
              

City, University of London Institutional Repository

Citation: Abro, F. I. (2018). Investigating Android permissions and intents for malware 
detection. (Unpublished Doctoral thesis, City, Universtiy of London) 

This is the accepted version of the paper. 

This version of the publication may differ from the final published 
version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/19741/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 
University of London available to a wider audience. Copyright and Moral 
Rights remain with the author(s) and/or copyright holders. URLs from 
City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 
educational, or not-for-profit purposes without prior permission or 
charge. Provided that the authors, title and full bibliographic details are 
credited, a hyperlink and/or URL is given for the original metadata page 
and the content is not changed in any way. 

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


 
 

 
 

 
 
 

 
 

 

Investigating Android Permissions 

and Intents for Malware Detection  

 

 

Fauzia Idrees Abro 
 
 

A dissertation submitted in partial fulfilment 

of the requirements for the degree of 

Doctor of Philosophy 

of the 

City, University of London 

 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 

School of Mathematics, Computer Science and Engineering 
 
 
 

2018



2 
 

 
 

 

Declaration 

 

No portion of the work contained in this document has been submitted in 

support of an application for a degree or qualification of this or any other 

university or other institution of learning. All verbatim extracts have been 

distinguished by quotation marks, and all sources of information have 

been specifically acknowledged. 

 

Signed: Fauzia Idrees Abro 

 

Date: 23 February 2018 

 

 

 

 

 

 

 



3 
 

 

 

 

Abstract 

 

Today’s smart phones are used for wider range of activities. This 

extended range of functionalities has also seen the infi ltration of  new 

security threats. Android has been the favorite target of cyber criminals. 

The malicious parties are using highly stealthy techniques to perform the 

targeted operations, which are hard to detect by the conventional 

signature and behaviour based approaches. Additionally, the limited 

resources of mobile device are inadequate to perform the extensive 

malware detection tasks. Impulsively emerging Android malware merit a 

robust and effective malware detection solution. 

In this thesis, we present the PIndroid ― a novel Permissions and 

Intents based framework for identifying Android malware apps. To the 

best of author’s knowledge, PIndroid is the first solution that uses a 

combination of permissions and intents supplemented with ensemble 

methods for malware detection. It overcomes the drawbacks of some of 

the existing malware detection methods. Our goal is to provide mobile 

users with an effective malware detection and prevention solution keeping 

in view the limited resources of mobile devices and versatility of  malware 



4 
 

behavior. Our detection engine classifies the apps against certain 

distinguishing combinations of permissions and intents. We conducted a 

comparative study of different machine learning algorithms against several 

performance measures to demonstrate their relative advantages. The 

proposed approach, when applied to 1,745 real world applications, 

provides more than 99% accuracy (which is best reported to date). 

Empirical results suggest that the proposed framework is effective in 

detection of malware apps including the obfuscated ones. 

In this thesis, we also present AndroPIn—an Android based 

malware detection algorithm using Permissions and Intents. It is designed 

with the methodology proposed in PInDroid. AndroPIn overcomes the 

limitation of stealthy techniques used by malware by exploiting the usage 

pattern of permissions and intents. These features, which play a major role 

in sharing user data and device resources cannot be obfuscated or 

altered. These vital features are well suited for resource constrained 

smartphones. Experimental evaluation on a corpus of real-world malware 

and benign apps demonstrate that the proposed algorithm can effectively 

detect malicious apps and is resilient to common obfuscations methods.  

Besides PInDroid and AndroPIn, this thesis consists of three 

additional studies, which supplement the proposed methodology. First 

study investigates if there is any correlation between permissions and 

intents which can be exploited to detect malware apps. For this, the 

statistical significance test is applied to investigate the correlation between 

permissions and intents. We found statistical evidence of a strong 
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correlation between permissions and intents which could be exploited to 

detect malware applications.  

The second study is conducted to investigate if the performance of 

classifiers can further be improved with ensemble learning methods. We 

applied different ensemble methods such as bagging, boosting and 

stacking. The experiments with ensemble methods yielded much improved 

results.  

The third study is related to investigating if the permissions and 

intents based system can be used to detect the ever challenging colluding 

apps. Application collusion is an emerging threat to Android based 

devices. We discuss the current state of research on app collusion and 

open challenges to the detection of colluding apps. We compare existing 

approaches and present an integrated approach that can be used to 

detect the malicious app collusion.  
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Chapter 1 

Introduction 

1.1 Introduction 

This chapter presents malware threats to Android system, available 

malware detection solutions, their limitations and research gaps that this 

thesis aims to fill up with the novel contributions.  Author’s investigations of 

the problem, contributions, published work, methodology and 

implementation are elaborated in subsequent chapters. The thesis 

statement can be deduced as follows: 

 

Permissions and intents used by Android applications can be used to efficiently 

and accurately distinguish malware whilst remaining resilient to code 

obfuscation.                     
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1.2  Overview 

In the past few years, smartphones have evolved from simple 

mobile phones into sophisticated computers. They are much more 

portable and consume less energy in comparison to personal computers. 

This fact extends their usage in business and home related activities such 

as surfing the Internet, Emails, SMS and MMS messages, online 

transactions and Internet banking, etc. All of these features make the 

smartphone a useful tool in our daily lives, but at the same time they 

render it more vulnerable to attacks by malicious applications  [1]. Given 

that most users store sensitive information on their mobile phones, such 

as phone numbers, SMS messages, emails, pictures and videos, smart 

phones are a very appealing target for attackers and malware developers. 

Android OS was introduced by Google in 2008 for smartphones and 

by the fourth quarter of 2010, Android became the market leader by taking 

over global market share of nearly 85%. In May 2012, the number of 

available apps in the Google Play Store amounted to 500,000 and 

exceeded 1.4 Million apps in the third quarter of 2014 and increased to 3 

Million by March 2017 as shown in recently published statistics by 

Statista1.  

 

1https://www.statista.com/statistics/266210/number-of-available-applications-in-

the-google-play-store/ 
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Android is a Linux kernel based operating system and its 

applications are written in Java language by using built-in APIs. Its security 

framework is comprised of application sandboxing, application signing, 

cryptographic APIs, secure inter-process communication using intents and 

permission model [3]. Permission model is a main security mechanism to 

control the misuse of vital hardware and software resources [4, 5]. To 

protect the system and users, Android requires apps to request permission 

before the apps can use certain system data and features. The system 

grants the permission automatically, or it may ask the user to approve the 

request if the permissions are required to access the sensitive areas. 

However, its effectiveness relies on the user’s response and other built-in 

features, mainly the intents. Intent is a messaging object used to  request 

an action from another app component. It facilitates the inter-process 

communication between components of the same or different applications.  

Android being the market leader is the major target of Smartphone 

malware attacks [6]. The Android based mobile devices have been under 

constant attacks due to their ever increasing popularity and effortless 

development, improvising, re-packaging and publishing of apps [7, 8 and 

9]. Malware targeting the Android platform has increased caustically over 

the last two years [10]. Situation is getting worse with the provision of 

installing third party applications and the increasing number of seemingly 

benign apps with malign activities. Android security framework has not 

proven effective in stopping the malware proliferation [11].  

Existing end-point protections such as Anti-Virus software are 

unable to completely eliminate the malware threats [12, 13 and 14]. This is 
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due to the fact that most of the solutions are signature based and need 

regular updates to protect against increasing number of malware variants 

and they lack obfuscation resilience [15, 16, 17 and 18]. There is a need 

for innovative and resource rich detection solutions to overcome the 

challenges of limited resources of mobile devices, outdated signatures of 

AV solutions and code obfuscation techniques used by the malware. 

A lot of research had been done on permission based malware 

detection; however, intents were less explored till start of this thesis. 

Moreover, the major challenge to mobile malware detection is its limited 

resources that are characterized by short battery life, low memory and less 

processing power [19, 20 and 21]. 

We propose a novel methodology: PInDroid to fill up the research 

gap in the Android malware detection. Our goal is to provide mobile users 

with an effective malware detection method keeping in view the limited 

resources of mobile devices and versatility of malware behaviour.   

We conducted a comparative study of six machine learning 

algorithms against different performance measures to select the best 

classifier for malware classification. Decision Table came up as a robust 

and most efficient classifier in our extensive validation experiments. 

Performance of the proposed approach is verified by applying the 

technique to the real world malicious and benign samples.  

Different ensemble methods such as bagging, boosting and 

stacking are also investigated to ascertain if they can further improve the 
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detection results. A significant improvement is attainable with application 

of ensemble methods.  

The proposed methodology is also implemented as a malware 

detection algorithm: AndroPIn, which has been tested on different real 

malware samples. The performance of AndroPIn is comparable to existing 

state-of-the-art solutions.   

Additionally, permissions and intents are also investigated for 

detection of malicious colluding and obfuscated apps respectively. 

Colluding apps are those apps which cooperate using covert or overt 

communication means to perform a joint malicious action which they are 

not able to perform separately. Code Obfuscation is the process of 

modifying the code of app so that it is understandable. Malware writers 

deliberately obfuscate code to conceal its purpose or its logic in order to 

prevent someone reading the source code. While the process may modify 

actual method instructions or metadata, it does not alter the output of the 

program. The results of the studies on detection of colluding apps and 

obfuscated apps are presented in Chapters 6 and 7 respectively.  

1.3 Research Questions 

The thesis poses the following research questions: 

Q1: Is a set of permissions able to distinguish malware from benign 

applications? (Chapter 3) 

Q2: Can the occurrences of intents be used for discriminating a 

malware from a trusted application? (Chapter 3) 
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Q3: Is there any combinations of permissions and intents frequently 

used by malware which can classify malware and benign 

applications? (Chapter 3 and 4) 

Q6: Can obfuscated malware apps be detected with the approach? 

(Chapter 3) 

Q4: Can we ascertain which machine learning algorithm is best for 

mobile malware detection? (Chapter 4) 

Q5: Can ensemble methods be applied to optimise the classifiers 

output? (Chapter 4) 

Q7:  Can we extend our approach to detect the ever increasing 

threat of colluding applications? (Chapter 5) 

1.4 Contributions 

 The main contributions of this thesis are as follows: 

 Permissions and Intents amalgamation. This is the first work 

which is combining two vital security mechanisms of Android OS - 

permissions and intents - for malware detection.  

 

 Investigation of inter-dependence between permissions and 

intents.  We accomplish an extensive evaluation of permissions 

and intents used by Android apps to understand their inter 

dependence and show how this interdependence could be used to 

stop the malware syndrome. 
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 Machine learning algorithms comparison. We conducted a 

comparative study of several machine learning algorithms to 

understand which classifier performs best to detect malware.  

 Ensemble methods for performance improvements. We exploit 

different ensemble methods to ascertain if their application can 

further improve the detection accuracy. 

 Detection of colluding applications. We investigate the 

mechanisms used by the colluding apps and explore the possibility 

of extending our approach to detect the colluding apps. 

 Detection of Obfuscated applications. We investigate the 

obfuscation used by malicious apps and applied our approach to 

detect the obfuscated malicious apps. 

 Developing the malware detection algorithm. We develop an 

algorithm to detect the malware using the permissions and intents 

of target apps. 

1.5 Thesis Outline 

The rest of the thesis is structured as follows: 

Chapter 2 presents the introduction to Android system, applications 

taxonomies and architecture. It also presents an overview of malware, its 

types, evolution, propagation methods and characteristics and the 

malware detection approaches. A detailed survey on existing state of the 
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art techniques used for malware detection is also delineated. Some of the 

most cited works are compared with our proposed approach and the 

research gap is identified. 

Chapter 3 presents the two vital features of Android: Permissions 

and Intents which have been used in our proposed methodology for the 

detection of malware apps. The statistical correlation approach is also 

described which is used to test if there is any correlation between 

permissions and intents. Our categorization of permissions and intent into 

dangerous and normal types is also explained. Mostly used permissions 

and intents by malicious and benign apps are discussed. It also describes 

the outcomes of study carried out to investigate the distinguishing usage 

pattern of permissions and intents by malicious and benign apps and if 

these patterns can be exploited for malware detection. A malware 

detection algorithm based on permissions and intents: AndroPIn is also 

presented. Experimental results demonstrate that the AndroPIn can be 

used for malware detection. 

Chapter 4 presents the proposed methodology of PInDroid. 

Machine Learning (ML) algorithms used to classify the malware apps are 

discussed. Comparison of ML algorithms against different performance 

metrics is described systematically. To validate the proposed approach, 

different experiments are carried out which are discussed with details of 

experimental setup and configurations. Results are discussed in terms of 

various performance measures such as True Positive Rate (TPR), False 

Positive Rate (FPR), accuracy and F-measure.  
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Different ensemble methods such as boosting, bagging and 

stacking are also presented that are used to optimize the classification 

results.  To validate the proposed approach, different experiments were 

carried out which are discussed with details of experimental setup and 

configurations. Results are discussed in terms of accuracy.  

Chapter 5 presents a research study on colluding apps. It 

investigates the attacking behaviour of app collusion and main features 

that facilitate the collusion. It also explores the possibility of applying the 

PInDroid methodology for detection of malicious colluding apps.   

Chapter 6 concludes this thesis with a summary of its key 

achievements, challenges and open ended research questions which may 

be relevant to future research studies. 
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Chapter 2 

A Survey on Android and Malware 

Detection Systems 

2.1 Overview 

A malware is (short for “malicious software”) is considered an 

annoying or harmful type of software intended to secretly access a device 

without the user's knowledge [22].  Android has become the most widely 

used OS for smartphones, therefore is target of growing attacks from 

cyber criminals [23]. The vulnerabilities of the operating system and 

applications are being exploited by the hackers to penetrate into the 

systems, steal user data and gain financial benefits [24, 25, and 26]. 

Android malware is evolving in a rapid manner. According to 

McAfee Security Company, its database contains more than 100 million 

samples as Android malware has increased multifold over the years [27]. 

Detection of new malware apps has become quite challenging due to new 
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stealth techniques and encapsulation methods being used by malware. 

Existing Android antivirus solutions are less effective in detecting and 

combating highly sophisticated malware [28].  

The objective of this chapter is to survey the state-of-the-art of 

malware detection approaches in order to identify specific factors affecting 

the performance of the malware detection systems, identify the state of the 

art analysis methods used to reduce the false positive rate and further 

investigate how these approaches can be improved on. The rest of this 

chapter is organized as follows: In Section 2.2, Android architecture, 

application framework and Android security architecture are discussed. 

Section 2.3 details different types of malware, the classifications of 

malware and Section 2.4  describes the malware analysis techniques, 

detection systems and identifies their strengths and limitations as well as 

most recent potential solutions to these limitations. Finally, Section 2.5 to 

2.7 focuses specifically on feature based detection systems and details the 

analytical techniques used in such systems. 

2.2 Android Operating System 

Android platform was developed by Android Inc. in 2003 for the 

devices with limited resources (processing power, memory and storage 

space). It is based on a modified version of the Linux kernel version 2.6.25 

[33]. Android architecture and its main components are discussed in the 

subsequent paragraphs. 
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2.2.1 Architecture 

The Android architecture shown in Figure 2.1 is composed of 

several software stacks which that can be divided into three main groups: 

Linux Kernel/ Operating System (OS), Middleware and Applications. 

Green components are written in native code (C/C++), while blue items 

are Java components interpreted and executed by the Dalvik Virtual 

Machine. The red components belong to the Linux [2]. 

 
Figure 2.1: Android platform architecture  

                        Source: http://elinux.org/Android_Architecture 

2.2.1.1 Linux Kernel 

Initial versions of Android OS were built on the Linux 2.6 kernel1 

with some architectural changes which include wake locks, a memory 

management system and the Binder IPC driver etc. Version 1.0 and above  

1Computing Handbook, Third Edition: Computer Science and Software Engineering 
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are based on the Linux 3.3 kernel. Linux kernel is the basic layer of 

Android which contains all the hardware drivers. It manages and 

processes requests for hardware resources.  

2.2.1.2 Middleware 

The middleware comprises of native libraries and Android Runtime.  

