

City, University of London Institutional Repository

Citation: Abro, F. I. (2018). Investigating Android permissions and intents for malware
detection. (Unpublished Doctoral thesis, City, Universtiy of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published
version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/19741/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral
Rights remain with the author(s) and/or copyright holders. URLs from
City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or
charge. Provided that the authors, title and full bibliographic details are
credited, a hyperlink and/or URL is given for the original metadata page
and the content is not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Investigating Android Permissions

and Intents for Malware Detection

Fauzia Idrees Abro

A dissertation submitted in partial fulfilment

of the requirements for the degree of

Doctor of Philosophy

of the

City, University of London

School of Mathematics, Computer Science and Engineering

2018

2

Declaration

No portion of the work contained in this document has been submitted in

support of an application for a degree or qualification of this or any other

university or other institution of learning. All verbatim extracts have been

distinguished by quotation marks, and all sources of information have

been specifically acknowledged.

Signed: Fauzia Idrees Abro

Date: 23 February 2018

3

Abstract

Today’s smart phones are used for wider range of activities. This

extended range of functionalities has also seen the infi ltration of new

security threats. Android has been the favorite target of cyber criminals.

The malicious parties are using highly stealthy techniques to perform the

targeted operations, which are hard to detect by the conventional

signature and behaviour based approaches. Additionally, the limited

resources of mobile device are inadequate to perform the extensive

malware detection tasks. Impulsively emerging Android malware merit a

robust and effective malware detection solution.

In this thesis, we present the PIndroid ― a novel Permissions and

Intents based framework for identifying Android malware apps. To the

best of author’s knowledge, PIndroid is the first solution that uses a

combination of permissions and intents supplemented with ensemble

methods for malware detection. It overcomes the drawbacks of some of

the existing malware detection methods. Our goal is to provide mobile

users with an effective malware detection and prevention solution keeping

in view the limited resources of mobile devices and versatility of malware

4

behavior. Our detection engine classifies the apps against certain

distinguishing combinations of permissions and intents. We conducted a

comparative study of different machine learning algorithms against several

performance measures to demonstrate their relative advantages. The

proposed approach, when applied to 1,745 real world applications,

provides more than 99% accuracy (which is best reported to date).

Empirical results suggest that the proposed framework is effective in

detection of malware apps including the obfuscated ones.

In this thesis, we also present AndroPIn—an Android based

malware detection algorithm using Permissions and Intents. It is designed

with the methodology proposed in PInDroid. AndroPIn overcomes the

limitation of stealthy techniques used by malware by exploiting the usage

pattern of permissions and intents. These features, which play a major role

in sharing user data and device resources cannot be obfuscated or

altered. These vital features are well suited for resource constrained

smartphones. Experimental evaluation on a corpus of real-world malware

and benign apps demonstrate that the proposed algorithm can effectively

detect malicious apps and is resilient to common obfuscations methods.

Besides PInDroid and AndroPIn, this thesis consists of three

additional studies, which supplement the proposed methodology. First

study investigates if there is any correlation between permissions and

intents which can be exploited to detect malware apps. For this, the

statistical significance test is applied to investigate the correlation between

permissions and intents. We found statistical evidence of a strong

5

correlation between permissions and intents which could be exploited to

detect malware applications.

The second study is conducted to investigate if the performance of

classifiers can further be improved with ensemble learning methods. We

applied different ensemble methods such as bagging, boosting and

stacking. The experiments with ensemble methods yielded much improved

results.

The third study is related to investigating if the permissions and

intents based system can be used to detect the ever challenging colluding

apps. Application collusion is an emerging threat to Android based

devices. We discuss the current state of research on app collusion and

open challenges to the detection of colluding apps. We compare existing

approaches and present an integrated approach that can be used to

detect the malicious app collusion.

6

Acknowledgements

My last four and a half years have been challenging yet a life

transforming experience. I never stopped working: reading, thinking and

writing... and enjoying every minute of it. Throughout the course of my

PhD study, everyone associated with my research has been incredibly

brilliant and generous in their time and attention. I would like to thank all

the people who contributed in some way in my PhD research for their

unconditional and endless support, inspiration and encouragement.

Firstly, I would like to express my deepest gratitude to my

supervisor Professor Muttukrishnan Rajarajan for his patience, motivation,

immense knowledge and continuous support during my PhD study. His

guidance helped me in all the time of research starting from selecting

problems to work on, elaborating the problems, publishing the results to

writing of this thesis. I could not have imagined having a better supervisor

and mentor for my Ph.D study.

7

I would also like to thank my second supervisor Professor Tom

Chen for his insightful comments, support and encouragement which

helped me e to widen my research from various perspectives.

I am deeply grateful to Dr Yogachandran Rahulamathavan and Dr

Suresh Veluru for being instrumental in refining my research endeavours.

Without their support, the contributions and results from this research

would not have been possible.

I also owe a great debt of gratitude to Erasmus Mundus Strong ties

scholarship and City University London for sponsoring and supporting my

PhD studies. Without their funding, it was not possible to pursue my PhD

at the City University London.

I am sincerely grateful to my family and friends for supporting me

throughout my PhD. Their patience, support and encouragements have

been invaluable. I couldn’t ask for anything better than what I got from

them as they were always a kindle of hope for me.

Lastly but certainly most importantly, I would like to thank Almighty

for His countless blessings on me and my family.

8

Dedication

I dedicate this greatest academic milestone to my family ― My parents (M.

Yousuf and Mehr), who have always prayed for my success and supported

me out rightly from my childhood to this day; my husband (Idrees), who

has faith in me and always supported me unconditionally to fulfil my

dreams; my children (Ali and Ezza) for their understanding and sacrificing

the times I should have spent with them. Thank you for your unending

support, unconditional love and thorough understanding.

9

Publications

1. Fauzia Idrees, Muttukrishnan Rajarajan, Mauro Conti, Thomas M.

Chen and Rahulamathavan Yogachandran “Pindroid: A novel Android

malware detection system using ensemble learning methods."

Computers & Security, 68, 36-46, 2017, Elsevier

2. Fauzia Idrees, Muttukrishnan Rajarajan and Thomas Chen, "Mobile

Malware detection with permissions and intents analysis.” In 18th

ACM Workshop on Mobile Computing Systems and Applications

(HotMobile), USA, 2017, ACM

3. Fauzia Idrees, Muttukrishnan Rajarajan, Mauro Conti, Thomas M.

Chen and Rahulamathavan Yogachandran “AndroPIn: Correlating

Android Permissions and Intents Praxis for Malware Detection.” In

the 8th Int. conf. on IT, Electronics and Mobile communications (IEMCON),

Canada, 2017, IEEE

4. Fauzia Idrees, Muttukrishnan Rajarajan, Thomas M. Chen and

Rahulamathavan Yogachandran, "Android Application Collusion

Demystified.” In proceedings (Vol. 759, p. 176), Future Network

Systems and Security: 3rd Int. conf. FNSS, USA, 2017, Springer

5. Fauzia Idrees, Muttukrishnan Rajarajan, Mauro Conti, Thomas M.

Chen and Rahulamathavan Yogachandran, “AndroPIn: Correlating

Android Permissions and Intents for Malware Detection.” Poster

presentation, the 6th N2Women Networking workshop, USA, 2017, ACM

10

6. Fauzia Idrees and Muttukrishnan Rajarajan, “Investigating Android

Permissions and Intents for Malware Detection.” In 10th Int. conf. on

Wireless and Mobile Computing, Networking and Communications

(WiMob), pp. 354-358, Cyprus, 2014, IEEE

7. Fauzia Idrees and Muttukrishnan Rajarajan, "War against mobile

malware with cloud computing and machine learning forces." In 3rd

IEEE International conf. on Cloud Networking (CloudNet), pp. 278-280,

Luxemburg, 2014, IEEE

8. Fauzia Idrees, Muttukrishnan Rajarajan, A. Y. Memon, "Framework

for distributed and self-healing hybrid intrusion detection and

prevention system." In 5th Int. conf. on ICT Convergence (ICTC), pp.

277-282, Korea, 2013, IEEE

11

Contents

1 Introduction…………………………………………………………..19

 1.1 Introduction.…………………………………..……..…………..19

 1.2 Overview.……………………………………………………......20

 1.3 Research Questions……………………………………………23

 1.4 Contributions ………………………………………….……..…24

 1.5 Thesis Outline ……………………………………………….…25

2 A Survey on Android and Malware Detection Systems…..…28

 2.1 Overview………………………………………………………..28

 2.2 Android Operating System……………………………..…….29

 2.2.1 Architecture…………..……………….………………30

 2.2.1.1 Linux Kernel……………………………..…30

 2.2.1.2 Middleware…………………………………31

 2.2.1.3 Application Framework…………..………..32

 2.2.1.4 Applications …………………..……………33

 2.2.2 Componenets of Application……….………..………33

 2.3 Android Security Model……………………………..……….35

 2.3.1 System and Kernel Level Security……………….....36

 2.3.2 Application sandbox……………………………….....36

12

 2.3.3 File system Permissions model………………..……36

 2.3.4 Security enhanced Linux…………………………….36

 2.3.5 Android Permissions …………….………………….37

 2.3.6 Protected APIs…………………………….………….38

 2.3.7 Cost sensitive APIs ……………………….…………38

 2.3.8 Inter-Components Communication (ICC)…..……...38

 2.3.9 Application Signing……………………..…………....39

 2.3.10 Sensitive User Data…………………..…………......39

 2.3.11 Publishing of Apps………………............................42

 2.4 Mobile Malware……………… ………………………………..43

 2.4.1 Types of Malware……………………………………..44

 2.4.2 Malware Propagation …………………………….….46

 2.5 Malware detection systems……………………………………48

 2.5.1 Malware analysis…………………….…………………48

 2.5.2 State-of-the-art ..51

3 Investigating Permissions & Intents for Malware detection....57

 3.1 Introduction………………………………………………………57

 3.2 Background………………………………………………….……58

 3.2.1 Android Permissions……………………………………59

 3.2.2 Android Intents………………………………………….60

 3.3 Analysis of Permissions and Intents…………………………..61

13

 3.3.1 Permission usage by the App…………………………62

 3.3.2 Permissions Groups……………………………………63

 3.3.3 Intents usage by the Apps……………………….….64

 3.3.4 Combining Permissions & Intents …………………....65

3.4 Correlation between Permissions and Intents ………….…..66

3.5 AndroPIn: Malware Detection Algorithm …….………………69

 3.5.1 Design…………………………………………………...70

 3.5.2. Implementation…………………..…………….…........72

 3.6 Experiments..………………………………………..…..…….....75

 3.6.1 Experimental Setup..……………………………........ 75

 3.6.2 Dataset..………………………………………...............79

 3.6.3 Results..………………………………………...............81

 3.7 Summary..…………………………… ………………………… 81

4 PInDroid: Permissions & Intents based Malware Detection … 82

 4.1 Introduction……………………………………………….……… 82

 4.2 Overview………………………………………………………… 84

 4.2.1 System architecture…………………………………… 85

 4.2.2 Data Collection………………………………………… 86

 4.2.3 Feature Extraction……………………………………… 91

 4.3 Experiments ………………………………………………………93

 4.3.1 ML Classifiers……………………………….……….…94

14

 4.3.2 Performance comparison of ML Classifiers…………97

 4.4 Results and Discussion…………………………………………..98

 4.4.1 Performance Comparison of different Classifiers…...99

 4.4.2 Area Under Curve (AUC)………………………….….100

 4.5 Comparison with related approaches…………………………101

 4.6 Application of Ensemble Learning Methods. ..………………104

 4.6.1 Ensemble Learning……………..……………………..104

 4.6.2 Boosting…………………………………………………104

 4.6.3 Bagging………………………………………………….105

 4.6.4 Stacking………………………………………………….105

 4.6.5 Results……..…………………………………….………107

 4.7 Summary……………………………………………..…………..109

5 Detection of Colluding Applications……………………………….111

 5.1 Introduction…………………………………………….……….. 111

 5.2 Overview……………………………………….………….……...113

 5.3 Investigation of Applicatin Collusion………….………………..115

 5.3.1 Covert Communication channels ………..……….…..118

 5.4 IPC related attacks…………………………………………..…..119

 5.4.1 Applicatin Collusion attack…………………………...120

 5.4.2 Privilege escalation attack ………………..…….…....120

 5.4.3 Intents related attacks………………..………….…...121

15

 5.5 Detection of colluding app………………………………....124

 5.5.1 Challenges………………………………………….124

 5.5.2 Potential Measures………………………………..127

 5.6 Proposed Framework……………………………………….128

 5.7 Related work…………………………………………………133

 5.8 Summary……………………………………………………..133

6 Conclusions and Future Work………………………..……..…....135

 6.1 Introduction……………………………………………..……135

 6.2 Restating Research Problems and Research Goals……136

 6.3 Research Contributions……………………….………...….137

 6.4 Future Works…………………………...…………………....139

 6.5 Concluding Remarks.………………………………...….…141

Bibliography…….……………………..142

16

List of Figures

Figure 2.1 Android platform architecture ………………………………..30

Figure 2.2 Android APK file……………………………………………….34

Figure 2.3 Android Permissions screen…………………………………34

Figure 2.4 Types of sensitive user data………………………………….41

Figure 3.1 Declaration of Android permission……………………...……60

Figure 3.2 Declaration of Android Intents……………………………..…61

Figure 3.3 Number of permissions used by apps………………..….…. 63

Figure 3.4 Frequently used permissions by malware…………………...54

Figure 3.5 Number of intents used by the benign and malware apps.. 65

Figure 3.6 Permissions and intents usage pattern by Android apps….66

Figure 3.7 AndroPIn Diagram……………………………………………..71

Figure 3.8 Matched permissions and intents.…………………………….74

Figure 3.9 Creation of new VM.……………….…………………….……..76

Figure 3.10 Configuration of new VM.…………………..……………..….76

Figure 3.11 Configuration of new VM continued………………….…….. 77

Figure 3.12 Analysis of app.………………………………………………..77

Figure 3.13 Calling the Androguard……………………………….……….78

Figure 3.14 AndroPIn algorithm in VM………………….………………….78

Figure 3.15 Analysis results…………………………………………..…….79

Figure 4.1 Diagram of PInDroid……….…………………………………...86

Figure 4.2 Flowchart for 10-fold experiments…………………………….94

Figure 4.3 Performance of related approaches as ROC curve………..103

17

Figure 4.4 Bagging Process………………………………………..…….105

Figure 4.5 Stacking Process107

Figure 5.1 Application Collusion Scenario………………………....……113

Figure 5.2 Inter Process Communication………………………………..114

Figure 5.3 Overt and covert channel…………………….……………….119

Figure 5.4 Confused Deputy Attack………………………….…………..121

Figure 5.5 Broadcast Theft Attack. ……………………………..……….122

Figure 5.6 Declaration of Shared User ID in Manifest file….……..…...130

Figure 5.7 Declaration of Public Intrinsic Intent……………….………...131

Figure 5.8 Collusion Detection Model...132

18

List of Tables

Table 2.1 Overview of existing work…………………………………….53

Table 3.1 Number of permissions and intents in API levels;;……….. .59

Table 3.2 Details of Malware samples with obfuscation …… …….. .80

Table 3.3 Categories and sources of benign samples ………………..80

Table 3.4 Performance Results…………………………………………..81

Table 4.1 List of Malware samples……………………………………....88

Table 4.2 Sources of malware samples …………………….…..............90

Table 4.3 Categories and sources of benign samples ……………......90

Table 4.4 Selected features ………………………………………….…..92

Table 4.5 Examples of features Vector set …………….………….……93

Table 4.6 Confusion Matrix…………….……………………………….....98

Table 4.7 Performance comparison of classifiers……………………….99

Table 4.8 AUC comparison of classifiers…………………………….. .100

Table 4.9 Accuracy gain in SMO model with Stacking……………......108

Table 4.10 Accuracy gain in Decision Table model with Bagging........108

Table 4.11 Accuracy gain in Naïve Bayesian…………………………...108

19

Chapter 1

Introduction

1.1 Introduction

This chapter presents malware threats to Android system, available

malware detection solutions, their limitations and research gaps that this

thesis aims to fill up with the novel contributions. Author’s investigations of

the problem, contributions, published work, methodology and

implementation are elaborated in subsequent chapters. The thesis

statement can be deduced as follows:

Permissions and intents used by Android applications can be used to efficiently

and accurately distinguish malware whilst remaining resilient to code

obfuscation.

20

1.2 Overview

In the past few years, smartphones have evolved from simple

mobile phones into sophisticated computers. They are much more

portable and consume less energy in comparison to personal computers.

This fact extends their usage in business and home related activities such

as surfing the Internet, Emails, SMS and MMS messages, online

transactions and Internet banking, etc. All of these features make the

smartphone a useful tool in our daily lives, but at the same time they

render it more vulnerable to attacks by malicious applications [1]. Given

that most users store sensitive information on their mobile phones, such

as phone numbers, SMS messages, emails, pictures and videos, smart

phones are a very appealing target for attackers and malware developers.

Android OS was introduced by Google in 2008 for smartphones and

by the fourth quarter of 2010, Android became the market leader by taking

over global market share of nearly 85%. In May 2012, the number of

available apps in the Google Play Store amounted to 500,000 and

exceeded 1.4 Million apps in the third quarter of 2014 and increased to 3

Million by March 2017 as shown in recently published statistics by

Statista1.

1https://www.statista.com/statistics/266210/number-of-available-applications-in-

the-google-play-store/

21

Android is a Linux kernel based operating system and its

applications are written in Java language by using built-in APIs. Its security

framework is comprised of application sandboxing, application signing,

cryptographic APIs, secure inter-process communication using intents and

permission model [3]. Permission model is a main security mechanism to

control the misuse of vital hardware and software resources [4, 5]. To

protect the system and users, Android requires apps to request permission

before the apps can use certain system data and features. The system

grants the permission automatically, or it may ask the user to approve the

request if the permissions are required to access the sensitive areas.

However, its effectiveness relies on the user’s response and other built-in

features, mainly the intents. Intent is a messaging object used to request

an action from another app component. It facilitates the inter-process

communication between components of the same or different applications.

Android being the market leader is the major target of Smartphone

malware attacks [6]. The Android based mobile devices have been under

constant attacks due to their ever increasing popularity and effortless

development, improvising, re-packaging and publishing of apps [7, 8 and

9]. Malware targeting the Android platform has increased caustically over

the last two years [10]. Situation is getting worse with the provision of

installing third party applications and the increasing number of seemingly

benign apps with malign activities. Android security framework has not

proven effective in stopping the malware proliferation [11].

Existing end-point protections such as Anti-Virus software are

unable to completely eliminate the malware threats [12, 13 and 14]. This is

22

due to the fact that most of the solutions are signature based and need

regular updates to protect against increasing number of malware variants

and they lack obfuscation resilience [15, 16, 17 and 18]. There is a need

for innovative and resource rich detection solutions to overcome the

challenges of limited resources of mobile devices, outdated signatures of

AV solutions and code obfuscation techniques used by the malware.

A lot of research had been done on permission based malware

detection; however, intents were less explored till start of this thesis.

Moreover, the major challenge to mobile malware detection is its limited

resources that are characterized by short battery life, low memory and less

processing power [19, 20 and 21].

We propose a novel methodology: PInDroid to fill up the research

gap in the Android malware detection. Our goal is to provide mobile users

with an effective malware detection method keeping in view the limited

resources of mobile devices and versatility of malware behaviour.

We conducted a comparative study of six machine learning

algorithms against different performance measures to select the best

classifier for malware classification. Decision Table came up as a robust

and most efficient classifier in our extensive validation experiments.

Performance of the proposed approach is verified by applying the

technique to the real world malicious and benign samples.

Different ensemble methods such as bagging, boosting and

stacking are also investigated to ascertain if they can further improve the

23

detection results. A significant improvement is attainable with application

of ensemble methods.

The proposed methodology is also implemented as a malware

detection algorithm: AndroPIn, which has been tested on different real

malware samples. The performance of AndroPIn is comparable to existing

state-of-the-art solutions.

Additionally, permissions and intents are also investigated for

detection of malicious colluding and obfuscated apps respectively.

Colluding apps are those apps which cooperate using covert or overt

communication means to perform a joint malicious action which they are

not able to perform separately. Code Obfuscation is the process of

modifying the code of app so that it is understandable. Malware writers

deliberately obfuscate code to conceal its purpose or its logic in order to

prevent someone reading the source code. While the process may modify

actual method instructions or metadata, it does not alter the output of the

program. The results of the studies on detection of colluding apps and

obfuscated apps are presented in Chapters 6 and 7 respectively.

1.3 Research Questions

The thesis poses the following research questions:

Q1: Is a set of permissions able to distinguish malware from benign

applications? (Chapter 3)

Q2: Can the occurrences of intents be used for discriminating a

malware from a trusted application? (Chapter 3)

24

Q3: Is there any combinations of permissions and intents frequently

used by malware which can classify malware and benign

applications? (Chapter 3 and 4)

Q6: Can obfuscated malware apps be detected with the approach?

(Chapter 3)

Q4: Can we ascertain which machine learning algorithm is best for

mobile malware detection? (Chapter 4)

Q5: Can ensemble methods be applied to optimise the classifiers

output? (Chapter 4)

Q7: Can we extend our approach to detect the ever increasing

threat of colluding applications? (Chapter 5)

1.4 Contributions

 The main contributions of this thesis are as follows:

 Permissions and Intents amalgamation. This is the first work

which is combining two vital security mechanisms of Android OS -

permissions and intents - for malware detection.

 Investigation of inter-dependence between permissions and

intents. We accomplish an extensive evaluation of permissions

and intents used by Android apps to understand their inter

dependence and show how this interdependence could be used to

stop the malware syndrome.

