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1. Introduction and Conclusions

Cubic string field theory (CSFT) [1] has played an important role in recent years

in describing the dynamics of the open bosonic string tachyon. Both the unstable

vacuum and the true vacuum where the tachyon has condensed have been shown to

be well-defined states in CSFT [2]. Tachyon condensation is an off-shell process and

string field theory is the natural setting for its analysis. The condensation process

should be described by the solutions of the equation of motion of the tachyon effective

action which can be constructed perturbatively in string field theory. The tachyon

effective action in fact can be derived from the off-shell tachyon amplitudes, which

can be computed in various ways in string field theory. Following the classification

of ref.[3], there are four possible approaches for computing off-shell amplitudes that

we briefly describe here since three of them have been used in this paper.
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a) Field theory approach

The string field contains an infinite number of component fields, whose number

grows exponentially with the mass level L. In this approach one can approxi-

mate the calculations by truncating the string field up to some fixed level L [4],

for this reason it is called “level truncation on fields”. For example one can

construct the CSFT lagrangian by means of a truncated string field up to some

level L and then compute the cubic terms for each of the field components at

the desired level. From this classical action one can then derive the tree level

effective action for some field component (e.g. the tachyon) by integrating out

all the other ones through the solution of their equations of motion. We shall

use this procedure in Sections 4-5 to derive the perturbative tachyon effective

action.

b) Conformal mapping

With this method Giddings [5] reproduced the on-shell Veneziano amplitude

directly from Witten’s CSFT. He gave an explicit conformal map that takes

the Riemann surfaces defined by the Witten diagrams to the standard disc

with four tachyon vertex operators on the boundary. Following Giddings’ pro-

cedure and with some additional analysis -related to the oscillator method in

c)- Samuel [6] and Sloan [7] computed the off-shell Veneziano amplitude. This

procedure allows in principle the calculation of any amplitude [8]. Amplitudes

computed using this method are exact, although numerical approximations are

necessary to get concrete numbers for them. We shall solve Samuel’s equations

to derive, from the 4-tachyon off shell amplitude, some very accurate numerical

approximations of the quartic coupling of the tachyon potential and of a time

dependent solution of CSFT.

c) Oscillator method

Perturbative amplitudes can be directly evaluated using the oscillator represen-

tation of the vertices and propagators in CSFT. The vertex and the propagator

can be written completely in terms of squeezed states [9], i.e. in terms of ex-

ponentials of quadratic forms in the oscillators creating and annihilating oper-

ators. In this way the complete set of amplitudes associated with a Feynmann

diagram results in an integral over the internal momenta that can be evaluated

using standard squeezed techniques (see Section 2). Any perturbative ampli-

tude is then given in a closed-form expression containing infinite-dimensional

Neumann matrices. While no analytical way is known at present to exactly

calculate such expressions, one can evaluate the amplitudes to a high degree

of precision truncating the Neumann matrices to finite size [10]. This means

truncate the levels of oscillators in the string states which are considered, this is

the reason for which this method is known as “level truncation on oscillators”.
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Rather then having to include a number of fields which grows exponentially

in the level, with this procedure one simply needs to evaluate quantities, as

the determinant of the Neumann matrices, whose size grows linearly in the

truncation level. A specific example of this method is given in Appendix B.

d) Moyal string field theory

In this alternative formulation of SFT the string joining star product is iden-

tified with the Moyal product. Calculations performed using this method re-

produce directly the expressions for the off-shell amplitudes as for example

the 3-point and 4-point tachyon amplitudes [11]. Some numerical results [12]

achieved with this procedure are comparable to those obtained using the meth-

ods (a)-(c).

In this paper we mainly focus on the four tachyon amplitude which we evaluate

both by solving explicitly Samuel’s elliptic equations for the off-shell factor (method

(b)) and by level truncation (methods (a) and (c)). In particular we have obtained

a new series solution for the off-shell factor introduced by Samuel [6], which, at

variance with the one found in [11], provides the off-shell factor in terms of the original

coordinates used in [6]. From this solution we shall then extract off-shell information

both on the non-perturbative stable vacuum and on the tachyon dynamics.

As a test for the solution we shall first improve the numerical approximation for

the evaluation of the exact quartic self-coupling c4 in the tachyon potential. This was

computed for the first time in [4] and repeated to a higher degree of precision in [10].

Our results provides c4 with a precision that goes up to the ninth significative digit

and is in complete agreement with the extrapolations of ref. [13].

As a second application we shall improve the CSFT time-dependent solution

given in [14] as a sum in powers of et.

Since Sen’s seminal paper on the rolling tachyon [15], much work has been de-

voted to the study of time dependent solutions in string theory [16, 17, 18, 19, 20, 14].

The setting is realized by considering a system of unstable D-branes which decays

in time as the tachyon field rolls down from the maximum of the potential towards

the stable minimum. A review on previous work on this problem is given in [2].

The dynamics of a rolling tachyon has been studied in various frameworks. The

physical picture emerging from the boundary states, RG flow and boundary string

field theory (BSFT) approaches [21, 17, 22] is quite clear. The tachyon rolls from

the perturbative to the true vacuum, which is reached in an infinite time. The same

physical picture can also be obtained following other approaches, among them the

analysis involving DBI-type actions [23, 24, 25, 26], S-branes and time-like Liouville

theory [27, 28, 29, 30, 31], matrix models [32, 33, 34, 35, 36, 37], cubic superstring

field theory [38], vacuum SFT [39, 40, 41] and fermionic boundary CFT [42].
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CSFT instead fails to provide a meaningful description of the rolling tachyon

dynamics. At the lowest order, the (0, 0), in the level truncation scheme one considers

only the tachyon field and the cubic string field theory action becomes

S =
1

g2o

∫

d26x

(

1

2
φ(x) (✷+ 1)φ(x)− 1

3
λ
(

λ(1/3)✷φ(x)
)3
)

, (1.1)

where the coupling λ has the value λ = 39/2/26 = 2.19213. Considering spatially

homogeneous profiles of the form φ(t), where t is time, the equation of motion derived

from (1.1) is

(∂2
t − 1)φ(t) + λ1−∂2

t /3
(

λ−∂2
t /3φ(t)

)2

= 0. (1.2)