 Libraries  

Android Libraries are written in C/C++ programming 

language and can be used through the Application framework. 

These are external libraries which are modified to make them 

compatible with ARM hardware and Android’s implementation.   

 Android Runtime 

Android Runtime includes Dalvik Virtual Machine (DVM) and 

core java libraries [34]. DVM is used to execute applications written 

in Java language.  

o Dalvik Virtual Machine 

   DVM runs multiple VMs at the same time ensuring isolation, 

security and threading support without overloading the processor. 

DVM executes files in .dex fi le format which is an optimized java 

code for the low resource systems and are created from .class file 

during compilation [34]. 
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 Core Java Libraries 

 These are implementation of general purpose APIs for use by 

the applications executed by the DVM.  

 

2.2.1.3 Application framework 

The android applications are developed by using some basic tools 

which manage the primary functions of device, for example, calls 

reception, text messaging and monitoring of battery usage etc. Some of 

the important blocks of Application framework are described below:-  

 Activity Manager 

 The activity Manager keeps the track of all active 

applications of the device and also inhibits the background 

processes in case of memory shortage. It also identifies those 

applications which do not respond to an input event for more than 

five seconds.  

 Content Providers 

Content Providers are responsible for data sharing among 

different applications [2]. For example, photos and contact list can 

be accessed by multiple applications therefore these are stored in 

content provider.  

 

 Telephony Manager 

 Telephony manager manages the phone calls and also 

enables access to parameters like set’s (IMEI).  



33 
 

 Location Manager 

The location Manager is responsible for providing the 

location services which are used by different applications to 

determine the geographical location by using embedded GPS or 

cell tower communication. 

 Resource Manager 

Resource Manager manages the resources which are used 

by different applications.  

2.2.1.4 Applications 

 Applications are the top most layer responsible for the interaction 

between user and the device. Mostly devices are pre-installed with some  

applications by the manufacturer to perform basic daily tasks like browser, 

e-mail, phone call, calculator, calendar etc) however users can install any 

app on their device from official or unofficial markets.  

Android applications are written in the Java programming language. 

Android uses the Android Software Development Kit (SDK) and Java's 

programming environments, such as Eclipse or Netbeans to compile Java 

code and create an Android Package (APK) file. Applications are 

published with a unique Linux user ID and each application is granted its 

own VM to isolate it from the system resources and other applications.  

2.2.2 Components of Application 

Android applications come as .apk file which is signed ZIP files that  



34 
 

contain the app’s byte code along with all its data, resources, libraries and 

a manifest file [35]. The APK files are installed on the device using the 

Android Debug Bridge tool (adb) or by downloading them from Android's 

Market. An APK file consists of three main elements which are 

Manifest.xml, classes.dex and resources as shown in Figure 2.2. 

 

Figure 2.2: Android APK file 

 

 

 

 

 

 

 

Figure 2.3: Android Permissions screen 
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There are four protection levels assigned to the permissions 

depending on the capabilities and possible security risks. These 

groups are Signature or system, signature, dangerous and normal 

permissions. Android has an access system to check against these 

levels to ascertain that if the app should be granted the permission 

or not [36]. 

 Classes .Dex 

This file is the compiled Java source code. It contains Dex byte 

code for the application and runs on the DVM [34]. 

 Resources 

Resources include the libraries, files and pictures which are 

used by the application. 

2.2 Android Security Model 

Android is an open source operating system and securing an open 

source system requires robust and flexible security framework. Android’s 

security is dependent upon the user’s understanding of applications and 

system. Android security is mainly focused on the protection of user data 

and system resources as well as the application isolation. To achieve 

these goals, it relies on Linux kernel, application sandboxing, secure IPC, 

application signing and permissions [34]. Some of the key security 

features of Android security framework are discussed in subsequent sub 

paragraphs. 
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2.3.1 System and Kernel Level Security 

 Android provides conventional security guarantees of Linux kernel 

with an addition of secure IPC for maintaining the isolation between 

applications [34].  

2.3.2 The Application Sandbox 

 Android uses Linux user-based protection for identification and 

isolation of applications. Android creates a kernel level sandbox for each 

application where each application has its own user id and it runs in its 

own process. Applications interaction with system resources and other 

applications is controlled with permissions. Application sandbox is equally 

effective in exercising same controls on the system applications and native 

code as it lies in the kernel level. The operating system libraries, 

application framework, their runtime, and applications run within the 

application sandbox [8, 34, 36]. 

2.3.3 File system Permissions 

These permissions ensure privacy of user’s information (files). In 

case of Android, files of one application are not shared with other 

applications unless the developer ensures such a provision [37].  

2.3.4 Security-Enhanced Linux 

Android uses Security-Enhanced Linux (SELinux) for access 

control. SELinux is a Linux kernel security module that provides a 
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mechanism for supporting access control security policies including 

Mandatory Access Control (MAC) system [34]. It provides a mechanism to 

enforce the separation of information based on confidentiality and integrity 

requirements, which allows threats of tampering, and bypassing of 

application security mechanisms, to be addressed and enables the 

confinement of damage that can be caused by malicious or flawed 

applications. It includes a set of sample security policy configuration files 

designed to meet common, general-purpose security goals1. 

2.3.5 Android Permission Model  

The Android applications have limited access to system resources. 

The permission model manages the access to system resources and 

restricts them by linking the access with permissions  [38]. During the 

application installation phase, the permissions are requested to access the 

resources as a whole, thereby, li nking the application installation with the 

grant of permissions [39]. Hence, denial is not an option for the intended 

user. Once granted, until recently, the permissions were for the entire 

duration of the installed application. However, in the latest versions of 

Android, the user can scroll and select/de-select the permissions. In such 

cases, some features of the app will not work due to non-availability of 

required permissions.  Applications can also set their own permissions for 

other applications [40, 41]. The permissions are defined (how and who) in 

a protection level attribute which communicates with the system for the 

purpose [42, 43].  

1https://en.wikipedia.org/wiki/Security-Enhanced_Linux 
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2.3.6 Protected APIs 

The resources which are only accessible by the operating system 

only are called protected APIs [44]. The examples are Camera, GPS, 

telephony, Bluetooth, SMS/MMS and network/data. In order to use these 

resources, it is essential that the application defines them in its manifest.  

2.3.7 Cost Sensitive APIs 

APIs which may involve cost in their usage are categorized as cost 

sensitive APIs which include telephony, SMS/MMS, Data/Network and 

NFC [45]. These APIs are included in the OS controlled list of protected 

APIs for which an exclusive approval from the device’s user is required [5].  

2.3.8 Inter Components Communication (ICC) 

Inter-Component Communication Android application consists of 

components. There are four kinds of components, activities, services, 

broadcasts and providers [46]. Android platform provides a secure ICC 

that is similar to IPC to the Unix system. ICC is provided by the binder 

mechanism which is in the middleware layer of Android. The binder is a 

remote procedure call that is from a custom Linux driver (Android 

Developers). ICC is achieved by intents. Intent is a message that shows 

the target with some data optionally [47]. It can be used in explicit 

communication if it identifies the name of the receiver, or used in the 

implicit communication that let the receiver see if it can access this intent 

or not. 
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Inter process communication takes place via traditional UNIX-type 

mechanism within the ambit of Linux permissions. Components of Android 

IPC are described below: 

      Binder  

        It is a Remote Procedure Call (RPC) mechanism to handle in-

process and cross-process calls. 

     Services 

Services can provide interfaces directly accessible using binder. 

      Intents 

 Intent is a communication mechanism which tells the system 

about the intention to do some action [48, 49]. For example, if a 

website is to be opened, the ‘intent’  is sent to the system open the 

corresponding URL. The system would hand over the intent to the 

browser to carry out the action required by the intent.  

     Content Providers 

   A Content Provider facilitates to use the device’s data [50] 

such as the contact list or music preferences.  An application can 

access the data that is provided by the other applications through 

Content Provider, and it can define its own Content Providers to 

share its own data as well [51, 52]. 
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2.3.9 Application Signing 

Android requires that all apps be signed by the developers with 

a digital certificate before installing on app store. If the app is not digitally 

signed then its installation is blocked by the Google Play store and installer 

package. Application signing is used to identify the developer of app and 

to update the application without complicated procedures and further 

permissions [53]. It also facilitates the inter-app communication through 

well-defined IPC [54]. APK files contain the developer signature which is 

verified by the Package Manager [55]. Android does not carry out CA 

verification of application certificates. The app signing key creates a digital 

certificate which contains the public key of a public/private key pair, as well 

as some other metadata identifying the owner of the key. The owner of the 

certificate holds the corresponding private key. When a developer sign an 

APK, the signing tool attaches the public-key certificate to it and 

associates the APK to the developer and its corresponding private key. 

This helps Android ensure that future app are legitimate and from the 

creator of app. Every app must use the same certificate throughout its 

lifespan in order for users to be able to install new versions as updates to 

the app. Applications can share user ID if they are signed with the same 

certificate [56]. 

2.3.10   Sensitive User Data 

Android has some APIs that may provide access to user data 

of protected APIs [34]. Sensitive user data is classified into three groups 
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namely personal information, sensitive input devices and device metadata 

as shown in Figure 2.4. 

 

Figure 2. 4: Types of sensitive user data 

Source: https://source.android.com/devices/tech/security/ 

 Personal Information  

  The content providers that contain personal information like 

contacts and calendar etc are controlled with clearly defined 

permissions users can get idea of the type of data which can 

accessed by the  application. [34, 6]. Any application can access 

these resources if user grants the controlled permissions to the 

requesting app. By default, any application which collects personal 

information will restrict the data to the specific application; however, it 

can share the data with other applications using IPC and permissions 

mechanisms [57]. 

 Sensitive Data Input Devices  

 Android devices have sensitive data input sensors that allow 

many applications to interact with the external medium, such as 

GPS, microphone and camera. In case a third-party application 
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requires accesses to these resources, it will need to request user to 

grant the permissions [5, 58].  

 Device Metadata  

 Android restricts access to sensitive data but it may share 

certain important information like user preferences or the manner in 

which user uses his device. The applications can only access the key 

resources with appropriate permissions. In case, permission is not 

granted, the installation will not proceed further [5, 6]. 

2.3.11    Publishing and Distribution of Apps 

Publishing makes the Android apps ready for distribution to the 

users. Publishing involves two main tasks: 

 Preparation of the application for release 

 A release version of app is buildup which can be 

downloaded and installed on the Android devices. 

 Release of application to users  

Application release involves the publicity, sell, and 

distribution of the release version of application to users  [3]. Apps 

are released through app marketplaces, such as Google Play. 

However, apps can also be downloaded from some websites or 

through email. Android application is released on Google Play by 
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configuring its options, uploading the assets and finally publishing 

the application [5]. 

2.4 Mobile Malware 

Mobile Malware is malicious and an unwanted piece of software 

targeting mobile phones by damaging the device and loss or leakage of 

confidential data. First mobile malware surfaced in 2004 against Symbian 

operating system. First malware targeting Android was reported in 2010 

and by 2011, Android became the most favorite OS of malware 

encountering attacks every few weeks by new malware families [7]. Four 

types of the most common malware affecting mobile devices are 

expander, worm, Trojan and spyware. Expanders target mobiles for 

additional phone billing and profit. Worm endlessly reproduce itself and 

spread to other devices. Mobile worms may be transmitted via text 

messages SMS or MMS and typically do not require user interaction for 

execution [59]. Trojan horse always requires user interaction to be 

activated. This kind of virus is usually inserted into seemingly attractive 

and non-malicious executable files or applications that are downloaded to 

the device and executed by the user [60]. Once activated, the malware 

can cause serious damage by infecting and deactivating other applications 

or the phone itself, rendering it paralyzed after a certain period of time or a 

certain number of operations. Spyware poses a threat to mobile devices 

by collecting, using, and spreading a user's personal or sensitive 

information without the user's consent or knowledge.  
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2.4.1 Types of Android Malware 

Mobile malware targeting Android smartphone is significant and 

growing at an alarming rate. This section briefly describes the common 

types of malicious programs targeting mobile phones. There are four 

broad categories1 of mobile malware in addition to backdoor and worm 

malware. Backdoor helps other malware to enter the system without user 

knowledge by evading the system protections [61]. Worms make their 

copies and spread those copies through network or removable media. 

(i) Trojans and Viruses 

Viruses, worms, Trojans, and bots are a ll malware2. Trojans are 

those malware which look like some legitimate application but have 

hidden harmful malicious code which when executed inflicts serious 

damage to the device [62].  Trojanized apps are the biggest threat to 

the android devices as they can control the browser and steal 

account details including the bank login information. Trojans are 

viruses, which can be installed in different ways and can inflict 

damages ranging from simply annoying to highly-destructive and 

irreparable. Mobile viruses can root the device and gain unauthorized 

access to sensitive files and memory. 

(ii) Spyware and Adware 

 Spyware are those malware which secretly steal user’s data  

1https://www.veracode.com/blog/2013/10/common-mobile-malware-types-        
cybersecurity-101 
2 https://www.cisco.com/c/en/us/about/security-center/virus-differences.html 
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and shares with third parties for various purposes including the future 

attacks. In some cases these may be advertisers or marketing firms 

[63], which is why spyware is sometimes referred to as “adware”. 

Adware are those applications which are using ad libraries. They 

gather the user’s data to show relevant ads to the users for 

marketing purpose. Ad libraries cause privacy leaks and can frustrate 

the user by showing unwanted image or notifications repeatedly on 

the screen [64]. Spyware and Adware are typically installed without 

user consent by disguising itself as a legitimate app or by infecting its 

payload on a legitimate app.  

(iii) Phishing Apps 

Mobile phishing apps use same conventional web phishing 

techniques to infect the mobile devices. There are mobile phishing 

websites which look harmless but they covertly steal user’s 

credentials. The smaller screen of mobile devices is making 

malicious phishing techniques easier to hide from users. Some 

phishing schemes use Trojanized mobile apps, disguising their 

malicious action as a system update, marketing offer or game.  

(iv) Botnets 

 A bot is a type of malware that allows an attacker to take control 

over an affected mobile device. Bots are usually part of a network of 

infected mobile phones, known as a “botnet”, which is typically made 

up of victim mobile phones that stretch across the globe. They allow 

hackers to take control of many mobile phones at a time, and turn 
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them into "zombie" phones, which operate as part of a powerful 

"botnet" to spread viruses, generate spam, and commit other types of 

online crime and fraud. Botnets infect the device by accessing the 

device’s resources and data; helping botnet masters to control the 

device. They exploit the system vulnerabilities and un-patched 

devices. They keep spreading over other devices by sending text 

messages or emails to the contacts of the infected device. Hidden 

processes can secretly run executable or contact bot masters for 

new instructions without user’s knowledge. Future botnet are 

envisaged to have more serious damages and can completely hijack 

and control infected devices. 

2.4.2 Malware Propagation 

Malware use different sophisticated methods to spread over 

mobile devices [65]. Some of the widely used malware propagation 

methods are: 

(i) Infected websites 

         Cybercriminals design malicious websites that exploit system 

vulnerabilities to spread the malware easily [66]. Mobile devices are 

infected when their users access such websites from the device.  

 

(ii) Third party app markets 

Third-party app stores have loose security controls over the 

applications developed and uploaded by unknown parties [67].  
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Malicious developers can upload Trojanized apps which can be 

downloaded by user, if the app has some appealing functionality. 

Third party stores also distribute the repackaged apps which are 

some popular apps installed with some malicious code, repackaged 

and distributed. 

(iii) Spam Emails and Botnets 

Propagating a malware by spam email is simple and effective 

propagation method. Attackers may send emails to the victims which 

appear to come from trusted sources such as the user’s bank, 

Amazon, Paypal or from own contacts. They contain links to some 

malicious website, compelling them to change their password and 

then sending the login information to a cybercriminal, or they may 

have infected attachments that immediately begin collecting data on 

their own once opened. Bots also propagate malware by sending text 

messages or e-mails to the contacts of infected user with a malicious 

link.  

