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Abstract: This article investigates the formation of spontaneous coordination in a row of flexible
2D flaps (artificial cilia) in a chamber filled with a high viscous liquid (Re = 0.12). Each flap is
driven individually to oscillate by a rotary motor with the root of the flap attached to its spindle axle.
A computer-vision control loop tracks the flap tips online and toggles the axle rotation direction when
the tips reach a pre-defined maximum excursion. This is a vision-controlled implementation of the
so-called “geometric clutch” hypothesis. When running the control loop with the flaps in an inviscid
reference situation (air), they remain in their individual phases for a long term. Then, the flaps
are studied in the chamber filled with a highly viscous liquid, and the same control loop is started.
The flexible flaps now undergo bending due to hydrodynamic coupling and come, after a maximum
of 15 beats, into a synchronous metachronal coordination. The study proves in a macroscopic lab
experiment that viscous coupling is sufficient to achieve spontaneous synchronization, even for a
symmetric cilia shape and beat pattern.

Keywords: metachronal wave; beating cilia; self-synchronization; geometric clutch hypothesis;
viscous coupling; hydrodynamic interaction

1. Introduction

A wide range of biological systems use synchronization in their movement patterns [1,2], ranging
from small-scale unicellular organisms to larger scale sperms and microswimmers [3,4]. At low
Reynolds numbers, this coordination is crucial for the propulsion of microswimmers or the generation
of transport on ciliated walls. Motile cilia are found in many different tissues, from the brain [5] to
the lung and the oviduct, and in many organisms, from Chlamydomonas [6] and Volvox [7,8] algae to
Paramecium. It is the beat coordination of the invidiual cilia in the array that plays an essential role in
the locomotion of sperm, the cleaning of breathing air, and the movement of oocytes in the fallopian
tube [9–12]. Metachronal synchronization results when cilia beat with a certain constant phase shift
between each other. Similar coordination was observed not only for natural cilia but also for artificial
cilia and flagella in microswimmer propulsion [12–15]. Many studies have proposed ways to use the
cilia propulsion mechanism in nanomechanics and microfluidic devices. Inspired by the progress
made in the fabrication of small-scale flexible structures, the hydrodynamic interaction of artificial
cilia has become again of interest to optimize such engineered systems. At low Reynolds numbers,
the inertial terms in the Navier–Strokes equation can be neglected [3], simplifying the momentum
equation to the linear Stokes equation

f = ∇p− µ∇2v (1)
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with the pressure p, the velocity v and the dynamic viscosity µ of the fluid. As the right-hand side in
Equation (1) is time-independent, it suggests that for symmetric beating patterns it may not be possible
to spontaneously come into a synchronized beating pattern [16,17]. However, the flexibility of the cilia
adds another degree of freedom to the equation [18,19]. Typically, the beating pattern of natural cilia is
non-symmetric in time; in the power stroke, the cilium is moved forward while stretched out straight,
and in the return stroke it is retraced back near the wall. This was adopted by computer-simulation
studies for 2D arrays of cilia [20,21], together with the “geometric clutch” hypothesis that was first
introduced by Lindemann [22,23]. The results suggested that hydrodynamic interactions are sufficient
to achieve spontaneous synchronization.

Synchronization of model flagella was studied for macroscopic rotating helices [16] and colloidal
spheres driven by optical traps [24,25]. However, up to now simple 2D symmetric flaps have not been
tested on their possible self-synchronization, to the best of our knowledge. Often in such 2D systems,
synchronization was just imposed by the control of the actuators to achieve maximum efficiency of the
transport [26]. Therefore, the process of spontaneous synchronization has not been studied in such
experiments under well-defined boundary conditions so far. The aim of the present work is to introduce
such an experiment and to test the conditions that lead to spontaneous synchronization. Therefore,
we use silicon rubber flaps as artificial, macroscopic cilia that are driven by motor-controlled rotating
axles in which the flaps are clamped in at one end and are forced to undergo a symmetric beating
motion at a predefined frequency. The integration of the fluidic system inside a feedback control loop is
done by vision-controlled implementation of the “geometric clutch” hypothesis. Bending deflections of
the flaps’ tips are tracked while applying geometric thresholds for the toggling of the rotating direction
of each individual motor separately. Hereby, we will experimentally prove that viscous coupling can
force a row of individually beating flaps from random initial conditions into a synchronized beating
pattern, forming a metachronal wave. The paper is structured as follows: Section 2 describes the
methods, and results are shown in Section 3. Finally, discussion and conclusions are given in Section 4.

