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spirit of AdS/CFT duality, it is possible to extract it from the string Bethe Ansatz equa-

tions in the sl(2) sector of the AdS
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� S

5 superstring. To this aim, we present a detailed

analysis of the Bethe equations by numerical and analytical methods. We recover several

short string semiclassical results as a check. In the more difficult case of the long string

limit providing the scaling function, we analyze the strong coupling version of the Eden-

Staudacher equation, including the Arutyunov-Frolov-Staudacher phase. We prove that it

admits a unique solution, at least in perturbation theory, leading to the correct prediction

consistent with semiclassical string calculations.
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1. Introduction

The n-gluon maximally helicity violating (MHV) amplitudes in planar N = 4 SYM obey

very remarkable iterative relations [1, 2, 3] suggesting solvability or even integrability of

the maximally supersymmetric gauge theory. The main ingredient of the construction is

the so-called scaling function defined in terms of the large spin anomalous dimension of

leading twist operators in the gauge theory [4]. The scaling function can be obtained by

considering operators in the sl(2) sector of the form

Tr
n

D

S

Z

L

+ permutations
o

: (1.1)

The classical dimension is S+L, so L is the twist, with minimal value L = 2. The minimal

anomalous dimension in this sector is predicted to scale at large spin S as

�� S = f(g) log S +O(S

0

); (1.2)

where the planar ’t Hooft coupling is defined as usual by

g

2

=

�

16�

2

; � = N g

2

YM

: (1.3)

– 1 –



The one and two loops explicit perturbative calculation of f(g) is described in [5, 6, 7]

and [8, 9]. Based on the QCD calculation [10], the three-loop O(g

6

) calculation is per-

formed in [11, 12] by exploiting the so-called trascendentality principle (KLOV).

In principle, one would like to evaluate the scaling function, possibly at all loop order

by Bethe Ansatz methods exploiting the conjectured integrability of SYM. This strategy

has been started in [13]. In that paper, an integral equation providing f(g) is proposed

by taking the large spin limit of the Bethe equations [14]. Its weak coupling expansion

disagrees with the four loop contribution. The reason of this discrepancy is well under-

stood. The Bethe Ansatz equations contain a scalar phase, the dressing factor, which is not

constrained by the superconformal symmetry of the model. Its effects at weak-coupling

show up precisely at the fourth loop order.

A major advance was done by Beisert, Eden and Staudacher (BES) in [15]. In the

spirit of AdS/CFT duality, they considered the dressing factor at strong coupling. In that

regime, it has been conjectured a complete asymptotic series for the dressing phase [16].

This has been achieved by combining the tight constrains from integrability, explicit 1-

loop �-model calculations [17, 18, 19, 20] and crossing symmetry [21]. By an impressive

insight, BES proposed a weak-coupling all-order continuation of the dressing. Including it

in the ES integral equation they obtained a new (BES) equation with a rather complicated

kernel. The predicted analytic four-loop result agrees with the KLOV principle. Very re-

markably, an explicit and independent perturbative 4-loop calculation of the scaling func-

tion appeared in [22]. In the final stage, the 4-loop contribution is evaluated numerically

with full agreement with the BES prediction.

This important result is one of the main checks of AdS/CFT duality. Indeed, a non

trivial perturbative quantity is evaluated in the gauge theory by using in an essential way

input data taken from the string side.

As a further check, one would like to recover at strong coupling the asymptotic behav-

ior of the scaling function, as predicted by the usual semiclassical expansions of spinning

string solutions [23, 24, 25]. Actually, the BES equation passes this check, partly numer-

ically [26] and partly by analytical means [27]. One could say that this is a check that

nothing goes wrong if one performs the analytic continuation of the dressing phase from

strong to weak coupling.

From a different perspective, one would like to close this logical circle and check that

the same result is obtained in the framework of the quantum string Bethe equations pro-

posed originally in [17]. Indeed, it would be very nice to show that these equations repro-

duce the scaling function in the suitable long string limit. Also, one expects to find some

simplifications due to the fact that only the first terms in the strong coupling expression

of the dressing must be dealt with. On the other side, the BES equation certainly requires

all the weak-coupling terms if it has to be extrapolated at large coupling.

In this paper, we pursue this approach. As a first step, we study numerically the

quantum Bethe Ansatz equations in the sl(2) sector and check various results not directly

related to the scaling function. Then, we work out the long string limit which is relevant to

the calculation of f(g). From our encouraging numerical results, we move to an analytical

study of a new version of the BES equation suitable for the string coupling region. This
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equation has been first derived by Eden and Staudacher in [13] as a minor result. Indeed, it

has been left over because the main interest was focusing on matching the weak-coupling

4-loop prediction. However, we believe that it is a quite comfortable tool if the purpose

is that of reproducing the strong coupling behavior of the scaling function. We indeed

prove that the solution described in [27] is the unique solution of the strong coupling ES

equation.

