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PURPOSE. Peripheral vision is important for mobility, balance, and guidance of attention, but
standard perimetry examines only <20% of the entire visual field. We report on the relation
between central and peripheral visual field damage, and on retest variability, with a simple
approach for automated kinetic perimetry (AKP) of the peripheral field.

METHODS. Thirty patients with glaucoma (median age 68, range 59–83 years; median Mean
Deviation �8.0, range �16.3–0.1 dB) performed AKP and static automated perimetry (SAP)
(German Adaptive Threshold Estimation strategy, 24-2 test). Automated kinetic perimetry
consisted of a fully automated measurement of a single isopter (III.1.e). Central and peripheral
visual fields were measured twice on the same day.

RESULTS. Peripheral and central visual fields were only moderately related (Spearman’s q,
0.51). Approximately 90% of test-retest differences in mean isopter radius were < 64 deg.
Relative to the range of measurements in this sample, the retest variability of AKP was similar
to that of SAP.

CONCLUSIONS. Patients with similar central visual field loss can have strikingly different
peripheral visual fields, and therefore measuring the peripheral visual field may add clinically
valuable information.
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Since the advent of computerized visual field testing in the
1970s, almost all innovations in perimetry have focused

either on improving the sensitivity to early visual field damage
in glaucoma,1–6 or on increasing either efficiency7–9 or speed10

of the tests. This drive toward high diagnostic performance has
led to a situation where almost all visual field tests performed in
glaucoma patients are confined to the central 25–30 degrees of
the visual field, an area that constitutes less than 20% of the
entire field of vision.

Peripheral vision contributes to postural stability11–14 and
the guidance of attention,15 and it is important for estimating
motion from optical flow.16–18 In people with normal vision,
eliminating clues from the peripheral visual field decreases
postural stability,11 and patients with glaucoma rely more
heavily on vestibular and proprioceptive cues to maintain
balance than do healthy controls.12–14 Thus, the central visual
field alone does not provide a complete picture of the patients’
real-world field of vision, and examinations of the peripheral
visual field may help us to more fully understand the impact of
the disease on individuals.

The peripheral visual field may also add information relevant
to clinical decision making, for example, for diagnosis,19–21

disease phenotyping, and monitoring progression. For exam-
ple, peripheral visual field damage has been demonstrated in
15% of glaucoma patients with normal central visual fields.22 At
the other end of the spectrum, in patients with advanced
damage in whom much of the central visual field may be
damaged beyond the useful dynamic range of static perimetry,23

tracking peripheral vision may be useful to demonstrate
stability or to uncover further deterioration.24–27

A key reason for why peripheral visual fields are not
measured more often is the lack of fast and efficient automated
tests. Static programs that include the periphery are available
on the Humphrey Field Analyzer ([HFA], Carl Zeiss Meditec,
Jena, Germany) and the Octopus instruments (Haag-Streit,
Köniz, Switzerland).28–32 However, threshold examinations, for
example with the 60-4 test of the HFA,33,34 usually take more
than 10 minutes, in part because they still rely on the classic
full-threshold procedures35 rather than the more efficient
techniques for threshold estimation and stimulus pacing
introduced by the Swedish interactive thresholding algo-
rithms.7 Likewise, the suprathreshold tests of these instruments
have scarcely changed since the 1980s. Last, statistical tools for
interpretation of peripheral perimetry (such as total- and
pattern-deviation probability maps) have not been made
available commercially.

Manual kinetic Goldmann perimetry,36 as introduced in
1945, is probably still the most extensively used technique for
measuring peripheral visual fields. In the hands of a highly
trained examiner, it is a very flexible technique, but it is difficult
to standardize, difficult to quantify, and difficult to compare
between different examiners. Progressively fewer centers
possess the resources to perform this technique, and manufac-
ture of the original Goldmann instrument (Haag-Streit, Köniz,
Switzerland) has recently been discontinued. Semi-automated
kinetic perimetry (available on the Octopus 900 perimeter, the
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official successor of the Goldmann instrument) retains much of
the flexibility of the manual technique but permits more
precise control of stimulus motion. But, since it still requires an
interactive examination conducted by an expert examiner with
substantial training and experience, the technique is not
widely used outside specialist centers.

A key problem in automating kinetic perimetry is that single
responses, close to threshold, are highly variable and error-
prone. This has previously been pointed out by Lynn et al.37

who referred to ‘‘spurious spikes’’ in the isopters with an early
attempt to automate the technique. In manual Goldmann
perimetry, the examiner will seek to confirm responses that
are not in keeping with expected values and will disregard
implausibly early or late responses. A different solution will need
to be established for fully automated kinetic perimetry (AKP).