2. Materials and Methods

2.1. Fluidic Chamber with Artificial Cilia

The experimental setup is designed to mimic a row of five artificial cilia (n = 5) with individual
beating actuations at their roots. Each of the flexible cilia with a length L = 36 mm and width W = 20 mm
is made of a silicon rubber sheet of thickness T = 2 mm (material polydimethylsiloxane (PDMS),
Young’s modulus E = 5.96 MPa). The Young’s modulus was qualified with an impulse-response test as
described in Favier et al. [27]. The obtained value is well within the range documented for standard
silicon rubber (Young’s modulus 1–50 MPa) [28].

Each of the flaps (indicated with index i from 1 to 5) is clamped with one short end to the spindle
axle of a rotary DC servo motor. The individual DC motors with the flaps are fixed on a support frame
in a horizontal row such that the flaps’ free ends point vertically down with an interspacing between
each of the spindles of ∆s = 20 mm. The row is inserted from top in the center of a closed chamber
with a squared (60 mm × 60 mm) cross section, see Figure 1. The chamber is made out of transparent
Perspex to allow optical access to the system. Both lateral sides of the chamber can be closed and liquid
can be filled such that the flaps are fully submerged up to the top wall of the chamber. As working
liquid, pure glycerol is used with a density of ρ = 1260 kg·m−3 and a viscosity of µ = 0.95 Pa·s at
room temperature.

For the present studies, the flap beating cycle is initiated with a constant beating frequency

fbeat =
1

Tcycle
=

v
4A

=
1
3

beat s−1 (2)

in which A is the preset beat amplitude A = 8.3 mm, which is set to ensure that each two neighboring
flaps do not just touch each other at a maximum angle of αmax = ±13◦. The tip speed v is given by



Fluids 2018, 3, 30 3 of 12

the rotary velocity of the DC motor
.
α = ∂α/∂t = 0.3 rad/s. Small adjustments of the individual

amplitudes Ai are necessary in the range of ∆Ai < 0.1 mm to take into account small uncertainties
in the DC motors controller response between programmed angular speed and the actual measured
ones. Therefore, a calibration procedure is done for the individual amplitudes Ai to end up with the
same frequency fbeat for each individual flap i. The characteristic parameter of the flow is the Reynolds
number, which is defined with the preset amplitude A and the tip speed v reading

Re =
ρvA

µ
≈ 0.12 (3)

For reference measurements with the control loop in an inviscid environment, the chamber is
emptied to ensure that no viscous coupling affects the flaps’ motion.
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Figure 1. Schematic view of the closed working chamber: (a) front view of the chamber with the five
flexible flaps at resting conditions and (b) side view of one flap clamped on the short side to the axle of
one of the five motors.

2.2. Computer Vision Control

The control loop presented herein requires the online tracking of the tips of the cilia and the
feedback of the position to the main control processor and the motors (see Section 2.3). Therefore,
a high-speed camera (ProcImage 500-Eagle high-speed camera, 1280 × 1024 px2, Photon Lines Ltd,
Bloxham, UK) is monitoring the tips of the five flaps recognized by a fluorescent marker glued onto
each tip. Two mirrors are used to facilitate the illumination and imaging of the system, as shown in
Figure 2. A LED light source (IL-106G Green LED Illuminator, HARDSoft, Krakow, Poland) is adjusted
to continuous illumination mode. The fluorescent material glued onto each tip scatters the emitted
light back to the camera. An optical filter (optical edge filter, cut-off wavelength 550 nm, Novasoft,
Aarhus, Denmark) is used to reduce stray light from the back of the frame, which is painted in black.
The markers are arranged in a zigzag pattern to help identify the tips separately as single objects in the
image processing phase, even when the flaps are getting close to each other. The scene is recorded
with a rate of 505 fps at 700 × 225 px2 image format, and a typical image of the 5 visible marker
dots is shown in Figure 3. Each image is processed online to extract the tips coordinates using image
binarization and centroid detection. The resulting coordinates of the tip markers are then fed to the
main control processor at a sampling frequency of fS = 15 Hz. The current implementation allows a
maximum observation period of approximately 1 min, corresponding to a total number of 18–20 cycles.
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Figure 3. Original image of the flap tips after binarization and color inversion for a single instant in
the process of self-organization. For reference, we overlaid circles marking the centers of the centroids
and the flap tip contours (dashed lines). The oscillatory motion is along the horizontal image axis,
perpendicular to the flap span. The left-most flap is i = 1, and the right most is i = 5 in rising order. Note
that the roots of the model cilia are uniformly spaced, as shown in Figure 1. The image shown here is
what is seen by the camera as the tips of the cilia while they are in motion. Thus, the tip contours are
not uniformly spaced in the image.

