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PlanarN = 4 SYM theory and QCD share the gluon sector, suggesting the investigation of Gribov-
Lipatov reciprocity in the supersymmetric theory. Since the AdS/CFT correspondence linksN = 4
SYM and superstring dynamics on AdS5 × S5, reciprocity is also expected to show up in the
quantum corrected energies of certain classical string configurations dual to gauge theory twist-
operators. We review recent results confirming this picture and revisiting the old idea of Gribov-
Lipatov reciprocity as a modern theoretical tool useful for the study of open problems in AdS/CFT.

1. Introduction and Overview

An intense activity in the study of the duality between the planar, largeN limit of the N = 4
super-Yang-Mills (SYM) theory with SU(N) gauge group and the free type IIB superstrings
in AdS5 × S5 is based on the development of analytic tools that exploit the classical
integrability of the string side [1], as well as an internal integrability of the superconformal
theory [2, 3]. In the latter case, the scale dependence of renormalized composite operators is
governed, even at higher loops, by a local, integrable, super spin chain Hamiltonian whose
interaction range increases with the loop order [4, 5]. This fact has firstly set the long range
asymptotic Bethe equations of [5] as a natural tool for calculating anomalous dimensions of
the gauge single traces operators of the theory. Although the relevant two-particle scattering
matrix [6] was determined in a gauge theory framework [7], its tensor structure agrees with
perturbative calculations in the gauge-fixed world-sheet theory [8]. Its form is determined by
the global symmetry of the two theories, psu(2, 2|4), up to a phase (dressing factor) for which
a crossing-like equation has been proposed [9]. For its solution [10], based also on 1-loop
string data [11], an analytically continued weak-coupling expansion has been formulated
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[12], whose effects on the anomalous dimensions of the twist-two operators remarkably agree
with the direct calculation of the four-loop cusp anomalous dimension [13]. As a result,
from the asymptotic Bethe equations (ABA) an integral equation for such cusp anomaly
(or universal scaling function) has been derived, on which in fact is based one of the most
nontrivial tests of the structure of the AdS/CFT correspondence. Its strong coupling solution
[14] (see also [15–20]) has been in fact shown to perfectly match the expression for the cusp
anomaly up to 2-loops term as computed directly from the quantum superstring [21, 22].

Due to their asymptotic nature, the Bethe equations furnish predictions for the
anomalous dimensions that, for “short” operators [23], need to be corrected by wrapping
effects [24]. To this aim, a clever generalization of the Lüscher formulas [25] has successfully
given the correct finite-size correction in [26, 27] to the asymptotic anomalous dimension
derived from the Bethe Ansatz [23], which has been confirmed by a purely field-theoretical
calculation [28]. For the complete spectral equations of N = 4 SYM, however, it is
believed that thermodynamic Bethe Ansatz (TBA) methods ought to be applied, as has been
initiated conjecturing a Y-system, which should yield anomalous dimensions of arbitrary
local operators of planar N = 4 SYM [29–31], and TBA equations for string and gauge
theory [32, 33]. Relevant tests of these proposals have been already carried on [34–36], which
however, in the case of short operators anomalous dimensions at strong coupling [35], still
have to find a full numerical agreement with purely string theoretical computations [37, 38]1

and might need further elaboration [39, 40].
To the purpose of furnishing closed formulas for anomalous dimensions which

might check the TBA proposals at high orders of perturbation theory, the asymptotic Bethe
equations, corrected with generalized Lüscher formulas and further inputs, still stand as a
powerful tool for multiloop calculations [34, 41]. The class of operators mostly relevant in
this framework are the twist operators, also named quasipartonic [42–44]. These are single-
trace operators constructed with an arbitrary number of light-cone derivatives acting on the
fundamental fields (scalars, gauginos, or gauge fields). Their anomalous dimension depends
on their spin (total number of derivatives), and their interest relies on their similarities with
the QCD twist operators arising in the analysis of deep inelastic scattering [45].

It is a general fact that, while N = 4 SYM and QCD are in many details different, a
compared analysis of their properties has been crucial for a deeper understanding of both of
them. Integrability itself appeared for the first time in four-dimensional gauge field theories
in a QCD context, in the high-energy Regge behavior of scattering amplitudes, and in the
scale dependence of composite operators [46–49]. About conformal symmetry, unbroken in
QCD at one loop, it does not appear to be a necessary condition for integrability, as discussed
in [50–53], but it certainly plays an important role by imposing selection rules and multiplet
structures. A notable common issue betweenN = 4 SYM and QCD is their infrared structure
[54, 55], and it is believed that QCD would benefit a lot from an ultimate all-loop solution
of its superconformal version, since this would provide a representation for the “dominant”
part of the perturbative gluon dynamics [56].

A remarkable example of such an interplay between N = 4 SYM theory and QCD in
the framework of integrability is themaximum transcendentality principle [57–61], according to
which the anomalous dimension of twist-two operators at n loops is a linear combination
of generalized harmonic sums of transcendentality 2n − 1. The principle has been the
key via which closed multiloop expressions for the anomalous dimension of special twist
operators have been derived [6, 23, 34, 41, 62–66] and has been independently confirmed
in a space-time framework [67] as well as exploiting the Baxter approach [68]. A second
crucial connection is the relationship to the Balitsky-Fadin-Kuraev-Lipatov (BFKL) approach
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[69–77] for describing high-energy scattering amplitudes in gauge theory, which furnishes a
prediction for the pole structure of the analytically continued anomalous dimensions of twist
operators. The (supersymmetric generalization of the) BFKL equation appears to be a testing
device for any conjecture on the exact higher-loop spectrum of anomalous dimensions in the
N = 4 model, and in fact it was determinant to state both the failure of Bethe equations in
describing the spectrum of short operators [23] as well as the correctness of the full result
including the wrapping correction [78].

In this Review, we will report on another fascinating and as yet not fully explained
link between QCD,N = 4 SYM, and string theory. This is centered on the so-called reciprocity
and consists in a surprising pattern that emerges in studying all the available anomalous
dimensions of twist-two operators in QCD, their analogue in N = 4 SYM, together with
the energies of their dual string configurations. The reciprocity condition is a constraint on
the large spin behavior of a transform of the anomalous dimension, which should run in
even negative powers of the Casimir of the collinear group SL(2;R). This constraint, arising
in the QCD context, has been presented in [79, 80] as a special (space-time symmetric)
reformulation of the parton distribution function evolution equations, while in [81] it has
been approached from the point of view of the large spin expansion and generalized to
operators of arbitrary twist. Reciprocity has been checked in various multiloop calculations
of weakly coupled N = 4 gauge theory [62, 64, 66, 82–84].

A natural tool to investigate the presence of reciprocity relations at strong coupling is
the AdS/CFT correspondence, according to which such an organized structure of subleading
terms in the large spin expansion should be visible also in the energies of the semiclassical
string states corresponding to twist operators. This strong coupling analysis, initiated in [81]
for a particular solution at the classical level, has been extended in [85] to more general
configurations and beyond the classical result. Given the complicated form of the relevant
solutions, however, the large spin expansion for corrections to the leading string energy
is a nontrivial task. Remarkably, although not as manifestly as in the weak coupling case,
also here the underlying integrable structure of the AdS/CFT system plays a crucial role in
making feasible the analysis of reciprocity. The recent findings of [86], demonstrating that the
semiclassical fluctuation problem is governed by simple finite-gap operators, have provided
us with analytic expressions for the fluctuation determinants that permit to carry out well-
defined expansions in the large spin limit. As a notable outcome, the large spin expansion
of the string energy happens to have exactly the same structure as that of the anomalous
dimension in the perturbative gauge theory, respecting reciprocity relations up to one-loop
in string perturbation theory. Interesting generalizations of this analysis at strong coupling
are the study [87] of reciprocity for the first commuting charges defined in [88], as well as
the generalized reciprocity [89] present in the N = 6 superconformal Chern-Simons theory
in three dimensions [90].

We must stress that reciprocity is not a rigorous prediction, in that it is still missing
a first-principles derivation. Instead, it is based on sound physical arguments and always
needs to be verified, both at weak and at strong couplings. However, its persistent validity
is an intriguing empirical observation which can be at the moment qualified as a kind of
hidden symmetry for the spectrum of the AdS/CFT system. While the analysis of this review
is focussed on the planar limit of the latter, where the emergence of integrability opens the
way for a variety of tools to be used in the study of its spectrum, we emphasize that the
reciprocity relation is not tied to the planar limit or to the integrability of the theories. Indeed,
it holds in QCD for an arbitrary number of colors in the sectors in which integrability is not
present [81]. In the AdS/CFT system, the powerful predictive power of reciprocity on the
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spectrum of the theories has been already successfully employed to formulate a five-loop
analytic formula for the anomalous dimension of twist-three operators [34], which has been
confirmed by a purely field-theoretical calculation [91].2

The plan of this Review is the following. In Section 2 we recall the original Gribov-
Lipatov formulation of the reciprocity property in QCD and sketch a modern reinterpretation
of it as in [79–81]. In Section 3 we present its generalized definition to the supersymmetric
case of N = 4 SYM theory. In Sections 4.1 and 4.2, after a short introduction on the outcomes
of integrability-based techniques, we collect the information on the relevant multiloop results
for the anomalous dimensions of quasipartonic operators at weak coupling. We proceed then
in Section 4.3 illustrating with specific examples how reciprocity has been checked on those
anomalous dimensions, explaining then in Section 4.4 the way reciprocity can be used to
produce new higher-order formulas. Section 4.5 summarizes the weak coupling analysis. In
Section 5, we present the strong coupling analysis of reciprocity, based on the perturbative (in
the sigma model loop expansion) energies of folded and spiky string solutions in AdS5 × S5.
The final Section 6 is devoted to a short list of open problems related to the subject of this
Review. Three Appendices follow, in which we recall the basic properties of harmonic sums
(Appendix A) and briefly illustrate the checks of reciprocity in the first commuting charges
of the sl(2) sector (Appendix B) as well as the generalized reciprocity of the so-called ABJM
[90] theory (Appendix C).

