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ABSTRACT OF THEDISSERTATION

Distributed Termination Detection
For Multiagent Protocols

by

Tshiamo Motshegwa
Doctor of Philosophy in Computer Science

City University, London, October 2009

The research conducted in this thesis is on distributeditation detection in multia-

gent systems.

Agents engage in complex interactions by executing beliawspecifications in the
form of protocols. This work presents and experiments wifamework for making
termination in a multiagent system explicit. As a side dffélte mechanism can be
exploited to aid management of agent interactions, by piogivisibility of the inter-
action process and can be extended to drive multiagentsyasmagement tasks such

as timely garbage collection.

Results from previous attempts to deploy agents systems sdading up, e.g. Agentc-
ities, have shown and exposed a big gap between theory aciicpraspecially in the

reliability and availability of deployed systems. In padiar more work needs to be
done in the area of supporting agent infrastructures as raadh theoretical agent

foundations.

There are two aspects to this problem of termination detecti multiagent systems,
firstly, the formal verification of behaviour at compile-gnand secondly, monitoring

and control at run-time. Regarding the former, there has keene work on the ver-
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ification of agent communication languages. But overallfigation is difficult and
often requires knowledge of internal states of agents afpdertime, and as yet has
not been satisfactorily solved to be deployed in real systéirhe second, the runtime

approach is adopted in here.

The research is not about protocol engineering but assupresct protocols, and
protocol specifications to be finite state machine graphserGinese correct verified
protocols, the thesis proposes a number of definitions adtimg in identification of
minimal information in the form of sub-protocols that agebeing autonomous, can
make available for the termination detection. An off linegedure for deriving these

sub-protocols is then presented.

The thesis then considers a termination detection moddlwathin this model, pro-
poses an conversation model encompassing protocol egasivith hierarchical con-
versations modelled as diffusing computation trees ande&f number of predicates
to derive termination in centralised and distributed emwments. Algorithms that im-
plement these predicates are sketched and some compleaiyses is performed. The
thesis then considers a prototype implementation evaluater some defined detec-

tion delays metric.

The evaluation approach is heavily empirical, with an expental approach adopted
to evaluate various configurations of the termination deteanechanism. The eval-
uation employs robust resampling and bootstrapping mstho@nalyse and obtain
distributions and confidence intervals of the detectioraygkeimetric for the termina-

tion detection mechanism.
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CHAPTER 1

Introduction

Like mathematicians, computer scientists use formal laggs to denote
ideas. Like engineers, they design things, assembling ooeigs into systems
and evaluating tradeoffs among alternatives. Like sa@&sjtithey observe the
behavior of complex systems, form hypotheses, and tesighi@ts,

— Allen B. Downey.

Aspiring computer scientist aspire to do these things.

The research in this thesis is in the area of multiagent Bys{@MAS). Multiagent
systems are related to distributed systems in that theyndwerently distributed and

distributed systems offer a platform for developing mgjéat systems.

Differences are often cited to exist between the agent ajetbmodels and related
communication models assumed in the two areas. Agents amatkautonomous (in
theory), are considered higher level entities which uselagommunication language
and execute interaction protocols to engage in potentalhgplex goal oriented inter-
actions in dynamic and uncertain environments. By contlbgcts are by and large
passive, with no real control over execution of their met)ddr example. But as ob-
served in [239], it appears the debate on agents and obpotsesses) has moved on
to converge to a consensus that agents and objects to ocifiggrat realms and can

CO-exist.

It is worth observing though that, while distributed systeemphasise distribution



of resources, MAS in addition, emphasise distribution geotives, distribution of
problem solving (e.g. by the divide and conquer metaphor), coordinationctibas

and flexible interaction in open environments.

Given these assumptions, there are important issues aédriesthe distributed system
research and the corresponding results that can be adopteeloping multiagent

systems but taking into account issues pertinent to thetagedel of computation.

This thesis proposes to look at one particular area, diggttermination detection.
We consider this in a multiagent system, identifying ageteraction protocols as the
mechanism that enable coordination and flexible interadigtween agents and using

this as a starting point of our model.

Termination is an example of a stable global state of a disteid system. Components
of a distributed system have only local views of a compuia#ind lack a global per-
spective. So ascertaining that a distributed computatestérminated is not straight

forward since it requires a global view.

The termination detection problem is related to the moreegeiproblem of detection

of global predicates, a fundamental problem in debuggirngraonitoring.

It has also been shown [227], that the semantics of the garbaldection problem
are contained in the semantics of the termination detegiiohlem, in that, with ap-
propriate transformations garbage collection schemebeaterived from termination

detection schemes.

So termination detection has useful applications as thaeitated status is among
stable states (consider as another example global comatiamicleadlock) that should
be known for system administration. In summary considefdiewing applications

of termination detection;

Though this is also present in non-agent based distribytsess.



1. Distributed workpoali.e. dynamic mapping of tasks onto processes for load
balancing in which any task may potentially be performed iy process, and
if the work is generated dynamically and a decentralizedpimapis used, then
a termination detection algorithm would be required so #laprocesses can
actually detect the completion of the entire program ang kioking for more

work.

2. Deadlock detectiom stable state where there arait-for cycles ,i.e. when two
or more processes permanently block each other by eachgsrbeging a lock

on a resource which the other process are trying to lock.
3. Crash recoveryrecovering and rolling back from abnormal termination.

4. Garbage collectionbecause termination detection is related to garbageceolle
tion, it is possible with appropriate transformations tokegarbage collection

schemes from termination detection schemes as [227] hassho

We wish to explore research done in distributed systemseamatiea of termination
detection to provide a basis for development of a class ohar@sms to make termi-
nation explicit in multiagent systems, (possibly at a tdtleith some autonomy of
agents, not an unrealistic assumption for practical systeifhis mechanism can be
exploited in the future for work on automatic garbage caitecof multiagent systems

in automated environments.

1.1 Hypothesis

The primary goal of this research is to study terminatioredtbn in multiagent sys-
tems and to design, implement and experiment with a meamgoisdetecting termi-

nation of agent interactions in multiagent systems. A wagkhypothesis is that the



mechanisms will allow for timely detection of terminatianmultiagent interactions.

1.2 The Problem

One of the underlying assumptions in the development okesesi of interacting au-
tonomous agents is that we can fully specify correct andiptaale interaction pro-
tocols and mechanisms apriori. Given that this has beerewasth collaborating or
self-interested agents can then engage in complex ini@nacsuch as negotiation to
achieve their goals. Equipped with these capabilities amolied with specific pri-
vate strategies and resources, agents can be let loosernrenpeonments to perform
complex transactions on behalf of their owners. But givenrtature of the interaction
space (potentially large, open and unpredictable envissrig) and inherent uncer-
tainty in open systems, it is extremely difficult to specifydgoredict fully apriori such
interactions and their likely consequences without boddverly complex monolithic

agents.

Also experiments and experiences with an attempt to do gleggents for services on
a global network called AgentCities [66] are recounted #Pand [67] lists concrete

challenges for AgentCities service environment as follayuste;

—1— Automation, i.e. management of autonomy:- Understagndow to effectively
automate systems in an open environment, how to control aathge de-
ployed automated systems. This must draw on work from madkiead control

theory to distributed systems and agent technology,

—ii— Interoperability, i.e. communication:- How to enable-line software systems
to interact with one another in increasingly flexible waysnfigurable inter-

action sequences, communication about arbitrary domains,



—iii — Coordination:- Putting in place frameworks that eleahutomatic creation,
maintenance, execution and monitoring of contracts andesgents between

automated systems to fulfil their business objectives,

—iv— Knowledge acquisition (interfaces between worldButting in place frame-
works that enable automatic creation, maintenance, exacahd monitoring
of contracts and agreements between automated systent théir business

objectives.

We claim and position our research to make a contributiorhéofirst point above,

observing that multiagent systems are distributed andnajpéeimented on distributed
systems infrastructures, and noting (as has been elsey@4&i, that research efforts
in agent infrastructure support should necessarily dramnigxperiences and coordi-

nate with the general distributed systems research.

We observe that, while autonomy is a key feature in agentdosgetems, some level
of control for the highlighted purposes should be acceptalbien building non-trivial
agent-based applications, such as the ones envisagedad glgent based service pro-
vision networks as exemplified by past initiatives such asm#@ities [66]. This is not
an unreasonable assumption given that, while autonomgasisin real applications

participate in societies governed by some enforced rulpsuicipation.

Chapter 3 from page 37 considers in detail multiagent systend traditional dis-
tributed systems to motivate and highlight why some traddi problems in distributed
systems like the termination detection problem may nedtiéaiconsideration within
agent computational model assumed in multiagent systeras gxelude to that dis-
cussion, consider that agents are deemed to generally lragh degree of autonomy
about what they do, and regarding termination detectioenegmay offer additional

information about the execution of their protocols to fiatk the termination detection



process for example.

Furthermore, consider the flexibility of interactions inltragent systems, in particular
consider a multiagent society with provisions for dynamierprotocols, i.e. in such

environments;

—1i— There could be support for dynamic execution of coortitimaprotocols as
proposed by [31], i.e. where the role an agent intends toWwitdn a protocol

can be played without the need of prior knowledge.

—ii— There could be an infrastructure for dynamic protoqoédfication as dis-
cussed in [14], an infrastructure that accommodates mavisi protocol spec-
ifications during execution in situations where there ishsastrong require-
ment. This approach can be contrasted with the traditionalvehere specifi-

cation of protocols has largely been considered as a désigmnactivity.

—iii— There could be infrastructure support for runtimetpoml discovery in general.

Given these points, we propose that there is a plausiblefoas®nsidering further
how issues like termination detection can be addressednwithltiagent systems en-

vironments.

1.3 Assumptions

From an Artificial Intelligence perspective, agents are camicative, intelligent, ra-
tional and possibly intentional entities. From tt@mputingperspective, they are au-
tonomous, asynchronous, communicative, distributed asgdiply mobile processes
[191] and multiagent systems or societies of agentsvavdular distributed systems
and havalecentralizedlata. Agents in a society haireeomplete informatior capa-

bilities and interact to further their goals.



So regarding our research assumptions, we;

—1— We accept the computing perspective of agents as dét@ieve, and do not

for example consider mentalistic notions in agents.

—ii— Furthermore, assume that an agent’s behaviours afiggethrough public
protocols for example available through public a librarye A6sume public
protocols so that an external entity, e.g a resource manegerknow about

terminating states and protocol paths.

—iii— Assume that all messages are observable in princgptéat in general an ob-

server can decide if a terminating state has been reached.

—iv— Assume a total ordering of messages, e.g. through abbébtck. This is es-
sential because temporal ordering of messages are usashtdycturrent state
of protocols. This global clock can be realised through klegnchronisation

in a distributed system for example.

—Vv — And without loss of generality assume further that prote are in the form
of finite state machines, edge-labelled directed graphsasedme existence
of transformations of other behaviour specifications tadirstate machines
(FSMs) for use with our mechanism. The basis for this assiomps discussed

in Chapter 4.4, page 54, but as a prelude to that, we assums b&bAuse;

e Most of the models used in protocols specification are martgnsions
of finite state machines, i.e. FSMs underpin the currentystdgroto-

cols.

e FSMs are grounded in sound theoretical foundations and ellemder-

stood.

e FSMs are relatively simple to implement.



e FSMs are accompanied by a variety of techniques and toolf®iforal

analysis and design.

e FSMs have an intuitive graphical representation and grapbretic ap-

proaches can be used with the resulting protocol structures

— Vi — Regarding properties of agents, particularly thearothat agents can be per-
sistent, we assume non-persistent agents, agents withvenkifecycle. In
the case of persistent agents, assume existerampasof these agents whose
resources can be recouped once they have played their pateiactions. We
assume that an agent or such a copy of an agent is terminaa#gibtocol
executions in its set of interactions have reached ternsitzés. Regarding
the notion of autonomy, we assume agents to be autonomousiarfdature
allows them to offer runtime information about their pulgtimtocol execu-
tions but are constrained by some society rules, e.g. dlbigéo register and

provide this information.

Research Methodology Regarding the research methodology [129] observes that is
no one standard way of conducting research in an evolvinggdiise like computer
science and goes on to discuss models of argument, namelf/lpralemonstration,

empiricism, mathematical proof and hermeneutics.

Our approach is to develop a model and a framework and coradsichulation and
perform detailed experimental evaluation (empiricisnptovide a demonstration and
set benchmarks for future work. So the methodology can begtitoof as using em-

piricism and coupled with proof of concept by demonstration



1.4 Contribution and Originality

We propose a concrete and generic method for terminaticectied for multiagent

systems discussed and evaluated in Chapters 5 to 10.

With this method, we propose to have made a number of cottviig; On atheo-
retical level we have considered the distributed termination detectsparch from
distributed systems and considered it in the agent modelaed this a basis for de-

veloping a class of agent control mechanisms.

1. To this end, in Chapter 5, we present definitions relatgudtocols, and define
minimal protocol information agents can make availableproghose a termina-

tion detection model.

2. We present an agent conversation model, and define sodiegies and present

algorithms for their implementation.

3. Combining all these we present a distributed protocoté¢anination detection

and consider distribution possibilities.

On apractical leve] we have offered a structured and systematic, methodigarex

mental framework, i.e.

1. In Chapter 6 we offer a prototype implementation for flatv@rsations and use
it to evaluate the proposed mechanism and various confignsatThe experi-

mental prototype uses and tests a widely used agent devetdgramework.

2. Again in Chapter 6 we define an extensive experimental atedahalysis frame-
work that uses robust resampling methods for quantitgtieehluating a proto-
type in this research. We claim that this experimental fraork can also be

used evaluating future contributions in this area as nomat&nowledge exist.



3. Equally experimental work and results here can also sehahmark for future

work for comparison.

Aspects of these contributions have been previously pudxdisn [174] and are subject

of papers in progress resulting from research discusséulsithtesis.

1.5 Exploitation

In addition to the applications given on page 2, considerfdlewing example sce-

narios for how termination detection maybe be exploitecgera applications.

Automated Auction-based marketplaces Consider an automated agent-based mar-
ket place hosting an auction with numerous agents. Typigatticipants maintain
varying valuations of goods and bid to those upper boundsrdoty to adopted pri-
vate strategies. Inevitably most participants will dropezrly from the game. Typi-
cally in real applications, these entities would stay orgkmthan need be consuming
system resources. In most applications this is not a con8ertrwhere scalability and
resource consumption is an issue, a deliberative mechdaranentifying and timely

garbage collecting defunct agents is a necessity.

Multi-agent Negotiation Other uses of timely detection of termination in agent sys-
tems is in the area of multi-issue negotiation where an gg@nicipates in numerous
interactions to acquire resources forming a compositésefor example. The overall
negotiation is only complete when all deals are closed. Seehanism for ascertain-

ing this state would be useful.
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Global Viev

Figure 1.1: Mapping local view to global view for a process

Business ProcessesConsider a business process, with internal processesitioas
and stages. The outside observer, for example a managerndoaeed to know the
details of the internal processes, but would need to keep tfedeliverables This can
be achieved by reporting or by maintaining a listbeckpoint®r observablesactions
marking stagetransitions. The external entity would then keep track atipalar
terminal states marking end of a stage and transitions flmtleading to the next

phase in the process.

A cluster of local states and transitions separated by dateg terminal states and
checkpoints or observables can be viewed as an aggregaiathanap to atatein
the partial global view, and this view maybe what is requiogdan external entity to

infer progress in the underlying process. Figure 1.1 ithtss this process.

In all these scenarios, we can envisage some protocol eaesuhat can possibly
be composed with a termination detection protocol or camsaen by a termination
detection mechanism, and in line with the last assumptiamiedtin page 7, termination

of agents can then be eventually derived.
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1.6 Thesis Roadmap

Part | presents background work, the material there is nowork apart from the
analysis where given, the updated taxonomy and the surviheaoklated areas from

the given references. In Part | ;

1. Chapter 2 provides a theoretical back drop presenting backgrouseireh in

termination detection, detailing models, algorithms drerttaxonomy.

2. Chapter 3 Briefly discusses multiagent systems, their agent modsbwiputa-

tion, distributed systems and the process or object model.

In Part Il, Chapter 5 presents

1. Definitions related to protocols, and defines minimal@eotinformation agents

can make available.

2. Atermination detection model, comprising a conversatimdel, a set of pred-

icates and algorithms for their implementation.

3. Addistributed protocol for termination detection andtdisition possibilities.

Part Il presents experimental details and results, with

1. Chapter 6 detailing experimental setup, prototype implementatxperimen-

tal design, and detailing data collection and analysis,
2. Chapters7, 8,9, 10 presenting experimental results and data asalysi

3. Chapter 11 offers a summary and conclusions
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4. Appendices A to | providing supplementary backgroundemal illustrations,
further analysis or repeated data analysis , data sumnfaridse experimental
part of the work. These appendices can be consulted wherenefed in the

thesis for illustrations if necessary.

1.7 Summary

The research documented in this thesis is about termindgbection in multiagent
systems. The problem is encountered and widely researchéidtributed systems.
There are benefits of applications that can be accrued indsnmgy this problem in
multiagent systems, but this requires consideration opgnttes of agents such as
flexible interaction and coordination through interactfmotocols, autonomy, possi-
ble runtime protocol discovery, protocol specificationisean and dynamic execution
of coordination protocol with flexible roles. Thereforeglhnighlights the need to re-
consider research with respect to agents, observing teatajeing autonomous, they

can make available additional information about prototdody are executing.

This research proposes contributions at two levels, at@¢tieal level, a considera-
tion of the termination detection problem in the agent mpded at a practical level
implementing and experimentally evaluating a mechanisrtefonination detection in

a multiagent environment.

Next, Part | of the thesis provides background material with Chapterdiding a
detailed survey of the research done in the area of terromdetection in distributed

systems to provide a theoretical backdrop for our work.

13



PART |
Background
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CHAPTER 2

State of the art in Termination detection in distributed

Systems

The problem we wish to discuss in this thesis was originalyriulated in the area
of distributed systems. This chapter serves to providefaceatained survey of the
history and state of the art in the area of distributed teatom detection. The purpose
of this being to provide a context and the theoretical uniderpgs for the proposed

research work in this area within multiagent systems.

The chapter is structured as follows; A general introdurctmthe field is first given,
illustrating briefly application areas, terminology, mtgjeand then the problem for-
mulation. A taxonomy and example classical algorithmslaee tdiscussed next. Then
finally a selection of recent algorithms is presented to cefterrent activity in the
field.

2.1 Introduction and Background

There are times when there is a need to ascertain whethedd#ioans true for a dis-
tributed system and the condition cannot be judigedlly but requiregylobal knowl-
edge of the state of the system. Distributed terminatioad®n is one example that
encapsulates this problem, other examples include dis¢ribdeadlock detection, dis-

tributed garbage collection and distributed debugging.

15



Distributed termination detection (from hereon referrecds$ DTD) is a fundamental
problem in distributed computing. It is a classical problehdistributed control, and

itis considered to be of practical, algorithmical, thematand methodical importance
[227].

The termination detection problem is related to the moreegiproblem of detection

of global predicates, a fundamental problem in debuggirgmaonitoring [16].

In general, a distributed system can be viewed as a set ai@uimus processes which
cooperate with each other to compute a task. To coordinat@gtation and exchange
data, processes may communicate with each other by mepaagig. Termination
detection refers to the necessity of determining whetheesytistem has enteredient
status where all processes are idle and no computation sship@$0 take place in the

future [233].

The level of difficulty to detect such a status depends on #tera of the distributed
system, but is usually non-trivial due to the variation afgessor speeds and the un-
predictable delays of the message delivery and the absdnglelal clocks. The
distributed termination problem was first identified by [78hd has since inspired a

lot of research interest as reflected in various literatieg, [77, 231].

DTD is closely related to other important problems such aslttek detection [178,
44], garbage collection [227, 228] and snapshot comput§di®]. Indeed with garbage
collection [227] has shown that the semantics of the tertiunaletection problem are
fully contained in the garbage collection problem and thahappropriate program
transformations, solutions for the garbage collectiorbfmm can be applied to termi-

nation detection and vice versa.
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Application of Distributed Termination Detection DTD has many applications:
It serves an important role in trdéffusion computationi78, 233] and thelistributed
workpool models which are commonly used in distributed and paratieiutational
models [7]. The work pool or the task pool model is charazesgtiby a dynamic
mapping of tasks onto processes for load balancing in whmghask may potentially
be performed by any process. There is no desired preassigrohtasks onto pro-
cesses [7]. The mapping may be centralized or decentraljz8€] observes that, in a
workpool, if the work is generated dynamically and a deadizied mapping is used,
then a termination detection algorithm would then be rexfligo that all processes can
actually detect the completion of the entire program (eghaustion of all potential

tasks) and stop looking for more work.

Furthermore, the terminated status of a distributed systeamong the stable states
(such as global communication deadlock, token loss) thailgibe known for system

administration [233]. It has also been shown that termamatietection schemes can
be applied to solve other distributed computing problenth sas deadlock detection,

checkpointing [64], and crash recovery among others.

2.1.1 Overview and terminology

A distributed algorithm terminates when it reachdsraninal statea configuration in

which no further event is applicable.

Technigues have been developed to make termination expjiciistributively detect-
ing that the program has reached a terminal configuratiors@&lare the techniques

we set out to explore in this section.

A very informal problem statement can be formulated as vedtoGiven a network of
N nodes, implement a distributed termination detectionr@lgm. Each node can be

either inactiveor in passivestate. Only an active node can send messages to other
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nodes; each message sent is received after some periodeofaiier. After having
received a message, a passive node becomes active; thet igfcaimessage is the
only mechanism that triggers for a passive node its tramsito activity. For each
node, the transition from the active to the passive stateasnayrspontaneouslyThe
state in which all nodes are passive and no messages areiowdlyes stable the
distributed computation is said to hatse¥minated The purpose of the algorithm is to

enable one of the nodes, say node 0, to detect that this staldchas been reached.

Definition of termination detection Consider this informal definition by [161],

A distributed computation is considered globally termedhif every pro-
cess is locally terminated and no messages are in transitallyptermi-
nated can be understood to be a state in which the processrisisdd its

computation and will not restart unless it receives a messag

Consider a formalisation given by [233], summarised heuej;

A distributed system consists of a set of processes{P;, P»...., P,} which cooper-
ate with each other to complete a job. Processes can comatenvith each other by
message-passing. Logically, from eahto eachP; there is a communication chan-
nel C; ;. A process may switch between two statastiveandidle. A process when
performing some computation is said to be in the active sfateactive process is free
to send/recieve messages and may become idle spontanégdnstife state, a process
does not perform any computation, but can passively receessages, on which event
it becomes active immediately and starts computationsdstinction , computation
carried out and messages transmitted by the system ard bak&c computatiomnd
basicmessagesespectively.

The distributed system is said to be terminafédi) 7, is idle and (ii)C; ; is empty

forall 1 <4, 5 < n (condition (i) is necessary because message delays are-unp
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dictable and anyiddenmessage will wake up the system later). When terminated ,
no distributed process can become active and perform athefucomputation. Extra
messages, called control messages are sent, or extra atformassociated with basic
messages to detect such a state. This is the distributethtgrom detection problem

[233].

So the following definition follows;

Definition 1. Termination detection

Let P,(¢) denote the state (active or idle) of procddsat time t andC; ;(¢) denote the
number of messages of messages in transit in the channeliast@amts from process
P; to processP;. A distributed computation is said to be terminated at timstantt,,

2.2 Classical Algorithms and Taxonomy

In early research in the areas, (1980's) the terminatioaatiein algorithms were iden-

tified roughly fall into two categories, namely;

¢ Tracing algorithmgcomputation tree based). Algorithms of this type follow th
computation flow by tracing active nodes along the messagj@skthat activated

them, and call termination when all traced activity has edas

e Probe algorithmqwave based) A probe is a distributed activity that visits al
processes in the network (can be implemented by a tokenlaiieg on a ring

or by an echo mechanism.

Algorithms of this category rely on global (coordinatedass of the network
state and call termination when no activity is found. Theidgiion can be

compared to that between reference counting and mark-stypegarbage col-
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lectors [130].

The next section considers in more detail, the two classedgofithms given in the

taxonomy above and gives example algorithms.

2.2.1 Tracing Algorithms

A tracing algorithm relies on the knowledge of the set ofially active nodes, be-
cause all activity of the computation originates from theedes by message chains.
Solutions of this type are based on maintaining dynamicaltjrected graph, called
a computation graph (spanning tree), of which the nodesidechll active processes

and all basic messages in transit [226].