25

 Machine learning algorithms comparison. We conducted a

comparative study of several machine learning algorithms to

understand which classifier performs best to detect malware.

 Ensemble methods for performance improvements. We exploit

different ensemble methods to ascertain if their application can

further improve the detection accuracy.

 Detection of colluding applications. We investigate the

mechanisms used by the colluding apps and explore the possibility

of extending our approach to detect the colluding apps.

 Detection of Obfuscated applications. We investigate the

obfuscation used by malicious apps and applied our approach to

detect the obfuscated malicious apps.

 Developing the malware detection algorithm. We develop an

algorithm to detect the malware using the permissions and intents

of target apps.

1.5 Thesis Outline

The rest of the thesis is structured as follows:

Chapter 2 presents the introduction to Android system, applications

taxonomies and architecture. It also presents an overview of malware, its

types, evolution, propagation methods and characteristics and the

malware detection approaches. A detailed survey on existing state of the

26

art techniques used for malware detection is also delineated. Some of the

most cited works are compared with our proposed approach and the

research gap is identified.

Chapter 3 presents the two vital features of Android: Permissions

and Intents which have been used in our proposed methodology for the

detection of malware apps. The statistical correlation approach is also

described which is used to test if there is any correlation between

permissions and intents. Our categorization of permissions and intent into

dangerous and normal types is also explained. Mostly used permissions

and intents by malicious and benign apps are discussed. It also describes

the outcomes of study carried out to investigate the distinguishing usage

pattern of permissions and intents by malicious and benign apps and if

these patterns can be exploited for malware detection. A malware

detection algorithm based on permissions and intents: AndroPIn is also

presented. Experimental results demonstrate that the AndroPIn can be

used for malware detection.

Chapter 4 presents the proposed methodology of PInDroid.

Machine Learning (ML) algorithms used to classify the malware apps are

discussed. Comparison of ML algorithms against different performance

metrics is described systematically. To validate the proposed approach,

different experiments are carried out which are discussed with details of

experimental setup and configurations. Results are discussed in terms of

various performance measures such as True Positive Rate (TPR), False

Positive Rate (FPR), accuracy and F-measure.

27

Different ensemble methods such as boosting, bagging and

stacking are also presented that are used to optimize the classification

results. To validate the proposed approach, different experiments were

carried out which are discussed with details of experimental setup and

configurations. Results are discussed in terms of accuracy.

Chapter 5 presents a research study on colluding apps. It

investigates the attacking behaviour of app collusion and main features

that facilitate the collusion. It also explores the possibility of applying the

PInDroid methodology for detection of malicious colluding apps.

Chapter 6 concludes this thesis with a summary of its key

achievements, challenges and open ended research questions which may

be relevant to future research studies.

28

Chapter 2

A Survey on Android and Malware

Detection Systems

2.1 Overview

A malware is (short for “malicious software”) is considered an

annoying or harmful type of software intended to secretly access a device

without the user's knowledge [22]. Android has become the most widely

used OS for smartphones, therefore is target of growing attacks from

cyber criminals [23]. The vulnerabilities of the operating system and

applications are being exploited by the hackers to penetrate into the

systems, steal user data and gain financial benefits [24, 25, and 26].

Android malware is evolving in a rapid manner. According to

McAfee Security Company, its database contains more than 100 million

samples as Android malware has increased multifold over the years [27].

Detection of new malware apps has become quite challenging due to new

29

stealth techniques and encapsulation methods being used by malware.

Existing Android antivirus solutions are less effective in detecting and

combating highly sophisticated malware [28].

The objective of this chapter is to survey the state-of-the-art of

malware detection approaches in order to identify specific factors affecting

the performance of the malware detection systems, identify the state of the

art analysis methods used to reduce the false positive rate and further

investigate how these approaches can be improved on. The rest of this

chapter is organized as follows: In Section 2.2, Android architecture,

application framework and Android security architecture are discussed.

Section 2.3 details different types of malware, the classifications of

malware and Section 2.4 describes the malware analysis techniques,

detection systems and identifies their strengths and limitations as well as

most recent potential solutions to these limitations. Finally, Section 2.5 to

2.7 focuses specifically on feature based detection systems and details the

analytical techniques used in such systems.

2.2 Android Operating System

Android platform was developed by Android Inc. in 2003 for the

devices with limited resources (processing power, memory and storage

space). It is based on a modified version of the Linux kernel version 2.6.25

[33]. Android architecture and its main components are discussed in the

subsequent paragraphs.

30

2.2.1 Architecture

The Android architecture shown in Figure 2.1 is composed of

several software stacks which that can be divided into three main groups:

Linux Kernel/ Operating System (OS), Middleware and Applications.

Green components are written in native code (C/C++), while blue items

are Java components interpreted and executed by the Dalvik Virtual

Machine. The red components belong to the Linux [2].

Figure 2.1: Android platform architecture

 Source: http://elinux.org/Android_Architecture

2.2.1.1 Linux Kernel

Initial versions of Android OS were built on the Linux 2.6 kernel1

with some architectural changes which include wake locks, a memory

management system and the Binder IPC driver etc. Version 1.0 and above

1Computing Handbook, Third Edition: Computer Science and Software Engineering

31

are based on the Linux 3.3 kernel. Linux kernel is the basic layer of

Android which contains all the hardware drivers. It manages and

processes requests for hardware resources.

2.2.1.2 Middleware

The middleware comprises of native libraries and Android Runtime.

 Libraries

Android Libraries are written in C/C++ programming

language and can be used through the Application framework.

These are external libraries which are modified to make them

compatible with ARM hardware and Android’s implementation.

 Android Runtime

Android Runtime includes Dalvik Virtual Machine (DVM) and

core java libraries [34]. DVM is used to execute applications written

in Java language.

o Dalvik Virtual Machine

 DVM runs multiple VMs at the same time ensuring isolation,

security and threading support without overloading the processor.

DVM executes files in .dex fi le format which is an optimized java

code for the low resource systems and are created from .class file

during compilation [34].

32

 Core Java Libraries

 These are implementation of general purpose APIs for use by

the applications executed by the DVM.

2.2.1.3 Application framework

The android applications are developed by using some basic tools

which manage the primary functions of device, for example, calls

reception, text messaging and monitoring of battery usage etc. Some of

the important blocks of Application framework are described below:-

 Activity Manager

 The activity Manager keeps the track of all active

applications of the device and also inhibits the background

processes in case of memory shortage. It also identifies those

applications which do not respond to an input event for more than

five seconds.

 Content Providers

Content Providers are responsible for data sharing among

different applications [2]. For example, photos and contact list can

be accessed by multiple applications therefore these are stored in

content provider.

 Telephony Manager

 Telephony manager manages the phone calls and also

enables access to parameters like set’s (IMEI).

33

 Location Manager

The location Manager is responsible for providing the

location services which are used by different applications to

determine the geographical location by using embedded GPS or

cell tower communication.

 Resource Manager

Resource Manager manages the resources which are used

by different applications.

2.2.1.4 Applications

 Applications are the top most layer responsible for the interaction

between user and the device. Mostly devices are pre-installed with some

applications by the manufacturer to perform basic daily tasks like browser,

e-mail, phone call, calculator, calendar etc) however users can install any

app on their device from official or unofficial markets.

Android applications are written in the Java programming language.

Android uses the Android Software Development Kit (SDK) and Java's

programming environments, such as Eclipse or Netbeans to compile Java

code and create an Android Package (APK) file. Applications are

published with a unique Linux user ID and each application is granted its

own VM to isolate it from the system resources and other applications.

2.2.2 Components of Application

Android applications come as .apk file which is signed ZIP files that

34

contain the app’s byte code along with all its data, resources, libraries and

a manifest file [35]. The APK files are installed on the device using the

Android Debug Bridge tool (adb) or by downloading them from Android's

Market. An APK file consists of three main elements which are

Manifest.xml, classes.dex and resources as shown in Figure 2.2.

Figure 2.2: Android APK file

Figure 2.3: Android Permissions screen

35

There are four protection levels assigned to the permissions

depending on the capabilities and possible security risks. These

groups are Signature or system, signature, dangerous and normal

permissions. Android has an access system to check against these

levels to ascertain that if the app should be granted the permission

or not [36].

 Classes .Dex

This file is the compiled Java source code. It contains Dex byte

code for the application and runs on the DVM [34].

 Resources

Resources include the libraries, files and pictures which are

used by the application.

2.2 Android Security Model

Android is an open source operating system and securing an open

source system requires robust and flexible security framework. Android’s

security is dependent upon the user’s understanding of applications and

system. Android security is mainly focused on the protection of user data

and system resources as well as the application isolation. To achieve

these goals, it relies on Linux kernel, application sandboxing, secure IPC,

application signing and permissions [34]. Some of the key security

features of Android security framework are discussed in subsequent sub

paragraphs.

36

2.3.1 System and Kernel Level Security

 Android provides conventional security guarantees of Linux kernel

with an addition of secure IPC for maintaining the isolation between

applications [34].

2.3.2 The Application Sandbox

 Android uses Linux user-based protection for identification and

isolation of applications. Android creates a kernel level sandbox for each

application where each application has its own user id and it runs in its

own process. Applications interaction with system resources and other

applications is controlled with permissions. Application sandbox is equally

effective in exercising same controls on the system applications and native

code as it lies in the kernel level. The operating system libraries,

application framework, their runtime, and applications run within the

application sandbox [8, 34, 36].

2.3.3 File system Permissions

These permissions ensure privacy of user’s information (files). In

case of Android, files of one application are not shared with other

applications unless the developer ensures such a provision [37].

2.3.4 Security-Enhanced Linux

Android uses Security-Enhanced Linux (SELinux) for access

control. SELinux is a Linux kernel security module that provides a

37

mechanism for supporting access control security policies including

Mandatory Access Control (MAC) system [34]. It provides a mechanism to

enforce the separation of information based on confidentiality and integrity

requirements, which allows threats of tampering, and bypassing of

application security mechanisms, to be addressed and enables the

confinement of damage that can be caused by malicious or flawed

applications. It includes a set of sample security policy configuration files

designed to meet common, general-purpose security goals1.

2.3.5 Android Permission Model

The Android applications have limited access to system resources.

The permission model manages the access to system resources and

restricts them by linking the access with permissions [38]. During the

application installation phase, the permissions are requested to access the

resources as a whole, thereby, li nking the application installation with the

grant of permissions [39]. Hence, denial is not an option for the intended

user. Once granted, until recently, the permissions were for the entire

duration of the installed application. However, in the latest versions of

Android, the user can scroll and select/de-select the permissions. In such

cases, some features of the app will not work due to non-availability of

required permissions. Applications can also set their own permissions for

other applications [40, 41]. The permissions are defined (how and who) in

a protection level attribute which communicates with the system for the

purpose [42, 43].

1https://en.wikipedia.org/wiki/Security-Enhanced_Linux

38

2.3.6 Protected APIs

The resources which are only accessible by the operating system

only are called protected APIs [44]. The examples are Camera, GPS,

telephony, Bluetooth, SMS/MMS and network/data. In order to use these

resources, it is essential that the application defines them in its manifest.

2.3.7 Cost Sensitive APIs

APIs which may involve cost in their usage are categorized as cost

sensitive APIs which include telephony, SMS/MMS, Data/Network and

NFC [45]. These APIs are included in the OS controlled list of protected

APIs for which an exclusive approval from the device’s user is required [5].

2.3.8 Inter Components Communication (ICC)

Inter-Component Communication Android application consists of

components. There are four kinds of components, activities, services,

broadcasts and providers [46]. Android platform provides a secure ICC

that is similar to IPC to the Unix system. ICC is provided by the binder

mechanism which is in the middleware layer of Android. The binder is a

remote procedure call that is from a custom Linux driver (Android

Developers). ICC is achieved by intents. Intent is a message that shows

the target with some data optionally [47]. It can be used in explicit

communication if it identifies the name of the receiver, or used in the

implicit communication that let the receiver see if it can access this intent

or not.

39

Inter process communication takes place via traditional UNIX-type

mechanism within the ambit of Linux permissions. Components of Android

IPC are described below:

 Binder

 It is a Remote Procedure Call (RPC) mechanism to handle in-

process and cross-process calls.

 Services

Services can provide interfaces directly accessible using binder.

 Intents

 Intent is a communication mechanism which tells the system

about the intention to do some action [48, 49]. For example, if a

website is to be opened, the ‘intent’ is sent to the system open the

corresponding URL. The system would hand over the intent to the

browser to carry out the action required by the intent.

 Content Providers

 A Content Provider facilitates to use the device’s data [50]

such as the contact list or music preferences. An application can

access the data that is provided by the other applications through

Content Provider, and it can define its own Content Providers to

share its own data as well [51, 52].

40

2.3.9 Application Signing

Android requires that all apps be signed by the developers with

a digital certificate before installing on app store. If the app is not digitally

signed then its installation is blocked by the Google Play store and installer

package. Application signing is used to identify the developer of app and

to update the application without complicated procedures and further

permissions [53]. It also facilitates the inter-app communication through

well-defined IPC [54]. APK files contain the developer signature which is

verified by the Package Manager [55]. Android does not carry out CA

verification of application certificates. The app signing key creates a digital

certificate which contains the public key of a public/private key pair, as well

as some other metadata identifying the owner of the key. The owner of the

certificate holds the corresponding private key. When a developer sign an

APK, the signing tool attaches the public-key certificate to it and

associates the APK to the developer and its corresponding private key.

This helps Android ensure that future app are legitimate and from the

creator of app. Every app must use the same certificate throughout its

lifespan in order for users to be able to install new versions as updates to

the app. Applications can share user ID if they are signed with the same

certificate [56].

2.3.10 Sensitive User Data

Android has some APIs that may provide access to user data

of protected APIs [34]. Sensitive user data is classified into three groups

41

namely personal information, sensitive input devices and device metadata

as shown in Figure 2.4.

Figure 2. 4: Types of sensitive user data

Source: https://source.android.com/devices/tech/security/

 Personal Information

 The content providers that contain personal information like

contacts and calendar etc are controlled with clearly defined

permissions users can get idea of the type of data which can

accessed by the application. [34, 6]. Any application can access

these resources if user grants the controlled permissions to the

requesting app. By default, any application which collects personal

information will restrict the data to the specific application; however, it

can share the data with other applications using IPC and permissions

mechanisms [57].

 Sensitive Data Input Devices

 Android devices have sensitive data input sensors that allow

many applications to interact with the external medium, such as

GPS, microphone and camera. In case a third-party application

42

requires accesses to these resources, it will need to request user to

grant the permissions [5, 58].

 Device Metadata

 Android restricts access to sensitive data but it may share

certain important information like user preferences or the manner in

which user uses his device. The applications can only access the key

resources with appropriate permissions. In case, permission is not

granted, the installation will not proceed further [5, 6].

2.3.11 Publishing and Distribution of Apps

Publishing makes the Android apps ready for distribution to the

users. Publishing involves two main tasks:

 Preparation of the application for release

 A release version of app is buildup which can be

downloaded and installed on the Android devices.

 Release of application to users

Application release involves the publicity, sell, and

distribution of the release version of application to users [3]. Apps

are released through app marketplaces, such as Google Play.

However, apps can also be downloaded from some websites or

through email. Android application is released on Google Play by

43

configuring its options, uploading the assets and finally publishing

the application [5].

2.4 Mobile Malware

Mobile Malware is malicious and an unwanted piece of software

targeting mobile phones by damaging the device and loss or leakage of

confidential data. First mobile malware surfaced in 2004 against Symbian

operating system. First malware targeting Android was reported in 2010

and by 2011, Android became the most favorite OS of malware

encountering attacks every few weeks by new malware families [7]. Four

types of the most common malware affecting mobile devices are

expander, worm, Trojan and spyware. Expanders target mobiles for

additional phone billing and profit. Worm endlessly reproduce itself and

spread to other devices. Mobile worms may be transmitted via text

messages SMS or MMS and typically do not require user interaction for

execution [59]. Trojan horse always requires user interaction to be

activated. This kind of virus is usually inserted into seemingly attractive

and non-malicious executable files or applications that are downloaded to

the device and executed by the user [60]. Once activated, the malware

can cause serious damage by infecting and deactivating other applications

or the phone itself, rendering it paralyzed after a certain period of time or a

certain number of operations. Spyware poses a threat to mobile devices

by collecting, using, and spreading a user's personal or sensitive

information without the user's consent or knowledge.

44

2.4.1 Types of Android Malware

Mobile malware targeting Android smartphone is significant and

growing at an alarming rate. This section briefly describes the common

types of malicious programs targeting mobile phones. There are four

broad categories1 of mobile malware in addition to backdoor and worm

malware. Backdoor helps other malware to enter the system without user

knowledge by evading the system protections [61]. Worms make their

copies and spread those copies through network or removable media.

(i) Trojans and Viruses

Viruses, worms, Trojans, and bots are a ll malware2. Trojans are

those malware which look like some legitimate application but have

hidden harmful malicious code which when executed inflicts serious

damage to the device [62]. Trojanized apps are the biggest threat to

the android devices as they can control the browser and steal

account details including the bank login information. Trojans are

viruses, which can be installed in different ways and can inflict

damages ranging from simply annoying to highly-destructive and

irreparable. Mobile viruses can root the device and gain unauthorized

access to sensitive files and memory.

(ii) Spyware and Adware

 Spyware are those malware which secretly steal user’s data

1https://www.veracode.com/blog/2013/10/common-mobile-malware-types-
cybersecurity-101
2 https://www.cisco.com/c/en/us/about/security-center/virus-differences.html

45

and shares with third parties for various purposes including the future

attacks. In some cases these may be advertisers or marketing firms

[63], which is why spyware is sometimes referred to as “adware”.

Adware are those applications which are using ad libraries. They

gather the user’s data to show relevant ads to the users for

marketing purpose. Ad libraries cause privacy leaks and can frustrate

the user by showing unwanted image or notifications repeatedly on

the screen [64]. Spyware and Adware are typically installed without

user consent by disguising itself as a legitimate app or by infecting its

payload on a legitimate app.

(iii) Phishing Apps

Mobile phishing apps use same conventional web phishing

techniques to infect the mobile devices. There are mobile phishing

websites which look harmless but they covertly steal user’s

credentials. The smaller screen of mobile devices is making

malicious phishing techniques easier to hide from users. Some

phishing schemes use Trojanized mobile apps, disguising their

malicious action as a system update, marketing offer or game.

(iv) Botnets

 A bot is a type of malware that allows an attacker to take control

over an affected mobile device. Bots are usually part of a network of

infected mobile phones, known as a “botnet”, which is typically made

up of victim mobile phones that stretch across the globe. They allow

hackers to take control of many mobile phones at a time, and turn

46

them into "zombie" phones, which operate as part of a powerful

"botnet" to spread viruses, generate spam, and commit other types of

online crime and fraud. Botnets infect the device by accessing the

device’s resources and data; helping botnet masters to control the

device. They exploit the system vulnerabilities and un-patched

devices. They keep spreading over other devices by sending text

messages or emails to the contacts of the infected device. Hidden

processes can secretly run executable or contact bot masters for

new instructions without user’s knowledge. Future botnet are

envisaged to have more serious damages and can completely hijack

and control infected devices.

2.4.2 Malware Propagation

Malware use different sophisticated methods to spread over

mobile devices [65]. Some of the widely used malware propagation

methods are:

(i) Infected websites

 Cybercriminals design malicious websites that exploit system

vulnerabilities to spread the malware easily [66]. Mobile devices are

infected when their users access such websites from the device.

(ii) Third party app markets

Third-party app stores have loose security controls over the

applications developed and uploaded by unknown parties [67].

47

Malicious developers can upload Trojanized apps which can be

downloaded by user, if the app has some appealing functionality.

Third party stores also distribute the repackaged apps which are

some popular apps installed with some malicious code, repackaged

and distributed.

(iii) Spam Emails and Botnets

Propagating a malware by spam email is simple and effective

propagation method. Attackers may send emails to the victims which

appear to come from trusted sources such as the user’s bank,

Amazon, Paypal or from own contacts. They contain links to some

malicious website, compelling them to change their password and

then sending the login information to a cybercriminal, or they may

have infected attachments that immediately begin collecting data on

their own once opened. Bots also propagate malware by sending text

messages or e-mails to the contacts of infected user with a malicious

link.

(iv) Worms

Mobile worms are similar to viruses in that they replicate

themselves and can cause the damage. Unlike viruses, worms are

standalone software and do not require an infected file or human

help to propagate. They propagate over other devices through

different exploits and system vulnerabilities.

48

(v) Onscreen Adware

Some attractive ads are run on user’s screen as a sidebar with

some game or other app, which when clicked by the user lands him

on some malicious website.

(vi) Dynamic Payload

Hiding some malicious code in the APK resources file and

executing it with Dex Class Loader API after installing it with the main

application.

(vii) App Updates

Malicious code is hidden in updates which if installed by the

user can infect the device.

2.5 Malware Detection Systems

Smartphone security and malware detection is an emerging

research field where topics of publications are scattered within this

domain. In this section, we present different most cited works on Android

malware detection. We present related state of the art research studies,

and systems developed by different researchers in Table 2.1.

2.5.1 Malware Analysis

 A number of studies focus on analyzing Android’s security

mechanisms. Felt et al. [4] analysed the real mobile malware and carried

out a ccomprehensive survey of behaviour of 46 malware samples related

49

to three smartphone platforms (Android, iOS and Symbian) emerged

between 2009 and 2011. In a similar type of study, Zhou et al. [7] covers

1260 Android malware samples distributed among 49 different malware

families. Their findings confirm the increase in sophistication and

obfuscation by the malware. Some researchers [59, 60, and 61] have

proposed to rely on code clone detection techniques to identify similarity in

repackaged and piggybacked apps. The piggybacked apps are those

benign apps which are unpacked by malware writers and inserted with

some malicious code then repackaged and distributed for free. A

significant amount of research has been conducted into privacy leaks and

ad libraries [62, 63, 64 65, 66, 67, 68, 69, 70]. Most of the proposed

approaches are based on permission usage and other security risks, such

as the potential to load and execute arbitrary byte code through the ad

interface.