(iv) Worms 

Mobile worms are similar to viruses in that they replicate 

themselves and can cause the damage. Unlike viruses, worms are 

standalone software and do not require an infected file or human 

help to propagate. They propagate over other devices through 

different exploits and system vulnerabilities. 
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(v) Onscreen Adware 

Some attractive ads are run on user’s screen as a sidebar with 

some game or other app, which when clicked by the user lands him 

on some malicious website. 

(vi) Dynamic Payload 

Hiding some malicious code in the APK resources file and 

executing it with Dex Class Loader API after installing it with the main 

application. 

(vii) App Updates 

Malicious code is hidden in updates which if installed by the 

user can infect the device. 

2.5 Malware Detection Systems 

Smartphone security and malware detection is an emerging 

research field where topics of publications are scattered within this 

domain. In this section, we present different most cited works on Android 

malware detection. We present related state of the art research studies, 

and systems developed by different researchers in Table 2.1.    

2.5.1 Malware Analysis 

 A number of studies focus on analyzing Android’s security 

mechanisms. Felt et al. [4] analysed the real mobile malware and carried 

out a ccomprehensive survey of behaviour of 46 malware samples related 
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to three smartphone platforms (Android, iOS and Symbian) emerged 

between 2009 and 2011. In a similar type of study, Zhou et al. [7] covers 

1260 Android malware samples distributed among 49 different malware 

families. Their findings confirm the increase in sophistication and 

obfuscation by the malware. Some researchers [59, 60, and 61] have 

proposed to rely on code clone detection techniques to identify similarity in 

repackaged and piggybacked apps. The piggybacked apps are those 

benign apps which are unpacked by malware writers and inserted with 

some malicious code then repackaged and distributed for free.  A 

significant amount of research has been conducted into privacy leaks and 

ad libraries [62, 63, 64 65, 66, 67, 68, 69, 70]. Most of the proposed 

approaches are based on permission usage and other security risks, such 

as the potential to load and execute arbitrary byte code through the ad 

interface.  

Due to known limitations of signature based methods, behaviour 

analysis has gained attention from anti-malware research community. One 

of such work is Risk Ranker [71] which targets zero-day malware samples. 

It examines the apps for presence of dangerous behaviours like using root 

exploits and SMS sending and classifies them according to the associated 

risk levels. Crowdroid [72] is also behaviour based approach which 

observes the run-time system calls to generate app profile and applies 

machine learning algorithms to distinguish between the malware and 

benign apps. Droidchamleon [73] evaluated the performance of ten 

commercial mobile anti-malware products against the common 

obfuscation techniques. Andromaly [74] used different network statistics 



50 
 

for detecting deviations in application’s network behaviour. AppGuard [75] 

facilitates the enforcement of user-customizable security policies on 

untrusted Android apps. MADAM [76] proposed the analysis of kernel level 

features (CPU usage, system calls, memory usage etc) and user level 

features (key strokes, called numbers, SMS etc) to detect malware. 

Droidscope [77] provides sandboxed monitoring of app features at 

hardware, OS, and Dalvik Virtual Machine levels. PScout [78] proposd 

permission based behaviour analysis of malicious apps. Xmandroid [79] 

dynamically analysed the transitive permission usage to detect covert 

channels. Woodpecker [80] combined static and dynamic analysis to 

identify explicit and implicit leakage. 

A considerable effort has been focussed on understanding the 

Android permission model as well as using it for the malware detection. 

Kirin [81] is more towards blocking the installation of apps that request 

dangerous combination of permissions, while Sarma et al. [82] assessed 

the permissions usage by the apps to evaluate the level of associated 

risks and [83] used the requested permissions to rebuild the malicious 

behaviours of apps to categorize them according to their security 

perceptive. 

 

Another Android based security research track is towards the Inter-

Component Communication (ICC) mechanism. Erika et al. [84] 

investigated the inter-application communication to verify the possible 

attacks and exploits of interacting components.  Their tool ComDroid could 

be used by application developers to detect the application communication 
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vulnerabilities. Long et al. [85] studied the component hijacking 

vulnerability of Android apps by inspecting the data flow activities and 

developed a static analysing tool CHEX which detects the component 

hijacking vulnerability. A similar tool EPICC was devised by Damien [39] to 

detect the ICC vulnerabilities, while [86] worked to prevent confused 

deputy and collusion attacks. 

2.5.2   State of the Art approaches for Malware Detection  

Some of the most cited works are highlighted in Table 2.1 along 

with the methodologies, advantages / disadvantages and years of 

publication. Most of the existing approaches are based on analysis of 

permissions, APIs or system calls. Permissions have been widely 

analyzed by the researchers, but intents were relatively untouched till the 

start of this work in 2013. Permissions and intents are either analyzed 

separately or combined with randomly selected features such as API calls, 

network statistics and memory usage etc.  

Summarizing, there is no such a study which had investigated 

the correlation between permissions and intents. Our work is the first 

which investigates the inter-dependence of permissions and intents and 

how this correlation could be exploited for detecting the stealthy malicious 

activities. Our approach exploits the inherent inter-correlation and inter-

dependence of these two mechanisms. Our approach benefits in terms of 

accuracy and efficiency by relying on low-dimensional and most relevant 

set of features. This work fills up the gap in the Android malware research.  
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The closest latest works are Marvin, Drebin and Droidmat since 

these approaches are using permissions and intents in addition to many 

other features like API calls, network statistics, components etc. However, 

there is no clear rational or study which uses intent exclusively as a 

feature for malware detection. Drebin and DroidMat use same feature set: 

Permissions, API calls, components, IPC, intent messages related to 

activate components only whilst Marvin uses permissions, API calls, 

dynamic loaded codes and intents related to broadcast receivers only.  
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Table 2.1 Overview of existing work 

S No Reference Year Methodology Contributions  

1.  AndroDialysis[48] 2017 Intents analysis to investigate their effectiveness to 

detect malware 

Validation of intent as a decisive feature for malware 

detection 

2.  Deep Android [189] 2017 It uses deep convolutional neural network (CNN).  

Malware classification with static analysis of the raw 

opcode sequence from a disassembled program 

Applications need to be disassembled for analysis 

3.  Stormdroid [161] 2016 Analysing static features (permissions, API calls), 

sequences and dynamic behaviours using ML 

techniques 

It requires both static and dynamic analyses and root  

access for run time process analysis 

4.  ICCDetector [185] 2016 Analysis of intents to detect the Inter component  

communication vulnerabilities 

Focuses only to find out communication vulnerabilities 

5.  APK Auditor[93] 2015 Permission-based malware detection using static 

analysis 

Analysis is done on central server. Client needs an 

internet connection with the server for the malware 

analysis and detection 

6.  CopperDroid [107] 2015 It carries out VMI-based dynamic analysis to 

reconstruct the behaviours of malware.  

Needs root access to monitor the system calls 

7.  TaintDroid[62] 2014 Dynamic taint tracking of API calls.  This can handle only  privacy violations  

8.  DroidMiner[63] 

 

2014 Detection by generating                                       

Programming logics based behaviours of malicious 

apps 

Non résilient to code transformation techniques 
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9.  DenDroid [64]  

 

2014 Text mining and  information retrieval based 

classification  

System is unable to handle Code obfuscation 

10.   Apposcopy [65] 

 

2014 Semantics-Based Detection  Signature based approach thus detection scope limited to 

certain known malware. 

11.   AndroSimilar 

[60] 

2014 Signatures based AV solution to detect similar Android 

applications 

Detection of repackaged applications only. 

12.   AdRob[61] 2013 Permissions analysis Study on impact of Android Application Plagiarism 

13.   VetDroid[66] 2013  

Permission Analysis 

High computation cost and complex design 

14.   AppProfiler[67] 

 

2013 Static and dynamic analyses of API calls and 

permissions. 

Can detect privacy leaks only. 

15.   AppPlayground 

[53] 

2013 Dynamic analysis of system calls, API calls and taint 

tracing.  

Root access required 

16.   Secloud[56] 2013 A cloud based system offering different detection 

techniques: SYS call monitoring, AV scanning and  file 

integrity check  

Root access required 

17.   Epicc[68] 

 

2013 Static  analysis of ICC ,APIs and Intent 

 

Limited to ICC vulnerabilities 

18.   DroidChameleon 

 [73] 

 

2013 Different code transformation techniques implemented 

to evaluate the performance of ten anti-malware 

products for their resilience against malware 

transformations 

Scope of work is to evaluate the anti-malware products 

and not the malware detection. 
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19.   Andromaly[74] 

 

2013 

 

Behaviour monitoring in terms of CPU usage, battery  

consumption and number of sent packets on WIFI.   

Analysis is done on self-made malware apps only as they 

couldn’t find any real world malware samples. 

20.   DroidMOSS [59] 2012 Detection of repackaged applications with fuzzy 

Hashing technique.  

Repackaged applications can only be detected 

21.   MADAM 

[76] 

 

2012 Detection with System calls and permissions  Limited dataset. In total 60 apps monitored (10 malicious 

and 50 benign) 

22.   AppGuard 

[75] 

2012 Permission misuse analysis No detection of Malware 

23.   DroidScope 

[77] 

2012  Semantics based detection  Root access required 

24.   RiskRanker 

[71] 

2012 Analysis of root exploits, permissions, API calls, crypto, 

dynamic code, IPC. 

 

Root-exploit detection scheme depends on signatures,  

which implies that it can detect only known exploits and 

may also miss encrypted or obfuscated exploits.  

25.   PScout[78] 2012 Permissions analysis  

26.   Dr. Android and Mr. 

Hide[83] 

2012 Permissions analysis  

27.   AdSplit[46] 2012 Permissions analysis Separating smartphone advertising from applications 

28.   AndroidLeaks 

[47] 

2012  Privacy leaks only 

29.   Woodpecker [69] 2012 Uses CFG and permission analysis  Complex design 
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30.   RobotDroid[70] 2012 API calls Root access required 

31.   PiOS [70] 2011 Uses CFG  Privacy leaks only 

32.   Xmandroid[80] 2011 ICC analysis  

33.   Crowdroid [87] 2011 Monitors SYS calls, list of running applications and the 

device information.  

Root access required  

 

34.   Paranoid android[88] 

 

2010 Dynamic analysis of API calls and Permissions. Root access required 

35.   Kirin [81] 2009 

 

Detection by analysing certain combinations of 

permissions and API calls.  

Detects privacy leaks only. 
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Chapter 3 

Investigating Permissions and Intents for 

Malware Detection 

3.1 Introduction 

Permission model is a vital security mechanism which guards 

against the misuse of hardware and software resources; however, it relies 

on the user’s response and other built-in features such as intent, which is 

a communication mechanism which facilitates the use of different 

functionalities offered by the components of same application or other 

applications [95]. Intent spoofing and permission collusion are few 

examples of attacks due to misuse of intents [96, 97]. Although, a 

significant research work has been carried out to investigate the 

permission model and API calls for detection of mobile malware but less 

work is done on Intents. 

This chapter investigates Android permissions and intents to 

understand their role in basic functionality of apps and how that role can 

be exploited by the cyber criminals for malicious attacks. Such an 
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understanding will help in devising a novel malware detection solution 

based on permissions and intents to effectively detect the malicious 

activities. Malware analysis by combining the permissions and intents is 

carried out to deduce the usage pattern of these vital features that can be 

exploited to distinguish between the malware and benign apps.   

We present an automated malware detection algorithm: AndroPIn 

which is based on permissions and intents declared in the Manifest file. 

Once declared, these vital features cannot be altered by code obfuscation 

or encryption, hence making our proposed approach resi lient to code 

obfuscation. 

The rest of the chapter is organized as follows: Section 3.2 presents 

the basic background information about permissions and intents, Section 

3.3 discusses the investigation findings, and Section 3.4 presents the 

statistical testing details carried out to understand the correlation between 

permissions and intents. Section 3.5 presents the AndroPIn malware 

detection algorithm and Section 3.6 discusses its implementation aspects. 

Section 3.7 gives the details of experiments and result. Final ly the Section 

3.8 summarizes the chapter. 

3.2 Background 

Android has 117 permissions and 227 intents in version 4.4, API 

level 19 - an API level is an integer value which identifies the application’s 

compatibility with the Android versions. The earliest A ndroid version: API 

level 1, contains only 76 permissions and 124 intents. Google adds new 

permissions and intents into every upcoming version. This trend is 
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depicted in Table 3.1, where monotonic increment in permission and 

intents against the API levels is obvious. The increased number of 

permissions and intents has not only added new features but also opened 

the doors for malware. A meticulous analysis of permissions and intents 

used by the apps will help to construct the behavioural image of apps for 

malware detection. 

Table 3.1: Number of permissions and intents in API levels 

API Level No of 
Permissions 

No of Intents 
 

23 135 252 

22 124 243 

21 123 238 

20 118 227 

19 117 227 

18 106 221 

17 103 214 

16 103 203 

15 99 201 

14 99 191 

13 97 180 

12 96 180 

11 96 176 

10 96 167 

09 95 167 

08 92 167 

07 88 161 

06 88 158 

05 88 158 

04 87 146 

03 83 136 

02 78 124 

01 76 124 

 
It is found during investigation of apps that certain permissions and intents 

are repetitively used by malware apps which can distinguish them from 

benign ones.  

3.2.1 Android Permissions 

Permission model is the basic security feature of android system 
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which provides access to the vital organs of android based devices [98]. 

These are embedded in the manifest file of applications and declared as 

shown in Figure 3.1 [6]. 

 

 

Figure 3.1: Declaration of Android permission. 

 In earlier versions of Android, permissions were required to be 

granted as a whole and not in parts [99]. There was no choice to select the 

permissions from the offered ones; user had to accept all the permissions 

and install the app or reject and didn’t install. Once granted, these 

permissions would remain effective for the lifetime of the installed app unti l 

changed through an update [100]. However, on Android version 6.0 and 

above, user can control the installation of permissions with capability 

compromises.  

3.2.2   Android Intents 

Android intent is the basic communication mechanism used for 

exchanging inter and intra application messages. Functionalities and 

capabilities of different apps can be combined with the use of intents  [101]. 

A malicious app may trick the user to install some other collaborating app 

for getting additional features. User is then prompted two different sets of 

permissions by these two different apps but because they share their 

functionalities cowardly through sending /receiving intents, the user being 

ignorant of this feature might install both apps  which would harm his 
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device [102]. Intents are embedded in the manifest file and declared as 

shown in Figure 3.2 [34]. 

 

 

 
Figure 3.2: Declaration of Android Intents. 

3.3 Analysis of Permissions and Intents  

We carried out a comprehensive review of Android security 

framework and existing research work on malware detection to establish 

the distinguishing key features of Android apps which could facilitate the 

malware detection.  

A total of 500 apps (270 malware and 230 benign) were analysed 

which are collected from well-known sources such as Google Playstore1, 

Mobango2. Contagiodump3, Genome4, Virus Total5, theZoo6 and 

MalShare7. These sources contain the datasets of already known malware 

samples. The benign apps are selected from different categories such as 

social, news, entertainment, finance, education, games, sports, music, and 

audio, telephony, messaging, shopping, banking, and weather. Selection  

1Google Play, Web: https://play.google.com/store?hl=en 

2Web: http://www.mobango.com/ 
3Contagio Mobile: mobile malware mini dump, Web: 
http://contagiominidump.blogspot.co.uk/ 
4Android Malware Genome Project, Web: http://www.malgenomeproject.org/ 
5VirusTotal for Android, Web: 
https://www.virustotal.com/en/documentation/mobile- 
applications/ 
6theZoo aka Malware DB, Web: http://ytisf.github.io/theZoo/ 
7MalShare project, Web: http://malshare.com/about.php 
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of malware and benign samples is carefully done to learn the malicious 

and normal behaviour of apps.  

Our investigation of Android security framework, the existing state-

of-the-art malware detection approaches, Android features used by most 

of these approaches (permissions, intents, API calls, system calls, ICC) 

and analysis of benign and malware samples resulted in interesting 

finding: identification of key features: permissions and intents used for 

malware attacks and propagation. 