2. Generalized Gribov-Lipatov Reciprocity in QCD

The anomalous dimensions γ(S) of the twist-two operators with spin S emerging in the
QCD analysis of deep inelastic scattering (DIS) [45, 92] are expected to contain important
information encoded in their dependence on S. Connecting the total spin S to its dual
in Mellin space, the Bjorken variable x, two opposite regimes emerge in a natural way.
The first is small x → 0 and is captured by the BFKL equation. It can be analyzed by
considering the Regge poles of γ(S) analytically continued to negative (unphysical) values
of the spin.

Here, we will be interested in the properties of the second quasielastic regime which
is x → 1, that is, large S. From the large S behavior of the known three-loop twist-two
QCD results as well as from general results valid at higher twist [93], the following general
features can be inferred. The leading large S behavior of the anomalous dimensions γ(S) is
logarithmic

γ(S) = f(λ) logS +O
(
S0

)
, S −→ ∞, (2.1)

where f(λ) is a universal function of the coupling related to soft gluon emission [93–96].
It appears as (twice) the cusp anomalous dimension governing the renormalization of a
light-cone Wilson loop describing soft-emission processes as quasiclassical charge motion.
About the subleading ∼ logpS/Sq corrections, they are found to obey special relations first
investigated by Moch et al. in [97, 98] (see also, at two loops, [99]) and known as MVV
relations. Roughly speaking, they predict the three-loop 1/S contributions in terms of the S0

two-loop ones. The MVV relations have received a relatively recent intriguing explanation
in terms of a nontrivial generalization of the one-loop Gribov-Lipatov reciprocity [100, 101]
which is the subject of the next sections.
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2.1. Old Gribov-Lipatov Reciprocity: A Review

In the QCD context, the idea of reciprocity arises from the attempt to symmetrically treat
deep inelastic scattering (DIS) and its crossed version, that is, e+e− annihilation into
hadrons. In DIS, the nonperturbative information is contained in the space-like (S) splitting
functions PS(x), governed by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution [100–
104] and related to the anomalous dimensions γS(S) [105] of the twist-two operators via a
Mellin transform. Instead, the crossed process involves the nonperturbative fragmentation
functions, whose scale evolution is related to the time-like splitting functions PT (x); in this
case the Mellin transform defines a time-like anomalous dimensions γT (S).

The two types of splitting functions were related by analytic continuation through the
singular point x = 1 in the relation worked out by Drell et al. [73, 106–111]

Drell-Levy-Yan: PT (x) = − 1
x
PS

(
1
x

)
. (2.2)

A second relation has been proposed by Gribov and Lipatov [100, 101], stating an identical
parton evolution for the two processes

Gribov-Lipatov: PT (x) = PS(x) ≡ P(x). (2.3)

Combining the two relations above, one can deduce a “reciprocity property” of the common
function P(x)

Gribov-Lipatov reciprocity: P(x) = −xP
(
1
x

)
. (2.4)

In Mellin space,

γ(S) ≡ P(S) =
∫1

0

dx

x
xSP(x), (2.5)

and it can be shown [81, 82] that this means3 (in the sense of asymptotic expansions at large
S)

γ(S) = f
(
C2

)
, C2 = S(S + 1), S −→ ∞. (2.6)

Gribov-Lipatov reciprocity holds at one-loop, but fails at two loops [99, 112]. For instance,
the explicit violation for the case of the nonsinglet twist-two quark operator can be written
as4

1
2

[
P
(2 loops)
T,qq (x) − P (2 loops)

S,qq

]
=
∫1

0

dz

z

{
P
(1 loop)
qq

(x
z

)}
+
P
(1 loop)
qq (z) log z. (2.7)
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2.2. Reciprocity Respecting Evolution Equations

The evolution equations for the parton distributions or fragmentation functions Dσ(x,Q2)
(σ = S, T) take the standard convolution form

∂τDσ

(
x,Q2

)
=
∫1

0

dz

z
Pσ

(
z, αs

(
Q2

))
Dσ

(x
z
,Q2

)
, (2.8)

where Pσ are the space or time-like splitting functions, αs(Q2) is the QCD running coupling
constant, and τ = logQ2. By Mellin transforming, this reads

∂τDσ

(
S,Q2

)
= −1

2
γσ
(
S, αs

(
Q2

))
Dσ

(
S,Q2

)
, (2.9)

where

Dσ

(
S,Q2

)
=
∫1

0

dx

x
xSDσ

(
x,Q2

)
, γσ

(
S,Q2

)
= −1

2

∫1

0

dx

x
xSPσ

(
x, αs

(
Q2

))
. (2.10)

Based on several deep physical ideas, it has been proposed to rewrite the evolution equation
in a way that aims at treating the DIS and e+e− channels more symmetrically, in the spirit of
Gribov-Lipatov reciprocity [80, 113, 114]. This proposal takes the form5

∂τDσ

(
x,Q2

)
=
∫1

0

dz

z
P
(
z, αs

(
z−1Q2

))
Dσ

(x
z
, zσQ2

)
, (2.11)

where σ = −1, 1 for the space-like and time-like channels, respectively. The crucial point is
that the evolution kernel P(z) is the same in both channels. As an immediate two-loop check,
one recovers for the nonsinglet quark evolution the Curci-Furmansky-Petronzio relation
(2.7). Other features related to the Low, Burnett, Kroll theorems [115, 116] (LBK) as well
as to the inheritance idea are further discussed in [80, 113, 114]. A three-loop check of the
above proposal to reproduce the explicit QCD anomalous dimensions requires, however, the
addition of a term proportional to the β-function, as mentioned after (2.14) below.

2.3. Moch-Vermaseren-Moch Relations and Reciprocity of the Kernel P
The previous formulation of reciprocity is in x-space, but has important consequences in the
large spin expansion of the anomalous dimensions. This point of view is adopted in Basso
and Korchemsky [81] who propose a very simple way of testing (2.11).

Neglecting effects due to the running couplings (we are going to discuss N = 4 SYM
which is ultraviolet finite), one immediately derives from (2.11) the nonlinear relation (after
a rescaling of P)

γσ(S) = P
(
S − 1

2
σγσ(S)

)
. (2.12)
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In the spirit of the derivation of the reciprocity respecting evolution equation (2.11), it is
natural to guess that the Mellin transform of the kernel P in (2.12) obeys the Gribov-Lipatov
reciprocity relation (2.4).

As an immediate corollary, the following general parametrization of the large S

expansion of γσ (we define S = S eγE and A = f(λ))

γσ(S) = A logS + B + Cσ
logS
S

+
(
Dσ +

1
2
A

)
1
S
+ · · · , (2.13)

must satisfy the constraints

Cσ = −1
2
σA2, Dσ = −1

2
σAB, (2.14)

which are highly nontrivial sinceA,B,C, andD are functions of the gauge coupling. The first
relation in (2.14) is indeed verified at three loops by the explicit evaluation of γσ , being part
of the above-mentioned MVV relations. Most importantly, as discussed in [81], the second
(subleading) relation requires, in QCD, a correction in the relation (2.12) that is related to the
nonzero value of the β function. For twist-two operators in the finite N = 4 SYM theory, it is
correct as it stands.

Thus, the two MVV relations in (2.14) strongly suggest that, when formulated for the
Mellin transform of the kernel P defined in (2.12), the reciprocity relation (2.4) holds. In S-
space, it is equivalent to the claim that P(S) has a large S expansion in integer powers of C2 of
the form

P(S) =
∑
n

an
(
logC

)

C2n
, (2.15)

where C2 = S (S + 1), and an are polynomials which can be computed in perturbation theory
as series in αs. The expansion (2.15) can be read as a parity invariance under S → −S − 1,
although this must be considered only as an analytic continuation around S = ∞ and not at
any S in strict sense because of the Regge poles at negative S.

The property (2.15), or its equivalent form (2.4), has indeed been checked at three
loops in [81] for several classes of twist-two operators in QCD. It generates an infinite set of
MVV-like relations for all the subleading terms in the large S expansion of the anomalous
dimensions. The previous relations (2.14) are just the first cases.

3. Generalized Reciprocity in N = 4 SYM

Reciprocity has been discussed in QCD, a theory which shares the gluon sector with N = 4
SYM. This suggests to explore its validity in the latter, highly symmetric theory where one
can exploit integrability to compute multiloop anomalous dimensions.

Since the leading order evolution kernel of N = 4 SYM theory is purely classical in
the LBK sense [117], there is hope to derive one day all-loop expressions for the anomalous
dimensions of the operators of the theory within a simple description, that is, in which higher-
order terms are dynamically inherited from the first loop. QCD would greatly benefit from
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such a result, and in general from investigations in whichN = 4 SYM is studied with the aim
of putting under full theoretical control the dominant part of the perturbative QCD gluon
dynamics.

The conformal invariance of the N = 4 SYM theory allows one to extend the results
of the previous section to the anomalous dimensions of the so-called quasipartonic operators of
arbitrary twist J . The definition of the quasipartonic operators [42–44, 118] goes back to the
conformal limit of the QCD and is in fact unrelated to the presence of supersymmetry.

In the conformal limit, the light-cone ray is left invariant by an SL(2,R) collinear
subgroup of the conformal group, generated by translations and dilatations along the ray,
and rotations in the x0 ± x1 plane [119]. In light cone gauge, one can identify preferred
components (SL(2,R) primary fields) of the elementary scalars (in supersymmetric theories),
Weyl fermions and field strength with minimal collinear twist.6 Composite operators built
with this set and an arbitrary number of covariant derivatives correspond to physical degrees
of freedom, as it is clear in light-cone gauge and are called quasipartonic operators.

We will then write a general quasipartonic single-trace gauge invariant operator as

Ô(
z1, . . . , zJ

)
= Tr

{
X(z1n) · · ·X

(
zJn

)}
, (3.1)

where znμ is the light-like ray and X can be a (suitable) N = 4 scalar field ϕ, gaugino
component λ, or holomorphic combination A of the physical gauge field A

μ

⊥ [119]. The
number of the constituent fields J is the twist (classical dimension minus spin) of the
operator.