Termination is detected when the computation graph becemesy. One requirement
is that the network be bi-directed , i.e. messages can bérsewnb directions via each
channel. The Dijkstra-Scholten algorithm [78] describaslation for centralized ba-
sic computations, in which the computation graph is a treb thie initiator as the root
(the only node initially active). The Shavit-Franchez Adgiom [206] generalises this
solution to decentralised basic computations and usesatfon which each initiator

of the basic computation is the root of a tree.

To illustrate in detail this class of algorithms, we consitlee details of the Dijkstra-

Scholten Algorithm below.

The Dijkstra-Scholten Algorithm  The algorithm of Dijkstra and Scholten detects
the termination of aentralisedbasic computation ( called a diffusing computation
[78]). The initiator of the algorithm (called the environnigalso plays an important

role in the detection algorithm.

Intuitively, the algorithm works as follows:
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—i— Every nodé maintains a counter. Sending a message increaséy one; the
receipt of a message decreasbky one. The sum of all counters thus equals the
number of messages pending in the network. Wihefe, initiates a detection
probe, it sends a token with a valii¢o nodey 1. Everynode; keeps the token
until it becomes passive; it then forwards the tokemdde; _; increasing the

token value by:.

—ii— Every node and also the token has a colour (initiallyndlite). When a node
receives a message, the node turns black. When a node ferthartbken, the
node turns white. If a black machine forwards the token, tkern turns black;

otherwise the token keeps its colour.

—iii— Whennode, receives the token again, it can conclude termination, if

e nodeg IS passive and white,
¢ the token is white, and

e the sum of the token value amrds 0.
Otherwisenodey may start a new probe.

A formalisation of this algorithm in given in ([226]), anddgven in Appendix |, page
346.

2.2.2 Wave-Based Solutions

Applications of the algorithms discussed above requiré¢cbenmunication channels
are bidirectional; for each basic message sent fsoog a signal must be sent froqto

p. The average message complexity equals the worst case&dtypéach execution

'Herenodeis used in place gbrocesdo include other processing entities in general.
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requires one signal message per basic message, and in ¢hefthe Shavit-Francez

algorithm, exactly one wave execution [226].

Wave based algorithms are based on the repeated executiovagt algorithmat the
end of each wave, either termination is detected, or a newe Vgstarted. Termination

is detected if a local condition turns out to be satisfied chgarocess [226].

Dijkstra-Feijen-Van Gasteren [77] is an example of a wawedaalgorithm. It detects

termination of a basic computation usisgnchronousnessage passing.

But the synchronous message passing assumed in that lahgasia serious limitation
on its general application, hence several generalisafibtoocomputations with asyn-
chronous message have since been proposed , e.g. Safaaighatgwhich introduces
message counting, counting messages sent and receivedeintorestablish that no
messages are under way [160] has similarly introduced aritdigh based on vector

counting but which maintains a separate count for eachrasgin.

It is worth noting that an alternative to maintaining megsegunts is to use acknow!-
edgements. [177] has proposed a variation of the DijkstigeR-Van Gasteren al-
gorithm to use acknowledgements, though the resultingrighgo does not offer an

improvement on the Shavit-Franchez algorithm.

2.2.3 Other approaches to termination detection

An alternative view of termination detection algorithmsearch is to consider a num-
ber of approaches in the existing literature for develogilygprithms for the termina-
tion detection problem and identify a wider range of catexgprThese are discussed

extensively in [4] and summarised here.

1. Usingdistributed snapshotdn this approach the fact that a consistent snapshot

of a distributed system captures stable properties is wsegbled with the fact
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that termination of a distributed computation is a stabtgpprty.

It follows therefore that if a consistent snapshot of a disted computation is
taken after the distributed computation has terminatedstiapshot will capture
the termination of a computation. Algorithms using this@geh often assume
that there is a logical bidirectional communication chdroetween every pair
of processes. Communication channels are assumed to &leeddut non-FIFO
and message delay is assumed arbitrary but finite.[46] ab®] discuss using

distributed snapshots for termination detection.

. Usingweight throwing. In this approach there is a controlling process. A com-
munication channel exists between each process and theltiogtprocess. All
processes start off in the idle state and are assigned a twdigbro, whilst the
controller process is assigned weight of one. The compmutatiarts with the
controlling process sending a basic message to one of tloegses. That pro-
cess becomes active and the computation starts. Weighboarneled between
zero and one , i.e. weight” (0 < W < 1). When a process sends a message it
sends a part of its weight in the message. On receiving a gesgarocess adds
the weight received in the message to its weight. Thus theaumeights on all
the processes and on the message in transit is always oneddming passive

a process sends its weight to the controlling agent in a cbm@ssage. The con-
troller add this to its weight. If its weight becomes one, tbatroller concludes

termination. [161] and [117] discuss algorithms based oigkehrowing.

. Using spanning tree. Assuminig processe$’;,0 < ¢ < N, the processes are
modelled as nodes 0 < i < N on a fixed connected unidirected graph. The
edges of the graph represent the communication channelsgihwhich a pro-
cess sends messages to neighboring processes in the ghapdidgdrithm uses a

fixed spanning tree of the graph with procégsat its root which is responsible
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for termination detection. This process communicates witter processes to
determine their states. Messages used are csitgils All leaf nodes report
to their parents if they are terminated. A parent node williirly report to its

parent when it has completed processing and all of its imatedaihildren have
terminated and so on. The root concludes that terminatierbeurred, if it has

terminated and all of its immediate children have also teatad.

. Message optimal Algorithms using this approach attempt to optimise and re-
duce inefficiencies in message complexity when concludinmination, for ex-
ample in spanning tree based algorithms. [143] discussg#s &unessage op-
timal algorithm, using a network represented®y= (V, E'), whereV is the

set of nodes an@& C V x V is the set of edges or communication links. The
communication links are bidirectional and exhibit FIFO peay. The algorithm

assumes the existence of a leader and a spanning tree in@ketw

. Usingatomic computation modelin the atomic model a process may at any
time take any message from its incoming communication chlanmmediately
change its internal stat;ndat the same instant send out zero or more messages.
All local actions at a process are performed in zero timeetioee there is no
need to consider process states when performing termmdétection. In the
atomic model a distributed computation has terminatedregif at this instant

all communication channel are empty. This is because execat an internal
action at a process is instantaneous. To find out if therergren@ssages in tran-
sit, variousmessage countingethods are normally used. This include , naive
counting, four counter methods, vector counters, chanoehters [4] In this
model a dedicated procesk,, the initiator determines if the distributed com-
putation has terminated. The initiator starts terminatietection by sending

control messages directly or indirectly to all other presss [160] has devel-
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oped a number of algorithms based on the atomic model.

6. Fault tolerantmethods assumes processes may fail, particularly failail-stfop
manner. Algorithms here detect termination in this envinent. For example
based on the weight throwing scheme a scheme called flowtohgfescheme is

developed by [48] to derive a fault tolerant terminationedéibn algorithm.

Some selected with some optimisations and robustnessdavasbns are presented in

Appendix I, page 348.

In addition to the above there are also attempts to devel@margl computing model
for termination detection. An example of such work is disagsin detail in [37]. The

next section provides a brief summary of concepts discussddntroduced there.

2.3 A general computing model and termination detection

[37] introduces a general distributed computation mo@emtnation definitions, some
terminology and predicates relating to termination déd@cind finally algorithms for

the given termination definitions.

So far the assumption has been that the reception of a singgeage is enough to
activate a passive process. In the general model introdug¢87], a passive process
does not necessarily become active on the receipt of a neggeatgead @ondition of
activationof a passive process is more general and a passive proces®seq) set of
messages to become active. This requirement is defined ®et/aS; of processes
from which a passive process is expecting messages. The &&%; associated with

a passive procedss is called a dependent set Bf. A passive process becomes active

only when its activation condition is fulfilled.
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The Communication model: A distributed application program (whose execution
is traditionally called the underlying computation) is quosed of a finite seP of
processes’, i = 1, ..,n, interconnected by unidirectional transmission chanriaks
channel G links the sender”; to the receiver;. Processes communicate only by
exchanging messages through channels; there is netthenon memonyor aglobal

clock, [37].

Communication issynchronous the following sense:

1. A sender sends a message to a channel (which then has s#sitgrfor its

delivery) and then the sender immediately continues its @xacution;

2. Channels do not necessarily obey the FIFO (first in first auée, but they are

reliable (no loss, no corruption, no duplication, no spusimessages);

3. Channel transfers (carries) a message to its destinatoaess, the receiver puts
it in its local buffer: the message has thamived. The arrived message can then
be consumed provided that its receiver has been activagedylen the request

of receiver has been fulfilled;

4. The transfer delay (time elapsed between sending andilaofia message) is

finite but unpredictable.

The process model: in addition to the discussed process model, there is a furthe
requirement expressed by aativation conditior(see below) defined over the set,DS
of processes from which a passive process Bxpecting messages [37]. The set DS
associated with a passive processRalled dependent set of FA passive process can
only become active when its activation condition is fulfilléf such an activation is re-
alized as soon as the activation condition is fulfilled (w&thout any additional delay

w.r.t the activation condition fulfillment), this constigs instantaneous activation.
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A passive process that has terminated its computationdsgdieindividually termi-

nated its dependent set is empty and therefore it can never beasadi[37].

Request models: Formulation of activation conditions strictly depends be te-

guest model considered.

1. AND model:- In this model a passive processdan be activated when a mes-
sage fromeveryprocess Poelonging to DShas arrived. It models receive state-

ment that is atomic on several messages [37].

2. OR model:- In the OR model, a passive processcBn be activated when a
message fronany process Pbelonging to DShas arrived. It models classical

non-deterministic receive constructs [37].

3. Other more complex models such@R-AND Basic k out of randDisjunctive

k out of nmodels are presented in [37].

In order to abstract the activation condition of a passieeess R a predicatéulfilleda
can be considered, whefeis a subset of P, the set of all processes. Prediodtibed,
is true if and only if messages arrived (not yet consumeai fadl processes belonging
to the setA are sufficient to activate process Phe following monotonicity property

is valid: if X C Y andfulfilledy is true, thenfulfilledy is also true [37].

Termination definitions:  The following notations are introduced to formally define

terminations of distributed computations. The notatioeduisere is introduced in [37].
1. passive: trueiff P is passive;

2. empty(j, i) : trueiff all messages sent byte P, have arrived at’the messages

not yet consumed by;Rre in its local buffer;
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3. arf (j) : trueiff a message from;Ro R has arrived and has not yet been con-

sumed by P
4. art = { processes fsuch that agr(j) };

5. ne = {processes Psuch that- empty(j, i) }.

Dynamic termination: The set P of processes is said todymamically terminated

at some time if and only if the predicaBtermis true at this moment, where:

Dterm= VP, € P: passiveA —fulfilled; (ar; U ng ) [37].

This notion of termination means that no more activity isgiole from processes,
though messages of the underlying computation can stilhleansit (represented by
possibly non empty setse; in the predicate ). This definition is interesting fearly

detection of termination as it allows to conclude a compaiteis terminated even if
some of its messages have not yet arrived [37]. It can be shiosironce true, the

predicateDtermremains true, thus dynamic termination is a stable progaity

Static Termination The setP of processes is said to Beatically terminatect some

time if and only if the following predicate is true at this ment:

Sterm= VP, € P:passiveA (ng =0) A —fulfilled; ( arr) [37].
For this predicate to be true, channels must be empty aneégses cannot be acti-
vated. Thus this definition is based on the state of both a¥laramd processes. When

compared tdterm, the predicat&termcorrespond to "late” detection as, additionally,

channels must be empty.

[37] discusses a number of theorems related to static tatromand outlines their

proofs, for exampl®term+— Sterm(leads-to relation over the predicates).
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Given this model, static and dynamic termination detectiam be discussed, this dis-

cussion is given in Appendix I, page 350 with some illustmas.

2.4 A contemporary taxonomy for distributed termination detec-

tion algorithms

[159] provides a more complete and detailed taxonomy fatridiged termination
detection algorithms, partitioning the algorithms acaogdo the following eight clas-

sification categories;

1. Thealgorithm type. This considers the general action of the algorithm. For
example most common method for constructing DTD algoritisrie consider

creation of a wave algorithm.

2. The requiredhetwork topologyMany DTD algorithms assume a particular net-
work topology for the nodes to allow correct and efficient wiébn of the algo-

rithm. Hamiltonian cycles, trees,spanning trees, ringsate often assumed.

3. Thealgorithm symmetry If each process executes an identical algorithm, and
no process is distinguished from others for any purpose,ttieeDTD algorithm

is considered symmetric.

4. The requiredprocess knowledgeSome DTD algorithms can assume that the
process have knowledge of the system initially. An assurngtan be made for
example about the static size of the network. It can be obsihat given that
this knowledge is required at compile time, this makes théqaar algorithm

less general and restricts the network from changing.

5. Thecommunication protocolProtocols can be assumed to be synchronous or

asynchronous. Early DTD algorithms were based on commtingcaequential
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processes [109]. CSP is an asynchronous protocol and thkimgsprotocol

were elegant, e.g. [92].

6. The communicationhannel behaviarThe communication channel can be con-
sidered to be first-in first-out (FIFO) or non-FIFO. Algontks assuming FIFO
are easier to construct e.g. [168]. FIFO channel can be \ahior example
with a network protocol, which can guarantee that evenfuakssages reach
an application in FIFO order. On the other hand a non-FIFQog is more

general as it can work with both type of channels, e.g. [78).16

7. Themessage optimalityit can be shown that there is a worst case lower bound
on the number of control messages used by a DTD algorithm,[é5]). This
bound means that for each message sent in the basic coroputhére is a con-

stant number of control messages to determine when teriminaas occurred.

8. Faulttolerance This is a non-functional requirement that the algorithmotsust

to failures of the network and individual nodes, importantistributed systems.

This taxonomy? and its elements are depicted in Figure 2.1. We have alsodsdte
and updated this taxonomy to reflect and incorporate algostthat have since been

subsequently developed.

20r more precisely, the set of properties by which a taxonoamytze developed.
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algorithm type

{e.g cyclic wave || Tree wave/||... }

message
optimality

{e.g optimal || non-optimal |..

network
topology

{e.g tree || hamiltonian cycle | ring |... }

DTD Algorithms

algorithm
symmetry

} {e.g symmetric || token ||... }
process fault
knowledge tolerance
{e.g fault tolerant || non-fault tolerant |... }
{e.g successors || node information |... }

communicatio
protocol

{e.g synchronous || asynchronous ||... }

communication
channel

{e.g FIFO || non-FIFO | .. }

Figure 2.1: A set of properties for Matocha’s taxonomy otrilisited termi-

nation detection algorithms




Table 2.1 gives an example taxonomy with algorithms arrdroysalgorithm type
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Algorithm

Cyclic Tree General Non-repetitive Parental re- Credit re- Other

wave wave wave wave sponsibility  covery

(Francez,1980)

v

(Dijkstra & Scholten,1980)

(Francez et. al, 1981) v

(Misra & Chandy, 1982) v
(Chandy &Misra, 1985) v

(Szymaski et. al, 1985) v

(Mattern 1987)
(Muller, 1987)
(Huang, 1988)
(Mattern, 1989)
(Vankatesan, 1989)
(Lai et al.,1992)
(Wang and Mayo, 2

004) v

Table 2.1: DTD algorithms and their associated type, adiifpben [159]




Appendix | from page 356 presents recent research actintytlze updated taxonomy
in the rest of the tables from tables ( Table 1.1 through tpfior the other categories

of the taxonomy.

A note on evaluating the performance of DTD algorithms Regarding performance
analysis and measurement of DTD algorithms, a set of metaosbe considered.

Three metrics are often deemed adequate [169], namely;

1. Detection latencyThis measures the time elapsed between when the underlying
computation terminates and when the termination algordbtaally announces
termination. When computing this latency some algorithngs £169] assume
that message delay is at most amat, similar assumptions are made in [144] and
[48] when analysing detection latency of their algorithriirsaddition message

processing time is often deemed negligible.

2. Message complexitylhis refers to the number of control messages exchanged
by the termination detection algorithm in order to detecinieation. Some

algorithms as discussed above claim to be message optimal.

3. Message-size complexityhis means the size of control data as payload on the

message by the termination detection algorithm.

2.5 Summary

Distributed termination detection, DTD, constitutes orig¢h@ basic and important
problems in distributed computing. It is not easy to detenhination of a distributed
computation because of the difficulty in obtaining a comsisglobal state in the ab-

sence of global clocks.
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DTD has been observed to be related to other distributed abngpproblems such
as global snapshot detection and distributed garbagectiole Indeed there is an
important link between termination detection and garbagiection as first described
by [227].

Many distributed algorithms have since been proposed t@sbé problem after it was

first conceived of by Dijkstra and Scholten when discussiffgging computations.

This chapter has provided a detailed survey of the clasdistalbuted termination de-

tection problem as formulated for the communicating precesdel and the numerous
solutions that have been since put forward. First the suceegidered the classical
algorithms and a taxonomy that partitioned the algorithnte waveand probetype

algorithms.

section 2.4 introduced a contemporary taxonomy, due to dhatthat gave eight crite-
ria for assessing DTD algorithms. In tables 1.1 throughZorn.Appendix | we updated
Matocha’s 1998 taxonomy of distributed algorithms withemicalgorithm proposals.
It can be observed there that recent algorithms are by ageé Esynchronous and
mostly do not make assumptions about message arrivals andaamed to be mes-
sage optimal. Most of the recent research activity has beenabile systems and

wireless networks.

It is worth noting that the algorithms discussed in this ¢deapssume a process model
(by extension an object model). So while algorithms diseds®ere lay a good foun-
dation for the study of termination detection in distriligystems in general, they
often abstract away from the underlying computation so &gtas general as possible
and hence may not be applicable directly to multiagent systehere an agent model
and differing assumptions are made. These assumptionslmtexibility of agent in-

teractions, potential runtime dynamism of multiagent smwmnents including runtime
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protocol discovery and potentially protocol specificatremision , the use of seman-
tically rich interaction protocols and most importanthethigh levels of autonomy
assumed which can manifest in agents being capable of pngwvédiditional informa-
tion about their protocol execution at runtime which may t&dnination detection

process

Therefore, following this discussioiGhapter 3 next discusses, compares and con-
trasts agents and objects models of computation. It corsside assumptions therein
in detail to motivate the need for revisiting problems emteted in distributed system

research, like the distributed termination detection fgwicovered here.
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CHAPTER 3

Distributed Systems vs Multiagent Systems

3.1 Introduction: On Agents and Multiagent Systems

Multiagent systems [220] research is multi-disciplinang aiverse. The theoretical
foundations of the field can be seen in diverse areas spagnimguter science, ar-
tificial intelligence, logic, philosophy and linguisticgame theory, economics and

sociology.

On a practical and implementation level, work on multiaggrstems and agent ori-
ented software engineering can be viewed as an evolutioofolae engineering
and multiagent systems are built on and are an evolutionstfilluited systems with
emphasis on coordination and flexible interaction and opystems. Coordination
in multiagent systems is primarily cast into a communicagooblem and effected

through interaction protocols.

Below is a incomplete list of some key issues of research itiagent systems and

some are expanded on in the next paragraphs.

—i— Agent communication languages [141] and interactiatqwols [120].
—ii— Organisations [93, 27] electronic institutions andrkeds [75, 87].
—iii— Multiagent coordination [126, 80, 50, 25].

—iv— Multiagent learning [6, 203].
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—v— Negotiation [22].

—vi— Agent foundations, theories, social semantics, camemts [252], social order

[53], roles [132] and autonomy [179], norms [54, 151].

—vii— Agent oriented software engineering [239, 253] nagént systems engineering

methodologies [36].
—viii—- Agent technologies , languages and platforms [30].

—ix— Applications [127].

Agenthood Agents and Agent-orient programming are discussed in [209)], where
agents and multiagent systems are proposed as candidstéoiomanaging the com-
plexity that is inherent in software systems. In evaluatggnt based solutions, com-
mon pitfalls to be considered in agent oriented developraenhighlighted in [248].
Multiagent systems research has not evolved in isolatidrshelosely related to other

areas such distributed artificial intelligence [29, 175].

Agentsshouldideally exhibit desirable characteristics such as autgnloat there are
some reservations [240] as to whether this is adequatetyiepand translated to real
systems in the current state of the art, leading to researeffarts in computational

autonomy [179]. Related to this is research on agent rol&s [7

Agent communication languages Agents are distinguishable by their use of rich
agent communication languages [141, 135] with communieactions (speech acts
[202]) [51] and defined semantics [140]. These semanticdliydshould be verifiable
as discussed in [246]. Furthermore, regarding agent conuaiion languages, there

has been also some efforts to define social semantics [213].
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Agent interactions Agents exist in societies called multiagent systems [24D] 2
and engage in collaborative (cooperative) or competitiberaction in achieving their
joint or individual goals. Agents can be given strategies aotocols to engage in ne-
gotiations [22] to achieve their goal. These negotiatiarsgossibly involve multiple
issues, sometimes under time constraints [88]. Agentscalsgarticipate in auctions
[133, 12] in electronic marketplaces. In some agents thepagents can engage in di-
alectic interactions such as argumentation [201] to resobnflicts in there knowledge

[224] or belief revision [154] for example.

Agent theories There are numerous parallel strands of research in ageotieke
[249]. In some theories agents can be ascribed high leveiatisic notions of beliefs,

desires and intentions [196], and have social semantiecbknmitments defined.

In practice there are various ways of implementing agergsJegic based agents, and
it has been the case that agents can be realised with the phjacligm (though with

limitations [42]), and there are some views of agents asaoibjects [99].

3.2 Multiagent systems and Distributed systems

The research areas of multiagent systems and distribustelnsg overlap. Multiagent
systems are inherently distributed systems, and disathsystems are platforms for

supporting multiagent systems.

The following represent the widely accepted notions abgents (multiagent systems)

and distributed systems;

1. Agents are generally considered taotonomousi.e., independent, not-controllable,
in theory at leastyeactive(i.e., responding to eventgro-active(i.e., initiating

actions of their own volition), andocial (i.e., communicative). Sometimes a
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stronger notion is added that of beliefs, desired, intestior example. Agents
vary in their abilities; e.g. they can be static or mobilepmaty or may not be
intelligent. Each agent may have its own task and/or roleemdgiand multiagent

systems are used as a metaphor to model complex distribraedgses.

2. Adistributed system is considered to be a collection @épendent systems that
appear to the users of a system as a single systentramgsparencys often a
key element. Processes and/or data can (or cannot) movdrsinto host, share

information, etc.

There are a number of areas relevant to both distribute@msgsand multiagent sys-

tems that can be discussed to draw parallels.

Table 3.1 gives examples and compares and contrast various asgedistributed

systems and multiagent systems, showing what is known atidimgerstood in both

areas.
| Feature | Distributed System || Multiagent system |
mobility mainly no yes
Reliability mostly yes mostly no
Availability mostly yes mostly yes
Communication simple complex
Protocols syntax-based (e.g HTTR) semantic-based (e.g.FIPA
Automatic Garbage Collectiof yes manual
Termination Detection yes not well studied

Table 3.1: Comparing and contrasting various features oftiagent and distributed
systems. Showing

The current state of the debate on agents is summarised 9, [@3d states that the

debate seems to converge to the consensus below, quote;

—i— The concept of agents is significantly different from twacept of objects in
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that it allows for a qualitatively different perspective @implex systems and

their development and,

—ii— there is room for both the agent concept and the objeuteot because they are

concerned with different levels of computational abstoact

In our research we concur with this view and seek to considerespragmatic and
practical concerns that emerge as we make a progressiordegatoping distributed

systems based on relatively simple passive objects toibgildfrastructures for agents.

In particular we propose the argument below to motivate aghllight why some tra-

ditional problems in distributed systems like the termimatdetection problem may
need further consideration within agent computational @m@edsumed in multiagent
systems. We consider autonomy, flexibility of interactiand dynamism is multiagent

environment as relevant properties, i.e.

—i— Because agents are autonomous, regarding terminatesttn, agents may
offer additional information about the execution of theiofocols to facilitate

the termination detection process for example.

—ii — Regarding flexibility and dynamism, consider the fleliyp of interactions in
multiagent systems, in particular consider a multiageaoietp with provisions

for dynamism in protocols, i.e. in such environments;

e There could be support for dynamic execution of coordimagimotocols
as proposed by [31], i.e. where the role an agent intendsltbvithin a

protocol can be played without the need of prior knowledge.

e There could be an infrastructure for dynamic protocol djpetion as dis-
cussed in [14], an infrastructure that accommodates mavisi protocol

specifications during execution in situations where theich a strong
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requirement. This approach can be contrasted with thetivadl one
where specification of protocols has largely been consitiasea design-
time activity.

e There could be infrastructure support for runtime protatistovery in

general.