We also establish that certain permissions and intents which are 

frequently used by malware apps are seldom used by benign apps. 

Malware families use a particular set of permissions and intents targeting 

specific capabilities and resources. Almost all the malware samples 

belonging to that particular family use a unique set of permissions and 

intents. This study resulted in some very interesting findings which are 

discussed in this section.  

3.3.1   Permission usage by the Applications 

Most famous benign apps like Facebook, YouTube, Skype and 

Viber tend to use on average 8-16 permissions while this number goes 

down to 3-6 for the least famous applications. Some trend prevails in 

malware apps- most harmful malware apps use on average more than 16 

permissions and least harmful use 3-6 permissions as depicted in Figure 

3.3. 
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Figure 3.3.  Number of permissions used by the benign and malware apps. 

3.3.2   Permission Groups 

There are 35 permissions out of a total of 145 which are frequently 

used by apps, whereas remaining 110 are hardly ever used. We can group 

the repeatedly used permissions into normal and dangerous categories 

depending on their usage and associated risk levels. Examples of 

frequently used permissions by benign apps are Full Network access, 

Create/Add/remove/user accounts, Delete/Modify USB contents, 

Read/write/modify contacts. Malware apps prefer using Read phone status 

& ID, Access Network state, Send SMS/MMS, Receive boot complete, 

Receive SMS, Delete/Modify USB contents, your locations permissions 

etc.  

There are a few permissions, which are scarcely used by benign 

apps but frequently by malware apps e.g., Access Network state, Receive 

boot complete, Restart packages, Mount/Unmount File system, Set 

wallpapers, Read/write history bookmarks of browser, Write APN settings. 
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Set wallpapers permission is frequently used by adware to display 

coupons and ads for malicious or marketing websites whether user want 

them to or not. These ads promote the installation of additional unwanted 

contents such as browser extensions or optimization utilities and to 

generate pay-per-click revenue for the originator.  

3.3.3     Intent usage by the Applications 

Intent is a message passing system which is used to link            

components of same or different applications [103]. Applications with the 

same user ID could invoke functionalities of each other without declaring 

permissions individually for those functionalities thus gaining extra 

privileges. We categorize malware apps into most harmful and least 

harmful apps depending on the ease of access to sensitive resources and 

data regarding used permissions and intents. The most harmful malicious 

apps are those who are accessing more sensitive resources and data and 

may provide monetary damages to the users like sending premium rate 

SMSs, making calls, and accessing bank accounts details. The least 

dangerous malicious apps are those who can access some useful data 

and resources, but they may not cause financial or serious damage to the 

user or device.  

Most famous benign apps tend to use on average 1-3 intents, the 

least famous apps use 1-2. Most harmful malware use min 3 intents while 

this number goes up to 7. Least harmful malware apps witnessed to use at 

least 2 or 3 intents as depicted in Figure 3.5. Benign apps are seen to use 

only ACTION_MAIN, CATEGORY_LAUNCHER and 
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CATEGORY_DEFAULT intents whereas malware apps are tending toward 

adding more intent to gain extra capabilities. Most common intents used 

by the malware apps are ACTION_BOOT_COMPLETED, ACTION_CALL, 

ACTION_BATTERY_LOW, ACTION_SMS_RECIEVE and 

ACTION_NEW_OUTGOING_CALL. 

 

Figure 3.5 Number of intents used by the benign and malware apps. 

3.3.4   Combining Permissions and Intents for Malware detection 

Android apps are exhibiting a consistent usage pattern of 

permissions and intents. Figure 3.6 gives an overall trend of how android 

apps are using these attributes in a clearly distinguishable manner. Real 

malware apps are corroborated to use few of the normal permissions and 

intents whilst they use a greater number of dangerous permissions and 

intents. Benign apps have shown a similar trend of using only normal 

permissions and intents, whereas the grey ware are those benign apps 

which are using unnecessary permissions along with the normal 

permissions and intents, to expand their modus operandi. 
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Figure 3.6 Permissions and intents usage pattern by Android apps. 

3.4 Correlation between permissions and intents 

A Correlation is a statistical technique that is used to measure and 

describe the strength and direction of the relationship between two 

variables. Different correlation coefficient methods: Pearson correlation 

coefficient, Intra-class correlation and Rank correlation. Correlation is 

defined as a single number known as correlation coefficient that quantifies 

a type of correlation and dependence, meaning statistical relationships 

between two or more values in fundamental statistics . We used Pearson 

correlation coefficient to find the statistical correlation between 

permissions and intents since it is widely used and more reliable method 

for the purpose. 

Pearson product-moment correlation coefficient, also known as r, R, 

or Pearson's r, a measure of the strength and direction of the linear 

relationship between two variables that is defined as the (sample) 

covariance of the variables divided by the product of their (sample) 

standard deviations. The most common is the Pearson correlation 

coefficient that is a statistical measure of the strength of a linear 
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relationship between two variables. It is denoted by “r" and is calculated by 

dividing the covariance of two variables with product of their standard 

deviations. Pearson's correlation coefficient has a value between -1 

(perfect negative correlation) and 1 (perfect positive correlation) [104].  

Suppose we have n malware applications, each application is using 

X dangerous permissions written as xi  = {x1, x2,..., xn} and Y dangerous 

intents such that yi = {y1, y2,..., yn}, then the Pearson correlation coefficient 

(r) can be calculated using equation (3.1). 

 

Two sets of malware apps are used to measure the strength of 

correlation between dangerous permissions and dangerous intents. One 

set consists of 200 malware apps which are randomly selected from 

different malware families and the other consists of 20 malware apps from 

same malware family. 

 

For the first set, the correlation coefficient (r) equals 0.74, indicating 

a strong relationship between dangerous permissions and dangerous 

intents for the significance level: p < 0.001. For the other set, the 

correlation coefficient (r) equals to 0.94, indicating a very strong correlation 

between dangerous permissions and intents in the case of samples 

belonging to the same malware family. The strong correlation between the 

dangerous permissions and intents supports our conjecture about the 

(3.1) 
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association between permissions and intents to carry out the malicious 

activity. 

The Pearson correlation coefficients of 0.74 for different malware 

families and 0.94 for same malware family confirm the positive correlation 

between permissions and intents. However, we need to perform a 

significance test to decide whether or not there is any evidence which 

supports or contradicts the presence of a linear correlation in the whole 

population of malware apps. We use the hypothesis testing, for which we 

test the null hypothesis, H0, and alternate hypothesis, H1 as 

H0 : malware and benign applications use the same  

        set of permissions and intents, 

H1 : malware and benign applications don’t use the 

       same set of permissions and intents. 

 

For hypothesis testing, we use the Mann-Whitney U test with the 

p-value of 0.05. We calculate U1 and U2 values for both the permissions 

and intents respectively using equations 3.2 and 3.3, respectively. In 

following equations, R1 and R2 are the sums of ranks for permissions and 

intents, respectively, and n1 and n2 are the sample sizes for both the 

variables. 
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We take the smallest of U and compare it with the critical value 

obtained from the Mann-Whitney critical values table [105]. We use Mann-

Whitney critical values table for a small number of malware samples and 

Z-test for large samples of malware apps due to limitations of the number 

of entries in the Mann-Whitney critical value table. With samples from 

same malware family (n1= 20, n2 = 19, p=0.05, critical value = 119), the 

smallest U value obtained is 87 which is less than the critical value of 119, 

we would reject the null hypothesis for the malware apps belonging to 

same family. For a large sample of apps belonging to different malware 

families (n1 = n2 = 200, p=0.05, Z-critical value = 1.64), we calculate z-

score with Z test. We obtain z-score of 13.0594 which is greater than Z-

critical value hence suggesting the rejection of null hypothesis H0. We 

have very strong statistical evidence to accept the alternate hypothesis 

H1, which suggests that the malware and benign apps use a different set 

of permissions and intents. This conjecture is further verified with 

classification analysis using different machine learning algorithms. 

3.5 AndroPIn: Malware Detection Algorithm 

In this section, we present an automated malware detection 

algorithm: AndroPIn which is based on identification of distinct usage 

pattern of permissions and intents declared in the manifest file. Once 

declared, these vital features cannot be altered by code obfuscation or 

encryption. AndroPIn is an implementation of the methodology proposed in 

Chapter 4 and validating the effectiveness of algorithm for detection of 

malware apps including the obfuscated ones. It extracts the permissions 
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and intents of an app and classifies it as malicious or benign by comparing 

against certain combinations of permissions and intents. These 

combinations form a distinct usage pattern of malicious apps which 

distinguishes them from the benign apps. These features, which play a 

major role in sharing user data and device resources cannot be 

obfuscated or altered. These vital features are well suited for resource 

constrained smartphones. Experimental evaluation on a corpus of real-

world malware and benign apps demonstrate that the proposed algorithm 

can effectively detect malicious apps with low run-time overheads and is 

resilient to common obfuscations methods.  

3.5.1   Design 

A malware detection system for Android can be architected in a 

variety of ways. It could be designed as a complete client based anti -

malware scanner app or a client and server based solution to efficiently 

process the analysis and classification of malware apps. A complete client 

based solution would have to overcome a number of challenges for 

efficiently and accurately detecting the malware apps. We develop our 

solution using client and server architecture which is efficient and accurate 

since it does not rely on the limited resources of mobile phones. The 

client-server architecture further has multiple choices to select for the 

implementation of different tasks either on server or on client. Such sub 

tasks include extraction of features, comparison of learned behaviour 

against the normal or malicious etc.  We studied different design options 

and discuss here the selected one in which we use server for the analysis 
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and detection processes to gain efficiency. However, it is possible to 

design the whole architecture on the phone at a little bit cost of efficiency.  

The work flow of AndroPIn is shown in Fig. 3.7. It consists of three 

main stages: Feature extraction, Detection engine and data logger / 

reporter. First of all the apk file is decompiled and the required features: 

permissions and intents of an app are extracted and stored in a separate 

file for analysis.   

 

Permissions
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 Fig. 3.7: AndroPIn architecture  

The analysis/detection engine consists of two steps: In first step, 

the extracted features of a suspected app are checked against the pre -

defined template T, which consists of four arrays of malicious permissions, 

normal permissions, malicious intents and normal intents. Second step 

involves the testing against the malicious threshold. If the app is within the 

malicious threshold, it is labelled as malware. Third stage is the data 

logger and reporter which makes logs of results and generates 

notifications for the user. 
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3.5.2 Implementation 

We present an algorithm for checking whether an app is malware or 

benign. We have implemented our algorithm as a malware detection tool. 

The proposed algorithm consists of two phases: identifying the malicious 

permissions and intents (Algorithm 1) and classifying the app as either 

malware or benign (Algorithm 2).  

The crux of AndroPIn is the component responsible for classifying 

an application's behaviour as either benign or malicious. We use 

Androguard1 tool to extract permissions and intents of an app from its 

AndroidManifest.xml file. Androguard is a python based reverse 

engineering tool, which can run on Linux/Windows/OSX. It is used to 

disassemble and to decompile android apps and to statically analyse 

apps. The Androguard’s commands get_permissions() and get_intents() 

lists the permissions and intents declared by an app. After extracting the 

permissions, the program automatically saves the information in a 

temporary output file: ‘output3.txt’.  We use Python to develop the 

algorithm, which first defines the malicious and normal feature set in the 

algo.py file (Algorithm 1). There are four arrays, each defining the 

malicious permissions, normal permissions, malicious intents and normal 

intents. Permissions and intents of suspected app saved in ‘output3.txt’ 

are compared against the four arrays. If the under test app contains the 

malicious permissions and malicious intents, these are printed on the 

screen as shown in Fig.3.8. 

1 https://github.com/androguard/androguard 
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      Algorithm 1: Identification of Malicious permissions and intents 
 

  

       Input :   List of malicious permissions,  

           List of normal permissions, 

           List of malicious intents, 

           List of normal intents 

      Output : List of malicious and normal permissions & intents of suspected app 

 

       1:      apk                            > an incoming app 

       2:      Malicious_Permission [n1]: = List of n1 malicious permissions 

       3:      Normal_Permission [n2 ]: = List of n2 normal permissions 

       4:      Malicious_Intent [n3 ]: = List of n3 malicious intents 

       5:      Normal_Intent [ n4]: = List of n4 normal intents 

       6:      Create an object O of the APK class for Suspected_Malware.apk 

       7:      Call O. get_android_manifest_xml() to generate AndroidManifest.xml   

       8:               for i: = 1 to n1 

       9:              if (Malicious_Permission [i] exist in 

AndroidManifest.xml)  

       10:                                     Print Malicious_Permission [i] 

       11:           end if 

       12: end for 

       13:   for i: = 1 to n2 

       14:            if (Normal_Permission [i] exist in 

AndroidManifest.xml) 

       15:                                     Print Normal_Permission [i] 

       16:           end if 

       17: end for 

       18:           for i: = 1 to n3 

       19:            if (Malicious_Intent[i] exist in AndroidManifest.xml)  

       20:                                     Print Malicious_Intent [i] 

       21:           end if 

       22:         end for 

       23:           for i: = 1 to n4 

       24:             if (Normal_Intents [i] exist in AndroidManifest.xml)   

       25:                                     Print Normal_Intent [i] 

       26:                       end if 

       27:          end for 
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Fig. 3.8: Matched permissions and intents 

The malware detection Algorithm 2 is responsible for classifying an 

application's behaviour as either benign or malicious. If the Algorithm 1 

confirms the presence of malicious permissions and malicious intents in 

the under test app, Algorithm 2 verifies against the thresholds of 

maliciousness to avoid the false positives. If the app falls into the malicious 

criteria then it is labelled as malware and user is notified.  

  

 Algorithm 2  Malware Detection Process    
  

LEGEND: 

          MP: Malicious_ Permissions  

          NP: Normal_Permissions 

           MI : Malicious_Intents 

           NI  : Normal_ Intents 

 
           Input:  Malicious_ Permissions[i] 

                       Normal_Permissions[i] 

                       Malicious_Intents[i] 

                       Normal_ Intents[i] 

           Output: Malware notification 

 
      1:   Scan for (Malicious_ Permissions[i],  Normal_Permissions[i],          

Malicious_Intents[i], Normal_ Intents[i]) 

      2:   if (MP >= 1 && MI >= 1) //Filter malicious permissions and malicious intents 

      3:       then 

      4:               if (MP + + NP = = 3) && (MI + + NI >=1) 

      5:                    Print  Malware detected  

      6:       else         

      7:                          Print  Goodware detected 

      8:   end if 
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3.6  EXPERIMENTAL SETUP AND RESULTS 

We evaluate our implementation of algorithm against real world 

malware and benign apps. The experiments aimed to validate the 

effectiveness of algorithm for detection of malware apps including the 

obfuscated ones with a low false positive rate. 

3.6.1 Experimental Setup 

  The experiments are carried out on an Intel Core i7-3520 M CPU @ 

2.90 GHz, 2901 MHz machine with 8GB RAM. Machine was configured 

with different Android reverse engineering tools. Androguard can be run on 

terminal by directly downloading from the project website or it can be run 

on Virtual machine environments such as Santoku or Android Reverse 

Engineering (A.R.E) virtual machines. Both of these VMs are installed with 

all modules required to run Androguard. We use Santoku VM due to its 

preference by the Androguard creators. Santoku is a dedicated to mobile 

forensics, analysis, and security. It is a Linux distribution. We download 

the full pack of Virtual machine with all modules required to run the tool 

and installed with default settings. First step is to create a new virtual 

machine to carry out our analysis as shown in Fig. 3.9. Then the 

configurations of resources for the VM are done as shown in Figures 3.10 

and 3.11 respectively. 
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Fig. 3.9 AndroPIn: creation of new VM 

 

 

Fig. 3.10 AndroPIn: configuration of new VM 



77 
 

 

Fig. 3.11: AndroPIn: configuration of new VM continued 

Once the VM is created, starting the machine will display the main 

analysis environment as shown in Fig. 3.12. 