2.3. Feedback Loop System

A mechatronic system is designed to actuate, monitor, and control the row of flaps. The system
shown in Figure 4 is composed of three subsystems: (i) the main plant, which consists of the chamber,
the flaps, and the five motors; (ii) the supervisor control system for monitoring the flaps and controlling
the servo motors with the desired speed and direction; and (iii) the optical recording system, which
consists of the high-speed camera and the illumination. The energy flows into and out of the control
system as follows: The five flaps are controlled to start beating from random initial positions αi (t = 0).
The motors’ speeds and beating amplitudes are set by the controllers to the same calibrated values.
Recall that the steady-state speed of the DC motor is proportional to the motor torque and therefore to
the torque imposed at the root of the flaps. Then, the motion is started and continuously monitored by
tracking the tip markers. Each motor is advised to reverse direction once the attached flap’s tip reaches
its predefined maximum position.

This implementation in the control loop is equivalent to the geometric clutch hypothesis
introduced by Lindemann [22,23], which suggests that the cilium motor reverses the beating direction
once a certain terminal position of the cilia tip is reached. Herein, the bending deformation is induced
by the viscous coupling of the surrounding liquid and neighboring flaps and causes the tip of the flap
to deviate from the simple zig-zag trajectory prescribed by the rotating axle. This allows for phase
variations in the system due to force-induced bending deformation of the flexible cilia.
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2.4. Reference Tests in Inviscid Environment

This step is required to guarantee that the measured time-variant phase differences among
neighboring beating flaps in the presence of the liquid can be regarded as a reaction to the
hydrodynamic forces of the surrounding fluid and the viscous coupling among the flaps and are
notimposed by timing issues raised by uncertainties in the image processing and motor control.
Therefore, the control loop is first run in an inviscid environment with the liquid chamber fully
emptied. Theoretically, in the reference case the phase relationship between the flaps in the row should
remain exactly the same for infinite number of beats after the start of the control loop. All uncertainties
such as those in the imaging processing to detect the tips centroids and in the calibrated motor speeds
can accumulate to an observable variability of the phase, which can then be used to quantify an upper
limit within the observation period. The performance in air is then compared to the control loop run
with the flaps in the liquid. The coordinates of the tips are by-passed to a recorder during the motion
tracking while the control loop is running.

3. Results

Figure 5 shows the recorded position trajectories for both situations: the control loop in reference
situation and the control loop including strong viscous coupling.

Indeed, the results for the reference situation demonstrate that the phase relationship between the
flaps in the row remains approximately constant over the number of recorded cycles. A small variation
of flap i = 3 is seen after 15 cycles, which is less than 10% phase drift. All flaps perform a zig-zag-type
oscillatory motion while they remain in straight shape. In contrast, for the system with high viscous
coupling, the phase differences are time-variant. The flexible flaps start bending as a reaction to the
stronger fluid forces, which leads to a deviation of tip location relative to the position prescribed by
the angle of the motor with the flap in straight shape. Maximum values of about 2 mm were observed,
which corresponded to roughly 25% of the beat amplitude. The system comes after about 15 cycles
into a coordinated synchronous motion when the phase lag among the tips remains approximately
constant in space (between pairs) and in time. The straight black lines in Figure 5 bottom show this
observation clearly. The lines are passing through the instants where the individual beats reach their
peak position. Only flap i = 1 appears to be lagging behind the other tips. There are some possible
explanations for this observation, which are discussed in the next section.
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Figure 5. Position trajectories of the five flap tips during the feedback control loop; (a): flaps in reference
case (air); (b): flaps in highly viscous liquid. The black lines indicate the phase relationships between
maxima of neighboring flaps over time. The position corresponds to the centroid coordinate of the flap
tip marker in pixel units along the horizontal image axis in Figure 3. The colors indicate the different
flaps (red: flap i = 1, blue: flap i = 5). Note that we selected for visibility reasons in the plot for air the
initial phase shift between pairs of cilia to be at the extreme value of 180◦, which results in out-of-phase
beating, which is completely outside the range for a metachronal synchronization. Therefore, the black
lines in the upper plot do not indicate any synchronization, as there is no interaction between the flaps.