This equation was studied in [18, 19, 20, 14]. In [20] it was found an almost exact well

behaved solution of this equation for λ < 1. The solution has interesting analytical

properties and is remarkably simple. The “evolution” of the solution to different

values of λ is driven by a diffusion equation which makes Eq.(1.2) local with respect

to the time variable t. The analytic continuation of this solution to the physical

value λ = 39/2/26 can be performed for any time t with the exception of a single

point, t = 0, where the solution is not analytic. The profile can be expressed in

terms of a series in powers of et for t < 0 and in powers of e−t for t > 0 and in this

way it is well-behaved except at the origin where it has a cusp. Alternatively, one

can extend to positive t the solution in powers of et and the solution presents ever-

growing oscillations. In any case the tachyon always rolls well past the minimum of

the potential then turns around. Solutions with ever-growing oscillations have been

found also in refs. [18, 19, 14]. In [14], in particular, a systematic level-truncation

analysis was carried out for a trajectory φ(t) expressed as a power series in et. It

was also shown that the non-local field redefinition, which takes the CSFT action to

the BSFT action [43], also maps the wildly oscillating CSFT solution to the well-

behaved BSFT exponential solution. Increasing the level of truncation in CSFT or

the number of terms retained in the tachyon effective action leads to a well defined

trajectory at least up to some upper bound in t, t = tb. In fact, if the position of

the first turnaround points, that the solution exhibits for t > 0, tends to stabilize as

the truncation level L of the effective action increases, the expansion in powers of et

for t > 0 would be justified at least up to those points [14]. For the first turnaround

points, the leading terms in the CSFT solution are those with small powers of et.

Consequently, the very accurate value of the 4-tachyon amplitude that we have found

in this paper improves the solution of ref. [14], at least up to the first extrema of the

trajectory.

The trajectories φ(t), obtained by computing the φ4 term in the effective action

exactly and the terms up to φ7 in an L = 2 approximation, show that indeed the

position of the first turnaround point does not change significantly with the improve-

ment in the φ4 term. This suggests the possibility that this value actually has the
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physical meaning of inversion point. The second turnaround point instead changes

position and amplitude compared to the one found in [14]. The inclusion of higher

order terms in the lagrangian however does not produce significative changes, so that

the trajectory seems again to stabilize. Thus we confirm that for t > 0, the tachyon

does not roll towards the stable non-perturbative minimum of the potential and that

the qualitative behavior of wild oscillations is reproduced even if the amplitudes at

the turnaround points beyond the first are sensibly diminished.

The solutions of the 4-tachyon off-shell amplitude that we have found therefore is

a very useful tool for providing precise tests of CSFT. The agreement with previous

work on the subject, both on the quartic tachyon coupling and on the CSFT rolling

tachyon, is an excellent test for the accuracy of our off-shell solution.

As for the DBI tachyon action, it would be instructive to study the cubic tachy-

onic action on a curved background and, in particular, in a FriedmannRobertson-

Walker (FRW) spacetime. It would be interesting to see if the coupling of the free

theory to a Friedman-Robertson-Walker metric [44], and the consequent inclusion

of a Hubble friction term, might lead from the classical solution with ever-growing

oscillations to damped oscillations around the stable minimum of the potential well.

Cubic string field theory might then open interesting perspectives in tachyon cos-

mology [45].

The paper is organized as follows. In Section 2 we review the derivation of the

off-shell four tachyon amplitude following ref. [6]. Explicit formulas for the Neumann

coefficients involved in the oscillator formalism are reported in Appendix A. A brief

review of the level truncation method is also given and a specific example is provided

in Appendix B. In Section 3 we develop the tools needed to perform the computations

of Sections 4-5. A solution to the elliptic equations defining the off-shell amplitude is

derived, obtaining a useful expansion of κ(x) in powers of the Koba-Nielsen variable

x. This analysis improves the accuracy in the evaluation of the quartic coupling of

the tachyon potential, which is performed in Section 4. Finally, in Section 5 we use

the exact four-point amplitude to study the first few coefficients of the rolling tachyon

solution expressed as a sum of exponentials ent, and we compare the corresponding

solution with the ones obtained in the level truncation scheme.

Our calculations were performed using the symbolic manipulation programMath-

ematica.

2. Off-shell 4-tachyon amplitude

The first step in computing the off-shell four tachyon amplitude in CSFT is to con-

struct the Feynman diagrams directly from the cubic interaction vertex. Four-point

amplitudes involve one propagator and two vertices. After gauge fixing, we use

the Feynman-Siegel gauge, the propagator becomes b0/L0 where L0 is the Virasoro
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generator for the intermediate state including ghosts

L0 = p · p− 1 +

∞
∑

n=1

(α−n · αn + nb−ncn + nc−nbn) . (2.1)

Writing the propagator
b0
L0

= b0

∫ ∞

0

dTe−TL0 ,

e−TL0 inserts a world-sheet strip of length T into the amplitude.

2.1 Conformal mapping: on-shell amplitude

A closed analytical expression for the off-shell four tachyon amplitude in CSFT [1] was

derived in [6] by following Gidding’s analysis of the on-shell Veneziano amplitude [5].

Giddings gave an explicit conformal map that takes the Riemann surfaces defined by

the Witten diagrams to the standard disc with four tachyon vertex operators on the

boundary. This conformal map is defined in terms of four parameters α, β, γ, δ.

The four parameters are not independent variables. They satisfy the relations

αβ = 1 γδ = 1 (2.2)

and
1

2
= Λ0(θ1, k)− Λ0(θ2, k) , (2.3)

where Λ0(θ, k) is defined by

Λ0(θ, k) =
2

π
(E(k)F (θ, k′) +K(k)E(θ, k′)−K(k)F (θ, k′)) . (2.4)

In (2.4) K(k) and E(k) are complete elliptic functions of the first and second kinds,

F (θ, k) is the incomplete elliptic integral of the first kind (we follow the notation of

ref.[46]). The parameters θ1, θ2, k and k′ satisfy

k2 =
γ2

δ2
k′2 = 1− k2 (2.5)

sin2 θ1 =
β2

β2 + γ2
sin2 θ2 =

α2

α2 + γ2
. (2.6)

By convention β > α and δ > γ. Because of (2.2) and (2.3) only one variable is

independent. By convention this is taken to be α, that is related to T , the lenght of

the intermediate strip, by

T

2
= K(k′) [Z(θ2, k

′)− Z(θ1, k
′)] (2.7)

where Z(θ, k) is defined through the ordinary elliptic functions

Z(θ, k) = K(k)E(θ, k)− E(k)F (θ, k) . (2.8)
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The parameter α is finally related to the Koba-Nielsen variable x through

x =

(

(1− α2)

(1 + α2)

)2

, α =

√

1−√
x

1 +
√
x
. (2.9)

Using this conformal map Giddings managed to derive the Veneziano amplitude from

CSFT. Because of the cubic vertex, in CSFT there are six relevant Feynman diagrams

for four particles processes (fig.1). The contribution from the graph (a) in fig.1 was

computed in [5] to be

As(p1, p2, p3, p4) =

∫ 0

α0

dα 2AG
dT

dα
(β−α)2(p1·p2+p3·p4)(β+α)2(p1·p3+p2·p4)(2α)2(p2·p3)(2β)2(p1·p4)

(2.10)

where the integration limits α0 =
√
2−1 and α = 0 correspond to T = 0 and T = ∞

respectively , 2AG is the ghost contribution and is given by

2AG = 8
1

2π

√

α2 + γ2
√

β2 + γ2(β2 − α2)K(γ2) (2.11)

and the Jacobian factor almost cancels the ghost factor

dT

dα
= −4(β2 − α2)

αAG
. (2.12)

2.2 Oscillator method: off-shell amplitude

Samuel derived a perturbative off-shell string amplitude [6] directly from string field

theory by requiring that it reproduces Gidding’s result (2.10) when the momenta are

set on-shell. We now briefly review Samuel results.