The plan of the paper is the following. In Sec. (2) we recall the Bethe Ansatz equations

valid in the sl(2) sector ofN = 4 SYM without and with dressing corrections. In Sec. (3) we

present various limits obtained in the semiclassical treatment of theAdS
5

�S

5 superstring.

We present our results for short and long string configurations. In Sec. (4) we analyze the

strong coupling ES equation building explicitly its solution and checking that it agrees

with the result of [27]. We also investigate numerically the equation without making any

strong coupling expansion to show that the equation is well-defined. Sec. (5) is devoted

to a summary of the presented results.

2. Gauge Bethe Ansatz predictions for the scaling function without dressing

In the seminal paper [13], Eden and Staudacher (ES) proposed to study the scaling func-

tion in the framework of the Bethe Ansatz for the sl(2) sector ofN = 4 SYM. The states to

be considered in this rank-1 perturbatively closed sector take the general form

Tr f(Ds

1

Z) � � � (D

s

L

Z)g ; s

1

+ � � � + s

L

= S: (2.1)

They are associated to the states of an integrable spin chain. The anomalous dimension �

is related to the chain energies by

� = L+ S +E

L;S

(g) : (2.2)

The all-loop conjectured Bethe Ansatz equations valid for E
L;S

up to wrapping terms are

fully described in [28, 14]. Some explicit tests are can be found in [29, 30]. The Bethe

Ansatz equations for the roots fu
k

g

1�k�S

are

 

x

+

k

x

�

k

!

L

=

S

Y

j 6=k

x

�

k

� x

+

j

x

+

k

� x

�

j

1�

g

2

x

+

k

x

�

j

1�

g

2

x

�

k

x

+

j

; x

�

k

= x

�

u

k

�

i

2

�

; (2.3)

where we have defined the maps

x(u) =

u

2

0

�

1 +

s

1�

4 g

2

u

2

1

A

; u(x) = x+

g

2

x

: (2.4)

The solutions of Eq. (2.3) must obey the following constraint to properly represent single

trace operators
S

Y

k=1

x

+

k

x

�

k

= 1: (2.5)
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The quantum part of the anomalous dimension, i.e. the chain spectrum, is obtained from

E

L;S

(g) = 2 g

2

S

X

s=1

 

i

x

+

k

�

i

x

�

k

!

: (2.6)

Taking the large S limit of the Bethe Ansatz equations, ES obtain the following represen-

tation of the scaling function

f(g) = 8 g

2

� 64 g

4

Z

1

0

dt �(t)

J

1

(2 g t)

2 g t

; (2.7)

where � is the solution of the integral equation

�(t) =

t

e

t

� 1

�

J

1

(2 g t)

2 g t

� 4 g

2

Z

1

0

dt

0

K

m

(2 g t; 2 g t

0

)�(t

0

)

�

; (2.8)

with the (so-called main) kernel

K

m

(t; t

0

) =

J

1

(t) J

0

(t

0

)� J

0

(t) J

1

(t

0

)

t� t

0

: (2.9)

Notice that given �(t) we can simply write f(g) = 16 g

2

�(0) [31]. These equations are

independent on the twist which drops in the large S limit. This is important since the

scaling function is expected to be universal [32, 13] and therefore can be computed at

large twist.

Unfortunately, the perturbative expansion of f(g) disagrees at 4 loops with the ex-

plicit calculation in the gauge theory. This is well known to be due to the missing contri-

bution of the dressing phase.

2.1 Input from string theory: Dressing corrections

The effect of dressing is discussed in [15] to which we defer the reader for general dis-

cussions about its origin and necessity. The Bethe equations are corrected by a universal

dressing phase according to

 

x

+

k

x

�

k

!

L

=

S

Y

j 6=k

x

�

k

� x

+

j

x

+

k

� x

�

j

1�

g

2

x

+

k

x

�

j

1�

g

2

x

�

k

x

+

j

e

2 i �

kj

: (2.10)

The general perturbative expansion of the dressing phase is [17, 33] 1

�

kj

=

X

r�2

X

��0

X

���

�

g

2

�

r+�+�

�

(r+�+�)

r;r+1+2�

[q

r

(p

k

)q

r+1+2�

(p

j

)� (k $ j)℄ ; (2.11)

where the higher order charges q
r

(p) are [34]

q

r

(p) =

2 sin

�

r�1

2

p

�

r � 1

0

�

q

1 + 16 g

2

sin

2

p

2

� 1

4 g

2

sin

p

2

1

A

r�1

: (2.12)

1This general formula holds unchanged in various deformations of the SYM theory [35, 36], see for ex. [37].
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The first non trivial constant is �
(3)

2;3

6= 0. Indeed, �
(2)

2;3

= 0 consistently with the 3-loops

agreement with explicit perturbation theory.