At one-loop, these operators have simple transformation properties with respect to
the collinear group; they transform as [
]⊗L where [
] is the infinite-dimensional sl(2)
representation with conformal spin, respectively, [119]



(
ϕ
)
=

1
2
, 
(λ) = 1, 
(A) =

3
2
. (3.2)

A suitable generalization of the analysis of reciprocity in [80, 81, 113, 114] to the case
ofN = 4 SYM assumes that γ(S) obeys at all orders the nonlinear equation7

γ(S) = P
(
S +

1
2
γ(S)

)
, (3.3)

and the reciprocity relation takes the form

P(S) =
∑
n

an
(
logC

)

C2n
, (3.4)

where an(logC) are suitable polynomials, and C is obtained by replacing S(S + 1) with the
Casimir of the collinear conformal subgroup SL(2,R) ⊂ SO(4, 2)

C2 = s(s − 1) ≡ (S + J
 − 1)(S + J
). (3.5)

Here, s = (S+Δ0)/2 = S+J
 is the “bare” conformal spin s of the operator (withΔ0 being the
canonical dimension of the operator) defined in terms of the conformal spin 
 of the fields
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(3.2) out of which the operator is built. The constraint (3.4) is simply a parity invariance
under (large) C → −C.

This generalization is related to the proposal by [81] of tracing back the origin of
the nonlinear relation (3.3) to the conformal symmetry of the theory (for the same reason,
and as mentioned above, in gauge theories with nonvanishing beta-function, like QCD, the
anomalous dimensions receive conformal symmetry breaking contributions). Quasipartonic
operators can be in fact classified according to representations of the collinear SL(2,R)
subgroup of the SO(2, 4) conformal group which are labeled by the conformal spin of the
operator [119], whose general definition s = (S +Δ)/2 involves in fact the scaling dimension
of the operator. Since this get renormalized, receiving anomalous contribution γ at higher
orders, one may argue that the anomalous dimension itself should be a function of S
only through its dependence on the “renormalized” conformal spin redefined in terms of
Δ = S + J + γ(S, J). This then leads to the nonlinear functional relation for γ 8

γ(S, J) = f(s; J) ≡ f
(
S +

1
2
J +

1
2
γ(S, J); J

)
. (3.6)

Suppressing the dependence on J in γ and f, one may write such functional relation simply
as (3.3).

One can notice that without further information, (3.3) is nothing more than a change
of variable, since, at least in perturbation theory, it is always possible to compute the function
f in terms of the anomalous dimension γ(S, J). The nontrivial information is in fact contained
in the parity invariance (3.4), fromwhich an infinite set of constraints can be derived between
subleading coefficients in a general large spin expansion of the anomalous dimension, exactly
as it happens in (2.13) and (2.14) above.

3.1. A Strong Form of Reciprocity from the Simplicity of P
We conclude this section with some interesting observation about the large spin expansion
of the function P. Its leading logarithmic behavior, as follows from the structure of (3.3),
coincides with the leading behavior of γ in (2.1), where the coupling-dependent scaling
function f(λ) (cusp anomaly) is expected to be universal in both twist and flavour [93, 120].
Concerning the subleading terms, as remarked in [79, 81], the function P(S) obeys up to three
loops a powerful additional simplicity constraint, in that it does not contain logarithmically
enhanced terms ∼ logn(S)/Sm with n ≥ m. This immediately implies that the leading
logarithmic functional relation

γ(S) = f(λ) log
(
S +

1
2
f(λ) logS + · · ·

)
+ · · · (3.7)

predicts correctly the maximal logarithmic terms logmS/Sm

γ(S) ∼ f logS +
f2

2
logS
S

− f3

8
log2S
S2

+ · · · (3.8)

whose coefficients are simply proportional to fm+1 [66, 85, 121].
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Notice that the fact that the cusp anomaly is known at all orders in the coupling
via the results of [12, 14] would in principle imply (under the “simplicity” assumption for
P) a proper prediction for such maximal logarithmic terms at all orders in the coupling
constant, and in particular for those appearing in the large spin expansion of the energies
of certain semiclassical string configurations (dual to the operators of interest). As we
will report in the sections dedicated to the strong coupling checks of reciprocity, such
“inheritance” has indeed been checked in [85] up to one loop in the sigmamodel semiclassical
expansion, as well as in [122] at the classical level. An independent strong coupling
confirmation of (3.8) up to order 1/S has recently been given for twist-two operators in
[123].

However, the asymptotic part of the four-loop anomalous dimension for twist-two
operators and of the five-loop anomalous dimension for twist-three operators reveals an
exception to this “rule”, being the term log2S/S2 not given only in terms of the cusp anomaly.9

This seems to indicate that, at least for twist-two and twist-three operators in the sl(2) sector
and at critical wrapping order, the P-function ceases to be “simple” in the meaning of [79],
thus preventing the tower of subleading logarithmic singularities logmS/Sm to be simply
inherited from the cusp anomaly. In order to clarify how the observed difference in the
simplicity of the P at weak and strong coupling works, further orders in the semiclassical
sigma model expansion would be needed.

4. Reciprocity Tests at Weak Coupling in N = 4 SYM

Given our interest in testing reciprocity inN = 4 SYM, the next step is to exploit integrability
in this theory to achieve a closed form for γ(S) of specific classes of operators at many
loops.

4.1. Multiloop Calculation of Anomalous Dimensions via Integrability

The calculation of the anomalous dimensions in the planar limit of N = 4 SYM theory is
in fact dramatically simplified by its integrability properties. The gauge theory composite
operators can be mapped to states of a PSU(2, 2|4) invariant integrable spin chain, which for
quasipartonic operators coincides at one loop with the XXX−
 chain [124–129]. The energy
of the spin chain is the image of the gauge theory dilatation operator. Thus, the calculation
of the coupling-dependent energy levels of the spin chain provides the multiloop anomalous
dimension of specific gauge theory composite operators.

We can illustrate the general strategy with a specific example which will be relevant in
the following discussion. We consider the subsector sl(2) ⊂ psu(2, 2|4)which is perturbatively
closed at all orders under renormalization. This sector contains composite operators which
can be written schematically as OJ,S = ϕJ−1DSϕ, where ϕ is a scalar field and D a certain
projected covariant derivative.

The integrable structure of the spin chain, the conformal spin (3.2) being here 
 = 1/2,
leads to the following Bethe equations at one-loop:

(
uk + i/2
uk − i/2

)J

=
S∏

j=1,j /= k

uk − uj − i
uk − uj + i , (4.1)
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where ui are the Bethe roots, in terms of which is written the one-loop anomalous dimension

γ1 =
S∑
k=1

1
u2
k
+ 1/4

. (4.2)

The same equations can be conveniently reformulated in the language of the Baxter operator
[130]. In this simple context and for the physical solutions, its eigenvalue is a degree S
polynomial in the spectral parameter u, Q(u) =

∏S
i=1(u − ui)which obeys the equation

(
u +

i

2

)J

Q(u + i) +
(
u − i

2

)J

Q(u − i) = t(u)Q(u), (4.3)

where t(u) is the transfer matrix of the integrable chain. In terms of Q(u), the one-loop
anomalous dimension reads

γ1 = i
(
logQ(u)

)′∣∣∣
u=+i/2

u=−i/2
. (4.4)

In the simplest case of twist J = 2, the transfer matrix is a second-order polynomial
t(u) = 2u2 − (S2 + S + 1/2), and the solution is easily identified with the Hahn function
Q(u)=3F2(−S, S + 1, 1/2 − iu; 1, 1; 1). Thus, the anomalous dimension at the 1-loop order, or
g2 = g2

YMN/16π
2, is

γ(S) = 2g2
(
Q′

(
i

2

)
−Q′

(
− i
2

))
= 8g2S1(S), S1(S) =

S∑
n=1

1
n
. (4.5)

This construction can be extended to all loops both in terms of Bethe Ansatz equations [5] as
well as with the Baxter formalism [131–134].

In principle, the Baxter method is superior to the other, since it provides an analytical
expression to the anomalous dimension as a function of the number S of Bethe roots.
Nevertheless, this approach has not been pursued in full detail for higher-rank subsectors
of the theory and a practical alternative is the maximal transcendentality principle [57–61].

This QCD-inspired idea10 predicts that at each order n the solution can be entirely
expressed in terms of certain combinations of generalized harmonic sums of order 2n − 1 or
in terms of products of harmonic sums Sa and zeta functions ζ(bi) in such a way that the sum
of their transcendentalities |a| and bi (see Appendix A for definitions) is again equal to 2n−1.
One can then use themaximal transcendentality principle to write the anomalous dimensions
as a combination of harmonic sum of fixed order with coefficient to be determined. The
rational coefficients can be then computed by fitting numerically with high precision the
perturbative expansions of the Bethe equation at fixed S.

A crucial point is that the derivation of the Bethe equations, or equivalently of the
Baxter equation, is based on the assumption that the length of the composite operator, that
is, the spin chain length, is sufficiently large to avoid finite size effects related to interactions
which wrap around the chain. The additional wrapping contributions which occur for short
chains were for the first time correctly evaluated in [27] via a clever generalization of the
Lüscher formulas [25] previously proposed for the AdS5×S5 sigma model in [26]. Such finite
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size effects are the object of recent investigations exploiting thermodynamical Bethe Ansatz
methods and relying on the AdS/CFT duality with the superstring dynamics on AdS5 × S5

[29–33]. The general statement is then that the full anomalous dimension must be written as

γ
(
g
)
= γABA(g) + γwrapping(g), (4.6)

where γABA(g) is captured by the asymptotic Bethe Ansatz equations of [5] and γwrapping(g)
is the wrapping contribution that can be evaluated with the tools mentioned above.

From the point of view of this Review, it is expected that reciprocity holds for the
full anomalous dimension (4.6), since the above splitting has a more technical than physical
nature. In all the explored examples to be discussed in the next section, reciprocity holds
in fact for both the asymptotic and the wrapping part. It is however remarkable that this
happens separately for the individual contributions.