 

Fig. 3.12: Analysis of app 

Clicking on the Knife and going to accessories to open the 

LXTerminal as shown in Fig. 3.13. With the following command we start 
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the Androguard in our VM: 

        cd /usr/share/androguard 

 

Fig. 3.13:   Calling the Androguard  

Using the file manager (next to the Knife icon) and starting the 

/usr/share/androguard for placing the algorithm file: test.py in that directory 

as shown in Fig. 3.14.   

 

Fig. 3.14: AndroPIn algorithm in VM 
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Once the algorithm file is setup in the environment, the apk files are 

verified as shown Fig. 3.15.  

 

Fig. 3.15: Analysis results 

3.6.2 Dataset 

A total of 145 malware and 125 benign apps are verified with the 

algorithm which is collected from well-known sources described in Chapter 

3. These samples are rigorously selected from known malware families 

and different categories of benign apps. Details of samples from the 

malware families and benign categories are shown in Tables 3.2 and 3.3 

respectively. 
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Table 3.2: Details of Malware samples with obfuscation 

Malware 

Family 

No of 

samples 

Malware 

Family 

No of 

samples 

Basebridge 5  DroidKungFu  5 

FakeDolphin   5 Locker  5 

VDLoader  5 FakeBank  5 

GinMaster  5 Boxer  5 

JIFake  5  SNDApps  5 

OpFake  5  FakeInst  5 

FakePlayer  5  BgServ  5 

Plankton  5 Geinimi  5 

AnserverBot  5 PjApps  5 

GoldDream  5  DroidSheep  3 

CopyCat  3 DroidDream  5 

DroidKungFu  5  Keji  3 

HolyBible  3  Obad  2 

Nickispbby  2  RuFraud  3 

Jsmshider  3  Zitmo  3 

AngryBird  5  KMin  5 

DroidKungFua  3 DroidKungFuaa  2 

Table 3.3: Categories of benign apps 

Category No of 

samples 

Category No of 

samples 

Social Media 5  Mail  5 

Education   5 Banking  5 

Entertainment  5 Sports  5 

Shopping  5 Finance  5 

News  5  Weather  5 

Games  5  Medical  5 

Fitness  5  Media  5 

Casual  5 Music  5 

Books  5 Travel  5 

Lifestyle  5  Simulation  5 

Transportation  3 Misc 20 
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3.6.3 Results and Performance Analysis 

The detection results are shown in Table 3.4. The TPR of 0.98 and 

FPR of 0.02 are achieved with the experimental dataset. These results can 

further be improved with optimization of algorithm. 

Table 3.4: Performance Results 

Method TPR FPR 

AndroPIn 0.98 0.02 

 

3.7 Summary 

Android security framework relies on permissions and intents to 

control the access to vital hardware and software resources. These two 

features have never been used in tandem for malware detection. In this 

paper, we proposed Andropin, a novel and efficient malware detection 

algorithm based on these two vital security features, which was evaluated 

on real world malicious and benign apps. Malware samples selected for 

the experiments represent different types of malicious families with 

diversified real-world threats. The experiment results demonstrate that the 

proposed algorithm can accurately detect malware apps. We also evince 

with experiments that the proposed algorithm is particularly effective for 

detection of obfuscated malware apps due to its reliance on the 

unalterable features. Our future work aims to optimize the algorithm to 

improve on the false positive rate and validation on larger malware 

dataset. 
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Chapter 4 

PInDroid: Permissions and Intents based 

Malware detection  

4.1 Introduction 

In this chapter, we discuss our methodology of PInDroid, which is 

built on the study presented in Chapter 3.  Since malware use more 

sophisticated obfuscation and evasion techniques, it is provident to use 

the obfuscation resilient methods and features for malware detection. For 

this reason, PInDroid uses those features of manifest file, which are 

resilient to code obfuscation and there is no complexity involved in 

extraction of these features. The selected features are the basic essence 

of any Android app; without these features apps cannot do any good or 

bad or things.  
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Permissions are a vital security mechanism which guards against 

the misuse of hardware and software resources [106]; however, it relies on 

the user’s decision to accept the permissions of an app and other built-in 

features mainly the intents deprecate such security protections. Most 

malware need to use some permission to achieve their malicious goals 

which they must declare in the Manifest file and ask the users for 

approving the permissions before installation of app. Similarly, malware 

apps use intents to carry out malicious actions which they must declare in 

the Manifest file but do not ask the users for approval. This design flaw on 

Android is exploited by malware apps to carry out stealthy malicious 

actions. Intents have extended a number of known and unknown 

legitimate covert channels to malware app. Although, a significant 

research is done on permissions and API calls for detection of malware, 

however, intents remained almost untouched before starting this research 

work. There was no published works where intent was used as a key 

feature for detection of malware at the start of PhD research in 2013.  

Our research on permissions and intents led us to a feature set that 

helps in accurately detecting malicious apps. After separately investigating 

the potentials of permissions and intents in detecting the maliciousness of 

apps, the author combined these two features to study their effectiveness 

in pinpointing the possible risky behaviours of apps. We argue that since 

many of the stealthy malicious actions are not possible without combining 

the permissions and intents by the malware developers, thus many of the 

malware apps cannot be detected without combining these features. Our 

experiments strongly validate our heuristics.  
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The rest of the chapter is organized as follows: Section 4.2 presents 

the overview of the methodology which includes the system architecture, 

samples dataset, reverse engineering techniques used to analyse the 

apps, extraction of features and pre-processing, building the classification 

models using different ML algorithms, comparison of performance of these 

algorithms on the dataset and feature set. Section 4.3 discusses the 

experimental setup and Section 4.4 presents the results. Section 4.5 

compares the approach with the related state-of-the-art approaches. 

Section 4.6 discusses the application of ensemble learning methods and 

Section 4.7 summarizes the chapter. 

4.2 Overview  

The aim of this work is to validate a set of simple and effective 

features which should be easily extracted, applied and combined to 

classify the malware apps. Different machine learning algorithms and ML 

based malware detection approaches [64, 135, 136, 137, 138, 139, 140, 

141, 142, 143, 144, 145, 146, 147, 148 and 149] are investigated for 

classification of malicious apps. The work flow of this methodology is 

divided into two phases: training and testing. In the training phase, a set of 

features (Permissions and Intents) are extracted from the manifest files of 

a large sample of malware and benign apps. The extracted features are 

represented in a vector format executable by the data mining software 

Weka1. Our goal is to build a model which can distinguish malware from  

1Weka, http://www.cs.waikato.ac.nz/ml/weka/ 
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benign applications efficiently based on Android permissions and intents.  

Six machine learning classifiers: Naive Bayesian, Decision Tree, 

Decision Table, Random Forest, Sequential Minimal Optimization and 

Multi-lateral Perceptron (MLP) are trained with the datasets to build 

classification models.  

In the testing phase, the same set of features is extracted from a 

sample of benign and malware to be tested and classified by the learned 

models from the training phase. Performance of ML algorithms is validated 

against various performance measures.  

4.2.1 System Architecture 

The system architecture is shown in the Figure 4.1. It consists of 

four main stages: Apk de-compilation, Feature extraction, Pre-processing, 

and Classification. The first stage is for decompiling of target app to get 

AndroidManiFest.xml. The second stage analyses the manifest file and 

extracts the permissions and intents. This stage comprises of two monitors 

that are used to measure: (i) type of permissions (normal or dangerous) 

and their numbers and, (ii) type of intents (normal or dangerous) and their 

number. Permissions and intents are labelled  into four groups: normal 

permissions, normal intents, dangerous permissions and dangerous 

intents. Dangerous permissions and intents are frequently used by 

malware apps whilst normal permissions and intents are frequently used 

by benign apps. The pre-processor stage transforms the extracted 

features from each app into vector dataset in an ARFF fi le format that can 
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be applicable for machine learning algorithms. Each app is represented as 

a single instance with discrete vector of features and a class label 

indicating whether the app is benign or malicious. The generated dataset 

is randomized using unsupervised instance randomization fi lter for better 

accuracy and sent to the classifier stage. The last stage is for the 

classification of app as either malware or benign. The classifier is trained 

with the known samples and the learned models are used to detect 

whether a given app is malicious or benign. The classifier takes each 

vector as input and classifies the data set using trained classifier. Finally, 

the reporter stage generates notifications for the user based on the 

classifier results. 

Details of implementation, datasets, used tools, main features of 

interest, and the ML algorithms are given in subsequent paragraphs. 

Permissions

Intents

PInDroid

Yes Data 
Logger / 
Reporter

Malware/
Benign

User notification{}

Suspected 
App

Pre-
processor

Classifier

Feature Extraction

Permission 
Monitor

Intents 
Monitor

Figure 4.1: Diagram of proposed system 

4.2.2 Data Collection 

A total of 1300 malware and 445 benign apps were analysed, which 

are collected from well-known sources such as Google Play store1, 
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Contagiodump2, Genome3, Virus Total4, theZoo5, MalShare6, and 

VirusShare7. Samples were selected to ensure that the dataset represent 

the behaviour of broad categories of benign apps and families of malware 

apps. Table 4.1 depicts the details of malware samples collected from 

each source. These sources contain the datasets of already known 

malware samples. Maliciousness of these samples is also confirmed with 

Virus Total service integrated with ten detection engines. We labelled the 

app as malware, if it was detected as malicious by two of the engines. 

Cryptographic hashes (SHA-1) of files were also checked with a tool: 

HashTab8 to ascertain the uniqueness of samples. Details of known 

malware families, their malicious activities and number of analysed 

samples from each family are shown in Table 4.2. 

To validate our method, we also downloaded 445 benign apps from 

known app stores such as Google Play, AppBrain9, F-Droid10, Getjar11, 

Aptoid12, and Mobango13. The benign apps are selected from different 

categories such as social, news, entertainment, finance, education, 

games, sports, music, and audio, telephony, messaging, shopping, 

banking and weather to learn the normal behaviour of benign apps. Table  

1Google Play, Web: https://play.google.com/store?hl=en 
2Contagio Mobile: mobile malware mini dump, 
Web:http://contagiominidump.blogspot.co.uk/ 

3Android Malware Genome Project, Web: http://www.malgenomeproject.org/  
4VirusTotal for Android,Web: https://www.virustotal.com/en/documentation/mobile - 
applications/ 

5theZoo aka Malware DB, Web: http://ytisf.github.io/theZoo/ 
6MalShare project, Web: http://malshare.com/about.php 
7Web: https://virusshare.com/ 

8HashTab, Web: http://implbits.com/products/hashtab/ 
9Web: http://www.appbrain.com/ 
10Web: https://f-droid.org/ 

11Web: http://www.getjar.com/ 
12Web: https://www.aptoide.com/ 
13Web: http://www.mobango.com/ 
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4.3 depict the details of categories of benign apps, number of analysed 

apps from each category and the corresponding app stores.  

Table 4.1: List of Malware samples 

Malware family  No of 

samples  

Malware type 

Basebridge  11 Botnet, Information stealing 

DroidKungFu  11 Botnet, Information stealing 

DroidKungFu  10 Botnet, Information stealing, Backdoor 

FakeDolphin  4 Adware 

Locker  2 Ransomware 

VDLoader  3 Backdoor, Information stealing 

FakeBank  5 Trojan Banker, Money stealing, 

Information stealing 

GinMaster  7 Information stealing, Backdoor 

Boxer  2 Sends SMS 

JIFake  3 Sends SMS 

SNDApps  1 Information stealing 

OpFake  4 Sends SMS 

FakeInst  

 

3 Installer 

FakePlayer  3 Sends SMS 

BgServ  

 

7 Botnet, Information stealing, Trojan 

Installer, backdoor 

Plankton  7 Money stealing, Botnet, Information 
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 stealing, Backdoor, Trojan installer 

Geinimi  9 Botnet, Information stealing, Root 

access 

AnserverBot  13 Information stealing 

PjApps  9 Botnet, backdoor 

GoldDream  

 

10 Trojan, Information stealing 

DroidSheep  7 Session hijacker 

CopyCat  

 

4 Adware 

DroidDream  

 

10 Information stealing, Adware 

DroidKungFu  

 

11 Botnet, Information stealing, Root 

access 

Keji  

 

4 Information stealing, Trojan Installer 

HolyBible  

 

5 Adware, Backdoor 

Obad  

 

2 Botnet, Information stealing, Botnet, 

Trojan Installer, backdoor, SMS, 

Location 

Nickispbby  

 

5 Spying, Information stealing 

RuFraud  

 

3 SMS sending 
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Jsmshider  

 

3 Information stealing 

Zitmo  

 

3 Money, Information stealing, Backdoor 

AngryBird  

 

13 Botnet, Information stealing 

KMin  10 Exploit, Information stealing 

 

Table 4.2: Sources of malware samples 

Source No of malware 

samples 
Contagio 60 

Drebin 100 

Genome 1000 

Virus Total 70 

theZoo 20 

MalShare 25 

VirusShare 25 

 

Table 4.3: Categories and sources of benign samples  

Category No of samples App Market 

Social Media 11 Google Play store 

Mail 4 Google Play store 

Education 10 Google Play store 

Banking 4 Google Play store 

Entertainment 15 Google Play store 

Sports 8 Google Play store 

     8 Google Play store 

Weather 8 Google Play store 

Games 15 Google Play store 
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Weather 8 Google Play store 

Games 15 Google Play store 

Medical 10 Google Play store 

Fitness 11 Google Play store 

      11 Google Play store 

Casual 15 Google Play store 

Music 15 Google Play store 

Books 5 Google Play store 

Travel 5 Google Play store 

Lifestyle 15 Google Play store 

Simulations 7 Google Play store 

Misc 15 AppBrain 

Misc 10 F-Droid 

Misc 10 Getjar 

Misc 15 Aptoid 

Misc 15 Mobango 

4.2.3 Feature Extraction 

The collected samples are apk files that were analysed and 

transformed into the format suitable for the Machine learning algorithms. 

Each apk file is decompressed to extract the manifest file, which is 

investigated to for the desired features: permissions and intents. The 

extracted features are then processed to build a dataset in an ARFF file 

format. Each instance of dataset represents either a malware or benign 

app.  Feature datasets and examples of feature vector set are shown in 

Tables 4.4 and 4.5 respectively. 
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Table 4,4: Selected features 

Features Category Sub Features 

 

 

Permissions 

Normal 

Permissions 

 

WRITE_SETTINGS 

CREATE ACCOUNTS 

ADD ACCOUNTS 

REMOVE ACCOUNTS 

USE ACCOUNTS 

SET PASSWORDS 

 

 

 

 

 

Dangerous 

Permissions 

INTERNET 

READ_PHONE_STATE 

SEND_SMS 

INSTALL PACKAGES 

RECEIVE _SMS 

WRITE_SMS 

READ_SMS 

RECEIVE_BOOT_COMPLETED 

MOUNT_UNMOUNT_FILESYSTEM 

 

Intents 

Dangerous 

Intent 

 

BOOT_COMPLETED 

SMS_RECEIVED 

PHONE_STATE 

NEW_OUTGOING_CALLS 

UNINSTALL_SHORTCUT 

HOME 

Normal 

Intent 

 

MAIN 

LAUNCH 

VIEW 

BROWSABLE 
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Table 4.5: Examples of features Vector set 
 

Normal 

Permission 

Normal 

Intent 

Dangerous 

Permission 

Dangerous 

Intent 

Classification 

1 

10 

9 

4 

3 

5 

4 

6 

2 

3 

1 

2 

3 

2 

2 

2 

0 

2 

1 

0 

3 

2 

0 

0 

7 

2 

1 

11 

0 

2 

2 

0 

1 

0 

3 

0 

1 

4 

0 

1 

Malware 

Benign 

Benign 

Benign 

Malware 

Benign 

Benign 

Malware 

Benign 

Benign 

4.3 Experimental Settings 

The experiments were carried out on an Intel Core i7-3520 M CPU @ 

2.90 GHz, 2901 MHz machine with 8GB RAM. Machine was configured 

with different machine learning algorithms (WEKA software), Android 

development and testing modules, apk file parser as well as some open 

source analysis tools. Each of the classifiers is evaluated with the 10-fold 

cross-validation method. In 10-fold cross-validation, the data is divided into 

ten subsets, and the method is repeated ten times. In each round, one 
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subset is taken as test set and the remaining nine subsets are combined 

to form the training set. Errors of all the ten rounds are averaged out to 

obtain a final output. This method ensures that each instance is included 

at least once in the test set and nine times in the training set. The final 

model is the average of all ten iterations. Basically, we applied the 

classifier to data 10 times and every time with 90:10 ratios (90% for 

training and 10% for testing). The final model is the average of all 10 

iterations as depicted in Figure 4.2.  