The proposed coefficients for the all-order weak-coupling expansion of the dressing

phase [16] are given in [15] (see also [38] and [39]). They read

�

(r+�+�)

r;r+1+2�

= 2(�1)

r+�+1

(r � 1)(r + 2�)

2�+ 1

 

2�+ 1

�� r � � + 1

! 

2�+ 1

�� �

!

�(2�+ 1) (2.13)

and zero if �� r � � + 1 < 0. This proposal is completely equivalent to a precise modifi-

cation of the kernel of the integral equation. It amounts to the replacement

K

m

(t; t

0

)! K

m

(t; t

0

) + 2K



(t; t

0

); (2.14)

where the dressing kernel can be written

K



(t; t

0

) = 4 g

2

Z

1

0

dt

00

K

1

(t; 2 g t

00

)

t

00

e

t

00

� 1

K

0

(2 g t

00

; t

0

); (2.15)

with

K

0

(t; t

0

) =

t J

1

(t) J

0

(t

0

)� t

0

J

1

(t

0

) J

0

(t)

t

2

� (t

0

)

2

; (2.16)

K

1

(t; t

0

) =

t

0

J

1

(t) J

0

(t

0

)� t J

1

(t

0

) J

0

(t)

t

2

� (t

0

)

2

: (2.17)

The modified integral equation can be exploited to compute the perturbative expansion

of f(g). Now, there is agreement with the 4 loop explicit calculation. As we stressed in

the Introduction, it is very remarkable that this weak coupling agreement is found with

various inputs from string theory. In this sense, this is a powerful check of AdS/CFT

duality.

3. Strong coupling regime and the string Bethe equations

As we explained, the BES equation is obtained by including in the ES equation an all-

order weak-coupling expansion of the dressing phase. This expansion comes from a clever

combination of string theory inputs and constraints from integrability. In our opinion, this

is the essence of the integrability approach to AdS/CFT duality. As a consistency check,

one would like to recover from the BES equation the known semiclassical predictions

valid in the AdS
5

� S

5 superstring at large coupling.

There are indeed several limits that can be computed. The semiclassical limit is eval-

uated in terms of the BMN-like [40] scaled variables which are kept fixed as �!1

E

p

�

;

J

p

�

;

S

p

�

; (3.1)

where E; J; S are the semiclassical energy of a string rotating in S5 with angular momen-

tum J and spinning in AdS

5

with spin S. The classical solution, and the first quantum

corrections as well, are described in [23, 24, 25].
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The simplest limits that can be considered are those describing short strings that do

not probe AdS regions with large curvature. We call them

short-GKP;
J

p

�

� 1;

S

p

�

� 1; : E =

q

J

2

+ 2S

p

�; (3.2)

short-BMN;
J

p

�

fixed;
S

p

�

� 1; : E = J + S

s

1 +

�

J

2

: (3.3)

The scaling function is instead reproduced in the simplest long string limit which

reads

long string;
J

p

�

� 1;

S

p

�

� 1; : E = S + f(�) log S: (3.4)

In this limit, one can read the strong coupling behavior of the scaling function which is

f

string

(g) = 4 g �

3

�

log 2 + � � � : (3.5)

A first attempt to solve numerically the integral equation is described in [26]. The

BES equation is solved in a discrete series of Bessel modes and the result is a numerical

profile of the scaling function shown in Fig. (1) of that paper. The lower curve is the

scaling function taking into account the conjectured dressing and well reproduces the

string prediction.

Recently, the leading term of f(g) has been obtained analytically in [27], including the

analytic expression of the Bethe roots densities in the strong coupling limit.

An intriguing feature of Fig. (1) in [26] is that the strong coupling behavior starts very

early, namely at g ' 1. The long string behavior should be visible at S=
p

� � 1 which

at g = 1 means S � 13. One can ask if it is possible to explore numerically the Bethe

equations in the gauge theory up to g ' 1 and with S = O(100) to extract the scaling

function. Actually, this is a hard task. At g ' 1 the regime is not perturbative. The

complete dressing should be resummed and it is not easy to do that, although some very

interesting results have been presented in [15].

An alternative hybrid approach would be that of taking the string Bethe equations

with leading dressing. This should be enough to study the leading terms of f(g) at strong

coupling. Of course, the problem is now that g must be large and then S must be unre-

alistically large to deal with the numerical solution. However, not much is known about

the properties of the strong coupling dressing expansion. It is divergent, but possibly

asymptotic. Therefore, it would be difficult to estimate its accuracy at g ' 1.