4.2. Applications to Quasipartonic Composite Operators

We collect here the information on the relevant multiloop results for the anomalous
dimensions of a class of quasipartonic operators in N = 4 SYM. The discussion about the
reciprocity properties of these results will follow in the next section.

As mentioned in Section 4.1, the emergence of integrability in the planar limit
allows one to construct (at least at the one-loop level) a dictionary of correspondences
between quasipartonic operators and generalized spin chains. In the spin-chain language,
quasipartonic operators correspond to fixed length states and the anomalous dimensions are
the hamiltonian eigenvalues of the relevant XXX−
 chain [124–129]. At the one loop level,
these sets are closed under perturbative renormalization, while at higher loops only the
operators built out of scalar fields and gauginos continue to scale autonomously. In fact, the
N = 4 sl(2) subsector is closed at all orders, and even though operator with gauginos spans
the sl(2|1) subsector where there is mixing between scalars and fermions, this is not true in
the quasipartonic set of operators built out of suitably projected components of gaugino fields
[135]. Finally, in the case of gauge operators 11 [136], mixing effects start immediately beyond
one-loop (see the discussion in [64]).

4.2.1. Scalar Operators

Themost studied and simplest sector is the sl(2) subsector of the theory, whose representative
operatorsOJ,S = ϕJ−1DSϕ, built out of scalar fields ϕ and covariant derivatives acting on them,
were introduced in Section 4.1. In the chain language, each covariant derivative is thought as
an “excitation” of the vacuum state TrϕJ . The number of these excitations S =

∑
ni, the total

spin, is not limited, being the −1/2 representation of sl(2) infinite-dimensional.
The relevance of this bosonic subsector is due to the fact that, in the important case of

twist-two operators, it is exhaustive of the whole theory. All twist-two operators fall in fact in
a single supermultiplet [44, 137, 138] and their anomalous dimension is expressed in terms
of a universal function γuniv with shifted arguments

γ
ϕ

J=2(S) = γuniv(S), γ
ψ

J=2(S) = γuniv(S + 1), γAJ=2(S) = γuniv(S + 2). (4.7)
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For the twist-two anomalous dimensions, closed expressions at two loops are known
from explicit field-theory calculations [139] and at three loops from a conjecture inspired from
the maximum transcendentality principle [57–61] applied to the QCD splitting functions
[97, 98]. Up to three loops, the same formulas can also be computed by the asymptotic
Bethe ansatz [6] for fixed values of S. It is only recently that the three-loop conjecture has
been proved via the Baxter approach method [68]. In [23, 78] the ABA and wrapping part
for the four-loop anomalous dimensions for twist-two scalar operators in the sl(2) have
been computed, with the techniques explained in the previous section. This result has been
confirmed by a field-theoretical calculation [28, 140]. With similar ABA techniques and in
absence of wrapping corrections, closed (in S) expressions for the anomalous dimensions of
twist-three operators were derived in [23, 62].

Exploiting an Ansatz based on reciprocity (see next section), a five-loop formula
for the anomalous dimensions was proposed in [34] for the twist-three operators and,
in a similar fashion, in [41] for the case of twist-two. While in the first J = 3
case, the formula involves a leading order (generalized) Lüscher correction, in the case
of J = 2 a nontrivial next-to-leading order wrapping contribution (together with a
modification of the quantization condition) comes into play. This is due to the general
fact that, in the sl(2) sector, for twist J operators, the wrapping effect starts at order
g2J+4, delayed by superconformal invariance. The twist-three five-loop formula has been
later confirmed by a purely field-theoretical calculation [91], while the correctness of the
recent five-loop twist-two proposal is strongly supported by the fact that it respects the
correct weak-coupling constraints deriving from a BFKL analysis and double-logarithmic
behavior.

The same techniques used for the anomalous dimensionswork in the case of the higher
conserved charges of the chain model [88], something discussed so far only for the first few
charges in the scalar sector [87] and reviewed in Appendix B.

4.2.2. Fermion Operators

These operators are built out of helicity +1/2 component of the gaugino fields λα, and
covariant derivatives acting on them, defined in [52], where twist-three representatives have
been studied at two loops inN = 1, 2, 4 SYM by direct computation of the dilatation operator.
The high level of symmetry of the N = 4 theory results in a number of degeneracies
in the spectrum of anomalous dimensions, with unexpected relations between composite
operators of different twist [5]. The Bethe Ansatz reflects of course such remarkable structural
properties related to supersymmetry.

An excellent example of this fact is precisely the case of twist-three operators built
out of gauginos whose anomalous dimension was first proved in [63] to be related to the
“universal” twist-two anomalous dimension (4.7) as

γ
ψ

J=3(S) = γ
ϕ

J=2(S + 2). (4.8)

This statement has been rigorously proved at three loops and attributed to a hidden psu(1|1)
invariance of the su(2|1) subsector of the theory.
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4.2.3. Gauge Operators

These quasipartonic operators have as constituents gauge fields A on which an arbitrary
number of covariant derivatives act, where A stands for the holomorphic combination of the
physical gauge degrees of freedom A

μ

⊥ (suitable projected components of the field strength)
defined in [119]. Twist-three gauge operators were considered in [64] at three loops, and in
[82] at four loops and without wrapping effects.

At one-loop, this sector is described by a noncompact XXX−3/2 spin chain with J
sites, and the anomalous dimension is known as an exacts solution of the Baxter equation.
Beyond this order, no simple spin-chain correspondence exist and mixing effects come
into play. In order to find a closed formula for the anomalous dimension, one can then
hope to make use of the full psu(2, 2|4) Bethe equations in which the quantum numbers
belonging to the correct superconformal primary that describes this sector have to appear.
This can be done exploiting the superconformal properties of the (maximally symmetric)
tensorial product of three singletons [141]. As usual, using as an input the one-loop
solution

γAJ=3(S) = 4S1

(
S

2
+ 1

)
− 5 +

4
S + 4

, (4.9)

one can solve numerically the Bethe equations order by order in perturbation theory and
fit the coefficient in an appropriate Ansatz. However, in this case the latter cannot be
inspired by the standard maximum transcendentality principle, which is violated already
at one loop as shown explicitly from the formula above. The latter is fully consistent
with the QCD analysis of maximal helicity 3-gluon operators [142], where the dilatation
operator can be decomposed as an integrable piece H0 plus a perturbation and the lowest
eigenvalue is

ε = 4S1

(
S

2
+ 1

)
+

4
S + 4

+ 4. (4.10)

Inspired by a similar QCD calculation [143], the following Ansatz can be made which
generalizes the one-loop result at k loops:

γk(n) =
2k−1∑
τ=0

γ (τ)(n), γ (τ)(n) =
∑
p+
=τ

Hτ,
(n)
(n + 1)p

, n =
S

2
+ 1, (4.11)

whereHτ,
(n) is a combination of harmonic sums with homogeneous fixed transcendentality

. The terms with p = 0 have maximum transcendentality; all the others have subleading
transcendentality. Making use of this Ansatz and in the usual way, a three-loop [64] and a
four-loop formula [82]were derived for the anomalous dimension of these twist-three gauge
operators.
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4.3. Proof of Reciprocity in Closed Form

Reciprocity is checked on the function P which is obtained inverting (3.3) as

P(S) =
∞∑
k=1

1
k!

(
−1
2
∂S

)k−1[
γ(S)

]k = γ − 1
4

(
γ2
)′

+
1
24

(
γ3
)′′ − 1

192

(
γ4
)′′′

+ · · · ; (4.12)

inheriting thus the perturbative expansion of the anomalous dimension

γ =
∞∑
k=1

g2kγk, P =
∞∑
k=1

g2kPk. (4.13)

One way to operate is checking directly the parity invariance (3.4). One should perform the
large S expansion of (4.12), rewrite it as a large C expansion inverting (3.5), and check the
absence of odd inverse powers of C. Three-loop tests of reciprocity for QCD and for the
universal twist-two supermultiplet in N = 4 SYM were discussed this way in [81], and
it is also the procedure adopted up to now in the strong coupling analysis of reciprocity
(see Section 5). At weak coupling, however, there is a much more elegant and powerful
way to proceed. Considering that each term of the perturbative expansion of P is a linear
combination of products of harmonic sums, the idea is to find a new basis for the harmonic
sums with definite properties under the (large-)C parity C → −C.

This has been done in [84], where the map ωa, a ∈ N has been introduced, which acts
linearly on linear combinations of harmonic sums as follows (we omit, in the following, the
dependence of the harmonic sums on the spin S):

ωa(Sb,c) = Sa,b,c − 1
2
Sa∧b,c, (4.14)

where, for n,m ∈ Z \ {0}, the wedge-product is defined as

n ∧m = sign(n) sign(m)(|n| + |m|). (4.15)

One can also consider a complementary map ωa acting in a similar way on complementary
sums defined in Appendix A.

Following [66, 79], the combinations of (complementary) harmonic sums can be
introduced12

Ωa = Sa, Ωa = Sa = Sa,

Ωa,b = ωa(Ωb), Ωa,b = ωa

(
Ωb

)
,

(4.16)

for which the following two theorems hold [84].
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Theorem 4.1. 13The subtracted complementary combination Ω̂a, a = (a1, . . . , ad), has definite parity
Pa under the (large-) C transformation C → −C and

Pa = (−1)|a1|+···+|ad |(−1)d
d∏
i=1

εai . (4.17)

Theorem 4.2. The combination Ωa, a = (a1, . . . , ad) with odd positive ai and even negative ai has
positive parity P = 1.

The strategy to prove the reciprocity property of the kernel P is then the following.
At each perturbative order 
, one starts from the expression of the kernel P
 written in the
canonical basis, something that can always be done using the shuffle algebra (A.2), and
isolate in this expression the sums with maximum depth. Each of them, say Sa, appears
uniquely as the maximum depth term inΩa. One then subtracts all theΩ’s required to cancel
these terms, keeping track of this subtraction and repeating the procedure decreasing the
depth by one. If one ends the algorithm with a zero remainder and the full subtraction is
composed by Ω’s with the right parities (see Theorem 4.2), one can conclude that the kernel
P is parity respecting at the investigated order.