We propose that given these points, there is a concrete@aserfsidering further how
issues like termination detection can be addressed withitiagent systems environ-

ments.
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3.3 Summary

This chapter has given a brief overview and account of thesasémultiagent systems
and distributed systems by considering the underlying risoofeagents and objects.
The current consensus is to view the notion of agents anaishjet as competing but
occupying different spheres and represent different $ewehbstraction and therefore
can coexist. With this background, we propose that theregsssity to consider some
aspects of distributed systems research in light of theiagdnht requirements and the

agent model.

The reason for this is that while a multiagent system is aidiged system, there
is emphasis on coordination, flexible interaction and higlegree of autonomy of
entities and dynamism in environments. We propose to censide aspect, namely
a mechanism that detects termination of agents, by comsglerteraction protocols
that are used by agents to flexibly coordinate. We can exjhi@tresearch to build
on an agent management infrastructure that can culminaie ifuture with a realisa-
tion of an automatic timely mechanisms for high level tagks $ociety wide garbage

collection.

Having identified interaction protocols as a starting poiné next chapter considers
evolution of research in protocols, leading to the curréatesof the art in the area
of agents interaction protocols and to serve as basis foassamptions we make
regarding protocols for subsequent chapters. These assmsigvere introduced in

Chapter 1 page 7.
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CHAPTER 4

From computer protocols to agent interaction protocols

This chapter discusses interaction protocols as used itiageht systems. First it
provides a background by considering evolution of proteclebw protocols are spec-
ified and implemented using current methodologies . Thisighe not about protocol
engineering or formal methods used therein for the devetoprand verification of
protocols. The purpose of the chapter is to solely providaesoontext and a back-
drop for the discussion of the use of protocols in this thasalso to give a basis for
the choice we made on the use of finite state machines in esgineg protocols. To
that end the chapter can be skipped without consequence sutisequent chapters
apart from noting the assumptions we make about the modebtdgnls we adopt as

first highlighted in Chapter 1 in page 7.

4.1 Introduction

A distributed systems centric view considers protocolsess af rules that govern the
interaction of concurrent processes in distributed systétmotocol design is therefore
closely related and often discussed in the context varigtebshed fields, such as
operating systems, computer networks, data transmisair@hdata communications
[111].

There are a number of challenges regarding protocol engiieee. requirements,
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specification, validation verification of protocols, soéine engineering challenges that
also face other systems . For example, assuming a protos@re is capable of
capturing and understanding the full set of requiremehes) in conceptualising and
designing a protocol that meets its requirements, a largyttzag has precise, unam-
biguous semantics is needed in order to capture the prot&emh a language is re-

ferred to as a formal language [115].

For this, a large body of work exists in the formal languagesa The first task in
engineering a protocol is then that of choosing an appropl@guage to describe the

protocol.

This chapter begins by giving a general overview of protectiien introduces some
formal models and examples of formal languages for the Bpaton of protocols.
The chapter then proceeds to discuss the state of the arbiacpt engineering in
multiagent systems where it is shown that by and large, thegtiwork builds on
the work done in the wider area of computer protocols. The@wraoncludes by dis-
cussing what is regarded as current challenges in engnggerotocols for multiagent

systems.

4.2 On computer protocols

The wider subject of computer protocols is discussed inildati 11], where a histor-
ical account is given, together with fundamental challesnigeing protocol designers

in designing and analyzing protocols that formalize int&aas in distributed systems.

Regarding validation and verification of protocols, vasdarmal methods have been
proposed , for example verification of protocols using mahelcking , e.g. SPIN is

coveredin[112, 113] and [214, 32, 199].
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4.3 Specifying Protocols

Protocols have been studied extensively in relation to eoeat systems, and the be-
havior of concurrent systems is usually modelled as a segueistates or actions, or
both. A specification of a protocol, i.e. what the protocdupposed to do consists of
the set of all possible behaviors, or sequences of statasid®yed to be correct. The
problem at hand often cited, is to determine a language $hatitable for specifying

a protocol in an implementation-independent way. In addihowever, this language

must allow to easily map the essential features of the pobtwtto an implementation.

4.3.1 A formal model of protocol systems

One view is to consider a protocol as analogous to a languag®at it consists of

a vocabularyof messages, a precisgntaxfor encoding the messagesgeammar
that defines the rules for composing and exchanging messaggshesemanticgor
interpreting the meaning of strings in the vocabulary. dsst spoken language serves
to convey an idea from one person to another, so a protocelde® some service
based on exchange. Therefore a protocol specification caeortsédered a precise and

unambiguous formulation of this language of exchange.

Furthermore if an assumption is made that the set of mes#agiesan be exchanged
is finite, the analogy between languages and protocols eagsy convenient, well-
developed formalisms - formal languages and finite autorfasdandard definition of
a formal language is that of a set of strings of symbols fromeone alphabet, where
an alphabet is a finite set of symbols and is usually denotéd[a84]. Relating this
to protocols,. is the set of messages that an entity can send or receivedingl
messages that come from say, the environment (such as thatexpof a timer, for

example).
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4.3.1.1 Finite State Machines

A Finite State Machine, also called a finite automaton [163,,1114], consists of a
finite set of states and a set of transitions from state te gtat occur on input symbols
chosen front. For each input symbol there is exactly one transition ogtawh state,

possibly a self-transition. The initial state, that can baatedy, is the state at which

the automaton starts, and there is a set of states called arfiaecepting states.

Formally, an automaton is represented by a 5-tdQIe>, 9, qo, 7') where() is a finite
set of statesy. is a finite input alphabely, is the initial state,I" is the set of final
(terminal) states, andlis the transition function mapping. Given the current stgte

and an input, the transition relatiod (¢,,, o) — ¢,,+1 defines the next state.

Definitions 2 and 3 provide the standard formal definitiorrsaféinite automaton and

non-deterministic finite automaton.

Definition 2. A finite automaton (FA) A is a tupl&), %, 6, qo, 7') , where

¢ Y is afinite input alphabet,

e () is afinite set of states,

e J is the (partial) next state function,: Q x ¥ — 2¢

e (o represents the initial state anfl defines the set of terminal states, g€ @,
T CQ.

§ is usually described by a transition diagram.[111]g¢,l§f € Q, 0 € ¥ andq =

§ (q,0), ando is said to be an arc from q to gnd writteng % ¢

A number of classes of FA can be distinguished, for exampierdenistic'FA shown

in Figure 4.1whereQ = { S1, S2}, ¢, = S1, T={S2}and > = {1, 0}

LOther classes are Nondeterministic Finite Automata (NF#&) ldondeterministic Finite Automata
with ¢ transitions (FND= or e-NFA).
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Definition 3. Deterministic finite automaton

A finite automaton is called deterministic if:

e ) maps each state/input pair into at most one state, i.e.
0:QxX—Q

The definition for a finite automaton above does not provide of explicitly repre-
senting or manipulating variables other than by expligitignipulating the state of the
automaton. A notational convenience for separating a nasgedf variables V that
are implicitly part of the state encoding yields a structkkmewn as an extended finite
state machine (EFSM) [113]. Formally, if V is a set of varesyleach of which can
assume a finite number of values, then the EFSM is the autongaten by (Q, VX,

5! qO)

Finite State Machines and protocols A common way of modelling protocols is by
using communicating processes [108, 109] where each masesfinite automaton
and the network of processes is connected via error-fréleddiplex FIFO channels

[34].

The formal model of a finite state machine has been applieshsiiely to the study of
communication protocols, (particularly specification aedlification), since the very
first publications for example in [3] where a pair of finite& automata were used
to model the transmitter-receiver protocol in a data comoations system. Further

early work is published in [68] [236, 35].

The finite state machine approach has also long been the dhetlabhoice in almost
all formal modelling and validation techniques [223]. Anroduction the theory of

communicating finite state machines can be found also bedfouf35].
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Figure 4.1: Example: Finite State Machine

4.3.1.2 Petri Nets

Many variations of the basic finite state machine model haenlused for the analysis
of protocol systems, both restrictions and extensions dbiserved that the restricted
versions have the advantage, at least in principle, of a igagmalytical power. In
the literature, it is cited that the extended versions haeeadvantage of a gain in
modelling power [111]. Petri Nets are one such variant ofdistate machine model.
Petri nets were first described in [189], and surveys canieda [188, 176, 33], and

Petri Nets’ modelling power and some extensions are discusy?2]

Petri net structure Briefly, a petri net,PN is represented by a bipartite directed
graph, with weighted arcs. In this graph, there are two kofdsodes, namelplaces
andtransitions The weighted arcs are either from a place to a transitioman fa
transition to a place. A place that has an outgoing arc torsitiant¢ is called input
place oft, a place that has an incoming arc from a transiti@called output place of

t.

Formally, a Petri Net structure 5-tupleN = (P, T, F,W, M,), a bipartite? graph

2A bipartite graph is a graph whose vertices can be dividemltino disjoint sets U and V such that
every edge connects a vertex in U to one in Vi.e. , U and V arepgeddent sets.
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where:

Definition 4. Petri net

P ={p1,p1,...,pm } IS afinite set of places.

T = {t1,t4, ..., t,,,} is @ finite set of transitions,

F C(PxT)U(T x P)is asetof directed arcs (i.e. a flow relation),

W : F — N — {0} is a weight function which associates a nonzero natural @atu
each element aof. If no weight value is explicitly associated with a flow eleméhe
default value 1 is assumed for the function,

M, : P — N — {0} is the initial marking,

PNT = ( (bipartite graph) andP U T # (.

A petri-net structuréV = (P, T, F, W) without any specific initial marking is denoted
by N, and a petri net with a given initial marking is denotéd, /)

Figure 4.2 gives an example of a petri net for a simplified camication network as

discussed in [176] where also explanation of the notatigivean.

Petri net dynamics The dynamics of a petri net is described by means of the concep
of marking. A marking is a function that assigns to each plao®nnegative integer,
called token; the initial state of the net is representedhieyinitial marking, denoted
with M,. From a graphic point of view, places are usually represebtecircles,
transitions by rectangles and marks by black dots into gladeplace containing a
token is said to be marked. Arcs are labelled with their wisigimd labels for unitary

weight are usually omitted.

The dynamics of the net is described by moving tokens amaexgeplaccording to a

particularfiring rule:
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Figure 4.2: Petri net example: A simplified model of a comroaton protocol,
adapted from [176]

1. atransitiort is enabled tdire if each input place of ¢ is marked with at least

w(p,t) tokens, wherev(p, t) is the weight of the arc fromp to .

2. afiring of an enabled transitiamemovesw(p, t) tokens from each input place

p of t, and addsu(t, p) tokens to each output place tof
3. the marking of the other places which are neither inputoudput oft remains
unchanged.

4.3.1.3 Petri Nets and protocols

[60] surveys the applicability of petri nets for protocoksffication and validation and
Figure 4.2 (adapted from [176]) shows graphically a verypepetri net model of a

communication protocol.
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4.3.2 Formal Languages for protocol specification

Since the models of computation usually considered ared@seoncurrent execution
of sequential processes, the primary function of a protepetification is to provide
the legal execution sequences that each process can exftibg a very natural way
to think about and specify protocols is by using a languageithbased on concepts
rooted in programming languages. In programming languyageis the study of natu-
ral languages, syntax is separated from semantics. Lapgyegax is concerned with
the structural aspects of the language, such as the symimbtha phrases used to re-
late symbols; syntactic analysis determines whether a-anogs legal. The semantics
of a programming language, on the other hand, deals with #@mg of a program,

i.e. what behavior is produced when the program statemeaesxacuted [115].

In order to create an unambiguous specification, one must lessgguage that has un-
ambiguous semantics, so that a legal phrase in the langaagedingle interpretation.
In a protocol context, this requires an underlying mathé&abimodel of process exe-
cution, inter-process communication, and the system sgaee. A language having

these properties is known as a formal description techr(igDd) [142].

A variety of languages have been proposed and developdtfputrpose of describing
protocols. Some of these languages were developed withadleofy augmenting in-
formal descriptions in protocols published by standardsrodtees, while others were
developed as aids for the design and verification of progcidhese languages can be
differentiated according to the model of computation, camioation infrastructure,

synchronization primitives, notion of time, and supportdata type$232].

Several early attempts at developing a language formgliairprotocol description
[15, 11, 10] gave birth to three parallel standardizatidiored by the International
Standards Organization, ISO, and others. The standawotfiseffort resulted in three

primary languages, namely below:
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1. Estelle [72] is a second generation FDT. The underlying model is dfagx-
tended finite state machines (EFSM) that communicate byaggihg messages

and by restricted sharing of some variables.

2. SDL:- The Specification and Description Language (SDL) was ldpesl by
the standards body CCITT. SDL is also based on an extendée §itaite ma-
chine framework and was designed specifically for the spatiin and design

of telecommunications systems.

3. LOTOS:- The Language of Temporal Ordering Specifications [28] dagel-
oped by the ISO standards body and was passed as an inteataiandard
in early 1989. LOTOS is strongly based on Milner’s calculitsmmmunicating
system (CCS) [167], with additional influence by Hoare’s C8BF8]. It falls into
a class of languages known apracess algebravhich can be characterized by,
firstly, a wide use of equations and inequalities among E®egpressions, and
by secondly, an exclusive use of synchronized communica&sothe means of

interaction among system components.

[120] gives a quick overview of these formal languages tephas and earlier work
and general treatment of formal protocol representatipeciication and verification

is givenin [26, 164, 164, 223].

A comprehensive bibliography of protocol synthesis litere, i.e. attempts to for-
malize and automate the process of designing communicapimiocols, is given in

[200].
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4.4 Interaction protocols in Multi-Agent systems

Overview The previous section considered aspects of the generabhceamuni-
cation protocols. Communication is also key aspect in ragéint systems, allowing
agents to exchange information to cooperate and to codediasks. Typically, com-
munication in multiagent systems is represented as pristoaset of rules that guide
interaction between several agents [121]. For a given sfdke protocol, only a finite
set of messages may be sent or received. So this leads teealagew of an interac-
tion protocol as captured in [25], where the roles that agplay are considered, and

the interaction is described as a finite state machine where:

1. states identify global states of the protocol,

2. transitions represent messages that are labelled wotk aentifier and a perfor-
mative. For any transition,agents playing an associatiedcam send a message

that uses the associated performative.

And to quote [25], then as such, interaction proto@sa coordination modelthe
coordination medium being the agent communication langug ACL, and the coor-
dination laws are expressed through the finite state madhaneescribes the protocol.

In our work we also take this view that agents coordinategisiteraction protocols.

In multiagent research, it is widely accepted that prot®eoé public (compare this to
agent strategies that generate agent utterances , whignizaite )[198]. A common
protocol ensures that all participants following it will @alinate meaningfully and
expect certain responses from others. There are debatesthlsonotion of common
protocols [187], in particular, concerns about difficugtia attaining common protocol

knowledge.

It is noted though that there are various ways;-
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1. protocol can be dynamically pre-arranged upon entenngtaraction,
2. protocol maybe coded in the agents,
3. agents may obtain a protocol from a repository of pubtigh@tocols,

4. an institution may dictate the protocol.

So in our work we assume common protocol knowledge, in pdatichrough points
1,2 and 3.

4.4.1 Protocol engineering in multiagent systems

There are a number of parallel strands of research on pristacal interaction be-
haviour specification in multiagent systems. [190, 86, 1@&Bfuss protocols and
protocol engineering in multiagent environments and psepmnceptual frameworks.
The standard approach to agent interactions has been reessagted, with inter-
actions defined by interaction protocols that give perrhlessequences of messages.
Examples of research activity include work done on enhanemisting methods dis-
cussed above, i.e. finite state machines, petri-nets. @tkempts consider deeper
issues of agent communication languages and the use ofrsatiea policies [98] ,

and conversation oriented approach to agent interactis |

There are some arguments that the message centric appsdauited especially re-
garding robustness and flexibility [244]. It is with thes@cerns that there are strands
of research that consider a shift away from message cemficto the introduction of
social semantics and consideration of higher level notsaieh as social commitments

and development aflommitment machine€Ms. [252].

There is also further research that consider dialectigalagehes , advocating the use

of dialogue-games. [162] surveys commitment-based ardglia-based protocols.
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It is worth noting however, that some of these approachenassume some under-
lying model of agents, e.g. logical frameworks as it is theector dialogue-based

protocols, and commitment machines can be mapped [244] tdrBDeworks [196].

The next sections considers briefly some of these approathas.

4.4.1.1 Finite state machine based protocols

As discussed above there is historical precedent to usirig §tate in modelling pro-

tocols. This extends to multi-agent interaction proto¢al].

An interaction protocol as an fsm will show states and titéorss labelled with allowed
messages. As an example consider a finite state machineeeprgon of the Contract
Net Protocol [215] shown in Figure 4.3. In that figure,andb representoles i.e. in
the rolea, an agent can send messages from thés@t, accept_proposal, cancel,
reject_proposal} to a group of agents each playing the ralén the roleb and agent
can send messages from the §etopose, re fuse, in form, cancel}. Indexing can be
used in the protocol message labels for both roles, e.g. gluathe fact that afp
message is broadcast by an agent playing «#ale multiple agents in a group. We
can writea : cfp : b(:) and more generally if multiple instances of ralexist write

a(i) : e¢fp: b(i). This setup can be generalised to multiple roles.

Finite state machine based protocols and conversationlsiacepredominantly used
in multiagent system research. A justification is given ii][&here it is observed that
it is mainly because the finite state machines have an estadliunderlying formal
model that supports structured design techniques and fanadysis and facilitates
development, composition and reuse. Furthermore finite stachines are simple,

intuitive, provide visual flow of action or communicationdaare sufficient for many

3Contract Net Protocol is a task allocation protocol thatlitates negotiation between bidders and
an auctioneer in a Multi-Agent System to form a contract.
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b(i):propose:a

a:accept_proposal:b(i)

@)

Figure 4.3: Contract Net protocol, showing messages an@xed agent roles for
protocol participants.
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sequential interaction.

4.4.1.2 Petri Nets and agent protocols

While finite state machine based protocols and conversatamtels are predominantly
used, the main criticism has been that finite state machneesa adequately expres-

sive to model interactions with degrees of concurrency.

Therefore there is some research directions that expleregh of petri-nets in mod-

elling agent interactions, some work is reported in [103, 86

Because the petri-net language is a generalisation of @ftofalmalismt then with

appropriate transformations petri nets can be derived fiiaite transition systems
[56] and reverse transformation also exists, called rdattyganalysis, is part of the
definition of Petri Net. It generates a form of FSM labelledhaPetri net transitions

and called state graph.

ColouredPetri-nets [128] have recently been explored to repregggritanteractions
and related issues. [57] proposes the use of colored pasias model underlying

language for conversation specification. The motivatitedcihere for this is that;

1. While finite state machines are commonly used, they arsufbtient for com-

plex agent interactions requiring concurrency.

2. Petri-net carry relative simplicity and graphical regmetation of Finite state

Machines in addition supports greater expressive powargpa&t concurrency.

Furthermore, a language, Protolingua [57] based on thishveals investigated within
the Jackal [58] agent development environment. For exafipld] presents an anal-
ysis of existing Petri net representation approaches mgesf their scalability and

appropriateness for different tasks.

4To express concurrency of events.
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44.1.3 AUML

There is active research on the use of AUML [21, 150] in madglagents interaction

protocols, the rationale being that by aligning this workhathe closest antecedent
technology object oriented software development, thexdanefits to be accrued, es-
pecially in the wide acceptance of agents [21], indeed tisegieview in some research
strands in Agent-oriented programming that multiagentesys can be considered ex-

tensions of object-oriented systems.

AUML is an extension of Unified Modelling Language, UML[124] and there has
been attempts to model agent protocols and interactiong itsexamples can be seen
in [136].

The motivation for the use of AUML has largely centered abtime need for mod-
elling methods and tools that supports a complete prodesgdie [136]. For example,
the use of AUML specified interaction protocols in a promatfédased designed tool

[230] has been discussed in [185].

AUML has also been used by FIPAo specify FIPA agent interaction protocols [1].
Regarding implementation, FIPA protocols implementagion multiagent tools has

been largely as finite state machings.
Figure 4.4 below shows an example of a FIPA contract-nebpodt

The AUML FIPA interaction protocol can be mapped to othenfalisms, for example
[39] provides a transformation of AUML diagrams to petrisiéo help define opera-
tional semantics of interaction protocols, i.e. the semarndf the AUML diagrams

are defined through the semantics of petri-nets. Also [102}e®w an argument for a

5Object Management Group.

SPrometheus is a software engineering methodology for degjgagent systems.

"FIPA is an IEEE Computer Society standards organizationgr@motes agent-based technology
and the interoperability of its standards with other tedbgies. FIPA has specified and defined seman-
tics of FIPA-ACL, an agent communication language.

80pen source agent platform JADE uses finite state machiresllaghaviours" for example.

59



FIPA—-ContractNet—Protocol

a: Initiator b: Participant

D cfp (action, precondition) i

]

refuse (reason-1)

not—-understood deadline

— X

propose(precondition—2)

reject—proposal(reason-2)

| ]

‘ accept—proposal(proposal)

inform J

‘
|
failure (reason) |
|
|
|

(@)

Figure 4.4: FIPA contract-net protocol adapted from [1].
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semi-automatic procedure for converting FIPA interacfatocol to their petri-net

representations in search of a better representation tdquifeatures.

4.4.1.4 Multiagent conversation policies

Another view of agent interactions is to consider a conw@sal model [59] and to
structure interactions as conversations [19] among agemiorganise messages into
appropriate contextual settings to provide a common gudgl tagents. This is done
by using conversation policie§€Ps A definition of a conversation policy is given in

[98] and current research efforts discussed in [76].

Regarding implementation, while as observed in [162], théndion of conversation
policies abstracts from any precise computational modgdractice CPs are modelled

too as finite state machines and typically these models dezlgaotocols.
Coloured petri nets [128] have been also used in conversataelling as discussed
in [59].

There have also been proposals for a conversational andination language as dis-
cussed in [18] and use of such a language in conversationtedgrogramming is

described in [20].

It is worth noting though that conversation policies hawatations of their own. Par-
ticular challenges are identified by [162] to be in flexilyiland specification of con-

versation policies.

4.4.1.5 Commitment-based and dialogue-based protocols

There is also active research directions in exploring thisonoof commitments in
modelling agent interaction protocols. Commitment arengefithrough commitment

machines (CMs), where a commitment machine defines a rangessible interac-
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tions that start insome statdi.e. no initial state is designated as such, this to be

contrasted with standard interaction protocols and fitdeesnachines [244]).

Regarding implementation, a commitment machine dealarativedescription of
states and allowed transitions in a protocol, an examplergi®®n for the a netbill
protocof [61], is given in [244].

However [251] has shown that given a commitment machine, it fatate machine
equivalent representation can be synthesised automgtiaat therefore one way to
visualise the interactions that are possible with a givemro@dment machine, is to

generate the finite state machine corresponding to the CMrasuistrated by [244].

Finally, there is also active research on the use of dialaguee based protocols, and
there have been proposals for dialogue-game based agentwuoation languages
[41]. An extensive review of these new trends in ACLs and tbe of commitment-
based and dialogue-based protocols is given in [162]. S@oent ideas about de-
signing and implementation of commitment-based inteoastiare given in [243] and
[244].

4.4.2 Discussion

We observe that the various approaches discussed aboghtiomewhat varied, can
with appropriate transformations be converted to theilenfidite state machine equiv-
alents without loss of information for the purposes of thekwwe want to do in this

thesis on termination detection; Indications of possikistence of such transforma-
tions is due in part from the fact that some model are deowatiof the finite state

machine, and in this discussion for example;

1. [245] states that each commitment machine implicitlyrdefia corresponding

9NetBill is a system for micropayments for information goautsthe Internet.
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Finite state machine where the states of the FSM correspoiine tstates of the
CM and the transitions are defined by the effects of the astaond [251] has
shown that from a declarative description of states andvalibtransitions in a
protocol, i.e. a commitment machine, a finite state machepeasentation can

be synthesised automatically.
2. AUML specified protocols can be converted to petri netd, an

3. Petri nets can be derived from transition systems [56] 486 the reverse trans-

formations are possible.

4. Conversation policies in practice are implemented atefgtate machines [162]

Research Assumptions In our work we make the assumption that agents coordinate
using interaction protocols, and that these interactiotgmols are finite state machine
based or can be reduced or transformed to finite state maeljunealent represen-
tations with preserving transformations. This is paréeiyl useful in heterogenous
environments where a common underlying representatiosatutifor interoperabil-

ity. Considering the discussion above regarding variougswa which interactions
are currently modelled, an assumption of a common undeylifmte state machine

representation and possibility of implementing transfations is not unreasonable.

