary the internal temperature, all the tests were 

run at a high temperature of 160°C in order to emulate the actual engine cylinder 

environment. The measurements were made at 2.5 and 10mm from the injector at 

different injection and chamber pressures. Finally, a set of measurements were made 

at different chamber temperatures to show the effect of temperature variation on 

droplet velocity and size. 

4.3.5.6. Effect of Backpressure at Pi = 200 bar 

The results are shown in Figure 4-64 for both z=2.S and 10mm from the injector and 

for chamber pressure 1, 2.5 and 4bar; measurements above 4bar at this injection 

pressure were not possible as the spray was too dense. Within the measured range and 

at z=2.S mm, close to injector exit, the overall effect of chamber pressure on droplets 

velocity and size is small with no clear trend. At z=10, the effect of backpressure on 

droplets velocity is evident with a reduction in velocity as the chamber pressure is 

increased due to increase in drag effect. It should be mentioned that the drag effect 

produced by the increased backpressure would be expected to be higher at lower 

temperature because of the increased air density. 

The reduction in droplets velocity with backpressure will increase the residence time 

of the droplets enhancing the evaporation process, which is evident from the reduction ' 

in droplet diameter. This reduction is also due to secondary break up taking place 

between z=2.S and 10mm as was discussed earlier on !his chapter when the results of 

injection into atmosphere (ambient conditions) were presented. 
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Figure 4-64 PDA measurement at different Pb: Temporal variation of droplet mean velocity and 

diameter at Pi = 200 bar, T = 160 °C, z=2.Smm (upper row) and z=10mm (lower row). 

4.3.5.7. Effect of Backpressure at Pi= 100 bar 

At 100bar injection pressure the spray was less dense than that at 200bar and therefore 

the measurements with backpressure were extended to a chamber pressure of lObar 

and the results are presented in Figure 4-65. The effect of backpressure on the 

droplets velocity is small at z=2.5mm similar to that at 200bar injection pressure. The 

droplet size varies from 16 to 24 J.lm in the main part of spray without following any 

clear trend. 

At z= 1 Omm, the velocity decreases with increase in backpressure with the same trend 

from 1 bar to 4 bar, but from 6 bar to 10 bar the droplet velocity reduces everywhere 

especially in the middle of spray and onwards where it decreases rapidly even 

reaching negative value due to the presence of recirculation area. It was also observed 

from spray visualisation in optical engine that at these high backpressure (injection 

around the end of compression stroke) that the spray do not penetrate more than 
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12mm from the injector which is just above the TDC; this represents an advantageous 

aspect which is required to avoid impingement on the piston. 
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Figure 4-65 PDA measurement at different Pb: Temporal variation of droplet mean velocity and 

diameter at Pi = 100 bar, T = 160 °C, z=2.5mm (upper row) and z=10mm (lower row). 

4.3.5.8. Effect of Injection Pressure 

The results for seven injection pressures ranging from 80 to 200 bar are displayed in 

Figure 4-66 at a chamber pressure of 1 bar and temperature of 160°C. 

At z=2.5mm, the trend shown in Figure 4-66 reveals that the velocity increases with 

injection pressUre as it would be expected. However, as observed in the ambient spray 

analysis at z=2.5mm (z=3.54 along jet), the expected reduction in droplet diameter 

with increase in injection pressure is not so evident at location near the injector. The 

reason can be explained by the trade off between lower droplets evaporation caused 

by the decreasing droplet residence time against the higher break up level induced by 
253 



the increasing relative velocity. As in the near nozzle area the break up may not have 

occurred yet the evaporation effect may play a dominant role on the droplet diameter 

size. 
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Figure 4-66 PDA measurement at different injection pressures: Temporal variation of droplet 

mean velocity and diameter at Pb =1 bar, T = 160 °C, z=2.5mm (upper row) and z=10mm (lower 

row). 

At z=10mm, the effect of the injection pressure is more effective on the secondary 

break up and this is also evident from the graphs in Figure 4-66 which show that the 

velocity increases with increase in injection pressure and droplets diameter decreases 

as the injection pressure increases. In comparison with the previous experiment at 

room temperat~e (ambient injection), at 160°C the drag effect is lower as the gas is 

less dense which means higher relative velocity and therefore better atomisation. This, 

in tum, leads to a higher loss of momentum due to the enhanced droplet break up and 

therefore an increase in residence time or more effective evaporation. 
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Figure 4-67 PDA in constant volume chamber; measurement locations and coordinate system. 

The effect of injection pressure was further evaluated by considering the spatial 

distribution of droplet mean velocity and diameter at ambient pressure and 

temperature to eliminate the effect of evaporation. Measurements were made for two 

injection pressures of 100 and 200bar at z=2.S and 10mm for different x locations 

across the spray thickness (Figure 4-67). 

The results presented in Figure 4-68 show that at z=2.Smm the effect of injection 

pressure on the droplet mean velocity is clearly evident everywhere across the spray 

thickness (Figure 4-68(a)) with a uniform reduction in velocity of around 28%. The 

effect of injection pressure on droplets size is however very small at this axial 

location. 

· . . . . . . · . . . . . . " . " . . . . 
........ "" ............... " • • ••••••• <11 ............... """" .... ................ .... ... ..".., •• 

: : : +t : : : : : ... . .. t. : : .. -:- ...... ~ ....... : ........ ":" ............. + .. ~ ........ -:- ...... . 
" . • . • . + • •• .i. •••..• ~ ......... = ........ ~ ........ . ......... ~ ........ .:. ...... . , . ." . . · , ... + . , . 

~N 1 •• <- ••••••• t .......... i ...... "0', ••••••• 0 ........... ..i .......... .e. ....... . 
• • • • til T • 
.. t • I • • .. 

]I.. 8l ~ •• .:..,. .......... ·tI! i '9' .......... t'i .......... + .. I!!~.P-~t ........ t .... "'p,. •• .;. ."' .... . 

- .. i ..... , ..... j ......... ~ ......... l ......... ~ .......... j ........ i ........ . '-:> IIJU .. t • f • • • 

c ~ : : : : : : 
401 ••• .:.. ,." "" ~ . " •• "tI!~~ ...... " '.T' " .,. : ." .'I •••• ~ ".,. , ... ':"fI' •• '. 

~ . ~. . ~ . 
: 0 ; • : A : 20 •• 0(.. ••••• •• •••••• •• • •• , . ••••• ......... • •• N .... ~ ....... . 

~ ! : ! Q. 0 , = o 1·"t· ... .,'!~··p : '· .. ··~·~f"·: .. 1t • "fI'. : " .......... : ."' ••••• • : ••• •• ,.. t .·· .. ·,.. 
~ . ,. . 

l (mm) 

255 



I 

\ 

I 

(a) z=2.5mm 

II • • • • II ,. +t ,. . . . . . " ., 
1EQ •• ! ........ ! ....... ! ... ~ ... ! ....... ! ... ·· .. ·t· ...... ~ .. ···<··f ..... .. 

• • • • • til .. .. 

140 •• : ........ + .. --... : ....... + ........ : ...... -.+ ....... ~ ....... f .. ····· 
• • • • • • • 4 

~ • • • • • • • I 

~ 120 ·,.: .. ·--···f· .... ·"· .. : ··--·· · ~···· .. ·· : ···~ ..... ·t·,.",.-.. ~ : ····~-.. t ~"9!·'9'- ~ '0 
& .. • • • • • .. .. 

~ 1m ·+·--···t .. · .. ··+···-.. t···--·+· .. ·-··t··· .. -·~··· · ·--t .. · .. ·· 
~ 8J •• ; •• ····.:.· · .... ··· i ·······~······· i ··· .. .:. ....... : ..... . + .. *,-. 
\.J .. .. i i j • " .. •• t., 4 4 

~ m .. : ........ +a ........... : .............. + ......... a: ........ + ........... ; ......... + .....• 
c : : : : : : : : Z .': •• ····r· ..... : ...•.. -r ••••• •• : •••• _.-r ••• •••• : ••••• ,. ••••• 
~ • • • • • • 4 • 

II • II • • • II .. .. ! " .... .. ~ ........ ! .......... t·· ...... ! ... < . .... t··· ..... ! ......... ~ ..... .. 
· . . . 0 . 0 . 0 . 0 . 0 

o ··i···N .. ;.. .. < •• ; ••• ··;..··-A···i···JIi!··.;.··o<J-··i···q .1-•. 'YI.' .. v .. • • v , v if If If V " . . . . . ... " 

(b) z=10mm 

Figure 4-68 PDA measurement at different injection pressures: Spatial variation of droplet mean 

velocity and diameter at Pb = 1 bar, T = 25°C; (a) z=2.5mm, (b) z=10mm. Coloured symbols are 

for Pi=100 bar and the black symbols for Pi=200 bar 

Similar effect on the mean velocity can be seen at z= 10 mm with lower injection 

pressure producing smaller droplets velocity, but the reduction in velocity is smaller 

than that at z=2.5mm so that a reduction of around 7 to 8% can be seen in the centre 

of spray for a change in injection pressure from 200 to 100 bar. This suggests that 

droplets at higher injection pressure loose their momentum faster by moving from 

z=2.5 to 10mm. 

Unlike at z=2.5mm, the effect of injection pressure on droplets size occurring at 

z= 1 Omm is considerable so that an increase of twofold can be seen in the centre of the 

spray for a change in injection pressure from 200 to 100 bar. This is a clear indication 

of much better atomisation with 200bar injection pressure which also explains the loss 

of droplets momentum mentioned above. 

4.3.5.9. Effect of Chamber Temperature at 200 bar injection pressure 

Finally, the eff~ct of temperature on spray is considered at 200bar injection pressure 

and ambient chamber pressure and the results are shown in Figure 4-69. By increasing 

the chamber temperature the velocity at z =2.5mm seems to drop slightly within the 

centre of the spray. However no clear trend on temperature effect can be seen on the 

distribution of the droplets diameter at pi=200 close to the injector exit 
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Contrary to the results at z=2.5mm, the mean droplet velocity at z= 1 Omm increases 

with chamber temperature due to the fact that as temperature increases, the gas 

density decreases hence smaller drag acting on the droplets. In addition, as expected, 

the droplet diameter decreases as the chamber temperature increases due to the 

enhanced droplet evaporation. 
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Figure 4-69 PDA measurement at different chamber temperature: Temporal variation of droplet 

mean velocity and diameter at Pb = 1 bar, Pi = 200bar, z=2.5mm (upper row) and z=10mm 

(lower row). 

4.4. SUMMARY 

Spray Characteristics 

In the previous chapter, the internal nozzle behaviour in a large-scale model of a 

pintle-type injector was observed. The current chapter provides a thorough 

experimental investigation of the real size pintle-type injectors using Mie scattering 

techniques to obtain spray images, PDA diagnostics to measure droplets velocity and 

size, LDV, PIV diagnostics to measure spray and entraining air velocity field. 

The following is a summary of main finding of this investigation. 
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In order to achieve full optical access into the spray cone and be able to measure the 

full characteristic of the near nozzle spray, the experimental set up was rearranged to 

ensure minimum interference between the laser beams and the dense spray. This was 

achieved by using an adjustable support for free injection in atmosphere with which 

the injector could have been oriented at any desirable position. To observe the effect 

of the backpressure and temperature a square constant volume chamber was used to 

simulate the effect of the cylinder environment but with the benefit of wider and flat 

glass windows. 

One of the most important attribute of the pintle-type injector spray is its typical 

filamentous structure. Strings are characterised by a non-homogenous droplet velocity 

and droplet size with a distribution very similar to that of the individual jet of a 

multihole injector. The magnified imaging of the spray structure at standard condition 

has revealed three distinct phases in string structures at different stages of the spray 

evolution. 

• The first phase is described by the leading edge of the spray, which is composed of 

a relatively thick liquid rim at the tip of the fuel spray front as it emerges from the 

nozzle which is broken by the sharing action between liquid and surrounding gas. 

• The second phase is composed of a steady structure of strings. The strings are very 

straight and well defined showing a very clear and nit fishbone structure. 

• The third. phase appears after a fixed interval following the second phase. The nit 

and clear strings observed in the second phase lose their individuality and they 

show an unstructured shape which lasts until the end of injection. 2D Mie 

scattering and PIV investigation have shown this phase taking place after the 

occurrence of the secondary break up and it is possibly induced by the interference 

of the air-entrained recirculation with the string filaments. 

The magnified images of the first structure revealed that the emerging spray presents 

a liquid sheet between two consecutive strings, which is in process of braking up. The 

PDA measurement showed the presence of large droplet belonging to this initial . 

structure with SMD up to 30J!m and uniform velocity across the whole jet thickness. 

After a duratio~ of about O.1ms (at O.3ms ASOI) the big droplets of the first phase of 

the spray structure tum into a more stable and sharp pattern composed by straight and 

clear strings resembling the well-known fishbone structure. 

Finally, the last phase of the spray structure is characterised by the sudden string 

distortion which comes from the alteration of straight and stable filaments to irregular 
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and rather shapeless spray. At the centre of the spray thickness, the change from the 

second to the third structure is described by a sudden increase in the RMS velocity 

and decrease in AMD values. Decrease in droplets velocity and diameter and an 

increase in RMS velocity are clear indication of secondary break up occurrence. 

When these effects are accompanied with high flow turbulence and recirculation/air 

entrainment, the spray development becomes unstable. 

The spray visualisation with high-speed video also shows that as soon as the unstable 

structure is initiated then the strings tend to oscillate circumferentially (tangentially) 

and start to lose their individual well-defined angular position. 

The PDA measurement scan in tangential direction showed a wavy velocity and 

droplet diameter profile, which confirms the presence of more strings and their 

uneven velocity/diameter distribution along the measurement path. 

The overall spatial droplet size and velocity distribution map has confirmed the 

presence of the sequence of the three string structures mentioned above. In addition, it 

revealed the presence of a tumble motion propagating downward in the wake of the 

spray. Finally at the end of the injection at z locations of 70mm, from the injector exit 

and beyond, the droplet diameters become larger with an AMD of about 15 Jlm partly 

due to the presence of spray residual from the spray front rim which have lost their 

momentum and it is unable to break up further, but also to the possibility of 

coalescence caused by droplets collision. 

The summary of the mean Weber number along the spray jet shows an hyperbolic 

trend starting from the highest value of 27 at z=2.5mm (3.5 in jet direction) 

decreasing rapidly with the axial location so that at z= 20mm (27mm in jet direction) 

the We has reached a value of 2 and it does not endure further reduction up to the 

lowest measured axial location. These results suggest the presence of a strong 

secondary breakup from tip of the injector up to z=10mm, break up and deformation 

between 10 to 20mm and then stabilisation of the droplets beyond 20mm. 

Spray Recirculation and Air Entrained Motion 

The second part of this section focused on the analysis of the effect of surrounding air 

on the spray. More specifically, the same injector set up was employed to investigate 

the recirculation area and air entrainment by using PIV and 2D· Mie scattering 

techniques. The 2D visualisation has revealed the presence of a pair of counter 

rotating vortices forming two recirculating spray rings at the inner and outer sides of 
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the spray cone. For the free injection at ambient condition and injection pressure 200 

bar, the formation of the external wake is first observed at 1.0ms ASOI which occurs 

at about 20nun from the injector tip whereas upstream the spray jet seems 

undisturbed. For the rest of the sequence it can be observed that the outer vortex 

propagates along the jet direction progressively increasing in diameter whereas the 

inner vortex also grows progressively but its centre is also displaced toward the 

injector axis due to the dominating action of the outer recirculation. 

The recirculation mechanism was then confirmed by PIV diagnostic on the same 

spray operating conditions. The formation of the external wake is in agreement with 

the PDA results in the spatial map at 0.9 ms ASOI which shows the presence of a 

vortex at about 20 nun from the tip. The PDA results also suggest that the 

recirculation near the nozzle exit is highly repeatable because it was consistently 

appearing in the mean velocity data over many injections. 

Downstream, the recirculation becomes more unstable and transient varying its 

position injec~ion by injection and therefore it becomes invisible (or averaged) to the 

mean velocity measurement obtained from PDA mapping. This instability could be 

related to the well-known issue of the spray-to-spray variation (flapping) as well as 

the observed unstable third type of string structure explained above. 

The air entrained velocity field was analysed using PIV and LDV methods by seeding 

fine water dr~plets in quasi-still motion around near nozzle area. As the spray evolves 

a jet-like air motion with the horizontal component of the air velocity increases in 

intensity to about 10m/s and hits the spray near nozzle area. As the spray evolves 

further, the air motion expands so that at 0.33ms ASOI it is extended up to 8nun away 

from the nozzle exit. Finally at 0.63ms ASOI and onward, when the droplet velocity 

are reduced, the PIV images shows clearly how the air entrainment penetrates into the 

spray, wrapping the evolving external wake and initiating its formation with a 

horizontal velocity of 10m/s. The PIV sequence also showed how the air entrainment 

acts on the internal wake forcing it to be displaced toward the injector axis. 

Comparison between PIV and LDV measurements at the same point showed 

reasonable agreement, which provided more confidence in the presented results. The 

LDV results of air entrainment at different injection pressures have shown a linear 

variation of the air velocity component normal to the spray surface in proportion to 

injection pressure. These, in turn, may influence the size of the air pockets inside the 

nozzle and thus the number of strings. It is expected that as the air entrainment 
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velocity increases the possibility of a break up in the air pockets become higher and 

therefore higher number of strings. This trend is also in agreement with the results 

seen in chapter 3 which show how the number of strings increases with the injection 

pressure 

Parametric Study 

From PDA parametric study, it was found that an increase in injection pressure results 

in a higher maximum mean spray velocity being achieved. However, an equal 

increment increase of pressure did not necessarily result in an equal incremental gain 

in spray velocity due to the non-linear variation of the discharge coefficient with the 

injection pressure. 

The mean droplet diameter graph showed that a part from the lowest pressure (50bar) 

the droplet size was less dependent on injection pressure, since the trends were 

similar. The graphs also suggested that higher injection pressures produce smaller 

droplet size ~nly far from the injection exit whereas at the near nozzle region the 

effect of the longer droplet resident time which increases the evaporation has higher 

effect on the droplet size than the enhanced secondary break up produced by the 

increased relative velocity. All injection pressures showed a similar size distribution 

in the main body of the spray, being I2.5fJm ± 3fJm. 

The longer the injection duration, the longer the mean velocity is maintained. Longer 

injection durations do not necessarily imply that a higher maximum mean velocity 

will be achieved, since 0.2 ms and 0.6 ms duration both displayed a maximum mean 

velocity of 200 mls. It was found that perhaps the 0.I5ms duration is not sufficiently 

long enough to allow the needle to open fully (achieve maximum lift), since its 

maximum spray velocity achieved was 25% less than all the other durations tested. 

The last experiment described in this section was carried out in a constant volume 

chamber in order to simulate the operating condition of temperature and backpressure 

occurring. in the real engine. PDA has been applied successfully to the measurement 

of piezo injectors to obtain axial velocity and fuel droplet size. The effects of injection 

pressure, backpressure and ambient temperature on fuel spray penetration, velocity 

distribution and droplet size were also determined. 

In general, the velocity distribution shows a rapid increase in droplets velocity during 

the needle opening to a maximum value, which remains high during the main part of 
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injection, and then dropping fast during the closing of the needle. 