Due to known limitations of signature based methods, behaviour

analysis has gained attention from anti-malware research community. One

of such work is Risk Ranker [71] which targets zero-day malware samples.

It examines the apps for presence of dangerous behaviours like using root

exploits and SMS sending and classifies them according to the associated

risk levels. Crowdroid [72] is also behaviour based approach which

observes the run-time system calls to generate app profile and applies

machine learning algorithms to distinguish between the malware and

benign apps. Droidchamleon [73] evaluated the performance of ten

commercial mobile anti-malware products against the common

obfuscation techniques. Andromaly [74] used different network statistics

50

for detecting deviations in application’s network behaviour. AppGuard [75]

facilitates the enforcement of user-customizable security policies on

untrusted Android apps. MADAM [76] proposed the analysis of kernel level

features (CPU usage, system calls, memory usage etc) and user level

features (key strokes, called numbers, SMS etc) to detect malware.

Droidscope [77] provides sandboxed monitoring of app features at

hardware, OS, and Dalvik Virtual Machine levels. PScout [78] proposd

permission based behaviour analysis of malicious apps. Xmandroid [79]

dynamically analysed the transitive permission usage to detect covert

channels. Woodpecker [80] combined static and dynamic analysis to

identify explicit and implicit leakage.

A considerable effort has been focussed on understanding the

Android permission model as well as using it for the malware detection.

Kirin [81] is more towards blocking the installation of apps that request

dangerous combination of permissions, while Sarma et al. [82] assessed

the permissions usage by the apps to evaluate the level of associated

risks and [83] used the requested permissions to rebuild the malicious

behaviours of apps to categorize them according to their security

perceptive.

Another Android based security research track is towards the Inter-

Component Communication (ICC) mechanism. Erika et al. [84]

investigated the inter-application communication to verify the possible

attacks and exploits of interacting components. Their tool ComDroid could

be used by application developers to detect the application communication

51

vulnerabilities. Long et al. [85] studied the component hijacking

vulnerability of Android apps by inspecting the data flow activities and

developed a static analysing tool CHEX which detects the component

hijacking vulnerability. A similar tool EPICC was devised by Damien [39] to

detect the ICC vulnerabilities, while [86] worked to prevent confused

deputy and collusion attacks.

2.5.2 State of the Art approaches for Malware Detection

Some of the most cited works are highlighted in Table 2.1 along

with the methodologies, advantages / disadvantages and years of

publication. Most of the existing approaches are based on analysis of

permissions, APIs or system calls. Permissions have been widely

analyzed by the researchers, but intents were relatively untouched till the

start of this work in 2013. Permissions and intents are either analyzed

separately or combined with randomly selected features such as API calls,

network statistics and memory usage etc.

Summarizing, there is no such a study which had investigated

the correlation between permissions and intents. Our work is the first

which investigates the inter-dependence of permissions and intents and

how this correlation could be exploited for detecting the stealthy malicious

activities. Our approach exploits the inherent inter-correlation and inter-

dependence of these two mechanisms. Our approach benefits in terms of

accuracy and efficiency by relying on low-dimensional and most relevant

set of features. This work fills up the gap in the Android malware research.

52

The closest latest works are Marvin, Drebin and Droidmat since

these approaches are using permissions and intents in addition to many

other features like API calls, network statistics, components etc. However,

there is no clear rational or study which uses intent exclusively as a

feature for malware detection. Drebin and DroidMat use same feature set:

Permissions, API calls, components, IPC, intent messages related to

activate components only whilst Marvin uses permissions, API calls,

dynamic loaded codes and intents related to broadcast receivers only.

53

Table 2.1 Overview of existing work

S No Reference Year Methodology Contributions

1. AndroDialysis[48] 2017 Intents analysis to investigate their effectiveness to

detect malware

Validation of intent as a decisive feature for malware

detection

2. Deep Android [189] 2017 It uses deep convolutional neural network (CNN).

Malware classification with static analysis of the raw

opcode sequence from a disassembled program

Applications need to be disassembled for analysis

3. Stormdroid [161] 2016 Analysing static features (permissions, API calls),

sequences and dynamic behaviours using ML

techniques

It requires both static and dynamic analyses and root

access for run time process analysis

4. ICCDetector [185] 2016 Analysis of intents to detect the Inter component

communication vulnerabilities

Focuses only to find out communication vulnerabilities

5. APK Auditor[93] 2015 Permission-based malware detection using static

analysis

Analysis is done on central server. Client needs an

internet connection with the server for the malware

analysis and detection

6. CopperDroid [107] 2015 It carries out VMI-based dynamic analysis to

reconstruct the behaviours of malware.

Needs root access to monitor the system calls

7. TaintDroid[62] 2014 Dynamic taint tracking of API calls. This can handle only privacy violations

8. DroidMiner[63]

2014 Detection by generating

Programming logics based behaviours of malicious

apps

Non résilient to code transformation techniques

54

9. DenDroid [64]

2014 Text mining and information retrieval based

classification

System is unable to handle Code obfuscation

10. Apposcopy [65]

2014 Semantics-Based Detection Signature based approach thus detection scope limited to

certain known malware.

11. AndroSimilar

[60]

2014 Signatures based AV solution to detect similar Android

applications

Detection of repackaged applications only.

12. AdRob[61] 2013 Permissions analysis Study on impact of Android Application Plagiarism

13. VetDroid[66] 2013

Permission Analysis

High computation cost and complex design

14. AppProfiler[67]

2013 Static and dynamic analyses of API calls and

permissions.

Can detect privacy leaks only.

15. AppPlayground

[53]

2013 Dynamic analysis of system calls, API calls and taint

tracing.

Root access required

16. Secloud[56] 2013 A cloud based system offering different detection

techniques: SYS call monitoring, AV scanning and file

integrity check

Root access required

17. Epicc[68]

2013 Static analysis of ICC ,APIs and Intent

Limited to ICC vulnerabilities

18. DroidChameleon

 [73]

2013 Different code transformation techniques implemented

to evaluate the performance of ten anti-malware

products for their resilience against malware

transformations

Scope of work is to evaluate the anti-malware products

and not the malware detection.

55

19. Andromaly[74]

2013

Behaviour monitoring in terms of CPU usage, battery

consumption and number of sent packets on WIFI.

Analysis is done on self-made malware apps only as they

couldn’t find any real world malware samples.

20. DroidMOSS [59] 2012 Detection of repackaged applications with fuzzy

Hashing technique.

Repackaged applications can only be detected

21. MADAM

[76]

2012 Detection with System calls and permissions Limited dataset. In total 60 apps monitored (10 malicious

and 50 benign)

22. AppGuard

[75]

2012 Permission misuse analysis No detection of Malware

23. DroidScope

[77]

2012 Semantics based detection Root access required

24. RiskRanker

[71]

2012 Analysis of root exploits, permissions, API calls, crypto,

dynamic code, IPC.

Root-exploit detection scheme depends on signatures,

which implies that it can detect only known exploits and

may also miss encrypted or obfuscated exploits.

25. PScout[78] 2012 Permissions analysis

26. Dr. Android and Mr.

Hide[83]

2012 Permissions analysis

27. AdSplit[46] 2012 Permissions analysis Separating smartphone advertising from applications

28. AndroidLeaks

[47]

2012 Privacy leaks only

29. Woodpecker [69] 2012 Uses CFG and permission analysis Complex design

56

30. RobotDroid[70] 2012 API calls Root access required

31. PiOS [70] 2011 Uses CFG Privacy leaks only

32. Xmandroid[80] 2011 ICC analysis

33. Crowdroid [87] 2011 Monitors SYS calls, list of running applications and the

device information.

Root access required

34. Paranoid android[88]

2010 Dynamic analysis of API calls and Permissions. Root access required

35. Kirin [81] 2009

Detection by analysing certain combinations of

permissions and API calls.

Detects privacy leaks only.

57

Chapter 3

Investigating Permissions and Intents for

Malware Detection

3.1 Introduction

Permission model is a vital security mechanism which guards

against the misuse of hardware and software resources; however, it relies

on the user’s response and other built-in features such as intent, which is

a communication mechanism which facilitates the use of different

functionalities offered by the components of same application or other

applications [95]. Intent spoofing and permission collusion are few

examples of attacks due to misuse of intents [96, 97]. Although, a

significant research work has been carried out to investigate the

permission model and API calls for detection of mobile malware but less

work is done on Intents.

This chapter investigates Android permissions and intents to

understand their role in basic functionality of apps and how that role can

be exploited by the cyber criminals for malicious attacks. Such an

58

understanding will help in devising a novel malware detection solution

based on permissions and intents to effectively detect the malicious

activities. Malware analysis by combining the permissions and intents is

carried out to deduce the usage pattern of these vital features that can be

exploited to distinguish between the malware and benign apps.

We present an automated malware detection algorithm: AndroPIn

which is based on permissions and intents declared in the Manifest file.

Once declared, these vital features cannot be altered by code obfuscation

or encryption, hence making our proposed approach resi lient to code

obfuscation.

The rest of the chapter is organized as follows: Section 3.2 presents

the basic background information about permissions and intents, Section

3.3 discusses the investigation findings, and Section 3.4 presents the

statistical testing details carried out to understand the correlation between

permissions and intents. Section 3.5 presents the AndroPIn malware

detection algorithm and Section 3.6 discusses its implementation aspects.

Section 3.7 gives the details of experiments and result. Final ly the Section

3.8 summarizes the chapter.

3.2 Background

Android has 117 permissions and 227 intents in version 4.4, API

level 19 - an API level is an integer value which identifies the application’s

compatibility with the Android versions. The earliest A ndroid version: API

level 1, contains only 76 permissions and 124 intents. Google adds new

permissions and intents into every upcoming version. This trend is

59

depicted in Table 3.1, where monotonic increment in permission and

intents against the API levels is obvious. The increased number of

permissions and intents has not only added new features but also opened

the doors for malware. A meticulous analysis of permissions and intents

used by the apps will help to construct the behavioural image of apps for

malware detection.

Table 3.1: Number of permissions and intents in API levels

API Level No of
Permissions

No of Intents

23 135 252

22 124 243

21 123 238

20 118 227

19 117 227

18 106 221

17 103 214

16 103 203

15 99 201

14 99 191

13 97 180

12 96 180

11 96 176

10 96 167

09 95 167

08 92 167

07 88 161

06 88 158

05 88 158

04 87 146

03 83 136

02 78 124

01 76 124

It is found during investigation of apps that certain permissions and intents

are repetitively used by malware apps which can distinguish them from

benign ones.

3.2.1 Android Permissions

Permission model is the basic security feature of android system

60

which provides access to the vital organs of android based devices [98].

These are embedded in the manifest file of applications and declared as

shown in Figure 3.1 [6].

Figure 3.1: Declaration of Android permission.

 In earlier versions of Android, permissions were required to be

granted as a whole and not in parts [99]. There was no choice to select the

permissions from the offered ones; user had to accept all the permissions

and install the app or reject and didn’t install. Once granted, these

permissions would remain effective for the lifetime of the installed app unti l

changed through an update [100]. However, on Android version 6.0 and

above, user can control the installation of permissions with capability

compromises.

3.2.2 Android Intents

Android intent is the basic communication mechanism used for

exchanging inter and intra application messages. Functionalities and

capabilities of different apps can be combined with the use of intents [101].

A malicious app may trick the user to install some other collaborating app

for getting additional features. User is then prompted two different sets of

permissions by these two different apps but because they share their

functionalities cowardly through sending /receiving intents, the user being

ignorant of this feature might install both apps which would harm his

61

device [102]. Intents are embedded in the manifest file and declared as

shown in Figure 3.2 [34].

Figure 3.2: Declaration of Android Intents.

3.3 Analysis of Permissions and Intents

We carried out a comprehensive review of Android security

framework and existing research work on malware detection to establish

the distinguishing key features of Android apps which could facilitate the

malware detection.

A total of 500 apps (270 malware and 230 benign) were analysed

which are collected from well-known sources such as Google Playstore1,

Mobango2. Contagiodump3, Genome4, Virus Total5, theZoo6 and

MalShare7. These sources contain the datasets of already known malware

samples. The benign apps are selected from different categories such as

social, news, entertainment, finance, education, games, sports, music, and

audio, telephony, messaging, shopping, banking, and weather. Selection

1Google Play, Web: https://play.google.com/store?hl=en

2Web: http://www.mobango.com/
3Contagio Mobile: mobile malware mini dump, Web:
http://contagiominidump.blogspot.co.uk/
4Android Malware Genome Project, Web: http://www.malgenomeproject.org/
5VirusTotal for Android, Web:
https://www.virustotal.com/en/documentation/mobile-
applications/
6theZoo aka Malware DB, Web: http://ytisf.github.io/theZoo/
7MalShare project, Web: http://malshare.com/about.php

62

of malware and benign samples is carefully done to learn the malicious

and normal behaviour of apps.

Our investigation of Android security framework, the existing state-

of-the-art malware detection approaches, Android features used by most

of these approaches (permissions, intents, API calls, system calls, ICC)

and analysis of benign and malware samples resulted in interesting

finding: identification of key features: permissions and intents used for

malware attacks and propagation.

We also establish that certain permissions and intents which are

frequently used by malware apps are seldom used by benign apps.

Malware families use a particular set of permissions and intents targeting

specific capabilities and resources. Almost all the malware samples

belonging to that particular family use a unique set of permissions and

intents. This study resulted in some very interesting findings which are

discussed in this section.

3.3.1 Permission usage by the Applications

Most famous benign apps like Facebook, YouTube, Skype and

Viber tend to use on average 8-16 permissions while this number goes

down to 3-6 for the least famous applications. Some trend prevails in

malware apps- most harmful malware apps use on average more than 16

permissions and least harmful use 3-6 permissions as depicted in Figure

3.3.

63

Figure 3.3. Number of permissions used by the benign and malware apps.

3.3.2 Permission Groups

There are 35 permissions out of a total of 145 which are frequently

used by apps, whereas remaining 110 are hardly ever used. We can group

the repeatedly used permissions into normal and dangerous categories

depending on their usage and associated risk levels. Examples of

frequently used permissions by benign apps are Full Network access,

Create/Add/remove/user accounts, Delete/Modify USB contents,

Read/write/modify contacts. Malware apps prefer using Read phone status

& ID, Access Network state, Send SMS/MMS, Receive boot complete,

Receive SMS, Delete/Modify USB contents, your locations permissions

etc.

There are a few permissions, which are scarcely used by benign

apps but frequently by malware apps e.g., Access Network state, Receive

boot complete, Restart packages, Mount/Unmount File system, Set

wallpapers, Read/write history bookmarks of browser, Write APN settings.

0

5

10

15

20

25

Most famous
benign Apps

Least famous
benign Apps

Most harmful
malware Apps

Least harmful
malware Apps

64

Set wallpapers permission is frequently used by adware to display

coupons and ads for malicious or marketing websites whether user want

them to or not. These ads promote the installation of additional unwanted

contents such as browser extensions or optimization utilities and to

generate pay-per-click revenue for the originator.

3.3.3 Intent usage by the Applications

Intent is a message passing system which is used to link

components of same or different applications [103]. Applications with the

same user ID could invoke functionalities of each other without declaring

permissions individually for those functionalities thus gaining extra

privileges. We categorize malware apps into most harmful and least

harmful apps depending on the ease of access to sensitive resources and

data regarding used permissions and intents. The most harmful malicious

apps are those who are accessing more sensitive resources and data and

may provide monetary damages to the users like sending premium rate

SMSs, making calls, and accessing bank accounts details. The least

dangerous malicious apps are those who can access some useful data

and resources, but they may not cause financial or serious damage to the

user or device.

Most famous benign apps tend to use on average 1-3 intents, the

least famous apps use 1-2. Most harmful malware use min 3 intents while

this number goes up to 7. Least harmful malware apps witnessed to use at

least 2 or 3 intents as depicted in Figure 3.5. Benign apps are seen to use

only ACTION_MAIN, CATEGORY_LAUNCHER and

65

CATEGORY_DEFAULT intents whereas malware apps are tending toward

adding more intent to gain extra capabilities. Most common intents used

by the malware apps are ACTION_BOOT_COMPLETED, ACTION_CALL,

ACTION_BATTERY_LOW, ACTION_SMS_RECIEVE and

ACTION_NEW_OUTGOING_CALL.

Figure 3.5 Number of intents used by the benign and malware apps.

3.3.4 Combining Permissions and Intents for Malware detection

Android apps are exhibiting a consistent usage pattern of

permissions and intents. Figure 3.6 gives an overall trend of how android

apps are using these attributes in a clearly distinguishable manner. Real

malware apps are corroborated to use few of the normal permissions and

intents whilst they use a greater number of dangerous permissions and

intents. Benign apps have shown a similar trend of using only normal

permissions and intents, whereas the grey ware are those benign apps

which are using unnecessary permissions along with the normal

permissions and intents, to expand their modus operandi.

0

2

4

6

8

Most
famous

benign
Apps

Least
famous

benign
Apps

Most
harmful

malware
Apps

Least
harmful

malware
Apps

Max

Min

Average

66

Figure 3.6 Permissions and intents usage pattern by Android apps.

3.4 Correlation between permissions and intents

A Correlation is a statistical technique that is used to measure and

describe the strength and direction of the relationship between two

variables. Different correlation coefficient methods: Pearson correlation

coefficient, Intra-class correlation and Rank correlation. Correlation is

defined as a single number known as correlation coefficient that quantifies

a type of correlation and dependence, meaning statistical relationships

between two or more values in fundamental statistics . We used Pearson

correlation coefficient to find the statistical correlation between

permissions and intents since it is widely used and more reliable method

for the purpose.

Pearson product-moment correlation coefficient, also known as r, R,

or Pearson's r, a measure of the strength and direction of the linear

relationship between two variables that is defined as the (sample)

covariance of the variables divided by the product of their (sample)

standard deviations. The most common is the Pearson correlation

coefficient that is a statistical measure of the strength of a linear

67

relationship between two variables. It is denoted by “r" and is calculated by

dividing the covariance of two variables with product of their standard

deviations. Pearson's correlation coefficient has a value between -1

(perfect negative correlation) and 1 (perfect positive correlation) [104].

Suppose we have n malware applications, each application is using

X dangerous permissions written as xi = {x1, x2,..., xn} and Y dangerous

intents such that yi = {y1, y2,..., yn}, then the Pearson correlation coefficient

(r) can be calculated using equation (3.1).

Two sets of malware apps are used to measure the strength of

correlation between dangerous permissions and dangerous intents. One

set consists of 200 malware apps which are randomly selected from

different malware families and the other consists of 20 malware apps from

same malware family.

For the first set, the correlation coefficient (r) equals 0.74, indicating

a strong relationship between dangerous permissions and dangerous

intents for the significance level: p < 0.001. For the other set, the

correlation coefficient (r) equals to 0.94, indicating a very strong correlation

between dangerous permissions and intents in the case of samples

belonging to the same malware family. The strong correlation between the

dangerous permissions and intents supports our conjecture about the

(3.1)

68

association between permissions and intents to carry out the malicious

activity.

The Pearson correlation coefficients of 0.74 for different malware

families and 0.94 for same malware family confirm the positive correlation

between permissions and intents. However, we need to perform a

significance test to decide whether or not there is any evidence which

supports or contradicts the presence of a linear correlation in the whole

population of malware apps. We use the hypothesis testing, for which we

test the null hypothesis, H0, and alternate hypothesis, H1 as

H0 : malware and benign applications use the same

 set of permissions and intents,

H1 : malware and benign applications don’t use the

 same set of permissions and intents.

For hypothesis testing, we use the Mann-Whitney U test with the

p-value of 0.05. We calculate U1 and U2 values for both the permissions

and intents respectively using equations 3.2 and 3.3, respectively. In

following equations, R1 and R2 are the sums of ranks for permissions and

intents, respectively, and n1 and n2 are the sample sizes for both the

variables.

;
2

1)(
= 11

11

nn
RU (3.2)

.
2

1)(
= 22

22

nn
RU (3.3)

69

We take the smallest of U and compare it with the critical value

obtained from the Mann-Whitney critical values table [105]. We use Mann-

Whitney critical values table for a small number of malware samples and

Z-test for large samples of malware apps due to limitations of the number

of entries in the Mann-Whitney critical value table. With samples from

same malware family (n1= 20, n2 = 19, p=0.05, critical value = 119), the

smallest U value obtained is 87 which is less than the critical value of 119,

we would reject the null hypothesis for the malware apps belonging to

same family. For a large sample of apps belonging to different malware

families (n1 = n2 = 200, p=0.05, Z-critical value = 1.64), we calculate z-

score with Z test. We obtain z-score of 13.0594 which is greater than Z-

critical value hence suggesting the rejection of null hypothesis H0. We

have very strong statistical evidence to accept the alternate hypothesis

H1, which suggests that the malware and benign apps use a different set

of permissions and intents. This conjecture is further verified with

classification analysis using different machine learning algorithms.