Let
g

2
〈V (3)

41I |〈V
(3)
23J |b0e−TL0 |V (2)

IJ 〉 = 〈V (4)
1234| (2.13)

denote the vertex function associated with the graph (a) in fig.1, where the subscripts

1, 2, 3, 4, I and J indicate Fock-space labels. The full contribution to the diagram is
∫ ∞

0

dT 〈V (4)
1234||Ψ

(4)
4 〉|Ψ(3)

3 〉|Ψ(2)
2 〉|Ψ(1)

1 〉 (2.14)

where |Ψ(r)
r 〉 is the Fock-space representation of the external states. The explicit

oscillator representations of 〈V (2)| and 〈V (3)|

〈V (2)
12 | =

∫

d26p 〈p|(1) ⊗ 〈p|(2)
(

c
(1)
0 + c

(2)
0

)

e
−
∑

∞

n=1(−1)n
[

a
(1)
n ·a(2)n +c

(1)
n b

(2)
n +c

(2)
n b

(1)
n

]

(2.15)

〈V (3)
123 | =

∫

d26p1d
26p2d

26p3 δ(p1 + p2 + p3)〈p1|(1)c(1)0 ⊗ 〈p2|(2)c(2)0 ⊗ 〈p3|(3)c(3)0 ·

– 7 –



1 2

4 3
   (a)

1 2

4 3

(b) (c)

1 2

4 3

(f)

4

1 2

3

(e)

1

4

2

3

(d)

1 2

4 3

Figure 1: The relevant Feynman diagrams for the four particles scattering.

·e−
1
2

∑3
r,s=1

[

a
(r)
m V rs

mna
(s)
n +2a

(r)
m V rs

m0p
(s)+p(r)V rs

00 p(s)−2c
(r)
m Xrs

mnb
(s)
n

]

(2.16)

show that all the terms in (2.14) are given in terms of exponentials of quadratic

expressions in the oscillators. Using standard squeezed state techniques [9], closed-

form expressions can be given for any perturbative amplitude. In the case of the four

tachyon amplitude corresponding to the first diagram of fig.1, this procedure gives1

A4(p1, p2, p3, p4)=
λ2
cg

2

2
δ(
∑

ipi)
∫∞
0

dT eT det
(

1−(X̃11)2

1−(Ṽ 11)2

)

e−
1
2
piQ

ijpj (2.17)

where λc is a constant related to the Neumann coefficient for the three tachyon

vertex, λc = e3V
11
00 = 39/2

26
. In this formula Ṽ 11 and X̃11 are defined by

Ṽ 11
mn = e−

(m+n)
2

TV 11
mn X̃11

mn = e−
(m+n)

2
TX11

mn (2.18)

where V rs and Xrs are infinite-dimensional matrices

V rs =





V rs
11 V rs

12 . . . V rs
mn . . .

V rs
21 V rs

22 . . . V rs
m+1,n . . .

. . . . . . . . . . . . . . .



 , Xrs =





Xrs
11 Xrs

12 . . . Xrs
mn . . .

Xrs
21 Xrs

22 . . . Xrs
m+1,n . . .

. . . . . . . . . . . . . . .



 (2.19)

1We follow the notation of refs.[10, 47].
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whose elements are matter and ghost Neumann coefficients of the cubic string field

theory vertex, for which exact expressions are given in the Appendix A. Qij are

defined as

Qij = V iI
0m

(

1
1−(Ṽ 11)2

)

mn
Ṽ 11
np V

Ij
p0 + V 11

00 − T (2− δij) i, j = 1, 2 or i, j = 3, 4

Qij = −V iI
0m

(

1
1−(Ṽ 11)2

)

mn
C Ṽ 11

np V
Ij
p0 i = 1, 2 and j = 3, 4 or i = 3, 4 and j = 1, 2

(2.20)

where m,n, p ≥ 1, C = δmn(−1)n and the sum over I denotes a sum over the

intermediate states.

The two expressions (2.10) and (2.17) should both represent the contribution to

the four tachyon amplitude coming from the diagram (a) in fig.1 when the momenta

are on-shell. To relate them in the proper way, a general procedure was developed

in [6] for computing the functions Qij appearing in (2.17) from the Giddings map,

giving

Q11 = Q44 = lnα− ln κ, Q22 = Q33 = − lnα− ln κ

Q12 = Q21 = − ln |α− β|, Q13 = Q31 = − ln(α + β)

Q14 = Q41 = − ln(2β), Q23 = Q32 = − ln(2α)

Q24 = Q42 = − ln(α + β), Q34 = Q43 = − ln |α− β| (2.21)

where κ is given as an integral

ln(κ) = −2α (β2−α2)√
(α2+γ2)(α2+δ2)

∫∞
1
dw ln(w − 1) d

dw

(√
(w2+α2γ2)(w2+α2δ2)

(w+1)(β2w2−α2)

)

. (2.22)

As already noticed, although α, β, γ, δ all appear in the above equation, there is only

one independent variable, so that the function κ in (2.23) is actually a function of α.

The substitution of (2.21) in (2.17) leads to the following formula

A4(p1, p2, p3, p4) = λ2
c

g2

2

∫ 0

α0

dα
dT

dα
eTdet

(

1−(X̃11)2

1−(Ṽ 11)2

)

[κ(α)]
∑4

i=1 p
2
i (α)−(p21+p24)+p22+p23

|α− β|2(p1·p2+p3·4)(β + α)2(p1·p3+p2·4)(2α)2(p2·p3)(2β)2(p1·p4) (2.23)

Comparing the two expressions (2.10) and (2.23) on shell (p2i = 1), one can see that

the momentum dependence matches and for the momentum independent part the

following identity holds

λ2
c

(

dT

dα

)

eTdet
(

1−(X̃11)2

1−(Ṽ 11)2

)

= 2Ag
dT

dα

1

[κ(α)]4
. (2.24)

By trading the variable α for the Koba-Nielsen variable x through (2.9) in (2.23),

the contribution from the first graph in fig.1 becomes

A4(p1, p2, p3, p4) =
g2

2

∫ 1

1
2

dx xp1·p2+p3·p4(1− x)(p1+p4)2−2

(

κ(x)

2

)

∑4
i=1 p

2
i−4

(2.25)
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The remaining diagrams (b),(c),(d),(e),(f) of fig.1 can be obtained from the first

one by a suitable permutation of the string labels, i.e. by permuting the momenta

in (2.25), and the total four-point tachyon amplitude is the sum of these six contri-

butions. Notice that the Veneziano amplitude is exactly reproduced when p2i = 1 in

(2.25) and the additional factor containing κ(x) goes to 1.