For further characterization of the metachronal coordination between neighboring beating flaps
ni and ni−1, we define the cycle ratio CR from the phase differences of reversal times Tpeak in the
corresponding beat cycles:

CRni

(
Tpeak ni

)
=

Tpeak ni − Tpeak ni−1

Tcycle
(4)

Figure 6 shows the temporal evolution of the phase differences between each couple of
neighboring flap tips for flap i = 2–5. The non-dimensional phase differences CRn3–5 of the four
synchronized flaps are found to converge to 15–25% of the cycle period between each neighboring
couple. This is close to the phase lag observed in natural cilia to obtain optimum transport
conditions [3,21]. For comparison, the black line shows the behavior of one pair of flaps CRn4 for the
reference case in air.
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4. Discussion and Conclusions

Previous numerical models of the cilia beating patterns have simulated the spontaneous emergence
of metachronal waves due to hydrodynamic interactions [18,21]. Included in these theoretical models
is often the geometrical clutch hypothesis, which was introduced by Lindemann [22,23] to explain
how the cilia motor is reversing the direction. It is assumed that once a cilium experiences certain
bending, it retracts back following the beat stroke. Up to now, there has been no experimental proof of
this spontaneous synchronization for rows of artificial 2D cilia under controlled conditions. In our
study, we have verified the previous hypotheses in macroscopic experiments by documenting the
spontaneous synchronization in a row of flaps due to their hydrodynamic interaction. This has been
made possible by (i) introducing system flexibility through the use of silicon rubber flaps as artificial
cilia, which start bending in the highly viscous environment at Re = 0.12 and (ii) introducing online
computer vision as the feedback methodology within the control loop that mimics the geometric
clutch hypothesis. Since the silicon flaps bend as a reaction to the hydrodynamic coupling, it was
important to optically track the flap tips for control of the beat reversal commands. This additional
degree of freedom in the cilia tip motion relative to the imposed motor force allows coordination to
take place. This load response has been measured and discussed for natural cilia and flagella in [29,30].
Our system is therefore equivalent to the key property of natural cilia required for synchronization,
as they are able to change speed (or tip speed) in response to hydrodynamic load. Hydrodynamic
coupling is herein the source driving the system to synchronization, as nothing else has changed
between the two control experiments than the fluid. This agrees with the conclusions given in [31].

The results show that a system of 5 individually beating flaps can form spontaneous
synchronization after several cycles, while the same system in an inviscid environment remains fixed
in its initial phase relationships. The observed convergence to phase differences of 15–25% of cycle
duration agrees with the range found in natural cilia coordination for optimum flow transport [3,21].
This hints at a possible relaxation of the control system to a minimum of dissipation in the liquid [21].
Additional flow measurements in our experiment are planned to gain details of the flow field
during synchronization.
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As seen from the results, the synchronization is not perfect, as the differences in phase do not
converge to the exact same values. Flap number i = 1 could not reach the phase relationship to the next
as close as the others during the recording period of total number of 18 cycles. This could be related to
the non-symmetric boundary effects for flap number i = 1 and i = 5. For both, the beating in direction
away from the inner neighboring flaps is less influenced by viscous coupling than it is for the inner
ones. As a result, the phase synchronization therefore may drift towards lock-on to either of the end
flaps. A definite answer to the boundary effects can only be found by testing a chamber with a circular
row of flaps, which eliminates these effects. However, variations in the phase shifts were also observed
in the numerical simulations, even for imposed periodic boundary conditions [21]. Real-time control
is, in general, sensitive to time constrains and system internal delays, which may lead to aliasing
effects [32]. It takes 0.067 s from the detection of the terminal position to the action of the flap reversing
the beat, given by the sampling frequency. At maximum tip speed, this delay equates to a possible
variability of the amplitude of ∆A/Ai = 0.06. This uncertainty introduces a time variant parameter
in the system synchronization. However, this random effect can be fairly neglected compared to the
phase shift introduced by the bending of the flaps due to hydrodynamic interactions, as proven by
comparison to the reference measurements in air, see also Figure 6. In addition, during the calibration
stage, the five motors were found to have slightly different speeds. Nevertheless, synchronization
can even emerge in the presence of different intrinsic beat frequencies and oscillator noise as long as
hydrodynamic coupling is strong enough. Fluctuations have been observed for natural systems, too,
see ref. [6].