3.5 AndroPIn: Malware Detection Algorithm

In this section, we present an automated malware detection

algorithm: AndroPIn which is based on identification of distinct usage

pattern of permissions and intents declared in the manifest file. Once

declared, these vital features cannot be altered by code obfuscation or

encryption. AndroPIn is an implementation of the methodology proposed in

Chapter 4 and validating the effectiveness of algorithm for detection of

malware apps including the obfuscated ones. It extracts the permissions

70

and intents of an app and classifies it as malicious or benign by comparing

against certain combinations of permissions and intents. These

combinations form a distinct usage pattern of malicious apps which

distinguishes them from the benign apps. These features, which play a

major role in sharing user data and device resources cannot be

obfuscated or altered. These vital features are well suited for resource

constrained smartphones. Experimental evaluation on a corpus of real-

world malware and benign apps demonstrate that the proposed algorithm

can effectively detect malicious apps with low run-time overheads and is

resilient to common obfuscations methods.

3.5.1 Design

A malware detection system for Android can be architected in a

variety of ways. It could be designed as a complete client based anti -

malware scanner app or a client and server based solution to efficiently

process the analysis and classification of malware apps. A complete client

based solution would have to overcome a number of challenges for

efficiently and accurately detecting the malware apps. We develop our

solution using client and server architecture which is efficient and accurate

since it does not rely on the limited resources of mobile phones. The

client-server architecture further has multiple choices to select for the

implementation of different tasks either on server or on client. Such sub

tasks include extraction of features, comparison of learned behaviour

against the normal or malicious etc. We studied different design options

and discuss here the selected one in which we use server for the analysis

71

and detection processes to gain efficiency. However, it is possible to

design the whole architecture on the phone at a little bit cost of efficiency.

The work flow of AndroPIn is shown in Fig. 3.7. It consists of three

main stages: Feature extraction, Detection engine and data logger /

reporter. First of all the apk file is decompiled and the required features:

permissions and intents of an app are extracted and stored in a separate

file for analysis.

Permissions

Intents

Feature Extraction

Permission
Monitor

Intents
Monitor

Detection Engine

Malicious
Permissions and

intents

Database

Malicious
Permissions and

intents

Malicious
Permissions and

intents

Yes

No

Malicious
Thresholds
Malicious

Thresholds

Data
Logger /
Reporter

Yes

User notification{}

Suspected
App

 Fig. 3.7: AndroPIn architecture

The analysis/detection engine consists of two steps: In first step,

the extracted features of a suspected app are checked against the pre -

defined template T, which consists of four arrays of malicious permissions,

normal permissions, malicious intents and normal intents. Second step

involves the testing against the malicious threshold. If the app is within the

malicious threshold, it is labelled as malware. Third stage is the data

logger and reporter which makes logs of results and generates

notifications for the user.

72

3.5.2 Implementation

We present an algorithm for checking whether an app is malware or

benign. We have implemented our algorithm as a malware detection tool.

The proposed algorithm consists of two phases: identifying the malicious

permissions and intents (Algorithm 1) and classifying the app as either

malware or benign (Algorithm 2).

The crux of AndroPIn is the component responsible for classifying

an application's behaviour as either benign or malicious. We use

Androguard1 tool to extract permissions and intents of an app from its

AndroidManifest.xml file. Androguard is a python based reverse

engineering tool, which can run on Linux/Windows/OSX. It is used to

disassemble and to decompile android apps and to statically analyse

apps. The Androguard’s commands get_permissions() and get_intents()

lists the permissions and intents declared by an app. After extracting the

permissions, the program automatically saves the information in a

temporary output file: ‘output3.txt’. We use Python to develop the

algorithm, which first defines the malicious and normal feature set in the

algo.py file (Algorithm 1). There are four arrays, each defining the

malicious permissions, normal permissions, malicious intents and normal

intents. Permissions and intents of suspected app saved in ‘output3.txt’

are compared against the four arrays. If the under test app contains the

malicious permissions and malicious intents, these are printed on the

screen as shown in Fig.3.8.

1 https://github.com/androguard/androguard

73

 Algorithm 1: Identification of Malicious permissions and intents

 Input : List of malicious permissions,

 List of normal permissions,

 List of malicious intents,

 List of normal intents

 Output : List of malicious and normal permissions & intents of suspected app

 1: apk > an incoming app

 2: Malicious_Permission [n1]: = List of n1 malicious permissions

 3: Normal_Permission [n2]: = List of n2 normal permissions

 4: Malicious_Intent [n3]: = List of n3 malicious intents

 5: Normal_Intent [n4]: = List of n4 normal intents

 6: Create an object O of the APK class for Suspected_Malware.apk

 7: Call O. get_android_manifest_xml() to generate AndroidManifest.xml

 8: for i: = 1 to n1

 9: if (Malicious_Permission [i] exist in

AndroidManifest.xml)

 10: Print Malicious_Permission [i]

 11: end if

 12: end for

 13: for i: = 1 to n2

 14: if (Normal_Permission [i] exist in

AndroidManifest.xml)

 15: Print Normal_Permission [i]

 16: end if

 17: end for

 18: for i: = 1 to n3

 19: if (Malicious_Intent[i] exist in AndroidManifest.xml)

 20: Print Malicious_Intent [i]

 21: end if

 22: end for

 23: for i: = 1 to n4

 24: if (Normal_Intents [i] exist in AndroidManifest.xml)

 25: Print Normal_Intent [i]

 26: end if

 27: end for

74

Fig. 3.8: Matched permissions and intents

The malware detection Algorithm 2 is responsible for classifying an

application's behaviour as either benign or malicious. If the Algorithm 1

confirms the presence of malicious permissions and malicious intents in

the under test app, Algorithm 2 verifies against the thresholds of

maliciousness to avoid the false positives. If the app falls into the malicious

criteria then it is labelled as malware and user is notified.

 Algorithm 2 Malware Detection Process

LEGEND:

 MP: Malicious_ Permissions

 NP: Normal_Permissions

 MI : Malicious_Intents

 NI : Normal_ Intents

 Input: Malicious_ Permissions[i]

 Normal_Permissions[i]

 Malicious_Intents[i]

 Normal_ Intents[i]

 Output: Malware notification

 1: Scan for (Malicious_ Permissions[i], Normal_Permissions[i],

Malicious_Intents[i], Normal_ Intents[i])

 2: if (MP >= 1 && MI >= 1) //Filter malicious permissions and malicious intents

 3: then

 4: if (MP + + NP = = 3) && (MI + + NI >=1)

 5: Print Malware detected

 6: else

 7: Print Goodware detected

 8: end if

75

3.6 EXPERIMENTAL SETUP AND RESULTS

We evaluate our implementation of algorithm against real world

malware and benign apps. The experiments aimed to validate the

effectiveness of algorithm for detection of malware apps including the

obfuscated ones with a low false positive rate.

3.6.1 Experimental Setup

 The experiments are carried out on an Intel Core i7-3520 M CPU @

2.90 GHz, 2901 MHz machine with 8GB RAM. Machine was configured

with different Android reverse engineering tools. Androguard can be run on

terminal by directly downloading from the project website or it can be run

on Virtual machine environments such as Santoku or Android Reverse

Engineering (A.R.E) virtual machines. Both of these VMs are installed with

all modules required to run Androguard. We use Santoku VM due to its

preference by the Androguard creators. Santoku is a dedicated to mobile

forensics, analysis, and security. It is a Linux distribution. We download

the full pack of Virtual machine with all modules required to run the tool

and installed with default settings. First step is to create a new virtual

machine to carry out our analysis as shown in Fig. 3.9. Then the

configurations of resources for the VM are done as shown in Figures 3.10

and 3.11 respectively.

76

Fig. 3.9 AndroPIn: creation of new VM

Fig. 3.10 AndroPIn: configuration of new VM

77

Fig. 3.11: AndroPIn: configuration of new VM continued

Once the VM is created, starting the machine will display the main

analysis environment as shown in Fig. 3.12.

Fig. 3.12: Analysis of app

Clicking on the Knife and going to accessories to open the

LXTerminal as shown in Fig. 3.13. With the following command we start

78

the Androguard in our VM:

 cd /usr/share/androguard

Fig. 3.13: Calling the Androguard

Using the file manager (next to the Knife icon) and starting the

/usr/share/androguard for placing the algorithm file: test.py in that directory

as shown in Fig. 3.14.

Fig. 3.14: AndroPIn algorithm in VM

79

Once the algorithm file is setup in the environment, the apk files are

verified as shown Fig. 3.15.

Fig. 3.15: Analysis results

3.6.2 Dataset

A total of 145 malware and 125 benign apps are verified with the

algorithm which is collected from well-known sources described in Chapter

3. These samples are rigorously selected from known malware families

and different categories of benign apps. Details of samples from the

malware families and benign categories are shown in Tables 3.2 and 3.3

respectively.

80

Table 3.2: Details of Malware samples with obfuscation

Malware

Family

No of

samples

Malware

Family

No of

samples

Basebridge 5 DroidKungFu 5

FakeDolphin 5 Locker 5

VDLoader 5 FakeBank 5

GinMaster 5 Boxer 5

JIFake 5 SNDApps 5

OpFake 5 FakeInst 5

FakePlayer 5 BgServ 5

Plankton 5 Geinimi 5

AnserverBot 5 PjApps 5

GoldDream 5 DroidSheep 3

CopyCat 3 DroidDream 5

DroidKungFu 5 Keji 3

HolyBible 3 Obad 2

Nickispbby 2 RuFraud 3

Jsmshider 3 Zitmo 3

AngryBird 5 KMin 5

DroidKungFua 3 DroidKungFuaa 2

Table 3.3: Categories of benign apps

Category No of

samples

Category No of

samples

Social Media 5 Mail 5

Education 5 Banking 5

Entertainment 5 Sports 5

Shopping 5 Finance 5

News 5 Weather 5

Games 5 Medical 5

Fitness 5 Media 5

Casual 5 Music 5

Books 5 Travel 5

Lifestyle 5 Simulation 5

Transportation 3 Misc 20

81

3.6.3 Results and Performance Analysis

The detection results are shown in Table 3.4. The TPR of 0.98 and

FPR of 0.02 are achieved with the experimental dataset. These results can

further be improved with optimization of algorithm.

Table 3.4: Performance Results

Method TPR FPR

AndroPIn 0.98 0.02

3.7 Summary

Android security framework relies on permissions and intents to

control the access to vital hardware and software resources. These two

features have never been used in tandem for malware detection. In this

paper, we proposed Andropin, a novel and efficient malware detection

algorithm based on these two vital security features, which was evaluated

on real world malicious and benign apps. Malware samples selected for

the experiments represent different types of malicious families with

diversified real-world threats. The experiment results demonstrate that the

proposed algorithm can accurately detect malware apps. We also evince

with experiments that the proposed algorithm is particularly effective for

detection of obfuscated malware apps due to its reliance on the

unalterable features. Our future work aims to optimize the algorithm to

improve on the false positive rate and validation on larger malware

dataset.

82

Chapter 4

PInDroid: Permissions and Intents based

Malware detection

4.1 Introduction

In this chapter, we discuss our methodology of PInDroid, which is

built on the study presented in Chapter 3. Since malware use more

sophisticated obfuscation and evasion techniques, it is provident to use

the obfuscation resilient methods and features for malware detection. For

this reason, PInDroid uses those features of manifest file, which are

resilient to code obfuscation and there is no complexity involved in

extraction of these features. The selected features are the basic essence

of any Android app; without these features apps cannot do any good or

bad or things.

83

Permissions are a vital security mechanism which guards against

the misuse of hardware and software resources [106]; however, it relies on

the user’s decision to accept the permissions of an app and other built-in

features mainly the intents deprecate such security protections. Most

malware need to use some permission to achieve their malicious goals

which they must declare in the Manifest file and ask the users for

approving the permissions before installation of app. Similarly, malware

apps use intents to carry out malicious actions which they must declare in

the Manifest file but do not ask the users for approval. This design flaw on

Android is exploited by malware apps to carry out stealthy malicious

actions. Intents have extended a number of known and unknown

legitimate covert channels to malware app. Although, a significant

research is done on permissions and API calls for detection of malware,

however, intents remained almost untouched before starting this research

work. There was no published works where intent was used as a key

feature for detection of malware at the start of PhD research in 2013.

Our research on permissions and intents led us to a feature set that

helps in accurately detecting malicious apps. After separately investigating

the potentials of permissions and intents in detecting the maliciousness of

apps, the author combined these two features to study their effectiveness

in pinpointing the possible risky behaviours of apps. We argue that since

many of the stealthy malicious actions are not possible without combining

the permissions and intents by the malware developers, thus many of the

malware apps cannot be detected without combining these features. Our

experiments strongly validate our heuristics.

84

The rest of the chapter is organized as follows: Section 4.2 presents

the overview of the methodology which includes the system architecture,

samples dataset, reverse engineering techniques used to analyse the

apps, extraction of features and pre-processing, building the classification

models using different ML algorithms, comparison of performance of these

algorithms on the dataset and feature set. Section 4.3 discusses the

experimental setup and Section 4.4 presents the results. Section 4.5

compares the approach with the related state-of-the-art approaches.

Section 4.6 discusses the application of ensemble learning methods and

Section 4.7 summarizes the chapter.

4.2 Overview

The aim of this work is to validate a set of simple and effective

features which should be easily extracted, applied and combined to

classify the malware apps. Different machine learning algorithms and ML

based malware detection approaches [64, 135, 136, 137, 138, 139, 140,

141, 142, 143, 144, 145, 146, 147, 148 and 149] are investigated for

classification of malicious apps. The work flow of this methodology is

divided into two phases: training and testing. In the training phase, a set of

features (Permissions and Intents) are extracted from the manifest files of

a large sample of malware and benign apps. The extracted features are

represented in a vector format executable by the data mining software

Weka1. Our goal is to build a model which can distinguish malware from

1Weka, http://www.cs.waikato.ac.nz/ml/weka/

85

benign applications efficiently based on Android permissions and intents.

Six machine learning classifiers: Naive Bayesian, Decision Tree,

Decision Table, Random Forest, Sequential Minimal Optimization and

Multi-lateral Perceptron (MLP) are trained with the datasets to build

classification models.

In the testing phase, the same set of features is extracted from a

sample of benign and malware to be tested and classified by the learned

models from the training phase. Performance of ML algorithms is validated

against various performance measures.

4.2.1 System Architecture

The system architecture is shown in the Figure 4.1. It consists of

four main stages: Apk de-compilation, Feature extraction, Pre-processing,

and Classification. The first stage is for decompiling of target app to get

AndroidManiFest.xml. The second stage analyses the manifest file and

extracts the permissions and intents. This stage comprises of two monitors

that are used to measure: (i) type of permissions (normal or dangerous)

and their numbers and, (ii) type of intents (normal or dangerous) and their

number. Permissions and intents are labelled into four groups: normal

permissions, normal intents, dangerous permissions and dangerous

intents. Dangerous permissions and intents are frequently used by

malware apps whilst normal permissions and intents are frequently used

by benign apps. The pre-processor stage transforms the extracted

features from each app into vector dataset in an ARFF fi le format that can

86

be applicable for machine learning algorithms. Each app is represented as

a single instance with discrete vector of features and a class label

indicating whether the app is benign or malicious. The generated dataset

is randomized using unsupervised instance randomization fi lter for better

accuracy and sent to the classifier stage. The last stage is for the

classification of app as either malware or benign. The classifier is trained

with the known samples and the learned models are used to detect

whether a given app is malicious or benign. The classifier takes each

vector as input and classifies the data set using trained classifier. Finally,

the reporter stage generates notifications for the user based on the

classifier results.

Details of implementation, datasets, used tools, main features of

interest, and the ML algorithms are given in subsequent paragraphs.

Permissions

Intents

PInDroid

Yes Data
Logger /
Reporter

Malware/
Benign

User notification{}

Suspected
App

Pre-
processor

Classifier

Feature Extraction

Permission
Monitor

Intents
Monitor

Figure 4.1: Diagram of proposed system

4.2.2 Data Collection

A total of 1300 malware and 445 benign apps were analysed, which

are collected from well-known sources such as Google Play store1,

87

Contagiodump2, Genome3, Virus Total4, theZoo5, MalShare6, and

VirusShare7. Samples were selected to ensure that the dataset represent

the behaviour of broad categories of benign apps and families of malware

apps. Table 4.1 depicts the details of malware samples collected from

each source. These sources contain the datasets of already known

malware samples. Maliciousness of these samples is also confirmed with

Virus Total service integrated with ten detection engines. We labelled the

app as malware, if it was detected as malicious by two of the engines.

Cryptographic hashes (SHA-1) of files were also checked with a tool:

HashTab8 to ascertain the uniqueness of samples. Details of known

malware families, their malicious activities and number of analysed

samples from each family are shown in Table 4.2.

To validate our method, we also downloaded 445 benign apps from

known app stores such as Google Play, AppBrain9, F-Droid10, Getjar11,

Aptoid12, and Mobango13. The benign apps are selected from different

categories such as social, news, entertainment, finance, education,

games, sports, music, and audio, telephony, messaging, shopping,

banking and weather to learn the normal behaviour of benign apps. Table

1Google Play, Web: https://play.google.com/store?hl=en
2Contagio Mobile: mobile malware mini dump,
Web:http://contagiominidump.blogspot.co.uk/

3Android Malware Genome Project, Web: http://www.malgenomeproject.org/
4VirusTotal for Android,Web: https://www.virustotal.com/en/documentation/mobile -
applications/

5theZoo aka Malware DB, Web: http://ytisf.github.io/theZoo/
6MalShare project, Web: http://malshare.com/about.php
7Web: https://virusshare.com/

8HashTab, Web: http://implbits.com/products/hashtab/
9Web: http://www.appbrain.com/
10Web: https://f-droid.org/

11Web: http://www.getjar.com/
12Web: https://www.aptoide.com/
13Web: http://www.mobango.com/

88

4.3 depict the details of categories of benign apps, number of analysed

apps from each category and the corresponding app stores.

Table 4.1: List of Malware samples

Malware family No of

samples

Malware type

Basebridge 11 Botnet, Information stealing

DroidKungFu 11 Botnet, Information stealing

DroidKungFu 10 Botnet, Information stealing, Backdoor

FakeDolphin 4 Adware

Locker 2 Ransomware

VDLoader 3 Backdoor, Information stealing

FakeBank 5 Trojan Banker, Money stealing,

Information stealing

GinMaster 7 Information stealing, Backdoor

Boxer 2 Sends SMS

JIFake 3 Sends SMS

SNDApps 1 Information stealing

OpFake 4 Sends SMS

FakeInst

3 Installer

FakePlayer 3 Sends SMS

BgServ

7 Botnet, Information stealing, Trojan

Installer, backdoor

Plankton 7 Money stealing, Botnet, Information

89

 stealing, Backdoor, Trojan installer

Geinimi 9 Botnet, Information stealing, Root

access

AnserverBot 13 Information stealing

PjApps 9 Botnet, backdoor

GoldDream

10 Trojan, Information stealing

DroidSheep 7 Session hijacker

CopyCat

4 Adware

DroidDream

10 Information stealing, Adware

DroidKungFu

11 Botnet, Information stealing, Root

access

Keji

4 Information stealing, Trojan Installer

HolyBible

5 Adware, Backdoor

Obad

2 Botnet, Information stealing, Botnet,

Trojan Installer, backdoor, SMS,

Location

Nickispbby

5 Spying, Information stealing

RuFraud

3 SMS sending

90

Jsmshider

3 Information stealing

Zitmo

3 Money, Information stealing, Backdoor

AngryBird

13 Botnet, Information stealing

KMin 10 Exploit, Information stealing

Table 4.2: Sources of malware samples

Source No of malware

samples
Contagio 60

Drebin 100

Genome 1000

Virus Total 70

theZoo 20

MalShare 25

VirusShare 25

Table 4.3: Categories and sources of benign samples

Category No of samples App Market

Social Media 11 Google Play store

Mail 4 Google Play store

Education 10 Google Play store

Banking 4 Google Play store

Entertainment 15 Google Play store

Sports 8 Google Play store

 8 Google Play store

Weather 8 Google Play store

Games 15 Google Play store

91

Weather 8 Google Play store

Games 15 Google Play store

Medical 10 Google Play store

Fitness 11 Google Play store

 11 Google Play store

Casual 15 Google Play store

Music 15 Google Play store

Books 5 Google Play store

Travel 5 Google Play store

Lifestyle 15 Google Play store

Simulations 7 Google Play store

Misc 15 AppBrain

Misc 10 F-Droid

Misc 10 Getjar

Misc 15 Aptoid

Misc 15 Mobango

4.2.3 Feature Extraction

The collected samples are apk files that were analysed and

transformed into the format suitable for the Machine learning algorithms.

Each apk file is decompressed to extract the manifest file, which is

investigated to for the desired features: permissions and intents. The

extracted features are then processed to build a dataset in an ARFF file

format. Each instance of dataset represents either a malware or benign

app. Feature datasets and examples of feature vector set are shown in

Tables 4.4 and 4.5 respectively.