The effect of backpressure at z'=2.5 mm is not clear due the closeness of measuring 

point to the exit but at z'=10 mm, the effect of backpressure ~s evident, as the 

backpressure increases the velocity of the droplet decreases. This lead to longer 

residence time of droplet hence evaporation taking place, which is evident from the 

decrease in droplets diameter. It was also noted from spray visualisation that the 

penetration of the spray decreases with increase in backpressure. 

The effect of the injection pressure showed as the pressure increases the velocity of 

the droplet increases and the droplet diameter decreases due to the increase in drag 

hence resulting in enhanced secondary break up. 

The increase in chamber temperature increases the velocity of the droplet due to 

decrease in gas density, which also leads to a decrease in droplets diameter for the 

enhanced evaporation rate. 
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Chapter 5. 

Spray cllaracteristics in tI,e Optical Engine 

5.1. INTRODUCTION 

This chapter describes the investigation of the spray characteristics of the pintle type 

injector mounted in an optical engine equipped with direct injection system and in 

particular, the analysis of the behaviour of different prototype of piezo injector under 

different operating conditions. The piezo type outwardly opening has the potential to 

overcome many of the typical problems related to spray-guided injection. The 

outwardly sealing has definitely solved the problems caused by the sac-volume 

present in the inward opening injector. The conical shape of the nozzle passage 

prevents from carbon deposit formation, which is a typical problem of the multihole 

injector. Furthermore, the hollow cone presents a better air utilization than the multi

hole with good performance of penetration during early injection and a negligible 

dependence of the spray angle from the backpressure; the latter is essential for spray

guided approach to be successful as it fully depends on spray stability. For this reason, 

during the evolution and development of the piezo type injector it was put big effort 

on preventing flapping and on enhancing spray stability. 

In this chapter, comparison between three Siemens piezo injector prototypes was 

analysed by visualising the spray injections through the transparent cylinder wall of 

the optical engine. The injectors have been investigated under different operating 

condition of injection pressures, injector needle lift and backpressure. Double 

injections were also tested under similar injection conditions as in the single injection 

test cases. The analysis aimed to compare the spray characteristics in terms of spray 

penetration, sprar angle and stability. The post processing was based on the statistic 

computation of many set of images under different operating conditions. The object of . 

the assessment consisted of the comparison of average and standard deviation images 

obtained fro~ automated graphic processing. 

5.2.EXPERIMENTAL SET UP 

The Spray visualization has been performed using two Ricardo-Hydra optical engines 

supplied by BMW. The first model shown in Figure 5-1 was used in the first phase of 
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the investigation. The cylinder was characterised by a short portion of transparent 

cylinder liner (25 mm) made in quartz with full optical access from all four sides of 

the cylinder but with only front and back sides exposing the pentroof through an 

extension of the transparent window above the gasket. The partial optical access of 

this model resulted in a restricted internal visibility and a limited freedom of 

illumination. 

A relevant improvement was achieved in the second Hydra model shown in Figure 

5-2 and Figure 5-3 where the mono cylindrical engine is provided with a full stroke 

transparent liner in quartz, which allowed the internal visualization through the 

cylinder around the four sides of the engine head along the whole stroke. 

Figure 5-1 First model optical engine with limited Figure 5-2 Second model optical engine 

quartz window. with full quartz liner. 

As a drawback, the full quartz liner solution had the effect of a decreased heat 

rejection capacity due to removal of the engine cooling system around the cylinder 

and as a result the friction generated between piston and quartz liner increased the 

liner temperature considerably, which was tackled using appropriate cooling systems 

of compr~ssed air cooled by liquid nitrogen or ice. In both model the piston is 

equipped with head in quartz, which gives an additional optical way for visualization 

or lighting. In order to direct the optical path toward the combustion chamber through 

the piston window, a mirror is placed at the bottom of the piston inclined 45deg with 

respect of the light beam as shown in Figure 5-3 (b). 
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(a) (b) 

Figure 5-3: Second model optical engine: (a) full stroke quartz liner (b) and 45 degree mirror 

situated in the cavity at the bottom of the piston. 

The two Hydra engines present a different flame deck layout with spark plug and 

injector configuration rotated with respect of intake and exhaust valves. In the former 

Hydra model, the injector and spark plug lay in the plane of symmetry of the flame 

deck with the injector located on the centre and the spark plug next to the exhaust 

valves, Figure 5-4. The latter Hydra version has got a different flame deck layout 

with injector position still located in the centre but the spark plug located in a plane 

perpendicular to the symmetry plane in between the intake and exhaust valves as 

shown in Figure 5-5. As no firing test were carried out in the course of this 

investigation, the only consequence of a different layout would be a slight change on 

the in-cylinder air motion produced by the spark plug protrusion which, as will be 

shown, has negligible effect on spray angle and stability. 
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Figure 5-4 Flame deck configuration for first 

model Hydra engine. 
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Figure 5-5 Flame deck configuration for second 

model Hydra engine. 
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5.2.1.Integral Mie scattering 

Spray visualization was performed in both optical engine models shown in Figure 5-1 

and Figure 5-2 and the best test rig set-up was chosen to achieve good image 

definition and the most meaningful point of observation. The fast CCD camera 

(Figure 5-6) used in the large-scale model and constant volume chamber was 

employed to obtain spray images in the optical engine illuminated by the same flash 

light and the two flexible optical fibres. A SIEMENS driver control system was used 

to trigger the injector and signal process unit was set up for the strobe and the camera. 

Figure 5-6 Fast CCD camera in front of the engine 

cylinder. 

Figure 5-7 Flash light device on 

the left of the engine. 

Due to the fast evolution of the spray, to obtain a satisfactory clear image the 

exposure time had to be very small. However, a too reduced exposure time could 

cause lack of light photons emission onto the cells of the CCD camera. Therefore, it 

was necessary to set an exposure time short enough to freeze the dynamics of the 

spray but long enough to obtain satisfactory bright images. The camera exposure was 

then set to O.3J.lS and the flashlight with a strobe intensity of 200 Joules/pulse was set 

to have a pulse duration of 10 JlS. The two main set up configurations considered for 

Mie-scattering on the optical engine allowed to visualize the spray from side (vertical 

view) and from the bottom (horizontal view) and are described as follow. 

Vertical view. ' 

The camera is placed in front of the cylinder liner and viewing the spray motion along 

the cylinder axis as shown in Figure 5-8(a). In order to have more flexibility on the 

light arrangement, two optical fibres connected to the main flash light are used as 

light source. For the vertical view, the optimum light set up is achieved by directing 
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the fibres toward a mirror placed inside the cavity of the piston. The light reflected by 

this mirror inclined 45 degree is directed vertically through the quartz of the piston 

head. Once the beams reach the spray cone, the light is spread horizontally exiting 

through the quartz liner and reaching finally the CCD camera lens. This set up allows 

the frontal view of the spray of the outer surface of the cone as it is shown in Figure 

5-8 and it will be employed to analyse the spray angle, vertical penetration and spray 

stability. A different illumination set up might be adopted by directing light from one 

fibre or both of them through other three free sides of the liner as shown in Figure 5-9. 

Horizontal view. 

To capture the bottom view of the spray the camera is directed toward the mirror, 

Figure 5-8(b). The optical fibres are illuminating the spray directly through the liner. 

The light is scattered by the spray through the transparent piston head and is reflected 

by the mirror toward the CCD camera. However, even though this view gives an 

overall image of the spray, it did not give information about spray angle and vertical 

penetration, which are the main objective of this study. 

Mirror 

·10 -8 ·8 ~ ·2 

(a) (b) 

Figure 5-8 Mie scattering Set up in the optical engine: (a) Vertical view set up (b) Horizontal 

view set up. 
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CCD Camera 

Figure 5-9 Available Positions of the optical fibres around the liner. 

5.3. SIGNAL CONTROL SET-UP 

In order to obtain double injection Mie-scattering images, a sophisticated signal 

control unit was required. The imaging triggering equipment needs to be synchronised 

with the engine phase and a purposed build control system was used to treat the 

signal. The set up of this control unit is shown in Figure 5-12. A speed transducer 

situated on the crankshaft sends two signals to a pulse converter. One of the signals 

serve for the triggering of the imaging equipment (1 pulse/rev) and one for the 

injector signal which needs to be of higher resolution (5 pulses/rev) in order to 

synchronise the injector with the speed of the engine. The pulse converter delivers 

two signals to the SCECU box (Figure 5-10) and two signals to the A VL Indyset. The 

AVL Indyset signal, which provides engine (manifold, cylinder and exhaust) pressure, 

is connected to the PC in order to monitor the engine operation. From displayed 

pressure data on the PC, the software uses this information to calibrate the device 

setting zero at TDC. As the software reads pressure in the cylinder, the value of zero 

was then aligned with peak cylinder pressure at TDC. After that, the values for 

injection angle and camera trigger angle can be set on the SCECU box, which sets the 

pulse width for the camera and flashlight trigger angle and the injection duration. The 

high-resolution signal sent to the SCECU box for injection duration, is converted 

from 5pulses/rev to 1 pulse/deg. 

For the double injection, '(Figure 5-11) the first injection duration (tl) was set on the 

SCECU box with respect to the start of the first injection (SOIl). As the injection 
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driver presents a certain lag between injection pulses due to the electronic response, 

the CCD camera was trigged with a delay of O.08ms in order to capture the spray at 

end of injection (EO I). 

Figure 5-10 Control SCECU box. 

The injector signal was being inverted in the SCECU box and the output signal was 

then sent to the double injection box (double injection box uses negative pulse). An 

additional pulse was produced and the delay and second injection duration (t2) were 

set with respect to the end of the second injection (EOI2), Figure 5-12, on the double 

injection box. From this box the two pulses had to be inverted again and be sent to the 

injector driver, which eventually feeds the injector at a predefined needle lift. 

tl t2 

Fl dela, ~fl 
SOil EOl2 

Figure 5-11 Square signal set for double injection . 

1 I rev ...--_----, inj 
From the Double inj. Box 

optical 360 I rev SCECU TRIG 
engine 

To Inj. driver JUL 

INJ.---___ --, INJ 
~-~ S~p ~----------~ 

.,64 TRIG 
128 

JL JL 

Figure 5-12 Synchronization System for Double Injection. 
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The other signal coming from the SCECU box was fed to the skip processor in order 

to treat it and send it to the imaging equipment. Since the spark light needs almost 8 

seconds to recharge its capacitor, the skip processor set the control system to give an 

output every certain number of engine cycles corresponding to 8 se~onds therefore 

avoiding useless injection, which would decrease the interval between liner cleaning 

events. However, to make sure that the images of the spray, were a representative 

steady sample, the skipping box was designed to release three pulses before enabling 

the pulse to the camera, in this way the image was taken just after hav~ng injected for 

four times. The operating speed of the tests was 1000 rpm and 2000 rpm, which 

corresponds respectively to one pulse every 64 pulses and 128 pulses. 

5.4. TEST CELL LAY OUT 

The test layout was arranged in two rooms as shown in Figure 5-13. In the main room, 

the optical engine and its auxiliary devices are placed in the centre of the cell whereas 

for safety reason the control system devices are placed in the adjacent cell separated 

by a wide glass window. 

The camera was directed toward the front of the liner and placed on a stable basement 

in order to preserve its primary position as a reference for all the images obtained. At 

one side of the engine the two optical fibres were connected to the spark light unit, 

positioned close to the cavity of the piston and directed toward the mirror 

Optical fibre 

Cilinder 
~81· 

Dyno and 
sansor 
controls 

Figure 5-13 Test cell lay out and system and signal arrangement. 
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Figure 5-14 Optical engine test cell lay out. 

The camera was positioned with a small inclination of 4 degree upwards, in such a 

way that the injector tip was displayed in the centre of the image and also to capture a 

better view of the injector tip itself, avoiding as much as possible any view 

interference with the gasket. Since the engine does not fire, the driving power moving 

the engine shaft is supplied by an electrical motor (Dyno), (Figure 5-15) placed on the 

same bed as that of the engine unit. 

Figure 5-15 Dyno used to drive the optical engine 
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Figure 5-16 Supercharger with turning vane Figure 5-17 Plenum chamber 

In the first part of the investigation carried out with the first Hydra engine the 

backpressure was uniquely depending on the crank angle position whereas the second 

engine model was provided with a supercharger, Figure 5-16, which allowed a more 

flexible cylinder pressure set up. This was located behind the engine and was driven 

by a motor driven by a belt. A by-pass intake system was introduced in order to 

enable or disable the supercharged air, as required, with the use of a turning vane. 

Figure 5-18 Common rail system with pressure gauge on Figure 5-19 Right hand side view of 

top of the optical engine. optical engine. 

The air was then driven into the engine through the plenum chamber (Figure 5-17) in 

to the manifold, where a pressure transducer was fitted in order to give manifold 

pressure readings to the control unit. The rail pressure was set at 100bar and 200bar, 

by means of the high-pressure common rail system (Figure 5-18, Figure 5-19). In the 
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control room where the engine and signal controls are located, (Figure 5-21), pressure 

and temperature indicators, Figure 5-20, were connected with thermocouples and 

pressure transducer sensors. All control units were interconnected to synchronize and 

treat the signals from engine crank angle enabling injection and camera triggering 

according the schematic of Figure 5-12 

Figure 5-20 Engine temperature and pressure Figure 5-21 Engine and signal control unit. 

display unit. 

5.5. EXPERIMENTAL STRATEGY 

The first investigation focused on the analysis of spray stability and spray penetration 

and these were performed in the first Hydra engine model. The system was visually 

calibrated to find the exact starting point of injection and the imaging equipment was 

set to match this point, by trial and error, varying SOl until the desired point was 

found. After injection synchronisation, the image quality was adjusted and tested by 

capturing a set of images using single injection early at the end of injection and finally 

it was possible to proceed with the image acquisition at the actual operating condition. 

The main part of the investigation consisted of 31 single injection cases and 31 double 

injection cases each of which comprised of a set of 64 images. For double injection at 

high cylinder pressure a set of 64 images were taken for both EOI, for the other 

double injection cases only images at EOI of first injection. 

The 64 images were then processed with a Matlab code, which produces a mean an 

RMS image for each operating condition. The statistical images were obtained 

respectively averaging and calculating the RMS of the level value of each pixel out of 

all 64 images. The mean image gives a representative view of the spray general 
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behaviour and shows the location of the main strings from which the repeatability of 

spray-to-spray behaviour can be deduced. The RMS image shows the variability of 

the spray pattern and it can be used to identify the degree of the spray satability. More 

specifically the RMS graphic operation produces an image with brighter areas where 

the gray level is more variable and therefore where there is a phisical light variation 

induced by object displacement (spray-to-spray variation). Since one of the aims of 

this investigation is the analysis of the flapping behaviour of the spray, the RMS 

image gives a good qualitative measure of the repeatability of the spray shape and 

thus of the entity of the spray flapping. 

The parameters defining the operating condition of each case are: 

• Injector model. Three injector prototypes with different needle geometry were 

tested to establish the effect of the step between cartridge internal diameter and 

needle external diameter. The step is evident when the injector is closed which 

consists in a positive or negative edge between needle and cartridge rims. The 

injector with diameter of the needle which is larger than the cartridge will be called 

positive step Inward Seal Band injector (+ISB) while vice versa, negative step 

Inward Seal Band injector (-ISB) as can be seen in Figure 5-22. The third injector 

presents needle diameter of the same size as the cartridge and therfore with no step 

when the injector is close. This prototype is named standard inward seal bend (SSB) 

which is also the real size injector correspondent to the large-scale model described 

in the third chapter. 

1
1 ~/ 
======i==~/::!";. 

posltve 
step + 

J) 

no~J 
Figure 5-22 Injector geometries: Inward Seal Band positive step (+ISB), Inward Seal Band 

negative step (-ISB) and Standard Seal Band No step (SSB) . 

• Backpressure. Three different in-cylinder backpressures were considered. As the 

spray behaviour at homogenous condition (full load) is of much interest as well as 

late injection (part load) the three most representative conditions were chosen at the 

early intake stroke phase (""' 180degBTDC), 10deg BTDC and 25deg BTDC 

• Injection rail pressure. Two injection pressures (100bar and 200bar) were 

considered to investigate the effect of rail pressure on the spray stability and on the 
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penetration. 

• Needle lift. As described in the previous chapters the piezo injector presents the 

characteristic of a variable maximum lift, which can be adjusted by the activation of 

the injector piezo bodies. To investigate the effect of the lift on the penetration and 

spray angle two lifts were analysed: maximum lift (full piezo body activation:1111) 

and minimum lift (minimum piezo body activation:OOOO). 

• Engine speed. The engine speed has a strong effect on the in-cylinder air motion. 

Tumble and swirl are strongly affecting the spray stability and therefore it was 

decided to observe the spray behaviour for two engine speeds: 1000 rpm and 2000 

rpm. Due to vibrational problem on the engine, it was not possible to push the 

engine to higher speeds than 2000 rpm. 

• Spark plug. The effect of the spark plug on the spray stability was observed by 

assessing wheater in-cylinder air motion is affected by cylinder head protrusions. 

For same operating conditions, the spray stability was compared with and without 

sparkplug. 

• First/second injection duration. For double injection, the effect of the first 

injection duration may influence the intensity of the wakes and the in-cylinder air 

motion, which could consequently affect the stability of the second injection. Two 

injection durations (tl = 0.2ms, 0.5ms) were chosen and compared at different 

operating conditions. 

All the aforementioned operating conditions are summarised in Table 5-1 below. 

Injector Type +158, -IS8, SS8 
Injection Rail Pressure 100bar/200bar 
backpressure 1 bar(EOI-138) 11 Obar(EOI-25) 1 16bar(EOI-1 0) 
Injection duration (single inj.) 0.33ms 
Injection duration (double ini.) 0.2ms-0.3ms-0.2ms 1 0.5ms-0.3ms-0.2ms 
Injection needle lift Fully open(1111)( -36um) 1 Partially open (0000)( - 19um) 
Engine Speed 1000rpm 1 2000rpm 
Spark pluQ yes 1 no 
Fuel Composition Iso - octane 
Airflow WOT 

Table 5-1 Operating parameters and Engine set up. 

For single injection the duration was fixed at 0.33 ms for all the 31 cases whereas the 

remaining parameters were varied case by case according Table 5-2. 
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Table 5-2 Operating conditions under which the images were obtained for single injection 

investigation. (First set of results) 

In order to test the repeatability of the tests after long periods and following parameter 

variation the 25th case was set equal to the first case and compared as case reference. 

The comparison between spray image with and without spark plug was carried out 

only for the first four cases whereas the effect of engine speed was observed only for 

casel and 2. For casesl to 4 a series of 55 spray evolution images were acquired. The 

camera was triggered to get an image every O.025ms for the whole cycle so that the 

spray development could be visualised as a function of time including first and second 

injection. After defining the penetration distance, the tip velocity could then be 

calculated and compared for the two cases. 

After the single injection imaging was completed, all the cases were repeated for the 

double injection mode by triggering the camera at the end of the first injection except 

for cases I to 4 where both end-of-injections were taken according the pulse diagram 

shown in Figure 5-24. 