A number of additional results is shown here to address several questions of importance regarding
statistics and reproducibility of the results. Figure 7 shows another experiment in the viscous liquid at
random initial conditions.Fluids 2018, 3, x FOR PEER REVIEW  8 of 11 
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Figure 7. Repetition of the control experiment in glycerol; compare this to Figure 5b. Note, again,
emergence of metachronal coordination after about 15 cycles. Herein, the observed metachronal wave
runs in opposite direction to the one documented in Figure 5, bottom. For explanation of the lines see
the figure caption in Figure 5.

The results prove that the system again gets into metachronal synchronization after about 15 cycles.
Interestingly, while in Figure 5 the metachronal wave runs from left to right (or from flap i = 5 to
i = 1), it is the opposite for the other experiment shown in Figure 7. As the beating profile of the cilia
is in principal time-reversible and the cilia shape is symmetric, and all cilia are uniformly spaced,
we assume that small deviations from symmetry in the motor response or in the shape of the flaps or the
initial conditions play a role in selection of direction. Sometimes, we even could observe spontaneous
symmetry breaking at times larger than 1 min. However, we could not judge these observations as
physically relevant, as they only appeared at much later times, and possible accumulations and aliasing
affects as discussed above may then play a role. The number of cycles to get into synchronization
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depends on the initial conditions, and we observed in several experiments a variation of this time-scale.
Note, that we quantify this time of synchronization as the instant when all cilia pairs get into the phase
relationship within the range marked as a gray-shaded box in Figure 6. When the cilia start with a
constant phase shift representing already a metachronal state, this time-scale is zero. On the other
hand, all other experiments showed a maximum of equal or less than 15 cycles until synchronization
was reached in the present system at the given properties of the liquid. We expect also a dependency
on the Reynolds-number, which is left open for future studies with liquids of varying viscosity.

For further illustration of the variability in the motion pattern, we calculated the variance in the
zig-zag type motion by superposition of the individual “teeth” in the zig-zag pattern. For reference,
we fixed the tip of each tooth at the position of cycle time equal to 0. From the data superposed in
this way, we calculated the probability function to be within a certain radial distance to the mean of
the triangular shape using a box-counting method. The resulting distribution is shown as color plot
in Figure 8 for flap i = 2. Dark red color means a probability of 1 that this position is reached in all
successive cycles in a similar time relative to the tip of the teeth (defined by the search radius).Fluids 2018, 3, x FOR PEER REVIEW  9 of 11 
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Figure 8. PDF of the individual “teeth” to overlap with the mean in the zig-zag motion profile for a
selected flap in air (a) and glycerol (b) for a total period of 1 min. Blue values show a larger deviation
from the mean, while red is aligned with the mean of all teeth. Note that all teeth are fixed with their
maximum position at beginning of cycle time 0.

As demonstrated, the air experiment shows a rather sharp-edged triangle with small variations
between individual beats. In comparison, the synchronization process in the viscous environment
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causes larger deviations, especially at the flap reversals, where neighboring flaps get closer to each other.
Further evidence of this variability is demonstrated by comparing the normalized auto-correlation
profiles of the flap motion as given in Figure 9. The normalized autocorrelation of a perfect zig-zag
motion pattern would result in extrema of 1 and−1 at time-lags of even and odd multiples of half of the
cycle ratio. For the air experiments, the positive peaks are all above a correlation value of 0.95, shown
by the “+” type symbols in the plot. In comparison, in the viscous case successive cycles underlie the
documented small variability during the synchronization process; therefore, the correlation peaks
decrease with larger time-lags until correlation is fully lost after 8–9 cycles. Similar profiles can be
shown also for other flaps in the row.
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Figure 9. Peaks of normalized autocorrelation function of the zig-zag motion profile for a selected flap
in air (red symbol “+”) and glycerol (blue symbol “x”) for a total period of 1 min. For illustration, the
continuous auto-correlation profile is added for the case of glycerol as a solid line in blue.

In the future, further improvements will be possible on the control loop timing to increase the
sampling frequency and thus allow longer periods of study. This can be achieved by embedding
the PC monitoring and control logic into the high-speed camera processor itself. It will allow or
the extension of the studies to a wider range of Reynolds-numbers and parametric variations of the
geometry of the cilia. One major difference between biological cilia and the flaps in our study is their
2D shape with rectangular cross-section. Nevertheless, we expect similar synchronization for cylinders
as long as we are in the Stokes-flow regime where the shape of the body loses importance in viscous
forces. Furthermore, the chamber offers optical access to capture the flow details using Particle Image
Velocimetry simultaneously while the control loop is running. It might help to further investigate the
above-claimed hypothesis of the relaxation of the control system towards a minimum of dissipation in
the liquid.
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