
This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/19707/

Link to published version: https://doi.org/10.1016/j.healun.2018.01.748

Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
The relationship between peak cough flow and respiratory function testing (spirometry), and the factors that influence this, post bilateral sequential single lung transplantation: a cross-sectional feasibility study at a single centre cardiothoracic transplantation unit

A. M. Roberts1,2, C. L. Pereira1, M. R. Carby1, A. R. Simon1, N. S. Drey2, A. K. Reed1

1Royal Brompton and Harefield NHS Foundation Trust, 2City, University of London

BACKGROUND

- Chronic lung allograft dysfunction (CLAD) is the leading cause of mortality post bilateral sequential single lung transplantation (BSSLTx)1,2
- CLAD is associated with recurrent respiratory tract infections (RTI)2
- Adequate cough strength is the main defence mechanism against RTI4 and this is known to be impaired post BSSLTx5
- Peak cough flow (PCF) is a recognised clinical predictor tool in other disease populations5 with normal adult PCF 440–1200 L/min
- PCF ≥ 270 L/min = adequate cough. PCF ≤ 160 L/min = inefficient cough6

AIMS

- To evaluate the feasibility of recruitment and conducting PCF testing alongside standard care
- To examine the relationship between PCF and spirometry: forced vital capacity (FVC) and forced expiratory volume in one second (FEV1)
- To examine other factors that influence PCF

METHODS

- Baseline characteristics collected
- FVC and FEV1 measured by pneumotachograph on day of PCF testing
- Best of 3–5 PCF attempts measured with portable peak flow meter (mini Wright Standard Range Peak Flow Meter™)
- Health related quality of life (HRQoL) measure (EuroQol EQ-5D-5L™) completed

RESULTS

- Study methods feasible
- 91.90% recruitment rate, PCF test well tolerated
- n = 34 (61.8% male, 91.7% white British)

Table 1: participant characteristics (mean (SD) unless otherwise stated)

<table>
<thead>
<tr>
<th></th>
<th>Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>58.50 (17)</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>168.84 (11.01)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>72.02 (18.83)</td>
</tr>
<tr>
<td>BMI kg/m²</td>
<td>25.12 (24.60)</td>
</tr>
<tr>
<td>FVC (L/sec)</td>
<td>3.25 (1.07)</td>
</tr>
<tr>
<td>FEV1 (L/sec)</td>
<td>2.66 (1.09)</td>
</tr>
<tr>
<td>PCF (L/min)</td>
<td>220 (150)</td>
</tr>
<tr>
<td>PCF (L/min) median (IQR 25-75%)</td>
<td>220 (150)</td>
</tr>
<tr>
<td>Total hospital LOS (days) median (IQR 25-75%)</td>
<td>35.50 (30)</td>
</tr>
<tr>
<td>Time elapsed post BSSLtx (days) median (IQR 25-75%)</td>
<td>972 (1692)</td>
</tr>
<tr>
<td>EQ-5D-5L™ VAS Score (0-100)</td>
<td>72.56 (17.23)</td>
</tr>
<tr>
<td>EQ-5D-5L™ Value State (0-1 median (IQR 25-75%)]</td>
<td>0.82 (0.23)</td>
</tr>
</tbody>
</table>

Figure A: Best PCF (L/min) versus FVC (L/sec) Moderate positive correlations (rho = .389, n = 34, p = .023)

Figure B: Best PCF (L/min) versus FEV1, (L/sec) Moderate positive correlations (rho = .471, n = 34, p = .005)

Figure C: Mean FVC (L/sec) versus Total Hospital LOS (days) Significantly higher FVC (p = .024) in patients with a total hospital LOS ≤ 36 days compared to those > 37 days

Figure D: Median PCF (L/min) versus Time Elapsed Post BSSLtx (days) Significant differences in PCF as grouped into number of days elapsed post BSSLtx

CONCLUSION AND RECOMMENDATIONS

- Study methods feasible and PCF test well tolerated
- Positive correlation shown between PCF and spirometry (FVC and FEV1) even when controlling for other variables
- Significantly higher FVC associated with hospital LOS < 36 days
- PCF changed with time elapsed post BSSLtx: significant difference (p = .007) noted between 223–972 days versus 973 – 1886 post operatively
- HRQoL did not appear to influence respiratory performance

- CLAD classification had moderate or strong negative correlations with PCF, FVC and FEV1
- CLAD severity found to be worse dependant on time elapsed post BSSLtx
- A larger longitudinal study needs to be carried out with an increased sample size (estimated to be 244), revised sampling technique and consideration of additional respiratory outcome measures such as respiratory muscle testing

CONTACT DETAILS: a.roberts@rbht.nhs.uk OR abigail.roberts@city.ac.uk

References:


CONTACT DETAILS: a.roberts@rbht.nhs.uk OR abigail.roberts@city.ac.uk