0000 6-2 12-2 4-1 4-2 10-2 14-2 8-2 

.1111 5-2 11-2 3-1 3-2 9-2 13-2 7-2 

0000 16-2 22-2 2-1 2-2 20-2 24-2 18-2 

1111 15-2 21-2 1-1 1-2 19-2 23-2 17-2 (25-1) (25-2) 

0000 29-2 31-2 27-1 27-2 

1111 28-2 30-2 26-1 26-2 

Figure 5-23 Test conditions for double injection investigation. (case No - injection No) 

276 



The imaging signal (which corresponds to the visualisation of the spray phase on the 

screen) follows the same pattern of the injection signal; however, the timing of EOll 

and EOI2, SOIl and SOl2 are delayed due to the difference in lag response between 

imaging and injection apparatus. 
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Figure 5-24 Synchronization System for Double Injection. 

The black and white images obtained from the CCD camera were converted from 16-

bit to JPEG for visualisation purpose only. For statistical processing (Mean, RMS), 

spray angle and penetration, the images were processed in b 16 format by automated 

codes. All the spray images reported in this angle analysis are marked by rows of red 

crosses distant 10mm from each other to represent the reference scale. 
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Figure 5-25 Image Processing procedure. 

5.5.1. Spray Angle Analysis 

F or the spray angle analysis, the contour was first determined by fixing a threshold to 

the pixel level variation as depicted in Figure 5-25. The spray angle determination 

was performed automatically enclosed between injector tip and a fixed axial distance. 

For each individual spray image the angle between the axis and a segment was 

measured starting from the injector exit and laid on the spray contour. 

The overall spray angle was defined as twice the angle between that segment and the 

spray axis. Both sides and the overall angle were performed for all the images for 

each case; an example is shown in Figure 5-26. 
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Figure 5-26 Spray angle for each image cycle. 
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From plot in Figure 5-26 it was then possible to observe the general behaviour of the 

spray through the whole set of images and from the histograms in Figure 5-27 it was 

then possible to analyse the spray angle fluctuation and the mean angle. 

In order to analyse and compare the spray angle data between different operating 

conditions the more representative statistical parameters were summarised in plots as 

shown in Figure 5-28 reporting the mean, ± STD that represents the mean deviation 

from the mean value and maximum and minimum values of the image. For 

conciseness, the following comparisons will only report the statistical plots, which 

give all the elements for the study of spray angle stability by the observation of the 

STD and of the range of spray angle variation given by maximum and minimum 

angles. 

°20 30 40 50 60 70 20 30 40 50 60 70 60 7080 90100110120 
Angle (left side) [oJ Angle (right side) [0] Angle (overall) [0] 

Figure 5-27 Histograms for left side angle, right side angle and overall angle. 
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Figure 5-28 Statistical spray angle value for a set of 64 images. 
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5.6. SINGLE INJECTION: RESULT AND DISCUSSION 

As mentioned in the previous session, at the beginning and at the end of the tests for 

injectors +ISB and - ISB, sets of images were collected at the same operating 

condition in order to see whether some disturbance or modification had changed the 

original equipment setting or whether the spray pattern were different after the whole 

set of image acquisitions. 

Case25 - RMS image 

Figure 5-29 Reference comparison (case 1 vs Case 25) of single shot, mean and RMS spray 

images for same operating condition. 

Figure 5-29 presents such comparison betweens cases 1 and 25 which show good 
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degree of similarity between the single shot (instantaneous), mean and RMS images. 

It can be seen from the mean images that the strings are very well defined even over 

an average out of 64 images thus showing a strong repeatability of the string pattern. 

It is not the same for the circumferential undulations conferring a curly aspect to the 

strings visible in the spray sample of the first case which resemble a Kelvin

Helmholtz instability. In fact, in the mean image the strings appear as straight 

filaments meaning that this instability along the single string is a dynamic 

phenomenon which does not occupy the same position in every image. In the 

comparison, it is possible to recognize the same spray pattern, only rotated around the 

spray axis due to the imprecision in replicating the same identical position when 

mounting the injector on the cylinder head. The RMS images show white areas in the 

recirculation zone for both cases and in general, the bright contour seems equally 

distributed in both images. Finally, the angles statistic in Figure 5-30 shows a very 

nice match of the mean angles which is 87deg for both cases and the RMS is about 

1 deg in both cases. The max and min values must not be overestimated since they 

represent the picks of the set of images and they may be due to isolated events. Such 

results give a measure of the repeatability and comparability of this study and a good 

reference for the image acquisition taken between these two cases. 
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Figure 5-30 Angle comparison for the same operating condition. (Case 1 and Case 25) 

5.6.1. Injector comparison 

5.6.1.1. Backpressure: ambient condition 

The first comparison takes in consideration the three prototypes described in the 

previous section at the same operating conditions of full lift (Bit position 1111 ), 
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engine speed 1000 rpm and injection pressure of 200 bar. The images were taken at 

intake stroke phase and therefore at ambient cylinder pressure. The string pattern of 

the SSB seems to be less defined than for the other prototypes; however even the 

RMS images do not show significant differences in the image deviation. 

SSB +ISB -ISB 

Case2S - RMS image CaselS - RMS image CaseS - RMS image 

Figure 5-31 Image comparison for three different injector prototypes. Bit position 1111, 

1000rpm, Pb=1.1bar, Pi=200bar. 

The angle analysis for all the prototypes shows a similar angle varying from 87deg to 

90deg as it is evident from the data presented in Figure 5-32. The RMS is very small 

( ,...., 1 deg) which means that this operating condition is . very stable for all the three 

injector geometries. 
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Figure 5-32 Angle comparison for three different injector prototypes. Bit position 1111, 1000rpm, 

Pb=1.1bar, Pi=200bar. 

5.6.1.2. Backpressuree: lO.9bar 

The following comparison is made at a much higher backpressure than the previous 

case by injecting fuel during late compression stroke and the results are shown in 

Figure 5-33. The images were taken at 25deg BTDC (in-cylinder pressure of lO.9bar) 

and show an expected decrease in penetration for all three prototypes due to the 

increased in drag. In addition, the strings pattern is "curlier" than the strings at 

ambient condition, which may be due to an increase in circumferential instability that 

causes undulation along the strings. The SSB prototypes on the left seem slightly 

asymmetrical and projected toward the sparkplug. This effect was absent in the 

previous comparison at ambient condition probably due to the milder effect of tumble 

during induction. The mean images show sharply the presence of strings which seems 

very repeatable although a variation in curvature may be suggested by the bright area 

revealed by the RMS images especially for the ISB prototypes. As the bottom bright 

rim is equally thick for each injector it seems that the penetration deviation is the 

same for the three models. The angle analysis, Figure 5-34, also confirms a higher 

angle variation for the SSB, which has also a smaller angle than positive and negative 

step injectors. 
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SSB +ISB -ISB 

Case30 -- RMS image Case21 -- RMS image Case11 -- RMS image 

Figure 5-33 Image comparison for the three different injector prototypes. Bit position 1111, 

1000rpm, Pb=10.9bar, Pi=200bar. 
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Figure 5-34 Angle comparison for the three different injector prototypes. Bit position 1111, 

1000rpm, Pb=10.9bar, Pi=200bar. 
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5.6.1.3. Backpressure: 16.6bar 

The comparison at the highest backpressure was performed by delaying the end of 

injection (EOI) just lOdegree before TDC. This phase is extremely important as it is 

adopted at part load during stratified charge operation and it represents one of the 

main challenges of the GDI concept. 

A further decrease in penetration is noticeable for all three prototypes and even the 

strings seem to be thicker and bushier due to the higher drag of the more dens gas. It 

must also be emphasised that the observed comparison reveals that all strings have 

maintained their individuality and the string pattern is repeated for all the operating 

conditions. The Standard Seal Band still seems stretched toward left and with a 

smaller cone angle than the two ISB injectors. However the RMS images shows a 

higher spray fluctuation in the recirculation area with the Standard Seal Band 

SSB +ISB -ISB 

Case26 - RMS image Casel - RMS image Case3 - RMS image 

Figure 5-35 Image comparison for the three different injector prototypes. Bit position 1111, 

lOOOrpm, Pb=16.6bar, Pi=200bar. 
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The angle analysis, (Figure 5-36) confirms the points observed in the images 

especially for SSB injector, showing a much lower angle (78deg) than for the ISB, 

which is almost 10 degree larger. 

For all three tested backpressures, the higher standard deviation of the SSB is 

associated with the higher backpressures, which has also shown to cause higher angle 

instability. 
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Figure 5-36 Angle comparison for three different injector prototypes. Bit position 1111, 1000rpm, 

Pb=16.6bar, Pi=2o.0bar. 

5.6.2. Backpressure: 16.6bar, 

Minimum needle Lift: bit position 0000. 

The following comparison differs from the previous one (Figure 5-35 and Figure 

5-36) by the needle lift which is now set to minimum (0000) (- 19/-lm). The most 

evident variation appears to be the spray penetration, which is about half of the 

previous condition seen at maximum lift. I,n addition, the three sprays structure and 

shape look now more different to one another. For instance, the -ISB in case4 

presents the most symmetrical shape and a more dens spray, the + ISB in case2 shows 

the most sharper string pattern and finally the SSB in case27 is characterised by a 

blurry structure with an accented asymmetry which here seems to be mainly caused 

by lack of homogeneity in the needle sealing rather than for air flow motion. The 

RMS images reveal an evident shape variation for the +ISB which expose a clear 

bright rim all around the spray profile. 
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SSB +ISB -ISB 

Case27 - RMS image Case2 - RMS image Case4 - RMS image 

Figure 5-37 Image comparison for three different injector prototypes. Bit position 0000, 

1000rpm, Pb=16.6ba r, Pi=200bar. 

The comparison of the angles within the three injectors does not show significant 

differences in terms of STD, which is similar for the three prototypes. However, the 

comparisons with the previous maximum lift conditions show an increased angle 

variation for both ISB injectors while almost unvaried for the SSB injector. Both -ISB 

and SSB present the same mean angle observed in the previous comparison whereas 

the +ISB shows a qrop of about lOdegree. 

Overall it seems that the needle lift reduction produces a detrimental effect on the 

spray stability which is specially felt by SSB and + ISB whereas the negative step 

Standard Seal Band is more robust and insensitive to the ,needle lift set up. 
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Figure 5-38 Angle comparison for three different injector prototypes. Bit position 0000, 1000rpm, 

Pb=16.6bar, Pi=200bar. 

5.6.3. Influence of Spark Plug and Engine speed 

This comparison between spray structure with (case1K) and without (case1) the 

presence of spark plug was made under the same operating conditions of in cylinder 

and rail pressures, injector prototype and maximum needle lift set up. However, the 

reference condition (case 1) is being compared at different engine speed 

(case 1_ 2000rpm) to observe the effect of the increased tumble on the spray angle and 

its stability. It was also observed whether the presence of the spark plug affects the 

spray and the in-cylinder air motion. 

5.6.3.1. Injector prototype: Positive step Inward Seal Band (+ISB). 

Minimum needle lift: bit position 1111 

The comparison of Case 1 K (K stands for Kerze which is the German translation for 

spark plug) with spark plug presence and reference Case1, Figure 5-39, shows no 

difference between single shot, mean and RMS images. That, it is not the case in the 

comparison between 1000rpm and 2000rpm engine speed which shows that the spray 

is pushed by the ,tumble towards the sparkplug. The RMS image of Case1_2000rpm 

evidences also a higher variation in the recirculation area which suggests an increase 

of instability with engine speed. As it will be described at the end of this chapter, the 

increase in engine speed results in a better recirculation, which was observed in the 

2D Mie scattering associated to an extended and non-uniform recirculation area. 
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CaselK - Single shot image Casel - Single shot image Casel_ 2000rpm - Single shot 

CaselK - RMS image Casel - RMS image Casel_2000rpm - RMS image 

Figure 5-39 Spray comparisons for different speed and spark plug presence: +ISB, Bit pos. 1111, 

Pb=16.6bar, Pi=200bar. 

As expected from the observation of the processed images, although the mean angle is 

equal in all three cases at high engine speed an increase of STD can be observed as 

affect of the increased air motion and turbulence. 

On the other hand, the presence of spark plug does not produce any variation or 

difference in mean angle, which means that the effect of the spark plug protrusion on 

the in-cylinder air motion is irrelevant. The comparison between casel and caselk 

also confirms the consistency and repeatability of cases running with similar 

operating condition. 
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Figure 5-40 Angle comparisons for different speed and spark plug presence: +ISB, Bit pos. 1111, 

Pb=16.6bar, Pi=200bar. 

5.6.4. Injector prototype: Positive step Inward Seal Band (+ISB). 

Minimum needle lift: bit position 0000 

The following comparison (Figure 5-41 and Figure 5-42) is similar to that of the 

previous case study (Figure 5-39 and Figure 5-40) but at a different needle position 

that is now set to minimum lift (0000). In the previous comparison, the results at full 

lift did not show any significant influence of the spark plug and also at minimum lift 

the difference in brightness is probably caused by an accidental change in the lighting 

set up. In fact, the comparison of the spray pattern is very similar for both cases with 

and without spark plug, for the single shot, mean and RMS images. 

As mentioned for the full lift, the increase of speed showed a tendency of the spray to 

move toward the spark plug, but in this case (minimum lift) it is less evident probably 

due to the smaller penetration of the spray. The RMS image at 2000rpm engine speed 

presents a very bright boundary not only in the recirculation areas but also at the 

bottom profile which is even more accentuated than for maximum full lift suggesting 

higher penetration variability. 
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Case2K - Single shot image Case2 - Single shot image Case2_2000rpm - Single shot 

Case2K - RMS image Case2 - RMS image Case2_2000rpm - RMS image 

Figure 5-41 Spray comparisons for different speed and spark plug presence: +ISB, Bit pOSe 0000, 

Pb=16.6bar, Pi=200bar. 
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Figure .5-42 Angle comparisons for different speed and spark plug presence: +ISB, Bit pOSe 0000, 

Pb=16.6bar, Pi=200bar' 

The mean angle appears higher for the operating condition with spark plug, while 
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there no significant differences in variation in STD. It can be noticed from the values 

at higher engine speed that the spray tends to become wider and the mean angle 

results higher as well as the flapping which results slightly higher than the other two 

cases. 

5.6.5. Influence of Backpressure. 

As previously mentioned the GDI concept is based on the possibility to vary the 

injection mode based on the engine load, which implies injections at different cylinder 

pressures. It becomes important the capability of the injector to provide a stable spray 

with the potential to self adjust the penetration as the piston advances in order to 

avoid wall impingement which otherwise would cause unburned and increased 

emissions. The following comparison shows the effect of three different 

backpressures (1 bar, 10.9bar, 16.6bar) for each injector prototype. 

5.6.5.1. Injector prototype: Standard Seal band (SSB) 

Injection pressure: 200bar 

One of the main effects produced by backpressure elevation is evidently the drop in 

penetration, which is caused by the increase in-cylinder gas density and the 

consequent raise of drag. The spray shape seems to be also affected by the 

backpressure that affects the spray axial-symmetry by the enhanced effect of the air 

motion. In fact, the raise of density of the surrounding gas amplifies the drag forces 

acting on the droplets causing loss of momentum and therefore they become more 

susceptible to the tumbling gas motion that push the spray droplets toward the spark 

plug. By its nature, the tumble is an unstable phenomenon and consequently its effect 

is transmitted to the spray stability which decreases with the increase of the 

backpressure. From the RMS images, it can be observed that at ambient pressure the 

spray profile is very sharp and straight. At 10.9 bar the spray profile denotes a 

brighter profile in the recirculation areas as well as in the spray bottom edge. For 
.. -, 

higher backpressure of 16.6bar, the bottom edge is covered by the cylinder gasket so 

that a clear evaluation of the spray instability is not possible. 
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Pback 1bar Pback 10.9bar Pback 16.9bar 

Case2S - RMS image Case30 - RMS image Case26 - RMS image 

Figure 5-43 Spray comparisons for different backpressures: SSB, Bit pos. 1111, 1000rpm, 

Pi=200bar. 
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Figure 5-44 Angle comparisons for different backpressures: SSB, Bit pos. 1111, 1000rpm, 

Pi=200bar. 

A very clear trend showing the effect of the backpressure is shown in the following 

angle analysis, Figure 5-44. The mean angle collapses with higher backpressure (from 

87deg at Ibar Pb to 78deg at 16.6bar) which may be due to the stronger effect of the 
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outer wakes against the inner wakes. Such a result becomes more intense at higher gas 

density due to the amplification of the drag. It can be also observed a consistent 

increase of the STD value that indicates an objective increase of spray instability with 

the cylinder pressure which agrees with the visual results of the RMS images. 

5.6.5.2. Injector prototype: Inward Seal Band (+ISB) 

Injection pressure: 200bar 

The Inward Seal Band positive step presents also similar results as the SSB. The 

penetration decreases visibly as the cylinder pressure raises however, the spray seems 

preserving a more symmetrical shape despite the increase in density. Even the mean 

images look more defined in terms of string structure which means that the spray 

pattern is more repeatable out of the whole set of images, than the SSB type. 

However, still the RMS images reveal a high spray variation in both recirculation and 

leading edge area. 

Pback lbar Pback lO.9bar Pback l6.9bar 

Case15 - RMS image Case2l - RMS image Casel - RMS image 

Figure 5-45 Spray comparis~ns for different backpressures: +ISB, Bit pos. 1111, lOOOrpm, 

Pi=200bar. 
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The improvement in this prototype injector can be observed even in the following 

angle analysis of Figure 5-46. For all backpressures, the mean angle is almost 

invariable with a value of 88deg for all three cases. The STD still increases with the 

backpressure but the variation in STD is much more contained than the variation seen 

in the SSB injector. 
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Figure S-46 Angle comparison for different backpressures: +ISB, Bit pos. 1111, lOOOrpm, 

Pi=200bar. 

5.6.5.3. Injector prototype: Inward Seal Band (-ISB) 

Injection pressure: 200bar 

Figure 5-47 shows the spray images with - ISB injector. No evident difference can be 

observed from the spray images of Inward Seal Band positive and negative step. A 

part from the expected decrease in penetration still the shape preserves its symmetry. 

RMS images shows an intense variation especially at IO.8bar backpressure where the 

profile is completely surrounded by a thick bright area whereas at 16.6bar the leading 

edge is still obscured by the cylinder gasket. The mean angle, Figure 5-48, is not as 

constant as the positive step prototype but the STD follows the same trend. 
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Pback 1bar Pback 10.9bar Pback 16.9bar 

CaseS - RMS image Case11 - RMS image Case3 - RMS image 

Figure 5-47 Spray comparisons for different backpressures: -ISB, Bit pos. 1111, 1000rpm, 

Pi=200bar. 
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Figure 5-48 Angle comparisons for different backpressures: -ISB, Bit pos 1111, 1000rpm, 

Pi=200bar. 
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5.6.5.4. Injector prototype: Inward Seal band (+ISB), 

Injection pressure: lOObar 

It has been shown so far that the most stable prototypes against backpressure were the 

two ISB prototypes, and it is worth now to analyse them at different injection 

pressures. The rail pressure was decreased to 100bar and the decrease in penetration 

with backpressure was similar as previously observed at 200bar however, the string 

structure looks coarser at ambient pressure and less dense at higher cylinder pressure. 

Pback 1bar Pback 10.9bar Pback 16.6bar 

Casel9 - RMS image ' Case23 - RMS image Casel7 - RMS image 

Figure 5-49 Spray comparisons for different backpressures: +ISB, Bit pos 1111, 1000rpm, 

Pi=100bar. 