To this end, our research makes assumptions that undegyotgcols are based on
the finite state machine model, and subsequent discusspns &hapter 5, page 66,

treats protocols as finite state machines, edge-labeltedtdd graphs.
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4.5 Summary

This chapter has reviewed the evolution of computer prdspcbeir formal models

and techniques for their specification. The chapter thecudised current practices in
interaction protocols for multiagent systems, and has shibwat current research in
this area extends previous work on computer protocols apbgressing towards ap-
proaches like conversations policies and declarativergegns such as commitment
machines. Often though particular underlying models farag are assumed in this

approaches.

Various extensions to existing techniques has been prdpéseexample the use of
colored petri-nets and AUML in modelling interaction protts. Petri-nets are con-
sidered to address the concurrency issues in communi¢catidrAUML is considered
to relate agent-oriented software engineering to the sstakeand widely accepted
UML approach in object oriented systems so as to encourageptake of agent de-

velopment.

But the finite state machine approach is widely used in modelnd implementing

protocols in implemented multiagent systems. Furthermaorine discussion of other
approaches, itis apparent that with appropriate transftams, it is possible to derive
finite state model equivalent representations, this olaservwe propose can help in

accommodating heterogeneity in implemented systems.

Soin this research we make an explicit assumption that aoatidn is achieved by the
message-centric interaction protocols and that this podgcare based on finite state

model as is predominantly the case.

With this backgroundChapter 5 in Part Il next considers a termination detection

model for multiagent systems interactions.
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PART Il

TERMINATION DETECTION FOR
AGENTS
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CHAPTER 5

Termination Detection for Protocols

5.1 Introduction

We have discussed in the previous chapter, Chapter 4, setdathat protocols rep-
resent the allowed interactions among communicating agantl they regulate these
interactions. They can also be viewed as specificationsesktinteractions as cited by
[212]. Agents participate in different protocols by appiafely interacting with each
other, for example, by responding to messages, perfornotigrs in their domain,
or updating their local states. Protocols can thus be takespacifying policies that
agents would follow with regard to their interactions wither agents. These policies
would for example, determine the conditions under whichqaiest will be acceded to

or permissions issued or a statement believed [212].

We have also noted in the previous chapter that there areugasipproaches to speci-
fying protocols and argued for adopting a finite state mazh&presentation and con-
sidered some unified framework where with appropriate foamgtions a finite state

machine representation may be derived from others.

Chapter 2 discussed extensive research in terminationta®ten distributed systems
considering an underlying process model of computationdddithis computational
model, the termination detection problem was discussedvandus algorithms pro-

posed over time were presented within some taxonomies.
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Chapter 3 discussed an agent model of computation, coedirésto the process or
object model used in distributed systems research, andifiderflexible interaction
and coordination as some of the main considerations in teatagodel, and also

identified interaction protocols as a means to effect both.

The chapter also proposed that we could therefore consyd&mg closely at some
research in distributed systems but within the agent mddekexample termination
detection, in light of the assumptions in the agent modelis Thorder to bring the

benefits of the termination detection applications to mgkint systems infrastructures.

These applications were covered in chapter 2, page 16. Thewes observed that
as the terminated status is among stable states ( consi@eodser example global
communication deadlock) that should be known for systemiaidtration. Other ap-

plications are listed there.

Now also recall the example scenarios introduced brieflyeztien 1.5 cited where a

termination detection mechanism can be exploited.

In all those scenarios, we can

—i— Consider agents executing a publicly visible behavgparcification in the form
of public protocols, (while the agent strategies that gateeagent responses

themselves maybe private).

—ii— Furthermore we can assume that these behaviour sicifis are in a form
of finite state machines or if they can at least with appraerieansforms be
translated to finite state machines in a unified frameworkgsed as discussed

in the previous chapter.

—iii— As part of addressing the problem of termination, wa décuss the problem
of determining when individual agents have reactexdchinal configurationgn

the protocols they are executing.
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—iv— To study the problem of termination detection in mggat system adequately
will require consideration of representative cases in fyece of interactions.
e.g., one to one (client server like), many to one (auctika)land many to
many (in general). We can consider a model for agent conensa capture

multiplicity of interactions and consider termination el&ion in such a model.

—v— Furthermore we can consider the issue of what additimi@mation agents
can avail to aid this process by observing that in multiaggstems, protocols
are made public while individual strategies are maybe matatp and that
in practical implementations of multiagent systems, thefgound to be some
restrictions on absolute agent autonomy, and provisionch sdditional infor-
mation may be in line with conditions for participation in agent society, as is

the case with auctions for example.

5.2 OQOverview

This chapter is structured as follows;

Section5.3 begins by giving basic definitions abgqarbtocols observablestermina-
tion paths unique termination pathsand defines and identifies tiskortest unique
termination pathss the minimal information that an agent can provide absunier-

action protocol, (together with its interaction partners)

The section also sketches an off-line procedure to derigaeas$t unique paths given a

protocol graph and presents an algorithm for this.

Section5.4 presents a termination detection model, where we prasepresentation
for the notion of aconversation and model this as an interaction from an agent’s per-
spective. The section also provides a model for branchingersation represented as

diffusing computatiotree, and provides a definition of a data structure, a coatiers
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matrix, c-matrix, a structure that can be used by controllers, entities Wextsee con-
versations. Given this model and definitions, the sectien #ketches a procedure for
local termination of conversations and presents accompgraigorithms and some

complexity analysis.

Section5.5 considers possibilities for distribution, and dis@ssa distributed protocol
for termination detection over a cluster of controllersj aketches a procedure of such

a protocol and gives some possible algorithms.

The section also provides preliminary evaluation of thetquol given the defined
metrics for evaluating termination schemes. Detailed tjtasive evaluation of one of

these metrics, detection delays, is given in following ¢beg

Then Section5.5.2 in page 108, discusses how a termination detectiomamnésm

may fit in within a generic multiagent systems managemenagtfucture.

Finally, Section5.6provides a discussion and summary for this chapter.

5.3 Definitions

Consider following definitions about protocols;

Definition 5 (Protocol) A protocol is a tupl€ S, —, L, T'), whereS is a set of states,
Lisasetoflabelsi—C S x L x S is a set of transitions and C S is set of terminal
states, wherd” # () andVvt € T As € S,1 € Lsuchthats # ¢t and(¢,1,s) e—.
We will sometimes write — s’ instead of(s,l, s') e—. There is some statec S

designated as a start state.
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ajcfp:b(i)

b(i):refuse:a b(i):propose:a

a:accept_proposal:b(i)

(@)

Figure 5.1: Contract Net protocol [215]. Showing roles inetlprotocol and with
indexing is used to identify protocol participants.

Example 1 (CNP). Consider a Contract-Net protocd| the protocol can be repre-
sented by the state transition system as shown in Figureddairb The protocol shown
is being executed by two ageRtdn this examplg
S$={1,2,3,4,5,6,7,8T={5,6,7,8; L= {cfp, propose.}.and— is as shown
in the Figure 5.1.

LAn agent with a task to complete can solicit offers from othgents via a call for proposals, cfp,
message.

2Messages are prefixed with agent identifiers

3Strictly speaking this is only a simple request protocatsiit is defined as a one-to-one interaction.
CNP degenerates to simple request protocol if there is amdybadder or task agent.
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By executing a protocol,each agent participating in theéqoa undergoes various in-
ternal state transitions. Each agent has a partial locel, vie. interactions it engages
in. The larger problem posed here is that of deriving a glell of system of inter-

acting agents given individual agent partial local views, eéf say quiescence of the

system is to be determined.

As part of addressing this problem, the discussion hereecein determining when
agents have reachéerminal configurations The discussion also considers the issue
of what additional information can agents avail to aid thisgess while preserving

autonomy* and not introducing too much central control.

To detect termination of a protocol, we can definermination pathi.e. a sequence

of state transitions labelled by observable messages vemidhn a terminal state.

Definition 6 defines &ermination path

Definition 6 (Termination Path)Let P = (S,——, L, T') be a protocol, then a path
of lengthn is a sequencés;, . .., s,,) wheres;, € Sfor1 <i <nands;_; - s; for
1 < j < n. The labels of patlp are defined as a sequenge, .. ., [,). Furthermore,

if s, € T, thenp is a termination path.

Example 2. Given the protocolP in Figure 5.2 below, then for example, the path

p = (1,2,5) is a valid termination path with label@, c).

Definition 7 (Observable States and Observablést P = (S,—, L, T) be a pro-
tocol, then an Observable state is a statec S s.t 3 a unique pathp, ands; — s,
wheres,, € T andp € TP, whereT P is a set of termination patiisObservables are

all the labels in pathp.

“4In this preservation of autonomy, we mean within the ruletes norms of the given society, and
assume enforcement of compliance. It is generally accaptado engineer MAS, autonomy may be
constrained somewhat [184], our agents are constrainéairittey do cannot make the decision not to
provide this information.

5Termination paths are derived by a defined termination gathsedure.
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Figure 5.2: A protocol with shortest unique termination fpat

‘O——@

Figure 5.3: A protocol with no shortest unique terminaticatip

Definition 8 (Unique Termination Path).et P = (S,——, L, T') be a protocol, then
a termination pathp with labels(ly,...,[,) is unique, if there is no path’ # p with

labels(ly,...,1,).

Example 3. Consider the protocol in Figure 5.2. The pdth 5) is a termination path,
but as both path$1,4) and (2,5) have labels(c) (2,5) is not a unique termination
path. On the other handl, 2,5) is a unique termination path, as there is no other

path with labelgb, ¢).

Definition 9 (Shortest Unique Termination Paths, Observables} P = (S,—
, L, T) be a protocol and’P the set of shortest unique termination paths, then the set
of observable® is the union of all labels in any pathe TP, i.e. O = |J O;, where

Oi = {ll‘ll € (ll,. . ,ln) € TP}

Example 4. In Figure 5.2 above, the set of observable®is- {b, c, d, &. Note that
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Figure 5.4: Shortest Unique Termination Paths

"a" is not element of the set O because the shortest unigurelstveen states 1 and
5is (3,5) with label "d".

Also Consider Figure 5.3. It is not always the case that thera shortest unique
termination path (e.gs — s, s — s, wheres’ is a termination state, does not have
a shortest unique termination path. The reason is that it@ims a cycle. If we limit

ourselves to directed acyclic graphs, then this problensdus occur.

Minimal information  Given the above definitions, the following statement can be
made: Considering an arbitrary protocol (such as that givéingure 5.2), the minimal
information (sub-protocol) that an external entity (monjitneeds to keep to ascertain
termination is the shortest unique termination paths ofpittgocol being executed,
intuitively, if an observer is watching this protocol anitioa as messages are sent;
shortest termination paths provide and answer to the quresthat are those messages
or sequences of messages that if observed we know the graga® close to the

terminal state as it can possibly Be

For the example being considered here, these are depickeglire 5.4.

73



Procedure for deriving shortest termination paths A procedure for deriving ter-
mination paths given a protocol graph can be performed onde#-line on a given
protocol or a set of protocols. Such a procedure can involyaph traversal such as

a modifieddepth-first-searcho;

—i— Perform a reachability analy8js
—ii— Extract paths leading to terminal states,

—iii— and invoke a recursive mechanism to build up and chetfueness of shortest

paths.

Onesuchprocedure is sketched below and an algorithm presentedjiorithm 1 page
80. A concrete example for illustration is given in exampie page 78 for an arbitrary

protocol graph depicted in Figure 5.6 in page 77.

Procedure for deriving shortest termination paths

1. From the start node € S Perform reachability analysis and from every path
€ P of valid paths leading to terminal statec 7', extract all labelg € L and
construct a sef,, of sequenceg/;} of lengthonemade out of the labels, i.e.
L,={{li} | l, € LNs LN Sit+1, Siv1 # t}. Note that we insist on; 1 # ¢
because labels in the immediate neighborhood of the terminal statesll be
used (see below ) to construct another 5gtis input to the algorithm, and a
testL, () L: # 0 if true will mean that thes¢/;}'s in L, are not unique and not

shortest termination paths and therefore need updating.

SNot in the strong sense of state exploration, but in the sehgiking a state and traversing paths
to the final state.
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2. Consider an index sét = {n | 1 < n < h} whereh is the height of the
protocol graph, then let the sét= U, x A, represent the set of sequences of all
lengths representing transitions of any length. Startiagfthe root state € S,

I

and fromVp € P, constructsetsl, = {{l;...li} | si+— s2 =, SpySp £ T}

where each set,, is a set of all sequences of lendih

3. Starting from a terminal node € T, construct a seL; of sequenceg/;} of
lengthonemade out of the labels of the transitions in the immediatghizor-

hood of the terminal stateie, L, = {{l,} | , € LAs; —t,t € T}
4. Initialise the set of shortest termination path8to L;, i.e. TP = L.
5. CheckL, (N L: =10

e If true returnT P as the set of minimal (shortest) termination paths.

e ElseV{l;} € L, L; update{l; € TP} wheres, s tse SteTto
include label;_; wheres; Ry s s ¢ e, update{l;} to {l;_1,1;} in

T P to include the next transition up that patle P.

6. Repeatfo(2 < n < h)

o V{l, 1...l;} €T, if {li_p1...l; C{lx} € Ax}, whereC meanssub-
sequence othen updatd/; } by appending the next transition label up the
pathp to make this sequence unique, i.e. i.e. updateto{l;,_,,,l; 1 ...}

inTP.

7. The number of terminal statesl’, is |T'|, therefore, the set of all termination

paths for a protocol with multiple terminal statesTsP = U, .,y T'Fa.

A graphical depiction of the trace of the shortest termorapaths procedure is given

in Figure 5.5 where the input as an arbitrary protocol giveRigure 5.6.
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9,

Termination Paths

K={n|l<n<h}

n L { g [(1] 7[0]} Initialise TP = Ly
————————————————————————————————————————————————————————————————— : " Check LpnLy =0

1 S Update TP
S Lp=4A1

h 2 A 4 Update TP

""""""""""""""""""""""""" b b ed [dd e

3 g } 7777777777777777777777777777777777

A3 { [e‘b‘c] [bT,d] [d,(;e] }

Figure 5.5: Showing an illustration of the algorithm for shest termination paths running on a protocol given
in example 5.6



(a) example protocol (b) termination paths

Figure 5.6: Showing and example protocol and terminatiothpaxtracted by Algo-
rithm 1. The trace of the process is shown in Figure 5.5

Example 5. For illustration, consider a protocoP shown in 5.6 (a) and the corre-
sponding shortest termination paths shown in 5.6 (b) deriwetheST P Algorithm
1 in page 80 whose trace is depicted in Figure 5.5. The folgws an illustration of

the steps.
1. step 1From the protocol graph, extract paths € P and construct sefl,, of
sequences.

o P = {p17p27p3} Where paths are :pl - (d7 C, 6)1 P2 = (b7 C, d)! P3s =
(e,b,c).

e . the set of sequencés, = {[b], [c], [d], [e]}
2. step 2ConstructA; s, sets of sequences of lendth

e A =1L, = {[b]7[6]7[d]7[€]}’ Ay = {[e,b],[b,c],[c,d],[d,c],[c,e]}, Az =

p
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{le,b,c], [b,c,d], [d,c,e]}

3. step 3Construct;, the set of sequences of labels in the immediate neighbor-

hood of terminal state.

4. step 4The set of termination path P initialised to L, derived in step 3
o ITP=1,= {[0]7 [d]a [6]}
5. step SCheck for uniqueness of paths; = {[c], [d], [e]} and L, = {[b], [c], [d], [e]}.

° LpﬂLt + ()= {lc], [d], [e] }
o -.updatel’PtoTP = {[b,d],[c,d],[c,e]}

6. step BHeighth of the protocol graph is 3;. Repeat for2 < n < 3)

e Current elements of P are [b, ¢], [¢,d] and [c, e], check if any is a sub-
sequence of some sequence element,dRecall A; = {[b], [c], [d], [e]},
Ay = {le, b, [b,c], [e,d],[d, c], [c,e]}, As = {[e, b, c], [b, c,d], [d, c,e]})

— e.g. for the first iteratio;, = Ay = {[e, b, [b, ], [¢,d], [d, ], [c, €]}
then for each ofb, ¢|, [¢, d|or|c, e] check if any is a subsequence of
some€l;] € A, and update with next transition where true, gigc] C
[b,c] € Ay. Then[b, c] € TP is updated with the next transition,in

pathp; to which it belongs, to becone b, ¢| in the updated” P

7. step 7If the protocol had multiple terminal states, then its &t is the union
of all T P;s whereT P, is set of termination paths for a particular terminal state

derived as above.
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The algorithm for shortest termination pathgp, is presented in Algorithm 1 next
where thereachability andupdate procedures used within it are presented in Algo-
rithms 2 and 3 respectively. Thep procedure declares global data structures, sets as
defined in the preceding discussion, namely $&ts A, L, L, initialised to be empty.
The variablesV and K are also as defined, i€ represents the set of indices for the
total number of final states for a given protocol with mukifiinal states, and the

set of indices for indexing sets in the sét= U, A, as discussed previously.

Regarding the invoked proceduresqchability andupdate, they have access top’s

global variables as initialised there, and their outpugstae updated global variables.
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Algorithm 1 Shortest Termination paths algorithm

procedurestp (P, s,t)
INPUT: -ProtocolP = (S,—, L, T); s€ S,t € T

OUTPUT: -A setT' P of all shortest termination paths, sequengies of.
labels, i.e TP = {{l;}|l; € L} where{l;}s are unique,
sequences, i.e. for and indexed det Uik Ay , then
VA, € A Asequencey € Ay S.ts, = {l;}

GLOBAL DATA STRUCTURES:  Setd'P, L,, L, A

INIT : N={n|1l<n<]|T|}
K={n|l<n<h}
h = height(P)
TP=0,L;=0,L,=0,A=0.

forall (te€ T Ane N)do
reachability@, s, t)

setT’'P, = L,
if L, L: = 0 then
return TP
else
updatef, T'F,, A)
end if
end for
return TP = U, << T Pa-

80



Algorithm 2 Reachability algorithm

procedure-eachability (P, s,t)

INPUT: -ProtocolP = (S,—, L, T); s € S,t € T

OUTPUT: -Updated set, = {{l;} | I; € L A s; — si41, 8101 # L},

-Updated seL, = {{l,} | l, € LAs; ——t,t €T},
-Indexed setd = Ujcx Ayx

DATA STRUCTURES:  Access tetp’s global data structures, L,, L,

forall £k € K do
traverseP’ and constructl;, s and derived
if (k= h)then
insertl; to L,
end if
end for

setLp = A

return L,, L;, A
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Algorithm 3 Termination paths update Algorithm

procedureupdate ()

INPUT: -Indexed se!d = U, Ap
-Current set of shortest termination path's;

OUTPUT: -Updated set of shortest termination paths,
DATA STRUCTURES:  Access tetp’s global data structured, T'P

repeat
forall {l/;...l,} € TPdo
forall A, € Ado
forall [, € A, do
if {l;...1,} Cl then
{li.. L}y — {lica, . 1)
end if
end for
end for
end for
update()
until A =10
return TP
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5.4 Termination detection model

The discussion of termination detection algorithms in ¢éap assumes and underly-
ing process (object) model of computation and the algostdecussed there use basic
messages and rely primarily on low level constructs suchessage counting and ac-
knowledgements. Agents use high level agent communicéigguages, ACLs, and
coordinate using structured interaction protocols thgulate their interactions, and
agent messages have a context. Therefore an entity taskedetecting global prop-
erties such as termination can use additional informatimuta protocol to carry out

the task as discussed above in section 5.3.

Additionally a particular agent can engage in multiple iattions or conversations in
pursuit of its goals. To this end we consider a conversatimaael for agent interac-

tions.

5.4.1 A model for agent conversations
Consider a number of conversational scenarios;

1. Scenario 1 An agent engages in a conversation involving the execufos

single protocol in a single interaction with another party.

2. Scenario 2 An agent engages in multiple independent conversatiomviimg

execution of a single protocol.

3. Scenario 3 An agent engages in a single conversation that triggersiawial

conversations and the original conversation is not tertathantil the sub-conversations

are terminated, i.e. consider the recursive definition afraversation.

4. Scenario 4 A generalisation of the point above, where an agent engeges

multiple conversations that have sub-conversations.
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First consider definition 10 below that defines a converrmatla this definition con-

versations can involve sub-conversations.

Definition 10. A conversationis a tuple’y, (Cy.), P, F') where(C}, ;) is a vector of its
associated conversations (if it triggered any) afds a protocol or sub-protocol (such
as the set of termination patfisP) associated with this conversatiof. € {0, 1}, is

a flag that is set if the root conversatiar), is completed, unset otherwise. Then for
notational convenience we can writgé — F' to refer to the boolean flag’ associated
with the root conversatior), ( or equivalently just writeC', = 1 or C, = 0 or

at a higher level, the notation;, — F' can be represented by a predicate such as

computeF (Cy) ).

Example 6. If during a conversatior®’; betweer(:, j) further sub-conversations ;
andC, , are triggered, wher&, ; andC; » may as well be roots of further conversa-

tions, then represent this &6/, (Cy.1, C12), P, F).

Then consider definition 11 that defines@nversation matrixC-Matrix, a structure
that can be used by an observer who oversees a conversagion aaermination

detection of procedure.

Definition 11 (C-Matrix). Let M be a matrix ofm, ; entries,1 < i« < nand1 <

Jj < n. Let eachm;; entry be a tuplg F, (Cy)), F' € {0,1} 1 < k < m for some

m, where eachC}, is an active conversation in definition 10 and;) is a vector of

root conversations. Writé/; ; — [ to referencel” atm, ; ( or equivalently just write

M, ; =1or M, ; = 0, or at a higher level, the notatiof/; ; — F' can be represented

by a predicate such a®mputeF' (M, ;) ).

Clearly regarding?, from definition 10 and 11V; ; — F' = A, C, — F (or
equivalentlycomputeF'(M; ;) = )\, <<, compute F'(Cy,) ) for the conversations in the

vector(Cy), i.e. F' set when all the conversations have been completed.
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Example 7. Figure 5.7 shows a representation of a c-matrix;. ; in the matrix repre-
sents a registered interaction betweiegnd j. A ) at (i, j) represents flag’ set, and
existence a non-empty vect@ry,) of active conversations and@ at (i, j) represents
flag ' unset for terminated set of conversations in the ve¢tgn. Conversations in
the vector(C}) are also flagged)) and () as defined in definition 10 if the current

statet in the protocol execution is a terminal state, ites 7.

Figure 5.7: Showing a c-matrix structure and flat indepertdeach conver-
sation in the vecto€’;, has no sub-conversations

Hierarchical conversations as diffusing computation tree As itis, example 7 on

the use of & — matrix satisfies scenario 1 and scenario 2 above in page 83. To accom-
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modate further scenarios, consider the use of the reculsiigition of conversations
in definition 10 to generalise the use of the conversatiomirmat— matriz. We intro-
duce a diffusing computatidriree of conversations, shown in Figure 5.8. Notice the

recursive representation of the conversations.

Definition 12. A diffusing computation tree for a conversation is a grappaer G =
(V, E) of sets satisfyingy C V' x V, where the vertex sét = {C; | —inactive(C})},

a set of active conversations, where the negétiointhe predicatdénactivetests ex-
istence of an active protocol execution associated withcieversation. E' is the
edge set, a binary relation, where an edge (¢;, ¢;) indicates that:; triggeredc;,
E = {(¢,¢) | (¢,¢5) € R C V x V} whereV is the vertex set, the set of all

possible conversations, elements of belong tol” x V.

It then follows from the recursive definition of a convereatthat a conversation graph
G is made up of subgraplds (Vi, Ey), G (Va, E,) ... G*(Vi, Ey) andV = U, V; and

E = UierE;, i.e. when a conversatiofi; triggers a sub-conversationC;, a node

v = C; and an edge = (C;,C;) are added td” and £ respectively to growG.
The reverse happens when a sub-conversation termin&ea,node and an edge are

removed.

Figure 5.8 shows a diffusing computation tree represerdimgnversation, the root
designates the conversation that spawned other con@rsaii he original conversa-
tion is terminated when the computation collapses to themode and~ reduces to a

trivial graph of ordel® |G| = 0 and||G|| = 0, anempty graph(, ).