In the next Section, we illustrate the detailed exploration of the above three limits.
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3.1 The String Bethe equations and their numerical solution

For the subsequent analysis it is convenient to pass to the p variables defining

p(u) = �i log

x

+

(u)

x

�

(u)

; (3.6)

x

�

(p) =

e

�

ip

2

4 sin

p

2

�

1 +

r

1 + 16 g

2

sin

2

p

2

�

; (3.7)

u(p) =

1

2

ot

p

2

r

1 + 16 g

2

sin

2

p

2

: (3.8)

The loop corrections to the energy are now

E

L;S

(g) =

S

X

k=1

�

r

1 + 16 g

2

sin

2

p

k

2

� 1

�

; (3.9)

where fp
k

g are obtained by solving the Bethe equations with dressing Eq. (2.10). At strong

coupling, we use the leading dressing phase and write the string Bethe equations in loga-

rithmic form as

i L p

k

=

X

j 6=k

8

>

>

>

>

<

>

>

>

>

:

log

0

B

B

B

B

�

x

�

k

� x

+

j

x

+

k

� x

�

j

1�

g

2

x

�

k

x

+

j

1�

g

2

x

+

k

x

�

j

1

C

C

C

C

A

+ (3.10)

+2 i (u

k

� u

j

) log

0

B

B

B

B

�

1�

g

2

x

�

k

x

+

j

1�

g

2

x

+

k

x

+

j

1�

g

2

x

+

k

x

�

j

1�

g

2

x

�

k

x

�

j

1

C

C

C

C

A

9

>

>

>

>

=

>

>

>

>

;

+ 2� i "(p

k

) (3.11)

where "(x) = x=jxj and we have utilized the p ! �p symmetry of the solution for the

ground state as well as its known mode numbers [13].

The numerical solution of the String Bethe equations is perfectly feasible. The tech-

niques have already been illustrated in the two compact rank-1 subsectors su(2) and

su(1j1) as discussed in [41, 42].

First, we solve the equations at � = 0. This is the one-loop contribution. It is known

exactly at L = 2. The Bethe roots are obtained, for an even spin S, as the roots of the

resolvent polynomial [43, 13]

Y

s

(u� u

s

) �

3

F

2

�

�S; S + 1;

1

2

� i u; 1; 1; 1

�

: (3.12)

The 1-loop energy can also be computed in closed form with the result

E

2;S

= 8 g

2

( (S) �  (1)) � 8 g

2

log S + � � � �! f(g) = 8 g

2

+ � � � : (3.13)

The roots are real and symmetrically distributed around zero. This features are also true

for the ground state at arbitrary finite twist.
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At L > 2, we use the solution at L = 2 as the starting point for the numerical root

finder. Then, we increase g. At each step, we use a linear extrapolation of the previous

solutions to improve the guess of the new solution. This procedure is quite stable and

allows to explore a wide range of L; S; g values. Notice that changing the twist L is trivial

since the complexity of the equations does not change.

3.2 Short string in the GKP limit

As a first numerical experiment we fix L and S and increase g up to large values where the

equations are reliable. This is the short string limit where the AdS geometry is approx-

imately flat. One expects to recover the Gubser-Klebanov-Polyakov law � � g

1=2 [44].

Solving the equations, we indeed verify that the Bethe momenta have the asymptotic

scaling p
k

� g

�1=2. This is clearly illustrated in Fig. (1).

Despite the non trivial distribution of the Bethe roots, it is straightforward to compute

the anomalous dimension at large g. To do that, we first write the Bethe equations in the

form

i L p

k

= 2� i "(p

k

) +

X

j 6=k

S

kj

: (3.14)

At large g we can write

p

k

=

�

k

g

1=2

+

�

0

k

g

+ � � � : (3.15)

The Bethe momenta can be divided into a set P with �
k

> 0 and a symmetric set obtained

by flipping p! �p. The expansion of the energy is

E =

X

k

�

2 g

1=2

j�

k

j+ 2 "(�

k

)�

0

k

� 1

�

+ � � � = (3.16)

= 4 g

1=2

X

k2P

�

k

+ 4

X

k2P

�

0

k

� S: (3.17)

From the Bethe equations we have

i L

X

k2P

p

k

= i � S +

X

k2P

X

j 62P

S

kj

: (3.18)

where we exploited S
ij

= �S

ji

. Each Bethe momentum p

j

with j 62 P can be written as

�p

j

0 with j0 2 P . Hence we can write

i L

X

k2P

p

k

= i � S +

X

j;k2P

S(p

k

;�p

j

): (3.19)

At large g

S(p

k

;�p

j

) = �2 i

�

�

k

�

j

+

1

g

1=2

(�

0

k

�

j

+ �

k

�

0

j

)

�

+ � � � (3.20)

The leading order Bethe equations give

i � S � 2 i

X

k;j2P

�

k

�

j

= 0 �!