The effect of backpressure on mean spray angle is negligible (Figure 5-50), but STD 

of spray angle increases with backpressure slightly more than the case at 200bar rail 

pressure. This minor increase of spray variability may be due to the weaker 

momentum possessed by ~he spray at lower injection pressure which is easily affected 

by the in-cylinder air motion; 
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Figure 5-50 Angle comparisons for different backpressures: +ISB, Bit pos 1111, 1000rpm, 

Pi=lOObar. 

5.6.5.5. Injector prototype: Inward Seal band (-ISB), 

Injection pressure: lOObar 

The single shot images of the Inward Seal Band negative step shows (Figure 5-51) an 

irregular distribution of the penetration around the spray. As it can be seen at 10.9bar 

backpressure, the rear part of spray in the image reveals the internal part of the cone, 

which means that either the spray is tilted or the backside of the spray has higher 

penetration. 

Pb lbar Pb 10.9bar Pb 16.69bar 

Case9 - Mean image Case13 - Mean image Case7 - Mean image 
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Case9 - RMS image Case13 - RMS image Case7 - RMS image 

Figure 5-51 Spray comparisons for different backpressures: -ISB, Bit pos 1111, lOOOrpm, 

Pi=100bar. 

As for the positive step prototype, even the negative step does not present any 

significant mean angle variation with the backpressure and yet the spray-to-spray 

variation increases at higher cylinder pressure and injection pressure. That supports 

the previous hypothesis for which lower injection pressure produces less stable 

injections. 
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Figure 5-52 Angle comparisons for different backpressures: -ISB, Bit pos 1111, 1000rpm, 

Pi=100bar. 

5.6.6. Influence ~f Rail Pressure 

As it has been shown in the previous chapter, the rail pressure plays an important role 

in the spray atomisation and thus in mixture formation. On the other hand, it is 

important to make sure that the needed injection pressure does not compromise the 

spray stability. The following comparison, Figure 5-53 and Figure 5-54, shows the 

spray structure differences and the spray angle variation for rail pressure of 100 bar 

and 200 bar with +IBS prototype and it is compared with that of the negative step 

prototype at 100bar. 
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5.6.6.1. Comparison at ambient pressure: 

-ISB lOObar; +ISB lOObar / 200bar. 

The +ISB shows a very similar spray pattern to that of the -ISB at 100bar injection 

pressure whereas the comparison with the spray at 200bar rail pressure presents a 

higher penetration and thicker string structure. No obvious difference can be observed 

from the RMS images (Figure 5-53). 

-ISB lOObar +ISB lOObar +ISB lOObar 

Case9 - RMS image Case19 - RMS image Case15 - RMS image 

Figure 5-53 Spray comparisons for different Injection pressures and Injector prototypes: Bit pos 

1111, 1000rpm, Pb=1.1bar. 
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At ambient pressure, the rail pressure variation for both +ISB and -ISB does not 

influence the STD, Figure 5-54, resulting in a very stable sprays whereas the mean 

angle slightly increases at 200bar injection pressure. 

lOn-----, 

.-. 
o 
.... 9 
Q) 

r-t 

'" ~8 
~ 
~7 
co 

........ , ........ 
:::::::: .... :::::::: ' 

611------' 

Case9 

lOn-----, 

.-. 
o 
.... 9 
Q) 

r-t 

'" ~8 
), 
ns 
~7 
co 

::::::::. :::::::' 
..... ... .. ... ... ... .. 

611------' 
Case19 

lOn-------. 

.-. 
o 
.... 9 
Q) 
r-t 

'" ~8 
), 
ns 
~7 
co 

----f ----........ . .... .. . 
................... 

611-------' 

CaselS 

Figure 5-54 Angle comparisons for different Injection pressures and Injector prototypes: Bit pos 

1111, lOOOrpm, Pb=l.lbar. 

5.6.6.2. Comparison at 16.6bar backpressure: 

-ISB lOObar; +ISB lOObar / 200bar. 

The results at higher cylinder pressure, (Figure 5-55), show that the difference in 

penetration is less evident between the two injectors and between the two injection 

pressures although the higher pressure tend to have a slightly penetration 

The results at higher cylinder pressure, (Figure 5-55), do not show any visible 

difference in penetration neither between the two injector nor between the two 

injection pressures. Instead, a much larger recirculation area can be observed at 

200bar injection pressure and also the string structure appears curlier. This may be an 

indication of better atomisation at higher injection pressure in which the smaller 

droplets lose their momentum more rapidly and thus become more susceptible to the 

air entrainment thus producing more pronounced recirculation. 

-ISB lOObar +ISB lOObar +ISB 200bar 

Case7 - Single shot image Case17 - Single shot image Case 1 - Single shot image 
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Case7 - RMS image Case17 - RMS image Case1 - RMS image 

Figure 5-55 Spray comparisons for different Injection pressures and Injector prototypes: Bit pos 

1111, 1000rpm, Pb=16.6bar. 

From the spray angle analysis, Figure 5-56, it seems that the injection pressure has a 

stabilizing effect on the spray that presents a lower STD at 200bar.This conclusion 

had already been identified in the previous comparison of the individual injector 

prototype. However, no significant mean angle difference can be observed for any of 

the three cases. 
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Figure 5-56 Angle comparisons for different Injection pressures and Injector prototypes: Bit pos 

1111, 1000rpm, Pb=16.6bar. 

5.6.7. Influence of Needle Lift. 

In order to avoid impingement it is necessary to have the full control of the spray 

penetration especially at part load when the piston is very close to the TDC. One of 

the main advantages of the piezo type injector under investigation is the possibility to 
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vary the maximum lift according the activation of the piezo body, which set in motion 

the pintle. This comparison shows the spray characteristics in terms of stability and 

for two lift positions corresponding to the extremes of the possible lift set up. As 

mentioned in the previous section, when the switches in the injector driver are set to 

"0000" the lift is the minimum (----19f.!m) whereas the full activation "1111" 

corresponds to maximum injector opening (----36f.!m). 

5.6.7.1. Injector prototype: Standard Seal Band (SSB). 

Figure 5-57 and Figure 5-58 compare the sprays and angles for SSB injector at two 

extreme needle lifts. The first and most important difference is the significant 

penetration difference between the two needle lift positions. In addition, as it was 

shown in previous spray images it can be seen the lack of symmetry at high cylinder 

pressure due to the increase of drag effect at higher gas density. For lower needle lift, 

this effect seems to be amplified and in Case27, the penetration at the two sides of the 

spray cone is very different. The spray symmetry difference between high and low lift 

may be also due to the fact that the emerging flow is more sensitive to cross section 

area variation at lower lift. Needle imperfections or non-uniformity in the opening 

phase create an uneven cross section exit and the relative geometrical error is much 

higher when the exit cross section area is smaller and more comparable with the error 

it self. Therefore, the emerging flow will be more sensitive to geometrical exit 

imperfections at low lift than at full lift. Thus, the spray asymmetry may not be due 

exclusively to tumble but also to the needle characteristics it self. 

0000 1111 

Case27 - Single shot image Case26 - Single shot image 
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Case27 - RMS image Case26 - RMS image 

Figure 5-57 Spray comparisons for different needle lifts: SSB, 1111, 1000rpm, Pi=200bar, 

Pb=16.6bar. 

The angle comparison shows that the mean angle decreases at low need lift even 

though no difference in spray variation can be seen from the STD. 
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Figure 5-58 Angle comparisons for different needle lifts: SSB, 1111, 1000rpm, Pi=200bar, 

Pb=16.6bar. 

5.6.7.2. Injector prototype: positive step Inward Seal Band (+ISB). 

The results for +ISB, (Figure 5-59), show a massive increase in penetration at full lift 
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with a good degree of spray symmetry which is absent at the lower lift. This 

phenomenon support the previous hypothesis about the effect of the needle lift 

characteristics at low needle lift (paragraph 5.6.7.1). It must also be noticed that the 

spray recirculation area is much more pronounced at full lift whereas at low lift it is 

almost absent. That may represent a draw back during of the penetration control, 

which implies smaller ignitable areas at lower lift. 

Case2 - RMS image Casel - RMS image 

Figure 5-59 Spray comparisons for different needle lifts: +ISB, 1111, 1000rp Pi=200bar, 

Pb=16.6bar. 
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Consistently with the results observed in the previous prototype, at full lift, the +ISB 

injector presents a mean angle increase of about 10deg. The STD at low lift is similar 

for both SSB and +ISB whereas at full lift the STD suggests that the current injector 

is more stable. 
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Figure 5-60 Angle comparisons for different needle lifts: +ISB, 1111, 1000rpm, Pi=200bar, 

Pb=16.6bar. 

5.6.7.3. Injector prototype: negative step Inward Seal Band (-ISB). 

The -ISB prototype shows an improvement in terms of spray symmetry at low lift. 

Even if not completely, the leading edge of the spray at low lift shows a better 

regularity than the other injector prototypes previously observed. 

0000 1111 

Case4 - Single shot image Case3 - Single shot image 
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Case4 - RMS image Case3 - RMS image 

Figure 5-61 Spray comparisons for different needle lifts: -lSD, 1111, 1000rpm, Pi=200bar, 

Pb=16.6bar. 

Beside the spray shape regularity it seems that this prototype preserve quite well its 

angle characteristics as well as the spray-to-spray variation which is quite similar for 

both lifts. 
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Figure 5-62 Angle comparisons for different needle lifts: -lSD, 1111, 1000rpm, Pi=200bar, 

Pb=16.6bar. 
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5.6.7.4. Influence of Needle Lift: angle analysis summary 

The summary of the needle lift analysis on the three prototypes can be observed on 

the following series of plots in Figure 5-63. The SSB has performed the poorest 

characteristics in terms of STD and thus of spray stability and in general it presents a 

relatively low mean angle which slightly increases at full lift. The -ISB presents a 

much higher mean angle than the SSB and the STD is much reduced at both lifts with 

a slight improvement at full lift. The +ISB injector exhibits an intermediate 

behaviour between SSB and -ISB. At low lift the mean angle is as low as for the SSB 

with similar STD whereas at full lift the mean angle raise of about IOdeg comparable 

to that of -ISB with a similar STD. 
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Figure 5-63 Angle comparisons for different needle lifts for the three injector prototypes: 

1000rpm, Pi=200bar, Pb=16.6bar. 

A set of spray evolution images consists of a series of snap shots taken at intervals of 

N injections + a delay of O.025ms, with N depending on the recharge time of the flash 

light capacitor. By measuring vertical distance between the spray tip and the injector 

exit from each imCl;ge in the set, it was possible to trace the penetration curve of the 

spray for the two prototypes of ISB injectors at low and full lift about 10 deg CA 

before top dead centre. 

The results in Figure 5-64 show that spray needle lift has almost no effect on 

penetration distance at the initial O.lms for both injector types, up to the point where 

at low lift the penetration becomes stable at a distance of about 5.5mm whereas at full 

lift the spray stabilizes at 7.5mm. Penetration distance is less than 8 mm for both ISB 

injectors at EOI-IO BTDC (16.6 bar backpressure), which means no fuel impingement 

on the piston top surface. The maximum difference in penetration has shown to be of 

308 



order of 36% between the two lift settings, which gives a high flexibility for the 

penetration control at part load. 

Penetration Distance 
8 
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Figure 5-64 Penetration comparison at full and low lift for ISB injectors. 

5.7. DOUBLE INJECTION: RESULT AND DISCUSSION 

The capabilities of modern control systems allow complex strategies for mixture 

formation and control. Split injection can be achieved with the use of appropriate 

electronic and common rail systems. A double injection strategy can improve 

transition between part load and full load, by injecting partially during the intake and 

partially during the compression stroke. With this injection strategy, a fraction of the 

fuel is injected during the intake stroke and the remaining fraction is injected just 

prior to the spark, creating a homogeneous lean mixture in the chamber and a locally 

rich mixture at the area around the spark gap. The use of double injection during part 

load, steady state operation is beneficial for soot emissions reduction, and can provide 

improved fuel economy at the transition area between stratified and homogeneous 

mode, at low engine speeds. Split injection strategies may also be used to avoid 

engine knock or to extend the knock limit and enhancing torque at full load. 

The use of two or more injection pulses per cycle requires smaller pulse widths. This 

may decrease spray quality and causing unstable fuel delivery for GDI injectors other 

than piezoelectric. This happens because common GDI injectors' pulse widths are 

longer and devote most of the pulse to opening and closing ramps. Piezoelectric 

injectors, on the other hand, can operate with accuracy in such short pulses due to 

their rapid actuation. Incorporating tip designs that have sac volumes may cause spray 

instability even with piezoelectric injectors. The sac volume contributes to increase in 

He emissions in many applications. 
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5.7.1. Comparison of Reference. 

With reference to Figure 5-65, the following set of images assesses the repeatability 

of the tests after possible experimental disturbance or variation of the spray pattern. 

The second injection event of double injection was analysed at the beginning (Case1-

2) and at the end (Case25-2) of the tests for injector +ISB and compared with Casel 

of single injection. The three cases were tested at same operating condition of 

injection pressure, backpressure, and maximum needle lift and injector prototype. 

The three single shot images of the spray at EOI at the same operating condition do 

not show any noticeable difference. The perceptible difference in penetration is very 

small and may be associated with the limits on the accuracy of pulse synchronisation 

due to the different signal setting between single and double injection. Nevertheless, 

the two double injection samples are practically identical proving the good 

repeatability of the test condition. 

Case25-2 - RMS image Casel-2 - RMS image Casel - RMS image 

Figure 5-65 Reference comparison (Case 1, Case 1-2, Case 25-2) at same operating conditions. 
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The angle analysis does not show differences in STn for all of the cases and even the 

mean angle do not reveal any significant difference. 
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Figure 5-66 Angle Comparisons for same operating conditions (Case 1, Case 1-2, Case 25-2). 

5.7.2.Comparison between EOIt and EOI2. 

The comparison between first and second injection shows a very good resemblance 

between the spray structures as presented in Figure 5-67 and Figure 5-68. 

Nevertheless, the spray recirculation in the second injection looks slightly disturbed. 

In fact, the first injection may influence the in-cylinder air motion, which in turns 

affects the out coming second injection. More specifically, the recirculating ring and 

surrounding air velocity field produced by the first injection may interact with the 

second injection. 

Casel-l - Mean image Casel-2 - Mean image Casel - Mean image 
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Case1-1 - RMS image Casel-2 - RMS image Case1- RMS image 

Figure 5-67 Spray comparisons for double injection (first and second injection) and single 

injection. +ISB, 1111, 1000rpm, Pi=200bar, Pb=16.6bar. 

Even the mean angle for the second injection seems slightly increased whereas the 

angle variation presents the same STD for both cases, which is also equal to the single 

injection reference case. 
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Figure 5-68 Angle comparisons for double injection (first and second injection) and single 

injection. +ISB, 1111, 1000rpm, Pi=200bar, Pb=16.6bar. 

5.7.3.Comparison of EOI!, EOI2 and Lift. 

The following set of images shows a comparison between first and second injection at 

low lift and first injection at full lift as a reference. As seen for the single injection 

analysis, tpe penetration decreases considerably ' at low lift and even more for the 

second injection, which appears particularly reduced. It can also be observed that 

there is no trace of visible recirculation ring in both low lifts spray and that the 

leading edge of the second injection appears extremely asymmetrical. 
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EOI2 Low lift 

Casel-l - RMS image Case2-1 - RMS image Case2-2 - RMS image 

Figure 5-69 Spray comparisons for different EOI and lifts.+ISB, 1000rpm, Pi=200bar, 

Pb=16.6bar. 
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Figure 5-70 Angle comparisons for different EOI and lifts. +ISB, 1000rpm, Pi=200bar, 

Pb=16.6bar. 

At low lift, the injection seems considerably degraded presenting lower mean angle 

and higher angle variation. The second injection presents a massive mean angle drop 
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and an increase in STD. However, such a high deviation could be due to the near 

distance of the recirculation area (or leading edge) from the angle measuring points 

which would produce a highly inconsistent evaluation of the angle statistic for such a 

short penetration. 

5.7.4. Injector Comparison. 

As can be observed from the single shot images of Figure 5-71 the spray of the two 

ISB prototypes do not reveal any significant dissimilarity. In the comparison between 

first and second injection for the -ISB, a slight difference is visible in the 

recirculation area for the second injection which seems faintly extended upward. This 

effect already observed between Case1-1 and Casel-2 was said to be produced by the 

wakes formed during the first injection which affect the leading edge of the second 

injection. Even in the RMS images, a slight projection of the bright border (typical of 

recirculation area) further upward can be noticed. 

+ISB-EOIl -ISB- EOIl -ISB- EOI2 

Casel-l- RMS image Case3-1- RMS image Case3-2 - RMS image 

Figure 5-71 Spray comparisons for different EOI and lifts. -lSD, 1000rpm, Pi=200bar, 

Pb=16.6bar. 
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No difference in mean angle can be observed between the ISB injectors nor any 

visible difference in the STD. The second injection instead, still present a higher mean 

angle which may well be the result of the extended recirculation area previously 

mentioned. 
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Figure 5-72 Angle comparisons for different EOI and lifts. -lSD, lOOOrpm, Pi=200bar, 

Pb=16.6bar. 

5.S. SUMMARY OF RESULTS 

5.8.1.Influence on Spray Angle of SSB. 

Spark Plug, RPM, Double Injection. 

From the three prototypes under investigation, the SSB injector has proven to be the 

prototype with poorest performance in terms of mean angle stability and spray-to

spray variation. The effects of Spark Plug, engine RPM and double injection for SSB 

injector is summarised in Figure 5-73. The statistical analysis shows that the SSB is 

sensitive to insertion of spark plug and speed increase, which affect considerably' the 

spray-to-spray variation. In double injection mode, the second injection seems 

affected by the first one, which shows a significant difference in both STD and mean 

angle, in particular, the latter one which shows an increase by approximately 5 

degrees. In general, the SSB seems to be very sensitive to any variation of operating 

condition that causes a perturbation of in-cylinder air motion. 
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Figure 5-73 Angle comparisons for different speed and spark plug presence: Pi=200bar, 

Pb=16.6bar, Bit pos. 1111, SSB. 

S.8.2.Influence on Spray Angle of ISB (negative step). 

Spark Plug, RPM, Double Injection. 

The -ISB presents a substantial improvement with respect the SSB, as can be seen in 

Figure 5-74. It is particularly affected by the spark plug presence; however, at 

2000rpm it shows a drop in mean angle and an increase in spray angle STD. The 

double injection seems performing quite well presenting a stable and contained STD 

and only a slight increase in mean angle from first to second injections. 
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Figure 5-74 Angle c~mparisons for different speed and spark plug presence: Pi=200bar, 

Pb=16.6bar, Bit pos. 1111, -ISB. 
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5.8.3. Influence on Spray Angle of ISB (positive step). 

Spark Plug, RPM, Double Injection. 
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Figure 5-75 Angle comparison for different speed and spark plug presence: Pi=200bar, 

Pb=16.6bar, Bit pos. 1111, +ISB. 

The ISB positive step is the best performing prototype within the three injectors, 

(Figure 5-75). The mean angle is insensitive to spark plug and engine speed variation 

as well as the STD which is also quite contained. The double injection does not show 

relevant difference between first and second injection revealing a low spray variation 

and just a slightly increased mean angle like observed for the negative step prototype. 