Next, consider extending £/ C V' x V relation to bereflexiveandtransitiveand not

A variant of Dijkstra diffusing computation.
8Defined using negation this way to simplify our subsequestutsions.
9Strictly we should write”; ; as defined, but we writ€'; here for simplicity
190rder of a graph is the number of vertices, dendégld equally number of edges is denotéd||.
1\We need to extend E t&” for use as a basis of a procedure used for concluding terimimattcon-
versations discussed later. These properties are usefalibe if we take the nodes to be computational
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Figure 5.8: Showing a diffusing computation graph représgna conversa-
tion. Using labelling that reflects parent nodes. The road®0’; designates
the conversation that spawned other conversations. Eanbersation if ac-
tive maintains protocol execution or set of terminationhsal ' P. A termi-
nated conversation collapses to the root nage
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symmetrido produce a relatiols’. For example consider Figure 5.9.

1. Reflexivity, e.g. ifC; € V,C; € V, Gy, € V etc. thenC;, C;) € E', (C},C)) €
E', (Cy,Cy) € E', 18 Rycfienive = {(Ci,C;) | (Ci,C;) €V XV AV Vj i =
j}. Permitting reflexivity in the model allows a sub-conveisatto report its
local terminatiof? and self removal from the set of active conversations as the

diffusing computation tree collapses.

2. Transitivity, i.e. if (C;,C;) € E A (C;,Cy) € E = (C;,Cy) € E, or
more generally Ry ansiive €V x V ={(C;,C}) | 3C; €V st Ci v
C; A C; — Cy }, where notation”; — C indicates an existence of
path fromC; to Cj. Allowing transitivity provides and additional safety e
before removing nodes, e.g. for some root conversationest if R;,qsitive =
{(Ci,C) € E' | (Ci,Cy) € E' YCy, € V} = () before removing ang; in the
path toCy, s.tC;,Cy € E andC;, C; € E' from V andC; from V, i.e. test if

there are no descendant conversations transitively cetatg;.

3. Notsymmetridbecause clearly if a conversatiohtriggers conversation@,; i.e.
(C;,C;) € E', itis not the case that; triggers conversatiofy;, i.e. (C;, C;) ¢

/

E.

That is, we defineeflexiveandtransitiveclosures of to be the graplt’ = (V, E'),
whereE' = E U Ryefienive U Riransiive, the idea is to use these extended properties
in a procedure that collapses the conversation tree safedynwonversations (nodes)
complete and are removed from the tree until eventu@lhgduces to aempty graph
(0,0).

as is the case with diffusing computations, then the nodesese operations to remove themselves
from the computation tree. A data structure to represergitaphG(V, E), can be maintained e.g. in a
form of an adjacency matrix and node can inspect and maneihes data structure.

12Recall that these nodes are computational
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Example 8. Consider Figure 5.10 that shows a relatidnz’ = R ¢ V x V , an
extended edge sét of conversatior;’ = (V, E') representing set of pairs of con-
versations such that one conversation is triggered by ardthr the example diffusing
computation tree given in Figure 5.8. In this example asstiradiffusing computa-
tion tree presented in Figure 5.8 is given concrete labelshdihat the conversation
G = (V, F) is rooted atC, with C, triggering Cy, and Cj; Cs triggering Cs and Cs;
Cs triggering Cs and C7. The original conversation(; completes when eventually
E' = (). Nodes designated If) show reflexivity of the Relatioli’, i.e. we allow that
if a conversation is triggered by another, then we assumetkigatriggered conversa-
tion has also self triggered trivially , i.6.(C;, C;) € E' | C; = C,}, this can be used
in a heuristic to ensure that when a conversation is comgl#te edge is removed from
Rycflezive C FE' and the node fronk’. Alternatively for inspecting?, ¢ fiezive C E' for
active conversations, checking set membership, withauétsing the graph in an im-
plementation where the computational nodes update thithsetselves, for example.

The figure also shows relatiaRy;,. ... Used in Algorithm 4.

13Grid used to show the cartesian product V. Number labels on the axes for set elements represent
identifiersi for conversation nodes.
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(Cp, C5)

Figure 5.9: Example conversatiad = (V, E') showing transitivity and re-
flexivity of the edge selb’ after extending edge séf with R, fcqive and
Ryransitive to derive arelation’ = E U Ryocierive U Riransitive
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Figure 5.10: ShowingE' CVXV =E U Rycficzive U Riransitive aNd SOMeE
sample elements for a conversatién= (V, E). In this example assume the
diffusing computation given in Figure 5.8 is given concrietieels such that
the conversatiod: = (V, E) is rooted atC; with C triggeringC; andCs; Cy
triggering C3 and C5; C triggering Cs and C;. The original conversation,
C, completes when eventualyy = ()
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Procedure for local termination So the following procedure local terminatiéf

follows.

Consider a predicatmactiveraised in Definition 12 page 86 defined over conversa-
tions. It evaluates false for an active conversation thagmactiveassociated protocol
execution and its extended edge Bets not empty, i.e. consider definition 13. Con-
sider also predicatmactiveProtocoldefined over protocols that tests whether a given

protocol execution has reached a terminal state, i.e. densilgorithm 5

Definition 13. For a conversatiorC; = G(V, E'),
—inactive (C;) & active(P;) A E # (), where for an associated Protocol or

sub-protocol P, active(P;) < currentstate(P;) ¢ T

Giventhis discussion, a sub-conversatigriocally terminates when predicateactive(C;)
defined on conversations evaluates true and hence whesdsiai®d protocol execu-
tion completes andhactive Protocol evaluates true. A protocol execution completes
when one of the terminal states is reached. The overall csatien is completed when
the root node is eventually removed frdrmand last edge fronk’ andG reduces to a
empty graph(), ®). When removing nodes, test to check existence of adjacefgsno

and transitively related nodes. appendix:terminaticecten.for.protocol

Consider Algorithm 4 below suggested by the discussionrsbifa algorithm traverses
the treé® in breadth-first and at each node evaluating whether ther@grdescendants
conversation nodes i.e. evaluatingdf.....i.i.. = 0, testing for if the protocol is active
usingactive Protocol predicate and removing that node with a procedur@ove if
the above is true. Whefi eventually becomes empty, the associated Hggdefined

in Definition 10 in page 84) of a conversation can be set.

14| ocal because we refer to a conversation, not a set of allersations an agent is engaged in.
5For further illustration of this algorithm, consider an exale trace for execution of this algorithm
given in Appendix A, Figure A.1 in page 261.
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Also consider Algorithm 5 that specifies predicatective Protocol defined over pro-

tocols.

Algorithm 4 Diffusing conversations algorithm

procedurenactive ( )

INPUT: -Conversatiorty = (V, ) rooted at’;
OUTPUT: -Booleari” or F'
DATA STRUCTURES: Graplz = (V, E), i.e. setd/ andE

INIT : Initialise setsV and E to vertices and edges ¢f. Initialise SetsR, . fezive,
Rtransitive and constructset’ = £/ U Rreflexive U Rtransitive

repeat
forall (C; €V | (C;,C;) € E U Rycfiexive) 0O
if (R = {(Cj, Ck;) ‘ (Vk a0, € V) VAN (CZ, Ck) S Rtransitive} = (Z)) then
if —inactiveProtocol(C; — P;) then
remove (7, C;)
end if
else
active(@,)
end if
end for
until (G =0,0)

procedure-emove (G, C})

INPUT: -Conversatiorty = (V, E) rooted atC;; vertexC; s.t(C;, C;) € E'
OUTPUT: -Pruneds = (V, E); UpdatedE' i.e. E, Ry iczive AN Riransitive

ComputelV =V — C}
ComputeE’ = E' — {(Cy, C)) | Vk (Cy,C;) € E'}
return G = (V, E)
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Algorithm 5 Algorithm for predicateuctive Protocol

procedurenactive Protocol ( P)

Let P be a protocol and |€f' P be the set o§hortest unique termination patisth
observable® C L, L set of all labels.

INPUT: A protocol trace, labdl € L or sequence]
OUTPUT: -Booleari" or F

DATA STRUCTURES: Vp = (s1,...,s,) € TP, there is a state; called current
execution state gj.

INIT : Vp = (s1,...,s,) € TP initialise its current execution state $o.
repeat

Let/ be a message sent by an agent.

if { ¢ O then

forall p = (s1,...,s,) € TP do
Setp's current execution state tq.
end for
else
forall p=(sy,...,s,) € TP with current execution state do
if S; 'L> Si+1 then
p'S current execution state becomegs;
if s;41 = s, then
set terminated to true. {-Specifically fp}
end if
end if
if S; >7L> Si+1 then
setp’s current execution state tq
end if
end for
end if
until TERMINATED
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Discussion of the algorithm’s complexity If the algorithm has to visit all nodes and
all edges when testing and removing nodes from the comput#tee, the time and
space complexity will be in the ordé? (|V| + | E|). Or equivalently , if théoranching
factor of the treeb and tree deptll were to be known at any time, then theoretically,
like the breadth-first-search the time and space complexities can be expressed as
O (v%) [55, 134].

In practical terms, for the protocols we are considering uitiagent applications, it is
worth pointing out that the protocol graphs used in agemdratdtions as for example
given in the FIPA protocol suite [1], are not very big. For exade, consider the
ContractNet protocol [215] given as an example illustratdan FSM representation
of a protocol in Figure 5.1 in page 70 or consider an equitaf¢RA Contact-Net
representation from the FIPA protocol suite in AUML notatshown in Figure 4.4 in
page 60. Both examples show typical graph sizes of the potstdlcat are considered

in multiagent applications.

In addition, if as it is, the implementation can be such thatriodes can individually
update the set data structure 6, then an algorithm that then inspedisto answer
guestions about the state of the diffusing computationwiégield better complexity
thanO (|V| + |E|) as it will just test set membership fi . We give a further detailed
discussion of algorithms discussed in this chapter in AdpeA in section A.4, page

268.
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5.5 Distributed protocol for termination detection

Consider a smalf set of controllerg€ = {C,, | n € N} modelled as a fully connected
network and consider a given agent whose protocol exeaitiom observed by these
controllers. Recall from definition 11 that entries ; are tuples F, (Cy)), with F' €

{0,1} and withm, ; — F written to referencd’. [ indicates whether conversation

C}, is active or completed.

So one approach is for each controligr, to compute, based on the— matriz it
maintains, for a givemth row, (agent),/\\,j m;, ; — I, i.e. check ifall flags/" are set
at each of them, ; entries in theith row. Also recall that eacm; ; — F is in turn
computed from\ . _,_,, Cx — F where eaclC; here refers to an entry in the vector

(Cy) of active conversations at; ;.
So consider some logical global matriz M and definition 14 below.

Definition 14. Given an ageni and a setC = {C,, | n € N} of controllers , let the
global conversation matriM be partitioned across Controller&C, }, i.e. such that
Nnen Cn (M ) = 0, whereC,, (M; ;) indicates a set of entries frofdl; ; assigned
to controllerC,. Write A\, M; ; — F asC}, — F for \,.M;; — F computed by
a controllerC,. Then/,_C! — F for all controllers in{C, | n € N} indicates
global termination for agent i if true

Example 9. Consider Figure 5.11 showing a global math4 partitioned across con-
trollers in {C,, | n € N}. If all the entriesM; ; — F evaluate to true on row for

all columnsy, then all conversations associated withave completed,i.e. because

all the M; ;s on rowi are partitioned across controllerC,, } termination is global if

A,en Ch, — F evaluates true.

160bserving that the number of connections is quadratic intrarrof nodes,"22*”, order© (n2)
1"The significance of "agent" here is that if we seek a globaéstdiere all agent interactions have
terminated, e.g. if we seek quiescence, each controllareing) conversations for this agent have to

report termination.
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Now, there are various ways to implement a glabal matriz M.

1. PartitionM logically by allowing each controller to manage a separaigyc
of a ¢ — matriz and using global identifiers and ensuring that conversation
for a particular pair of agents instantiatiofisj) are registered on a particular
controller, i.e.),cx Cn (M ) = 0 in line with definition 14, e.g. Figure 5.11,

i.e. there is no overlap.

2. Allocate M logically across controllers allowing each controller tamage a
separate copy of a — matriz and using global identifiers but allowing that
somé8conversations for a particular pair of agents instantieia, j) can reg-
istered on different controllers, i.e. allowirig, _ C, (Mi,j) # (), e.g. Figure

5.12

Furthermore, Appendix A, page 263 discusses additionatationfigurations that

can be considered for implementing a global matriz M.

Figures 5.11 and 5.12 next illustrate configurations onetarndrespectively as dis-

cussed above.

18But not the same conversation, i.e. some from the vectomtm; ;.
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Figure 5.11: Showing example global matrix partitioned@s controllers
enforcing the conditioff), . C,, (M; ;) =0

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, T ———
i
v | ]

Figure 5.12: Showing example global matrix allocated asrosntrollers al-
lowing overlaps, i.e[), .y Cn (Mi ;) # 0
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Assuming setup$ and2 above, and a set of controllefs= {C,, | n € N} modelled
as a fully connected network, the controllers can synclsensing message passing
to compute), .y C., — F for a given agent to ascertain termination or compute

Nnen Gt — F if quiescencé?® of the system is required.

A designated controller, sa§,, may propagatguery messages to other controllers
and aggregate to compufe, . C. — F from thereply messages carrying local val-

ues ofC! — F, this at a cost o2 x (n — 1) messages, ordé? (n) %°.

Local computations by controllers th = {C,} to deriveC’, — F will involve tests
of the predicaténactive (defined in Algorithm 4) over all active conversations in the

vector(C;) atm, ; entries in a locat — matriz m at each controlleg,,.

Consider Algorithm 7 below that implements the scheme above

19No activity in the system, state of being quite will all protd execution complete.
200 (n) because one controller sends and collates results to deefanination, clearly in the worst
case, theoretically if every controller was sending to otire will have O (n2)
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Algorithm 6 Global termination on controller&C,, | n € N}, reported byC, for a

given agenti. Cy sendsquery messages and concludes termination by aggregating
results including its own

procedurelobaltermination ( i)

INPUT: -agent identifief;
OUTPUT: -Booleant” = {0, 1}; ¢ — matrix m
DATA STRUCTURES: C={C, | neN}
forall C, € Cdo
if C,, = Cy then
repeat

(Ci — F) «— localtermination(m.i)
(€}, = F) «— query (Cy, i)
until A _C! — F
else
(C! v F) «— localtermination(m.,i)
end if
end for

neN

return (A, _yC: +— F)

neN
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Algorithm 7 Local termination on controllet, for agenti, handlesyuery (C,, 1) mes-
sages fronTy, returnsC, — F from this controller

procedurdocaltermination (M, 7)

INPUT: -agent identifie¥; ¢ — matrixz m
OUTPUT: -Boolear¥” = {0, 1}
DATA STRUCTURES: locak — matrix m
repeat

forall j do

forall m;; — Cj do
F «—— Njcp<, inactive (m; ; — C)
end for S
end for
until £

return (F)
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Procedure for global termination  So given the discussion so far, we can summarise
the procedure for global termination. In addition consitther following observations

and practical considerations regarding the procedure.

1. Define awave as the basic sequence of sendingjoérymessages followed by
the reception of associateeply messages in line with the discussion in section

2.3, page 350.

2. Observe the symmetric nature of conversations, i.e. fmiaA;, A; € Athen
(A, Aj) € Ax A= (A, A;) € Ax A, soitis sufficient to maintain one

entry in thec — matriz for the pair(A4;, A;).

3. All agentsA; € A send partial protocolgérmination pathgor full protocols as
payload forregistrationmessages t6,, € C andreply to querycontrol message

in wave with payload as protocol traces or labeis L.

4. Designate one controll€y € C to conclude termination using predicdoeal-
terminationtested on the global — matriz M cache.C, sendssync control
signals to all controllerg,, € C,n # 0 to trigger cache updates. For failover,
this role can be transferred to afly as all controllers have the same instructions

apart from one being identified &s for this purpose.

5. Using a globat — matriz M cache instead of the full use of bidirectional com-
munication to coordinate,reduces control message traffiather controllers.
This can be reduced further if cache updates are made peoadndependent
controllers without the need famnc signals. Regarding potential failure of the
tuple spaces, standard replication and recovery mechari@mshared memory

can be used. for example [182] discusses distributed sinaeeabry issues.

6. We distinguish between two usage scenarios; global textion of an agentl;’s
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interactions oquiescenc®f the system, i.e. considering global termination of

all agents4; € A.

7. While the procedure is configured to ascertain terminatibcan be easily
adapted to provide continuous observation of protocol etkees and be used

as a basis for some crash recovery mechanism for agents.

8. Furthermore as observed in Chapter section 2.1 pageel$ethantics of garbage
collection problem are fully contained in the semanticdeftermination detec-
tion problem, hence we can a derive garbage collection selirzm the termi-
nation detection scheme. Therefore we could use this puveess a basis for

marking terminated agents for garbage collection

Figure 5.13 summarises the discussion so far.

Note in that figure, that in the blocR2 regarding registration of active conversations,
this refers to conversations a particular agent embarksndnhance it is aware of

its conversation partners , its role and the protocol itipgates in. At the start, if
(A;, A;) € A x A are a pair of agents participating in a protoé¢glwhereA = {A,,}

is the set of all agents, then initiator of the conversaftforan register a conversation
with a controllerC; from the set of controller§ = {C, }. For this registration, consider

a predicate-egister(i, j, P,C,) that can be implemented to send a control message to
some controllec,, € C. The controlleiC,, handles this message by inserting an entry

Zinto thec — matriz M at (i, 7).

Furthermore as remarked above (second point), becausersations are symmetric,

one entry need be maintained in the matriz M, i.e at(i, j) and not afj, j) too in
M.

21This maybe an interesting research work to follow work désad here.

22Recall that a conversation encapsulates a protocol executi

23 A new conversation as given in Definition 10, a tubig, (), P, F') with F = 0, empty sub conver-
sations initially, i.e()
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Also note in Figure 5.13, that in the statement blédk regardingsync operation, this
is discussed above (fourth point). Consider a predigate:(C,) over all controllers
in C, € C. The implementation of this involves sending a control ragssto all
controllers by a designated controllés, querying for the flagF' computed by all
other controller€’,, € C for a given agent,. This is shown in thguery predicate in
within Algorithm 7 presented in page 101. Similarly see Altom 8 in Appendix A

in page 267 for the other configurations for distributingthe matriz M.
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5.5.1 Evaluation of the distributed termination detectionprotocol

As discussed in section 2.4, page 34, a set of metrics camisédeved regarding eval-
uation of distributed termination schemes, namgdyection latencymessage com-

plexityandmessage-size complexiBriefly;

1. Detection latencyQuantifying the period between when the underlying compu-
tation completes and when the termination algorithm alt@wdnounces termi-

nation.

2. Message complexityalso communication complexity, refers to the number of
control messages exchanged by the termination detecigmmitim in order to
detect termination. In general, it is indicated by [1538ttthis is less significant
in a distributed algorithm unless the communication coxipleauses sufficient
congestion to slow down processing. Clearly also in practsay in an agent
platform, there will be an upper limit on the number of agemtslatform can
host and scalability issues naturally arise, but theca#tyiin a broadcast scheme

complexity is of the orde© (n) as discussed below.

3. Message-size complexitgfers to the size of the control data as payload on the
message by the termination detection algorithm, that ig; big the messages

are.

Regardingdetection latencywe investigate this extensively in the experimental setup

discussed in the next chapters for the prototype implenienta

Regardingnessage complexjtwe do not assume a particular topology for the agents
in the multiagent system in that associations between agaatdynamic. One possi-

bility is to assume a&lean graph (see definition 16).
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In addition we can discount topologies that require agenpgss on control messages

to other agents en route to controlfér

Therefore we choose to use a broadcasting scheme (fromollerdrto agents), to
implement thewaves Also in the broadcasting scheme, the total number of contro
messages will be influenced by the periodicity parameten@tontrol waves, but the

message complexity for the wave@¥n).

Definition 15 (Broadcast) A broadcast operation is initiated by a single node , the

source, and the receivers are all other nodes in the system.

Remark 1 (Lower bound) Message complexity of the broadcast is at least, order
O(n).

Proof. The proof is trivial, every node must receive the message. O

Definition 16 (Clean) A graph, system or network is clean if nodes do not know the

topology of the graph.

Regarding themessage-size complexiguery messages are light and as remarked
abovereply messages carry as payléagrotocol traces or labels and therefore are
equally light. Registration messages a heavier but segtande for a given conversa-

tion, carrying partial protocokérmination pathgsor full protocol graphs.

24There are notions of malicious agents in multiagent sysketan manipulate messages. Consider
a scenario of an auction.
25Serialisation of structures can be used to implement this.
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' Controllers in ¢ = {Cn|n € N} register with eadh
other to create a fully connected network
VC;,C; € C,i # j, register(C;, C;)
-VYC,, € C initialise local ¢ — matriz entries m; ;
to empty

-Initialise tuple space cache ¢ — matriz M
entries M; ; to empty
- Designate controller Cj to report termination

52 - Define A = {A,}, set of all agents

-If (A;, Aj) € A x Ais a pair of interacting
agents, then register the pair’s active conversations
using the register(i, j, P,C,) predicate (pg. 103)
with any controller C,, € C'.

- C,, inserts into or updates a conversation in vector

<Ck> atm; ;

REPEAT
3
- Controllers in C = {C,|n € N} execute waves,
querying for protocol traces and receiving replies
with protocol traces from agents 4; € A
oo .
REPEAT

84 - Designated controller Cy = {C,, € N} tests globaltermination predicate
for a given agent A; € {A,,} or VA, if quiescence is tested.
-VC,, € C synchronise to update cache M

using predicate sync(C,) (pg. 104)

§4.1-YC,, € C with local ¢ — matriz m test predicate localtermination

for agent A; € {A,,} or (VA; if quiescence is required).

S4.1  -For an agent A; € {A,,} or for V.4, if quiescense
required, test predicate tnactive over all root
conversations i.e

VCii € m; j — (Cy) test inactive(m; ; — Cy,)

S4.1.1 - With all agent A;s protocol snapshots,sequence
[{] of labels I € L, test predicate active Protocol
over registered full protocol or subprotocol
(termination paths) on nodes of the diffusing

-Remove complete conversations and collapse tree
tree of conversations computation

- Derive global termination by testing predicate localtermination on cache M

Figure 5.13: Showing the distributed termination detectmwotocol



5.5.2 Proposed architecture for termination detection

Figure 5.14 illustrates how a termination detection medmamay fit in with a generic
multiagent management architecture, not only to reponitgtion, but also to pro-
vide continual observation of interactions and visuaisaperhaps by driving a vi-
sualiser. Furthermore the mechanism can be used to drivatamatic garbage col-
lection scheme, for example in the mark phase ohark-and-sweepype garbage
collection algorithm [130] that can be used to clear muliggegistries of terminated

agent$®.

We implemented a prototype for aspect | and Il for flat coragos<’ in order to
evaluate the detection delays metric using an experimeatap based on simulated
execution of an arbitrary protocol to make the experimergeageral as possible and
generate large datasets. We propose aspect IV for furthe, @od IIl as in the cur-
rent setup we assume existence of the protocol librariesto€wl libraries are also
discussed in existing literature, though the is no stangaddmplementation of such
libraries. We imagine that the core framework of the propgoset up can be imple-

mented with existing finite state machine libraries e.g.0f5jelated languages.

Agent registries and some aspects of visualisation comysrage implemented on
most multiagent platforms and these visualisation comptatan be easily augmented

with protocol visualisation primitives.

Finally, Appendix A, page 268 gives a discussion of the atgor complexity issues
for algorithms for predicates discussed in this chaptertardassociated data struc-

tures.

26As remarked, the discussion of garbage collection in agerdstside the scope of this research,
but maybe an interesting and natural consequent follow seareh work.

2TRegarding implementation of nested conversations, thisb@idependent of the agent platform,
for example JADE agent platform provides a construct cadldaehaviours, a non-deterministically
scheduled multi-threaded construct, therefore this causbkd.
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1v Agent Registry Management

GC API

Garbage Collector template

Agent Registry API

Agent Registry

DTD API

Distributed Termination Detection

Controller template

~

Controller template

Controller template

— registerClusterMembership
@ handleAgentTPsRegistration
Q loadbalance(....

q generateDTDQuerySnaphotsWave....
Q evaluateProtocolSnapshots(....)

.)
-)

Q driveGarbageCollection(....)
Q verifyProtocols(...)
Controller template

DTD AP!
[} X

DTD API
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Visualisation

Visualier API

Tsualiser template

Visualiser API

FSM Library APl

Agents API

— ComputeTPs(....)

FSM Protocol Library

l Protocol Specification Transformations

FSM Library API

111 Protocol Library

— registerTPS(...)
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Q exccuteProtocols(....)

Q handleDTDSnapshotQueries(..)