In this paper, we demonstrate the large dissociation
between central and peripheral visual fields in a group of
patients with moderately advanced glaucoma. We report on a
simple approach of repeated kinetic presentations to estimate
isopter positions without interactive input from the examiner.
We show that the precision of this technique is comparable to
that of static perimetry of the central field and suggest further
avenues for more efficient perimetry of the peripheral visual
field.

METHODS

Participants

Thirty patients with open-angle glaucoma were recruited from
participants of previous studies at City University, London.38–40

Patients had been recruited from the glaucoma clinics at
Moorfields Eye Hospital, and inclusion criteria were a visual
acuity of at leastþ0.30 logMAR (6/12), ametropia within 65.00
diopter (D) equivalent sphere and 62.50 D cylinder, and no
concomitant ocular or systemic disease. Table 1 provides
descriptive statistics on the patients’ age, visual acuity and
contrast sensitivity. All patients were experienced in static
perimetry, but none had previously performed kinetic perim-
etry. The study adhered to the Declaration of Helsinki; the
protocol was approved by the School of Health Sciences
Research Ethics Committee at City, University of London, and
all patients provided written informed consent.

Examinations

Of each participant, one study eye was randomly selected and
two static examinations were performed of the central visual
field, along with two kinetic tests of the peripheral visual field.
All tests were carried out during a single session that lasted
approximately 2.5 hours including breaks. Visual acuity (Early
Treatment Diabetic Retinopathy Study chart, distance 4 m) and
contrast sensitivity (Pelli-Robson chart, at 1 m) were measured
at the outset of the session.

Visual Field Tests. All visual field tests were performed on
a projection perimeter (Octopus 900 with EyeSuite software
version 3.0.1; Haag-Streit), with a hemispherical bowl (radius,

300 mm) and a background luminance of 10 cd/m2. Stimuli
were circular luminance increments (Goldmann size III,
subtending 0.43 degrees). For kinetic perimetry, the nominal
maximum stimulus luminance corresponded to that of the
Goldmann perimeter (318 cd/m2 [1000 apostilb (asb)]); for
static perimetry it was 1273 cd/m2 (4000 asb). Full-aperture
(38-mm diameter) trial lenses were used to correct refractive
errors for static perimetry of the central field. To avoid lens rim
artefacts, kinetic perimetry of the peripheral visual field was
performed without refractive correction.

Kinetic Perimetry of the Peripheral Visual Field.
Kinetic perimetry was performed with Goldmann III.1.e
stimuli at a speed of 5 deg/s. According to Goldmann nomen-
clature, these stimuli are circular spots subtending a visual
angle of 0.43 degrees with a luminance of 10 cd/m2 (i.e., a 1.5
log unit attenuation of the 318 cd/m2 maximum-intensity
stimulus of Goldmann perimetry. In terms of contrast, this
luminance increment corresponds to a 25-dB stimulus with the
HFA [nominal DLmax ¼ 3183 cd/m2 ¼ 10,000 asb] and to a
21 dB stimulus with the static programs of the Octopus 900
[DLmax ¼ 1273 cd/m2 ¼ 4000 asb]).

Kinetic stimuli started well outside the normal range of
visibility41 and moved at a speed of 5 deg/s from the periphery
toward the center. The entire visual field was sampled along 16
meridians (Fig. 1). Three repetitions were performed for each
vector, and the final isopter was defined by the median (middle)
of the three responses. Stimuli were presented in random order.
The mean radius of the isopter (MIR) was used as a global
summary measure, and the reproducibility of an individual
patient’s answers was summarized as the median absolute
deviation (MAD) of individual responses from the final isopter.

Unlike in manual kinetic Goldmann perimetry where
perimetrists add additional stimuli to define the shape of
isopters in areas of visual field damage, estimates that fell
within the central 10 degrees of fixation were treated as
missing data and would appear as a gap in the isopter (see
patient u for example).

False-positive catch trials (n¼ 6) were stimuli presented in
the far nasal periphery where they were invisible while the
sound associated with the movement of the perimeter’s

TABLE 1. Descriptive Statistics of the Patients’ Age, Visual Acuity, and
Contrast Sensitivity in the Study Eye

Mean (SD) Median (IQR) Range

Age (y) 69 (6) 68 (67, 73) 59, 83

VA (logMAR) þ0.10 (þ0.19) þ0.07 (0.00, þ0.14) �0.20, þ0.30

CS (log) 1.60 (0.30) 1.65 (1.35, 1.95) 0.60, 2.05

VA, visual acuity; CS, contrast sensitivity.