5.8.4. Influence of RPM on Spray Angle. 

Injector Comparison. 
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Figure 5-76 Angle co"mparison for different speeds and injector prototypes: Pi=200bar, 

Pb=16.6bar, Bit pos. 1111, single injection. 
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The effect of the speed is reported in Figure 5-76 for the three prototypes which 

shows as a common trend the increase of the spray-to-spray variation with the speed 

for all three prototypes. Nothing can be said for the mean spray angle which increases 

in the SSB, decreases in the -ISB injector and is almost unaffected in the +ISB. 

One more time, the comparison of the three injectors underlines the superiority of the 

ISB with respect of the SSB. More specifically the positive step prototype shows the 

best spray stability in terms of STD, and even the mean angle is the least affected by 

engine speed variation. 

5.8.5. Influence of Backpressure on Spray Angle. 

Injector Comparison (Single Injection). 
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Figure 5-77 Angle comparison for different backpressures: Pi=200bar, Bit pos. 1111, single 

injection),lOOOrpm. 

As previously discussed, the backpressure has a sever effect on the spray performance 

and in particular on the spray penetration, due to the change in the surrounding gas 

density and therefore of the drag forces interacting with the spray droplets. 

Another common factor produced by the increase in backpressure consists of a 

deterioration of the spray stability, which systematically affects all the three 

prototypes. 

The results of Figure 5-77 shows that the prototype most affected by this phenomenon 

is the SSB, which presents a dramatic drop in mean angle and increase in STD. Both 

of the ISB show a robust behaviour against the backpressure and the positive-step 

prototype present~ almost constant mean angle whereas the STD is comparable with 

negative-step prototype. 
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5.8.6. Influence of Backpressure on Spray Angle. 

Injector Comparison (Second Injection). 
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Figure 5-78 Angle comparison for different backpressures: Pi=200bar, Bit pOSe 1111, double 

injection (2nd inj.), 1000rpm. 

The effect of backpressure in double injection mode presents a slightly different 

behaviour than single injection mode, which is probably due to the overlapping 

effects produced by the first and second injection events. The increase in angle 

variation is still present in the same extend seen for single injection, however in 

double injection mode, at 16.6bar a mean angle recovery can be observed. In fact, at 

higher backpressure (or late injection), the effects of the wakes produced by the first 

injection and by the higher tumble may produce a diverging effect on the second 

injection angle. 

5.8.7.Influence of Injection pressure on Spray Angle. 

Injector Comparison (Single Injection, lOOOrpm). 
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Figure 5-79 Angle comparison for different needle lifts: Pi=200bar, Pb=16.6bar, 1000rpm, 

double injection (2nd inj.). 
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The comparison of injection pressure was performed only for the two ISB prototypes. 

With both injectors, the decrease of spray momentum was resulting in loss of 

stability, which can be seen by the increase in STD angle in Figure 5-79. At 200bar 

injection pressure, the spray stability is the same for both injectors; however, when 

decreasing the rail pressure to 100bar the spray angle variation is more pronounced 

for -ISB prototype. The small mean angle variation is within the accuracy of the 

analysis and it can be considered negligible for both injectors. 

5.8.8. Influence of Needle Lift on Spray Angle. 

Injector Comparison (Single Injection, lOOOrpm). 
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Figure 5-80 Angle comparison for different needle lifts: Pi=200bar, Pb=16.6bar, 2000rpm, single 

injection. 
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The needle lift plays an important role in the control of the penetration; however, it 

has an impact on the spray stability, as can be seen in Figure 5-80. At low lift, the 

three prototypes present a drop in mean angle and a deterioration of the angle 

stability. The SSB in general already presents a high STD even at full lift and 

switching to low lift does not change much the situation. The +ISB is the injector 

presenting the highest drop in mean angle and also the highest increase of STD from 

full to low lift. The -ISB presents the best performance at 1000rpm with no mean 

angle variation and a very low STD variation however at 2000rpm the injector present 

a sever degradation in stability at low lift whereas the +ISB looks almost unaffected 

by the high speed. Generally, it can be observed that the stability of the three injectors 

decreases at high speed for both needle lifts. 

5.8.9. Influence of Needle Lift on Spray Angle. 

Injector Comp. (Second Injection, lOOOrpm). 
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Figure 5-81 Angle comparison for different needle lifts: Pi=200bar, Pb=16.6bar, 1000rpm, 

double injection (2nd inj.). 

For double injection, Figure 5-81, the results show large variation in mean angle and 

that at low lift the angle drop is more pronounced especially for the +ISB which 

shows the highest STD angle. The -ISB is the most stable of the three prototypes 

against the needle lift variation and even the mean angle does not suffer a sever drop. 
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In general, when considering the needles lift as a parameter of analysis, the injector 

showing the best performance in terms of stability is the Inward Seal Band negative 

step. However, for all the other parameters considered so far the the Inward Seal Band 

positive step has exposed the best performance of mean angle variation and of spray 

stability. 

Table 5-3 Injector ranking for different parameter variation. (1,2,3 injector prototype ranking. 

++,+,- very positive, positive, negative) 

Overall, by ranking the three injector types over each analysed parameter summarised 

in Table 5-3 it appears that the Inward Seal Band positive step is the most stable 

prototype whereas the Standard Seal Band exhibits the poorest performance for every 

operating condition. 

5.8.10.Visualisation of Spray Recirculation in the optical engine 

Further investigations on double injection were then carried out on the second version 

of optical engine, with full stroke quartz liner, shown in Figure 5-3. A series of tests 

were carried out in the second optical engine with a different injector model. The new 

Inward Seal Band prototype was the same as that used in the previous chapter and 

presents a spray angle about 10deg wider than the three injectors analysed in ~s 

chapter. 

In the' previous section it was analysed the effect of the spray angle and its stability for 

several operating conditions. It was said that such outcome is extremely important as 

it determine if the spray injection evolves toward the spark plug area or instead 

impinges against in-cylinder components (valve, spark plug, liner, piston, etc.) or also 

if the spray presents a repeatable pattern rather than spray-to-spray variation which 

could lead to misfiring events. 
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Figure 5-82 Mie scattering images: High-speed video of spray injected under ambient condition 

at 2.lms ASOI, Pi=200bar, lms Inj. Duration, Bit pos.1001. 

Figure 5-83 Recirculation velocity field of spray (using PIV) injected in ambient condition at 

1.93ms ASOI Injection pressure of 200bar and needle set to 1001 bit position. 

However there are other aspects playing an important role in the flow propagation, in 

the space utilisation, and in particular the spray recirculation as it was observed in the 

previous chapter can be consider as a driving phenomenon of the final stage of the 
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spray development. In Chapter4, it was shown the typical structure of the wake 

evolution for an injection under ambient pressure. 

Figure 5-82 reports a rotated snap shot of the image shown in the previous chapter for 

an injection under ambient condition which clearly illustrates the two pairs of counter 

rotating vortices. The confirmation of the way these vortices rotated and the order of 

magnitude of their velocities are shown in the velocity field in Figure 5-83. 

However, the PIV post processing was unable to capture completely the velocity field 

for the internal wake and only a small group of vectors near the injector axis which 

show the upward direction of the flow agrees with the order of rotation schematised in 

Figure 5-82. 

The same 2D Mie scattering investigation was then applied on the Hydra engine to 

visualize the effect of the backpressure and of the in-cylinder air motion on the 

reticulating flow. In order to relate the recirculation to the in-cylinder air motion it 

must be kept in consideration the fact that both intake valves are on the right of the 

image and therefore according the crank angle position the tumble intensity is likely 

to be higher on the right side. 

By mean of an optical fibre, it was possible to adjust the laser sheet to split the spray 

through its symmetry plane. However, the presence of the cylindrical liner introduced 

a source of distortion and it was not possible to visualise the recirculation as clear as 

that for the free injection into the ambient. Beside, at part load, the raising piston near 

the top dead centre was also cutting the laser path creating large areas of shadow. 

The test conditions, at which it was possible to visualise the recirculation area, are 

listed in Table 5-4 below. For each case, it is shown an image during the injection 

event in which is possible to visualise the formation of the external vortex and have a 

reference of the cone angle. In the second snap shot it is shown the actual 

recirculation which takes place after ~he end of the injection. As the static nature of 

the images reported in this paragraph does not give the feeling of the flow motion t~e 

same image is repeated tracing the recirculation areas with respect to the injector axis 

and of the cone profile traces. 

, CylincJer pressure 1 bar 2.7bar ',' 4bar 
Engine speed 

r 

2000rpm 1000rpm 1000rpm 1000rpm 

Injection O.Sms CaseS CaseS Case7 

duration 1ms Case4 Case3 Case1, Case2 

Table 5-4 Test conditions for spray recirculation visualisation (for all cases full lift 1001). 

The first two cases show the recirculation for same injection conditions which gives a 
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reference of the nature of the recirculation repeatability for different spray events. In 

Figure 5-84 (easel), the top image of the spray at O.56ms ASOI shows a visualisation 

in which is possible to observe the formation of the external wake. At this stage, the 

spray is too dense to allow the laser light passing through the spray cone and therefore 

no information of recirculation formation inside the cone spray. 

In the second image the visualisation shows a snapshot taken after the end of the 

injection at 1.28ms ASOI. At this point of the spray evolution the plume is less dense 

and the laser light is no longer trapped by the spray cone and therefore it is possible to 

visualise the full section of the reticulating area which gives a better view of the late 

development of both inner and outer wakes. 

Figure 5-84 Mie scattering images of spray recirculation. NI A 70 BTDC, 1000rpm, Pb=2. 7bar, 

injection duration Ti=1.0 ms, Pi=200bar, Needle lift set up. Bit. 1001 

The recirculation image of Figure 5-84 is similar as the visualisation proposed in 
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Figure 5-85 in which it can be observed the counter rotating vortices. However in the 

left side of the spray only the external wake is visible with no information about the 

inner recirculation which is either missing or is simply hidden by the shadow due to 

the lighting arrangement. 

Figure 5-85 Mie scattering images of spray recirculation. N/A 70 BTDC, 1000rpm, Pb=2.7bar, 

injection duration Ti=l.O ms, Pi=200bar, Needle lift set up. Bit pos 1001. 

The recirculation areas in Figure 5-85 are very similar to the previously observed for 

the same operating conditions and even the wakes present similar relative distance 

from axis and cone traces. In both cases, the two sides of the injection look quite 

different and overall the recirculation areas seem very asymmetric that could be 

probably due to the disturbing effect of the cylinder tumble. 

However, in all recirculation images observed under ambient condition or in the hydra 

engine, the external wake was always found to lay on the spray cone trace direction 

whereas the internal wake was displaced toward the injector axis. 
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S.S.10.1.Effect of Engine speed on the spray recirculation 

Figure 5-86 and Figure 5-87 compare the recirculation images obtained at 1000 and 

2000 rpm, respectively. The snap shot of the spray recirculation at ambient cylinder 

pressure at 1000 rpm presents an image of the wakes quite blurry and undefined. 

However, from the video of the spray evolution it could be possible to trace the wake 

motion for both side of the spray. 

Case 3 O.66ms ASOI 

Figure 5-86 Mie scattering images of spray recirculation. N/A 120 BTDC, 1000rpm, Pb=lbar, 

injection duration Ti=1.0 ms, Pi=200bar, Needle lift set up. Bit pos 1001. 

327 



Figure 5-87 Mie scattering images of spray recirculation. N/A 120 BTDC, 2000rpm, Pb=lbar, 

injection duration Ti=1.0 ms, Pi=200bar, Needle lift set up. Bit pos 1001. 

The spray recirculation at 2000rpm produces larger wakes than those seen at 

1000rpm, besides it can be observed a higher degree of asymmetry of the vortex 

levels which could be due to the effect of the higher tumble motion caused by the 

higher engine speed. 
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5.S.tO.2.Effect of backpressure on the spray recirculation 

Next, a comparison between different crank angle phases and therefore different 

backpressure will be shown in Figure 5-88, Figure 5-89 and Figure 5-90 

Figure 5-88 Mie scattering images of spray recirculation. N/A 120 BTDC, 1000rpm, Pb=1 bar, 

injection duration Ti=0.6ms, Pi=200bar, Needle lift set p. Bit 1001. 

For the case at 0.6ms injection duration, the snap shot for the recirculation are 
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compared to that of Ims ASOI. The recirculation area at ambient condition in Figure 

5-88 again shows only the two counter rotating wakes on the intake side. However, 

the exhaust side shows the presence of a large external vortex which is at a lower 

level position compared to the right recirculation area. In this case the strong 

recirculation asymmetry could be due to the early injection when still the intake phase 

has not completely finished and the tumble (or air wakes) caused by the closing valve 

are relatively strong and they could introduce a drag resistance to the propagating 

spray vortices. 

Figure 5-89 2D Mie scattering images of spray recirculation. N/A 70 BTDC, 1000rpm, 

Pb=2. 7bar, in~ection duration Ti=0.6ms, Pi=200bar, Needle lift set up. Bit pos.lOOl. 

At 2.7 bar backpressure (Figure 5-89) the wake pattern seems more symmetrical and 

both side vortex pairs are visible. A common point of comparison between the 

recirculation at lOOOrpm ambient vs. high cylinder pressure is the position of the 
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wakes with respect of the spray leading edge. At low backpressure the wakes does not 

drag the whole spray flow and the spray propagate further. On the contrary, the higher 

is the cylinder pressure the more compact are recirculation and the spray leading edge. 

Figure 5-90 Mie scattering images of spray recirculation. SC 70 BTDC, 1000rpm, Pb=4bar, 

injection duration Ti=0.6ms, Pi=200bar, Needle lift set up. Bit. 

Finally, at 4bar backpressure it is still possible to observe both counter rotating wakes. 

The recirculation pattern looks again very asymmetrical with the exhaust pair of 

wakes at a lower level with respect of the intake side wakes. In this case, the higher 

pressure co~ld amplify the effect of the drag forces due to the in-cylinder air motion. 

Therefore, it seems that for this engine setup and for this injector prototype there is an 

optimal backpressure (-2.7bar) in which air motion from induction phase and drag 

effect from the increased air density do not affect the symmetry of the recirculation 

pattern. 
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5.9. SUMMARY 

The present chapter exposed the experimental work performed in the hydra optical 

engine in order to characterise the spray structure at different operating conditions and 

to identify the effect of the internal air flow on the spray angle and its stability. 

The investigation strategy was based on the comparison of the spray images and 

angles for different injector prototypes and for three different operating conditions. 

The injector prototypes differs from each other according to the relative position 

between the needle and cartridge sealing area so called "step" and are referred to as 

the positive (+ISB), neutral (SSB) or negative (-ISB) step. 

The images of the spray at the end of the injection were post processed in order to 

obtaining mean and RMS images representative of the whole set of 64 samples for 

each operating condition. For the purposes of presentation, comparison and 

discussion, the spray images are grouped by single shoot (instantaneous), mean and 

RMS images at a common operating parameter and are followed by the statistical 

analyses of the spray angle which revealed useful information of the sensitivity of the 

variables on the mean cone angle and stability. 

For all the injector types the mean images showed, in general, very well defined 

strings even over an average out of 64 images thus showing a strong and repeatable 

string pattern. Several parameters were studied and the following are a summary of 

each effect. 

In the first comparison, the effect of the backpressure was investigated for the three 

different injector types. No obvious difference was observed between the injectors at 

ambient -cylinder pressure whereas at 10.9 bar the Standard Seal Band (SSB) 

prototypes showed slight asymmetrical shape tilted toward the sparkplug which 

suggests higher sensitivity to the tumble motion at higher backpressure. Similar 

results were confirmed at 16.6bar where the SSB spray seems to be stretched toward 

the sparkplug and it presents a smaller mean spray angle (78deg) than those of the 

Inward Seal Band injectors (both steps) by 10 degree. For all three tested 

backpressures, the SSB revealed the highest standard deviation which also suggests 

highest angle instability. 

The previous comparison at 16.6bar was then repeated at lower needle lift (bit 

position 0000) for the three injectors and showed a significant decrease in penetration 

due to the drop in discharge coefficient. The negative step prototype presents the most 

symmetrical shape" while both neutral and positive steps describe a non-uniform 
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penetration along the spray circumference. 

It was then tested how the increase of engine speed and the presence of the spark plug 

affect the spray by modifying the in-cylinder air motion. As expected, the increase of 

speed produced an increase in angle variability (higher STD) due to the increase of air 

motion for all three prototypes whereas no relevant differences were identified by 

adding the sparkplug. 

Each injector was then separately analysed according a parametric comparison of the 

operating condition. It was observed that the penetration reduces considerably by 

increasing the cylinder pressure due to the resulting raise of the gas density which in 

turn intensifies the drag effect against the spray propagation. The spray shape also 

seemed to be affected by the backpressure and as the pressure rose the spray lost its 

symmetry progressively and stretched toward the spark plug. In fact, as for the spray 

penetration, the increase in the surrounding gas density amplifies the drag forces and 

therefore reduces the fuel droplets velocities (penetration) so that they become more 

vulnerable to the tumble motion directing the spray towards the sparkplug. Since the 

tumbling, by its nature, is an unstable phenomenon then its effect is transmitted to the 

spray stability which damps down with the increase of the backpressure. 

First, the Standard Seal Band injector was analysed against the backpressure variation 

and the results revealed a significant sensitivity of the spray penetration. The angle 

reduction is accompanied by an increase in STD as the backpressure increases 

indicating also an increase of spray-to-spray variation which could introduce -

problems such as misfiring during the part load mode. 

The Inw(lTd Seal Band injectors present similar trend as the Standard Seal Band but 

are less sensitive in terms of mean angle variation and STD revealing a higher 

resistance against the in-cylinder pressure conditions. More specifically both step-type 

injectors seem preserving their symmetrical shape despite the increase in gas density 

and the meari images seem more defined in terms of string structure which suggests 

that the spray pattern is more repeatable. 

The same backpressure analysis was then repeated for the step-type injectors for 

lower rail pressure of 100 bar showing the similar decrease in penetration and the 

mean spray angle variation against the backpressure as seen at 200bar injection 

pressure. It can be concluded that the rail pressure may be a driving parameter for the 

mechanism concerning the spray atomisation however; it does not seem to affect 

appreciably the spray shape and its stability. 
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As one of the main advantages of the Piezo Injector is the possibility to vary the 

needle lift at different levels according the activation of the piezo body which set the 

maximum lift position of the pintle. Therefore, it was of interest to see the comparison 

of the angle and penetration characteristics between the maximum needle lift 

(Switches @ 1111) and minimum needle lift (Switches @ 0000). The most noticeable 

difference after decreasing the needle was the well defined decrease in spray 

penetration which provides a possible mechanism to control the penetration with this 

type of injectors and therefore to prevent wall/piston impingement. By switching the 

needle lift from minimum to maximum, at 200bar injection pressure and 1 bar 

backpressure, both step-type injectors present an increase in axial penetration of 36% 

from 5.5mm to 7.5mm which can give a high flexibility for the penetration control at 

part load. 

In terms of angle comparison, the SSB has shown the highest STD and therefore the 

highest spray angle variability. The ISB negative step presents a much higher mean 

angle than the SSB but the STD is much. reduced for both lifts with a slight 

improvement at full lift. The Positive step injector prototype presents an intermediate 

behaviour between SSB and -ISB. At low lift, the mean angle is as low as for SSB 

with similar STD whereas at full lift the mean angle rises of about 10deg comparable 

with the negative step injector. Thus, the results indicate that increasing the valve lift 

causes an increase in the spray cone angle and improves its stability. Among the three 

prototypes, still the no-step type presents the worst performance in terms of angle -

variability for both lifts whereas the negative step ISB seems to be the most robust 

against needle lift change. 