2.3 Level truncation

The infinite-dimensional matrices (2.19) appearing in the final expression for a given

diagram are expressed in terms of the Neumann coefficients of Witten’s vertex. The

level truncation method we use in this paper consists in the truncation on the level

of oscillators associated with the Neumann coefficients. This procedure is somewhat

different from the original method of level truncation [4] (method a) section 1), in

which one calculates the SFT action by only including in the string field expansion

contributions up to a fixed total oscillator level. While the latter approach involves

computations with a number of fields that grows exponentially in the level, in the for-

mer one has to calculate the determinant of some matrices whose size grows linearly

in the truncation level.

Let us explicitly remind the procedure [47] in the case of a tree diagram with four

external fields as (2.17), in which there is a single internal propagator with Schwinger

parameter T . One starts with a suitable change of coordinates in (2.17)

σ = e−T (2.26)

then expands in powers of σ, so getting an expression of the form
∫ 1

0

dσ

σ2
σp2

∞
∑

n=0

cn(pi)σ
n =

∞
∑

n=0

cn(p
i)

p2 + n− 1
, (2.27)

where p = p1+p2 = p3+p4 represents the momentum of the intermediate state. The

poles p2 = 1 − n in (2.27) clearly correspond to the contributions of intermediate

particles as the tachyon (n = 0), the gauge field (n = 1) and all the other open string

massive fields. Truncate all the matrices to size L×L means to truncate the sum in

(2.27) to n = L, thus imposing a limit on the mass of the intermediate states.

The analysis can be simplified by noting that in the four point amplitude the

contributions of odd level fields cancel between s and t channels so that only even

levels in the truncation, i.e. only even powers of σ in the expansion (2.27), need

to be considered. An explicit example of the procedure above explained is given

in Appendix B, where the four tachyon amplitude at level L = 2 is derived in the

time-dependent case.

3. Solution for the function κ(x)

As shown in the previous section the off-shell 4-point string amplitudes are completely

determined once the function κ(x) defined by (2.22) is known. To determine the

– 10 –



function κ(α, γ) we have first to solve eq.(2.3) for one of the two variables in terms

of the other, so that the function κ will be a function of only one of the two α or

γ. Since the four point amplitude is written in terms of an integral over x, which

is easily related to α through (2.9), it would be more natural to solve for γ as a

function of α then the opposite. The solution can be found numerically and for γ

as a function of x is given by the solid line in fig.2. γ goes from 0 to 1 while x

goes from 1 to 1/2 and α goes from 0 to
√
2 − 1. To check for the accuracy of the

solution, we have found two different expansions: 1) A power series in α which gives

γ in a neighbor of 0 and can be inverted so as to give α as a function of γ around

0. 2) An expansion of α around
√
2− 1 as an expansion in 1− γ, this series cannot

be inverted due to the presence of terms of the type (1 − γ)m log(1 − γ)n. We have

found a general procedure to obtain as many terms as necessary in both expansions

and the function α(γ) can be determined in the whole range 0 ≤ γ ≤ 1. As we shall

show in fact the two series for α(γ) overlap in an extended interval that goes from

γ ∼ 0.6 to γ ∼ 0.7.

3.1 γ and α around 0

By using the integral representations of the elliptic functions [46] it is possible to

write the equation (2.3) in a useful form

E(γ2)

∫ γ/α

αγ

dt
1

√

t2 + γ4
√
1 + t2

− (1− γ4)K(γ2)

∫ γ/α

αγ

dt
1

√

t2 + γ4(
√
1 + t2)3

=
π

4

(3.1)

To expand (3.1) for small γ and α we have to divide the integration region into three

intervals in such a way that the square roots in the denominators of (3.1) can be

consistently expanded and the integrals in t performed. For example consider the

integral in the first term of (3.1), it can be rewritten as

∫ γ/α

αγ

dt
1

√

t2 + γ4
√
1 + t2

=

∫ γ2

αγ

dt
1

γ2
√

1 + t2

γ4

√
1 + t2

+

∫ 1

γ2

dt
1

t
√

1 + γ4

t2

√
1 + t2

+

∫ γ
α

1

dt
1

t2
√

1 + γ4

t2

√

1 + 1
t2

(3.2)

In each integral of the rhs the integration domain is contained in the convergence

radius of the Taylor expansions of the square roots containing γ, so that they can be

safely expanded and the integrals in t performed.

With this procedure one gets the following equation equivalent to (3.1)

E(γ2)

∞
∑

n,k=0

Γ(1
2
)2

Γ(1
2
− n)Γ(1

2
− k)n!k!
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{

2

2n+ 2k + 1

[

γ4k −
(

α

γ

)2n+1

(αγ)2k
]

+ (1− δkn)
γ4n − γ4k

2k − 2n
− δknγ

4n ln γ2

}

−(1− γ4)K(γ2)

∞
∑

n,k=0

Γ(1
2
)Γ(−1

2
)

Γ(1
2
− n)Γ(−1

2
− k)n!k!

{

1

2n+ 2k + 1

[

γ4k −
(

α

γ

)2n+1

(αγ)2k
]

+ (1− δkn)
γ4n − γ4k

2k − 2n
− δknγ

4n ln γ2

+
1

2n+ 2k + 3

[

γ4n −
(

α

γ

)2k+3

(αγ)2n
]}

=
π

4
(3.3)

The series containing ln γ2 can be resummed, the first gives 2
π
K(γ2) the second

2
π(1−γ4)

E(γ2). Hence these terms cancel and ln γ2 actually disappears from the equa-

tion. As a consequence one can write γ as a power series in α whose coefficients

are determined requiring that eq.(3.3) is satisfied. γ turns out to contain only the

powers α4n+1, n ∈ N. We have determined the first 12 terms of this series to get a

very good approximation for γ in an extended neighbor of zero (in which sense it is

an extended neighbor will be clarified later)

γ =
√
3α

(

1 + 5α4 +
1041

16
α8 +

38719

32
α12 +

109062913

4096
α16 +

5278728465

8192
α20+

2172202186251

131072
α24 +

116561474500179

262144
α28 +

3303689940814193505

268435456
α32+

187301165958864015157

536870912
α36 +

86571446884950765378149

8589934592
α40+

5078927050639748451791733

17179869184
α44 + O(α48)

)

(3.4)

Any higher order in (3.4) can be in principle computed from (3.3). Using (2.9) we can

plot γ as a function of x and compare it to the graph obtained from the numerical

solution of eq.(3.1). As it is clear from fig.2 γ(x) has in x = 1/2 a vertical tangent,

thus showing the presence of a branch point which cannot be gotten from a power

series of the form (3.4). Nevertheless (3.4) gives a very good approximation for γ(x)

except in a small neighbor of x = 1/2. In particular the agreement between the

values of γ obtained from the series (3.4) and the numerical values is on the 15-th

significative digit for 0.8 ≤ x ≤ 1, where the series (3.4) is expected to give exact

results, thus providing a precision test for the accuracy of the numerical solution.