FIGURE 1. Kinetic automated perimetry: Goldmann III1e stimuli were
moved along 16 meridians (green arrows) at a speed of 5 deg/s. Three
stimuli were shown on each meridian. Starting points of the arrows
represent the start location of the stimuli. If not detected, they moved
to within 3 degrees of the fixation point. The dashed arrow represents
the location of the six false-positive catch trials. The lightly shaded

region indicates the normative response range according to Vonthein
et al.42
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projection system was audible. To acquaint patients with the
procedure, three training stimuli were presented at the outset
of the tests. The entire examination was programmed as a
custom test in the XML language of the EyeSuite software.
Altogether, each test consisted of a total of ~60 presentations
(3 training stimuli, 48 kinetic stimuli, and 6 false-positive catch
trials) and took approximately 11 minutes.

Static Automated Perimetry of the Central Visual
Field. Static perimetry of the central visual field was
performed with the German Adaptive Threshold Estimation
(GATE) strategy with a 24-2 test pattern and a stimulus
duration of 200 ms. The GATE strategy has been described
previously.42,43 At the outset of the first test, thresholds are
determined at four seed locations, and initial intensities at
other locations are then adjusted accordingly. In subsequent
tests the GATE strategy starts with stimuli slightly brighter than
the thresholds estimated during the previous test and varies
stimulus intensities according to a 4-2 dB staircase that
normally terminates after two response reversals. In contrast
to the classic full-threshold strategy,35 a maximum-intensity
stimulus (0 dB) is shown if the initial stimulus has not been
seen. If this stimulus is not seen, then the procedure
terminates; otherwise, a stimulus 4 dB brighter than the initial
intensity is presented next. Finally, the threshold is estimated
as the intensity midway between the brightest stimulus not
seen and the dimmest stimulus seen.

As a summary measure we used the mean deviation (MD),
the average difference of all 54 threshold estimates from their
age-corrected expected values. During the test ~10 false-
positive and ~10 false-negative catch trials were presented to
estimate the observer’s reliability. GATE tests involved ~200
stimulus presentations and took ~6 minutes.

Analyses

The relation between central and peripheral visual field
damage was examined via Spearman rank order correlation
between MD (central field) and MIR (peripheral field).

Retest variability was estimated with a modified version of
Bland-Altman analysis,44 which relates the differences between
repeated tests to the best available estimate of the underlying
‘‘true’’ value (the mean of the repeated tests). The median of
the retest differences indicates systematic changes between
the first and second test that can arise from learning effects,
and the retest variability is estimated from the dispersion of the
differences. Because the standard deviation of the differences
is highly affected by outliers, we used the MAD of the retest
differences to estimate the limits of agreement. We defined
these as the median difference 62.2 * MAD, which estimates
the range in which 9 out of 10 observations would be expected
to fall if the data were normally distributed.

Graphical representations of the visual fields and statistical
analyses were performed in R statistical software (version
2.15.1; https://cran.r-project.org/bin/windows/base/old/2.15.
1/, provided in the public domain by the R Development Core
Team).

RESULTS

Most patients in this sample had moderate to moderately
advanced damage in the central visual field, and only one
patient had an MD better than �3.0 dB (Table 2).

Relationship Between Peripheral and Central
Visual Fields

Our results demonstrated the large dispersion between
peripheral and central visual fields (Fig. 2). For example, some
patients with deep central losses showed a nearly normal
peripheral isopter (see patient e in case examples, Fig. 6),

TABLE 2. Summary Statistics of the Central and Peripheral Visual Field Tests

Mean (SD) Median (IQR) Range

Central visual field (GATE)

Mean deviation (dB) �8.4 (4.4) �8.1 (�11.9, �5.1) �16.3, þ0.1

False-negative response error rate 0.09 (0.12) 0.08 (0, 0.19) 0, 0.63

False-positive response error rate 0.06 (0.11) 0 (0, 0.12) 0, 0.54

Test duration (min:s) 6:13 (0:58) 6:03 (5:30, 6:45) 4:44, 9:30

Peripheral visual field (AKP)

Mean isopter radius (deg) 33.2 (7.9) 31.7 (29.8, 38.1) 11.5, 48.1

Isopter confidence band (deg) 2.7 (1.4) 2.2 (1.6, 3.3) 1.1, 7.4

False-positive response error rate 0.08 (0.13) 0 (0, 0.16) 0, 0.5

Test duration (min:s) 11:30 (1:45) 11:30 (10:15, 12:30) 8:00, 16:30

IQR indicates interquartile range.