92

Table 4,4: Selected features

Features Category Sub Features

Permissions

Normal

Permissions

WRITE_SETTINGS

CREATE ACCOUNTS

ADD ACCOUNTS

REMOVE ACCOUNTS

USE ACCOUNTS

SET PASSWORDS

Dangerous

Permissions

INTERNET

READ_PHONE_STATE

SEND_SMS

INSTALL PACKAGES

RECEIVE _SMS

WRITE_SMS

READ_SMS

RECEIVE_BOOT_COMPLETED

MOUNT_UNMOUNT_FILESYSTEM

Intents

Dangerous

Intent

BOOT_COMPLETED

SMS_RECEIVED

PHONE_STATE

NEW_OUTGOING_CALLS

UNINSTALL_SHORTCUT

HOME

Normal

Intent

MAIN

LAUNCH

VIEW

BROWSABLE

93

Table 4.5: Examples of features Vector set

Normal

Permission

Normal

Intent

Dangerous

Permission

Dangerous

Intent

Classification

1

10

9

4

3

5

4

6

2

3

1

2

3

2

2

2

0

2

1

0

3

2

0

0

7

2

1

11

0

2

2

0

1

0

3

0

1

4

0

1

Malware

Benign

Benign

Benign

Malware

Benign

Benign

Malware

Benign

Benign

4.3 Experimental Settings

The experiments were carried out on an Intel Core i7-3520 M CPU @

2.90 GHz, 2901 MHz machine with 8GB RAM. Machine was configured

with different machine learning algorithms (WEKA software), Android

development and testing modules, apk file parser as well as some open

source analysis tools. Each of the classifiers is evaluated with the 10-fold

cross-validation method. In 10-fold cross-validation, the data is divided into

ten subsets, and the method is repeated ten times. In each round, one

94

subset is taken as test set and the remaining nine subsets are combined

to form the training set. Errors of all the ten rounds are averaged out to

obtain a final output. This method ensures that each instance is included

at least once in the test set and nine times in the training set. The final

model is the average of all ten iterations. Basically, we applied the

classifier to data 10 times and every time with 90:10 ratios (90% for

training and 10% for testing). The final model is the average of all 10

iterations as depicted in Figure 4.2.

Original Dataset

Random
stratified data

in 10 folds

ITER = 1

Evaluation on
testing dataset

Increment
ITER

Testing Dataset
(fold at ITER)

Training dataset
(remaining 9 folds)

 Rank Modelling on
training dataset

ITER<10

Figure 4.2: Flowchart for 10-fold experiments

4.3.1 ML Classifiers

Performance of the following six ML classifiers is compared against

different measures.

95

(i) Naive Bayesian

(ii) Decision Tree (J48)

(iii) SMO

(iv) Random Forest

(v) Neural Networks Multi-Layer Perceptron (MLP)

(vi) Decision Table (DT)

(i) Naïve Bayesian

 It is a conditional probabilistic classifier based on Bayes’

theorem with an assumption of independence between the features

to predict the class. A Naive Bayes classifier assumes that the

presence of a particular feature in a class is unrelated to the

presence of any other feature. Naive Bayesian model is easy to build

and particularly useful for very large data sets. It provides a way of

calculating posterior probability P (c|x) from P (c), P (x) and P (x|c) 1.

 Prior P(c) x Likelihood P(x)

Posterior (P (c|x) = (3.4)
 Evidence P (x|c)

(ii) Decision Tree

Decision tree uses a decision tree predictive model to go from

observations about an item (represented in the branches) to

conclusions about the item's target value (represented in the leaves).

In classification trees (the target variable can take a discrete set of

1 https://en.wikipedia.org/wiki/Naive_Bayes_classifier

96

values) leaves represent class labels and branches represent

conjunctions of features that lead to those class labels2.

(iii) Sequential minimal optimization (SMO)

SMO is an algorithm for solving the quadratic programming

(QP) problem that arises during the training of support vector

machines. SMO is widely used for training support vector machines

and is implemented by the popular LIBSVM tool that is simpler than

the previously available methods for SVM training and it required

expensive third-party QP solvers3.

(iv) Random Forest

Random forests is an ensemble learning method for

classification that constructs multitude of decision trees at training

time and outputting the class that is the mode of the classes

(classification) of the individual trees. Random decision forests

correct for decision trees' habit of over fitting to their training set 4.

 (v) MLP

MLP is an artificial neural network algorithm consisting of at

least three layers of nodes. Except for the input nodes, each node is

a neuron that uses a nonlinear activation function. It is s multiple

2https://en.wikipedia.org/wiki/Decision _Tree

3 https://en.wikipedia.org/wiki/Sequential_Minimal_Optimization
4 https://en.wikipedia.org/wiki/Random_Forest

97

layers and non-linear activation distinguish MLP from a linear

perceptron. It can distinguish data that is not linearly separable5.

 (vi Decision Table

 Decision tables are a visual representation for specifying which

actions to perform depending on given conditions. They are

algorithms whose output is a set of actions. The information

expressed in decision tables could also be represented as decision

trees or in a programming language as a series of if-then-else and

switch-case statements. Each decision corresponds to a variable,

relation or predicate whose possible values are listed among the

condition alternatives. Each action is a procedure or operation to

perform, and the entries specify whether (or in what order) the action

is to be performed for the set of condition alternatives the entry

corresponds to6.

4.3.2 Performance Comparison of ML Classifiers

Performance of the six classifiers is compared in terms of True

Positive Rate (TPR), False Positive Rate (FPR), accuracy, F1-score and

Area Under Curve (AUC). These metrics are calculated using the

confusion matrix as shown in Table 4.6.

5 https://en.wikipedia.org/wiki/Multilayer_Perceptron
6https://en.wikipedia.org/wiki/Decision_table

98

Table 4.6 is generated from the four measures: True Positive (TP) -

the number of correctly classified instances that belong to the class, True

Negative (TN) - the number of correctly classified class instances that do

not belong to the class, False Positive (FP) - instances which were

incorrectly classified as belonging to the class and False Negative (FN) -

instances which were not classified as class instances.

 ;=
FNTP

TP
TPR

 (3.5)

 ;=
TNFPFNTP

TNTP
FPR

 (3.6)

 ;=
TNFPFNTP

TNTP
Accuracy

 (3.7)

 ;
.

2.=1
RecallPrecision

RecallPrecision
ScoreF

 (3.8)

Table 4.6: Confusion Matrix

Actual Class Classified as
Malware

Classified as
Benign

Malware TP FN

Benign FP TN

4.4 Results and Discussion

Table 4.7 lists the TPR, FPR, Precision, F1-score, recall, AUC and

processing time. All the analysed classifiers perform well with an accuracy

of 0.90 or more. However, MLP and Decision table dominate with an

accuracy of 0.993. In terms of time, Nave Bayesian, Decision Tree and

99

Decision Table are more efficient than MLP and Random forest. Overall,

Decision Table produces the best results.

4.4.1 Performance Comparison of different Classifiers

Performance of the six widely used classifiers is compared in terms

of TPR, FPR, Precision, recall, AUC and time taken to bui ld the model.

Table 4.7 lists the results obtained for TPR, FPR, Precision and recall.

Decision Table outperformed all classifiers in detecting the correct class of

malware applications with an accuracy of 99.3% whilst SMO performs

worst in terms of measured parameters.

Table 4.7: Comparison of classification algorithms

Algorithm

TPR

FPR

Precision

Recall

Time

Decision Table 0.993 0.006 0.99 0.99 0.23

MLP 0.992 0.008 0.99 0.99 1.18

Decision Tree 0.9861 0.011 0.98 0.98 1.24

Nave Bayesian 0.982 0.012 0.98 0.98 0.95

Random Forest 0.97 0.07 0.97 0.97 0.43

SMO 0.67 0.033 0.67 0.67 0.94

Additionally, the classifiers are evaluated in terms of time taken to

build up the model. The Decision Table takes less time than all other

classifiers. Overall, results demonstrate that the Decision Table is efficient

and accurate classifier as compared to other five algorithms.

100

4.4.2 Area Under Curve (AUC)

Accuracy of detection is measured by the area under the curve. An

area of 1 represents a perfect detection; an area of 0.5 represents a worst

detection. Traditionally accepted values1 for AUC are shown below:-

 0.90-1 = excellent (A)

 0.80-0.90 = good (B)

 0.70-0.80 = fair (C)

 0.60-0.70 = poor (D)

 0.50-0.60 = fail (F)

Table 4.8 depicts the AUC values obtained with different classifiers.

Decision Table, Decision Tree and MLP have “Excellent” AUC values

compared to Random Forest and Naïve Bayesian which have “Good”

AUC values. SMO’s performance performs poorly of all the classifiers.

Table 4.8 AUC comparison of classifiers

1https://sonoworld.com/fetus/page.aspx?id=1698

Classifier AUC

Decision Table 99%

Decision Tree 98%

MLP 98%

Random Forest 89%

Naïve Bayesian 87%

SMO 50%

101

4.5 Comparison with related approaches

We compare the performance of PIndroid against relevant

approaches which use some of the similar features and analysing the

samples acquired from same sources: Google Playstore, Genome and

Contagiodump. These are known repositories of malware and benign apps

and the performance of most of the state of the art malware detection

approaches are tested on these samples with a difference of number of

samples tested. The most relevant approaches are Drebin [154], DroidMat

[155] and Marvin [156].

 Drebin [154] examines the manifest file and decomposed code of

app to check the permissions, API calls, hardware resources, app

components, filtered intents and network addresses. It uses support vector

machines (SVM) for malware classification. Although, they used the

largest dataset of 129,013 apps, it consists only 4.5% of malware samples

thereby may not be able to learn malware patterns. It used many features

opposed to our work which uses only two most effective features. It

achieved 94% malware detection rate with 0.01 false positive rate whereas

our approach achieved 99% detection accuracy with 0.006 FPR. Drebin

[154] requires extensive processing for extraction and execution of a large

number of features from the manifest file and app code, it takes more time

to analyse the app and therefore is less efficient than our method. It takes

on average 10 seconds to analyse an app, whereas our approach takes

less than 1 second. Its use of a large number of features may also result in

more false alarms as the efficiency and accuracy of feature based

102

detection approaches highly depend on the selection of more relevant and

less number of features.

DroidMat [155] analyses some features from the manifest file and

smali files of disassembled codes. The extracted features include

permissions, components deployments, intent messages and API calls. It

applies K-means algorithm for clustering and Singular Value

Decomposition (SVD) method for low-rank approximation. The minimized

clusters are processed with a kNN algorithm for classification into malware

or benign apps. It achieves an accuracy of 97.6% with no reported false

positive rate. They analysed 1738 apps consisting of 1500 benign and only

238 malware samples. Malware samples are only 13% of total dataset,

which is a non-representative data set for capturing the malware usage

patterns. The accuracy is less than our method and the processing time is

higher as it needs to perform the execution of smali files and manifest files.

Since Smali files are much larger than manifest files, the overall cost of

methods which analyse smali files forgoes higher. This holds true for

Drebin [154] and DroidMat [155].

Marvin [156] uses off-device static and dynamic analysis for

malware detection. It uses around 490,000 features extracted from the

manifest fi les and disassembled codes. Its high-dimensional feature set

includes permissions, intents, API calls, network statistics, components,

file operations, phone events, app developer IDs, package serial numbers

and bundles of other features. It uses a linear classifier to detect malware

app and assign a malicious score to the app on a scale from 0 to 10, with

0 being benign and 10 being malicious. They used the largest dataset of

103

150,000 apps in which only 10% are malware samples. It classifies with an

accuracy of 98.24% and false positive rate of 0.04%. Although this

approach classifies with the malicious score, this is not an efficient

approach considering the high dimensionality of features and regular

updating requirement of the database to maintain the detection

performance. Since, both the analyses are done off-the-device; the mobile

app is just to provide an interface to upload the apk to the analysis server.

The static and dynamic analyses of an app take several minutes

depending on the size of smali files. This approach is less efficient and

less accurate than our approach.

 We further compared the detection rate of PIndroid on the

unlabelled set of 100 apps against these approaches. PInDroid

significantly outperforms the other approaches with TPR of 0.98 and FPR

of 0.1. The other approaches provide a detection rate between 0.90 to

0.93 with FPR between 0.7 to 1. Detection performance of compared

approaches is shown in Fig. 4.3.

 Figure 4.3: Comparison with relevant approaches

The compared approaches are less efficient than our approach in

analysing the apps due to their dual processing time. PInDroid gives more

104

accurate results due to the use of most relevant feature set to model the

malicious behaviour

4.6 Application of Ensemble Learning Methods

 In this section, a study on effect of applying different ensemble

methods is presented. The motivation to apply ensemble methods is to

ascertain if the performance of poorly performing classifiers can be

improved by applying ensemble techniques. If the predictions from each

non-over fitting model are combined, then the final aggregated prediction

will be less noisy than the single opinion of individual model and there will

be no over fitting. We have used different ensemble methods such as

boosting, bagging and stacking for combining multiple trained classification

algorithms. The predictions from combined classifiers are processed with

the help of well know ensemble schemes such as majority voting, average

of probability and product of probability.

4.6.1 Ensemble Learning

Ensemble methods combine the results of multiple machine

learning algorithms to improve the predictive performance [159, 160]. We

use three ensemble methods namely Boosting, Bagging and Stacking to

improve the detection results of classification algorithms.

4.6.2 Boosting

In boosting, a base classifier is trained on the training dataset

followed by the subsequent stages of classifiers which concentrate on the

105

incorrectly classified instances by the previous classifier. Classifier stages

are added till the time there is a limit in the number of models or accuracy

[161, 162]. We use popular boosting meta-algorithm AdaBoost, introduced

in 1995 by Freund and Schapire.

4.6.3 Bootstrap Aggregating (Bagging)

In bagging, the training dataset is sub-divided into multiple training

datasets and each dataset is used to train a classifier as shown in Figure

4.4. Finally, the outputs of all the classifiers are combined by averaging out

or majority voting method [162].

 Figure 4.4: Bagging Process

4.6.4 Blending / Stacking

 In stacking, multiple algorithms are trained individually with the

training dataset and the outputs from the classifiers are sent to a meta -

Training Dataset

Training

Sub-set-I

Training

Sub-set-n

Training

Sub-set-II

Sub Model I Sub Model nSub Model II

Results

Boostrap Sampling

ML Classifiers

Majority Voting Method

106

classifier which combines the results of the base classifiers using any of

the three schemes: an average of probabilities, a product of probabilities

and majority voting (Figure 4.5).

Decision Table, MLP, and Decision Tree classifiers are applied in

first stage and their results are combined with different schemes as

mentioned above.

(a) Average of probabilities

 It takes an average of the probabilities of each class from the

individual classifiers (k=3 for three classifiers) and compares which

class has greater probability such that,

;<,
3

1=

3

1=

benign

k

avgmalware

k

avg ClassPClassPifMalware (3.9)

.>,
3

1=

3

1=

benign

k

avgmalware

k

avg ClassPClassPifBenign

(3.10)

(b) Product of probabilities

 Product of probabilities is taken from each of the classifiers and

highest probability of class is assigned as:

;<,
3

1=

3

1=

benign

k

avgmalware

k

avg ClassPClassPifMalware (3.11)

.>,
3

1=

3

1=

benign

k

avgmalware

k

avg ClassPClassPifBenign (3.12)

107

 (c) Majority vote

 The final result is decided based on the results obtained from the

majority of the results. Results of ensemble classification are

depicted in Tables 4.9 to 4.11. The product of probabilities method

yields the best results.

Figure 4.5: Stacking Process

4.6.5 Results of Ensemble methods

Ensemble methods are applied on different datasets and a

considerable amount of improvement is noticed in the performance of

model. Following four cases are particularly noticeable due to their distinct

nature.

(i) The worst model with SMO with an accuracy of 67%

improved to an accuracy of 94.6% after applying stacking method

(Table 4.9).

108

Table 4.9: Accuracy gain in SMO model with Stacking

Dataset

Meta.

AAdaBoo

Meta.

Bagging

Meta.

Stacking

Classification
67.84

63.12

94.6

(ii) The minimum accuracy obtained with Decision table without

ensemble methods was 99.3% which increased to 99.5 with

bagging method (Table 4.10).

Table 4.10: Accuracy gain in Decision Table model with
Bagging

Dataset

Meta.

AAdaBoo

Meta.

Bagging

Meta.

Stacking

Classification
99.3

99.51

99.38

(iii) The minimum accuracy obtained with Naïve Bayesian before

applying ensemble methods was 98.2% which improved to 99%

with stacking and 98.31% with boosting method (Table 4.11).

Table 4.11: Accuracy gain in Naïve Bayesian model with Boosting and
Stacking

Dataset

Meta.

AAdaBoo

Meta.

Bagging

Meta.

Stacking

Classification
98.35

98.31

99

Ensemble methods combine results from multiple machine learning

algorithms to improve the predictive performance [159]. It is not necessary

that the performance of ensemble learning be better than the individual

109

classifiers. The stacked performance depends on the selection of

classifiers and methods used to combine the output predictions [160].

We apply three ensemble methods: Boosting, bagging, and

stacking to further improve the detection accuracy. Stacking gives the

better results as compared to boosting and bagging.

4.7 Summary

Android security model relies on permission and intent based

mechanisms for controlling access to vital hardware and software

components. However, so far these two features have not been combined

together for detection of malware.

In this chapter, Android permissions and intents are investigated for

using them to detect the malware apps. We also investigated the

correlation between permissions and intents by applying statistical testing

methods. It was also studied how effective is to combine permissions and

intents analysis for malware detection. Permissions and intents are found

to be most effective features of Android for characterizing malware as they

are easy to extract from the manifest files of apps and require less

processing time and complexity. This work proposed a novel malware

detection method―PInDroid which is based on these two key features.

Various well known classification algorithms were applied on the dataset.

Application of classification algorithms have given very encouraging

results to further advance the work.

110

In this chapter, we also applied different ensemble methods such as

Boosting, Bagging and stacking on six well Machine Learning classifiers:

Naïve Bayesian, Decision Table, Decision Tree, Neural Network (MLP),

SMO and Random Forest. All the classifiers demonstrated an increase in

performance at different ensemble methods. Accuracy of some of the

classifiers improved with bagging method and some of them improved with

stacking method. These methods have improved the overall results

significantly thus increasing the confidence level.

It was observed during repeating the experiments that it is not

necessary to get good or equal results with different ensemble methods.

Results of ensemble learning depend on the classifier itself and the

combination of classifiers chosen for cascading stages.

111

Chapter 5

Detection of Colluding Applications

5.1 Introduction

Android being the most popular platform for mobile devices is under

proliferated malicious attacks. A recent threat is from app collusion; in

which two or more apps collaborate to perform stealthy malicious

operations by elevating their permission landscape using legitimate

communication channels. Each app requests for a limited set of

permissions which do not seem dangerous to users. However, when

combined, these permissions potentially inflict a number of malicious

attacks. Mobile users are generally unaware of this type of permission

augmentation, they consider each app separately. Hence, their decision to

install apps is limited in perspective due to unawareness of such type of

capability escalation [164].

112

Android implements sandbox and permission based access control

to protect resources and sensitive data, however, being open source and

developer-friendly architecture, it facilitates sharing of functionalities

across multiple apps. It supports useful collaboration among apps for the

purpose of resource sharing; however, it also introduces the risk of app

collusion when the collaboration is done with malicious intention. Cyber

criminals exploit this vulnerability to launch distributed malicious attacks

[165].

This chapter investigates Android application collusion and intents

related attacks with an intention to furnish a feasibility study of using our

permissions and intents based methodology for detection of malicious

colluding apps. Most of the recent works on app collusion investigate

permissions and IPC mechanism to understand their role in app collusion.

Our preliminary investigations confirm that permissions and intents can be

exploited to detect malicious app collusion.

The rest of the chapter is organized as follows: Section 5.2 presents

an overview of app collusion, Section 5.3 investigates the technical details

of app collusion and covert channels, and Section 5.4 presents the IPC

and intents related attacks. Section 5.5statistical testing details carried out

to understand the correlation between permissions and intents. Section

3.5 presents the challenges faced in detecting app collusion and

recommend potential measures. Section 5.7 proposes a possible generic

framework for detection of colluding apps and finally Section 5.8

summarizes the chapter.

113

5.2 Overview

Application collusion is possible with Inter Process Communication

(IPC), covert channels or system vulnerabilities. Malicious colluding apps

are explicitly designed by cyber criminals by using different tactics which

includes the development of apps with same User ID. Such apps have

more chances for a successful collusion attack. In some cases, mis-

configured apps also participate in the collusion attack with a complete

obliviousness of colluding app [166]. One of the collusion scenarios is

illustrated in Figure 5.1: App 'A' has no permission to access the internet;

however it has permissions for camera. Similarly, App 'B' has no

permission for the camera but can access the internet. Assuming that the

components of both apps are not protected by any access permission,

they could collude to capture the pictures and upload on a remote server

through the Internet.

Figure 5.1: Application Collusion Scenario

114

Until recently, a small scale research is done on app collusion

primarily due to non-availability of known samples of colluding apps for

analysis and experimentations [167]. Most of the works accentuated on

rummaging of covert channels and development of experimental colluding

apps. As a result of this innovative approach, the research on collusion

gained a little momentum and there are now a few collusion detection

approaches available each with a limited scope. Despite the growing

research interest, detection of malicious colluding apps has been a

challenging task [168].

The fact that permissions and intents (which are the key features of

our detection model) are the main features behind the application

collusion, our proposed malware detection model is particularly suitable for

detection of colluding applications in addition to other types of malware

applications.

In Android, all applications are treated as potentially malicious.

They are isolated from each other and do not have access to each other’s'

private data. Each app runs in its own process and by default can only

access own files. This isolation is enforced with the sandbox, in which

each app is assigned with a unique user identifier (UID) and own Virtual

Machine (VM). App developers are required to sign the apps with a self-

certified key. Apps signed with the same key can share UIDs and ca n be

placed in a same sandbox [169].

Android app comes as .apk file, which contains the byte code, data,

resources, libraries and a manifest file. Manifest fi le declares the

115

permissions, intents, features and components of an app. The

components that can be handled by an app are declared with intent filters.

System resources and user data are protected through permissions.

Figure 5.2 illustrates the communication between apps in a sandbox

environment. App 1 can use only those system resources and user data

for which it has permissions. Similarly, app 2 is also limited to use certain

resources. Although both apps have limited permissions to access the

resources but through IPC, they are able to augment their permissions and

get over-privileged access to system resources and user data.

Figure 5.2 Inter Process Communication

5.3 Investigations of Application Collusion

Colluding applications are those applications that cooperate in

some manner to perform extended operations which they would

independently be unable due to their respective permission restrictions.