Moreover, the expansion (3.4) can be iteratively inverted to give a series for α as a

function of γ

α =
γ√
3

(

1− 5

9
γ4 +

959

1296
γ8 − 10993

7776
γ12 +

83359631

26873856
γ16 − 3579242677

483729408
γ20+

1297273056905

69657034752
γ24 − 6783253984031

139314069504
γ28 +

168109910408625655

1283918464548864
γ32−

24949101849547687507

69331597085638656
γ36 +

10046339553062261150885

9983749980331966464
γ40−
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Figure 2: Plots of γ(x): the solid line is the numerical solution of the elliptic equation,

the dashed line is the power series.

512861712698825472832315

179707499645975396352
γ44 +O(γ48)

)

(3.5)

By plugging the expansion (3.4) in (2.22) and using (2.9), the corresponding expan-

sion for κ(α) can be found by means of numerical integration

κ(α) =
8

3
√
3
exp
[

−2.5α4 − 7.1562α8 − 75.927α12 − 1238.7α16 − 24301α20

−531290α24 − 1.2489 · 107 α28 − 3.0923 · 108 α32

−7.9627 · 109 α36 − 2.1140 · 1011 α40 − 5.7517 · 1012 α44
]

+O(α48) .

(3.6)

3.2 γ around 1 and α around
√
2− 1

Around x = 1/2, i.e α =
√
2 − 1 and γ = 1, it is possible to obtain only x (or α)

as a function of γ and not the opposite. Such an expansion can be obtained by first

expanding eq.(3.1) around γ = 1 and then looking for an expansion of α in terms of

powers of 1− γ and ln(1− γ)

α =
√
2− 1 + a1(1− γ) + a2(1− γ)2 + · · ·+ b1(1− γ) ln(1− γ)+

b2(1− γ)2 ln(1− γ) + · · ·+ c1(1− γ)(ln(1− γ))2 + c2(1− γ)2(ln(1− γ))2 + . . .

(3.7)

The coefficients in (3.7) are determined by requiring that (3.1) is satisfied. We

provide here directly the expansion of x as a function of 1− γ up to the ninth order

x =
1

2
+

1

8
(1− γ)2

[

1− 2 log
(

1−γ
4

)]

− 1

4
(1− γ)3 log

(

1−γ
4

)

−

– 13 –



0.2 0.4 0.6 0.8 1
Γ

0.2

0.4

0.6

0.8

1

x

Figure 3: Plots of x(γ): the dashed line gives the expansion of x(γ) which holds in a

neighbor of γ = 1, the solid line gives the expansion of x(γ) around γ = 0.

1

16
(1− γ)4

[

1 + 3 log
(

1−γ
4

)]

− 1

96
(1− γ)5

[

7 + 12 log
(

1−γ
4

)]

+

1

1536
(1− γ)6

[

−97− 108 log
(

1−γ
4

)

− 24 log2
(

1−γ
4

)

+ 64 log3
(

1−γ
4

)]

−
1

2560
(1− γ)7

[

119 + 100 log
(

1−γ
4

)

− 40 log2
(

1−γ
4

)

− 320 log3
(

1−γ
4

)]

+

1

10240
(1− γ)8

[

−321− 60 log
(

1−γ
4

)

+ 1240 log2
(

1−γ
4

)

+ 2240 log3
(

1−γ
4

)]

+

1

107520
(1− γ)9

[

−1871 + 5740 log
(

1−γ
4

)

+ 29120 log2
(

1−γ
4

)

+ 31360 log3
(

1−γ
4

)]

+ . . .

(3.8)

From (3.5) one can easily get x as a function of γ in the region x ∼ 1 (γ ∼ 0) so

that x(γ) can be obtained for the whole range 1/2 ≤ x ≤ 1. The two expansions in

fact overlap in a long range for 0.3 ≤ γ ≤ 0.7 as it is shown in fig.3. They have an

excellent agreement up to the 13-th significative digit for 0.6 ≤ γ ≤ 0.7.

4. Coefficient of the Quartic Tachyon Potential

The static tachyon potential has the form2

VT =
1

2
φ2 − g k φ3 + g2k2 c4φ

4 + . . . (4.1)

where g is the string coupling constant and k = 37/2

27
.

The four point tachyon potential is obtained from the off-shell four tachyon

amplitude by setting to zero the external momenta and by explicitly subtracting out

2We follow the notation of refs.[48, 10].
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the term with the tachyon on the internal line. The amplitude is the sum of the

six Feynman diagrams shown in fig.1, the first of which gives the contribution (2.25)

that can be usefully rewritten in terms of the Mandelstam variables

A4(s, t, u) =
g2λ2

c

2

∫ 1

1
2

dx x
t−s−u

2 (1− x)s−2

(

κ(x)

2

)t+s+u−4

. (4.2)

To get explicitly the first diagram contribution to the amplitude one can set t = u = 0

in (4.2), A4 can then be defined through an analitical continuation of (4.2) to the

region s ≤ 1. This can be achieved by adding and subtracting the pole in x = 1 in

the integrand of (4.2)

∫ 1

1
2

dx x− s
2 (1− x)s−2

(

κ(x)

2

)s−4

=

∫ 1

1
2

dx x− s
2 (1− x)s−2

[

(

κ(x)

2

)s−4

−
(

κ(1)

2

)s−4
]

+

(

κ(1)

2

)s−4 ∫ 1

1
2

dx x− s
2 (1− x)s−2 . (4.3)

where the first integral is now well defined in s = 0. When Re[s] > 1 the last integral

in (4.3) gives

2s−2

√
π
Γ(1− s

2
)Γ(

s

2
− 1

2
) +

22−
s
2

s− 2
2F1

(

1, 2− s; 2− s

2
;−1

)

that has a well defined limit for s → 0, so that the four point tachyon potential can

be written

A4(0, 0, 0) =
g2λ2

c

2

[

∫ 1

1
2

dx

(

(

2

κ(x)