Another important potential with the DISI technology is the ability to perform the 

double injection strategy which can improve transition between- part load and full 

load, by injecting partially during the intake phase and partially during the 

compression ·stroke and at part load can be beneficial for soot emissions reduction, 

and can provide improved fuel economy at the transition area between stratified and 

homogeneous mode. 

For this stra~egic potential a limited comparative angle analysis at different operating 

conditions was performed. The results have shown that the wake of the first injection 

was strong enough to influence the in-cylinder air motion a head of the second 

injection, affecting its spray characteristics with an increase in spray cone angle and a 

deterioration of its stability. 
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The effect of backpressure in double injection mode presents a slightly different 

behaviour from the single mode due to the overlapping effect produced by the first 

injection and tumble. The increase of angle variation is still present in the same 

extend seen for single injection, however, at 16.6bar it can be observed a mean angle 

recovery which may suggest that at higher backpressure, the combination effects of 

the wakes caused by the first injection and by the higher tumble can produce a 

diverging effect on the second injection angle. 

In the comparison of second injection for the three Seal Band types the SSB has 

revealed the poorest performance in terms of mean cone angle variation and spray 

stability. The second injection of the +I-step-type injectors showed better performance 

and overall the positive step Inward Seal Band has shown to be the most robust 

prototype in terms of stability and mean angle variability at different operating 

conditions. In Table 5-3, the three injector prototypes were ranked for each individual 

parameter and it appeared that the Inward Seal Band positive step is the most stable 

prototype. whereas the Standard Seal Band presented the poorest performance for 

every operating condition. 

Further investigation on spray recirculation was then carried out on a second version 

of optical engine with full stroke quartz liner and the tests were carried out with the 

same injector model used in chapter 4 

The spray recirculation, as explained above, has been considered as the driving 

phenomenon of the final stage of the spray development. 2D Mie scattering -

investigation was applied on the Hydra engine in order to visualize the effect of the 

backpressure and of the in-cylinder air motion on the reticulating flow for different 

operating conditions. The recirculation area showed the presence of two pairs of 

counter rotating vortices as previously observed (Chapter 4) in the visualisation for 

free injection under ambient condition. 

The results of spray images showed that for different cylinder pressure the counter 

rotating wakes present an asymmetric pattern with respect of the injector axis with the 

recirculation on the intake side having a lower penetration which may be due to the 

intake air s~ream or the iti-cylinder tumble. However, it seems that for this engine 

setup and for this injector prototype there is an optimal backpressure (-2.7bar) in 

which air motion from induction phase and drag effect from the increased air density 

do not affect the symmetry of the recirculation pattern. The spray recirculation at 

2000rpm exposed more expanded wakes than those observed at 1000rpm, in addition, 
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the spray images showed a higher degree of asymmetry of the vortex levels which 

could be due to the effect of the higher tumble motion caused by the higher engine 

speed. 
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Chapter 6. 

Conclusion and recommendations for future work 

The experimental investigation of the internal flow and spray characteristics from 

outwards opening gasoline pintle injectors has been carried out at different operating 

conditions using a range of optical techniques. In the present research programme 

measurements were obtained in large-scale transparent models of pintle-type injectors 

and several real size prototypes within a constant volume chamber and optical 

engines. 

A summary of the main findings obtained from the results of this research programme 

are presented in the following sections: 

6.1. LARGE-SCALE MODEL 

The investigation on the large-scale nozzle model has provided additional benefits in 

understanding the internal flow structures and their dynamics between the injector needle 

guide and nozzle seat and the complex two-phase in-nozzle flow between the nozzle seat _ 

and the nozzle exit. More specifically, the results revealed the presence of four counter

rotating vortices inside the injector and their effect on the tangential oscillation of the 

resulting spray. Furthermore, the magnified image of the spray and of the internal flow 

pattern obtained with the CCD camera and the high-speed video camera have identified 

the presence of air entrainment, cavitation at the nozzle exit and their combined effects on 

the spray structure and surface. A summary of the main findings observed in the large

scale model is reported below: 

~ Between the end of the square guide on the needle and upstream of the nozzle seat the 

flow e'xhibits a complex nature, consisting of four jet flows which after interaction 

created four pairs of unstable counter-rotating vortices with a predominant 

circumferential oscillation as was observed from high-speed videos. Simultaneous 

visualisation between the upstream flow and the spray showed that the source of the 

observed tangential flow oscillations was actually the upper vortical structure. 
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Parametric analysis of the measured LDV data has revealed a linear increase of these 

tangential flow frequencies with flow rate, needle lift and velocity at constant needle 

lift. 

~ Spray visualisation of the in-nozzle cavitating flow in convergent-divergent nozzle 

seat area has shown the presence of gas phase downstream of the nozzle seat region. 

These bubbles could be either air entrainment (hydraulic flip) due to the separation of 

the liquid stream from the internal surfaces at operating conditions with low to 

moderate flow rates where the cavitation number was below 1, or purely cavitation 

when the operating conditions correspond to a cavitation number equal or higher than 

1.1. 

~ From several optical and quantitative considerations, it was established that cavitation 

and air entrainment are two different phenomena possessing different structures and 

dynamic evolutions and occurring at different operating conditions. 

~ The study of the air entrainment phenomenon has shown that the emerging spray 

could have two distinct cone angles according to the location of the air entrainment in 

the nozZle, which was attached either to the needle or to the cartridge wall surfaces. In 

the former case the air bubble attached to the needle forced the flow to be deflected 

away forming a large spray cone angle whereas in the latter case the liquid flow was 

deflected inwards as it passed over the air bubble attached to the cartridge surface, 

thus producing a smaller spray angle. 

~ The internal flow and spray visualisation images revealed that the string-type spray 

structure with both cone angles was formed by longitudinal filaments due to the

profiling effect of the liquid passing around the trapped air bubbles. These images 

showed the presence of alternating thin and thick filaments, with the latter positioned 

downstream of the air bubbles and the former located between two adjacent bubbles. 

~ A quantitative analysis of the strings number at different operating conditions showed 

an increasing trend of the strings number with flow rate (or Reynolds number), more 

specifically, the spray velocity was identified as the main driving parameter promoting 

the strings number increase. 

~ With the cavitating model, although the obtained string-type structures were similar to 

the spray structures observed in real-size injectors, it can not be stated that the only 

mechanism driving the filament formation was air entrainment since a finer string 

structure has been observed in an injector design not having a convergent-divergent 

nozzle seat, i.e. with parallel nozzle seat, where no air entrainment was observed. 

However, it can. be argued that in the parallel nozzle seat injector, also called non

cavitating design, the strings are formed by much smaller size bubbles right at the 
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nozzle exit which are unable to penetrate into the nozzle but they can still produce the 

profiling effect responsible for the finer string formation. 

~ Inception of cavitation in the convergent-divergent nozzle was observed only for 

needle lifts of 0.57 and below, with full cavitation occurring at the lower range of 

needle lifts. Visualisation of the cavitation bubbles at all conditions showed that 

cavitation initiated at the edge (seat region) formed by the converging-diverging 

passage, followed by a quick disintegration and dispersion as it was convected 

downstream towards the nozzle exit. The flow dynamics of this phenomenon 

proved to be much faster than those observed for the air entrainment bubbles so 

that a higher frame rating was required to capture the sequential motion of the 

cavitation evolution. 

~ In order to discern the two phenomena, the in-nozzle flow was visualised for 

certain operating conditions where the air entrainment and cavitation bubbles were 

occurring simultaneously, which showed clearly the difference between the bubble 

and vapour dynamics. The results also revealed that the mechanism driving string 

formation was still air entrainment; however, the presence of cavitation at high 

liquid velocities was creating a spray structure resembling that of the real size 

injector. 

~ Flow visualisation also revealed how the presence of cavitation contributes to the 

enhancement of the break up of the liquid surface structure downstream of the 

nozzle exit, which confirms the beneficial effect of cavitation on fuel atomisation. -

~ The. statistical analysis of the strings number in the real size injector showed good 

correlation with the large-scale model but only at high needle lifts and Reynolds 

numbers. In the large-scale model the observed linear growth is valid across the whole 

range of measurements whereas in the real size of linearity can. be observed only at 

high Reynolds numbers which correspond to full needle lift. 

Overall, in the real size nozzle it can be argued that the flow velocity is not the only 

parameter driving the strings number formation as in the large-scale model; in fact this 

phenomenon does not necessary obey the laws of dynam~c and geometric similarities. 

However, qualitative information could still be deri~ed from the enlarged model and for 

instance, it was observed that both injector sizes exhibited the same trend of increasing 

strings number with injection pressure. 
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6.2. REAL SIZE INJECTOR 

6.2.1. Spray Characteristics 

Following the large-scale model, the investigation of the inward seal band injector 

focused on the characterisation of the real size injector. Mie imaging, PDA and PIV were 

used to evaluate the spray development, droplet size and velocity distribution, as well as 

the air entrained motion near the nozzle exit. However due to difficulties with the 

instrumentation in the optical engine, like optical accessibility, distortion and signal 

attenuation, the real-size nozzle investigation was first carried out in more detail in a 

special by designed constant-volume chamber followed by some limited measurements 

inside the optical engine. Here is the summary of the main findings: 

~ Spray visualisation of the pintle-type injector flow showed the filament-like nature 

of the emerging spray in the form of longitudinal strings which were characterised 

by a non-homogenous droplet velocity and droplet size distribution, similar to that 

of the' individual spray of a multihole injector. The magnified images of the 

emerging spray flow at standard conditions revealed the presence of three spray 

structures at different phases of its development. 

o The first type of structure occurred in the early phase of the spray, during the 

needle opening period, as the fuel emerged from the nozzle and was characterised 

by a group of large droplets and a liquid sheet moving at uniform velocity against 

the shearing action of the air. 

o The second spray structure, which followed in time the first type, and was 

characterised by a stable set of well-defined straight strings and a fishbone 

structure. 

o After a fixed period, the third spray structure appeared when the well-defined 

string pattern started oscillating transversally. The PDA results at the centre of the 

string'showed sharply the change between the two phases associated with an 

increase in the velocity range of the droplet sample and a decrease in AMD 

. probably due to flow turbulence, which promoted the secondary break up. 

Subs~quent investigation with 2D Mie scattering, PDA and PIV diagnostic 

measurements revealed that the possible cause of this instability was the strong 

secondary break up and the formation of a recirculation zone, which disturbed the 

straight propagation of the strings. 

~ The overall droplet size and velocity distributions have confirmed the sequential 
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presence of the three string structures mentioned above. In addition, the results 

revealed the presence of a tumble motion propagating downwards in the wake of 

the spray. 

~ According to the Weber number trend, the secondary breakup takes place up to an 

axial location of 20mm (27mm in jet direction). This result was in agreement with 

the mean diameter distribution which shows a reduction from 14Jlm to 7Jlm (50%) 

within 27mm from the injector tip. 

~ At axial location beyond 40mm, phenomena such as turbulence and recirculation 

could promote droplet collision and, therefore, coalescence represented in PDA 

plots by bimodal distribution corresponding to a group of very fine droplets and a 

group of agglomerated droplets. 

6.2.2. Spray Recirculation and Air Entrainment 

~ The qualitative analysis of the spray image obtained by 2D visualisation, PIV and 

LDV diagnostics, along the symmetry plane has revealed the presence of two 

counter-rotating rings forming internally and externally to the spray cone 

trajectory. It was interesting to note that the spray structure within 20mm from the 

nozzle exit looked completely undisturbed. The images sequences also showed 

that the propagation of the external wake was in the direction of the jet whereas 

the internal vortex was pushed towards the injector axis through expansion of the _ 

outer vortex and the action of air entrainment. 

~ The PIV technique was' also used to quantify the air entrainment process by 

seeding the surrounding air with fine quasi-static water droplets and injecting fuel 

at 200bar towards ambient backpressure. The results showed the formation of ajet 

like air motion almost in the normal to the spray direction as soon as the spray 

emerged from the nozzle. The veloCity field of the air increased progressively with 

time after the start of injection as the spray evolved. The area of air entrainmeht 

interacting with the spray surface gradually increases with time. 

~ Towards the end of injection at 0.63ms ASOI and beyond, when the droplet 

velocities were reduced, the PIV images showed clearly how the entrained air 

penetrated into the spray contributing to the formation of recirculation zones. The 

results also showed how air entrainment acted on the internal recirculation zone 

forcing it to be displaced toward the inj ector axis. 

~ Comparison between the PIV and the LDV measurements showed good 
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agreement, which provided added confidence to the presented results. The LDV 

data of air entrainment at different injection pressures have shown the variation of 

the air velocity component normal to the spray surface and its proportionality to 

any changes of the injection pressure. 

> This outcome could link the current results with the previous findings in the large

scale model where it was seen how the air bubbles entrained up stream at the 

nozzle exit were responsible for the string formation. It was also quantified in the 

real size injector how the increase in rail pressure (i.e. the injection velocity) 

affected the increase in the number of strings. Therefore, from the PIV outcome, it 

could be deduced that the link between strings number and injection pressure is 

due to the increase in the air entrainment velocity at the nozzle exit which affects 

the size of the entrained air bubbles into the nozzle and, thus, the strings number. 

6.2.3. Parametric Studies 

> Further parametric analysis was carried out in a constant-volume chamber in order 

to simulate the actual cylinder backpressure and temperature. The effects of these 

parameters together with injection pressure were quantified by considering the spray 

development and the droplet velocity and size distribution obtained from 2D Mie 

images and PDA measurements at an axial position of 10mm. The following is a 

summary of the main findings: 

o At a chamber temperature of 160°C, an increase in backpressure caused an 

immediate decrease in the average droplet velocities due to the increased drag 

motion as a result of the increase in gas density. The consequence of this is 

droplets deceleration resulting in a smaller Weber number and reduced 

probability of secondary breakup. Another consequence could be an increase 

in droplet penetration time and therefore the longer time available for 

evaporation. The latter effect was evident in the droplet size trend, which 

decreased as the backpressure increased due to the loss of droplet mass during 

the evaporation process. 

o The parametric analysis revealed a droplet velocity increasing as the rail 

pressure increased and a droplet diameter decrease due to the increase in the 

droplet relative velocity and, therefore, the Weber number which enhanced the 

droplet seco~dary break up. 

o Finally, the increase of chamber temperature gave rise to an increase of the 
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droplet velocity and a decrease of the droplet diameter. The former effect is 

probably linked to the decrease in gas density and, therefore, a decrease in the 

drag force from the surrounding gas, whereas the latter effect is caused by the 

enhanced evaporation resulting from the increase in temperature. 

6.3. REAL SIZE INJECTOR IN THE OPTICAL ENGINE 

To complete the characterisation process it has been necessary to observe the injector 

performance under actual operating conditions. The spray visualisation was-thus carried 

out in an optical engine in order to observe the effects of the in-cylinder airflow and 

thermodynamic conditions on the spray stability and spray cone angle. This study was 

based on the comparison of three different injector prototypes varying in terms of their 

exit geometry; more specifically, in the presence of a positive (+ISB), neutral (SSB) or 

negative (-ISB) steps between cartridge and needle in the cross-sectional profile. 

Different operating conditions were considered and at each condition the spray 
.. 

visualisation results were post-processed in order to obtain spray cone angle data and 

statistical images of the mean and RMS from a representative set of images. 

~ The first important observation for all injector types was the spray structure and, in 

particular, the string structure. The results showed a spray pattern with a well-defined 

string structure and a repeatable string pattern. 

~ For all three injector prototypes, it was observed that spray penetration was reduced 

considerably with increasing chamber pressure due to the resulting increase of gas 

density, which enhances the drag forces against the propagating spray; an increase 

from 1 bar to lObar produces a reduction in penetration of -30%. 

~ The effect of engine speed on the spray characteristics was considered next; as 

expected, the increase in engine speed caused an increase of spray instability due to 

the augment action of the in-cylinder turbulence. 

One of the advantages of the piezo injector is its adjustable needle lift through control of 

the piezo body activation. Therefore, the injector's response was compared at full lift and 

at minimum ~eedle with the followings conclusion: 

~ A strong decrease in spray penetration was observed when the needle lift was reduced 

which can be used for controlling the injection process and preventing wall 

impingement during part load operation. 

~ The comparison. of the three prototypes revealed that the SSB exhibits the worst 

performance in terms of spray angle stability for both lifts and is not suitable for the 
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spray-guided configuration during part load operation, while the Inward Seal band 

negative step (-ISB) has proved to be the most robust and stable configuration against 

needle lift variation. 

Another important flexibility offered by the piezo injector is its multiple injection 

operation due to its very fast response time, which can enhance the transition between part 

load and full load by fractioning the total fuel mass, injected during the intake and 

compression strokes. The main findings are listed below: 

~ In general, the first of a multiple injection was found to be similar to that of single 

injection but the second injection was affected by the residual flow field persisting 

from the first injection. More precisely, 200bar injection and low lift during the 

induction stroke the spray angle of the second injection was reduced and the angle 

instability increased. However, at the higher cylinder pressures during the 

compression stroke a good recovery in the mean cone angle of the second injection 

was observed which might be due to the fact that the residual flow field from the first 

injectiori was suppressed by the higher backpressure, being much less influential to 

the second injection spray. 

~ The comparison of the three injector prototypes identified the Standard Seal Band as 

the injector with the poorest performance in terms of spray stability and mean angle 

whereas both step-type injectors exhibited better performance; in particular, the 

positive step seemed to produce the most robust spray in stability with less spray 

flapping over the different operating conditions. 

~ Overall, the classification of the three prototypes has shown that the Inward Seal band 

positive step produces the most robust spray angle, which is appropriate for use in 

stratified fuel mixtures based on the spray-guided configuration, whereas the Standard 

Seal band injector (no step) has shown the poorest performance for almost each 

parameter analysis. 

6.4. SPRAY RECIRCULATION IN THE HYDRA ENGINE 

In order to investigate the spray recirculation phenomena under actual engine operating 

conditions, 2D Mie scattering imaging was carried out in the optical engine with the same 

procedure adopted for the free spray imaging presented in Chapter 4. The following 

effects of the backpressure and in-cylinder air motion on the spray reticulating flow 

were observed: 

~ At the late stage ?f injection, at about I.Oms ASOI, has two toroidal counter rotating 

vortices similar to those identified with the free spray were observed, at the inner and 
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outer side of the spray jet. The cross sectional image of the recirculation zones showed 

an asymmetric pattern of the pairs of vortices with respect to the injector axis and that 

this pattern became more asymmetric with increasing cylinder pressure. 

~ The cause of this asymmetry was attributed to the disturbance from the air entrained 

during the induction phase, from the strong tumbling air motion and the increased 

drag effect at the higher cylinder pressure. 

~ The observation of spray recirculation at 2000rpm showed larger zones than those 

seen at 1000rpm.; at this speed the recirculation pattern revealed a higher degree of 

asymmetry probably attributed to the stronger in-cylinder charge motion and higher 

turbulence intensities at higher engine speeds. 

6.5. RECOMMENDATION FOR FURTHER WORK 

6.5.1. Large-scale Injector Model 

The experiment in the large-scale injector model has proved to be a powerful tool in 

the effort to understand the mechanism responsible for the string formation in the 

generated sprays. Nevertheless, certain aspects of this phenomenon remain 

unexplained and require further investigation. For instance, the mechanism driving the 

formation of fine strings in the non-cavitating nozzle, where no air entrainment 

bubbles in the nozzle passage are detected, is still unresolved. However, it can be 

argued that the presence of tiny air bubbles near the nozzle exit, which were not -

visible through the optical window, are responsible for the string formation. 