FIGURE 2. Relationship between global summary measures of
peripheral visual field (MIR) and central visual field damage (MD).
Each data point shows the mean of the two repeated tests. The
Spearman rank order correlation coefficient was 0.51 (95% CI: 0.18,
0.74).
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while others with similar or less-marked central damage
showed a much more constricted peripheral isopter (see
patient z; Fig. 7). In particular, in patients with severe central
damage, the position of the peripheral isopters varied
substantially (see patients B and f in the Supplementary
Material).

The Spearman rank order correlation coefficient of MIR
and MD was q ¼ 0.51 (95% confidence interval [CI]: 0.18,
0.74; Fig. 2). This correlation is considerably lower than the
correlations between the test and retest values of MD (q ¼
0.89, 95% CI: 0.78, 0.95) and MIR (q ¼ 0.92, 95% CI: 0.84,
0.96). This means that the lack of a close relationship
between central and peripheral visual field estimates in our
data is a true finding and not caused by poor precision of
individual examinations.

Test-Retest Variability of Static and Kinetic
Perimetry

There were no meaningful systematic differences between the
results of the two tests, in either the central or the peripheral

visual field (median test-retest difference, 0.25 degrees and
�0.1 dB, p¼ 0.28 and 0.78, respectively). The median absolute
differences between test and retest were 1.3 degrees with MIR
and 0.9 dB with MD, and approximately 90% of test-retest
differences were within 64 degrees (MIR) with kinetic
perimetry and within 62.5 dB (MD) with static perimetry.

A formal comparison of retest variability between static
automated perimetry (SAP) and AKP is problematic—after all,
different regions of the visual field are measured with different
estimation techniques and with different units of measure-
ment. We therefore related the spread of the retest differences
to the range of measures obtained in this sample (Fig. 2 for
peripheral kinetic visual field tests, Fig. 3 for central static
visual field tests). The ratio between the ranges of the data
(width of the gray rectangle) to the spread of test-retest
differences (height of the rectangle) was similar for central and
peripheral examinations. Thus, the precision of AKP of the
peripheral field is similar compared to that of SAP of the central
visual field.

Most patients completed the session without any problems,
but in two patients the initial kinetic tests had to be
interrupted to instruct the patients to avoid false-positive

FIGURE 3. Relationship between test-retest differences in MIR and
the range of peripheral visual field damage (mean of MIRs of two
repeated tests). The height and width of the gray rectangle indicate
the 90% retest interval of the MIR (64 degrees, height of the
rectangle) and the range of estimates in this sample (12–48 degrees,
width of rectangle). The red line indicates the median of the test-
retest differences.

FIGURE 4. Relationship between test-retest differences in MD and the
range of central visual field damage (mean of MDs of two repeated
tests). The gray rectangle indicates the 90% retest interval (62.5 dB,
height of the rectangle) and the range of mean MDs in this sample
(�16.1 to þ0.1 dB, width of rectangle).

FIGURE 5. Patient u’s central field showed a dense inferior arcuate
scotoma with a nasal step. The III.1.e isopter (dark green) showed that
the nasal step extended far into the periphery. Elsewhere, the isopter
was close to the expected values of Vonthein41 (light green band).
Most responses (red dots) were tightly clustered, and the confidence
interval around the isopter was narrow (MAD test 1: 1.3 degrees; test 2:
1.2 degrees; medium dark-green band). Both peripheral and central
visual field test results appeared rather similar in the first and second
examinations.
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responses. Obviously erratic ‘‘outlier’’ responses occurred in
about two thirds of tests (see single responses in case
examples, Figs. 5–7, and Supplementary Material). This con-
firmed the need to obtain several responses to achieve a
precise estimate of isopter position. The width of the con-
fidence interval around the isopters, derived from the MAD of
repeated responses, varied between patients by a factor of >5
(Table 2).

In 19 patients (65%) our technique resulted in gaps in the
isopter (see patients u and z in Figs. 5, 7), because some
stimuli could not be detected until they were close to fixation.
In one patient with deep and widespread visual field damage,
no useful isopter could be estimated with the III.1.e stimulus
because more than 75% of responses were located within the
central 10 degrees (patient B in Supplementary Material).