Original Dataset

Random 
stratified data 

in 10 folds

ITER = 1

Evaluation on 
testing dataset

Increment 
ITER

Testing Dataset
(fold at ITER)

Training dataset
(remaining 9 folds)

 Rank Modelling on 
training dataset

ITER<10

 

Figure 4.2: Flowchart for 10-fold experiments 

4.3.1 ML Classifiers  

Performance of the following six ML classifiers is compared against 

different measures.  



95 
 

(i) Naive Bayesian 

(ii) Decision Tree (J48) 

(iii) SMO 

(iv) Random Forest 

(v) Neural Networks Multi-Layer Perceptron (MLP) 

(vi) Decision Table (DT) 

(i) Naïve Bayesian 

  It is a conditional probabilistic classifier based on Bayes’ 

theorem with an assumption of independence between the features 

to predict the class. A Naive Bayes classifier assumes that the 

presence of a particular feature in a class is unrelated to the 

presence of any other feature. Naive Bayesian model is easy to build 

and particularly useful for very large data sets. It provides a way of 

calculating posterior probability P (c|x) from P (c), P (x) and P (x|c) 1.  

   Prior P(c) x Likelihood P(x) 

Posterior (P (c|x) =                              (3.4) 
      Evidence P (x|c) 

(ii) Decision Tree 

Decision tree uses a decision tree predictive model to go from 

observations about an item (represented in the branches) to 

conclusions about the item's target value (represented in the leaves). 

In classification trees (the target variable can take a discrete set of  

1 https://en.wikipedia.org/wiki/Naive_Bayes_classifier 
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values) leaves represent class labels and branches represent 

conjunctions of features that lead to those class labels2.  

(iii) Sequential minimal optimization (SMO) 

SMO is an algorithm for solving the quadratic programming 

(QP) problem that arises during the training of support vector 

machines. SMO is widely used for training support vector machines 

and is implemented by the popular LIBSVM tool that is simpler than 

the previously available methods for SVM training and it required 

expensive third-party QP solvers3. 

(iv)    Random Forest 

Random forests is an ensemble learning method for 

classification that constructs multitude of decision trees at training 

time and outputting the class that is the mode of the classes 

(classification) of the individual trees. Random decision forests 

correct for decision trees' habit of over fitting to their training set 4. 

 (v) MLP 

MLP is an artificial neural network algorithm consisting of at 

least three layers of nodes. Except for the input nodes, each node is 

a neuron that uses a nonlinear activation function. It is s multiple 

2https://en.wikipedia.org/wiki/Decision _Tree 

3 https://en.wikipedia.org/wiki/Sequential_Minimal_Optimization 
4 https://en.wikipedia.org/wiki/Random_Forest 
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layers and non-linear activation distinguish MLP from a linear 

perceptron. It can distinguish data that is not linearly separable5. 

 (vi Decision Table 

 Decision tables are a visual representation for specifying which 

actions to perform depending on given conditions. They are 

algorithms whose output is a set of actions. The information 

expressed in decision tables could also be represented as decision 

trees or in a programming language as a series of if-then-else and 

switch-case statements. Each decision corresponds to a variable, 

relation or predicate whose possible values are listed among the 

condition alternatives. Each action is a procedure or operation to 

perform, and the entries specify whether (or in what order) the action 

is to be performed for the set of condition alternatives the entry 

corresponds to6. 

4.3.2 Performance Comparison of ML Classifiers 

Performance of the six classifiers is compared in terms of True 

Positive Rate (TPR), False Positive Rate (FPR), accuracy, F1-score and 

Area Under Curve (AUC). These metrics are calculated using the 

confusion matrix as shown in Table 4.6.  

 

5 https://en.wikipedia.org/wiki/Multilayer_Perceptron 
6https://en.wikipedia.org/wiki/Decision_table 
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Table 4.6 is generated from the four measures: True Positive  (TP) - 

the number of correctly classified instances that belong to the class, True 

Negative (TN) - the number of correctly classified class instances that do 

not belong to the class, False Positive (FP) - instances which were 

incorrectly classified as belonging to the class and False Negative (FN) - 

instances which were not classified as class instances.  

                                      ;=
FNTP

TP
TPR


                                                                             (3.5) 

               ;=
TNFPFNTP

TNTP
FPR



                                                           (3.6) 

                                    ;=
TNFPFNTP

TNTP
Accuracy



                                                (3.7) 

             ;
.

2.=1
RecallPrecision

RecallPrecision
ScoreF


                                            (3.8) 

 

Table 4.6: Confusion Matrix 

Actual Class Classified as 
Malware 

Classified as 
Benign 

Malware TP FN 

Benign FP TN 

4.4 Results and Discussion 

Table 4.7 lists the TPR, FPR, Precision, F1-score, recall, AUC and 

processing time. All the analysed classifiers perform well with an accuracy 

of 0.90 or more. However, MLP and Decision table dominate with an 

accuracy of 0.993. In terms of time, Nave Bayesian, Decision Tree and 
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Decision Table are more efficient than MLP and Random forest. Overall, 

Decision Table produces the best results. 

4.4.1 Performance Comparison of different Classifiers 

Performance of the six widely used classifiers is compared in terms 

of TPR, FPR, Precision, recall, AUC and time taken to bui ld the model. 

Table 4.7 lists the results obtained for TPR, FPR, Precision and recall. 

Decision Table outperformed all classifiers in detecting the correct class of 

malware applications with an accuracy of 99.3% whilst SMO performs 

worst in terms of measured parameters. 

Table 4.7: Comparison of classification algorithms  

 

Algorithm  

 

TPR  

 

FPR 

 

Precision 

 

Recall 

 

Time  

Decision Table  0.993 0.006 0.99 0.99 0.23 

MLP  0.992  0.008 0.99 0.99 1.18 

Decision Tree  0.9861 0.011 0.98 0.98 1.24 

Nave Bayesian  0.982 0.012 0.98 0.98 0.95 

Random Forest  0.97 0.07   0.97  0.97  0.43 

SMO   0.67  0.033    0.67  0.67    0.94 

 

Additionally, the classifiers are evaluated in terms of time taken to 

build up the model. The Decision Table takes less time than all other 

classifiers. Overall, results demonstrate that the Decision Table is efficient 

and accurate classifier as compared to other five algorithms.  
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4.4.2  Area Under Curve (AUC) 

Accuracy of detection is measured by the area under the curve. An 

area of 1 represents a perfect detection; an area of 0.5 represents a worst 

detection. Traditionally accepted values1 for AUC are shown below:- 

 0.90-1 = excellent (A) 

 0.80-0.90 = good (B) 

 0.70-0.80 = fair (C) 

 0.60-0.70 = poor (D) 

 0.50-0.60 = fail (F) 

Table 4.8 depicts the AUC values obtained with different classifiers. 

Decision Table, Decision Tree and MLP have “Excellent” AUC values 

compared to Random Forest and Naïve Bayesian which have “Good” 

AUC values. SMO’s performance performs poorly of all the classifiers.  

Table 4.8 AUC comparison of classifiers 

 

 

 

 

 

  

 

1https://sonoworld.com/fetus/page.aspx?id=1698 

Classifier AUC 

Decision Table 99% 

Decision Tree 98% 

MLP 98% 

Random Forest 89% 

Naïve Bayesian 87% 

SMO 50% 
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4.5 Comparison with related approaches 

We compare the performance of PIndroid against relevant 

approaches which use some of the similar features and analysing the 

samples acquired from same sources: Google Playstore, Genome and 

Contagiodump. These are known repositories of malware and benign apps 

and the performance of most of the state of the art malware detection 

approaches are tested on these samples with a difference of number of 

samples tested. The most relevant approaches are Drebin [154], DroidMat 

[155] and Marvin [156].   

 Drebin [154] examines the manifest file and decomposed code of 

app to check the permissions, API calls, hardware resources, app 

components, filtered intents and network addresses. It uses support vector 

machines (SVM) for malware classification. Although, they used the 

largest dataset of 129,013 apps, it consists only 4.5% of malware samples 

thereby may not be able to learn malware patterns. It used many features 

opposed to our work which uses only two most effective features. It 

achieved 94% malware detection rate with 0.01 false positive rate whereas 

our approach achieved 99% detection accuracy with 0.006 FPR. Drebin 

[154] requires extensive processing for extraction and execution of a large 

number of features from the manifest file and app code, it takes more time 

to analyse the app and therefore is less efficient than our method. It takes 

on average 10 seconds to analyse an app, whereas our approach takes 

less than 1 second. Its use of a large number of features may also result in 

more false alarms as the efficiency and accuracy of feature based 
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detection approaches highly depend on the selection of more relevant and 

less number of features. 

DroidMat [155] analyses some features from the manifest file and 

smali files of disassembled codes. The extracted features include 

permissions, components deployments, intent messages and API calls. It 

applies K-means algorithm for clustering and Singular Value 

Decomposition (SVD) method for low-rank approximation. The minimized 

clusters are processed with a kNN algorithm for classification into malware 

or benign apps. It achieves an accuracy of 97.6% with no reported false 

positive rate. They analysed 1738 apps consisting of 1500 benign and only 

238 malware samples. Malware samples are only 13% of total dataset, 

which is a non-representative data set for capturing the malware usage 

patterns. The accuracy is less than our method and the processing time is 

higher as it needs to perform the execution of smali files and manifest files. 

Since Smali files are much larger than manifest files, the overall cost of 

methods which analyse smali files forgoes higher. This holds true for 

Drebin [154] and DroidMat [155]. 

Marvin [156] uses off-device static and dynamic analysis for 

malware detection. It uses around 490,000 features extracted from the 

manifest fi les and disassembled codes. Its high-dimensional feature set 

includes permissions, intents, API calls, network statistics, components, 

file operations, phone events, app developer IDs, package serial numbers 

and bundles of other features. It uses a linear classifier to detect malware 

app and assign a malicious score to the app on a scale from 0 to 10, with 

0 being benign and 10 being malicious. They used the largest dataset of 
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150,000 apps in which only 10% are malware samples. It classifies with an 

accuracy of 98.24% and false positive rate of 0.04%. Although this 

approach classifies with the malicious score, this is not an efficient 

approach considering the high dimensionality of features and regular 

updating requirement of the database to maintain the detection 

performance. Since, both the analyses are done off-the-device; the mobile 

app is just to provide an interface to upload the apk to the analysis server. 

The static and dynamic analyses of an app take several minutes 

depending on the size of smali files. This approach is less efficient and 

less accurate than our approach.  

 We further compared the detection rate of PIndroid on the 

unlabelled set of 100 apps against these approaches. PInDroid 

significantly outperforms the other approaches with TPR of 0.98 and FPR 

of 0.1. The other approaches provide a detection rate between 0.90 to 

0.93 with FPR between 0.7 to 1. Detection performance of compared 

approaches is shown in Fig. 4.3.  

 

 Figure 4.3: Comparison with relevant approaches 

The compared approaches are less efficient than our approach in 

analysing the apps due to their dual processing time. PInDroid gives more 
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accurate results due to the use of most relevant feature set to model the 

malicious behaviour 

4.6 Application of Ensemble Learning Methods   

 In this section, a study on effect of applying different ensemble 

methods is presented.  The motivation to apply ensemble methods is to 

ascertain if the performance of poorly performing classifiers can be 

improved by applying ensemble techniques. If the predictions from each 

non-over fitting model are combined, then the final aggregated prediction 

will be less noisy than the single opinion of individual model and there will 

be no over fitting. We have used different ensemble methods such as 

boosting, bagging and stacking for combining multiple trained classification 

algorithms. The predictions from combined classifiers are processed with 

the help of well know ensemble schemes such as majority voting, average 

of probability and product of probability.  

4.6.1  Ensemble Learning  

Ensemble methods combine the results of multiple machine 

learning algorithms to improve the predictive performance [159, 160]. We 

use three ensemble methods namely Boosting, Bagging and Stacking to 

improve the detection results of classification algorithms.  

4.6.2 Boosting 

In boosting, a base classifier is trained on the training dataset 

followed by the subsequent stages of classifiers which concentrate on the 
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incorrectly classified instances by the previous classifier. Classifier stages 

are added till the time there is a limit in the number of models or accuracy 

[161, 162]. We use popular boosting meta-algorithm AdaBoost, introduced 

in 1995 by Freund and Schapire.  

4.6.3 Bootstrap Aggregating (Bagging) 

In bagging, the training dataset is sub-divided into multiple training 

datasets and each dataset is used to train a classifier as shown in Figure 

4.4. Finally, the outputs of all the classifiers are combined by averaging out 

or majority voting method [162].  

 

 

  Figure 4.4: Bagging Process  

4.6.4  Blending / Stacking 

 In stacking, multiple algorithms are trained individually with the 

training dataset and the outputs from the classifiers are sent to a meta -

Training Dataset

Training 

Sub-set-I

Training 

Sub-set-n

Training 

Sub-set-II

Sub Model I Sub Model nSub Model II

Results

Boostrap Sampling

ML Classifiers

Majority Voting Method



106 
 

classifier which combines the results of the base classifiers using any of 

the three schemes: an average of probabilities, a product of probabilities 

and majority voting (Figure 4.5). 

Decision Table, MLP, and Decision Tree classifiers are applied in 

first stage and their results are combined with different schemes as 

mentioned above. 

(a)   Average of probabilities 

        It takes an average of the probabilities of each class from the 

individual classifiers (k=3 for three classifiers) and compares which 

class has greater probability such that, 

;<,
3

1=

3

1=

benign

k

avgmalware

k

avg ClassPClassPifMalware                   (3.9) 

.>,
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k
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k

avg ClassPClassPifBenign 
            

(3.10) 

(b)   Product of probabilities 

     Product of probabilities is taken from each of the classifiers and 

highest probability of class is assigned as: 

;<,
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3
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avgmalware

k

avg ClassPClassPifMalware                 (3.11) 
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 (c)   Majority vote 

     The final result is decided based on the results obtained from the 

majority of the results.  Results of ensemble classification are 

depicted in Tables 4.9 to 4.11. The product of probabilities method 

yields the best results. 

 

Figure 4.5: Stacking Process  

4.6.5 Results of Ensemble methods 

Ensemble methods are applied on different datasets and a 

considerable amount of improvement is noticed in the performance of 

model. Following four cases are particularly noticeable due to their distinct 

nature. 

(i) The worst model with SMO with an accuracy of 67% 

improved to an accuracy of 94.6% after applying stacking method 

(Table 4.9). 
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Table 4.9: Accuracy gain in SMO model with Stacking 

 
Dataset 

 
Meta. 

AAdaBoo  

 
Meta. 

Bagging 

 
Meta. 

Stacking 

 

Classification  
67.84 

 
63.12 

 
94.6 

 

(ii)  The minimum accuracy obtained with Decision table without 

ensemble methods was 99.3% which increased to 99.5 with 

bagging method (Table 4.10). 

Table 4.10:  Accuracy gain in Decision Table model with 
Bagging 

 
Dataset 

 
Meta. 

AAdaBoo  

 
Meta. 

Bagging 

 
Meta. 

Stacking 

 

Classification  
99.3 

 
99.51 

 
99.38 

(iii)  The minimum accuracy obtained with Naïve Bayesian before 

applying ensemble methods was 98.2% which improved to 99% 

with stacking and 98.31% with boosting method (Table 4.11). 