)4

−
(

2

κ(1)

)4
)

(1− x)−2 − 3

2

(

2

κ(1)

)4
]

(4.4)

As already pointed out, the function κ(x) in (4.4) can be evaluated numerically in

the whole interval 1
2
< x < 1, by using the numerical solution of eq.(3.1) graphed in

fig.??. The integrand in (4.4) is regular at x = 1, as can be easily checked by studying

the behavior of (3.6) in a neighbor of α = 0. However, problems are expected in the

numerical evaluation of the integral in a neighbor of x = 1 due to the product of a

pole times a zero. To circumvent possible computational problems we divided the

interval 1
2
< x < 1 into two parts . For x ∈ [1

2
, 0.95] we used numerical evaluation

of κ(x), by plugging the numerical solutions of (3.1) in (2.22). For x ∈ [0.95, 1] we

used the analitical expression obtained substituting (2.9) in (3.6). By summing the

two contributions we have found the value A4(0, 0, 0) = −g2

2
2.94497480(2). To get

the the quartic term of the tachyon effective potential we have to subtract [4] from

(4.4) the contribution from the internal tachyon line

A4t(s, t, u) =
g2

2
λ
2−s− t+u

3
c

1

s− 1
(4.5)
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evaluated at s = t = u = 0. Each graph in fig.1 contributes equally, so that for the

quartic tachyon coupling one eventually gets

g2k2c4 =
6

4!
[A4(0, 0, 0)− A4t(0, 0, 0)] =

6

4!

g2

2
(−2.94497480(2)+

39

212
) =

g2

4!
5.5813353(1)

(4.6)

where the factor 1/4! is required to recover the units of [48, 10]. The numerical

evaluation of the coefficient c4 from the exact four tachyon amplitude was given in [6]

to an accuracy of 1%, c4 ≈ 1.75(2), and in [10] to an accuracy of 0.1%, c4 ≈ 1.742(1).

We have repeated this calculation to an higher degree of precision, and the result

(4.6) gives

c4 ≈ 1.74220008(3) . (4.7)

This coefficient was calculated using the level truncation scheme up to level L = 20

in [48], and improved up to level L = 28 in [13], thus obtaining c4,L=28 ≃ −1.70028,

with a discrepancy of 2.4% with respect to (4.7). In the same paper, a procedure to

extrapolate the known level truncated results and predict the asymptotic L → ∞
value for c4 was described, giving an extimated value c4,L→∞ = 1.7422006(9) that

agrees within the 10−7 of accuracy with our exact result (4.7).

5. The rolling tachyon in cubic string field theory

As a second application of the formalism developed in Section 2, we discuss some

properties of the rolling tachyon solutions in CSFT. This problem has been faced

analytically in [20] at the (0, 0) level, and numerically in [18, 19, 14]. In particular,

a level truncated analysis of the tachyon dynamics was carried out in [14] for a

perturbative solution given as a sum of exponentials of the form

φ(t) =
∑

n>0

ane
nt . (5.1)

The solution and all its derivatives satisfy the boundary condition φ → 0 as t → −∞.

The coefficients in (5.1) can be determined by perturbatively solving the CSFT

equation of motion. For such a profile the φn+1 term in the tachyon effective action

contributes only to the coefficients ak with k ≥ n. Since in the CSFT tachyon

effective action

S[φ] =
∑

n

gn−2

n!

∫ n
∏

i=1

(2πdki)δ(
∑

i

ki)φ(k1) . . . φ(kn)An(k1, . . . , kn) (5.2)

the coefficients A2 and A3 are exactly known,

A2(k1, k2) = 1− k1k2 , A3(k1, k2, k3) = −2

(

3
√
3

4

)3+k21+k22+k23

, (5.3)
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the first two coefficients in (5.1) are exact and can be normalized as a1 = 1, a2 =

−64/(243
√
3).

In [14] an L = 2 approximation was explicitly provided for the coefficients

a3 . . . a6 in the sum (5.1)

φ(t) ∼= et− 64

243
√
3
e2t+0.002187 e3t−3.9258 10−6 e4t+4.9407 10−10 e5t−6.3227 10−12e6t

(5.4)

For negative t Eq.(5.4) describes the rolling of the tachyon off the unstable max-

imum along the potential. The physical interpretation for positive t is more prob-

lematic. The truncated expansion (5.4) is a solution only up to some upper bound

t = tb which increases by increasing the number of terms one includes in the sum.

Consequently, the asymptotic behavior of the solution for large positive t cannot be

extrapolated from Eq.(5.4), being the sum alternate the asymptotic behavior would

simply be ±∞ depending on the order n at which one truncates the sum (5.1).

Before exponentially exploding φ(t) presents an oscillatory behavior with in-

creasing amplitudes that makes the rolling tachyon dynamics in the framework of

CSFT for positive t difficult to interpret. In ref. [14], however, it was shown that

the trajectory φ(t) is well-defined. Increasing both the level of truncation and the

number of terms retained in the power series (5.1) leads to a convergent value of φ(t)

for any fixed t with t < tb. If the position of the first turnaround points, that the

solution exhibits for t > 0, tends to stabilize as the truncation level L of the effective

actions increases, the expansion (5.4) for t > 0 would be justified at least up to those

points. The trajectories φ(t), obtained by computing the φ4 term in the effective

action up to L = 16, show that indeed the position of the first two turnaround

points seems to stabilize [14]. For t > 0, the tachyon does not roll towards the stable

non-perturbative minimum of the potential.

We shall now study how this solution is modified by using the exact value of the

4-tachyon term in the effective action for homogeneous time dependent profiles. The

exact value of the coefficient a3 can be obtained by computing integrals of the type

(2.25), that in the time-dependent case read

A4(p1, p2, p3, p4) =
g2

2

∫ 1

1
2

dx x−p1·p2−p3·p4(1− x)−(p1+p4)2−2

(

κ(x)

2

)−
∑4

i=1 p
2
i−4

(5.5)

To get the equations of motion the function A4 in (5.2) has to be evaluated for

imaginary integer values of the field modes so that (5.5) is regular and does not need

any analytical continuation. In the evaluation of a3, the relevant integral (5.5) over

the Kobe-Nielsen variable is

A4(−i,−i,−i, 3i) =
g2

2

∫ 1

1
2

dx x−2(1− x)2
(

κ(x)

2

)8

(5.6)
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Summing all the diagrams in fig.1 and subtracting the corresponding contributions

coming from the internal tachyon line, A4t = 229/322, we get a3 = 0.00241475435(3).