For example, the four-loop wrapping contribution from twist-two anomalous
dimension calculated in [78]

γ
wrapping
4 (S) = 256(S−5 − S5 + 2S−2,−3 − 2S3,−2 + 2S4,1 − 4S−2,−2,1)S2

1

+ −640ζ5S2
1 − 512S−2ζ3S2

1

(4.18)

can be conveniently rewritten only in terms of allowed Ω’s

Pwrapping
4 = −128Ω2

1(5ζ5 + 4ζ3Ω−2 + 8Ω−2,−2,1 + 4Ω3,−2). (4.19)

This way reciprocity was proven at four-loops for the whole (ABA part included) anomalous
dimension of twist-two operators. In a totally similar way, four loop reciprocity tests have
been performed for twist-three operators in the scalar [66] and in the gauge sector [82].

4.4. Reciprocity-Based Ansatz

Based on the exceptional number of checks done for a variety of operators and reversing
the usual logic, reciprocity can be simply assumed, and used as a tool to reduce the number
of unknown coefficients in the standard Ansatz based on the maximum transcendentality
principle to be solved via Bethe equations.

To see how this procedure can be used in practice, let us consider an illustrative
example, the two-loop anomalous dimension for twist-three scalar operators. One starts with
the following Ansatz of transcendentality τ = 3 made of harmonic sums with positive indices
and argument S/2 (as is the case for twist-three operators made of scalars)

γ2 = a1S3 + a2S1,2 + a3S2,1 + a4S1,1,1. (4.20)
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The corresponding kernel has the following form in the canonical basis:

P2 = γ4 − 1
4
γ2γ

′
2 ≡ (a1 − 16)S3 + (a2 + 16)S1,2 + (a3 + 16)S2,1 − 16ζ2S1 + a4S1,1,1, (4.21)

and when rewritten in terms of the Ω basis, the result is

P4 = c1Ω1 + c3Ω3 + c1,2Ω1,2 + c2,1Ω2,1 + c1,1,1Ω1,1,1 + const, (4.22)

where the ci are linear combinations of the coefficients ai. The combinationsΩ1, Ω3, Ω1,1,1 are
all reciprocity respecting, according to the above theorem. Imposing reciprocity on P2 implies
the vanishing of the coefficients of those Ωwith wrong parity, namely,

c1,2 = a2 + 16 +
a4
2

= 0, c2,1 = a3 + 16 +
a4
2

= 0. (4.23)

This leads to the conditions a3 = a2 and a4 = −2(16 + a2), that are indeed satisfied by
the known two-loop expression for the anomalous dimension [23, 62]. Thus, reciprocity
has determined 2 of the 4 unknown coefficients in the initial Ansatz for the anomalous
dimension.14 This procedure was used in [34] to deduce the five-loop asymptotic part of
the anomalous dimension for twist-three scalar operators. At this loop order, starting with a
linear combination of harmonic sums of transcendentality τ = 2n−1 = 9, one finds in principle
256 terms which potentially contribute to the anomalous dimension. Fitting numerically
all the coefficients, that should come out in exact (rational) form, is rather hard due to
computational limitation. Imposing reciprocity, one obtains instead an overdetermined set
of linear equations, which is solvable.15 In the same paper, the leading wrapping correction
has been computed, which turns out to be separately reciprocity respecting. We recall that
the result based on this assumption has been later confirmed by a purely field-theoretical
calculation [91].

A similar reciprocity-basedAnsatzwas used andwas also adopted in [41] to derive the
five-loop calculations for the anomalous dimensions of twist-two operators (see Section 4.1
point 1. above).

4.5. Summary of Weak-Coupling Reciprocity Tests

The successful application of the methods that we have just illustrated proves that the
reciprocity property ofN = 4 SYMhas awider range of validity than expected. It is confirmed
at higher loops for the twist-2 universal multiplet and is also valid for twist-3 operators built
with elementary fields of any conformal spin. Table 1 summarizes the present status of weak
coupling tests.

The results about the universal twist-two supermultiplet (first row in the table) are a
consequence of the four-loop check (ABA and wrapping contributions) in the scalar sector
[84], of the five-loop result of [41], and of the fact that the constant shift in the spin that
relates the anomalous dimensions in the supermultiplet as in (4.7) does not affect their
large spin expansion properties, which are at the basis of the reciprocity. With the same
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Table 1: Status of weak coupling reciprocity on minimal dimensions for twist operators.

O No. loops Wrapping Reciprocity

〈ϕϕ〉, 〈ψψ〉, 〈AA〉 5 yes
√

〈ϕϕϕ〉 5 yes
√

〈ψψψ〉 5 yes
√

〈AAA〉 4 no
√

(ABA)

motivation and due to (4.8), reciprocity holds with the same features for twist-thee operators
built out of gauginos (third row in the table). For the twist-three scalar sector (second
row in the table), reciprocity has been proved up to four loops in [66] and is present
separately both in the asymptotic (trivially) and in the wrapping contribution of the five-
loop result of [34]. Reciprocity for twist-three gauge operators has been proved at three [64]
and at four loops [82] for the asymptotic part of the anomalous dimension (last row in the
table).

Let us note that anomalous dimensions of operators with twist higher than two
occupy a band [96], the lower bound of which is the minimal dimension for given S and J .
Every successful check of reciprocity has been performed at weak coupling only for minimal
anomalous dimensions, while in fact anomalous dimensions of operators with twist higher
than two with trajectories close to the upper boundary of the band do not respect reciprocity,
as seen in the twist-three case at weak coupling in [121]. However, it is interesting that a
relation like (3.8) also holds for such excited trajectories [121]. (This is also what we will see
at strong coupling on the example of the spiky strings.)

A brief discussion of further results concerning reciprocity properties of higher
conserved charges is contained in Appendix B. The extension of the analysis to ABJMmodels
[90] has also been investigated and is illustrated in Appendix C.

5. Reciprocity at Strong Coupling: Semiclassical Strings in AdS5 × S5

The analysis of the reciprocity property in the strong coupling regime of N = 4 SYM is
performed by making use of the AdS/CFT correspondence, namely, considering energies of
the “semiclassical string states” which are believed to be dual to the quasipartonic operators
[144]. The string states, one referring to, are solitonic solutions of the string equations of
motion carrying a finite 2d energy that can be expressed in terms of other charges (spins),
and the standard semiclassical expansion refers to the energies of strings in AdS5 × S5

having large quantum numbers and thus dual to “long” SYM operators with large canonical
dimensions.

In the following, we will study reciprocity at the level of the energy in the two cases
of folded string and spiky strings, extending the analysis at one loop in the semiclassical
expansion for the folded string solution. We will then discuss a generalization of reciprocity
at the level of the eigenvalues of the first few commuting charges defined in [88].

It is of interest to recall that in such analysis, neither we will explicitly refer to the
classical integrability of the string sigma model [1] nor to the semiclassical approach directly
relying on such classical general finite gap description [145–148]. Interestingly enough,
however, integrability will come up again at the one-loop level via the connection with the
integrable, finite-gap, Lamé equation [86].
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5.1. Classical Folded String in AdS3 × S1

The first and most important example in this sense is the nontrivial rigid string solution
of [149] describing a folded spinning string rotating in the (ρ, φ) plane of AdS5 and
moving along the ϕ-circle of S5. For this configuration, the integrals of motion are the
space-time energy E =

√
λE and the two spins S =

√
λS and J =

√
λJ (conserved

momenta conjugate to t and to φ, ϕ, resp.). In the full quantum theory S and J should
take quantized values. In the semiclassical approximation we will consider, however, that
their values are assumed to be very large, in such a way that S and J are finite for√
λ� 1.

The expressions for the “semiclassical” energy and spins can be found [150] in terms
of the elliptic functions E and K of an auxiliary variable η

E = κ +
κ

ω
S, ω2 − J2

κ2 − J2
≡ 1 + η, (5.1)

S =
2πω√η√
κ2 − J2

[
E

(
− 1
η

)
− K

(
− 1
η

)]
,

√
κ2 − J2 =

2
π
√
η

K

(
− 1
η

)
. (5.2)

Here κ andω (or η) are parameters of the classical solution which we should have eliminated
to find E as a function of S and J.

To find the energy in terms of the spin one is to solve for η. Here we are interested in
the large spin expansion which corresponds to the long string limit (when the string ends are
close to the boundary of AdS5). For such long string one has η → 0.

In the limit in which the S5 momentum J of the string state can be ignored, solving for
S in (5.2) for small η and substituting it into the first of (5.2), one finds for E as a function of
S the expansion

E = S +
logS − 1

π
+
logS − 1
2π2S − 2 log2 S − 9 logS + 5

16π3S2

+
2 log3 S − 18 log2 S + 33 logS − 14

48π4S3
+ · · · , S ≡ 8πS.

(5.3)

In the case in which the S5 angular momentum of the string is not negligible compared
to S, that is, when the string state is dual to an operator with large spin S and large twist
J , one can work out analogous expansions. We will be interested in large S expansion
with S � J since only in this case the expansions like (2.13), that is, going in the
inverse powers of S with the coefficients being polynomials in logS, will apply (see also
[81, 150]).