These applications can perform covert operations even without breaking

the security framework or exploiting any system vulnerabilities [170].

116

Application collusion can inflict serious damages to the user by stealing

user’s data or device resources. Following elements of Android

architecture directly or indirectly contribute in app collusion:-

 Permissions

Permissions are used to restrict the access of system resources

and user data on the device.

 Shared User ID

 Android assigns a unique user ID to each app to ensure that it

runs in its own process and can only access the allocated system

resources. Apps with shared User IDs (shared Userid) can access

each other's data and can run in same process, thereby limiting the

effectiveness of isolation provided with user ID.

 Components

 Components are the basic modules that are run by apps or the

system. There are four types of components: Activities, Services,

Content Providers and Broadcast Receivers.

 Intents

Intents are messages used to communicate between the

components of apps. These messages are used to request actions or

services from other application components. Intents declare the

117

intention to perform an operation [166]. Intents are of two types:

Explicit and Implicit. Explicit intent specifies the component

exclusively by class name. Implicit intent does not specify a particular

component by name. Apps with implicit intent only specify the

required action without specifying particular apps or component.

System selects the app from device which can perform the requisite

task. Implicit intents are vulnerable to exploits as they can combine

operations of various applications, if they are not handled properly.

 Sandboxing

Sandboxing isolates an app from other apps and system

resources. Each app has a unique identifier and has access to the

allocated System files and resources against the unique identifier. An

app can also access fi les of other apps that are declared as

readable/writeable/executable for others.

 Access Control Mechanism

 In Android, the access control mechanism of Linux prevails. It

controls access to files by process ownership. Each running

process is assigned a UserID and for each file, access rules are

specified. File access rules are defined for a user, group and

everyone, thus granting permissions to read / write / execute the

file.

118

 Application Signing

Cryptographic signatures are used for verification of app source

and for establishing trust among apps. Developers are required to

sign the app to enable signature based permissions, and to allow

apps from the same developer to share the UserID. A self-signed

certificate of the signing key is enclosed into the app installation

package for validation at installation time.

5.3.1 Covert Communication Channels

A covert channel is a stealthy mechanism which exploits

resources and uses them to exchange information between apps in a

manner that it cannot be detected [171]. There are two types of covert

channels: Timing and Storage. Timing channels modulate the time spent

on execution of some task or using some resource. Storage channels

relate to modifying the data item such as configuration changes etc.

Example of covert channel is sending user data to a remote server by

encoding it as network delays over the normal network traffic [172]. Figure

5.3 depicts a covert channel, where a file of 20 bytes containing some data

is sent through a normal communication channel. The file size is covert

information. This information might not be of any importance to the

receiver but significantly valuable for the malicious party.

119

Figure 5.3: Overt and covert channel

Covert channel typically exploit the shared resources to read,

store and modify data as a medium for communication between two

malicious entities. This type of information exchange is different from IPC

based resource sharing. App collusion through covert channels is

investigated by implementing high throughput covert channels in [165].

5.4 IPC related Attacks

Android security builds upon sandbox, application signing and

permission mechanism. However, these protections fail if the resource and

task sharing procedures provided through IPC are used with malicious

intentions. In this section, we discuss most common IPC related attacks on

Android devices.

120

5.4.1 Application Collusion Attack

In application collusion attack, two or more apps collude to

perform a malicious operation which is broken into small actions [165].

Each of the participating apps communicates using legitimate

communication channels to perform the part assigned to them. Apps do

not need to break any security framework or exploit the system

vulnerabilities for carrying out a collaborative operation [168]. Colluding

attack help in malware evasion as the current commercially available anti -

malware solutions do not have capability of simultaneously analyzing

multiple apps to detect collusion.

5.4.2 Privilege Escalation Attack

In privilege escalation attack, an application with less

permissions access components of more privileged application [172].This

attack is prevalent in misconfigured apps mainly from the third party

market. The default device applications of phone, clock and settings were

also vulnerable to this attack [173]. Confused deputy attack is a type of

privilege escalation attack. A compromised deputy may potentially transmit

the sensitive data to the destination specified in the spoofed intent (Fig.

5.4). Consider an app which is processing some sensitive information like

bank details at the time of receipt of spoofed intent. It is likely that such

information may be passed on to the url or phone number defined in the

malicious intent.

121

Figure 5.4: Confused Deputy Attack

5.4.3 Intents related Attacks

Explicit and implicit intents may potentially assist in colluding

attacks. Although, explicit intents guarantee the success of collusion

between apps, implicit intents can also be intercepted by the malicious

apps with matching intent filters. We discuss some of the known intents

related attacks.

 Broadcast Theft

A public broadcast sent by application is vulnerable to

interception. As shown in Figure 5.5, a malicious app 'M' can

passively listen to the public broadcasts while the actual recipient is

also listening. If a malicious receiver registers itself as a high priority

receiver in ordered broadcasts and receives the broadcast first, it

could stop the further broadcasting to the recipients. The ordered

122

broadcasts are serially delivered messages to the recipients that

follow an order according to the priority of receivers. Public and

ordered broadcasts may cause eavesdropping and Denial of Service

(DoS) attacks [167].

Figure 5.5: Broadcast Theft Attack

 Activity Hijacking

If a malicious app registers to receive the implicit intent, it may

launch activity hijacking attack on successful interception of intent.

With activity hijacking, a malicious activity can illegally read the data

of the intent before relaying it to the recipient [165]. It can also

launch some malicious activity instead of the actual one. Consider a

scenario, in which an activity is required to notify the user for the

completion of certain action. The malicious user can falsely notify

the user for the completion of uncompleted activity like un-

installation of app or transaction completed.

123

 Service Hijacking

 If an exported service is not protected with permissions, it can

be intercepted by an illegitimate service, which may connect the

requesting app with a malicious service instead of the actual one [5].

In this attack, the malicious user hijacks the implicit intent which

contains the details of service and start the malicious service in place

of the expected one. Implicit intents are not guaranteed to reach to

the desired recipient because it does not exclusively specify the

recipient. A malicious app can intercept an un-protected intent and

access its data by declaring a matching intent filter [6]. This type of

attack may be used for Phishing, Denial of Service (DoS) and

component hijacking attacks are possible with unauthorized intent

receipt.

 Intent Spoofing

 In Intent spoofing attack, the malicious app controls the

unprotected public component of a vulnerable app. It starts

performing as the deputy of the controlling app and carries out the

malicious activity on behalf of the controlling app [3]. This type of

attack is also known as confused deputy attack as the deputies

(victim apps) are unaware of their participation in the malicious

activities. Figure 5.4 illustrates the confused deputy attack. A

malicious broadcast injection is also possible with spoofed intent

when a broadcast receiver that is registered to receive the system

124

broadcasts trusts an incoming malicious broadcast as a legitimate

one and performs those actions which need system triggers.

5.5 Detection of colluding applications

Detection of app collusion is a very complex proposition. There

are a number of challenges in designing a solution to detect the malicious

colluding apps and there remain big question marks over efficacy of such

solutions. This is the prime reason that we don't have a lot of reliable

choices available for such detections.

5.5.1 Challenges

First challenge in detection is classification of IPC into benign

and malicious groups. Android is an open source platform, which

encourages resource sharing among apps by re-using the components.

IPC is mainly used by apps to interact with different inter and intra

components. The main problem is to distinguish between the benign

collaboration and malicious collusion. Such a distinction is likely to come

up with a cost of very high false positives. Keeping the false positive rate

to lowest is another problem.

Secondly, considering the substantial number of apps available

in the Android market (more than 2 Million apps by Feb 2016), there is a

difficulty of analyzing pairs of apps. It is computationally challenging and

cost exorbitant to analyze all possible pairs of apps to detect the malicious

collusion between sets of apps given the search space. Analysis of all

125

possible app pairs of total of N apps would require N2 pairs. Similarly, to

analyze sets of three colluding apps, it would require analyzing N3 apps.

An effective collusion detection tool must be capable of isolating potential

sets of apps and carrying out further investigations.

 Another glaring challenge is the presence of a number of

covert channels in the system. Detection of covert channels is an NP-hard

problem as it would require monitoring of all the possible communication

channels [174]. Covert channels are difficult to detect because they use

overt channels for conveying stealthy information. Lastly, known malicious

colluding apps are not available for analysis. The non-availability of known

samples of colluding apps, makes it difficult to validate the experiment

results. Analysis and validation of collusion detection is a quandary, we

need known samples of colluding apps to validate the detection method,

but to find the samples, a reliable detection method is mandatory, which

itself is not available in an authenticated form.

An effective collusion detection system must overcome the

aforementioned challenges and encompasses an integrated solution. The

detection of IPC based collusion have been recently proposed in a few

research papers [175], [176], [177], and [178]. The proposed approaches

have a number of limitations and the accuracy and efficiency of these

methods is questionable due to non-availability of universally accepted

dataset of malware colluding apps.

The solution proposed in [174] is to re-design the security

model of Android system to mitigate the risk of collusion. However, this

126

would involve a big cost and complexity in re-writing the OS components

and ensuring their compatibility and smooth functioning in conjunction with

already available millions of apps in the Android market.

Another approach [175] is limited to the detection of collusion

based on intents only. It analyzes the interaction of components through

intent filters only and analyzes only two apps at a time. Currently, this

approach suffers with a high false positive rate. It is a memory consuming

approach which may not be feasible for mobile phones keeping in view the

limited memory of phones. It is likelihood that extensive memory

consumption may deteriorate the overall performance of device. Similarly,

[176] is also mainly based on intent messages. This approach faces the

challenges of conventional rule based methods that are prone to evasion

with obfuscation and evasion. Scalability is a major drawback of their

approach.

Malware collusion detection tool [177] supports the latest API

versions only, hence analysis of apps developed under earlier versions is

not possible. Technical details of the tool are not available for performance

verifications and evaluations. It generates a high number of false alarms

mainly due to its reliance over information flows.

The detection of covert channels is still an under explored

research area. So far, there are two works [173] [178], which attempts to

detect the covert channels based app collusion. Currently, [173] has a

limited scope of detecting only covert channels related to shared

resources such as reading of the voice volume, change of the screen state

127

and change of vibration settings etc. However, the approach can be

investigated for inclusion of other covert channels. Similarly, [178] handles

only data flows.

5.5.2 Potential Measures

The complexity and challenges of collusion detection merit a hybrid

framework. As a result of our analysis, we recommend an integrated

approach for detection of app collusion. We also suggest that a covert

channel may not be detected in isolation, but its existence may be realized

whilst analyzing the IPC related security breaches. We argue that any

mobile user downloads a limited number of apps as opposed to available

millions of apps. A user cannot install millions of apps on a single device;

hence, there is no need to analyze the millions of app pairs or triplets for

possible collusion. On the average, a mobile user installs 20 to 30 apps. A

system capable of analyzing 502 or 503 apps is sufficient for a common

mobile user. This solution may also be augmented with a cloud based

analysis engine if the number of concurrently analyzed apps is increased

to 4, 5 or more. Cloud based analysis is an efficient and cost effective

approach for high computational operations. We argue that adopting such

an approach is essentially required to facilitate the identification of sets of

colluding apps from a dataset of millions of apps.

Since permissions and intents facilitate inter and intra app

communication and collaboration. Analysis of usage pattern of

permissions and intents has potentials to detect app collusion through IPC

and covert channels. Adding shared user IDs and publicly declared intents

128

is also recommended as the collaborating apps may use same User IDs to

make sure that the attack is successful.

5.6 Proposed framework for Detection of Colluding Apps

There are different methods with which applications can collude;

however shared user ID and public declaration of intent are two key

features of Android OS which are more vulnerable to collusion attacks.

(a) Shared User ID

 In the UID assignment step, sharing UID is checked in the

manifest. If the sharing UID exists, Android checks other

applications' share User Id. If they match to each other, this

application is assigned with the existing UID. If no applications

match or no sharing UID in the manifest, a new UID is assigned to

this application. In the permission assignment step, if the UID is

new, this UID will have all permissions requested in the manifest if

the users approve. If the UID is shared, this application will not only

have its own requested permissions, but also the permissions of

other applications with the same UID.

Application sandbox is a means to isolate the applications from

each other in the Android system by assigning a UID and a set of

permissions [179]. When the application is installed on the device, it

runs in its own sandbox and other applications cannot access or

interfere. An application can only access its own files, unless other

129

applications explicitly assign the access permissions to this

application. For example, if the applications are created by the

same developers, the developers can make these applications

share the same UID, then these applications will run in the same

sandbox and share the resources in that sandbox.

Application signing is used to ensure the application security.

It creates a certification between developers and their applications.

Before placing an application into its sandbox, the application

signing creates a relationship between the UID and the application.

The applications couldn't be run on the Android without signing.

With the same UID, that is, running in the same sandbox, the

applications can share the permissions and communicate with each

other. By using application signing, the application update process

can be simplified. Since different versions of the same application

have the same certificate, the package manager can verify this

certificate. Then, the old version is replaced; the new version can

have the permissions already granted to the old version. What's

more, the application signing can also ensure that an application

cannot communicate with another app unless using the ICC. But if

the author is the same, the author can use the same application

signing to enable the direct communication among his/her

applications.

Android OS assigns a unique user id to each application to

ensure that it is run in its own process and resources created

130

against that id. However, aapplications can share their user ids if

they are developed with same signature or certificate and

applications with the same user ids (shared Userid) can access

each other's data and can be run in the same process.Shared

UserIds are declared in application’s Manifest file as shown in

Figure 5.6.

Figure 5.6: Declaration of Shared User ID in Manifest file.

(b) Implicit Intent declaration

Implicit intents specify the action it needs to perform without

specifying particular apps/component which can only be used for that

action. Implicit intents are vulnerable to exploits as they can combine

operations of various applications, if they are not handled

appropriately. Applications can receive implicit intents from other

apps if they advertise/declare their components with an intent filter. If

the declared intent filter of app matches all the fields of requesting

intent then system will pass on the implicit intent the declaring app.

Intrinsic intents are declared in the manifest file as depicted in Fig.

5.7.

131

Figure 5.7:. Declaration of Public Intrinsic Intent.

Adding these two key features in our detection model enables the

further classification of malware apps as colluding apps or vice versa.

This can be realized with an additional layer of classifier or through adding

few lines into the code. Figure 30 depicts the additional layer for the

detection of colluding apps.

The proposed system is shown in Figure 5.8. In first stage, apps are

analyzed to identify those which share user IDs as they have more

potential to collude successfully. In second stage, permissions and intents

are extracted and analyzed for source permission, source intent, sink

permission and sink intent. Pairwise communication mappings of apps are

generated from the source and sink permissions and intents. The identified

communicating pairs of apps are further analyzed to check if their

communication is limited to each other or more apps. The classifier stage

is used to classify the app into colluding or non-colluding ones and users

are notified for possible collusion. In the proposed approach, permissions

and intents are grouped into four categories: source permissions, source

intents, sink permissions and sink intents. Source permissions or intents

are those that initiate some operation, whereas the sink permissions and

intents are those which act upon to complete the required operation [164].

132

With additional policy refinements, the identified colluding apps can be

classified into benign and malicious apps. This approach may be

integrated with the methodologies proposed in [178] and [173] to monitor

the data flow sources and sinks of IPC and tracking of shared resources.

Information flow system proposed in [178] to monitor the data flow sources

and sinks in IPC is a good trade-off for detecting the covert channels

however, it lacks the tracking of shared resources. Mapping structure of

[173] helps in tracking the shared resources used by two interacting apps.

Figure 5.8: Collusion Detection Model

Effective detection of app collusion requires monitoring of IPC and all

possible covert communication channels: shared resources and data flow

sources and sinks. An integrated system comprising of the proposed

framework and Taintdroid [178] for analyzing the covert channels is a good

starter towards a comprehensive detection system.

133

5.7 Related Work

IPC and intents have not been explored the way permissions have

been investigated. Most of the existing IPC based studies focus on finding

the IPC related vulnerabilities. [179] investigated the IPC framework and

interaction of system components. [166] detects the IPC related

vulnerabilities. [180] suggested improvement in ComDroid by segregating

the communication messages into inter and intra-applications groups so

that the risk of inter-application attacks may be reduced. [181]

characterized Android components and their interaction. They investigated

risks associated with misconfigured intents. [182] examined vulnerable

public component interfaces of apps. [183] generated test scenarios to

demonstrate the ICC vulnerabilities. [184] performs information flow

analysis to investigate the communication exploits. [185] investigated

intents related vulnerabilities and demonstrated how they may be exploited

to insert the malicious data. Their experiments found 29 out of a total of 64

investigated apps as vulnerable to intent related attacks. Similarly, [186]

investigated the ICC vulnerabilities. All of these works focus on finding

communication vulnerabilities, and none of them used IPC and intents for

malware detection.

5.8 Summary

The concept of colluding apps has emerged recently. App collusion

can cause irrevocable damage to mobile users. Detection of colluding

apps is quite a challenging task. Some of the challenges are: distinction

134

between the benign and malicious collaboration, false positive rate,

presence of covert channels and concurrent analysis of millions of apps.

Existing malware detection system is designed to analyse each app in

isolation. There is no commercially available detection system which can

analyse multiple apps concurrently to detect the collusion. We have

carried out a preliminary study to evaluate the applicability of our proposed

approach for detection of collaborating apps.

In this chapter, we discussed the current state and open challenges

to detection of colluding apps. To address the problem, we have proposed

an integrated approach to detect app collusion. However, due to non-

availability of real colluding app samples, it was not possible to validate the

framework. The complexity of problem merits collaborative large scale

investigations to mitigate a very large number of known and unknown

communication channels between apps besides known IPC and covert

channels. Our future work aims to validate the proposed framework on real

colluding apps.

135

Chapter 6

Conclusions and Future work

6.1 Introduction

This chapter concludes the author’s work by revisiting the thesis

goals, contributions and achieved objectives. This includes the author’s

work: PInDroid, the permissions and intents based solution that can detect

malicious apps accurately and efficiently.

This work also validates different well known classification and

clustering algorithms for comparing their performance in malware

detection. We found that classification algorithms are more accurate as

compared to clustering algorithms for malware detection.

Different ensemble methods are also applied on the models to

ascertain the margin of performance improvement. Detection accuracy of

proposed model is further optimized with boosting, bagging and blending

methods.

136

The author also demonstrated the usefulness of PInDroid

methodology by implementing it through an automated malware detection

algorithm: AndroPIn.

The author also described two additional studies, which

investigated the usefulness of the proposed methodology to detect the

malicious colluding apps and obfuscated malware apps.

Lastly, the author discusses possible future directions of research

based on top of research performed by the author after systematically

reviewing the work related to Android malware.

6.2 Restating Research Problems and Research Goals

In Chapter 2, the author performed an extensive survey on the

existing work related to the analysis, detection, and classification of

Android malware to identify the research gaps. This resulted in four thesis

goals discussed below:

Goal 1 outlined the importance of analysing the features extractable

from the manifest file such as permissions and intents as they are widely

used by apps to perform basic operations and can help in understanding

the behaviours of malicious apps. As these features do not need run-time

analysis, the static approach is used for efficiency purpose.

Goal 2 outlines the use of best classifier for achieving the best

accuracy. The selection of the classification algorithm is done after

comparing different algorithms against globally accepted performance

metrics.

137

While highly detailed data tends towards higher accuracy,

excessive or redundant data increases performance costs and decreases

the efficiency of a framework. Thus, we introduced Goal 3, which

influenced a smaller, more concentrated, set of features to work with. This

allowed the author to improve accuracy with less performance sacrifices, a

trade-off issue common when dealing with large datasets.

Lastly, despite of efficient and accurate framework, it is ineffective if

malware can evade analysis or detection. We discovered this to be a

problem with several frameworks, as they were vulnerable to obfuscation

and evasion. Thus, we introduced Goal 4 to develop frameworks that were

resilient to code obfuscation.

6.3 Research Contributions

In the introduction chapter, the author stated the contributions of

this work and the novel research aspect of each contribution. In this

section, we elaborate on the contributions of this work.

6.3.1 Android Malware Detection: PInDroid

In Chapter 4, we proposed PInDroid, a permissions and intents

based methodology to distinguish between malicious and benign apps.

Android security model relies on permission and intent mechanisms for

controlling access to vital hardware and software components. However,

these features were never used jointly to investigate their effectiveness in

the malware detection. This work is the first one that proposes a novel

138

malware detection method based on these two vital security features.

The basic work of investigations on the identified features:

permissions and intents were completed in chapter 3, which resulted in

identification of the usage patterns of permissions and intents by malware

and benign apps. The author’s role in identifying the effective

combinations of permissions and intents and automatically performing

extraction has been instrumental. This resulted in novel, efficient and

accurate permissions and intents based Android malware detection

solution. The resulting model fulfilled the author’s goals of a robust,

efficient, and accurate analysis solution.

6.3.2 Malware Classification using suitable ML Classifier

Different well known classification and clustering algorithms were

investigated for comparing their performance in malware detection. We

found classification algorithms more efficient and useful as compared to

clustering algorithms for malware detection.

Using the author’s work in PInDroid, the author then provided a

novel feature set to feed to six ML classifiers. Performance of classifiers

was then compared in terms of false positive rate, true positive rate,

precision, recall, and accuracy. In order to further optimize the

classification results, different ensemble methods were also applied to

ascertain the margin of performance improvement. It was ascertained

through experiments that the performance of PInDroid can further be

increased with boosting, bagging and blending ensemble methods.

139

6.3.3 Implementation of Methodology through an Algorithm:

AndroPIn

The author also implemented the proposed approach in form of an

algorithm to automatically detect the malware. The algorithm: AndroPIn is

implementable as either a client end or a cloud based solution. The

algorithm finds dangerous permissions and dangerous intents in the

malware app and verifies against the malicious threshold.