Agent template

1 Agents Space

Figure 5.14: A proposed termination detection architeettor a multiagent system.
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5.6 Summary and Contributions

We adopted a computational model where agents are autorssfndistributed, asyn-
chronous processes that use an agent communication laguagmmunicate and
use interaction protocols for coordination and interactoth other agents in conver-
sations to achieve their goals. And, agents form sociea#isct multiagent systems

that are modular distributed systems and have decentlalai and control.

We viewed protocols as behaviour specifications that aréghyliewable ( whereas
the individual agents’ strategies that generate respotskeances are private) and as-
sume that protocols they are in the form of finite state mahirdge-labelled di-
rected graphs , and to support homogeneity in a heterogenoltisgent environment,
assumed existence of unified protocol framework where ther@reserving transfor-
mations of other protocol specifications to finite state nvaeh for the purposes of

termination detection.

In this context we have;

—1— Presented definitions in relation to protocol graphslileg to the definition
of minimal information in the form of shortest unique ter@iion paths that

agents can register with an observer of interactions.

—ii— Presented an off-line procedure and concrete algostto take as input a given
protocol graph to produce a sub-protocol, a’Bét of shortest unique termi-
nation paths given possibly multiple terminal state to espnt this minimal

information.

—iii— Presented a termination detection model. In the meagdetefined the notion

of a conversation that encapsulates protocol executiofasia of interactions

28With restrictions that agents have incentive to partigpat there are enforceable conditions for
participation in the society.
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from an agent’s perspective.

—iv— We modelled a branching conversation as a diffusingmdation tree, and
provided a definition of a data structure, a conversatiorrimyat-matrix, a

structure that can be used by controllers, entities thatseeeconversations.

— Vv — Given this model and definitions, we presented a proeefdurocal termina-
tion of conversations and presented accompanying algoesitnd some com-

plexity analysis.

—vi— Explored possibilities for distribution, and pressht distributed protocol for
termination detection over a cluster of controllers, aithily connected or
coordinated through shared memory, a tuple space. Furtnerdiscussed

practical considerations.

— vii — Identified the main metrics for evaluation and prowdareliminary evalua-
tion of the protocol given these defined metrics for evahgathe termination

scheme.

—viii— Explored how the termination detection mechanisnyifi@in within a larger
generic multiagent systems management infrastructutenpally driving garbage

collection of agent registries and interaction visual@atomponents.

—ix — Offered some perspective on the complexity issueseatforithms proposed

herein

Following the discussion here, Part Il next, Chapter 6 next discusses the proto-
type implementation, simulation, experimental design #aedproposed data analysis
for the experimental part of this thesis for the flat conveos@al model used to eval-
uate the termination detection mechanism and its configunain an existing agent

middleware implementation.
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ThenChapter 7, page 131, presents results for the partial protocol cordtgn of
the mechanism, followed b€hapter 8, page 157 that presents results for the full
protocol configuration, followed bghapter 9, page 175 that offers some perspective

and exploration of the comparisons between these two setups

Finally, Chapter 10, page 187 presents results for the distributed configurat
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PART Il
EXPERIMENTS AND RESULTS
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CHAPTER 6

Prototype implementation, experimental design and

data analysis

6.1 Introduction

We have discussed in the previous chap@drapter 5, a termination detection mech-
anism for making termination of agent interactions explicia distributed setting and
provided a general framework for implementation and defiheele standard metrics

for evaluating this mechanism.

This chapter follows this and discusses the prototype imptgation , experimental

setup , experimental design and data analysis methods tedokeiuithis research.

The chapter provides an overview of a set of experiments toobsidered and also

discusses how the evaluation of these experiments will be.do

6.2 Overview

Section 6.3 starts by presenting an experimental setup for exgdhe termination

detection scheme. Here we present a sample protocol foxpgeiments and discuss
the setup for the simulation. A simulation was chosen to nia&evaluation as general
as possible and generate large datasets in a controllesbement to aid exploratory

comparisons between configurations. In addition this agugrevill provide a standard
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experimental environment for evaluating and comparisofutifre work on further

mechanisms for termination detection.

The details of the prototype implementation are giveSéction6.4, where a popular
FIPA compliant multiagent framework was chosen. The frapr&wrovides agent
containers, agent communication language (FIPA-ACL) thasessaging , protocol

templates, distribution and inter-platform interopelipfor agents.

Section6.5 discusses the experiments to be conducted on the goetotplementa-
tion within the experimental setup, detailing various lewa quantitative experiments

as briefly introduced in this section.

Section6.6 presents the data collection and data analysis metloogsesl. \We opted
to use resampling methods, efipe bootstragfor analysis of data sets, the rationale
as explained in section 6.6 being that these methods do ria oralerlying distribu-
tional assumptions on the datasets ,e.g. normality, of #te sets, and also provide
robust confidence intervals and offer a mechanism for trgaiutliers. The main cost
however associated with these methods is that they are datignally intensive as
they involve resampling a dataset that is treated as popnlaf separate theoretical

overview of these methods is given in Appendix D or in thenefiees provided.

Finally, Section6.8 then provides a summary to reflect on this chapter.

6.3 Experimental setup

Details of the implemented aspects in the prototype arengieetion 6.4, next. So this

section can be read in parallel with section 6.4.

For the experimental setup, consider a simulated scen&goeragents execute a finite
state machine based protocol as depicted in Figure 6.1 bekaw all intents and

purposes, this could equally have been any finite state machkpresentation of any
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protocol for any of the scenarios given in section 5.1, wiienesitions labels are ACL
messages that make sense in a given scenario’s protocahislexample, protocol

labels depicts contents of ACL messages.

>

=
1
'
! =Y
1 i
=l R

e > |

¥ g

i d—h

(a) An arbitrary protocol for experimental analysis

b—c

Figure 6.1: An arbitrary protocol, showingbservable statesbservablesnd termi-
nation paths

Example 10.In protocol shown in Figure 6.1, observable states are ifde®, 14, 15}
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Using this protocol graph as input to an implementation ef ¢ff-line shortest ter-
mination path proceduretp (Algorithm 1 sketched in page 80), produces a partial

protocol shown in Figure 6.2, a set of termination paths.
Example 11. Given the protocolP in Figure 6.1, then for example, paths =
(4,8,18), po = (4,9,11,18), p3 = (14,18), p, = (15,16,17,18) are valid termi-
nation paths with labeléb, ¢), (4,1, d), (9), (a,d, h). These are shown in Figure 6.2

Figure 6.2: Showing unique termination paths for protoecoHgure 6.1

We implemented this protocol using JADE'$SM behaviour template [24] that de-

fines;
LAn agent framework introduced in page 119.
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1. MessageTenpl at e class which provideSessageTenpl at e. Mat chCont ent (
Label ) operation for pattern matching protocol labels, @égssageTenpl at e

nt = MessageTenpl at e. Mat chCont ent (| abel ) ;

2. registerFirstState(StartState) ,registerState(State),
registerTransition(Transition),registerLastState (LastState)
operations for the protocol fsm states and transitions. dperations accept
states and transitions as arguments and model an fsm. Ties temselves
are modelled as JADE behaviotyrse. in the case of protocol state, these were

instances of a one off task implemented as instance©oé8hot Behavi our .

3. States process an incoming messages and match agaifisea demplate, e.g.
ACLMessage nsg = Agent. bl ocki ngRecei ve(nt) and return next tran-

sition.

We implemented a simulation environment that instantiageehts and generated mes-
sages, protocol label$,c £ to drive the agents. The simulation environment also

scheduled and repeated experimental cycles.

Agents register with controllers and register protocobrniation according to experi-
ments to be scheduled (see page 120 for various experimetsjull protocol, partial

protocol.

For data collection purposes, agents collect data on tidgrabout the protocol ex-
ecution, in particulastart andendtimes, using system calls. These local time mea-
surements form a basis for the detection delays metric useithé evaluation of the

termination detection mechanism.

Equally, controllers on the other side, collect data aleouttimes for the protocol ex-

ecution as determined whamactiveProtocolAlgorithm 5, page 94) predicate evalu-

2Tasks that can be run in parallel, as mentioned in page 274.
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ates to true for a given registered protocol or partial pzoko

In the implemented prototype, we consider a flat conversatiscenario, given in
Example 7, page 85, where conversations do not have descendants) whinore
common usage scenario. Hierarchical scenarios usingushiff computation tree to
model conversations and using predicatactive on the graph representing the dif-
fusing computation tree can be easily implemented by miainiga graph structure
for JADE’s behaviours that gets executed and dequeued opleton and testing for

graph emptiness as for completion as discussédgorithm 5, page 94.

In the currently implemented setup, the controllers casteg to create a fully con-
nected network. Each controller maintains the data structures to storwithahl
agents registrations and their protocol information. Thanections between con-
trollers allow individual controllers to forward agent refgations to other controllers
in the cluster for load balancing purposes. The details efdistribution setup are
given in chapter 10. Also because of the absence of globekslm distributed sys-
tems, the issue of synchronisation is discussed togethiethat of network delays that
may affect the distribution of detection delays in the dlsited setting. The approach

adopted for these issues is outlined in Appendix H.

6.4 Prototype implementation

An overview of the JADE agent framework used is given in AppeB, page 273

Also a high level discussion of the prototype implementai® given in Appendix
B, section B.2, page 275. The discussion there describelemented processks

Figures B.1, B.2, B.3 provide illustration of these varipuscesses executed by agents

3We propose to evaluate the use of a share memory tuple spaceative of the architecture in
future work.
4JADE provides a construct calledbahaviourthat can implement these agent processes.
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and controllers.

6.5 Scheduled experiments

Overview The evaluation of termination detection schemes for magent systems

will be performed at various levels.

Level 1 Here the evaluation is done using two standard approachely;

1. Quantitative Evaluation of the termination detection scheme throughutbe of
experiments for the defined detection delays metrics givercollected datasets
followed by statistical analysis (discussed in sectior).6IBe results for the all

guantitative experiments are given in chapters 7, 8 and 10.

2. Qualitative Evaluation of the termination detection through quaktameans,
exploring non functional requirements and, issues raigethe use of these
mechanisms , for example compromises in the agent autonsswymrgptions,
effects on interactions if any. The qualitative evaluai®done in section 11.1,

page 230

Level 2 At this level the view is that of using the quantitative apgurb to explore
the two configurations or approaches to observing protocaions for termination

detection, namely;

1. Thefull protocol schemewhere individual agents register with the monitor(s)
full protocol specifications of the interaction protocdigy are executing. The

results for this are given in chapter 8.
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2. Thepartial protocol schemehere agents only supply partial information about
their protocols, i.e. termination paths, with the monitdrse results of this view

are given in chapter 7.

Level 3 Here experiments can be viewed as coming from the two brotdjcaes

according to whether the monitoring is done locally (cdigeal) or distributed, i.e.

1. Centralised where agents register and are observed by a monitor thdésas
the same node as the agents and there is no network traffioritnot messages.
The results are given in chapters 7 and 8. The centralisedriexpnts were
done under a controlled setting on a dedicated host maahad®tv exploratory
comparison of level 2 experiments above . This exploratorygarison is con-

sidered in chapter 9, page 175.

2. Decentraliseddistributed) where agents can register with remote magitnd
this involves message traffic over network interfaces. dseilts are given in

chapter 10.

Quantitative experiments The experiments in this category are aimed at exploring
termination detection schemes quantitatively to evalttselefining metric of detec-
tion delays. This is done by collectirdgetection delayslata for both co to highlight
the underlying distribution of the detection delays pareemeThe experiments will
consider scalability to evaluate performance as the numbagents hosted is varied
upwards.

Regarding the experimental setups, consider figures 6.3%ahbelow for the cen-
tralised and distributed architectures and also considards B.1 and B.4 discussed
earlier. Agents execute an arbitrary public protocol. Tidiviidual agents record ter-

mination timesT'a;s for the protocol they have registered to theal controller for
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monitoring and the controller records correspondings , termination observed lo-

cally.

LOCAL AGENT PLATFORM

AGENTS registration CONTROLLER

O (sub)protocol specifications
— T

Figure 6.3: Architecture for centralised experiments. 8y agents and the
controller hosted in the same local agent platform

Centralised In this setup, experiments are run undepatrolledenvironment on
a single machine. This to provide a way of making objectivaparison mechanism

especially for scalability experiments.

Figure 6.3 gives the high level architectural setup for &xigeriments, showing agents
and the controller hosted on the same local agent platfodnrdaracting as detailed
in figures B.1 to B.4. Detailed experimental results andysigslare given in chapters

8 and 7, and a comparison and hypothesis tests given in cttapte

Distributed In this setup experiments are run on hosts in a local areaonketwith

controllers forming a cluster on which agents hosted orviddal hosts can register.
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Figure 6.4 presents a high level architectural setup fareRperiments where cluster

controllers interact as also detailed in Figure B.3 in AgpeiB

Load
Bal ancer

snapshots S
i

Figure 6.4: Distribution architecture, showing nodes hingtagents in a local
area network and a cluster controllers in distributed agplattforms.

The details of this setup, including possible data colleticenarios and experimental

results are presented in chapter 10.

Finally , some qualitative evaluation is given in sectionl] page 230.
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6.6 Data collection

Regarding data collection, see figures 6.5 for centralisp@rments’, where indi-

vidual agents and monitors use a relational database te datails of the protocol

execution.

Data Analysis ﬁ ﬁ
S G

R
&
E

.

dEJ)S)OOq—JS);E—S]ILI)HC)E[‘
densjoog

siold
uonnguisip Alsua

Figure 6.5: Data collection and analysis for scenario 1. \Wéhthe notation

(N, L;) signifies data (detection delays) logged on a particularenbg a

local controller. Each dataset is analysed separately kg bootstrap and
jackknife-after-bootstrap ( statistical procedures ascléed in section 6.7 )
to yield various results plots and tables shown in the figtinas follow.

Also consider the following data collection setup, thatalgs various collection
scenarios for evaluating the distributed setting. Scenhivas used also in the setup

for the centralised experiments.

5And Figure C.3 in appendix C, page 284 for the distributetirsptiata collection setup.
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Data collection setup and scenarios Consider a set of controllets = {R; | i €
N} making up a cluster. Denote theserasiotecontrollers. Also consider a séf, =

{L; | L; ¢ C,i € N}, controllers not in the cluster. Denote théseal controllers.

Consider a set of agent$ = {N; | i € N} and consider a set of agemds, C A that
reside in the same host ssmdocal controller, and consider a set of agedis C A,

be those agents registered with a local contraller

Equally, consider also a set of agentg C A be agents registered wifobmeremote
controller, and consided, C A; be those agents that reside in the same host as a

controllerL; but registered with some controll&; € C

Finally, consider a set of agents, C A that reside in the same host as some remote

controller, and consided; C A¢ be agents registered with &) < C.

Consider the illustratidhof this given below in example 12.

Example 12. Consider the setup below,

C ={Ry, Ry, R3, Ry}, Cr, = {Ly, Lo},

A={Ny, Ny, ..., N3}

Ap ={Ny, No, ..., Ng},

Ar = {Ny, N7, Ng}, Ay = {Ns, Ng, N7, N}, Ao = {N1, No, N3, N, }, and Ag, =
{N7, Ng},Aro = {N,},and

Ac = {Ng, N1g, N11, N12, N13}Aci = {No, Nig, N11, N2}, Aco = { N3}, Acs =
0, Acy =10

With this background , consider the following data collentscenarios;

1. Scenario 1 Agents monitored by thelpcal controllers (dataset fad ;).

6And an alternative graphical depiction is given in Figuré 6n page 281.
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2. Scenario 2 A collective population of all agents monitored afi local con-
trollers (dataset fol )., .Az;). This is used to give the distribution of detection

delays on local controllers.

3. Scenario 3 Agents from a specific host registered to be monitored relypat
the clustelC (dataset fotdg,). This is used to give the distribution of detection
delays for the host’s agents and give a sense of the clugtgrésformance as

viewed from this host.

4. Scenario 4 A collective population ofall remotely monitored agents in the

cluster, (dataset fdr),, Ag;).

5. Scenario 5 A breakdownper cluster node of all agents monitored on that spe-
cific cluster node (dataset fof;). This to give gper cluster node centric view
of distribution of detection delays, and to a certain exteatoad characteristics

for that cluster controlleR; € C.

Also regarding the simulation and experimental data cotlec consider various sce-

narios for data collection during experimental cycles.

1. Individual detection delays recorded for repeated execution of thiegobover

many cycles.

2. For every experimental cycle period, detection delagsifthe repeated execu-
tion of the protocol for that cycle recorded and some staitsticulated, i.e. treat

each cycle as an experiment.

3. Accumulateddetection delays recorded over the entire experiment el
peated execution of the protocol and a statistic calculated each period and
the process repeated without discarding previous measmtsrbut accumulat-

ing, see figure
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An illustration is given in Figure C.2 in page 283

6.7 Data analysis

Regarding data analysis for quantitative experimentayngding methodswere used,
in particular thebootstrap[83], and thgackknife-after-bootstraf85]. These methods
are particulary relevant due to the non-normality of theedédn delays data. These
resampling methods were used to deterndiséributionsof location parameters, and
determinestandard errorsand calculate robustonfidence intervalfr the detection
delays for all schemes . Appendix D provides the theoretletils and background

for the bootstrap and justification of why these methods vemrdt their suitability.

Briefly, procedures such as the bootstrap and jackknife @rered in discussions in
the general subject abbust statistical procedurg207, 119, 217, 216]. Robust sta-
tistical procedures refer to statistical procedures wigigh not overly dependent on
critical assumptions regarding an underlying populatigstrdution. [52] observes
that robustness is most commonly applied to methods thaérapdoyed when the

normality assumption underlying an inferential statastiest is violated.

It is pointed out that though when sample sizes are reasptaiye certain tests such
as thesingle-sample t-tesind thet-testfor two independent samples are known to be
robust with respect to violation of the normality assumptfoe., the accuracy of the
tabled critical alpha values for the test statistics arenotpromised), if the underlying
distribution is not normal, the power of such tests may beepably reduced [207],

p.327.

"Also referred to as computer-intensive methods. Theseadsthre becoming increasingly attrac-
tive with improvementin computational resources and abdity of their implementations in statistical
packages. Compared to Monte Carlo methods resampling nfetise the available dataset and treat it
as a population from which samples can be taken, whereasritsasbin monte carlo methods samples
are drawn from theoretical probability distributions

127



Related to this is the fact that, as observed in [219] regarthe power of commonly
employed goodness-of-fit tests for normality, unless a $asipe is relatively large,
goodness-of-fit tests for normality (such as the Kolmogesavirnov goodness-of-fit
test for a single sample or the chi-square goodness-ofstif) tevill generally not re-
sult in rejection of the null hypothesis of normality, urdeke fit with respect to nor-
mality is dramatically violated. Consequently, some redsas conclude that most
goodness-of-fit tests are ineffective mechanisms for piiogi confirmation for the
normal distribution assumption that more often than nataeshers assume character-

izes an underlying population.

It is also argued in [219] that as a result of the failure of djoess-of-fit tests to reject
the normal distribution model, procedures based on thengsison of normality all
too often are employed with data that are derived from namaabpopulations. In in-
stances where the normality assumption is violated [21®}¢isearcher is encouraged
to consider employing a robust statistical procedure (susctine bootstrap) to analyze
the data. In accordance with this view [217] notes that tr@sicap will often yield a
more accurate result for a non-normal population than widllgsis of the data with a

statistical test which assumes normality.

Another characteristic of data that is often discussediwitie framework of robust
statistical procedures is the subjecbatliers. Research has shown that a single outlier
can substantially compromise the power of a parametristta test. [219] provides
an excellent example of this involving the single-santpiest Various sources sug-
gest that when one or more outliers are present in a set of @a@mputer-intensive
procedure (such as the bootstrap or jackknife) may provioieraccurate information

regarding the underlying population(s) than a parametocgdure.

In the literature, bootstrap procedures and algorithmsdaseribed in the standard

reference on the Bootstrap [83], the more practical aseetdiscussed in [69] while
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the more theoretical discussions can be seen in [204] ar&].[10

The general procedure for performing the bootstrap is showkppendix D, Algo-
rithm 9 in page 288 for example bootstrapping the mean. Theri#thm repeats the
process of drawing samples with replacement from the®datd calculating the re-

quired metric and displaying the distribution of the boetgtreplicates.

Equally we can use the bootstrap to compute various typesatstrap confidence
intervals, e.gBCa(Bias corrected) anBootstrap-t ABC. A review of bootstrap con-
fidence intervals in also given in Appendix D. In the literatareatment is given in
[84, 82] [74, 104, 104].

Statistical software routines exist in statistical padsbke R, Matlab , S-Plus and
others. Figure 6.5 shows the data analysis phase where dateewieved by R and

Matlab engines for data analysis using resampling methods.

Chapters 7, 8 and 10 present experimental results andetktaiblysis using the boot-

strap.

Finally as a result of the non normality of detection delayagd@aonparametric hy-
pothesis tests were used when seeking to compare the twguations in level 2

experiments, (full and partial protocol schemes). Thad ispn-parametric equivalent
of the parametric t-test has been used, namely Kruskalsydlhe details and results

of these test can be seen in chapter 9.

6.8 Summary and contributions

Following the discussion iChapter 5 on the proposed mechanism for termination

detection, this chapter has;

8That is treated as a population.
9Bootstrap "replicates" is the standard term used
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—i— Presented an experimental setup for exploring the textioin detection scheme,
a setup that can provide a basis for a standard experimentabement for
evaluating and comparisons of future work on further meigmas for termi-

nation detection.

—ii— Presented a concrete prototype implementation basedwidely used FIPA

compliant multiagent framework.

— il — Discussed the experiments to be conducted on the fyfmédmplementation
within the given experimental setup, detailing variouselsvof quantitative

experiments and metrics to be evaluated.

—iv— Discussed data collection scenarios for the cengaland distributed config-
urations and proposed data analysis methods to be adoptedjrdy the use
resampling methods, e.the bootstragor analysis of datasets and for provid-

ing robust confidence intervals.
Chapter 7 next presents results for partial protocol experimengs, experiments

where agents register minimal information, sub-protoookshortest termination paths

about their protocol execution to controllers.
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CHAPTER 7

Partial Protocol Results

The previous chapteChapter 6 presented an experimental setup, prototype imple-
mentation, experimental design and data analysis follgwhe discussion i€hapter

5 of a termination detection mechanism for agents.

7.1 Introduction

This chapter presents results for the partial protocol expnts as described in section
6.5, page 121. Recall that these were a set of controlledriexpets where and

increasing number of agents were hosted and monitored arahdontroller. Agents

register and submit partial information about the publiatpcol being executed. The
chapter provides detailed exploratory data analysis ofdditasets and proceeds to
performing bootstrap analysis and then derives robustsirapt confidence intervals
for the detection delays metric in this experimental sete fbxt chapter, chapter 8

provides the corresponding results for the full protoctlipe

A note on data analysis and presentation This chapter first conducts exploratory
data analysis, on the dataset. For basic summary stabétics datasets, tables of the
type shown in Table 7.1 are presented to summarise resulédl fagent experiments.

The summary statistics were calculated using DATAPLOTistaesl package [90].

I'Conducted on a dedicated host machine.
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Regardingexploratory data analysjgypically the relevant graphs are those shown in
a 4-plot e.g. Figure 7.1 used for initially testing whethee four underlying initial

assumptiorisof a typical measurement process hold. The plot consists of;

e A run sequence pldtime series), to give an indication of any significant skmft
location or scale of the data over the period of the experiraed identify any

outliers.

e Thelag plotcan be used to check the randomness of the time series data. Ra
dom structure of the data indicates that the underlying gatandomly gener-
ated by a random process. This is not particulary importanbtir purposes
as we are not evaluating the randomness of the measuredioetelays time

series. We include this here for completeness of the stdridatot.

e Histogram[43] To visualise the distribution of data and explore theneyetry
(skewness), spread, center and check for heavy tails atidreutSymmetrical
data with no significant outliers and heavy tails may ind&dcadrmality. The
histogram can also show the presence of multiple modes iddte All these

can give an idea of an appropriate distributional modelqresd.

e Normal probability plot[43]. Used to verify any assumptions of normality of
the data. The data are plotted against a theoretical nornstabadtion in such a
way that the points should form an approximate straight liDepartures from

this straight line indicate departures from normality.

We have performed standard normality tests on the datesstsAppendix E, page,
308 and Table 7.2, page 143. These tests confirm that thetidetdelays dataset is

non-normal, as could also confirmed by visual inspectiorggplots and histograms.

2For example fixed distribution, location, variance etc.
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Therefore we have as discussed in chapter 6, decided notke distributional as-
sumptions about the data and instead use non-parametricessaimpling methods

such as the bootstrap for all statistical analysis in thesasets.