This value, which is exact, can be compared with the corresponding ones obtained

through the level truncation approximation. The first column of Table 1 shows the

Level a3 a4 a5 a6

2 0.002187797562 −3.7830611 10−6 4.1448524 10−9 −4.7728992 10−13

4 0.002245884478 −4.3957017 10−6 4.6338501 10−9 −5.4000742 10−13

6 0.002281097505 −4.5437634 10−6 4.7480437 10−9 −6.2618454 10−13

8 0.002304369408 −4.6509193 10−6 4.8933743 10−9 −6.7366480 10−13

10 0.002320816678 −4.7282645 10−6 4.9938778 10−9 −6.9213556 10−13

12 0.002333033369 −4.7867688 10−6 5.0729134 10−9 −7.0850857 10−13

14 0.002340032469 −4.8250629 10−6 5.1236425 10−9 −7.2267875 10−13

16 0.002342489534 −4.8443632 10−6 5.1338898 10−9 −7.3568697 10−13

ExactA4 0.00241475435(3) −5.205903(1) 10−6 5.692641(2) 10−9 −8.338132(4) 10−13

Table 1: First few coefficients an of the time-dependent solution
∑

n
ane

nt at various levels of

truncation, when only the contribution from the quartic term in the effective action is considered

in the EOM. In the last row the exact four tachyon amplitude is used for the calculations.

sequence of the first approximate values of the a3(L) coefficients up to L = 14. The

level sequence is perfectly consistent with the exact value given in the last row (first

column), which should then be considered as the limit a3(L → ∞).

The amplitude (2.25) can be used to improve the accuracy of the remaining

coefficients an, n ≥ 4. The exact evaluation of a4 would require the knowledge of

A5(p1, . . . , p5), for which an expression analog to (2.25) is not known. However,

when solving the CSFT equation of motion, one can easily see that the dominant

contribution to a4 comes from the lower order amplitudes A2(p1, p2), A3(p1, p2, p3),

A4(p1, p2, p3, p4). Therefore, for a precise evaluation of a4 seems more relevant to

know these lower order amplitudes exactly, rather than A5(p1, . . . , p5) approximate

in levels. The remaining columns in Table 1 give the behavior of the coefficients a4,

a5, a6 for increasing levels of truncation, when only the contribution from the quartic

term in the effective action is considered in the equations of motion. The last row

gives the corresponding value obtained from the exact amplitude (2.25) (i.e. limit

L → ∞). As can be seen from Table 1, for any fixed L, |an(L)| < |an(L → ∞)|.
Notice that the same property holds also in the calculation of the coefficient of the

quartic tachyon potential. Indeed, up to L = 28 [13], |c4,L| < |c4|. Moreover, for any

fixed n, the sequence (an(L+2)− an(L)) goes like Cnan(L)/L, Cn being a constant,

confirming the 1/L behavior of the leading correction [49, 13]. The results given in

the last row of Table 1 provide the first few coefficients of the trial solution (5.1).
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We can now include in the computation of a4, a5, a6 the L = 2 truncated ex-

pressions for A5(p1, . . . , p5), A6(p1, . . . , p6), A7(p1, . . . , p7). The numerical results are

listed in Table 2. The L = 2 truncated A7(p1, . . . , p7), however, gives a contribution

to a6 which is not reliable, since increasing the order of the effective action higher

level field components become more and more important. The inclusion of the a6
coefficient, in any case, does not change the behavior of the solution around the first

two turnaround points. This is the region where we shall mainly focus, only here the

solution with the first few coefficients is reliable.

Effective action a3 a4 a5

Aexact
4 0.00241475435(3) −5.205903(1) 10−6 5.692641(2) 10−9

Aexact
4 , AL=2

5 0.00241475435(3) −5.348643(1)10−6 3.231846(1)10−9

Aexact
4 , AL=2

5 , AL=2
6 0.00241475435(3) −5.348643(1)10−6 2.0650063(5)10−9

Table 2: First few coefficients an of the time-dependent solution
∑

n
ane

nt. The first column

indicates which terms of the effective action are considered in the EOM.

In fig.4 we show how the solution changes at the second turnaround point by in-

troducing higher order terms of the effective action. The higher group of trajectories

is obtained by using the exact value for the four-tachyon effective action and adding

to it the level L = 2 five and six tachyon effective action, the lower group by using

only L = 2 terms (the solid line in this group represent the solution of ref. [14] up

to the e5t power). As it is manifest from the figure the use of an exact A4 leads to a

decreasing of the amplitude of the oscillations by at least the 20%. This is however

not enough to change the qualitative behavior of the solutions which maintains huge

oscillations and does not provide a physically meaningful picture. The best approx-

imation we get is given by the solution obtained using the exact A4 and the level 2

A5, A6. It reads

φ(t) ∼= et − 64

243
√
3
e2t +0.00241475 e3t− 5.34864310−6 e4t +2.065006310−9 e5t (5.7)

and is plotted in fig.5 against the solution (5.4) of ref. [14] up to the coefficient of

e5t.

The solution (5.7) can also be compared to the analytic solution found in [20] at

the (0, 0) level that reads, for t < 0,

φ(t) = −6λ
− 5

3
c

∞
∑

n=1

(

−1
6

)n
nλ

− 4
3
n2+3n

c ent , (5.8)

where λc = 3
9
2/26. In [20], a different expression was considered for t > 0. If

however we consider Eq.(5.8) also for positive values of t, it can be conveniently
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Figure 4: Solution at the second turnaround point. The higher group of trajectories

is obtained by using the exact value for the four-tachyon effective action (solid line) and

adding to it the level L = 2 five (long dashed line) and six (dashed line) tachyon effective

action, the lower group by using only L = 2 terms. The solid line in the lower group

represents the solution of ref. [14] up to the e5t power.

compared to (5.7) and (5.4). For t < 0 all the solutions overlap up to the 6-th

significative digit. For positive t, all the solutions present the expected oscillatory

behavior with ever-growing amplitudes and have constant energy. In CSFT where

the action contains infinite derivatives the kinetic energy can be negative and thus

the tachyon can move to higher and higher heights on the tachyon potential while

conserving the total energy [18]. Whatever solution one chooses, the position of

the first extremum seems to be fixed at t1 ∼ 1.27 with amplitude φ(t1) ∼ 1.74. In

addition, such a position is compatible within the 1% also with [18], where an analog

approximate solution was considered using the coshnt basis. This suggests the idea

that the first maximum could have a physical meaning. Actually, since the solution

describes the motion of the tachyon rolling off its unstable maximum at φ = 0, the

naive energy conservation would confine the motion between 0 ≤ φ(t) ≤ φM , where

φM denotes the maximum value attained by φ i.e. is the naive inversion point defined

by the condition Veff [0] = Veff [φM ] on the effective tachyon potential Veff . A natural

interpretation for the first maximum is therefore φ(t1) ∼ φM . Numerically, the value

φM ∼ 1.7 is in fact in a qualitative agreement with the available data on the effective

tachyon potential [50].