To address this problem the following experiments can be performed: 

~ The presence of these small air pockets could be assessed by testing different 

models with intermediate geometry between the parallel type (non-cavitating) and 

the convergent-divergent type (cavitating) nozzle. This approach could also 

provide a view of how the observed phenomena are related to the nozzle geometry 

and the way the angle of the convergent divergent nozzle seat influences 

cavitation. 

~ The obse{Vation of models of intermediate scale would help to assess how the 

scale affects the phenomena of cavitation and air entrainment, as well as the limits 

of the criteria of similitude. Therefore, it could be possible to obtain validation of 

the previous results and also to deduce results for the real size injector from the 

extrapolation of the outcome of the scaled models. 
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> Further enhancement to the visualisation and the optical diagnostic techniques 

adopted for the large-scale model could be achieved by application of the 

refractive index matching method [35, 38, 99] in which the present working fluid 

(water) will be replaced by a mixture of liquids having a refractive index equal to 

that of Perspex. With this technique, the internal edges of the enlarged model 

would disappear when the model is filled up with this liquid mixture, thus 

preventing the light path from optical distortion. A previous PIV experiment in a 

large-scale model had shown some limitations due to the stro'ng distortion of the 

image in the proximity of the internal edges. The use of refractive index matched 

liquid would allow capturing the velocity field of the exit jet spray, the in-nozzle 

flow in the proximity of the wall and around the exit edges where often 

phenomena of turbulence and flow separation are more important. However, the 

toxic nature of the refractive index matched liquid would require the model to run 

completely sealed ( close loop) and thus, necessitating injection into liquid. This 

will make impossible the investigation of air entrainment with the refractive 

matching technique unless non-irritant liquids will be identified with a mixture 

refractive index matching that of Perspex. 

6.5.2. Spray Characterisation of the Real Size Injector. 

The experiment carried out on the adjustable injector holder has proved to be extremely 

useful to overcome the problem of light attenuation in the PDA and visualisation tests. 

The results obtained in such an accessible test rig have been useful to identify the spray 

mechanism occurring under real engine operation. Similar advantages were obtained in 

the transparent large-scale model and were reported in Chapter 3 due to the larger 

dimensions and the full optical access, which allowed observation of the in-nozzle flow. 

Unfortunately for several phenomena occurring in the large-scale model the criteria of 

similitude were not working. In addition, in the large-scale model the effect of flow 

transient due to needle movement was absent since it was operating under steady-state 

conditions. In order to overcome this difficulty several compromise solutions can be 

proposed which could provide additional information on the internal flow phenomena like 

air entrainment, initiation of cavitation and counter rotating vortices; for example: 

> To manufacture a small radial portion of needle and cartridge in transparent material 

to allow inlet and outlet light paths for improved visualisation of the in-nozzle (seat 

passage) flow. This portion could be machined from a real prototype and embedded 

by means of adhesive resin. 
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~ An alternative could also be the complete replacement of the nozzle injector tip with a 

transparent one but in that case the sealing capability and resistance of the needle 

against the metal injector body would need to be assessed. 

~ Further investigation could also be carried out on the air entrainment according to the 

investigation performed by Siebers et al. [66]. In fact, as it was observed, the strong 

resemblance between the string behaviour and that of an individual jet from a 

multihole injector may also suggest that the scaling law applied by [66] on the 

multihole jet could also be applied on a single string of the pintle-type spray. 

Therefore, more detailed information on the spray mass rate in the real size injector 

would allow analysis of the correlation between the amount of air entrainment and the 

emerging spray. Besides, further PIV experiments on the air entrainment velocity field 

could provide additional validation for the previously analysed flux calculation. 

~ The application of PIV diagnostics could also be extended to the constant volume 

chamber in order to perform a more detailed parametric study on the effects of 

chamber pressure and temperature on the spray structure. 

6.5.3. Optical Engine. 

The present results have allowed classification of the performance of three different pintle 

nozzle geometries but without providing a precise understanding of the mechanism 

related to each different type of step. This can be achieved by -the following 

investigations: 

~ Use the large-scale model of the injector, which proved to be a powerful method to -

observe the internal flow and the spray behaviour in the near nozzle region, to perform 

a paraIlletric study with LDV on nozzle models with different step dimensions. This 

would allow improved understanding of the way the emerging flow is affected by the 

geometry of the nozzle and how this influences the spray angle stability by studying 

the spectral analysis of the velocity distribution. 

~ In addition,' further investigations on the three real size injectors could be done in 

order to study their performance in terms of spray atomisation using PDA in a 
constant-volume chamber. This may require a more manageable and accessible 

test rig with improved optical access . 

. 6.5.4. Optical Engine: Spray Recirculation 

The spray visualisation has successfully shown the presence of recirculation zones at 

different operating conditions, which are candidate locations for mixture ignition. It was 

possible to speculate several theories relating the recirculating pattern with the in-cylinder 
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air motion. To understand the suggested points better, the following experimental works 

may be performed: 

~ In order to assess these phenomena, a more detailed understanding of the mechanism 

driving the recirculation zones is needed and therefore a further study with PDA, LDV 

and PIV diagnostics in optical engine could help to quantify the spray velocity field 

and to assess the air motion and turbulence through introduction of external seeders 

into the intake system. 

~ However, due to the distortion of the laser path through the engine's cylinder wall and 

its attenuation due to the piston partially interrupting the light path, an alternative 

approach is needed such as the insertion of the laser fibre from the flame deck in place 

of the spark plug. Although not a straightforward approach, it deserves further 

attention. 

Concluding Remarks 

The successful introduction into the market of the second-generation direct-injection 

gasoline engines has raised expectations about their ability to compete directing with 

advanced diesels in term of fuel efficiency and CO2 emissions. Since then two major 

issues are complicating their further development and market penetration: the fluctuations 

in the oil price and the financial crisis, which has paralysed the automotive industry. 

Nobody can predict the impact of the crisis on the different car markets and, in particular, 

on the gasoline-to-diesel market share as well as on the measures to be taken to address 

the threat of global warming. 
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Appendix A 

7. MEASURING TECNIQUES AND ERROR ANALYSIS 

7.1. PHASE-DoPPLER ANEMOMETRY -MEASURING PRINCLIPLES 

Phase Doppler anemometry (PDA) is a non-intrusive optical technique that allows the 

simultaneous measurement of droplet velocity and size. It is a more complete version 

of laser Doppler anemometry (LDA) first described by Durst et al (1976). A typical 

PDA set-up consists of a laser tube, a light frequency phase shifter (Bragg-cell), a 

laser-beam splitter, a transmitting optical unit, a receiving optical unit and a signal 

processor [100-102]. 

Rece ivhg 
op tics 

Figure 7- 1 Schematic of the measurements principle of PDA (Source: Dantec Dynamics). 

When a droplet passes through the measuring volume, it scatters light at all directions. 

Receiving optics is placed at an off-axis location and projects a portion of the 

scattered light onto multiple photo-detectors. Due to the structure of the measuring 

volume (it is made of fringes created by the intersection of two individual laser 

beams) and the photo-multipliers position, scattered light is converted into Doppler 

bursts. The frequency of the Doppler bursts is linearly proportional to the particle 

349 



velocity. Each photo-detector captures the same burst signal although, due to their 

relative positions, there is a phase shift in signals acquired by each detector. This 

phase shift has been shown to be directly proportional to the droplet diameter. 

More specifically, the principal of the phase-Doppler anemometry technique is based 

on light scattering theory. Visualised ray tracing can provide better understanding of 

how light is scattered by a spherical transparent droplet, as illustrated in Figure 7- 1, 

where it shows different mode of light scattering. The incident light beam is partially 

reflected at the surface of the particle and partially refracted into the particle. Upon 

exiting the particle without any further internal reflection, the scattered beam is 

known as 1 st order of refraction. Higher order of refraction (2nd order of refraction) 

also arises after internal reflections and subsequent refraction out of the particle into 

the surrounding medium. Second order of refraction is responsible for the rainbow 

effect in backscatter, thus it could be used in the phase-Doppler technique under 

special circumstances. On the other hand, first order refraction is more suitable for 

phase-Doppler measurements, although a compromise has to be made between the 

dominance of 1 sI order refraction at 70° receiving angle and a higher scattered light 

amplitude at lower scattering angles (15°-45°). The scattering characteristics of a 

particle depend strongly on the refractive index. More specifically, the relative 

refractive index between the particle (np) and the medium (nM), which is effectively 

the ratio of np over nm, determines principle differences in scattering modes. For 

relative refractive indices larger than unity (e.g. water/fuel droplets in air) first order 

refraction dominated the forward direction and these scattering characteristics are well 

documented [103]. 

Figure 7- 2 Scattered light from a spherical particle (Source: Dantec Dynamics). 
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As illustrated in the top left comer of Figure 7- 2, the measurement volume of a PDA 

system is formed by the intersection of two laser beams. The focused laser beams 

intersect and form an ellipsoid shaped pattern of bright and dark stripes, so called 

fringes. The spacing of these fringes is determined by the light wavelength and the 

angle between the two laser beams that is set by the transmitting optics. The laser

tube output beam features a multi-colour wavelength that ranges from 420 to 520nm. 

A optical laser beam splitter separates the output beam into green (514nm) and blue 

(488nm) wavelengths. Both of these laser beams are further split into two green and 

two blue beams by another set of beam splitters. The majority of PDAILDA systems 

feature a frequency shift between the two laser beams of same wavelength generated 

by means of a Bragg-cell. This frequency shift makes the fringe pattern of the control 

volume move at a constant velocity. Stagnant particles will generate a signal 

corresponding to the shift frequency. Particles moving at positive or negative 

velocities will generate positive and negative signal frequencies relative to the shift 

frequency, respectively. Thus, it is essential to use the frequency shift based systems 

that can effectively distinguish positive and negative particle velocities and provide a 

zero velocity measurement. Finally, when a particle traverses the control volume, the 

scattered light fluctuates in intensity at a frequency equal to the velocity (U) of the 

particle, divided by the fringe separation distance (s), as shown in Figure 7- 3. 

1 

€ontrol volume • w~ww t 
u 

A f=-~ 
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------ . 2Sin(~) ~ U = f. A () . 

IntenSity 2Sinh-) 

Figure 7- 3 Doppler Velocity measurement principle. 

Velocity measurements require one photo-multiplier for the generation of the time

based signal and the velocity value calculation. The same principle does apply to size 
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measurements though, but for accurate particle sizing information, more than one 

photo-multiplier is needed. In the case of two photodiodes, particle size measurement 

is achieved by measuring the time delay of the scattered light signal that is captured 

by the first detector at time (t) and the second detector at time (t+~t), as shown in the 

following Equation, where T is the period of one cycle of the signal. 

~t 
~<p = 2Jr T (7-1) 

The phase difference (~qJ), calculated by the above equation, increases with 

increasing particle size. Since phase is a module of 21t function, it cannot exceed this 

value, i.e.360°. Therefore, if a particle is large enough and causes the phase to go 

beyond a 21t jump, a two-detector PDA system could not discriminate between this 

size and a much smaller particle that has the similar phase shift. Hence, three-detector 

systems are used, where two independent phase differences are obtained from two 

detector-pairs having different relative positions. Three-detector PDA systems (Dl-2 

and Dl-3 in Figure 7- 4) provides certain advantages and apart from overcoming the 

21t ambiguity, the measurable size range is increased (Dl-3) by adding the third 

detector and at the same time high measurement resolution is maintained (D1-3). A 

processor attached to the system measures the phase shift between the two signals, 

which is proportional to the droplet radius of curvature, thus allowing determination 

of the droplet diameter, according to the calculation illustrated in Figure 7- 4, where 

<l> depends on the dominant mode of scattered light (reflection or refraction). 

Intensity 

Figure 7- 4 Particle diameter measurement principle. 
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In the present study, a 2-D PDA system (Dantec) was used to allow simultaneous 

measurement of the two velocity components and diameter of a particle as illustrated 

in Figure 7- 4. A wall mounted Argon-Ion laser with a maximum power of around 

1.5W was used and output beam was aligned with fibre optic unit; this unit was 

responsible for the splitting of the laser beam into two pairs of different wavelengths 

and each pair had two beams of equal intensity. The first pair was green light with 

wavelength of 514.5nm, responsible for axial velocity component and droplet sizing, 

while the second pair was blue light with 488nm wavelength providing the radial 

velocity component. 

Traverse Receiving 
Control Unit Optics 

Data Collection 

Figure 7- 5 Schematic of the Dantec 2D PDA system. 

Fiber Optic 
Cable 

3-D Traverse 

Triggering Unit 

A Bragg cell unit inside the fibre optical unit provided a 40 MHz frequency shift. The 

transfer of the laser beams to the transmitting optics was through a fibre optic cable. 

The collimating and focusing lenses formed an intersection volume, consisting of 

elliptical disc shaped fringes, with major and minor axis of approximately 2.863 and 

0.092mm for the green, and 2.716 and 0.088mm for the blue component. The 

collimating and focusing lenses formed an intersection volume of 4 7 ~m diameter and 

0.56 mm long. A 310mm focal length lens positioned at 30° collected the scattered 

light by the droplets to the plane of the two incident green beams to ensure that 

refraction dominated the scattered light. The signal from the four photomultipliers 

was transmitted to the processor unit where all the data processing was carried out. 

The processor was connected to a desktop computer via an Ethernet adopter, where all 
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the data were saved. 

The measurement period was defined by the injection duration for each test case. This 

period varied from 1 - 3ms (for 0.33 -lms injection duration), so did the total number 

of samples collected each time that were of the order of 10,000 samples per 

millisecond of measurement. The total number of samples was collected over many 

injection cycles. The measurement period was divided in narrow time windows of 

0.02ms for further post-processing of the collected data. These data consisted of time, 

and two velocity components as well as droplet size information. Post-processing 

involved calculation of ensemble-averaged values of droplet mean and root mean 

square (RMS) velocities and arithmetic mean (AMD) and Sauter mean (SMD) droplet 

diameters, according to the following equations: 

Total Droplet 

Velocity 

Utotal,i = Ui + Vi 

(7-2) 

Arithmetic Mean 

Diameter 

(7-5) 

Mean Velocity 

:LUtotal,i 
- N 
Utotal = N 

(7-3) 

Root Mean Square 

Velocity 

URMS = 
:L(Utotal -Utotal,i Y 
N 

N 

(7-4) 

Sauter Mean Diameter 

(V olume/Surface) 

:LNi·dt 
d --=:=----

32 - "" N . d 2 
L.J i i 

(7-6) 

Table 7- 1 Post-processing calculation of ensemble-averaged values 

7.2. PDAILDA ERROR ANALYSIS [104,109] 

There are several sources of uncertainty in laser-Doppler anemometry which result in 

a wider probability density function of Doppler frequency than that of the velocity, 

and they are:' mean gradient broadening, small scale turbulence broadening, finite 

transit time broadening, Brownian motion, line width of laser and electronics 

characteristics and noise. There are also sources of systematic error such as the 

velocity biasing error. and the mean gradient effect. Finally, there are the uncertainties 

of the orientation of the laser beams relative to the geometry and, the positional errors 
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of measurement volume introduced by the milling table and by the visual procedure 

of locating the measuring volume at a given reference point. 

7.2.1 Error and Uncertainties 

The total Doppler variance crr2 equals the sum of the velocity variance and broadening 

effects and, assuming total independence and randomness of its constitutive terms, is 

given by: 

2_ 2+ 2 
crr - crvelocity crbroadening (7-7) 

And 
2_ 2 2 2 2 2 2 2 

O'broadening - cr t + crg + O'F + crp + crBrownian + crLaser + crothers (7-8) 

where the subscripts t, g, F and p stand for turbulence, mean velocity gradient, finite 

transit time and instrument broadening. 

Mean velocity gradients lead to a broadening of probability density function across 

the measuring volume and to a mean velocity bias which, according to Durst et. al. 

(1981), can be corrected, respectively, via 

(7-9) 

U true-Umeasured = (~) 
2 

d 
2 

~ + ..... . 
4 dr 

(7-10) 

where the higher order terms of the expansions are negligible. As it is evident, these 

broadenings are important in the region where the velocity gradient is strongest like 

near the wall regions. In the current investigation, these effects were negligible as the 

measurements inside the large scale were. mainly within the centre of the jet and with 

the air entrainment measurements within a uniform air jet stream near the nozzle. 

Turbulence intensifies the finite transit time broadening in frequency domain 

instruments. A second turbulent effect results from the small-scale turbulent 

fluctuations in velocity within the scattering volume and can be accounted by: 

a 2 = ~(lm ]2(47rSin¢)2 8 
t 15 4 A v (7-11) 
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where 8 is the dissipation rate, for a small angle rp, and assuming local and a 

scattering volume size of the order of the Kolmogoroff length scale. For larger 

measuring volumes the correction becomes more complicated but always dependent 

on the dissipation rate and is difficult to apply especially for bidimensional and 

tridimensional flows. According to Melling (1975) and based on experiments and 

corrections of Berman and Dunning (1973) on their pipe flow experiments at different 

Reynolds numbers, at 
2 has the same order of magnitude as the combined gradient 

and finite transit time broadening, except for a very small scattering when the 

previous equation can be used therefore in the case of spray droplet velocity 

measurement is negligible and also in the in-nozzle flow measurement except near the 

wall where it accounts for an uncertainty of 4%. 

Broadening introduced by the deviation of the laser light from monochromatic is 

negligible as is that of Brownian motion, except for very slow laminar flows. Finite 

transit time broadening occurs when more than one particle is within the measuring 

volume but is limited in frequency counting system. A combination of a slit of 100Jlm 

in the receiving optics and an appropriate validation circuitry used in the current 

system to ensure that only one particle is within the scattering volume. Instrument 

broadening, crp 
2
, takes into account all 

Finally, under the broadening due to other effects (aothers 
2
), is included a diffraction 

grating disc jitter of 0.2% for long period of time and according to the manufacturers 

specifications. For flows, which are strongly unidirectional, the accuracy in 

positioning ~~e laser beams in a plane parallel to the flow can affect the measurement 

of transverse components. This effect had little influence on current velocity 

measurements inside the large-scale model and within the air entrainment region near 

the nozzle. 

In addition to "above, velocity bias effects can be significant in turbulent flow 

measurement when the mean velocity is calculated via an ensemble averaging of data ' 

obtained from individual realizations. With more particles of higher velocity crossing 

the measuring :volume than of low velocity, the calculated velocity becomes biased 

toward higher values and, as shown by McLaughlin and Tiederman (1973), a one 

directional correction shows negligible error for turbulence intensities up to 15% but 

an error of 10% for a turbulence intensity of around 40%. Therefore, bias corrections 

have to take into account the duration of the burst, the particle arrival rate and its 

relation to turbulence time scale (Durst et al (1981)). Ensemble averaging is an 
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accurate estimate of time averaging whenever the time scale of the particle arrival rate 

is less than the turbulent integral time scale if sampling technique and velocity are 

uncorrelated or if the sampling time scale is much greater than the turbulent integral 

scale. Under other conditions an appropriate sampling technique will be necessary to 

remove the correlation between velocity time consuming an alternative is the use of a 

time weighting approach such as that one proposed by Dimotakis (1976) 

Ns 

_ 2: (UKl1tK ) 
U = ..:.:K;.....;=l~ __ _ 

n 

L(L1tK ) 

(7-12) 

K=l 

Where fl.t K is the duration of the Doppler signal when its amplitude varies from 

maximum to half maximum. 