Table 4.11: Accuracy gain in Naïve Bayesian model with Boosting and 
Stacking 

 
Dataset 

 
Meta. 

AAdaBoo  

 
Meta. 

Bagging 

 
Meta. 

Stacking 

 

Classification  
98.35 

 
98.31 

 
99 

Ensemble methods combine results from multiple machine learning 

algorithms to improve the predictive performance [159]. It is not necessary 

that the performance of ensemble learning be better than the individual 
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classifiers. The stacked performance depends on the selection of 

classifiers and methods used to combine the output predictions [160]. 

We apply three ensemble methods: Boosting, bagging, and 

stacking to further improve the detection accuracy. Stacking gives the 

better results as compared to boosting and bagging.  

4.7 Summary  

Android security model relies on permission and intent based 

mechanisms for controlling access to vital hardware and software 

components. However, so far these two features have not been combined 

together for detection of malware.  

 

In this chapter, Android permissions and intents are investigated for 

using them to detect the malware apps. We also investigated the 

correlation between permissions and intents by applying statistical testing 

methods. It was also studied how effective is to combine permissions and 

intents analysis for malware detection.  Permissions and intents are found 

to be most effective features of Android for characterizing malware as they 

are easy to extract from the manifest files of apps and require less 

processing time and complexity. This work proposed a novel malware 

detection method―PInDroid which is based on these two key features. 

Various well known classification algorithms were applied on the dataset. 

Application of classification algorithms have given very encouraging 

results to further advance the work. 
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In this chapter, we also applied different ensemble methods such as 

Boosting, Bagging and stacking on six well Machine Learning classifiers: 

Naïve Bayesian, Decision Table, Decision Tree, Neural Network (MLP), 

SMO and Random Forest. All the classifiers demonstrated an increase in 

performance at different ensemble methods. Accuracy of some of the 

classifiers improved with bagging method and some of them improved with 

stacking method. These methods have improved the overall results 

significantly thus increasing the confidence level. 

It was observed during repeating the experiments that it is not 

necessary to get good or equal results with different ensemble methods. 

Results of ensemble learning depend on the classifier itself and the 

combination of classifiers chosen for cascading stages.  
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Chapter 5 

Detection of Colluding Applications  

5.1 Introduction 

Android being the most popular platform for mobile devices is under 

proliferated malicious attacks. A recent threat is from app collusion; in 

which two or more apps collaborate to perform stealthy malicious 

operations by elevating their permission landscape using legitimate 

communication channels. Each app requests for a limited set of 

permissions which do not seem dangerous to users. However, when 

combined, these permissions potentially inflict a number of malicious 

attacks. Mobile users are generally unaware of this type of permission 

augmentation, they consider each app separately. Hence, their decision to 

install apps is limited in perspective due to unawareness of such type of 

capability escalation [164].  
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Android implements sandbox and permission based access control 

to protect resources and sensitive data, however, being open source and 

developer-friendly architecture, it facilitates sharing of functionalities 

across multiple apps. It supports useful collaboration among apps for the 

purpose of resource sharing; however, it also introduces the risk of app 

collusion when the collaboration is done with malicious intention. Cyber 

criminals exploit this vulnerability to launch distributed malicious attacks 

[165].  

This chapter investigates Android application collusion and intents 

related attacks with an intention to furnish a feasibility study of using our 

permissions and intents based methodology for detection of malicious 

colluding apps. Most of the recent works on app collusion investigate 

permissions and IPC mechanism to understand their role in app collusion.  

Our preliminary investigations confirm that permissions and intents can be 

exploited to detect malicious app collusion.   

The rest of the chapter is organized as follows: Section 5.2 presents 

an overview of app collusion, Section 5.3 investigates the technical details 

of app collusion and covert channels, and Section 5.4 presents the IPC 

and intents related attacks. Section 5.5statistical testing details carried out 

to understand the correlation between permissions and intents. Section 

3.5 presents the challenges faced in detecting app collusion and 

recommend potential measures. Section 5.7 proposes a possible generic 

framework for detection of colluding apps and finally Section 5.8 

summarizes the chapter.  
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5.2 Overview 

Application collusion is possible with Inter Process Communication 

(IPC), covert channels or system vulnerabilities. Malicious colluding apps 

are explicitly designed by cyber criminals by using different tactics which 

includes the development of apps with same User ID. Such apps have 

more chances for a successful collusion attack. In some cases, mis-

configured apps also participate in the collusion attack with a complete 

obliviousness of colluding app [166]. One of the collusion scenarios is 

illustrated in Figure 5.1: App 'A' has no permission to access the internet; 

however it has permissions for camera. Similarly, App 'B' has no 

permission for the camera but can access the internet. Assuming that the 

components of both apps are not protected by any access permission, 

they could collude to capture the pictures and upload on a remote server 

through the Internet. 

 

Figure 5.1:  Application Collusion Scenario 
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Until recently, a small scale research is done on app collusion 

primarily due to non-availability of known samples of colluding apps for 

analysis and experimentations [167]. Most of the works accentuated on 

rummaging of covert channels and development of experimental colluding 

apps. As a result of this innovative approach, the research on collusion 

gained a little momentum and there are now a few collusion detection 

approaches available each with a limited scope. Despite the growing 

research interest, detection of malicious colluding apps has been a 

challenging task [168]. 

The fact that permissions and intents (which are the key features of 

our detection model) are the main features behind the application 

collusion, our proposed malware detection model is particularly suitable for 

detection of colluding applications in addition to other types of malware 

applications.  

In Android, all applications are treated as potentially malicious. 

They are isolated from each other and do not have access to each other’s' 

private data. Each app runs in its own process and by default can only 

access own files. This isolation is enforced with the sandbox, in which 

each app is assigned with a unique user identifier (UID) and own Virtual 

Machine (VM). App developers are required to sign the apps with a self-

certified key. Apps signed with the same key can share UIDs and ca n be 

placed in a same sandbox [169]. 

Android app comes as .apk file, which contains the byte code, data, 

resources, libraries and a manifest file. Manifest fi le declares the 
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permissions, intents, features and components of an app. The 

components that can be handled by an app are declared with intent filters. 

System resources and user data are protected through permissions. 

Figure 5.2 illustrates the communication between apps in a sandbox 

environment. App 1 can use only those system resources and user data 

for which it has permissions. Similarly, app 2 is also limited to use certain 

resources. Although both apps have limited permissions to access the 

resources but through IPC, they are able to augment their permissions and 

get over-privileged access to system resources and user data. 

 

Figure 5.2  Inter Process Communication 
 

5.3  Investigations of Application Collusion  

Colluding applications are those applications that cooperate in 

some manner to perform extended operations which they would 

independently be unable due to their respective permission restrictions. 

These applications can perform covert operations even without breaking 

the security framework or exploiting any system vulnerabilities [170]. 
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Application collusion can inflict serious damages to the user by stealing 

user’s data or device resources.  Following elements of Android 

architecture directly or indirectly contribute in app collusion:- 

 Permissions 

Permissions are used to restrict the access of system resources 

and user data on the device.  

    Shared User ID 

 Android assigns a unique user ID to each app to ensure that it 

runs in its own process and can only access the allocated system 

resources. Apps with shared User IDs (shared Userid) can access 

each other's data and can run in same process, thereby limiting the 

effectiveness of isolation provided with user ID. 

 

 Components 

 

 Components are the basic modules that are run by apps or the 

system. There are four types of components: Activities, Services, 

Content Providers and Broadcast Receivers.  

 Intents  

Intents are messages used to communicate between the 

components of apps. These messages are used to request actions or 

services from other application components. Intents declare the 
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intention to perform an operation [166]. Intents are of two types: 

Explicit and Implicit. Explicit intent specifies the component 

exclusively by class name. Implicit intent does not specify a particular 

component by name. Apps with implicit intent only specify the 

required action without specifying particular apps or component. 

System selects the app from device which can perform the requisite 

task. Implicit intents are vulnerable to exploits as they can combine 

operations of various applications, if they are not handled properly. 

 Sandboxing  

Sandboxing isolates an app from other apps and system 

resources. Each app has a unique identifier and has access to the 

allocated System files and resources against the unique identifier. An 

app can also access fi les of other apps that are declared as 

readable/writeable/executable for others. 

 Access Control Mechanism 

  In Android, the access control mechanism of Linux prevails. It 

controls access to files by process ownership. Each running 

process is assigned a UserID and for each file, access rules are 

specified. File access rules are defined for a user, group and 

everyone, thus granting permissions to read / write / execute the 

file. 
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 Application Signing  

Cryptographic signatures are used for verification of app source 

and for establishing trust among apps. Developers are required to 

sign the app to enable signature based permissions, and to allow 

apps from the same developer to share the UserID. A self-signed 

certificate of the signing key is enclosed into the app installation 

package for validation at installation time. 

5.3.1      Covert Communication Channels 

A covert channel is a stealthy mechanism which exploits 

resources and uses them to exchange information between apps in a 

manner that it cannot be detected [171]. There are two types of covert 

channels: Timing and Storage. Timing channels modulate the time spent 

on execution of some task or using some resource. Storage channels 

relate to modifying the data item such as configuration changes etc. 

Example of covert channel is sending user data to a remote server by 

encoding it as network delays over the normal network traffic [172]. Figure 

5.3 depicts a covert channel, where a file of 20 bytes containing some data 

is sent through a normal communication channel. The file size is covert 

information. This information might not be of any importance to the 

receiver but significantly valuable for the malicious party. 
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Figure 5.3: Overt and covert channel 

Covert channel typically exploit the shared resources to read, 

store and modify data as a medium for communication between two 

malicious entities. This type of information exchange is different from IPC 

based resource sharing. App collusion through covert channels is 

investigated by implementing high throughput covert channels in [165]. 

5.4  IPC related Attacks 

Android security builds upon sandbox, application signing and 

permission mechanism. However, these protections fail if the resource and 

task sharing procedures provided through IPC are used with malicious 

intentions. In this section, we discuss most common IPC related attacks on 

Android devices. 
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5.4.1  Application Collusion Attack 

In application collusion attack, two or more apps collude to 

perform a malicious operation which is broken into small actions [165]. 

Each of the participating apps communicates using legitimate 

communication channels to perform the part assigned to them. Apps do 

not need to break any security framework or exploit the system 

vulnerabilities for carrying out a collaborative operation [168]. Colluding 

attack help in malware evasion as the current commercially available anti -

malware solutions do not have capability of simultaneously analyzing 

multiple apps to detect collusion. 

5.4.2  Privilege Escalation Attack 

In privilege escalation attack, an application with less 

permissions access components of more privileged application [172].This 

attack is prevalent in misconfigured apps mainly from the third party 

market. The default device applications of phone, clock and settings were 

also vulnerable to this attack [173]. Confused deputy attack is a type of 

privilege escalation attack. A compromised deputy may potentially transmit 

the sensitive data to the destination specified in the spoofed intent (Fig. 

5.4). Consider an app which is processing some sensitive information like 

bank details at the time of receipt of spoofed intent. It is likely that such 

information may be passed on to the url or phone number defined in the 

malicious intent. 



121 
 

 

Figure 5.4: Confused Deputy Attack 

5.4.3  Intents related Attacks 

Explicit and implicit intents may potentially assist in colluding 

attacks. Although, explicit intents guarantee the success of collusion 

between apps, implicit intents can also be intercepted by the malicious 

apps with matching intent filters. We discuss some of the known intents 

related attacks. 

 Broadcast Theft 

A public broadcast sent by application is vulnerable to 

interception. As shown in Figure 5.5, a malicious app 'M' can 

passively listen to the public broadcasts while the actual recipient is 

also listening. If a malicious receiver registers itself as a high priority 

receiver in ordered broadcasts and receives the broadcast first, it 

could stop the further broadcasting to the recipients. The ordered 
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broadcasts are serially delivered messages to the recipients that 

follow an order according to the priority of receivers. Public and 

ordered broadcasts may cause eavesdropping and Denial of Service 

(DoS) attacks [167]. 

 

Figure 5.5: Broadcast Theft Attack 

      Activity Hijacking  

If a malicious app registers to receive the implicit intent, it may 

launch activity hijacking attack on successful interception of intent. 

With activity hijacking, a malicious activity can illegally read the data 

of the intent before relaying it to the recipient [165]. It can also 

launch some malicious activity instead of the actual one. Consider a 

scenario, in which an activity is required to notify the user for the 

completion of certain action. The malicious user can falsely notify 

the user for the completion of uncompleted activity like un-

installation of app or transaction completed. 
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 Service Hijacking 

  If an exported service is not protected with permissions, it can 

be intercepted by an illegitimate service, which may connect the 

requesting app with a malicious service instead of the actual one [5]. 

In this attack, the malicious user hijacks the implicit intent which 

contains the details of service and start the malicious service in place 

of the expected one. Implicit intents are not guaranteed to reach to 

the desired recipient because it does not exclusively specify the 

recipient. A malicious app can intercept an un-protected intent and 

access its data by declaring a matching intent filter [6]. This type of 

attack may be used for Phishing, Denial of Service (DoS) and 

component hijacking attacks are possible with unauthorized intent 

receipt. 

 

 Intent Spoofing 

 In Intent spoofing attack, the malicious app controls the 

unprotected public component of a vulnerable app. It starts 

performing as the deputy of the controlling app and carries out the 

malicious activity on behalf of the controlling app [3]. This type of 

attack is also known as confused deputy attack as the deputies 

(victim apps) are unaware of their participation in the malicious 

activities. Figure 5.4 illustrates the confused deputy attack. A 

malicious broadcast injection is also possible with spoofed intent 

when a broadcast receiver that is registered to receive the system 
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broadcasts trusts an incoming malicious broadcast as a legitimate 

one and performs those actions which need system triggers. 

5.5  Detection of colluding applications 

Detection of app collusion is a very complex proposition. There 

are a number of challenges in designing a solution to detect the malicious 

colluding apps and there remain big question marks over efficacy of such 

solutions. This is the prime reason that we don't have a lot of reliable 

choices available for such detections. 

5.5.1  Challenges 

First challenge in detection is classification of IPC into benign 

and malicious groups. Android is an open source platform, which 

encourages resource sharing among apps by re-using the components. 

IPC is mainly used by apps to interact with different inter and intra 

components. The main problem is to distinguish between the benign 

collaboration and malicious collusion. Such a distinction is likely to come 

up with a cost of very high false positives. Keeping the false positive rate 

to lowest is another problem.  

Secondly, considering the substantial number of apps available 

in the Android market (more than 2 Million apps by Feb 2016), there is a 

difficulty of analyzing pairs of apps. It is computationally challenging and 

cost exorbitant to analyze all possible pairs of apps to detect the malicious 

collusion between sets of apps given the search space. Analysis of all 
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possible app pairs of total of N apps would require N2 pairs. Similarly, to 

analyze sets of three colluding apps, it would require analyzing N3 apps. 

An effective collusion detection tool must be capable of isolating potential 

sets of apps and carrying out further investigations. 

 Another glaring challenge is the presence of a number of 

covert channels in the system. Detection of covert channels is an NP-hard 

problem as it would require monitoring of all the possible communication 

channels [174]. Covert channels are difficult to detect because they use 

overt channels for conveying stealthy information. Lastly, known malicious 

colluding apps are not available for analysis. The non-availability of known 

samples of colluding apps, makes it difficult to validate the experiment 

results. Analysis and validation of collusion detection is a quandary, we 

need known samples of colluding apps to validate the detection method, 

but to  find the samples, a reliable detection method is mandatory, which 

itself is not available in an authenticated form. 

An effective collusion detection system must overcome the 

aforementioned challenges and encompasses an integrated solution. The 

detection of IPC based collusion have been recently proposed in a few 

research papers [175], [176], [177], and [178]. The proposed approaches 

have a number of limitations and the accuracy and efficiency of these 

methods is questionable due to non-availability of universally accepted 

dataset of malware colluding apps. 