In the large S � J or long string limit, when η � 1, one should distinguish between
“small” or “large”J cases [150, 151]. In the “slow long string” approximation (corresponding
to takingS to be largewith 
 ≡ J/ logS fixed and then expanding in powers of 
), the leading
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terms in the semiclassical energy read (cf. (5.3))

E − S − J ≈ 1
π

(
logS − 1

)
+

πJ2

2 logS
− π3J4

8 log3 S

(
1 − 1

logS

)
+ · · ·

+
4

S

[
1π

(
logS − 1

)
+

πJ2

2 log2 S
− 3π3J4

4 log4 S

(
1 − 2

3 logS

)
+ · · ·

]

− 4

S2

[
1
π

(
2 log2 S − 9 logS + 5

)
+ πJ2

(
1 +

3

2 logS
− 1

log2S
− 2

log3S

)
+ · · ·

]
,

(5.4)

where S ≡ 8πS and dots stand for higher-order corrections depending on J. In the case of
“fast long string”, when logS � J � S, the corrections to the energy read

E − S − J ≈ 1
π2J

[
1
2
log2Ŝ − log Ŝ +

4 log Ŝ
Ŝ

+
4

Ŝ2

(
−2 log Ŝ + 1 +

3

log Ŝ
+

2

log2Ŝ
+ · · ·

)
+ · · ·

]

+
1

π4J3

[
− log

4Ŝ
8

− 2

Ŝ

(
3 log2 Ŝ + log Ŝ + 1 +

1

log Ŝ
+

1

log2Ŝ
+ · · ·

)

− 2

Ŝ2

(
2 log3 Ŝ − 19 log2 Ŝ + 11 log Ŝ + 13 +

13

log Ŝ
+

11

log2Ŝ
+ · · ·

)
+ · · ·

]
,

(5.5)

where Ŝ ≡ 8S/J = 8S/J � 1. Dots in the square brackets indicate corrections in 1/Ŝ,
corrections in 1/ log Ŝ can be added in the round brackets, and terms like log(log Ŝ) have
been neglected.

With the large spin expansions (5.3)–(5.5) at hand, we first observe a general
agreement in the structure of the large S expansion as found in perturbative string theory
and in perturbative gauge theory; see (2.13). This agreement is nontrivial since the gauge-
theory and string-theory perturbative expansions are organized differently: the gauge-theory
limit is to expand in small λ at fixed S and then expand the λn coefficients in large S, while
the semiclassical string-theory limit is to expand in large λ with fixed S = S/

√
λ and then

expand the 1/(
√
λ)n terms in E in large S. Even assuming these limits commute (which so

far appears to be verified only for the leading universal logS term) the reason for the validity
of the functional relation (3.3) and, moreover, of the reciprocity property (3.4) is obscure on
the semiclassical string theory side.

We can furthermore study the compatibility of the expansions found with the
functional relation (3.3). In particular, the coefficients of the leading (logS/S)m terms in
(5.3) happen, indeed, to be consistent with (3.8), with the leading term in the function f being
simply the logarithm

E − S =

√
λ

π
log

[
S +

1
2

√
λ

π
logS + · · ·

]
+ · · · (5.6)
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The same is true for the expression (5.4), where the leading terms in the expression of (5.3)
dominate in the limit when J2/ logS � logS/S. In the case of the expansion (5.5), the
leading terms can be summed up as [96]

E − S =

√
J2 +

1
π2

log2
8S
J + · · · , (5.7)

where logS/J � 1 plays the role of an expansion parameter. Notice that in contrast to the
slow long string case where the expansion (5.4) has the same structure as in (2.13), in the fast
long string case (5.5), one gets higher powers of logS not suppressed by S. (For this kind of
discrepancy with the weak-coupling behavior, one would in general need a resummation of
the type discussed at the end of this section.) Nevertheless, the reciprocity property can be
successfully checked as we explain below.

It is then possible to proceed as follows with the analysis of reciprocity. If one identifies
the energy E, the angular momenta S and J of a string rotating in a plane in global AdS5 with
dimension, Lorentz spin and twist of the gauge theory quasipartonic operators, the functional
relation (3.3)would then imply that the anomalous dimension should be a function (that we
rename as f in this strong coupling context) of itself as in

γ = E − S − J = f
(
S +

1
2
γ

)
. (5.8)

To take into account the peculiarity of the string semiclassical perturbation theory, where all
nonzero charges are automatically large at large λ, we will use the semiclassical analogs γ̃ =
γ/

√
λ, f̃ = f/

√
λ of the function appearing in (5.8), checking therefore whether the function f̃

defined in

γ̃ = f̃
(
S +

1
2
γ̃

)
as f̃ =

∞∑
k=1

1
k!

(
−1
2
d

dS
)k−1[

γ̃
]k (5.9)

admits an expansion in even negative powers of the semiclassical analog C = C/
√
λ of the

Casimir in (3.5). This will be C ≡ S in the case of a folded string rotating only in AdS, and C ≡
S + (1/2)J in the case of the folded string rotating in AdS5 with nonzero angular momentum
in S5 16.

Specifically, for the AdS folded string, the large S expansion of the function f̃ (its
leading term in the strong-coupling limit) is much simpler than that of the anomalous
dimension E − S in (5.3) and contains only even powers of C−1 ∼ S−1

f̃(S) = 1
π

[
logS − 1 +

logS + 1
16π2S2

+O
(

1
S4

)]
+O

(
1√
λ

)
. (5.10)

A more systematic analysis of the reciprocity (parity invariance) property of the
function f̃ is possible with the help of an integral representation for it. Using that (5.9) implies
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f̃(S′) = γ̃(S′ − (1/2)̃f(S′)), where S′ = S + (1/2)γ̃(S), γ̃(S) = E−S, and renaming S′ → S,we
have

f̃(S) = 1
2πi

∮

Γ
dωγ̃(ω)

1 + (1/2)γ̃ ′(ω)
ω − S + (1/2)γ̃(ω)

, (5.11)

where the contour Γ encircles the pole of the integrand and prime stands for derivative.17 It is
natural to replace the variable ω in (5.11) with the expression (5.2) for the semiclassical spin
S(η)

f̃(S) = 1
2πi

∮

Γ
dηγ̃

(
η
) s̃′

(
η
)

s̃
(
η
) − S , (5.12)

where s̃(η) ≡ S(η) + (1/2)γ̃(η) = (1/2)(E + S) is the renormalized “conformal spin”, see
formula (3.6), expressed in terms of the semiclassical quantities. The integral then gives the
function γ̃ evaluated at the zero of the denominator; this is the same as the statement that
the anomalous dimension as a function of the Lorentz spin is, effectively, a function of the
conformal spin s̃.

To verify the reciprocity property of the function f̃(S) in (5.12), it is useful to redefine

the variable η as18 η → −1 + 16η +
√
1 + 256η2 and examine the large S or small η limit of the

expressions. One finds that γ̃(η) is a series in even powers of η

γ̃
(
η
)
= −1 + logη

π
+
4
(
logη + 12

)

π
η2 − 6

(
62 log η + 777

)

π
η4 + · · · , (5.13)

while the expression for the conformal spin runs in odd powers of η

s̃
(
η
)
=

1
8πη

+
11 + 2 log η

2π
η − 877 + 92 log η

2π
η3 + · · · (5.14)

From the equation for the pole of the integrand in (5.12), s̃−S = 0, one can find the parameter
η in terms of the spin S, concluding that it is given by a power series in odd negative powers
of S. As a result, f̃(S), which is same as γ̃(η) evaluated at the pole, should also run only in
even negative powers C ≡ S.

Coming to the case of the folded AdS5 string with nonzero angular momentum in
S5, one may again make use of the integral representation for the functional relation as in
(5.11). The discussion will apply to both the “slow” and the “fast” long string limits. Here the
renormalized “conformal spin” is s̃ = (1/2)(S +E) = S + (1/2)J+ (1/2)γ̃ , and we anticipated
that the semiclassical value of the Casimir operator is C ≡ S + (1/2)J. Then the integral in
(5.12) can be written as

f̃(C) = 1
2πi

∮

Γ
dηγ̃

(
η
) s̃′

(
η
)

s̃
(
η
) − C , s̃

(
η
)
= S(

η
)
+
1
2
γ̃
(
η
)
. (5.15)



Advances in High Energy Physics 23

After a redefinition of η, one can then show that the expansion of f̃ in large C runs only in
even negative powers of C (see [85, Appendix D]). In the kinematic region of “fast” long
strings, with 1 � logS � J � S, this parity invariance property was already demonstrated
in a closely related way in [81].

Notice that to establish a relation to the definition of reciprocity in weakly coupled
gauge theory expansion with finite twist, one would need to consider the case of semiclassical
(S, J) string and then resum the series for its energy (both in J and in

√
λ) so that the limit

of finite J would make sense. This is due to the subtlety of semiclassical string expansion,
again because all nonzero charges are automatically large at large λ and, for example, the
case of finite twist J = 2, 3, . . . cannot be distinguished from the formal case of J = 0. It is
usually assumed that the folded string in AdS5 with zero angular momentum in S5 describes
an operator of small twist, but that can be J = 2 or J = 3, and so forth.

5.2. Spiky Strings in AdS5 and Classical Violation of Reciprocity

It is interesting to mention a relevant example in which reciprocity is violated already at
classical level. This is the case of the spiky spinning string in AdS5 [152], the integrals of
motion are the energy, the spin (angular momentum in AdS5), and the difference between
the position of the spike and of the middle of the valley between the two spikes, Δθ = π/n,
expressed in terms of the number of the spikes n. Also in this case it is possible to perform a
large spin expansion, corresponding to the ends of the spikes approaching the boundary of
AdS5, which reads [85]

E − S =
n

2π

[
logS + p1 +

4

S
(
logS + p2

)
− 4

S2

(
2 log2 S + p3 logS + p4

)

+
32

3S3

(
2log3S + p5 log

2 S + p6 logS + p7
)
+ · · ·

]
,

(5.16)

where S = (16π/n)S and

p1 = −1 + log sin
π

n
, p2 = −1 + log sin

π

n
+
π(n − 2)

2n
cot

π

n
,

p3 = −10 + 2π(n − 2)
n

cot
π

n
− 2 cot2

π

n
− 4 log csc

π

n
+ csc2

π

n
,

p4 = 6 − csc2
π

n
+
π2(n − 2)2

2n2
− 4π(n − 2)

n
cot

π

n
+ cot2

π

n

[
π2(n − 2)2

n2
+ 1

]

+ log csc
π

n

[
2 cot2

π

n
− 2π(n − 2)

n
cot

π

n
− csc2

π

n
+ 2 log csc

π

n
+ 10

]
,

p5 = −18 +O(n − 2), p6 = 33 +O(n − 2), p7 = −14 +O(n − 2).