The bootstrap procedure was performed using the statipackager [122, 197] and

its librariesbootandbootstrap

For the bootstrap results, we present;

1. Figures of the type shown in figures 7.6 displaying distidns of bootstrap

replicates of the mean detection delays.
2. Corresponding ggplots for these bootstrap replicates.

3. A summary table for the bootstrap analysis for all experita with agent num-
bers varied. The table shows numerical results for parametkerror and bias
estimation. It also shows results for the non-parametrimtsicap confidence
intervals. Bootstrap confidence intervals were calculatadg theR package

bootstrap[40].

7.2 Results: Exploratory Data Analysis

As a starting point, Figure 7.1 shows thelotfor an experiment where 5 agents were
instantiated for this partial protocol scheme where allsne@aments are imillseconds

as obtained from a unix system call. Inspection of the platslze used to test under-
lying assumptions about the data. As it is, the figure shoesi#ta to bexon-normal
as highlighted by the skewness in the histogram (c), fad taild departures from the
straight line in the normal probability plot (d). The data& aandomas there is no
inherent structure in the lag plot (b). Inspecting the tirages run plot (a) The data

seems not to have a fixed variation when observed across &map of time as was
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done in the experiments and as plotted here.
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Figure 7.1: Figures a-d show elements of the 4-plots for thmpses of exploratory
data analysis for centralised experiments using the pbhpiatocol scheme where 5
agent were hosted. All measurements amniliiseconds
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The rest of the 4-plots for other experiments with agent nensibaried from 10 to 100
are given in Appendix in figures F.1 and F.2 from page 321. Agla¢ figures there

confirm the observations highlighted above.

Furthermore we can consider additional plots for desegpstatistics, such as the
boxplot [234] to give th&-numbersummariedgiven in Table 7.1 in a graphical format
for visual inspection and also to see outliers, and get aesehthe data dispersion.

Boxplots can also be used for comparison between datasets.

We can also present the plot of the cumulative density fondtiat describes the prob-

ability density function of random variablg.
xHFX(x):P(XSx):/ f(t)dt (7.1)

As example consider Figure 7.2 showing the box plots anddhplots given together
with the histogram and series data plots for the agent exgatiwhere 5 agents were

hosted. Again, a quick inspection confirms non normality gxedpresence of outliers.
The rest of the figures for other experiments are given in égur3 to 7.4.

A note about those figures;

1. The parameter for agent numbers was chosen for the exgresno explore
scalability as discussed in the experimental design, Eaveé wish to explore
how detection delays vary with an increase in the number efhtsghosted in the

agent platform, i.e. to explore whether it is linear , expuread, etc.

2. Regarding the histograms in the figures, the bin size chafects the visual
appearance of the distribution of the data, therefore Visspection alone is

not sufficient to establish the underlying normality of tlaad This can only be

3Minimum, Mean, Maximum,Median, Quartiles.
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verified by standard normality tests [131, 222, 229]. Thelts®f the normality

tests* are shown in Table 7.2

Histogram Plot of Detection Delays over time
300 4000
250 % 3500
E
. 200 g
2 % 3000
S 150 )
o o
f": 2 2500
100 o]
g
50 2000
0 1500
1000 2000 3000 4000 5000 0 50 100 150
Bins Experimental Cycle
Cummulative Density Function Box plot showing 5 number summary
1 5000 e
08 2 4500 %
e 4000
> >
£ 0.6 )
= < 3500 ;L
g ©
€ 04 § 3000 |
8 2500
[
0.2 S %000 ‘
0 1500 -+
1000 2000 3000 4000 5000 1

Detection Delay (ms)

Figure 7.2: Showing plots for descriptive statistics angleratory data anal-
ysis for centralised experiments using the partial prot@aheme for the ex-
periment with 5 agents hosted. For example, the Box plot shioe/5 number
summary, e.g. Median of around 2200 ms, and upper and lowetitgs on
either side of the Median, and Maximum and Minimum valueso Ahowing
outliers. All measurements are milliseconds

4All quantities for normality test are standard and defimi§@an be found in the given references
together with interpretation of results. Most statisticadls provide implementation.
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Histogram Plot of Detection Delays over time Histogram Plot of Detection Delays over time
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Figure 7.3: Figures (a)-(d) show plots for descriptive sttits and exploratory data
analysis for centralised experiments using the partialtpcol scheme where agent
numbers were varied from 10 through to 25. All measuremaetsanilliseconds
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Histogram x 10°Plot of Detection Delays over time Histogram x 10°Plot of Detection Delays over time
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Figure 7.4: Figures (a)-(d) show plots for descriptive sttits and exploratory data
analysis for centralised experiments using the partialtpcol scheme where agent
numbers were varied from 30 through to 100. All measurenaets milliseconds
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Table 7.1 presents summary statistics for all experimenthis setup. The table
presentsjocation measuresto find a central value that describes the daliaper-
sion measuredp capture the spread in the datandomness measuredistributional
measures; The third and fourth moments are the skewnessuatosik of the distri-
bution. The table also complements 4-plot figures above Ipjoexg properties of
the detection delays data by presenting some distributimeasures. For exam-
ple, the probability plot correlation coefficient, PPCC]@&n be used to identify the
shape parameter for a distributional family that best fiessdhta [181]. DATAPLOT
™produces PPCC values for the distributions shown undenilgliibnal measures in
Table 7.1. Again, the distributional measures stronglyptm the fact that the detec-

tion delays data are not from a normal distribution.

Regarding repeatability of experiments, how many expemnise/ere carried out, de-
tailed analysis of variance and comparisons between erpats, these are all dis-
cussed in detail in chapter 9, but briefly, for each experim&d experimental runs
with each experimental run spanning an experimental peri@bout 10 hours parti-

tioned into experimental cycles of about 10 mins.

For completeness, additional standard normality festsre carried out and results are
given in Table 7.2. All quantities for normality tests asgmeted in Table 7.2 are stan-
dard and their definitions can be found in [131, 222, 229]etbgr with interpretation

of results. All tests show that the data is non-normal.

5To characterise properties of the data, e.g. shape.
SMost statistical tools implement these tests.
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orT

SUMMARY STATISTICS

AGENT EXPERIMENTS

5 10 15 20 25 30 40 50 100
LOCATION MEASURES
Midrange 0.2615 | 0.3966 | 0.5406 | 0.6264 | 0.6544 | 1.170 2.3002 | 2.8856 | 5.3735
Mean 0.2347 | 0.3118 | 0.4406 | 0.5419 | 0.6392 | 0.7959 | 2.2309 | 2.5469 | 4.7220
Midmean 0.2286 | 0.3162 | 0.4334 | 0.5615 | 0.6486 | 0.7384 | 2.2826 | 2.4961 | 4.7301
Median 0.2257 | 0.3096 | 0.4338 | 0.5313 | 0.6309 | 0.7555 | 2.1874 | 2.5298 | 4.5053
DISPERSIONMEASURES
Range 0.2149 | 0.4246 | 0.5925 | 0.6695 | 0.5271 | 1.486 3.1345 | 2.4870 | 7.2360
Stand. Dev | 0.03363| 7.2346 | 9.4198 | 0.1155 | 0.1100 | 0.2490 | 0.5009 | 0.4203 | 0.88013
Av. Ab. Dev | 0.2555 | 0.5850 | 0.7227 | 0.09032 | 0.09057| 0.1669 | 0.3788 | 0.3389 | 0.6533
Minimum 0.1541 | 0.1843 | 0.2443 | 0.2917 | 0.39090| 0.4270 | 0.7329 | 1.6421 | 1.7555
Lower Quart | 0.2134 | 0.2543 | 0.3712 | 0.4569 | 0.5581 | 0.6406 | 1.9477 | 2.2201 | 4.1030
Lower Hinge | 0.2134 | 0.2543 | 0.3712 | 0.4571 | 0.5582 | 0.6407 | 1.9482 | 2.2211 | 4.1033
Upper Hinge | 0.2539 | 0.3567 | 0.4942 | 0.6118 | 0.7206 | 0.8659 | 2.5424 | 2.8251 | 5.1080
Upper Quart | 0.2539 | 0.3567 | 0.4944 | 0.6118 | 0.7207 | 0.8663 | 2.5426 | 2.8251 | 5.1084
Maximum 0.3690 | 0.6089 | 0.8368 | 0.9612 | 0.9180 | 1.913 3.8674 | 4.1291 | 8.9915




T

RANDOMNESS MEASURES

Autoco coef | 0.4599 | 0.4923 | 0.3192 | 0.2968 | 0.02397| 0.7335 | 0.7816 | 0.53977| 0.2018

0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

DISTRIBUTIONAL MEASURES

St. 3rd Mom | 0.9998 | 0.4268 | 0.9279 | 0.7934 | 0.1413 | 1.7548 | -0.2721| 0.3794 | 0.1187

St. 4th Mom | 4.2160 | 2.8806 | 4.7044 | 3.8961 | 2.3011 | 6.8150 | 3.8474 | 2.8459 | 4.6144

StWilk-Sha | 63.5385| -23.675| -51.244| -43.0298| -15.749 | -178.219| -29.879| -11.825 | -88.798
Uniform ppcc | 0.9405 | 0.9800 | 0.9434 | 0.9560 | 0.9913 | 0.8692 | 0.9496 | 0.9805 | 0.9239
Normal ppcc | 0.9703 | 0.9886 | 0.9759 | 0.9803 | 0.9941 | 0.9194 | 0.9852 | 0.9936 | 0.9558
Tuk -.5ppcc | 0.7746 | 0.7450 | 0.7862 | 0.7681 | 0.7275 | 0.7605 | 0.7844 | 0.7583 | 0.7783
Cauchy ppcc | 0.3472 | 0.3182 | 0.3529 | 0.3333 | 0.2905 | 0.3415 | 0.3423 | 0.3259 | 0.3732

Table 7.1: Summary statistics for all agents experimentisarcentralised setup for partial protocol scheme, sholeication, dispersion

and distributional measures
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DISTRIBUTIONAL NORMALITY TESTS

ANDERSON-DARLING

A= —n— 10 20— llnlpg) + (1~ pgisn)]

Statistic| A 26.99178 | 6.518426| 11.87086| 11.07163| 4.86468 | 68.7629 | 11.86567| 4.23203 | 43.77127
P-value 3.160e-61| 5.45e-16 | 1.80e-28 | 1.23e-26 | 4.85e-12 | 1.68e-132| 1.85e-28 | 1.61e-10 | 3.00e-93
Conclusion REJECT
WILKSON-SHAPIRO
Statistic| W 0.94143 | 0.97707 | 0.95221 | 0.96082 | 0.98741 | 0.84531 | 0.97045 | 0.98697 | 0.91408
p-value 1.71e-25 | 6.40e-16 | 3.27e-23 | 4.30e-21 | 4.58e-11 | 5.90e-38 | 2.85e-18 | 2.57e-11 | 4.23e-30
Conclusion REJECT
SHAPIRO-FRANCIA W = (Z?:l aix(i))/Z?zl(xi —7)
Statistic| W 0.941533 | 0.977359| 0.95234 | 0.96110 | 0.98803 | 0.84541 | 0.97064 | 0.98726 | 0.91364
p-value 3.34e-23 | 1.45e-14 | 3.70e-21 | 3.17e-19 | 5.60e-10 | 2.60e-34 | 1.03e-16 | 2.21e-10 | 2.20e-27
Conclusion REJECT
LiLLIE (KOLG-SMIR) Dt =maxi—y,. ni/n —pu), D™ =maxi—1__,pu — (i —1)/n
Statistic| D 0.107311 | 0.040742| 0.041497| 0.04118 | 0.03484 | 0.14700 | 0.05665 | 0.034663| 0.10399
p-value 2.25e-53 | 5.61e-07 | 2.98e-07 | 3.89e-07 | 4.96e-05 | 2.10e-102| 5.55e-14 | 5.61e-05 | 5.35e-50
Conclusion REJECT

JARQUE-BERA

JB = (52 U5




evt

Statistic | X2 391.5488 | 53.03562| 453.9846| 237.4310| 40.43232| 1920.713 | 72.68503| 42.78078| 589.0186
p-value 0 3.04e-12| O 0 1.66e-09 | O 1.11e-16 | 5.13e-10| O
Conclusion REJECT
PEARSON P =Y (C; — E;)?/E;
Statistic | P 520.8587 | 231.6351| 142.4349| 166.3462| 98.1617 | 625.0502 | 205.6223| 108.9965| 465.7974
p-value 1.06e-86 | 5.15e-30 | 2.72e-14 | 2.53e-18 | 1.92e-07 | 6.05e-108| 2.91e-25| 5.07e-09 | 1.37e-75
Conclusion REJECT
CRAMER-VON MISES W= +>" (pe — %21)
Statistic| W 4.648875 | 0.655082| 1.28574 | 1.29745 | 0.73091 | 10.99672 | 1.54436 | 0.58801 | 7.43111
p-value 6.91e+51 | 1.35e-07 | 3.75e-10 | 3.70e-10 | 3.87e-08 | Inf 6.43e-10 | 4.60e-07 | 7.29e+197
Conclusion REJECT

Table 7.2: Showing results of a number of normality tests lbnlatasets for experiments where the agent numbers meditagas

varied from 5 to 100. All normality tests reject the hypoikeahat the data is normally distributed as evidenced by levalpes, i.e.

p —values < 0.05. All quantities for normality test are standard and defamg can be found in [131, 222, 229]




7.3 Confidence intervals, standard errors and the Bootstrap

Summary statics as given in Table 7.1, give point estimdtéseostatistic of interest,

e.g. mean of detection delays for a given experiment.

We are not only interested in obtaining a point estimate aéassic but also theon-
fidence intervafor the true value of the parameter and some estimate ofghation
in this point estimate. For example, we wish to calculateamdy a sample mean , but

also the standard error of the mean and a confidence intentdild mean.

Commonly, data analysis has relied on tentral limit theorem{89] ’ and normal

approximations to obtain standard errors and confideneeviis.

But as discussed earlier, the available literature sttpal#éhat these techniques are
valid only if the statistic, or some known transformationitpfis asymptoticallynor-
mally distributed. Hence, if the normality assumption doeshold as we have just
seen on the normality tests, then the traditional methodsldmot be used to obtain

confidence intervals.

A major motivation for the traditional reliance on normhkbry methods was been
computationatractability. Now, with the high availability of computational resousce
there is an alternative to using asymptotic theory to egértiee distribution of a statis-
tic. This alternative is resampling methdtisvhich can be used to return inferential

results for either normal or non-normal distributions.

In this section we would like to determine the confidencenirglks and standard er-

TCLT is a profound result in statistics, simply put, it stiatés that the distribution of the mean tends
to benormal even when the distribution from which the mean is compusedkicidedlynon-normal
The closer the parent distribution is to a normal distritithe smaller is the required sample size for
this to hold. Larger sample sizes are required from paresttibluitions with strongkewnessand/or
strongkurtosis

8Estimating the precision of sample statistics (mediansamaes, percentiles) by using subsets of
available data (jackknife) or drawing randomly with reaent from a set of data points (bootstrap-

ping).
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rors of the mean for the delays data without making any astansp regarding such
statistics. Resamplinty methods such asThe Bootstrapand "The Jackkniféallow
this to be done. These methods provide estimates of the sie@sjard error, confi-
dence intervals, and distribution for any statistic. A selhtained review of bootstrap

procedures is given Appendix D.

For the confidence intervals, we have exploredBR@aand Bootstrap-t bootstrap con-
fidence intervals [74]. The general procedure for bootstoagidence intervals is also

given in Appendix D in pages 293-293.

7.3.1 Bootstrap results

Replicates distributions Figure 7.5 shows the distribution of bootstrap replicates
for the mean for an experiment in which the number of agentsseato 5. Figures
7.6 and 7.7 present the plots for the rest of the experimeititsagent numbers varied

from 10-100.

9The only assumption here is that the data is representdtie ainderlying population.
10Resampling refers to the process of drawing samples froginalidata.
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Bootstrap Replicates
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Figure 7.5: Figures shows bootstrap replicates of the meacéntralised experiments
using the partial protocol scheme where 5 agent were hosteti(liseconds)
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Figure 7.6: Figures (a)-(d) show bootstrap replicates of thean for centralised ex-
periments using the partial protocol scheme where agentuswere varied from 10
through to 25 (in milliseconds)
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Figure 7.7: Figures (a)-(d) show bootstrap replicates of thean for centralised ex-
periments using the partial protocol scheme where agentuswere varied from 25
through to 100
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QQ Plot of Sample Data versus Standard Normal
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Figure 7.8: Figures shows QQ plot of the bootstrap replisaté the mean for cen-
tralised experiments using the partial protocol schemere/beagent were hosted
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QQ Plot of Sample Data versus Standard Normal
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Figure 7.9: Figures (a)-(d) show qgplots of bootstrap repties of the mean for cen-
tralised experiments using the partial protocol schemere/agent numbers were var-

ied from 5 through to 25
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QQ Plot of Sample Data versus Standard Normal
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Figure 7.10: Figures (a)-(d) show ggplots of bootstrap regtes of the mean for cen-
tralised experiments using the partial protocol schemere/agent numbers were var-

ied from 25 through to 100.
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Regarding the above figures, note that the distribution®féplicates is confirmed as
from a normal distribution, this it to be expected, i.e. dimition of themeanof the

samples is normal.

Confidence Intervals Table 7.3 presents example bootstrap confidence interwals f
the 5 agent experiment. to determine the 95% confidenceslimé inspect the row en-
try for o = 0.975 and fora = 0.025 giving upper and lower limit§349.54, 2399.037|
msfor this detection delays metric in this setup.

Table 7.4 presents calculations for the rest of the experisn@as agent numbers are

increased.
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The Bootstrap

Statistic 0 bias se
2368.7 -0.1252 | 9.5650
BCA CONFIDENCE INTERVALS
0.025 0.050 0.100 0.160 0.840 0.900 0.950 0.975 Z0 ahat
2349.540 | 2353.661| 2357.764| 2361.228| 2385.452| 2389.277| 2394.028| 2399.037| 0.030084| 0.011023
BOOTSTRART CONFIDENCE INTERVALS
\ 2372.321\ 2378.683\ 2364.194\ 2366.829\ 2389.747\ 2395.564\ 2399.318\ 2406.109\ N/A \ N/A

€at

Table 7.3: Results of the Bootstrap : showing parameter amdidence interval estimates and errors for the 5 agent phrti
protocol experiment



12°1”

The Bootstrap

Agent Experiments

Statistic | 5 10 15 20 25 30 40 50 100
6 2368.7 3276.6 4.4387 5494.0 6.6525 8.7102 2323.5 25881 50245
bias -0.1252 -0.0551 0.0547 -0.1657 14.9021 | -0.0910 3.5600 0.8322 -1.3729
se 9.5650 8.0808 7.472 8.5910 0.0182 29.2004 | 49.4293 51.9828 164.0740
o BCA CONFIDENCE INTERVALS
0.025 | 2351.298 3254.18 4413.420| 5472.743 | 6607.26 | 8602.914 | 23120.31 | 25775.31 | 49738.4
0.05 2355.748 3257.527 4416.714| 5475.863 | 6611.46 | 8613.277 | 23143.15 | 25796.98 | 49785.46
0.1 2359.919 3260.786 4420.286| 5479.788 | 6617.996| 8625.625 | 23163.14 | 25817.84 | 49866.36
0.16 | 2363.233 3263.537 4423.535| 5482.699 | 6623.039| 8635.785 | 23180.06 | 25835.93 | 49922.65
0.84 | 2387.173 3282.660 4444.921| 5505.597 | 6660.774| 8709.68 | 23305.07 | 25961.35 | 50335.21
0.9 2390.904 3285.649 4447.842| 5508.922 | 6665.891| 8720.07 | 23322.24 | 25978.27 | 50401.8
0.95 | 2395.835 3289.220 4452.419| 5513.014 | 6672.447| 8734.115 | 23343.92 | 26004.42 | 50490.48
0.975 | 2399.491 3292.459 4455.826| 5516.398 | 6678.548| 8747.263 | 23364.43 | 26023.57 | 50563.98
z0 -0.008773312 -0.01128007| O -0.042625 | 0.023815| -0.056429| -0.048898 | -0.0501535| 0.04011681
ahat 0.010340 0.003990 0.002510| 0.0005407| 0.007535| 0.004789 | 0.0005907| 0.001648 | 0.0079676
a BOOTSTRAPT CONFIDENCE INTERVALS
0.25 | 2355.215 3271.297 4438.064| 5486.136 | 6630.281| 8695.599 | 23192.12 | 25808.98 | 50215.2




0.5 2362.165 3277.688 4445.646| 5493.074 | 6645.079| 8722.06 | 23239.52 | 25853.75 | 50339.33
0.1 2348.396 3265.342 4430.27 | 5478.616 | 6619.187| 8666.96 | 23161.44 | 25773.42 | 50083.86
0.16 | 2351.85 3267.964 4434.654| 5483.248 | 6624.685| 8681.778 | 23177.58 | 25788.92 | 50172.58
0.84 | 2373.611 3287.029 4455.322| 5505.508 | 6667.146| 8752.567 | 23296.21 | 25902.67 | 50562.23
0.9 2376.067 3290.984 4458.773| 5507.355 | 6672.376| 8761.062 | 23313.79 | 25925.31 | 50608.76
0.95 | 2380.804 3294.424 4463.995| 5513.72 6678.142| 8781.134 | 23329.67 | 25960.83 | 50685.08
0.975 | 2385.228 3296.151 4467.794| 5516.016 | 6685.014| 8796.38 | 23350.32 | 25988.21 | 50756.23

Table 7.4: Bootstrap : showing parameter and confidencevaitestimates and errors for agents monitored locally\a&rgnodes
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7.4 Summary

This chapter has presented detailed results and explg@ddta analysis for the partial

protocol experiments discussed in chapter 6.

The analysis verifies that the detection delays data arearotally distributed as was
observed from thd-plot and confirmed by normality test results in Table 7.2. There-
fore the non parametric bootstrap method was used for paeamstimation and cal-
culation of confidence intervals. That is, normality is imat to us because we wish

to derive robust confidence intervals for the detectionydettatistic.

The bootstrap BCa confidence intervals in Table 7.4 showtligedletection delays (at
95% confidence) range frof@2351.298, 2399.491] msfor 5 agent experiments to
[49738.4, 50490.48] msfor 100 agent experiments.

Also examining the results in view of scalability there isicern with detection delays
for large number of agents, e.g. the 100 agents experiméhtdelays approaching
close to a minute in the worst case. This may suggest an ujppiéir the number of

agent hosted, for an agent platform like the one used foetbgperiments. Clearly
maybe a concern in applications where there are strict tionstcaints for resources
used by terminated agents to be reclaimed, but less so ia Wiosre detection just has
to eventually succeed. In distributed systems , a stanggpbach to improving the

scalability is to consider distribution of the service stis explored in chapter 10 from

page 187.

Chapter 8 next however considers tifiell protocol experiments as introduced in the
experimental design. The chapter considers a similar datysis procedure for the

datasets as has been done here and also the discussiorias &irttiat given here
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CHAPTER 8

Full Protocol Results

8.1 Introduction

Following on from the previous chapter, this chapter presknefly the corresponding
results for the full protocol experimental setup as degctip the experimental design,
section 6.5, page 120. Recall that these were a set of clmatm@tperiments where an
increasing number of agents were hosted and monitored arahdontroller. Agents
in this setup register and submit full information about public protocol they are

executing and are then monitored.

The next chapterChapter 9 provides an exploratory comparative analysis of the

datasets of this setup and the partial protocol discusstiprevious chapter.
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8.2

Results: Exploratory Data Analysis

SUMMARY STATISTICS

NUMBER OF OBSERVATIONS = 5317
okok sk ok ok ok ok ok ok koK ok ok ok ok ok ok KoK ok ok ok ok o ok koK ok ok ok ok o ok Kok ok ok ok ok ok ok K ok ok ok ok ok ok Kok ok ok ok ok ok ok sk ok ok ok ok o ok
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* MIDRANGE = 0.3564000E+04 * RANGE = 0.2470000E+04 =*
* MEAN = 0.2921928E+04 * STAND. DEV. =  0.4257777E+03 *
* MIDMEAN = 0.2882001E+04 = AV. AB. DEV. = 0.3228591E+03 =*
* MEDIAN = 0.2795000E+04 * MINIMUM = 0.2329000E+04 *
* = * LOWER QUART. = 0.2597000E+04 *
* = * LOWER HINGE =  0.2597000E+04 =
* = * UPPER HINGE = 0.3158000E+04 =*
* = * UPPER QUART. = 0.3158000E+04 *
* = *  MAXIMUM = 0.4799000E+04 *
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* = 0.0000000E+00 * ST. WILK-SHA = -0.3380893E+03 *
* = * UNIFORM PPCC = 0.9070824E+00 *
* = * NORMAL PPCC = 0.9325916E+00 *
* = * TUK -.5 PPCC = 0.6920604E+00 =*
* = * CAUCHY PPCC = 0.2227653E+00 *
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Figure 8.1: Showing detection delays summary statisticshi® 5 agent ex-
periment calculated using DATAPLOT

The analysis and data presentation is the same as the ppe&hiapter where;

Figure 8.1 shows summary statistics of the detection dektyiofor an example

experiment where 5 agents were hosted.