X

k2P

�

k

=

�

� S

2

�

1=2

: (3.21)
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The next-to-leading terms are

i L

X

k2P

�

k

= �2 i

X

j;k2P

(�

0

k

�

j

+ �

k

�

0

j

) = �4 i

X

k2P

�

k

X

j2P

�

0

j

; (3.22)

�!

X

k2P

�

0

k

= �

L

4

: (3.23)

In conclusion, by plugging these results in the expression for �, Eq. (2.2), we find

� =

p

2S �

1=4

+O(�

�1=4

): (3.24)

The subleading term cancels the classical contribution leaving a pure �1=4 behavior. This

can be compared with the flat limit in the semiclassical approximation that reads for J=
p

�,

S=

p

�� 1

E

string

=

q

J

2

+ 2S

p

� (3.25)

with full agreement.

3.3 Short string in the BMN limit

If we keep S fixed and increase � with �=L

2 fixed, we can reach the BMN limit [40].

This is numerically very easy because L enters trivially the equations. Fig. (2) shows the

convergence to the BMN limit when L is increased from 10 to 100 and S is fixed at S = 4.

The various curves clearly approach a limiting one. This is very nice since it is an explicit

show of how the BMN regimes sets up. Fig. (3) shows the limiting curves for S = 4; 6; 8

at very large L = 10

4. The three curves are perfectly fit by the expected law

E = L+ S

s

1 +

�

L

2

: (3.26)

3.4 Long string limit and the scaling function

The previous pair of tests in the (easy) short string limits is a clear illustration that the

numerical solution of the Bethe equations is reliable.

The slow string limit is much more difficult. We begin with a plot of the energy at

fixed twist L = 6 and increasing spin from 10 to 60. It is shown in Fig. (4). Each curve

bends downward as g increases, since it ultimately must obey the g1=2 law. However, at

fixed g, when S increases the energy increases slowly eventually following the log S law.

We attempted an extrapolation at S ! 1 at each g. In Fig. (5) we show our estimate for

the derivative of the scaling function, by fitting the data (S

1

� S

2

) with S
1

< S < S

2

. We

also show the analytical prediction 4. It seems to be roughly reproduced as soon as g & 1.

The above ”dirty” numerical procedure shows that it is reasonable to expect that the

quantum string Bethe equations are able to capture the correct strong coupling behavior of

the scaling function. However, the above extrapolation has a high degree of arbitrariness,

especially concerning the fitting function employed to estimate the S ! 1 limit. Also,

one would like to go to quite larger g requiring a huge number of Bethe roots, equal

– 9 –



indeed to the spin S. In practice, as it stands, the numerical investigation could hardly be

significantly improved.

For all these reasons, in the final part of this paper we explore an equation analogous

to the BES equation, but derived for the string Bethe equation, at least with the leading

order dressing phase.

4. The strong coupling ES equation

The inclusion of the AFS phase [17] in the ES equation

�(t) =

t

e

t

� 1

�

J

1

(2 g t)

2 g t

� 4 g

2

Z

1

0

dt

0

K(2 g t; 2 g t

0

) �(t

0

)

�

; (4.1)

K(t; t

0

) � K

m

(t; t

0

) =

J

1

(t) J

0

(t

0

)� J

1

(t

0

) J

0

(t)

t� t

0

; (4.2)

is straightforward and has been described in full details in [13]. The resulting equation

reads

�(t) =

t

e

t

� 1

�

J

1

(2 g t)

2 g t

+ 2 g

J

2

(2 g t)

2 g t

� 4 g

2

Z

1

0

dt

0

e

K(2 g t; 2 g t

0

) �(t

0

)

�

; (4.3)

e

K(t; t

0

) = K(t; t

0

) + 2 g K

AFS

(t; t

0

); (4.4)

where the AFS kernel is

K

AFS

(t; t

0

) =

t (J

2

(t) J

0

(t

0

)� J

2

(t

0

) J

0

(t))

t

2

� (t

0

)

2

: (4.5)

It is important to remark that both the main and AFS kernels admit a simple expansion as

series of products of two Bessel functions. For the main kernel, it is well known that

K(t; t

0

) =

2

t t

0

X

n�1

nJ

n

(t) J

n

(t

0

): (4.6)

For the AFS kernel we have 2

J

2

(t) J

0

(t

0

)� J

2

(t

0

) J

0

(t)

t

2

� (t

0

)

2

=

8

t

2

(t

0

)

2

X

n�1

nJ

2n

(t) J

2n

(t

0

): (4.8)

We change variables to put the equation in a somewhat simpler form and define

s(t) =

e

t

� 1

t

�(t); h(� ) = s

�

�

2g

�

: (4.9)

2This expansion can be proved by starting from the identity

J

2

(t)J

0

(t

0

)� J

2

(t

0

) J

0

(t) =

2

t t

0

�

t

0

J

1

(t)J

0

(t

0

)� t J

0

(t) J

1

(t

0

)

�

: (4.7)

The result Eq. (4.8) follows immediately from the expansions reported in the appendices of [15].
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The strong coupling ES equation for h is then

h(� ) =

J

1

(� )

�

+ 2 g

J

2

(� )

�

�

Z

1

0

d�

0

e

K(�; �

0

)

�

0

e

�

0

=(2 g)

� 1

h(�

0

): (4.10)

This equation is expected to be reliable at strong coupling. It should reproduce the leading

term in the scaling function f(g) = 8 g

2

h(0). With the conventions adopted in this part of

the paper, this means h(0) = 1=(2g) + subleading.