The solution proposed in [174] is to re-design the security 

model of Android system to mitigate the risk of collusion. However, this 



126 
 

would involve a big cost and complexity in re-writing the OS components 

and ensuring their compatibility and smooth functioning in conjunction with 

already available millions of apps in the Android market. 

Another approach [175] is limited to the detection of collusion 

based on intents only. It analyzes the interaction of components through 

intent filters only and analyzes only two apps at a time. Currently, this 

approach suffers with a high false positive rate. It is a memory consuming 

approach which may not be feasible for mobile phones keeping in view the 

limited memory of phones. It is likelihood that extensive memory 

consumption may deteriorate the overall performance of device. Similarly, 

[176] is also mainly based on intent messages. This approach faces the 

challenges of conventional rule based methods that are prone to evasion 

with obfuscation and evasion. Scalability is a major drawback of their 

approach. 

Malware collusion detection tool [177] supports the latest API 

versions only, hence analysis of apps developed under earlier versions is 

not possible. Technical details of the tool are not available for performance 

verifications and evaluations. It generates a high number of false alarms 

mainly due to its reliance over information flows. 

The detection of covert channels is still an under explored 

research area. So far, there are two works [173] [178], which attempts to 

detect the covert channels based app collusion. Currently, [173] has a 

limited scope of detecting only covert channels related to shared 

resources such as reading of the voice volume, change of the screen state 
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and change of vibration settings etc. However, the approach can be 

investigated for inclusion of other covert channels. Similarly, [178] handles 

only data flows. 

5.5.2 Potential Measures 

The complexity and challenges of collusion detection merit a hybrid 

framework. As a result of our analysis, we recommend an integrated 

approach for detection of app collusion. We also suggest that a covert 

channel may not be detected in isolation, but its existence may be realized 

whilst analyzing the IPC related security breaches. We argue that any 

mobile user downloads a limited number of apps as opposed to available 

millions of apps. A user cannot install millions of apps on a single device; 

hence, there is no need to analyze the millions of app pairs or triplets for 

possible collusion. On the average, a mobile user installs 20 to 30 apps. A 

system capable of analyzing 502 or 503 apps is sufficient for a common 

mobile user. This solution may also be augmented with a cloud based 

analysis engine if the number of concurrently analyzed apps is increased 

to 4, 5 or more. Cloud based analysis is an efficient and cost effective 

approach for high computational operations. We argue that adopting such 

an approach is essentially required to facilitate the identification of sets of 

colluding apps from a dataset of millions of apps. 

Since permissions and intents facilitate inter and intra app 

communication and collaboration. Analysis of usage pattern of 

permissions and intents has potentials to detect app collusion through IPC 

and covert channels. Adding shared user IDs and publicly declared intents 
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is also recommended as the collaborating apps may use same User IDs to 

make sure that the attack is successful. 

5.6 Proposed framework for Detection of Colluding Apps 

There are different methods with which applications can collude; 

however shared user ID and public declaration of intent are two key 

features of Android OS which are more vulnerable to collusion attacks.  

(a) Shared User ID 

 In the UID assignment step, sharing UID is checked in the 

manifest. If the sharing UID exists, Android checks other 

applications' share User Id. If they match to each other, this 

application is assigned with the existing UID. If no applications 

match or no sharing UID in the manifest, a new UID is assigned to 

this application. In the permission assignment step, if the UID is 

new, this UID will have all permissions requested in the manifest if 

the users approve. If the UID is shared, this application will not only 

have its own requested permissions, but also the permissions of 

other applications with the same UID. 

Application sandbox is a means to isolate the applications from 

each other in the Android system by assigning a UID and a set of 

permissions [179]. When the application is installed on the device, it 

runs in its own sandbox and other applications cannot access or 

interfere. An application can only access its own files, unless other 
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applications explicitly assign the access permissions to this 

application. For example, if the applications are created by the 

same developers, the developers can make these applications 

share the same UID, then these applications will run in the same 

sandbox and share the resources in that sandbox. 

Application signing is used to ensure the application security. 

It creates a certification between developers and their applications. 

Before placing an application into its sandbox, the application 

signing creates a relationship between the UID and the application. 

The applications couldn't be run on the Android without signing. 

With the same UID, that is, running in the same sandbox, the 

applications can share the permissions and communicate with each 

other. By using application signing, the application update process 

can be simplified. Since different versions of the same application 

have the same certificate, the package manager can verify this 

certificate. Then, the old version is replaced; the new version can 

have the permissions already granted to the old version. What's 

more, the application signing can also ensure that an application 

cannot communicate with another app unless using the ICC. But if 

the author is the same, the author can use the same application 

signing to enable the direct communication among his/her 

applications. 

Android OS assigns a unique user id to each application to 

ensure that it is run in its own process and resources created 
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against that id. However, aapplications can share their user ids if 

they are developed with same signature or certificate and 

applications with the same user ids (shared Userid) can access 

each other's data and can be run in the same process.Shared 

UserIds are declared in application’s Manifest file as shown in 

Figure 5.6. 

 

 

Figure 5.6:  Declaration of Shared User ID in Manifest file. 

(b) Implicit Intent declaration 

Implicit intents specify the action it needs to perform without 

specifying particular apps/component which can only be used for that 

action. Implicit intents are vulnerable to exploits as they can combine 

operations of various applications, if they are not handled 

appropriately. Applications can receive implicit intents from other 

apps if they advertise/declare their components with an intent filter. If 

the declared intent filter of app matches all the fields of requesting 

intent then system will pass on the implicit intent the declaring app. 

Intrinsic intents are declared in the manifest file as depicted in Fig. 

5.7. 
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Figure 5.7:. Declaration of Public Intrinsic Intent. 

Adding these two key features in our detection model enables the 

further classification of malware apps as colluding apps or vice versa.  

This can be realized with an additional layer of classifier or through adding 

few lines into the code. Figure 30 depicts the additional layer for the 

detection of colluding apps.  

The proposed system is shown in Figure 5.8. In first stage, apps are 

analyzed to identify those which share user IDs as they have more 

potential to collude successfully. In second stage, permissions and intents 

are extracted and analyzed for source permission, source intent, sink 

permission and sink intent. Pairwise communication mappings of apps are 

generated from the source and sink permissions and intents. The identified 

communicating pairs of apps are further analyzed to check if their 

communication is limited to each other or more apps. The classifier stage 

is used to classify the app into colluding or non-colluding ones and users 

are notified for possible collusion. In the proposed approach, permissions 

and intents are grouped into four categories: source permissions, source 

intents, sink permissions and sink intents. Source permissions or intents 

are those that initiate some operation, whereas the sink permissions and 

intents are those which act upon to complete the required operation [164]. 
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With additional policy refinements, the identified colluding apps can be 

classified into benign and malicious apps. This approach may be 

integrated with the methodologies proposed in [178] and [173] to monitor 

the data flow sources and sinks of IPC and tracking of shared resources. 

Information flow system proposed in [178] to monitor the data flow sources 

and sinks in IPC is a good trade-off for detecting the covert channels 

however, it lacks the tracking of shared resources. Mapping structure of 

[173] helps in tracking the shared resources used by two interacting apps. 

 

Figure 5.8: Collusion Detection Model 

Effective detection of app collusion requires monitoring of IPC and all 

possible covert communication channels: shared resources and data flow 

sources and sinks. An integrated system comprising of the proposed 

framework and Taintdroid [178] for analyzing the covert channels is a good 

starter towards a comprehensive detection system. 
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5.7 Related Work 

IPC and intents have not been explored the way permissions have 

been investigated. Most of the existing IPC based studies focus on finding 

the IPC related vulnerabilities. [179] investigated the IPC framework and 

interaction of system components. [166] detects the IPC related 

vulnerabilities. [180] suggested improvement in ComDroid by segregating 

the communication messages into inter and intra-applications groups so 

that the risk of inter-application attacks may be reduced. [181] 

characterized Android components and their interaction. They investigated 

risks associated with misconfigured intents. [182] examined vulnerable 

public component interfaces of apps. [183] generated test scenarios to 

demonstrate the ICC vulnerabilities. [184] performs information flow 

analysis to investigate the communication exploits. [185] investigated 

intents related vulnerabilities and demonstrated how they may be exploited 

to insert the malicious data. Their experiments found 29 out of a total of 64 

investigated apps as vulnerable to intent related attacks. Similarly, [186] 

investigated the ICC vulnerabilities. All of these works focus on finding 

communication vulnerabilities, and none of them used IPC and intents for 

malware detection. 

5.8 Summary 

The concept of colluding apps has emerged recently. App collusion 

can cause irrevocable damage to mobile users. Detection of colluding 

apps is quite a challenging task. Some of the challenges are: distinction 
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between the benign and malicious collaboration, false positive rate, 

presence of covert channels and concurrent analysis of millions of apps. 

Existing malware detection system is designed to analyse each app in 

isolation. There is no commercially available detection system which can 

analyse multiple apps concurrently to detect the collusion. We have 

carried out a preliminary study to evaluate the applicability of our proposed 

approach for detection of collaborating apps.  

In this chapter, we discussed the current state and open challenges 

to detection of colluding apps. To address the problem, we have proposed 

an integrated approach to detect app collusion. However, due to non-

availability of real colluding app samples, it was not possible to validate the 

framework. The complexity of problem merits collaborative large scale 

investigations to mitigate a very large number of known and unknown 

communication channels between apps besides known IPC and covert 

channels. Our future work aims to validate the proposed framework on real 

colluding apps. 
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Chapter 6 

Conclusions and Future work 

6.1 Introduction 

This chapter concludes the author’s work by revisiting the thesis 

goals, contributions and achieved objectives. This includes the author’s 

work: PInDroid, the permissions and intents based solution that can detect 

malicious apps accurately and efficiently.  

This work also validates different well known classification and 

clustering algorithms for comparing their performance in malware 

detection. We found that classification algorithms are more accurate as 

compared to clustering algorithms for malware detection. 

Different ensemble methods are also applied on the models to 

ascertain the margin of performance improvement. Detection accuracy of 

proposed model is further optimized with boosting, bagging and blending 

methods. 
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The author also demonstrated the usefulness of PInDroid 

methodology by implementing it through an automated malware detection 

algorithm: AndroPIn.  

The author also described two additional studies, which 

investigated the usefulness of the proposed methodology to detect the 

malicious colluding apps and obfuscated malware apps.   

Lastly, the author discusses possible future directions of research 

based on top of research performed by the author after systematically 

reviewing the work related to Android malware. 

6.2  Restating Research Problems and Research Goals 

In Chapter 2, the author performed an extensive survey on the 

existing work related to the analysis, detection, and classification of 

Android malware to identify the research gaps. This resulted in four thesis 

goals discussed below: 

Goal 1 outlined the importance of analysing the features extractable 

from the manifest file such as permissions and intents as they are widely 

used by apps to perform basic operations and can help in understanding 

the behaviours of malicious apps. As these features do not need run-time 

analysis, the static approach is used for efficiency purpose. 

Goal 2 outlines the use of best classifier for achieving the best 

accuracy. The selection of the classification algorithm is done after 

comparing different algorithms against globally accepted performance 

metrics. 
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While highly detailed data tends towards higher accuracy, 

excessive or redundant data increases performance costs and decreases 

the efficiency of a framework. Thus, we introduced Goal 3, which 

influenced a smaller, more concentrated, set of features to work with. This 

allowed the author to improve accuracy with less performance sacrifices, a 

trade-off issue common when dealing with large datasets. 

Lastly, despite of efficient and accurate framework, it is ineffective if 

malware can evade analysis or detection. We discovered this to be a 

problem with several frameworks, as they were vulnerable to obfuscation 

and evasion. Thus, we introduced Goal 4 to develop frameworks that were 

resilient to code obfuscation. 

6.3  Research Contributions  

In the introduction chapter, the author stated the contributions of 

this work and the novel research aspect of each contribution. In this 

section, we elaborate on the contributions of this work.  

6.3.1 Android Malware Detection:  PInDroid 

In Chapter 4, we proposed PInDroid, a permissions and intents 

based methodology to distinguish between malicious and benign apps. 

Android security model relies on permission and intent mechanisms for 

controlling access to vital hardware and software components. However, 

these features were never used jointly to investigate their effectiveness in 

the malware detection. This work is the first one that proposes a novel 
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malware detection method based on these two vital security features.  

The basic work of investigations on the identified features: 

permissions and intents were completed in chapter 3, which resulted in 

identification of the usage patterns of permissions and intents by malware 

and benign apps. The author’s role in identifying the effective 

combinations of permissions and intents and automatically performing 

extraction has been instrumental. This resulted in novel, efficient and 

accurate permissions and intents based Android malware detection 

solution. The resulting model fulfilled the author’s goals of a robust, 

efficient, and accurate analysis solution.  

6.3.2   Malware Classification using suitable ML Classifier 

Different well known classification and clustering algorithms were 

investigated for comparing their performance in malware detection. We 

found classification algorithms more efficient and useful as compared to 

clustering algorithms for malware detection.   

Using the author’s work in PInDroid, the author then provided a 

novel feature set to feed to six ML classifiers. Performance of classifiers 

was then compared in terms of false positive rate, true positive rate, 

precision, recall, and accuracy. In order to further optimize the 

classification results, different ensemble methods were also applied to 

ascertain the margin of performance improvement. It was ascertained 

through experiments that the performance of PInDroid can further be 

increased with boosting, bagging and blending ensemble methods.  
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6.3.3 Implementation of Methodology through an Algorithm: 

AndroPIn 

The author also implemented the proposed approach in form of an 

algorithm to automatically detect the malware. The algorithm: AndroPIn is 

implementable as either a client end or a cloud based solution. The 

algorithm finds dangerous permissions and dangerous intents in the 

malware app and verifies against the malicious threshold. 

6.3.4 Investigation for Detection of Obfuscated and Colluding apps 

The last segment of work in this thesis comprises of two studies. 

First study investigated the effectiveness of the proposed approach of 

PInDroid for detection of obfuscated malicious apps and the second study 

explored if the approach can be used for detection of colluding apps.  We 

investigated the techniques used by apps for possible collusion and found 

that permission model and Intent are the basic essence of collusion. This 

fact strengthens our approach for possible detection of collusion apps. The 

ancillary work shows that the permissions and intents based solution can 

be used to detect the colluding apps. Furthermore, the work shows 

possible applications for detection of obfuscated malware, which are 

difficult to detect with other solutions. 

6.4   Future Work 

There are many directions to advance the work that has been 

presented in this thesis. First of all, as a future work, we aim to validate our 
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PInDroid approach on more malware and benign samples to evaluate its 

performance on diversified malware families and benign categories. 

The second area for future work is to implement the methodology 

for detection of colluding apps. It can be integrated with other state-of-the-

art solutions as discussed in chapter 5 and to validate the integrated 

solution on real colluding apps.  

Another possible future work could be to determine whether there 

are better machine learning methods than the ones used in this approach. 

Many available machine learning and deep learning approaches have not 

yet been tested for the most appropriate method.  

Similarly, multi-class classification would be an interesting area of 

work. Applications can be classified into three categories: malware, benign 

and greyware thereby giving mobile users more flexibility to draw the 

peripheries between the applications. 

AndroPIn implementation can be improved for better performance. 

More samples need to be tested to validate the algorithm. Malicious 

scoring of malware apps is another area which can further improve and 

widen the malware detection.  
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6.5     Concluding Remarks 

Android, and Android malware are rapidly evolving as of the year 

2017. Therefore, it is imperative to continue the research on emerging 

malware threats and their mitigation solutions. In this thesis, a 

comprehensive survey on the existing work on Android malware detection 

and classification is presented and research gaps have been identified. 

The culmination of these observations lead to a novel malware detection 

approach: PInDroid, which efficiently and accurately detect most of the 

malware from permissions and intents analysis. The approach is 

implemented as an algorithm: AndroPIn to automatically detect the 

malware.  The permissions and intents based system has potential to 

detect the malicious colluding apps besides the obfuscated malware apps.    
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