(5.17)
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It is easy to check that (5.16) coincides with the energy (5.3) for the folded string in AdS5
when n = 2. Retaining in (5.16) only the dominant contributions at each order of the above
expansion, we obtain

E − S =
n

2π
logS +

n2

8π2S logS − n3

64π3S2
log2S +

n4

384π4S3
log3S + · · · . (5.18)

This may be rewritten as

E − S =

√
λn

2π
log

[
S +

1
2

√
λn

2π
logS

]
+ · · · , (5.19)

implying that the functional relation is satisfied (cf. (3.8)).
Evaluating now the analog of the function f̃(S) in (5.10), one finds the following

expansion:

f̃(S) = n

2π

[
logS + q1 +

q2

S
+

1

S2

(
q3 logS + q4

)
+

1

S3

(
q5 logS + q6

)
· · ·

]
+ · · · , (5.20)

where

q1 = −1 + log sin
π

n
, q2 =

2π(n − 2)
n

cot
π

n
, q3 = 4 csc2

π

n
,

q4 = 4 + 2π2
(
n − 2
n

)2(
1 − 2 csc2

π

n

)
+ 4 log sin

π

n
csc2

π

n
,

q5 = O(n − 2), q6 = O(n − 2),

(5.21)

with q5, q6 are nonzero for n/= 2. The expansion (5.20), even if considerably simpler compared
to the energy (5.16), is not parity invariant under S → −S. The parity invariance is restored
in the case of the folded string when n = 2, where indeed (5.20) coincides with (5.10).

This breakdown of parity invariance for a string with n > 2 spikes is actually not only
nonsurprising, but expected. In fact, such spiky string should correspond to an operator with
nonminimal anomalous dimension for a given spin, while the reciprocity was checked at weak
coupling only for the minimal anomalous dimensions. Indeed and as already mentioned,
anomalous dimensions of operators of twist higher than two with trajectories close to the
upper boundary of the band present features completely analog to the one seen here, in that
they satisfy (3.8)while violating reciprocity [121].19
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5.3. Reciprocity in String Perturbation Theory

The observation that reciprocity holds at 1-loop in string semiclassical expansion, first made
in [85], has been confirmed and extended in [86] in the case of a folded string rotating in AdS.
The standard string semiclassical approximation is based on expanding the energy E in large√
λwith S = S/

√
λ kept fixed,

E = E
(

S√
λ
,
√
λ

)
=
√
λE0(S) + E1(S) + 1√

λ
E2(S) + · · · , (5.22)

where E0, the classical energy, coincides with (5.1), and E1, E2 are the 1-loop and 2-loop
energies translates into an analog semiclassical expansion within the relation (5.9). Namely,
the “anomalous dimension” can be written as

γ̃ = γ̃0 +
1√
λ
γ̃1 + · · · , where γ̃0 = E0(S) − S, γ̃1 = E1(S) (5.23)

from which the function f̃ defined by (5.9) can be determined as in

f̃ = f̃0 +
1√
λ

f̃1 + · · · , (5.24)

with

f̃0 =
∞∑
k=1

1
k!

(
−1
2
d

dS
)k−1[

γ̃0
]k
, f̃1 =

∞∑
k=1

1
k!

(
−1
2
d

dS
)k−1[

kγ̃k−10 γ̃1
]
. (5.25)

Due to the observation that the semiclassical fluctuation problem is governed by standard
single-gap Lamé operators, the possibility to write down an analytic exact expression for
the relevant functional determinants it is a recent achievement [86]. From the exact one-
loop energy E1 ≡ γ1 that can be written in terms of them, it has been possible to extract
the following expression for its large spin (small η) expansion (see also the comment at the
end of this section):

γ̃1 =
κ0
κ

[(
c01κ0 + c00 +

c0,−1
κ0

)
+
(
c11κ0 + c10 +

c1,−1
κ0

)
η

+
(
c21κ0 + c20 +

c2,−1
κ0

)
η2 +

(
c31κ0 + c30 +

c3,−1
κ0

)
η3 +O

(
η4

)]
,

(5.26)
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where κ0 = (1/π) log(16/η) and the explicit values for the coefficients are

c01 = −3 log 2, c00 = 1 +
6
π

log 2, c0,−1 = − 5
12
,

c11 = 0, c10 = − 3
π

log 2, c1,−1 =
1
2π

+
3 log 2
π2

,

c21 = − π
32

− 3
32

log 2, c20 =
1
16

+
39 log 2
32π

, c2,−1 = − 13
64π

− 63 log 2
32π2

,

c31 =
π

32
+

3
32

log 2, c30 = − 3
32

− 13 log 2
16π

, c3,−1 =
29

192π
+
85 log 2
64π2

.

(5.27)

Solving for the parameter η explicitly in terms of S, the first few terms in (5.26) read

γ̃1 = −3 log 2
π

logS +
π + 6 log 2

π
− 5π

12 logS

+ − 1

S

[
24 log 2
π

logS − 4π + 36 log 2
π

+
5π

3 log2 S

]
+O

(
1

S2

)
,

(5.28)

with S = 8πS. Working out f̃1 and looking at all terms which are odd under S → −S, we
find that they vanish if the following reciprocity constraints hold

c10 =
1
π
c01, c1,−1 =

1
2π

c00, c31 = −c21,

c30 = −c20 − 1
6π

c01 +
1
π
c21,

c3,−1 = −c2,−1 +
1

4π2
c01 − 1

12π
c00 +

1
2π

c20.

(5.29)

With the list of explicit coefficients above (5.27), these relations are indeed satisfied [86].
As we remarked, the expression of the one-loop energy derived in [86] is exact.

However, its expansion at large spin is quite nontrivial. It contains a part which can be
computed analytically in closed form and a reminder, starting at orderO(η2), which is known
(as yet) only in implicit form. It is the large spin expansion of the first contribution, namely
formula (5.26) above, which turns out to be separately reciprocity respecting.20

6. Open Problems and Perspectives

From the point of view of AdS/CFT, it is quite important to look for common structures
shared by the two sides of the correspondence. Integrability is certainly one of them. The
reciprocity property discussed in this Review is another example. Hence, we believe that it
is important to pursue its investigation and for this reason we list in this final section some
related open problems.
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First of all, as remarked in the introduction, there is no rigorous proof of reciprocity
neither at weak nor at strong coupling. It would be nice to establish the validity of this
(discrete) hidden symmetry by a solid physical argument or, possibly, as a mathematical
feature of the integrable structures of AdS/CFT, that is, Bethe Ansatz equations, Baxter
formalism, or exact S-matrix. In fact, as emphasized above, reciprocity is not tied to the planar
limit or to the integrability of the theories. In the case of N = 4 SYM, this suggests that
nonplanar corrections to the dilatation operator should also verify the reciprocity relation.

We furthermore observe that, in gauge theory, the reciprocity relation relates to each
other time-like and space-like anomalous dimensions. In analyzing the spectrum of N =
4 SYM, we considered the space-like case, the one in which anomalous dimensions are
directly connected with composite local gauge theory operators and, via AdS/CFT, with
the anomalous dimensions of the folded string configurations their dual. Referring to [81]
for a detailed discussion of the time-like case, we add that it remains an open problem, a
possible physical interpretation of the same time-like/space-like relation in string theory,
namely, what is the meaning of the state reciprocal to a folded spinning string in AdS.

As commented in Section 4.5, in the case of operators with twist higher than two, the
reciprocity relation only holds for the lower band of the band formed from their anomalous
dimensions, while it is broken for the excited states. This happens with a surprisingly similar
mechanism also at strong coupling in the case of spiky strings (Section 5.2). It would be nice
to clarify the reasons for such a breakdown of reciprocity, as well as verify the possibility to
restore it.

Another issue is the connection between reciprocity and so-called wrapping correc-
tions. The latter ones are under intense study and are expected to clarify several interesting
facets of a very non trivial pair of integrable models. From this point of view, the observation
that reciprocity is separately satisfied by the asymptotic Bethe Ansatz predictions as well
as from the wrapping corrections is an unsolved puzzle. As a related problem, reciprocity
deserves of course further study in larger (with rank greater than one) sectors of the theory.

Our final comment concerns the strong coupling regime of the gauge theory, which
is string perturbation theory. There are currently two apparently alternative formalisms to
work out quantum corrections for string configurations in AdS5 × S5. The first is standard
field-theoretical analysis of the string world-sheet σ-model. This approach, certainly boosted
by integrability, is a priori independent on it. The second method is based on of the algebraic
spectral curve which, instead, imposes and exploits integrability from scratch. Currently, it
is not totally clear how to relate the two approaches. The signals of reciprocity that we have
illustrated in the world-sheet calculations are, in our opinion, a very interesting check and a
challenge for the spectral curve method.

Appendices

A. Harmonic Sums

The nested harmonic sums Sa1,...,a
 are defined recursively as

Sa(S) =
S∑
n=1

εna
n|a|

, Sa,b(S) =
S∑
n=1

εna
n|a|

Sb(n), (A.1)

where εa = +1(−1) if a ≥ 0 (a < 0). The depth of a given sum Sa = Sa1,...,a
 is defined by
the integer 
, while its transcendentality is the sum |a| = |a1| + · · · + |an|. The product between
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harmonic sums can be reduced to linear combinations of single sums iteratively using the
so-called shuffle algebra [153]

Sa1,...,a
 (S)Sb1,...,bk(S) =
S∑
p=1

ε
p
a1

p|a1|
Sa2,...,a


(
p
)
Sb1,...,bk

(
p
)
+

S∑
p=1

ε
p

b1

p|b1|
Sa1,...,a


(
p
)
Sb2,...,bk

(
p
)

−
S∑
p=1

ε
p
a1ε

p

b1

p|a1|+|b1|
Sa2,...,a


(
p
)
Sb2,...,bk

(
p
)
.