Another source of bias, but in the opposite direction, is introduced by the existence of 

a correlation between Doppler frequency (velocity) measured by the photomultiplier 

and the particles residence time inside the measuring volume. That is to say that the 

fast moving droplets with small residence time produce low Doppler signal 

amplitudes, while the slow moving droplets with large residence time produce large 

signal amplitudes, and therefore biasing velocities towards lower values, as shown by 

Durao and Whitelaw (1979). Both effects are opposite and become negligible when 

taken together for a wide range of flows and relationships between particle, sampling 

and turbulent time scales, as illustrated in Durao et al (1980). Vafidis (1985) used the 

above equation and reported a mean velocity bias of +2% and a 5% broadening of the 

rms velocities in regions of high turbulence when comparing with non-corrected data. 

For the measurement of in nozzle flow and spray droplet velocity m.easurement, the 

uncertainties of both biasing effects are small and negligible because the estimated 

turbulent intensities were lower than 20%'-

The gradual definition of cut-off frequencies in band pass filters means that its misuse . 

is another source of bias because signal that might lie outside bandwidth or very close 

to the edges will not be considered. In the present systems, passive band pass filters 

were used with sharp cut-off edges and therefore this biasing effect was negligible. At 

the same time, the signals pdf distributions were monitored all the time to ensure all 

the Doppler frequencies are detected. 

The relative statistical.error of a sample of finite size on both mean and rms velocities 

can be estimated by Gaussian velocity probability function by 
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u' 
Errormean = Zc ri:T 

vNs 

1 
Error rms = Zc r;::;;:r 

'\j 2Ns 

(7-13) 

(7-14) 

Where Ns and u' are the sample size and turbulence intensity with Zc=I.98 for 9S% 

confidence level, Vanta and Smith (1973). In the present measurements (both in the 

enlarge model and air entrained region near the injector) the number of samples per 

measuring point were of order 3000 to SOOO giving a maximum statistical error of 

0.73% in the ensembled mean and 2.S% in the rms of the velocity fluctuations for a 

20% turbulence intensity. 

There are positional errors due to the method used to locate the control volume inside 

measuring region. This relies on visual observation of the beam crossing at a 

reference point, which can lead to an uncertainty of about half the measuring volume 

length, i.e. 20q.f..lm; here the interface gap between the needle and the cartridge was 

used as the reference point both for enlarge model and the real size injector. The 

movement of traversing table was monitored in all three directions with digital gauges 

with a resolution of ±O.OSmm. 

7.2.2. PDA, size accuracy 

Size and time, information were collected continuously over many injection cycles. 

From which ensemble-averages were obtained over a time window of 0.1 ms which 

was found to be sufficient to describe temporal characteristics of the spray. The total 

number of samples ranged from 30,000 to SO,OOO, and the number of validated 

samples in the 0.1 ms time interval varied from 2S0 to IS00 samples with maximum 

statistical uncertainties of around 2.S% in the ensembled mean and 8.8% in the rms of 

the velocity fluctuations, based on 9S% confidence and 20% turbulence intensity, 

Vanta et al.(1973) 

Detailed accounts of the uncertainties and limitation associated with the PDA 

measurements are given by, for example, Wigley (1993) and Hardalupas et al (1994). 

An important source of uncertainty in the near-injector region was the attenuation of 

the laser beams and the scattered light due to high concentrations of droplets. The 

extent of the turbidity of the spray with the present injector was evident up to 60 mm 

from the injector as shown by Nouri et al. (1999). The phase-Doppler results presume 
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spherical droplets and, since sprays are known to include ligaments in the near field, 

this is a potential source of uncertainty very close to the injector. The photographic 

investigation suggested that there were very few, if any, ligaments in the regions of 

present measurements and the verification system of the counter should have rejected 

non-spherical droplets. In order to minimize the beam and scattered light attenuation, 

a special injector holder was design to set up the injector orientation accurately to 

avoid any unnecessary beam/spray and scattered light/spray contact; this arrangement 

made great improvement in data collection in the core spray near the exit nozzle as 

demonstrated in the results section. 

In the present study a three Photomultipliers (PM) system (Dantec dynamics) was 

used to maintain a high measurement resolution and to remove measurements 

ambiguity. With this system, the same droplet size was measured twice with two 

different pairs of PMs positioned at two different locations. One PM pair (1 and 2) 

was positioned with relatively large separation from each other to provide very high 

sensitivity (resolution) and smaller size range, while the other pair (1 and 3) had a 

shorter separation with larger size range and lower resolution. With this arrangement, 

two independent size measurements, the 21t-jump uncertainty (an inherent problem 

with PDA system) is fully removed and the ambiguity of the droplets sphericity will 

be minimised. The later depended on the validation level which can be set by the user; 

in this experiment a tolerance of about 5 to 10% was used between the two set of size 

measurements and implies the level of ambiguity in droplets sphericity. 

There are other minor sources of uncertainties like oscillations in phase-diameter 

curve, low signal-to-noise ratio due to low intensity or extinction which can introduce 

biasing towards larger droplet size, Gaussian intensity profile in the measurement 

volume and phase changes which can be due to droplet surface distortions and 

multiple scattering effects. All these effects can be minimise by proper set up of the 

transmitting and receiving optics as de script in PDA setup in Chapter 4. 

7.3 P ARTICLE IMAGING VELOCIMETRY - MEASUREMENT PRINCIPLE 

Planar Particle Image Velocimetry (PIV) with digital image processing is nowadays 

one of the most powerful experimental techniques to measure two-dimensional 

velocity fields of fluid flows with excellent spatial resolution[ 105, 106]. This 

technique can also deliver velocity and acceleration data of transient flows when 
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utilising high-speed cameras and fast pulsed lasers [107]. In this work, planar PIV 

was chosen to obtain the velocity field of the spray recirculation and near-nozzle air 

entrainment areas. 

C'f llndr ic a I lens d 
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Data Data 
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Figure 7- 6 Overview of PIV measurement principle and data processing [108] 

analysfs 

Figure 7- 6 shows all the necessary components of the two-dimensional Particle 

Image Velocimetry technique and delineates its essential measuring principle 

schematically. The PIV technique is based on the photographic recording ('freezing') 

of the position of seeding particles moving with the flow in question at two exactly 

defined instances in time, which allows calculation of the averaged displacement 

vector over a small region (interrogation area) with suitable correlation algorithms. 

The very b8:sic principle of measuring velocities with PIV comes down to the physical 

definition of velocity itself; a simple explanatory guide to two-dimensional PIV is 

given below: 

1. · Seed the fluid flow of interest with tracer particles 

2. Assure that the particles are able to follow the flow and scatter light 

3. Illuminate the measuring plane with a sufficiently short laser pulse to "freeze" 

the movement of the seeding particles in the flow 
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4. Take a digital image of that frozen flow field 

5. Repeat steps 3 & 4 after a predetermined delay time ~t during which the tracer 

particles moved with the flow 
.. 

6. Determine the displacement ~s of the particles during ~t in a given area of 

the imaged flow field with the PIV correlation algorithm 
.. 

7. Calculate the "raw" velocity vector field from the known ~t, the obtained ~s 

and the definition of velocity 
.. 

~s 
v=-

~t 
(7-15) 

8. Further process the velocity data as required and plot results 

Following this guide, the basic aspects of PIV are described in more detail below. 

Since PIV is based on a visual representation of the fluid motion in the form of 

consecutive flow images, it is necessary to seed the single-phase fluid with suitable 

particles (tracers), which can scatter the incident light efficiently. The requirements 

for the seeding particles in the case of PIV are more stringent than those for LDV and, 

depending on the individual flow applications, the particles must be chosen carefully 

following these criteria: 

• Particles must be able to follow the flow without significant slip 

• Sufficient light for the camera must be scattered by the particle when 

illuminated 

• All particles should be of similar size dp (monodisperse) 

• Particles must be uniformly distributed within the flow 

• Particles should not be poisonous, corrosive or abrasive 

• Particles should not (or only very slowly) evaporate 

• Particles must not react chemically with the working fluid or the materials of 

the flow rig 

The first two criteria are particularly important and must be considered together. 

Smaller particles follow the flow easily since their inertia is small, but they might not 

scatter enough light for a high imaging signal-to-noise ratio. When there is sufficient 

scattered light by means' of using larger seeding particles, the 'low slip-velocity' 
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criterion might be violated significantly. This trade-off concerning the particle size 

was investigated in [109] and the following general recommendations were given: 

• Use oil droplets with d p == 5 f.1Jn for PIV measurements in gaseous flows 

• Use solid spherical particles with d p ~ 10 f.1Jn for PlY measurements in liquid 

flows 

For all PIV systems, it is essential to have a stable and repeatable quality of the light 

pulses, since image exposure is solely determined by illumination. Therefore, double

pulsed Nd: YAG laser units equipped with highly accurate quality-switches are most 

commonly used to illuminate the flow area of interest. These lasers are capable of 

emitting very short light pulses (order of ns) with relatively high energies (order of 

mJ) and with short interval times between the pulses (order of f.ls). 

The laser light sheet with a typical thickness of O.5-lmm is created by a set of 

cylindrical and spherical lenses. Thicker light sheets would diminish the PIV's 

distinctive character as a planar measurement technique. 

A double-shutter camera will take the two successive flow field images in the case of 

the standard two-dimensional PIV system. For the time resolved (high-speed) PIV it 

is necessary to utilise high-speed pulsed Nd: YAG lasers together with very fast CCD 

cameras capable of recording high resolution images with frame rates of the order of 

kHz and more. 

The recorded digital images (image domain) are based on the grey level intensity 

maps of the visualised particle-laden flow (object domain). This is shown 

schematically on the l-h-s of Figure 7- 7. The first step of processing the images is 

now the determination of the scale factor SF between object and image. For this 

purpose, a known' dimension 0 length of the object domain is related to its 

corresponding projection I (Pixel) in the image domain. Thus: 

SF= ~ [;:1] (7-16) 

The image therefore scales completely with SF. After dividing the pixel domains of 

one image pair into the so-called interrogation areas, i.e. rectangular regions of fixed 

size (K x L pixel) with local origins (M,N), as shown on the r-h-s of Figure 7- 7, it is 

possible to apply the core of the PIV technique, namely the Image correlation 
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algorithm (see details below). 
y 

(a) Image Domain 

n 
Digital Image 

ti-+-I-H-:-t-t-' Image 
Pixel 

~--------~--------~~ m 
(b) M 

Figure 7- 7 (a) Representation of the particle-laden flow on the CCD chip; (b) and discretisation 

of image domain into interrogation areas. 

The size of the interrogation area and the image interval time ~t can be chosen 

arbitrarily, but the following has to be considered. The main assumption for the image 

correlation procedure is that all particles belonging to one interrogation area have 

travelled the same distance in the same direction along a straight line during ~t 

(uniform translational motion/displacement). Therefore, only one velocity vector will 

be assigned per interrogation area, thus the resolution of the vector field is in principle 

determined by the size of the interrogation area. For this reason, it is necessary to 

adapt closely the size of the interrogation areas and ~t to the general flow conditions, 

e.g. velocity magnitude. Care must be taken to resolve the flow structures with 

sufficient spatial resolution, but without having too many particles moving from one 

interrogation area into another in-between the image recordings. An additional 

important aspect is the fact that the most commonly used Fast-Fourier Transform 

(FFT) based correlation algorithms work only with square interrogation areas of size 

K = L = 2n (n EN). With the considerations mentioned above and V max as the 

estimated maximum velocity of the flow field of interest, the following 

recommendation c~ be given with d IA = SF . K : 

1 

-lId 1 d IA ~s <~. ~~t<-·--
4 IA 4 V 

max 

(7-17) 

The grey level distribution of the images can be regarded as two-dimensional 

functions in the spatial (m:, n) pixel-coordinate system. With this in mind and the fact 
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that signal noise as a systematic error (representing the image displacement) of the 

used system's hardware is produced by the superimposition of the visualisation of 

moving particles it can be argued that the imaging process can be described with a 

transfer function of the system shown in Figure 7- 8. The task of the image cross

correlation is now the determination of the translation function s(m,n) from the known 

image functions f(m,n) and g(m,n) without exact knowledge of the signal noise 

d(m,n). 

Image 1 
at t = to 

Translation 
Function 

Signal 
Noise 

d(m,n) 
O(u,v) 

.~ f(m,n)_--...~I s(m,n) ~ __ ... 
F(u,v) . S(u,v) . 

~ 

Figure 7- 8 Schematic of imaging transfer function for one image pair 

Image 2 
at t = to+~t 

g(m,n) 
G(u,v) 

The two-dimensional cross-correlation method compares the grey level values of the 

interrogation area of image 1 with the values of the corresponding interrogation area 

and its close neighbourhood of image 2 (Figure 7- 8). This must be repeated for all 

interrogation areas. A fast way to do this is the transformation of all functions from 

the spatial pixel domain (m, n) to the spatial frequency domain (u, v) with FFT. The 

PIV algorithm is then carried out more efficiently in the frequency domain and the 

obtained results are transformed back into the pixel domain, thus reducing the number 

of arithmetic operations by two orders of magnitude. 

esc lati 

Figure 7- 9 Cross-correlation, correlation array and peak search [110] 

364 



The so-called correlation array in the pixel domain is obtained with this procedure and 

a peak search with sub-pixel accuracy determines the position of the maximum value 

within that array. Employing Equation (7.16) this position represents the overall 

displacement of all the particles in the interrogation area within the object domain and 

the velocity vector of that interrogation area is therefore readily found through 

Equation (7.17). When reiterated over all interrogation areas, the "raw" velocity 

vector field can be plotted. Some vectors may not lie within the expected velocity 

range due to wrongly correlated seeding particles or due to low signal-to-noise ratio in 

the image domain. This is unavoidable but with customised filter function, it is 

possible to get rid of those outlier vectors during post-processing of the data. The 

accuracy of the measurement and the detailed error analysis can be found in the 

appendix at the end of the thesis. 

7.4. PIVERRORANALYSIS [111] 

7.4.1. Particle image diameter 

Even though the current PIV study aimed to give qualitative information or at the 

most just magnitude values, it is still possible to calculate an estimate of the accuracy 

for this case limit. In the present study, the highest velocity observed was about 

15m1s, which corresponds to a displacement ofO.3mm or 3.8pixel. 

Based on the image displacement (3.8pixel) and on the simulations data reported on 

the graphs presen~ed in this section it is possible to estimate the following accuracy: 

measurement uncertainty as a function of particle size 

measurement uncertainty as a function of particle displacement 

Bias error 

measurement Uncertainty as a function of particle image shift 

measurement uncertainty as a function of gradient 

The graph in Figure, 7- 10 predicts the existence of an optimum image diameter for 

digital PIV evaluation employing three-point Gaussian peak approximators. For the 

cross-correlation between two images, this diameter is slightly more than 2.0 pixels. 

Although the same software modules for particle image generation and evaluation 

(FFTs, peak finder, etc.)· were used for Monte Carlo simulations, there is a 
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discrepancy in the optimum particle image diameter for which no plausible 

explanation is known. 

When the particle images become too small, another effect arises which can also be 

observed towards integral values. The effect increases as the particle image diameter 

is reduced which is a clear indication that the chosen sub-pixel peak estimator. For the 

current PIV analysis it was used a interrogation spot of 322 pixels size and the particle 

image size was within 4-8 pixel resulting in a maximum RMS uncertainty of ,...,0.1 

pixel corresponding to an accuracy of 2.5% 
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Figure 7- 10 Measurement uncertainty (RMS random error) in digital cross correlation PIV 

evaluation with respect to varying particle image diameter for single exposure/double frame PIV 

imaging. 

7.4.2. Particle image shift 

Figure 7- 11 shows the simulation results for the measurement uncertainty (RMS 

random error) as a function of the displacement. For most of the displacements, the 

uncertainty is nearly constant except for displacements less than 0.5 pixel where a 

linear dependency can be observed. 
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o Particle image displacement £pixel] 

Figure 7- 11 Monte Carlo simulation results for the measurement uncertainty in digital PIV cross 

correlation PIV evaluation as a function of particle image displacement. 

The drastic reduction in the measurement uncertainty for Idl < 0.5 pixel may be 

exploited by offsetting the interrogation windows with respect to each other according 

to the mean displacement vector within the interrogation window. This offset has the 

additional side-effect of increasing the detectability of the correlation peak by 

increasing the number of particle matches. 

The displacement bias arising due to the in-plane loss of pairs is shown in Figure 7-

11. By dividing out the appropriate weighting function from the correlation values 

prior to applying the three point fit, this displacement bias can be nearly completely 

removed which is also shown in Figure 7- 11. 

For the above max speed case and 3.8 pixel displacement the RMS uncertainty results 

-0.05pixel corresponding to an accuracy of 1.3% 

7.4.3. Effect of Particle Image Density 

The particle image density has two primary effects in the evaluation of PIV images. 

First, the probability of valid displacement detection increases when more particle 

image pairs enter in the correlation calculation. The number of image pairs captured 

in an interrogation area itself depends on three factors, namely, the overall particle 

image density, NJ, the amount of in-plane displacement and the amount of out-plane 

displacement. It has been defined these three quantities as the effective particle image 

pair density within the interrogation spot, NI, a factor expressing the in-plane loss-of-
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pairs, FI, and a factor expressing the out-of-plane loss-of-pairs, Fo. When no in-plane 

or out-of-plane loss is present, the later two are unity. 

For the above max speed case and 3.8 pixel displacement the bias error results 

--0.02pixel corresponding to an accuracy of 0.5%. 

The second effect the particle image density has for the evaluation of PIV images is 

its direct influence on the measurement uncertainty. In Figure 7- 12 the measurement 

uncertainty is plotted as a function of particle image displacement for various particle 

image densities, NI. The displacement range was limited to the one pixel range, which 

can be ensured by an interrogation window offset. For displacement less than Y2 pixel 

the same linear trend as in Figure 7- 12 can be observed for all NI. For Idl > 0.5 pixel 

the uncertainty remains approximately constant. The principle effect of the particle 

image density, N{, is that the measurement uncertainty substantially, which can be 

explained by the simple fact that more particle image pairs increase the signal strength 

of the correlation peale 
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Figure 7- 12 Simulation results showing the difference between actual and measured 

displacement as a function of the particle image displacement. Bias correction removes the 

displacement bias 

10 

Togetherthe effects described above indicate that if a flow can be densely seeded then 

both a high valid detection rate as well as a low measurement uncertainty can be 

achieved using small interrogation windows, which in turn allows for a high spatial 

resolution. 
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In the air entrainment PIV experiments the seeding was maintained by the water 

atomiser at a satisfying level which we can assume being in the range of 20-30 per 

interrogation area whereas for the spray recirculation assessment the particle density 

depended on the spray phase and on the position of interrogation area. However, it 

can be assumed a particle density below 10 droplets per interrogation area. Based on 

these density assumptions and on the above max speed case and 3.8 pixel 

displacement the RMS uncertainty results <0.03pixel corresponding to an accuracy of 

0.8%. 
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Figure 7- 13 Measurement uncertainty for single exposure/double frame PIV as a function of 

particle image shift for various particle image densities NI. 
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