4.1 Leading order at strong coupling

We are interested in the large g limit with � fixed. The leading terms are obtained by

expanding

h(� ) =

1

g

v(� ) +O

�

1

g

2

�

; (4.11)

�

e

�=(2 g)

� 1

= 2 g +O (1) : (4.12)

Taking the terms with the leading power of g we find that v(� ) satisfies the remarkably

simple equation
Z

1

0

d�

0

K

AFS

(�; �

0

) v(�

0

) =

J

2

(� )

2�

: (4.13)

Taking into account the expansion of the AFS kernel, the equation can be written in the

equivalent form
Z

1

0

d�

J

2n

(� ) v(� )

�

2

=

1

16

Æ

n;1

: (4.14)

Following the approach of [26, 27] we expand the solution in a Neumann series of Bessel

functions

v(� ) =

X

k�1



k

J

k

(� )

�

; (4.15)

and now the equation reads

X

k�1

H

nk



k

=

1

16

Æ

n;1

; H

nk

=

Z

1

0

J

2n

(x) J

k

(x)

x

3

dx: (4.16)

Now, the following question arises: Is this equation a constraint or does it determine a

unique solution v(� )? As a first step, we prove that the solution of [27] is indeed a solution

to the above equation. This solution reads



2n

= (�1)

n+1

�(n + 1=2)

�(n)�(1=2)

; 

2n+1

= (�1)

n

�(n+ 3=2)

�(n + 1)�(1=2)

: (4.17)

Now, the detailed values of the matrix elements H
nk

are

k even : H

n;k

=

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

1

32n (n + 1) (2n + 1)

; k = 2n+ 2;

1

8n (2n + 1) (2n � 1)

; k = 2n;

1

32 (2n � 1)n(n � 1)

; k = 2n� 2;

0; otherwise:

(4.18)
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and

k = 1 + 2p; : H

n;1+2p

=

16

�

(�1)

n+p

(4n

2

� (2p+ 3)

2

)(4n

2

� (2p+ 1)

2

)(4n

2

� (2p� 1)

2

)

(4.19)

The linear equations Eq. (4.16) are then (E stands for even Bessel)

E

n

= 0; n � 1; (4.20)

where

E

n

= (1� Æ

n;1

)



2n�2

32(2n � 1)n(n � 1)

+



2n

8n(2n + 1)(2n � 1)

+



2n+2

32n(n + 1)(2n + 1)

+ (4.21)

+

X

p�0



2p+1

H

n;1+2p

�

1

16

Æ

n;1

:

These equations are indeed satisfied by the solution defined through Eq. (4.17). This can

be checked by evaluating the infinite sum in closed form by the Sommerfeld-Watson trans-

formation methods. For instance the five terms in Eq. (4.21) read at n = 1; 2; 3

E

1

= 0 +

1

48

�

1

256

+

35

768

�

1

16

= 0; (4.22)

E

2

=

1

384

�

1

320

+

1

1024

�

7

15360

� 0 = 0; (4.23)

E

3

= �

1

1280

+

1

896

�

5

12288

+

311

430080

� 0 = 0: (4.24)

However, this is not the unique solution of Eq. (4.13). As is quite usual, the straightfor-

ward strong coupling limit of Bethe equations does not determine completely the solution

which is fixed by the tower of subleading corrections. A similar difficulty is explained in

details in [27].

For instance, a second solution of Eq. (4.16) is



2 k

= 2 k (�1)

k+1

; 

2 k+1

= 0: (4.25)

Indeed, this produces the remarkably simple solution

v(� ) =

X

k�1

2 k (�1)

k+1

J

2 k

(� )

�

�

1

2

J

1

(� ): (4.26)

Notice that, before summing the series, this second solution is precisely of the general

class Eq. (4.15). As a check, we have indeed
Z

1

0

d�

J

2n

(� ) J

1

(� )

2 �

2

= �

1

8�

sin n�

n

2

(n

2

� 1)

=

1

16

Æ

n;1

for n = 1; 2; : : : (4.27)

In practice, we still need the equal-weight condition on the even/odd Bessel functions

contained in the solution [27].