Case Examples

Examples of three individual patients illustrate the relationship
between peripheral and central visual fields and the repeat-
ability of the tests (Figs. 5–7). Both central and peripheral
visual field examinations are shown by overlaying the
grayscale representation of the central visual field with a plot
of the kinetic isopter. Single kinetic responses are shown as
red dots, and the final isopter is plotted in dark green. Median
responses <10 degrees were treated as ‘‘missing data’’ and
appear as gaps in the isopter. The MAD measuring the scatter

of single responses is shown as a green band surrounding the
isopter, and normative values41 are represented as the light
green band.

DISCUSSION

The objective of this study was to explore differences
between central and peripheral visual field damage in
glaucoma and to investigate the precision of isopters that
are estimated from repeated kinetic stimulus presentations.
Our results show that patients with similar central visual field
loss may have strikingly different peripheral visual fields, and
this suggests that peripheral perimetry may provide an
important component of a more complete assessment of
patients’ visual field–related functional impairment. Further-
more, our results demonstrate that kinetic perimetry of a
single isopter can provide a global estimate of peripheral
visual field with precision similar to that of the MD of static
perimetry in the central visual field. In contrast to other
approaches to automate kinetic perimetry,45 the simple
approach reported here does not aim to reproduce the often
complex isopter shapes of manual Goldmann perimetry in
damaged visual fields. Rather, it aims to provide a clinically
useful summary measure of peripheral visual field extent that
can be used to complement information available from static
perimetry of the central visual field.

FIGURE 6. Patient e had deep focal damage in the central superior
visual field but a substantially preserved peripheral III.1.e isopter.
Retest variability was low with both central static and peripheral
kinetic techniques.

FIGURE 7. Patient z had moderate diffuse central visual field damage
with static perimetry and a substantially constricted III.1.e isopter
(mean MIR 25 degrees. In comparison, an MIR ~47 degrees would be
expected in a healthy person of the same age).
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Lynn et al.37 have previously described ‘‘spurious spikes’’ in
isopters from automated kinetic perimetry. As in Lynn’s data,
our results revealed obvious ‘‘outlier’’ responses in most of the
automated kinetic exams. One approach to reducing the
impact of such outliers is to increase the number of obtained
responses. Nowomiejska et al.,46 for example, measured along
24 instead of the traditionally recommended 12 meridians. In
contrast, we increased the sampling by repeating presenta-
tions at the same meridians. By pooling this information on the
reproducibility of responses at each position of the visual field,
this approach allowed us to estimate a confidence interval for
the isopter for each individual patient. The 64-degree retest
interval of the III.1.e isopter compares favorably to data
reported previously.24,46–55

With manual Goldmann perimetry, the peripheral borders
of the visual field are traditionally determined with the I.4.e
stimulus in healthy visual fields or with the III.4.e or V.4.e
stimuli when visual fields have already sustained some
damage. In this study, we used the III.1.e stimulus (approx-
imately equivalent to the I.3.e isopter, which is the largest
Goldmann isopter not constrained by facial features, in
healthy eyes), to keep stimulus size similar to that most often
used in static perimetry (0.43 degrees). Given that our
technique will almost always be applied to patients with
moderate and advanced visual field damage, more intense
(larger and/or brighter) stimuli must be considered for future
work. However, this does not change our principal conclu-
sion that, with a fully automated kinetic technique, isopters
are best derived from repeated rather than single stimulus
presentations.

The kinetic approach used in this study was designed for
currently available commercial equipment (Octopus 900,
with tests fully prespecified in an EyeSuite XML file). The long
test times (~11 minutes, on average) would make its clinical
application challenging. With the Open Perimetry Interface
(OPI),56 it will now be possible to reduce test time through
more efficient sampling strategies. For example, stimulus
presentations should start closer to the expected isopter
locations, and when two closely spaced responses have
already been obtained on a particular vector, a third
presentation may not be needed. It may also be useful to
confine kinetic perimetry to those parts of the peripheral
visual field that are likely of greatest importance to real-world
performance (e.g., inferior and temporal visual field) rather
than over the entire 360-degree circumference of the visual
field. Finally, application of the OPI will make it possible to
adapt stimulus speed more interactively to the response
latencies of the patient and to the location of the stimulus
(faster in the periphery and slower in the center of the visual
field).

Our study demonstrated that precise estimates of peripheral
isopters can be obtained from a fully automated kinetic
approach when repeated presentations are offered. Further
work is now being performed in our laboratory and others to
improve the efficiency of this approach, to investigate how it
can best be used to complement information obtained with
static perimetry, and to answer the question of how perimetry
of the entire visual field can help to improve clinical decision
making in patients with glaucoma.29,57–60
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