The other extrema, instead, do not have any clear physical meaning. These

oscillations undergo wild ever-growing amplitudes, which, however, depend quite

significantly on the solution chosen. In passing from (5.4) to (5.7), both positions of

the turnaround points and their amplitudes change. For instance, as shown in fig.5,

the amplitude of the second turnaround point is lowered by a 20% factor, the third
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Figure 5: Second turnaround point for the solution (solid line) given in ref. [14] and the

solution (dashed line) obtained using the exact A4 and the level 2 A5, A6.

one by an order of magnitude.

In conclusion, it seems that up to the first turnaround point all the solutions

(5.4), (5.7), (5.8), practically coincide. After the first turnaround point, the wild

oscillations with increasing amplitudes found in refs.[18, 14] are confirmed. Although

the qualitative behavior is reproduced, the oscillations in (5.7) are sensibly reduced

when compared to those in ref.[14]. Up to the second turnaround point, where low

powers of et dominate, (5.7) provides a more accurate estimate for the trajectory of

the rolling tachyon in CSFT.
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A. Neumann Coefficients

Exact formulas for the Neumann coefficients V rs and Xrs appearing in (2.19) were

computed in [51]3. The indices r, s take values from 1-3 and indicate wich Fock space

the oscillators act in. The 3-string coefficients V rs
mn, X

rs
mn are given in terms of the

3In some references signs and factors in the Neumann coefficients may be slightly different. We

follow here the choices of [52].
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6-string Neumann coefficients N r,±s
nm

N r,±r
nm =

{

1
3(n±m)

(−1)n(AnBm ± BnAm), m+ n even, m 6= n

0, m+ n odd
(A.1)

N r,±(r+σ)
nm =

{

1
6(n±σm)

(−1)n+1(AnBm ± σBnAm), m+ n even, m 6= n

σ
√
3

6(n±σm)
(AnBm ∓ σBnAm), m+ n odd

]

.(A.2)

where in N r,±(r+σ), σ = ±1, and r + σ is taken modulo 3 to be between 1 and 3. In

(A.2) An, Bn are defined for n ≥ 0 through

(

1 + ix

1− ix

)1/3

=
∑

n even

Anx
n + i

∑

m odd

Amx
m (A.3)

(

1 + ix

1− ix

)2/3

=
∑

n even

Bnx
n + i

∑

m odd

Bmx
m .

The 3-string matter Neumann coefficients V rs
nm are then given by

V rs
nm = −

√
mn(N r,s

nm +N r,−s
nm ), m 6= n, andm,n 6= 0

V rr
nn = −1

3

[

2
n
∑

k=0

(−1)n−kA2
k − (−1)n −A2

n

]

, n 6= 0

V r,r+σ
nn =

1

2
[(−1)n − V rr

nn ] , n 6= 0 (A.4)

V rs
0n = −

√
2n
(

N r,s
0n +N r,−s

0n

)

, n 6= 0

V rr
00 = ln(27/16)

The ghost Neumann coefficients Xrs
mn, m ≥ 0, n > 0 are given by

Xrr
mn = m

(

−N r,r
nm +N r,−r

nm

)

, n 6= m

Xr(r±1)
mn = m

(

±N r,r∓1
nm ∓N r,−(r∓1)

nm

)

, n 6= m (A.5)

Xrr
nn =

1

3

[

−(−1)n −A2
n + 2

n
∑

k=0

(−1)n−kA2
k − 2(−1)nAnBn

]

Xr(r±1)
nn = −1

2
(−1)n − 1

2
Xrr

nn

The Neumann coefficients satisfy a cyclic symmetry under r → r + 1, s → s + 1,

corresponding to the geometric symmetry of rotating the vertex. Furthermore, they

are symmetric under the exchange r ↔ s, n ↔ m and satisfy the twist symmetry

associated with reflection of the strings

V rs
nm = (−1)n+mV sr

nm (A.6)

Xrs
nm = (−1)n+mXsr

nm .
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B. Level truncation method

As a specific example of the level truncation method explained in Section 2.3 let us

derive explicitly the four tachyon amplitude for L = 2 in the time-dependent case.

At this level of truncation and with the change of coordinates (2.26), the matrices
˜V 11 and X̃11 in (2.17) become the 2× 2 matrices

˜V 11 =

(

V 11
11 σ V 11

12 σ
3
2

V 11
21 σ

3
2 V 11

22 σ
2

)

, X̃11 =

(

X11
11σ X11

12σ
3
2

X11
21σ

3
2 X11

22σ
2

)

(B.1)

and analog forms for all the objects contained in (2.20) may be written. Expanding

the determinant and the exponential in (2.17) in powers of σ up to σ2 one gets

A4(p1, p2, p3, p4) =
λ2
cg

2

2
λ

2
3
(
∑4

i=1 p
2
i+p1·p2+p3·p4)

c δ(
∑

i

pi)

∫ 1

0

dσ

σ2
σ− 1

2
[(p1+p2)2+(p3+p4)2]

{

1− b1(p1 − p2)(p3 − p4)σ +
1

2

[

b2 + b3
(

(p1 − p2)
2 + (p3 − p4)

2
)

+b4(p1 − p2)
2(p3 − p4)

2 + b5(p1 + p2)(p3 + p4)
]

σ2 + O(σ3)
}

(B.2)

where

b1 = (V 12
01 )

2, b2 = 26(V 11
11 )

2 − 2(X11
11 )

2, b3 = (V 12
01 )

2V 11
11 ,

b4 = (V 12
01 )

4, b5 = 18(V 12
02 )

2. (B.3)

To get the quartic term in the tachyon effective action on has to subtruct the con-

tribution from the tachyon in the propagator, that corresponds to the σ0 power -the

constant term 1- in (B.2). Since, as already noticed, for a four point amplitude only

even powers of σ need to be considered, one is left with the coefficient of the σ2

term in the sum. Performing the integral over σ, one finally gets the formula for the

quartic term in the CSFT tachyon effective action (5.2) in the time-dependent case

AL=2
4 (p1, p2, p3, p4) = λ2

cg
2

∫ n
∏

i=1

(2πdpi)δ(
∑

i

pi)φ(pi)
λ

2
3
(
∑4

i=1 p
2
i+p1·p2+p3·p4)

c

1− (p1 + p2)2
[

b2
4
+ b3p1(p2 − p1) + b4p2p4(p2 − p1)(p4 − p3) + b5p2p4

]

(B.4)
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