To find a unique solution, we must examine the next orders in the strong coupling

expansion. Indeed, the next orders provide both equations for the various subleading

corrections to the solution v(� ) and constraints on the previous contributions. This is due

to the fact that the AFS kernelK
AFS

(�; �

0

) is a function of � expressed as a Neumann series

of purely even Bessel functions. The odd Bessel functions provide the above mentioned

constraints as we now illustrate.
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4.2 NLO order at strong coupling

Let us work out the constraints from the subleading correction. If we take into account

the next terms in the expansion and write

h(� ) =

1

g

v

(0)

(� ) +

1

g

2

v

(1)

(� ) + � � � ; (4.28)

�

e

�=(2 g)

� 1

= 2 g �

�

2

+ � � � (4.29)

we find the following equation for v(1)

Z

1

0

d�

0

K

AFS

(�; �

0

) v

(1)

(�

0

) = (4.30)

=

Z

1

0

d�

0

�

1

4

K

AFS

(�; �

0

) �

0

�

1

2

K(�; �

0

)

�

v

(0)

(�

0

) +

J

1

(� )

4 �

: (4.31)

To simplify, we exploit

1

4

K

AFS

(�; �

0

) �

0

�

1

2

K(�; �

0

) = (4.32)

=

2

� �

0

X

n�1

nJ

2n

(� ) J

2n

(�

0

)�

1

� �

0

X

n�1

nJ

n

(� ) J

n

(�

0

) = (4.33)

= �

1

� �

0

X

n�0

(2n+ 1) J

2 n+1

(� ) J

2n+1

(�

0

): (4.34)

Hence, the equation can be written

Z

1

0

d�

0

K

AFS

(�; �

0

) v

(1)

(�

0

) =

J

1

(� )

4 �

+

X

n�0

(2n + 1)�

n

J

2n+1

(� )

�

(4.35)

where, explicitly, the constants �
n

are given by

�

n

= �

X

k�1



k

G

n k

; (4.36)

G

n k

=

Z

1

0

J

2n+1

(x) J

k

(x)

x

2

dx: (4.37)

The relevant integrals are

Z

1

0

J

2n+1

(x) J

2 k

(x)

x

2

dx =

8

>

>

>

>

<

>

>

>

>

:

1

8n (2n + 1)

; k = n;

1

8 (n + 1) (2n + 1)

; k = n+ 1;

0; otherwise:

(4.38)

and

F

nk

=

Z

1

0

J

2n+1

(x) J

2 k�1

(x)

x

2

dx =

=

4 (�1)

n+k

�

1

(4 k

2

� (2n+ 1)

2

)(2 k + 2n� 1)(2 k � 2n� 3)

(4.39)
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Equating to zero the coefficients of the odd Bessel functions J
2n+1

(� ) we obtain the con-

straint on v(0)

O

n

= 0; n � 0; (4.40)

where

O

n

= (1� Æ

n;0

)



2n

8n(2n + 1)

+



2n+2

8(n+ 1)(2n + 1)

+

X

k�1

F

nk



2 k�1

�

1

4

Æ

n;0

: (4.41)

These conditions are linear combinations of the previous equations. Indeed, one can check

that

E

n

=

1

4n

(O

n

+O

n�1

): (4.42)

So this constraint adds nothing new and, in particular, is satisfied by the Alday’s solu-

tion [27]. Looking at the even Bessel functions, we obtain the homogeneous equation

Z

1

0

J

2n

(� ) v

(1)

(� )

�

2

d� = 0: (4.43)

which admits the consistent solution v(1) = 0.

4.3 NNLO order at strong coupling

The next order in the 1=g expansion is what we need to fix uniquely v(0). Expanding as

before and writing now

h(� ) =

1

g

v

(0)

(� ) +

1

g

2

v

(1)

(� ) +

1

g

3

v

(2)

+ � � � ; (4.44)

�

e

�=(2 g)

� 1

= 2 g �

�

2

+

�

2

24 g

+ � � � (4.45)

we find the following equation for v(2)

4

Z

1

0

K

AFS

(�; �

0

) v

(2)

(�

0

) d�

0

= (4.46)

=

Z

1

0

�

1

2

�

0

K(�; �

0

)�

1

12

(�

0

)

2

K

AFS

(�; �

0

)

�

v

(0)

(�

0

) d�

0

� v

(0)

(� ):

The odd Bessel functions give a constraint independent on v(2). To compute it, we need

the integrals (in our relevant range of values for n; k)

Z

1

0

J

2k+1

(x) J

2n

(x)

x

dx =

2

�

(�1)

n�k

(1 + 2k)

2

� 4n

2

(4.47)

and
Z

1

0

J

2k+1

(x) J

2n+1

(x)

x

dx =

1

2(1 + 2k)

Æ

n;k

: (4.48)

One obtains immediately the crucial relation



2k+1

2k + 1

=

4

�

X

n�1



2n

(�1)

n�k

(1 + 2k)

2

� 4n

2

: (4.49)
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This relation permits to write all odd coefficients 
2k+1

in terms of the even ones. Substi-

tuting this relation in the truncated versions of the basic conditions

E

n

= 0; (4.50)

one obtains a well-posed problem converging rapidly to the solution [27] without any a

priori condition on the solution. For instance, by truncating the problem dropping all 
2n

with n > N , we find the table Tab. (1) of values for 
2

. A simple polynomial extrapolation

to N !1 provides the correct limit 
1

= 

2

= 0:5000(1).