6.3.4 Investigation for Detection of Obfuscated and Colluding apps

The last segment of work in this thesis comprises of two studies.

First study investigated the effectiveness of the proposed approach of

PInDroid for detection of obfuscated malicious apps and the second study

explored if the approach can be used for detection of colluding apps. We

investigated the techniques used by apps for possible collusion and found

that permission model and Intent are the basic essence of collusion. This

fact strengthens our approach for possible detection of collusion apps. The

ancillary work shows that the permissions and intents based solution can

be used to detect the colluding apps. Furthermore, the work shows

possible applications for detection of obfuscated malware, which are

difficult to detect with other solutions.

6.4 Future Work

There are many directions to advance the work that has been

presented in this thesis. First of all, as a future work, we aim to validate our

140

PInDroid approach on more malware and benign samples to evaluate its

performance on diversified malware families and benign categories.

The second area for future work is to implement the methodology

for detection of colluding apps. It can be integrated with other state-of-the-

art solutions as discussed in chapter 5 and to validate the integrated

solution on real colluding apps.

Another possible future work could be to determine whether there

are better machine learning methods than the ones used in this approach.

Many available machine learning and deep learning approaches have not

yet been tested for the most appropriate method.

Similarly, multi-class classification would be an interesting area of

work. Applications can be classified into three categories: malware, benign

and greyware thereby giving mobile users more flexibility to draw the

peripheries between the applications.

AndroPIn implementation can be improved for better performance.

More samples need to be tested to validate the algorithm. Malicious

scoring of malware apps is another area which can further improve and

widen the malware detection.

141

6.5 Concluding Remarks

Android, and Android malware are rapidly evolving as of the year

2017. Therefore, it is imperative to continue the research on emerging

malware threats and their mitigation solutions. In this thesis, a

comprehensive survey on the existing work on Android malware detection

and classification is presented and research gaps have been identified.

The culmination of these observations lead to a novel malware detection

approach: PInDroid, which efficiently and accurately detect most of the

malware from permissions and intents analysis. The approach is

implemented as an algorithm: AndroPIn to automatically detect the

malware. The permissions and intents based system has potential to

detect the malicious colluding apps besides the obfuscated malware apps.

142

Bibliography

[1] Wei, Xuetao, L. Gomez, I. Neamtiu, and M.Faloutsos. "Permission

evolution in the android ecosystem." In 28th Computer Security

Applications Conf., pp. 31-40, 2012.

[2] Enck, William, D. Octeau, P. McDaniel, and S.Chaudhuri, "A Study

of Android Application Security," USENIX Security Symposium, pp. 21–

37, 2011.

[3] Seo, Seung-Hyun, A. Gupta, A. M.Sallam, E.Bertino, and K.Yim,

"Detecting mobile malware threats to homeland security through static

analysis," J. Network and Computer Applications, pp. 43-53. 2014.

[4] Felt, A. Porter, K. Greenwood, and D. Wagner, "The effectiveness

of application permissions," In Proc. of the 2nd USENIX conf. on Web

application development, pp. 7-7,2011.

[5] Sarma, Bhaskar Pratim, Ninghui Li, Chris Gates, Rahul Potharaju,

Cristina Nita-Rotaru, and Ian Molloy. "Android permissions: a perspective

combining risks and benefits." In Proceedings of the 17th ACM Symp.

Access Control Models and Tech., pp.13-22, 2012.

[6] Do, Quang, Ben Martini, and Kim-Kwang Raymond Choo.

"Exfiltrating data from Android devices." Computers & Security 48 (2015):

74-91.

143

[7] Tan, Darell JJ, Tong-Wei Chua, and Vrizlynn LL Thing. "Securing

android: a survey, taxonomy, and challenges." ACM Computing Surveys

(CSUR) 47, no. 4 (2015): 58.

[8] Wu, L., Grace, M., Zhou, Y., Wu, C., & Jiang, X., “The impact of

vendor customizations on android security”, In Proc. of ACM conf. on

Computer & communications security, 2014, pp. 623-634.

[9] Krutz, Daniel E., Mehdi Mirakhorli, Samuel A. Malachowsky, Andres

Ruiz, Jacob Peterson, Andrew Filipski, and Jared Smith. "A dataset of

open-source Android applications." In IEEE/ACM 12th Working

Conference on Mining Software Repositories, 2015, pp. 522-525.

[10] Avdiienko, Vitalii, et al. "Mining apps for abnormal usage of sensitive

data." Proc. of the 37th Int. Conf. on Software Engineering-Volume 1.

IEEE Press, 2015.

[11] Maiorca, Davide, et al. "Stealth attacks: An extended insight into the

obfuscation effects on android malware." Computers & Security 51

(2015): 16-31.

[12] Vidas, Timothy, and Nicolas Christin. "Sweetening android lemon

markets: measuring and combating malware in application

marketplaces." Proceedings of the third ACM conference on Data and

application security and privacy. ACM, 2013.

[13] Maggi, Federico, Andrea Valdi, and Stefano Zanero. "AndroTotal: a

flexible, scalable toolbox and service for testing mobile malware

detectors." Proceedings of the Third ACM workshop on Security and

privacy in smartphones & mobile devices. ACM, 2013.

144

[14] Penning, Nicholas, et al. "Mobile malware security challeges and

cloud-based detection." Int. IEEE Conf. on Collaboration Technologies

and Systems, 2014.

[15] Faruki, Parvez, et al. "Android security: a survey of issues, malware

penetration, and defenses." IEEE communications surveys & tutorials 17.2

(2015): 998-1022.

[16] Maier, Dominik, Tilo Müller, and Mykola Protsenko. "Divide-and-

conquer: Why android malware cannot be stopped." Availability, Reliability

and Security (ARES), 2014 Ninth International Conference on. IEEE,

2014.

[17] Sheen, Shina, R. Anitha, and V. Natarajan. "Android based malware

detection using a multifeature collaborative decision fusion

approach." Neurocomputing 151 (2015): 905-912.

[18] Feizollah, Ali, et al. "A review on feature selection in mobile malware

detection." Digital Investigation 13 (2015): 22-37.

[19] Felt, A. Porter, M. Finifter, E. Chin, S. Hanna, and D. Wagner, "A

survey of mobile malware in the wild," In Proc. of the 1st ACM workshop

on Security and privacy in smartphones and mobile devices, pp. 3-14,

2011.

[20] Zhou, Yajin, and X. Jiang, "Dissecting android malware:

Characterization and evolution," In IEEE Symposium on Security and

Privacy, pp. 95-109, 2012.

[21] Spreitzenbarth, Michael, et al. "Mobile-sandbox: having a deeper

look into android applications." Proceedings of the 28th Annual ACM

Symposium on Applied Computing. ACM, 2013.

145

[22] Suarez-Tangil, Guillermo, et al. "Evolution, detection and analysis of

malware for smart devices." IEEE Communications Surveys &

Tutorials 16.2 (2014): 961-987.

[23] Liu, Xing, and Jiqiang Liu. "A two-layered permission-based Android

malware detection scheme." Mobile cloud computing, services, and

engineering (mobilecloud), 2014 2nd ieee international conference on.

IEEE, 2014.

[24] Fedler, Rafael, Julian Schütte, and Marcel Kulicke. "On the

effectiveness of malware protection on android." Fraunhofer AISEC 45

(2013).

[25] Yuan, Zhenlong, et al. "Droid-Sec: deep learning in android malware

detection." ACM SIGCOMM Computer Communication Review. Vol. 44.

No. 4. ACM, 2014.

[26] Benats, G., Bandara, A., Yu, Y., Colin, J. N., & Nuseibeh, B.,

“PrimAndroid: privacy policy modelling and analysis for android

applications.” In IEEE Int. Symp. on Policies for Distributed Systems and

Networks, 2011, pp. 129-132.

[27] Sanz, Borja, et al. "Instance-based anomaly method for android

malware detection." Security and Cryptography (SECRYPT), 2013

International Conference on. IEEE, 2013.

[28] Li, Li, et al. "Potential component leaks in Android apps: An

investigation into a new feature set for malware detection." Software

Quality, Reliability and Security (QRS), 2015 IEEE International

Conference on. IEEE, 2015.

146

[29] M. Zheng, P. P. Lee, and J. C. Lui, “ADAM: an automatic and

extensible platform to stress test android anti-virus system,” in Detection of

Intrusions and Malware & Vulnerability Assessment (DIMVA), 2012, pp.

82–101.

[30] Zonouz, S., Houmansadr, A., Berthier, R., Borisov, N., and Sanders,

W. (2013). Secloud: A cloud-based comprehensive and lightweight

security solution for smartphones. Computers & Security.

[31] Suarez-Tangil, G., Lombardi, F., Tapiador, J. E., and Pietro, R. D.

(2014a). Thwarting obfuscated malware via differential fault analysis. IEEE

Computer, 47(6):24–31.

[32] Suarez-Tangil, G., Tapiador, J. E., Peris, P., and Ribagorda, A.

(2014b). Evolution, detection and analysis of malware for smart devices.

IEEE Communications Surveys & Tutorials, 16(2):961–987.

[33] Sanz, Borja, Igor Santos, Carlos Laorden, Xabier Ugarte-Pedrero,

Pablo Garcia Bringas, and Gonzalo Álvarez. "Puma: Permission usage to

detect malware in android." In International Joint Conference CISIS’12-

ICEUTE´ 12-SOCO´ 12 Special Sessions, pp. 289-298. Springer Berlin

Heidelberg, 2013.

[34] http://developer.android.com/reference/.

[35] Wei, Xuetao, L. Gomez, I. Neamtiu, and M.Faloutsos. "Permission

evolution in the android ecosystem." In 28th Computer Security

Applications Conf., pp. 31-40, 2012.

[36] Timothy Vidas and Nicolas Christin. Evading Android runtime

analysis via sandbox detection. In Proceedings of the 9th ACM

147

symposium on Information, computer and communications security, pp

447–458, ACM, 2014.

[37] Zhang, Yuan, M. Yang, B. Xu, Z. Yang, G.Gu, P.Ning, X. S. Wang,

and B.Zang, "Vetting undesirable behaviors in android apps with

permission use analysis," In Proc. of the 2013 ACM SIGSAC conference

on Computer & communications security, pp. 611-622, 2013.

[38] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D.Wagner,

“Android permissions:user attention, comprehension, and behavior," in

Proc. of the 8th ACM Symp. on usable Privacy and Security, 2012, pp.

3:1-3:14.

[39] A. P. Felt, K. Greenwood, and D. Wagner, “The effectiveness of

application permissions," in Proc. of the 2nd USENIX conf. on Web

application development, 2011, pp. 7-14.

[40] B. P. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru, and I.

Molloy, “Android permissions: a perspective combining risks and benefits,"

in Proc. of 17th ACM symp. on Access Control Models and Technologies,

2012, pp. 13-22.

[41] Wijesekera, Primal, Arjun Baokar, Ashkan Hosseini, Serge Egelman,

David Wagner, and Konstantin Beznosov. "Android Permissions

Remystified: A Field Study on Contextual Integrity." In USENIX Security

Symposium, pp. 499-514. 2015.

[42] Benton, Kevin, L. Jean Camp, and Vaibhav Garg. "Studying the

effectiveness of android application permissions requests." IEEE Int. Conf.

on IEEE Pervasive Computing and Communications Workshops, 2013.

148

[43] Armando, A., Carbone, R., Costa, G., & Merlo, A., “Android

permissions unleashed”. In 28th IEEE Computer Security Foundations

Symposium, 2015, pp. 320-333.

[44] Peiravian, Naser, and Xingquan Zhu. "Machine Learning for

Android Malware Detection Using Permission and API Calls," In

International Conf. on Tools with Artificial Intelligence (ICTAI), pp. 300-

305. IEEE, 2013.

[45] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu,

“Droidmat: Android malware detection through manifest and API calls

tracing,” in Proc. of Asia Joint Conf. on Information Security, 2012, pp. 62–

69.

[46] Shekhar, Shashi, Michael Dietz, and Dan S. Wallach. "AdSplit:

Separating Smartphone Advertising from Applications." In USENIX

Security Symposium, pp. 553-567. 2012.

[47] Gibler, Clint, Jonathan Crussell, Jeremy Erickson, and Hao Chen,

“AndroidLeaks: automatically detecting potential privacy leaks in android

applications on a large scale”, Springer Berlin Heidelberg, 2012.

[48] Feizollah A, Anuar NB, Salleh R, Suarez-Tangil G, Furnell S.

“AndroDialysis: analysis of android intent effectiveness in malware

detection”, computers & security. 2017, 31;65:121-34.

[49] Yang, Zhemin, et al. "Appintent: Analyzing sensitive data

transmission in android for privacy leakage detection." Proceedings of the

2013 ACM SIGSAC conference on Computer & communications security.

ACM, 2013.

149

[50] Ye H, Cheng S, Zhang L, Jiang F. “Droidfuzzer: Fuzzing the android

apps with intent-filter tag”, In Proc. of Int. ACM Conf. on Advances in

Mobile Computing & Multimedia, 2013, p. 68.

[51] Sasnauskas, R., & Regehr, “Intent fuzzer: crafting intents of death”.

In Proc. Int. ACM Workshop on Dynamic Analysis and Software and

System Performance Testing, Debugging, and Analytics, pp. 1-5.

[52] Yang, Z., Yang, M., Zhang, Y., Gu, G., Ning, P., & Wang, X.,

“Appintent: Analyzing sensitive data transmission in android for privacy

leakage detection”, In Proc. of ACM SIGSAC conf. on Computer &

communications security pp. 1043-1054.

[53] V. Rastogi, Y. Chen, and W. Enck, “Appsplayground: automatic

security analysis of smartphone applications,” in Proc. 3rd ACM

conference on Data and application security and privacy. ACM, 2013, pp.

209–220.

[54] T. Vidas, N. Christin, and L. Cranor, “Curbing Android permission

creep," in Proc.of the Web 2.0 Security and Privacy, May 2011.

[55] Loorak, M. H., Fong, P. W., & Carpendale, “Papilio: Visualizing

android application permissions”. In Computer Graphics Forum Vol. 33,

No. 3, pp. 391-400, 2014.

[56] S. Zonouz, A. Houmansadr, R. Berthier, N. Borisov, and W.

Sanders, “Secloud: A cloud-based comprehensive and lightweight

security solution for smartphones,” Computers & Security, 2013.

[57] Sato, Ryo, Daiki Chiba, and Shigeki Goto. "Detecting Android

malware by analyzing manifest files." Proceedings of the Asia-Pacific

Advanced Network36 (2013): 23-31.

150

[58] Rastogi, Vaibhav, Yan Chen, and William Enck. "AppsPlayground:

automatic security analysis of smartphone applications." Proceedings of

the third ACM conference on Data and application security and privacy.

ACM, 2013.

[59] Zhou, Wu, Yajin Zhou, Xuxian Jiang, and Peng Ning. "Detecting

repackaged smartphone applications in third-party android

marketplaces." In Proceedings of the second ACM conference on Data

and Application Security and Privacy, pp. 317-326. ACM, 2012.

[60] Faruki, Parvez, Vijay Ganmoor, Vijay Laxmi, Manoj Singh Gaur,

and Ammar Bharmal. "AndroSimilar: robust statistical feature signature

for Android malware detection." In Proceedings of the 6th International

Conference on Security of Information and Networks, pp. 152-159. ACM,

2013.

[61] Gibler, Clint, Ryan Stevens, Jonathan Crussell, Hao Chen, Hui

Zang, and Heesook Choi. "Adrob: Examining the landscape and impact

of android application plagiarism." In Proceeding of the 11th annual

international conference on Mobile systems, applications, and services,

pp. 431-444. ACM, 2013.

[62] Enck, William, Peter Gilbert, Byung-Gon Chun, Landon P. Cox,

Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth. "TaintDroid: an

information flow tracking system for real-time privacy monitoring on

smartphones."Communications of the ACM 57, no. 3 (2014): 99-106.

[63] Yang, Chao, et al. "Droidminer: Automated mining and

characterization of fine-grained malicious behaviors in android

151

applications." Computer Security-ESORICS 2014. Springer International

Publishing, 2014. pp.163-182.

[64] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and J. B. Alis,

“Dendroid: A text mining approach to analyzing and classifying code

structures in android malware families,” Expert Systems with

Applications, 2013, in Press.

[65] Feng, Yu, S.Anand, I.Dillig, and A. Aiken, "Apposcopy: Semantics-

Based Detection of Android Malware," In submission.

[66] Zhang, Yuan, Min Yang, Bingquan Xu, Zhemin Yang, Guofei Gu,

Peng Ning, X. Sean Wang, and Binyu Zang. "Vetting undesirable

behaviors in android apps with permission use analysis." In Proceedings

of the 2013 ACM SIGSAC conference on Computer & communications

security, pp. 611-622. ACM, 2013.

[67] S. Rosen, Z. Qian, and Z. M. Mao, “Appprofiler: a flexible method of

exposing privacy-related behavior in android applications to end users,”

in Proc. 3rd ACM conference on Data and application security and

privacy. ACM, 2013, pp. 221–232.

[68] Octeau, Damien, P. McDaniel, S.Jha, A.Bartel, E.Bodden, J. Klein,

and Y. L.Traon, "Effective inter-component communication mapping in

android with epicc: An essential step towards holistic security analysis,"

In Proc. of the 22nd USENIX Security Symposium, 2013.

[69] M. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic detection of

capability leaks in stock android smartphones,” in Proc. 19th Annu.

Symp. on Network and Distributed System Security, 2012.

152

[70] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “Pios: Detecting

privacy leaks in ios applications,” in Proc. Network and Distributed

System Security Symp., 2011.

[71] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker:

scalable and accurate zero-day android malware detection,” in Proc. 10th

int. conf. on Mobile systems, applications, and services. ACM, 2012, pp.

281–294.

[72] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid:

behaviorbased malware detection system for android,” in 1st ACM

workshop on Security and privacy in smartphones and mobile devices.

ACM, 2011, pp. 15–26.

[73] Rastogi, Vaibhav, Y. Chen, and X. Jiang, "Droidchameleon:

evaluating android anti-malware against transformation attacks," In 8th

ACM SIGSAC symp.on Information, computer and communications

security, pp. 329-334, 2013.

[74] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss,

““andromaly”: a behavioral malware detection framework for android

devices,” J. of Intelligent Information Systems, vol. 38, pp. 161–190,

2012.

[75] M. Backes, S. Gerling, C. Hammer, M. Maffei, and P. Styp-

Rekowsky, “Appguard —-real–time policy enforcement for thirdparty

applications,” Universitats- und Landesbibliothek, Postfach 151141,

66041 Saarbracken, Tech. Rep., 2012.

[76] G. Dini, F. Martinelli, A. Saracino, and D. Sgandurra, “Madam: a

multi-level anomaly detector for android malware,” in Proc. 6thint. conf. on

153

Mathematical Methods, Models and Architectures for Computer Network

Security: computer network security, ser. MMMACNS’ 12. Springer-

Verlag, 2012, pp. 240–253.

[77] L. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the os

and dalvik semantic views for dynamic android malware analysis,” in

Proc. 21st USENIX conf. on Security symp. USENIX Association, 2012,

pp. 29–29.

[78] Au, Kathy Wain Yee, Yi Fan Zhou, Zhen Huang, and David Lie.

"Pscout: analyzing the android permission specification." In Proceedings

of the 2012 ACM conference on Computer and communications security,

pp. 217-228. ACM, 2012.

[79] Bugiel, Sven, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer,

and Ahmad-Reza Sadeghi. "Xmandroid: A new android evolution to

mitigate privilege escalation attacks." Technische Universität Darmstadt,

Technical Report TR-2011-04 (2011).

[80] M. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic detection of

capability leaks in stock android smartphones,” in Proc. 19th Annu.

Symp. on Network and Distributed System Security, 2012.

[81] Enck, William, Machigar Ongtang, and Patrick McDaniel. "On

lightweight mobile phone application certification." In Proceedings of the

16th ACM conference on Computer and communications security, pp.

235-245. ACM, 2009.

[82] Yuan Zhang, Min Yang, Bingquan Xu, Zhemin Yang, Guofei Gu,

Peng Ning, X Sean Wang and Binyu Zang. Vetting undesirable behaviors

154

in Android apps with permission use analysis. Computer &

communications security, pp 611–622, ACM, 2013.

[83] Jeon, Jinseong, Kristopher K. Micinski, Jeffrey A. Vaughan, Ari

Fogel, Nikhilesh Reddy, Jeffrey S. Foster, and Todd Millstein. "Dr.

android and mr. hide: fine-grained permissions in android applications."

In Proceedings of the second ACM workshop on Security and privacy in

smartphones and mobile devices, pp. 3-14. ACM, 2012.

[84] Chin, Erika, A. Porter, Felt, K. Greenwood, and D. Wagner,

"Analyzing inter-application communication in Android," In Proc. of the

9th international conf. on Mobile systems, applications, and services, pp.

239-252, 2011.

[85] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically vetting

android apps for component hi jacking vulnerabilities,” in Proc. 2012 ACM

conf. on Computer and communications security. ACM, 2012, pp. 229–

240.

[86] Octeau, Damien, P. McDaniel, S.Jha, A.Bartel, E.Bodden, J. Klein,

and Y. L.Traon, "Effective inter-component communication mapping in

android with epicc: An essential step towards holistic security analysis,"

In Proc. of the 22nd USENIX Security Symp., 2013.

[87] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid:

behaviorbased malware detection system for android,” in 1st ACM

workshop on Security and privacy in smartphones and mobile devices.

ACM, 2011, pp. 15–26.