(A.2)

A.1. Complementary and Subtracted Sums

Let a = (a1, . . . , a
) be a multi-index. For a1 /= 1, it is convenient to adopt the concise notation

Sa(∞) ≡ S∗
a. (A.3)

We define the complementary harmonic sums recursively by Sa = Sa and

Sa = Sa −

−1∑
k=1

Sa1,...,akS
∗
ak+1,...,a
 . (A.4)

Note that the definition is ill when a has some rightmost 1 indices; in this case, we will treat S∗
1

as a formal object in the above definition and will set it to zero in the end. Since Sa
∗ <∞ in all

remaining cases, it is meaningful to introduce the subtracted complementary sums, defined
as follows:

Ŝa = Sa − S∗
a. (A.5)

The explicit form of the above definition is

Ŝa(S) = (−1)

∞∑

n1=S+1

εn1a1

n
|a1|
1

∞∑
n2=n1+1

εn2a2

n
|a2|
2

· · ·
∞∑

n
=n
−1+1

εn
a


n
|a
 |



. (A.6)

B. Reciprocity of Higher Conserved Charges

To the notion of integrability for the spin chains corresponding to N = 4 SYM composite
operators is associated the existence of an infinite tower of commuting charges, in standard
notation {qr}r≥2. The first of them q2 is identified with the Hamiltonian of the chain and one
refers to a hierarchy of conserved charges. Actually, in our context all the qr are on the same
footing and is then natural to extend the analysis of the reciprocity properties to the full set
of conserved charges. An attempt in this direction is the paper [87]where the reader can find
more details. Here, we just summarize the main outcomes of that analysis.

In [87], a few higher charges in the sl(2) subsector are studied. In the weak coupling
regime, the first two non trivial charges q4,6 have been computed at three and two loops,
respectively.
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The result of the analysis is that reciprocity is indeed at work. The definition of the
kernel Pr (see (3.3)) can be consistently generalized to the full tower of charges according
to

qr(S) = Pr

(
S +

1
2
q2(S)

)
. (B.1)

Notice that this definition involves the renormalized conformal spin S + (1/2)q2(S) as
argument of the kernel, in agreement with light-cone quantization. The naive argument
S + (1/2)qr(S) implicitly defines a nonreciprocity-respecting kernel.

The strong coupling regime can be explored at the classical level considering the first
higher charges of the sigma model, which can be derived from those of the su(2) sector
[88] by analytic continuation and then analyzed following the same strategy adopted for
the energy case. At this leading order, the parity invariance is satisfied by all the examined
charges.

As a final comment, we remark that the wrapping corrections for the higher charges
have not been computed yet, even at the leading order. It would be very nice to include them
in the TBA treatment.

C. Reciprocity and ABJM Theory

In this Review, we considered N = 4 SYM duality with string propagation on AdS5 ×
S5. Actually, integrability appears in other instances of the AdS/CFT correspondence. In
particular, the correspondence between the so-called ABJM theory [90] and IIA string on
AdS4 × CP

3 has been recently widely studied.
Again, the string model is classically integrable [154–156]. The dual gauge theory is

an N = 6 superconformal theory in three dimensions, with U(N) ×U(N) gauge group and
Chern-Simon action with opposite levels +k, −k, emerging in the low energy limit of a theory
ofN branes at a C

4/Zk singularity.
In [157, 158], it has been shown that the dilatation operator for single-trace operators

built with the scalars of the theory leads to an SU(4) integrable spin chain, and soon the set of
all-loop Bethe-Ansatz equations for the full osp(2, 2|6) theory has been proposed. Despite that
theN = 4 SYM and the ABJM theory present a very different structure, one can identify a sl(2)
[159, 160] sector in the ABJM theory, and the relative all-loop conjectured Bethe equations
show strong similarities with the SYM case. Thus, it is an interesting task to try to investigate
to which extent one can recover the QCD-inspired reciprocity properties in such an exotic
gauge theory. Some breaking of reciprocity is expected since now the gauge structure is rather
far from the QCD one and the physical arguments supporting reciprocity are missing or at
least much weaker.

The analysis of [89] shows that twist-one operators obey a four-loop parity invariance
closely related to the reciprocity discussed in this Review. This four-loop result for the twist-
one operators includes the leading-order wrapping correction, computed using the Y-system
formalism [29–31]. In the twist-two case, parity invariance is badly broken, although some
remnants can still be seen in the fine structure of the kernel P.
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Endnotes

1. The purely field-theoretical predictions in [37, 38] on the strong coupling expansion of
the anomalous dimension for the Konishi operator differ both from [35] as well as from
each other.

2. With a similar reciprocity-based Ansatz, a five-loop formula for the twist-two anomalous
dimension was worked out in [41].

3. If there are several operators mixing among themselves, the reciprocity property is
expected to hold for the eigenvalues of the mixing matrix anomalous dimensions and
not for the separate matrix elements. See [81] for a detailed analysis of the case of QCD
flavour singlet quark and gluon twist-2 operators.

4. The “+” distribution is defined for an arbitrary function f(x) in the standard way

∫1

0
dxf(x)

1
(1 − x)+

=
∫1

0
dx

f(x) − f(1)
1 − x .

5. An evolution equation analogue to (2.11) has been first discussed for time-like
anomalous dimensions in the small x limit in [161].

6. SL(2,R) primary fields Φ have definite scaling dimension d and collinear spin c is
defined by

DΦ = dΦ, Σ+−Φ = cΦ,

where D and Σμν are the dilatation and Lorentz spin generators. The collinear twist
(collinear dimension minus collinear spin) is minimal for t = d − c = 1.

7. Since by γ(S) one means the anomalous dimension of a gauge invariant operator inN =
4 SYM theory, it is quite natural to adopt for such generalization the case of σ = −1
in the nonlinear QCD relation (2.12), corresponding to the space-like case. In fact, the
QCD time-like anomalous dimensions are not related to composite local gauge operators,
due to the general fact that fragmentation functions do not admit the operator product
expansion [81].

8. The relation between the notation used in [81] and ours isN → S, L → J , J → C and
j → s.

9. Interestingly enough, the large spin expansion of the wrapping contribution of [78]
and of [34], which correctly does not change the leading asymptotic behavior (cusp
anomaly), first contributes at the same order, but not in such a way that the total log2S/S2

coefficient results in (−f3/8) as required from (3.8).
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10. Inspired by the structure of the two-loop anomalous dimension of N = 4 twist-two
operators in the sl(2) sector, it has been proposed [57–61] that the three-loop answer
could be extracted by simply picking up the “most transcendental terms” from the three-
loop non-singlet QCD anomalous dimension derived in [97, 98]. The conjectured three-
loop formula has been then independently confirmed in the framework of the Bethe
ansatz equations [6] as well as within a space-time approach [67].

11. The name stems from the one-loop description of a class of scaling operators. Beyond
one-loop, additional fields mix.

12. A different basis for harmonic sums with well-defined reciprocity-respecting properties
has been recently proposed in [41].

13. A special case of Theorem 4.1 appeared in [79]. A general proof of Theorem 4.1 in the
restricted case a = (a1, . . . , a
) with positive ai > 0 and rightmost indices a
 /= 1 can be
found in [66].

14. The coefficient a4 has only been kept to show the exact number of constraints coming
from reciprocity. It could have been set to zero from the beginning because at large M
the term S1,1,1 ∼ log3M is not compatible with the universal leading logarithmic behavior
(cusp anomaly).

15. We should stress, however, that reciprocity as an assumptions only acts as a
computational tool. As usual in such kind of conjectures, there is a powerful numerical
test that can be applied to any guesswork, and the closed formulas presented in [34] have
been always double checked numerically as solutions of the Bethe equations.

16. The choice for this case of 
 = 1/2 in the semiclassical version of (3.5) follows from the
fact that the nonzero R-charge for classical bosonic solutions automatically selects the
sl(2) sector identified in fact by 
 = 1/2.

17. The expression that multiplies γ̃ in the integrand has residue 1, so that the integral is γ̃
evaluated at the poleω = S−(1/2)γ̃ . Then defining x = S−(1/2)̃f(S),we have 2S−2x = γ̃
which coincides with the equation for the pole with x = ω.

18. This choice is not unique. An analogous transformation was used in [81].

19. It is interesting that our strong-coupling result (5.19), (5.20) has close similarity with
weak-coupling one found for n = 3 in [121]: the functional relation (3.8) is still satisfied,
and the parity invariance is broken at level 1/S.

20. This situation is for certain aspects similar to the ABA + wrapping splitting discussed at
weak coupling.
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[155] B. Stefański Jr., “Green-Schwarz action for type IIA strings on AdS4 × CP

3,” Nuclear Physics B, vol.
808, no. 1-2, pp. 80–87, 2009.

[156] J. Gomis, D. Sorokin, and L.Wulff, “The complete AdS4×CP
3 superspace for the type IIA superstring

and D-branes,” Journal of High Energy Physics, vol. 2009, no. 3, article 015, 2009.
[157] J. A. Minahan and K. Zarembo, “The Bethe ansatz for superconformal Chern-Simons,” Journal of

High Energy Physics, vol. 2008, no. 9, article 040, 2008.
[158] D. Bak and S.-J. Rey, “Integrable spin chain in superconformal Chern-Simons theory,” Journal of High

Energy Physics, vol. 2008, no. 10, article 053, 2008.
[159] N. Gromov and P. Vieira, “The all loopAdS4/CFT3 Bethe ansatz,” Journal of High Energy Physics, vol.

2009, no. 1, article 016, 2009.
[160] B. I. Zwiebel, “Two-loop integrability of planarN = 6 superconformal Chern-Simons theory,” Journal

of Physics A, vol. 42, no. 49, Article ID 495402, 2009.
[161] A. H. Mueller, “Multiplicity and hadron distributions in QCD jets. (II). A general procedure for all

non-leading terms,” Nuclear Physics B, vol. 228, no. 2, pp. 351–364, 1983.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

High Energy Physics
Advances in

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Fluids
Journal of

 Atomic and  
Molecular Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in  
Condensed Matter Physics

Optics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astronomy
Advances in

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Superconductivity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Statistical Mechanics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gravity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astrophysics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Physics 
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Solid State Physics
Journal of

 Computational 
 Methods in Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Soft Matter
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Aerodynamics
Journal of

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Photonics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Thermodynamics
Journal of