Hence, the strong coupling expansion is well defined and the leading solution is

unique. Of course, it is the one described in [27].

N 10 20 30 40 50 60 70 80



2

0.5665 0.5386 0.5273 0.5211 0.5173 0.5146 0.5127 0.5112

Table 1: Coefficient 
2

from the truncated full rank linear problem.

4.4 Numerical integration of the strong coupling ES equation

To summarize, we have shown that the strong coupling ES equation is consistent with

the results of [27]. In that paper, it was crucial to fix the relative weights of the even/odd

Bessel functions appearing in the general solution. These weights were shown to be more

than an Ansatz. They are encoded in the full equation before expanding at strong cou-

pling. Alternatively, they can be derived by analyzing the next-to-leading and next2-to-

leading corrections.

As a final calculation and check, we provide the results from a numerical investigation

without any strong coupling expansion to see how the correct strong coupling solution

arises. This can be done along the lines illustrated in [26, 27]. We start again from the

Neumann expansion

h(� ) =

X

k�1



k

J

k

(� )

�

; (4.51)

and arrive at the infinite dimensional linear problem



n

= Æ

n;1

+ 2 g Æ

n;2

� 2n

X

k�1

Z

(1)

nk



k

� 8 g

(

0; n odd

n

P

k�1

Z

(2)

nk



k

; n even
(4.52)

where

Z

(p)

nk

(g) =

Z

1

0

J

n

(x) J

k

(x)

x

p

(e

x

2 g

� 1)

: (4.53)

As in [26, 27] we can truncate this equation setting 
k

= 0 for k > N . The solution should

be reliable for g . N . We considered 2 < g < 30 and N = 50. The best fit to the leading

term in f(g) gives

f(g) =  g + subleading; (4.54)

 = 4:000(1): (4.55)

This confirms that the strong coupling ES equation has a unique solution with the correct

large g limit. Of course, as g !1 it is nothing but Eq. (4.17).
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5. Conclusions

In this paper, we have considered several properties of the quantum string Bethe equa-

tions in the sl(2) sector with the leading strong coupling dressing, i.e. the AFS phase. We

have performed a numerical investigation of the equations showing that their analysis

is quite feasible. As an interesting result, we have repeated the calculation of the GKP

limit of the anomalous dimensions as for the highest excited states in the compact rank-1

subsectors su(2) and su(1j1). Also, we have been able to observe the setting of the BMN

scaling regime by reproducing the plane wave energy formula at fixed spin and large

twist. In the case of the long string regime, we have been able to provide numerical ev-

idences for a scaling function exhibiting an early strong coupling behavior as expected

from the numerical solution of the BES equation.

Motivated by these results, we have analyzed analytically and perturbatively at strong

coupling an almost trivially modified version of the BES equation with the very simple

strong coupling dressing [17]. In particular, we have proved that this equation admits, as

it should, a unique solution for the asymptotic Bethe root (Fourier transformed) density

in full agreement with existing results.

While this work was under completion, the paper [45] presented an analysis partially

overlapping with our results. That paper derives an integral equation for the Bethe root

density taking into account the dressing at strong coupling and is based on a novel integral

representation of the dressing kernel. We hope that the two alternative approaches will

turn out to be useful in computing the one-loop string correction to the large g scaling

function. Indeed, this interesting contribution has been checked numerically in [26] but it

still evades an analytical confirmation.

Hopefully, these various efforts might give insight on the general structure of the

dressing phase as well as on the role of the asymptotic Bethe equations in an exact de-

scription of the planar spectrum [46]. Significative studies about finite size effects [47]

and corrections that arise in a finite volume to the magnon dispersion relation at strong

coupling [48], see also [49], as well as the recent observation [50] that the dressing phase

could originate from the elimination of ”novel” Bethe roots, strongly demand a deeper

understanding.
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Figure 1: Numerical solution in the short-GKP limit, i.e. at L; S fixed and increasing g. We show

the g

�1=2 behaviour of the Bethe momenta, the computed energy with its g

1=2 profile, and the

(vanishing) difference with analytic strong coupling expansion Eq. (3.24).
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2 fixed.
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