155

[88] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos,

“Paranoid android: versatile protection for smartphones,” in Proc. 26th

Annu.Computer Security Applications Conf., 2010, pp. 347–356.

[89] Marforio, Claudio, Hubert Ritzdorf, Aurélien Francillon, and Srdjan

Capkun. "Analysis of the communication between colluding applications

on modern smartphones." In Proceedings of the 28th Annual Computer

Security Applications Conference, pp. 51-60. ACM, 2012.

[90] Marforio, Claudio, and Aurélien Francillon. Application collusion

attack on the permission-based security model and its implications for

modern smartphone systems. Department of Computer Science, ETH

Zurich, 2011.

[91] Portokalidis G., Homburg P., Anagnostakis K., Bos H. “Paranoid

android: versatile protection for smartphones,” In: Proc. of 26th Annual

Computer Security Applications Conference, pp. 347-356, 2010.

[92] Chun B.G., Ihm S., Maniatis P., Naik M., Patti A., “Clonecloud:

elastic execution between mobile device and cloud,” In: Proc. of the 6th

conf. on Computer systems, pp. 301-314, 2011.

[93] Kabakus Abdullah Talha, Dogru Ibrahim Alper and Cetin Aydin, “APK

Auditor: Permission-based Android malware detection system”, Digital

Investigations, Elsevier Journal on, PP0 (13): pp 1–14, Elsevier, 2015.

[94] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang and David Lie.

Pscout: analyzing the Android permission specification. Proceedings of

conference on Computer and communications security, pp 217–228, ACM,

2012.

156

[95] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee and Guofei Jiang.

Chex: statically vetting Android apps for component hijacking

vulnerabilities. Proceedings of conference on Computer and

communications security, pp 229–240, ACM, 2012.

[96] Davi, Dmitrienko, Sadeghi, and Winandy] Lucas Davi, Alexandra

Dmitrienko, Ahmad-Reza Sadeghi, and Marcel Winandy. Privilege

escalation attacks on Android. In Information Security, pp 346–360,

Springer, 2011.

[97] Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei Gilham,

Nguyen Nguyen and Martin C Rinard. Information Flow Analysis of

Android Applications in DroidSafe. pp 1–16, NDSS, 2015.

[98] Faruki, Bharmal, Laxmi, Ganmoor, Gaur, Conti, and Rajarajan]

Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Vijay Ganmoor, Manoj Gaur,

Mauro Conti and Raj Muttukrishnan. Android security: A survey of issues,

malware penetration and defenses. Communications Surveys & Tutorials,

170 (2): pp 998–1022, IEEE, 2014.

[99] William Enck, Machigar Ongtang and Patrick McDaniel. On

lightweight mobile phone application certification. Computer and

communications security, pp 235–245, ACM, 2009.

[100] Tenenboim-Chekina, L., Barad, O., Shabtai, A., Mimran, D., Rokach,

L., Shapira, and Elovici, Y. (2013). Detecting application update attack on

mobile devices through network featur. In 2013 IEEE Conference on

Computer Communications Workshops, pp. 91-92.

157

[101] Wei, X., Gomez, L., Neamtiu, I., and Faloutsos, M. (2012).

Permission evolution in the android ecosystem. In Proc. of the 28th ACM

Annual Computer Security Applications Conference, pages 31-40.

[102] L.-K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing os and

dalvik semantic views for dynamic android malware analysis,” in Proc. of

USENIX Security Symposium, 2012.

[103] Octeau, Damien, et al. "Effective inter-component communication

mapping in android with epicc: An essential step towards holistic security

analysis." (2013).

[104] Henry B Mann and Donald R Whitney, “On a test of whether one of

two random variables is stochastically larger than the other”, the annals of

mathematical statistics, pp 50-60, 1947.

[105] Jacob Cohen. A power primer. Psychological bulletin, 1120 (1): pp

155, 1992.

[106] Zhang, Fangfang, et al. "ViewDroid: Towards obfuscation-resilient

mobile application repackaging detection." Proc. of ACM conf. on Security

and privacy in wireless & mobile networks. ACM, 2014.

[107] Tam, Kimberly, Salahuddin J. Khan, Aristide Fattori, and Lorenzo

Cavallaro. "CopperDroid: Automatic Reconstruction of Android Malware

Behaviors." In NDSS. 2015.

[108] Geneiatakis, Dimitris, Igor Nai Fovino, Ioannis Kounelis, and

Paquale Stirparo. "A Permission verification approach for android mobile

applications." Computers & Security 49 (2015): 192-205.

158

[109] Bagheri, H., Sadeghi, A., Garcia, J., & Malek, S. (2015). Covert:

Compositional analysis of android inter-app permission leakage. IEEE

transactions on Software Engineering, 41(9), 866-886.

[110] Klieber, W., Flynn, L., Bhosale, A., Jia, L., & Bauer, L., “ Android

taint flow analysis for app sets”, In Proc. of the 3rd ACM Int. Workshop on

the State of the Art in Java Program Analysis, pp. 1-6.

[111] Chan, P. P., Hui, L. C., & Yiu, S. M., “Droidchecker: analyzing

android applications for capability leak”, In Proc. of the 5th ACM conf. on

Security and Privacy in Wireless and Mobile Networks, pp. 125-136.

[112] Wei, F., Roy, S., & Ou, X., “Amandroid: A precise and general inter -

component data flow analysis framework for security vetting of android

apps”, In Proc. of ACM SIGSAC Conference on Computer and

Communications Security, pp. 1329-1341.

[113] Jo, M. J., & Shin, J. S., “Study on Security Vulnerabilities of Implicit

Intents in Android”, Journal of the Korea Institute of Information Security

and Cryptology, 24(6), 2014, 1175-1184.

[114] Yang T, Yang Y, Qian K, Lo DC, Qian Y, Tao L., “Automated

detection and analysis for android ransomware”, In 12th Int. Conf. on

Embedded Software and Systems, 2015, pp. 1338-1343.

[115] Gordon MI, Kim D, Perkins JH, Gilham L, Nguyen N, Rinard MC.

“Information Flow Analysis of Android Applications in DroidSafe”, InNDSS

2015.

[116] Li L, Bartel A, Bissyandé TF, Klein J, Le Traon Y., “Apkcombiner:

Combining multiple android apps to support inter-app analysis”, In IFIP Int.

Information Security Conf., 2015, pp. 513-527.

159

[117] Zheng, Min, Mingshen Sun, and John CS Lui. "Droid analytics: a

signature based analytic system to collect, extract, analyze and associate

android malware", 12th IEEE Int. Conf. on Trust, Security and Privacy in

Computing and Communications (TrustCom), 2013.

[118] Aung, Zarni, and Win Zaw. "Permission-based android malware

detection." International Journal of Scientific & Technology Research 2.3

(2013): 228-234.

[119] Elish, Karim O., et al. "Profiling user-trigger dependence for Android

malware detection." Computers & Security 49 (2015): 255-273.

[120] Sanz, Borja, et al. "Puma: Permission usage to detect malware in

android." International Joint Conference CISIS’12-ICEUTE 12-SOCO 12

Special Sessions. Springer Berlin Heidelberg, 2013.

[121] Sanz, Borja, et al. "MAMA: manifest analysis for malware detection

in android." Cybernetics and Systems 44.6-7 (2013): 469-488.

[122] Zhang, Yuan, et al. "Vetting undesirable behaviors in android apps

with permission use analysis." Proceedings of the 2013 ACM SIGSAC

conference on Computer & communications security. ACM, 2013.

[123] Samra, Aiman A. Abu, Kangbin Yim, and Osama A. Ghanem.

"Analysis of clustering technique in android malware detection." Innovative

Mobile and Internet Services in Ubiquitous Computing (IMIS), 2013

Seventh International Conference on. IEEE, 2013.

[124] Huang, Chun-Ying, Yi-Ting Tsai, and Chung-Han Hsu. "Performance

evaluation on permission-based detection for android malware." Advances

in Intelligent Systems and Applications-Volume 2. Springer, Berlin,

Heidelberg, 2013. 111-120.

160

[125] Cen, Lei, et al. "A probabilistic discriminative model for android

malware detection with decompiled source code." IEEE Transactions on

Dependable and Secure Computing 12.4 (2015): 400-412.

 2014.

[126] Li, Li, et al. "Iccta: Detecting inter-component privacy leaks in android

apps." Proceedings of the 37th International Conference on Software

Engineering-Volume 1. IEEE Press, 2015.

[127] Liang, Shuang, and Xiaojiang Du. "Permission-combination-based

scheme for android mobile malware detection." Communications (ICC),

2014 IEEE International Conference on. IEEE, 2014.

[128] Zhongyang, Yibing, et al. "DroidAlarm: an all-sided static analysis

tool for Android privilege-escalation malware." Proceedings of the 8th

ACM SIGSAC symposium on Information, computer and communications

security. ACM, 2013.

[129] Yerima, Suleiman Y., Sakir Sezer, and Igor Muttik. "High accuracy

android malware detection using ensemble learning." IET Information

Security 9.6 (2015): 313-320.

[130] Sarwar, Golam, et al. "On the Effectiveness of Dynamic Taint

Analysis for Protecting against Private Information Leaks on Android-

based Devices." SECRYPT. 2013.

[131] Ping, Xiong, et al. "Android malware detection with contrasting

permission patterns." China Communications 11.8 (2014): 1-14.

[132] Xiaoyan, Zhao, Fang Juan, and Wang Xiujuan. "Android malware

detection based on permissions." (2014): 2-063.

161

[133] Sanz, Borja, et al. "Mads: malicious android applications detection

through string analysis." International Conference on Network and System

Security. Springer, Berlin, Heidelberg, 2013.

[134] Wang, Wei, et al. "Exploring permission-induced risk in android

applications for malicious application detection." IEEE Transactions on

Information Forensics and Security 9.11 (2014): 1869-1882.

[135] Ham, Hyo-Sik, and Mi-Jung Choi. "Analysis of android malware

detection performance using machine learning classifiers." ICT

Convergence (ICTC), 2013 International Conference on. IEEE, 2013.

[136] Chuang, H. Y., & Wang, S. D., “Machine learning based hybrid

behavior models for Android malware analysis”. In IEEE Int. Conf. on

Software Quality, Reliability and Security (QRS), 2015, pp. 201-206.

[137] Mas' ud, Mohd Zaki, et al. "Analysis of features selection and

machine learning classifier in android malware detection." Information

Science and Applications (ICISA), 2014 International Conference

[138] Allix, Kevin, et al. “Machine Learning-Based Malware Detection for

Android Applications: History Matters!.” University of Luxembourg, SnT,

2014.

[139] Yerima, Suleiman Y., Sakir Sezer, and Igor Muttik. "Android malware

detection using parallel machine learning classifiers." Next Generation

Mobile Apps, Services and Technologies (NGMAST), 2014 Eighth

International Conference on. IEEE, 2014.

[140] Narudin, Fairuz Amalina, et al. "Evaluation of machine learning

classifiers for mobile malware detection." Soft Comput. 20.1 (2016): 343-

357.

162

[141] Canfora, Gerardo, Francesco Mercaldo, and Corrado Aaron

Visaggio. "A classifier of malicious android applications." 8th Int. IEEE

Conf. on Availability, Reliability and Security, 2013.

[142] Yerima, S. Y., Sezer, S., McWilliams, G., and Muttik, I. (2013). A

new android malware detection approach using bayesian classification. In

2013 IEEE 27th Int. Conf. on Advanced Information Networking and

Applications, pp.121-128.

[143] Kang, Jang, Mohaisen, and Kim] Hyunjae Kang, Jae-wook Jang,

Aziz Mohaisen, and Huy Kang Kim. Detecting and classifying Android

malware using static analysis along with creator information. International

Journal of Distributed Sensor Networks, pp 1–9, 2015.

[144] Samra, A.A.A., K. Yim ; Ghanem and O.A, “Analysis of Clustering

Technique in Android Malware Detection,” Innovative Mobile and Internet

Services in Ubiquitous Computing (IMIS), 2013, pp. 729 – 733.

[145] Glodek, W. and Harang, R., “Rapid Permissions-Based Detection

and Analysis of Mobile Malware Using Random Decision Forests,”

Military Communications Conference, MILCOM, pp. 980 – 985.

[146] Canfora, G., Mercaldo, F. and Visaggio, C.A. “A Classifier of

Malicious Android Applications,” Availability, Reliability and Security

(ARES), 2013.

[147] Suarez-Tangil, Guillermo, et al. "Dendroid: A text mining approach

to analyzing and classifying code structures in android malware

families." Expert Systems with Applications 41.4 (2014): 1104-1117.

163

[148] Yerima SY, Sezer S, McWilliams G, Muttik I. “A new android malware

detection approach using bayesian classification”, 27 th IEEE Int. Conf. on

In Advanced Information Networking and Applications, 2013, pp. 121-128.

[149] Feldman, Stephen, Dillon Stadther, and Bing Wang. "Manilyzer:

automated android malware detection through manifest analysis." Mobile

Ad Hoc and Sensor Systems (MASS), 2014 IEEE 11th International

Conference on. IEEE, 2014.

[150] Mohammad Nauman, Sohail Khan, and Xinwen Zhang. Apex:

Extending android permission model and enforcement with user-defined

runtime constraints. In Proc. of the 5th ACM Symposium on Information,

Computer and Communications Security, ASIACCS ’10.

[151] Gartner says worldwide sales of mobile phones of first quarter of

2017." http://www.gartner.com/newsroom/id/3725117, November 2017.

[152] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji, \A

methodology for empirical analysis of permission-based security models

and its application to android," in Proc. of the 17th ACM conference on

Computer and communications security, pp. 73-84, 2010.

[153] Peiravian, N., & Zhu, X., “Machine learning for android malware

detection using permission and api calls”. In 25th IEEE Int. Conf. on Tools

with Artificial Intelligence, 2013, pp. 300-305.

[154] Arp D, Spreitzenbarth M, Hubner M, Gascon H, Rieck K, Siemens

CE. DREBIN: Effective and Explainable Detection of Android Malware in

Your Pocket. InNDSS 2014 Feb 23.

[155] Dong-Jie Wu, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee and

Kuo-Ping Wu, “DroidMat: Android Malware Detection through Manifest

164

and API Calls Tracing,” Information Security (Asia JCIS), 2012, pp. 62 –

69.

[156] Martina Lindorfer, Matthias Neugschwandtner and Christian Platzer.

MARVIN: Efficient and Comprehensive Mobile App Classification Through

Static and Dynamic Analysis. Computer Software and Applications, 39th

Annual Conference, pp 422–433, IEEE, 2015.

[157] Dietterich, Thomas G. "Ensemble methods i n machine learning." In

Multiple classifier systems, pp. 1-15. Springer Berlin Heidelberg, 2000.

[158] Drucker, Harris, Corinna Cortes, Lawrence D. Jackel, Yann LeCun,

and Vladimir Vapnik. "Boosting and other methods." Neural Computation

6, no. 6 (1994): 1289-1301.

[159] Bennett, Kristin P., Ayhan Demiriz, and Richard Maclin. "Exploiting

unlabeled data in ensemble methods." In Proceedings of the eighth ACM

SIGKDD international conference on Knowledge discovery and data

mining, pp. 289-296. ACM, 2002.

[160] Thomas G Dietterich. Ensemble methods in machine learning. In

Multiple classifier systems, pp 1–15, Springer, 2000.

[161] Chen, Sen, et al. "Stormdroid: A streaminglized machine learning-

based system for detecting android malware." Proceedings of the 11th

ACM on Asia Conference on Computer and Communications Security.

ACM, 2016.

[162] Karim O Elish, Danfeng Yao and Barbara G Ryder, (2015) On the

Need of Precise Inter-App ICC Classification for Detecting Android

Malware Collusions. Proc. Of IEEE Mobile Security Technologies.

165

[163] Claudio Marforio, Hubert Ritzdorf, Aurelien Francillon, Srdjan

Capkun (2012) Analysis of the communication between colluding

applications on modern smartphones. Proc. of the 28th Annual Computer

Security Applications Conference. pp. 51-60.

[164] Erika Chin, Adrienne Porter Felt, Kate Greenwood, David Wagner

(2011) Analyzing inter-application communication in Android. Proc. of the

9th ACM conf. on Mobile systems, applications and services. pp.239-252.

[165] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer,

Ahmad-Reza Sadeghi, Bhargava Shastry (2012) Towards Taming

Privilege-Escalation Attacks on Android. NDSS

[166] Fauzia Idrees, Muttukrishnan Rajarajan (2014) Investigating the

android intents and permissions for malware detection. Proc. of IEEE

Wireless and Mobile Computing, Networking and Communications. pp.

354-358.

[167] Adrienne Porter Felt, Helen J Wang, Alexander Moshchuk, Steven

Hanna, Erika Chin (2011) Permission Re-Delegation: Attacks and

Defenses. USENIX Security Symposium.

[168] Fauzia Idrees, Muttukrishnan Rajarajantitle, Mauro Conti, Thomas M.

Chen and Rahulamathavan Yogachandran (2017) PIndroid: A novel

Android malware detection system using ensemble learning methods.

Computers & Security. vol. 68, Elsevier, pp.36-46.

[169] Hamid Bagheri, Alireza Sadeghi, Joshua Garcia, Sam Malek (2015)

Covert: Compositional analysis of android inter-app permission leakage.

IEEE Transactions on Software Engineering no. 9, pp. 866-886.

166

[170] Wade Gasior, Li Yang (2011) Network covert channels on the

Android platform. Proc.of the Seventh Annual ACM Workshop on Cyber

Security and Information Intelligence Research, pp. 61-67.

[171] Davi, L., Dmitrienko, A., Sadeghi, A. R., Winandy, M. (2010) Privilege

escalation attacks on android. In Int. Conf. on Information Security. pp.

346-360.

[172] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer,

Ahmad-Reza Sadeghi (2011) Xmandroid: A new android evolution to

mitigate privilege escalation attacks. Technical Report:Technische

University at Darmstadt.

[173] Atif M Memon, Ali Anwar (2015) Colluding Apps: Tomorrow's Mobile

Malware Threat. IEEE Security & Privacy, no. 6, pp. 77-81.

[174] Shweta Bhandari, Vijay Laxmi, Akka Zemmari, Manoj Singh Gaur

(2016) Intersection automata based model for Android application

collusion. Advanced Information Networking and Applications. pp. 901-

908.

[175] Irina Asavoaeca, Blasco Jorge, Thomas Chen, Harsha Kumara , Igor

Muttik, Hoang Nga Nguyen, Markus Roggenbach, Siraj Shaikh (2016)

Towards Automated Android App Collusion Detection. arXiv preprint

arXiv:1603.02308.

[176] Ravitch Tristan, Creswick E Rogan, Tomb Aaron, Foltzer Adam,

Elliott Trevor, Casburn Ledah (2014) Multi-app security analysis with fuse:

Statically detecting android app collusion. Proc. of the 4th Program

Protection and Reverse Engineering Workshop. pp. 4.

167

[177] W. , P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, A. N.

Sheth (2010) TaintDroid: an information flow tracking system for realtime

privacy monitoring on smartphones. Proc. of the 9th USENIX Conf on

Operating Systems Design and Implementation. (OSDI'10), pp. 1-6.

[178] William Enck, Machigar Ongtang, Patrick McDaniel (2009)

Understanding Android Security. IEEE Security and Privacy. 7:50-57.

[179] David Kantola, Erika Chin,Warren He, DavidWagner (2012)

Reducing attack surfaces for intra-application communication in Android.

Proc. of second ACM workshop on Security and privacy in smartphones

and mobile devices. pp. 69-80.

[180] Amiya Maji, Fahad Arshad, Saurabh Bagchi, Jan Rellermeyer (2012)

An empirical study of the robustness of inter-component communication in

Android. Int. Conf. on Dependable Systems and Networks. pp. 1-12.

[181] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, Guofei Jiang (2012)

Chex: statically vetting Android apps for component hijacking

vulnerabilities. Proc. of conf. on Computer and communications security.

pp. 229-240.

[182] Andrea Avancini, Mariano Ceccato (2013) Security testing of the

communication among Android applications. Proc. of 8th IEEE

International Workshop on Automation of Software Test. pp. 57-63.

[183] Michael I Gordon, Deokhwan Kim, Je

H Perkins, Limei Gilham, Nguyen Nguyen, Martin C Rinard (2015)

Information Flow Analysis of Android Applications in DroidSafe. NDSS. pp.

1-16.

168

[184] Daniele Gallingani, Rigel Gjomemo, VN Venkatakrishnan, Stefano

Zanero, “Practical Exploit Generation for Intent Message Vulnerabilities in

Android.” Proc. of the 5th ACM Conf. on Data and application security,

2015, pp. 155-157.

[185] Xu K, Li Y, Deng RH., “ICCDetector: ICC-based malware detection

on Android”, IEEE Transactions on Information Forensics and Security,

2016, 11(6):1252-64.

[186] Martina Lindorfer, Matthias Neugschwandtner and Christian Platzer ,

“MARVIN:Efficient and Comprehensive Mobile App Classification Through

Static and Dynamic Analysis”, Computer Software and Applications Conf.,

pp. 422-433, IEEE, 2015.

[187] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon and

Konrad Rieck, “DREBIN: Effective and Explainable Detection of Android

Malware in Your Pocket”, NDSS, 2014.

[188] Dong-Jie Wu, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee, and Kuo-

Ping Wu, “Droidmat: Android malware detection through manifest and api

calls tracing”, Information Security (Asia JCIS), pp. 62-69. IEEE, 2012.

[189] McLaughlin, Jesus M., BooJoong K., Suleiman Y., Paul M., Sakir S.,

Yeganeh S., "Deep Android Malware Detection", Proc. Seventh Conf. Data

and Application Security and Privacy, pp. 301-308. ACM, 2017.