Figures 8.2 to 8.4 show the 4-plots for all agent experimfamtsxploratory data

analysis purposes.

Table 8.1 shows the rest of the summary statistics for akerpents with agent

numbers varied.

Table E.1 in Appendix E, page 316 shows results of normadiyst for these

dataset. Inspection of the table shows that the data fashaloty tests.
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e Regarding the bootstrap, figures 8.5, to 8.7 show bootstplicates for the

mean of detection delays.
e Figures 8.8 to 8.10 shows the corresponding qqgplots fordlo¢strap replicates.

e Tables 8.2 presents results for bootstrap parameter desraad detaile@Ca

andBootstrap-tconfidence intervals.
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Figure 8.2: Figures a-d show elements of the 4-plots for thgpses of exploratory
data analysis for centralised experiments using the fuitipbprotocol scheme where
5 agent were hosted. All measurements amnilliseconds
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Again, as in the previous chapter, Table 8.1 presents suynstetistics for all exper-
iments in this setup. The table preseloisation measureto find a central value that
describes the datdjspersion measurds capture the spread in the datandomness
measuresnd distributional measures. The third and fourth momenetshee skewness

and kurtosis of the distribution.

The table also complements 4-plot figures, i.e. figures 824diy exploring prop-
erties of the detection delays data by presenting someldisonal measures. Again,
the distributional measures strongly indicate that thedein delay data for the full

protocol experiments are also not from a normal distrilutio
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Histogram « 10°Plot of Detection Delays over time
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Figure 8.3: Figures (a)-(d) show 4-plots for the purposegxgbloratory data analysis

for centralised experiments using the full protocol schevhere agent numbers were
varied from 10 through to 25. All measurements arenitliseconds
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Figure 8.4: Figures (a)-(d) show 4-plots for the purposegxgbloratory data analysis
for centralised experiments using the full protocol schevhere agent numbers were
varied from 50 through to 100. All measurements areitliseconds
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€97

SUMMARY STATISTICS

AGENT EXPERIMENTS

5 10 20 30 40 50 60 70 100
LOCATION MEASURES
Midrange 0.3564 | 0.7022 | 0.1336 | 0.1715 | 0.2415 | 0.3152 | 0.3425 | 0.4061 | 0.4940
Mean 0.2921 | 0.5628 | 0.1237 | 0.1760 | 0.2338 | 0.2918 | 0.3462 | 0.4032 | 0.5080
Midmean 0.2882 | 0.5644 | 0.1238 | 0.1762 | 0.2341 | 0.2919 | 0.3464 | 0.4054 | 0.5052
Median 0.2795 | 0.5395 | 0.1214 | 0.1712 | 0.2287 | 0.2954 | 0.3497 | 0.4019 | 0.5079
DISPERSIONMEASURES
Range 0.2470 | 0.6155 | 0.7295 | 0.1207 | 0.2167 | 0.2075 | 0.2189 | 0.3793 | 0.6254
Stand. Dev | 0.4257 | 0.9632 | 0.9852 | 0.1411 | 0.2435 | 0.2817 | 0.3305 | 0.4198 | 0.7051
Av. Ab. Dev | 0.3228 | 0.6999 | 0.8050 | 0.1167 | 0.2120 | 0.2275 | 0.2619 | 0.3201 | 0.5334
Minimum 0.2329 | 0.3945 | 0.9717 | 0.1111 | 0.1331 | 0.2114 | 0.2330 | 0.2164 | 0.1813
Lower Quart | 0.2597 | 0.4950 | 0.1161 | 0.1651 | 0.2128 | 0.2748 | 0.3284 | 0.3798 | 0.4730
Lower Hinge | 0.2597 | 0.4950 | 0.1161 | 0.1651 | 0.2128 | 0.2748 | 0.3284 | 0.3798 | 0.4730
Upper Hinge | 0.3158 | 0.6074 | 0.1321 | 0.1904 | 0.2571 | 0.3137 | 0.3705 | 0.4299 | 0.5537
Upper Quart | 0.3158 | 0.6074 | 0.1321 | 0.1904 | 0.2571 | 0.3137 | 0.3705 | 0.4299 | 0.5537
Maximum 0.4799 | 0.1010 | 0.1701 | 0.2319 | 0.3498 | 0.4190 | 0.4520 | 0.5958 | 0.8067




9T

RANDOMNESS MEASURES

Autoco coef | 0.4246 | 0.7945 | -0.3532| -0.2015| -0.1445| 0.1621 | 0.2307 | 0.2472 | 0.3237

0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

DISTRIBUTIONAL MEASURES

St. 3rd Mom | 0.1471 | 0.14051| 0.6062 | 0.4725 | 0.3875 | -0.4408| -0.5565| 0.2060 | -0.5456
St. 4th Mom | 0.564 | 0.5350 | 0.3205 | 0.2211 | 0.2782 | 0.2420 | 0.2742 | 0.4255 | 0.3907
St Wilk-Sha | -0.3380| -0.5873 | -0.3354 | -0.4984 | -0.4959| -0.3858| -0.3651| -0.1803| -0.2048
Uniform ppcc| 0.9071 | 0.9122 | 0.9707 | 0.9714 | 0.9786 | 0.9809 | 0.9734 | 0.9556 | 0.9512
Normal ppcc | 0.9326 | 0.9451 | 0.9767 | 0.9635 | 0.9678 | 0.9799 | 0.9817 | 0.9869 | 0.9875
Tuk -.5 ppcc | 0.6921 | 0.6660 | 0.6588 | 0.6231 | 0.6320 | 0.6121 | 0.6199 | 0.7210 | 0.7004
Cauchy ppcc | 0.2227 | 0.1550 | 0.1502 | 0.1427 | 0.1418 | 0.1181 | 0.1137 | 0.1933 | 0.1686

Table 8.1: Summary statistics for all agents experimentlercentralised setup for full protocol scheme, showingtion, dispersion

and distributional measures




8.2.1 Bootstrap results

Replicates distributions The bootstrap was also carried out on the full protocol ex-
periments datasets. Figure 8.5 shows the distribution ofdbt@p replicates for the
mean for an experiment in which the number of agents was $et Fagures 8.6 and
8.7 present the plots for the rest of the experiments witinagembers varied from

10-100.

Bootstrap Replicate
T

@
S

a @ ~
=] S =)
T T T

Frequency
IS
S

30+

10+

2940

2920
Mean

0
2900 2905 2910 2915 2925 2930 2935

(a) 5 agent experiment

Figure 8.5: Figures shows bootstrap replicates of the meacéntralised experiments
for the full protocol setup where 5 agent were hosted
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Figure 8.6: Figures (a)-(d) show bootstrap replicates of thean for centralised ex-
periments using the full protocol scheme where agent nusnvere varied from 10
through to 40
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Figure 8.7: Figures (a)-(d) show bootstrap replicates of thean for centralised ex-
periments using the full protocol scheme where agent nusnvere varied from 50

through to 100
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QQ Plot of Sample Data versus Standard Normal
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Figure 8.8: Figures shows QQ plot of the bootstrap replisaté the mean for cen-
tralised experiments using the full protocol scheme wheageént were hosted
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QQ Plot of Sample Data versus Standard Normal x10° QQ Plot of Sample Data versus Standard Normal
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Figure 8.9: Figures (a)-(d) show qgplots of bootstrap repties of the mean for cen-
tralised experiments using the partial protocol schemere/agent numbers were var-
ied from 5 through to 25
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x10" QQ Plot of Sample Data versus Standard Normal x10° QQ Plot of Sample Data versus Standard Normal
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Figure 8.10: Figures (a)-(d) show ggplots of bootstrap regtes of the mean for cen-
tralised experiments using the partial protocol schemere/agent numbers were var-
ied from 25 through to 100
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THE BOOTSTRAP

Statistic 0 bias se
2921.9 | -0.1355 | 5.7427
BCA CONFIDENCE INTERVALS
0.025 0.050 0.100 0.160 0.840 0.900 0.950 0.975 y4o) ahat
2911.449 | 2913.017| 2915.459| 2917.579| 2932.65 | 2934.920| 2937.318| 2939.172| 0.005013| 0.004118
BOOTSTRARPT CONFIDENCE INTERVALS
‘ 2910.406‘ 2915.466‘ 2906.191‘ 2907.716‘ 2922.859‘ 2924.821‘ 2926.756‘ 2928.058‘ N/A ‘ N/A

TLT

Table 8.2: Results of the Bootstrap: showing parameter amdidence interval estimates and errors for the 5 agent phrti
protocol experiment
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THE BOOTSTRAP

AGENT EXPERIMENTS

Statistic | 5 10 20 30 40 50 60 70 100
0 2921.9 5628.1 12378 17604 23389 29182 34620 40328 50802
bias -0.1355 0.0675 -0.0539 -0.1703 0.2829 0.2786 -0.0249 0.2946 1.108
se 5.7427 7.1345 6.7262 9.3927 15.1439 | 15.1500 | 18.8177 | 33.8798 | 49.22
BCA CONFIDENCE INTERVALS
0.025 | 2906.491 | 5610.928 12358.17 17578.95 | 23365.79 | 29160.62 | 34573.32 | 40198.16 | 50731.81
0.05 | 2909.073 | 5613.733 12360.10 17583.12 | 23371.86 | 29166.20 | 34579.56 | 40207.29 | 50752.74
0.1 2911.269 | 5617.496 12363.35 17587.13 | 23378.35 | 29173.00 | 34587.53 | 40223.12 | 50775.32
0.16 | 2913.235 | 5620.099 12365.75 17590.40 | 23384.30 | 29178.39 | 34593.61 | 40235.18 | 50794.06
o | 0.84 | 2927.572 | 5638.16 12382.56 17613.48 | 23421.14 | 29216.92 | 34639.48 | 40315.38 | 50915.34
0.9 2929.336 | 5640.67 12385.04 17616.66 | 23426.1 | 29223.20 | 34646.05 | 40326.9 | 50934.47
0.95 | 29321 5643.975 12387.93 17621.1 23432.39 | 29229.65 | 34652.57 | 40342.91 | 50955.93
0.975 | 2934.693 | 5646.726 12390.66 17624.62 | 23438.29 | 29237.13 | 34659.53 | 40355.27 | 50975.58
z0 0.01880082| -0.01629380| 0.007519956/ 0.03008408| -0.015040| 0.010026 | -0.017547| -0.021307| 0.002506
ahat 0.004241 | 0.002223 0.0008736 | 0.000656 | 0.000483 | -0.000515| -0.000646| 0.000314 | -0.000776
BOOTSTRAPT CONFIDENCE INTERVALS
0.25 | 2911.418 | 5620.909 12374.19 17594.53 | 23393.67 | 29162.04 | 34618.29 | 40305.35 | 50828.32




€LT

0.5 2916.186 | 5626.214 12379.72 17600.44 | 23404.59 | 29176.78 | 34634.62 | 40327.38 | 50870.38
0.1 2907.302 | 5615.322 12368.59 17587.30 | 23379.13 | 29153.53 | 34606.42 | 40282.18 | 50789.62
0.16 | 2909.011 | 5617.324 12371.72 17590.51 | 23389.45 | 29156.82 | 34611.70 | 40287.34 | 50811.06
a | 0.84 | 2923.899 | 5635.363 12389.17 17613.29 | 23424.81 | 29193.99 | 34658.33 | 40365.11 | 50931.26
0.9 2926.192 | 5637.218 12392.49 17616.56 | 23427.65 | 29199.36 | 34661.78 | 40380.38 | 50951.45
0.95 | 2928.504 | 5641.817 12395.95 17619.62 | 23434.68 | 29205.86 | 34670.39 | 40391.95 | 50967.11
0.975 | 2931.67 5644.654 12396.84 17622.21 | 23444.42 | 29214.42 | 34682.38 | 40396.86 | 50990.37

Table 8.3: Bootstrap results: showing parameter and cord@nterval estimates and errors for centralised expettisnian the full

protocol scheme agents numbers ranging from 5 to 100.




8.3 Summary and observations

This chapter has presented detailed results and explprdéda analysis for the full

protocol scheme. As in the previous chapter, detectionydedata are not normally
distributed as shown by all tests and exploratory data arsatliagrams. Therefore as
in the previous chapter, the non parametric bootstrap rdetfas used for parameter

estimation and calculation of confidence intervals.

The bootstrap BCa confidence intervals in Table 8.3 in pageshows that the de-
tection delays (at 95% confidence) range fr@%11.449,2939.172]msfor 5 agent
experiments to

[50731.81, 50975.58) msfor 100 agent experiments.

Regarding scalability, there are similar concerns as tlapeessed in the previous
chapter 7, page 156, i.e. for large agent numbers, the dalykelays approach a

minute.

Following on from this discussion, the next chap®@hapter 9 provides a detailed
exploratory comparative analysis of the datasets of thigoséhefull protocoland the

partial protocoldiscussed in the previous chapter.
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CHAPTER 9

Comparisons

9.1 Introduction

The previous two chapter€hapter 7 andChapter 8 presented and analysed datasets
for the partial and full protocol schemes. This chapter aiongrovide a exploratory
comparative analysis of those two datasets. The chaptipatsvides results of the
nonparametric hypothesis tests on the location paramigies bwo datasets, e.g. mean
detection delays. Non-parametric tests were chosen agasubBe the normality and
homogeneity of variances assumptions do not hold and caegistified fully for

these datasets.

This chapter also presents results of the scalability exyeents, showing how both the

partial and full protocol schemes scale with increasing Inemof agents monitored.

In addition, regarding repeatability of experiments, tssof the non parametric anal-
ysis of variance (ANOVA) and multiple comparison tests opestmental runs for a

given experiment are presented in Appendix E, page 318.

A note on datasets and data analysis and figuresThe datasets analysed here are
those considers in chapter 7 and chapter 8 and in additiorcoimparisons we will
consider datasets for data collection critexiand3 below. Recall the data collection

criteria introduced in chapter 6, page 175 for experimesytelles data collection, i.e.
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1. Individual detection delays recorded for repeated execution of thiegobover

many cycles.

2. For every experimental cycle period, detection delagsifthe repeated execu-
tion of the protocol for that cycle recorded and some staitsticulated, i.e. treat

each cycle as an experiment.

3. Accumulateddetection delays recorded over the entire experiment el
peated execution of the protocol and a statistic calculated each period and

the process repeated without discarding previous measmtsrbut accumulat-

ing.

And recall that an illustration for these scenarios wasmineAppendix C, figures C.2
(a) to (c) respectively in page 283.

We can use these to evaluate differences across experirogdles and runs and in-

vestigate variations and repeatability of these experimen
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Regarding the presentation, figures and tables, consider

1. Figures showing time series plots for the above datagesefected experiments
e.g. Figure 9.1 shows plots for the 100 agent experimenttivéterror bars de-
rived from the above confidence intervals for the 100 agepeement. Note
that in Figure 9.1, the scale i9* milliseconds therefore the values are consis-
tent with the confidence intervals calculated in the previcapters fopartial

protocolandfull protocol schemes.

2. Corresponding tables e.g. Table 9.1 presenting 95% n@mesric confidence
intervals for the cyclic and accumulated datasets. Ingpgthese tables indi-
cates little differences in the cyclic datasets and the datiwe datasets in the

confidence intervals.

BOOTSTRAP CONFIDENCE INTERVALS
AGENT EXPERIMENTS
10 20 30 40 50 70 100

o FuLL PROTOCOL CONFIDENCE INTERVALS
0.025| 3179.829| 5449.963| 8546.278| 22914.46| 25994.38| 49484.24| 41173.35
0.975| 3372.211| 5635.5 10048.27| 24162.62| 26696.33| 50061.83| 46026.54
a PARTIAL PROTOCOL CONFIDENCE INTERVALS
0.025| 3185.246| 5406.278| 8274.083| 22799.43| 25731.95| 49456.42| 39468.48
0.975| 3365.526| 5583.806| 9813.204| 24025.67| 26442.18| 50105.94| 44283.94

Table 9.1: BCa Confidence intervals for the cyclic datasets

BOOTSTRAP CONFIDENCE INTERVALS
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AGENT EXPERIMENTS

10

20

30

40

50

70

100

0.025
0.975

4940.808

12409.70

34326.23

23173.17

29220.01

40257.03

63309.14

4998.555

12429.27

35431.32

23211.35

29268.05

40326.01

63489.35

PARTI

AL ProTOCOL CONFID

ENCEINTERVALS

0.025
0.975

3252.303

5376.824

8093.37

22855.9

25760.06

49528.07

44041.75

3293.456

5413.694

8302.37

23030.87

25949.57

49622.07

44318.33

Table 9.2: BCa Confidence intervals for cumulative data sets

9.2 Hypothesis testing

Though the work here was exploratory, we can compare, tgadthgsis and make
statements about the partial and full protocol data setpatticular statements about

the location parameters e.g. means or the medians of detef#lays in the data sets.

Recall that for doing comparisons and hypothesis testimgndependent samples for
example, testing if the samples represent underlying @diomis with different mean
values (but assuming equal variances and normal distoibta standard approach is

to use the t-test [207]

But given the discussion earlier in chapters 7 and chaptd&o8tahe distribution of

'Hypothesis testing is a mechanism for determining if anréisseabout a characteristic of a popu-
lation is reasonable.

2The most common is the two sample t-test that tests whetheotawo independent populations
have different mean values on some prescribed measure-t€seuses a t-test statistic to determine a
p-value that indicates how likely we could have gotten thesealts by chance. By convention, if there
is a less than 5% chance (for 95%confidence) of getting thereed differences by chance, we reject
the null hypothesis and say we found a statistically sigaifidifference between the two groups.

178



Partig] pétocol v Full Protocol schemes: Cummulative x Dgtrtial Protocol v Full Protocol schemes
65 T T

- - —FP f— FP
PP PP
et 6.5 I L
) | ' Hl i T | FHW
i g
Esst g
> 2 55
3 3
S S
3 5 8 i
|
a5 ! I I
451 B L | | 11
4 \ Sl
| [ N
4 L L 35 . .
0 20 40 60 0 20 40 60
Experimental cycle Experimental cycle

(a) 100 agent experiment

Figure 9.1: Showing superimposed time series plots to coenpartial protocol and

full protocol schemes for experiments with agent numbertse00. Showing error
bars with width computed from non parametric confidencevatis. NB, on the y-axis,
the scale is0* millisecondsso the values are consistent with the bootstrap confidence
intervals calculated in previous chapters foartial protocoandfull protocol schemes
respectively.

detection delays not being normally (gaussian) distridbudad failed test for equality
of variances, in order to do hypothesis tests regarding #raab and full protocol
schemes, we explored the use of non-parametric tests whichtdnake distributional

assumptions.

Non-parametric statistical methods and non-parametatisstal inference are dis-
cussedin[110, 95] and [207]. For example the Kruskal-\Wadist originally discussed
in [138] is a non-parametric test for equality of the locatmarameter (e.g. median)

among datasets or groups (i.&8. > 2), | used this test for example in analysing re-
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peated experimental runs and to make comparisons acrogsiht test repeatability.

If only two datasets are considered and we are interestechather the two sam-
ples come from the same distribution then the Mann-Whitnagdi [155] is the non-

parametric alternative to the two-sample t-test.

Regarding implementation of these tests, the R Statistioaronment [225] provides

implementation of the Kruskal-Wallis test procedure anchitVhitney test.

We can do hypothesis testing on the partial and full protdatdsets on the differences
of the location parameters, e.g. mean, median of detecetays, see Table E.2 in
Appendix E , page 317. Alternatively we can visually inspiet box plots as they
also give a nonparametric mechanism for comparing poustiThese are shown in

Figure 9.2.
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location parameter.
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9.3 Scalability Results

To explore how both setups scaled, consider Figure 9.3 stuotlve boxplot generated
by the kruskal-wallis tedton datasets for all agent experiments with numbers varied
from 10 through to a 100. Also consider Figure 9.4 showing guivalent line plot

of the mean detection delays for each experiment against agenbers,i.e. showing
how detection delays vary with the number of agents mondtordoth the partial and
full protocol schemes. This figure also shows error barsradtaalues as an indicator

error margins derived from confidence intervals.

3Implemented bynultiple comparén Matlab.
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Figure 9.3: Box plots for full protocol and partial protocethemes for all agent exper-
iments. Figure generated as part of the non parametric asialgf variance Kruskal-
Wallis procedure
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x 10* Scalability Results Partial Protocol and Full protocol schemes
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x 10* Box plots
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9.4 Summary

This chapter has presented some exploratory comparatpleraiion of the partial

and full protocol datasets. The data in both setups in nomaband variances are not
homogeneous. The non parametric one sided two sample Witlc@ann-Whitney)

tests, Table ( E.2 page 318 in Appendix E) for all experimpniside strong evidence
against (as given by extremely low p-values) the hypothésisthe location parame-
ters are equal and therefore very likelihood that the locaparameter for the partial
protocol dataset is lower than that of the full protocol data. Inspecting other fig-
ures, e.g. side by side Boxplots also provide supportingaltisvidence that even for a
small sized protocols as one used in the simulation, usiagaéntial protocol scheme

should yield better results

On repeatability of experiments, it is worth reporting ttie analysis of variance tests
do show some notable variation between experimental ruhg. stalability experi-
ments also demonstrate that across all experiments wherg agmbers were varied

from low to high, the partial protocol scheme records lowesl of detection delays.

This results are fairly significant given that the depth aizé ®f the protocol used
in this experiments was small. Analytically, the differesowill be even more pro-
nounced for the large protocol graphs, the variance mayblaieed by the underlying

agent middleware and scheduling of agents behaviours amaefivork.
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CHAPTER 10

Distribution

10.1 Introduction

This chapter presents experimental results for the diggtsetting as described in
section 6.5, page 122. The chapter starts by providing arvieve of the architecture

and the experimental setup as discussed there.

Experiments in the setup necessarily have to consider metieays, to get a distri-
bution profile of these delays as they have a bearing on daedelays distributions.
Regarding the well known problem of the absence of globalkdon distributed sys-
tems, the approach we followed was to choose a practicahsgnisation mechanism
and synchronise hosts using network time protocol, NTPstaiduted time protocol

available as a network service on an operating system.

Therefore in Appendix H we present an experiment for deteirmgi distribution of

network delays and in this chapter summarise the resulthifoadditional experiment.
Experimental Architecture The architecture for distribution was discussed in the

experimental design, section 6.5, page 123 and shown imé-&4 there, where at the

core are a number of peer to peer interconnected nodes tleet @dlundant controllers
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L. For practical considerations, each controller execuséspleload balancef. Each
node maintains @rofile structure which provides an up-to-date data on number of

locally registered. At the outer second tier of that figueciient nodes.

Dynamics Oninitialisation, the controllers in the cluster execute a singmeatroller
cluster registration protocolo register with each other, in the process making avail-
able their profile information. Atuntime controllers routinely update their remotely
cached profiles if local conditions change, consider fongxa, when local load ex-
ceeds the declared threshold (e.g. if the limit of registexgents is reached) or if a

controller becomes unavailable. Note that to scale, thetetus easily extendable to

include the second tier client nodes by allowing them to eteethecontroller cluster

registration protocol

Agents in the network participate inagent registration protocoshown in Figure
10.1. Agents always attempt first to register with the imratliocal controllert

if one exist. A local controller mayorward registration details of newly registering
agents to suitable controller(s) in the cluster after ctimguupdated cached profiles

of peer controllers.

Data and Data collection Each local controller monitors locally registered agents
and records detection delays for these agents. Remoteabteargy agents are moni-
tored bycluster nodesind the detection delays are recorded by these cluster fardes

each agent registered with them.

LController is arole assigned to an agent providing the protocol monitoringiserin the cluster,
we can use monitor and controller interchangeably.

2load here refers to the number of agents monitored, thettblgsan be set or determined dynam-
ically.

3Agents being monitored.

“Controller executing in the same machine.
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<LC: ACK>

<A:Register> Q <LC: Forward>

aOm

<LC: Refuse> <RC: ACK>

<RC: Refuse>

KEY: A Agent
LC Local Controller
RC Remote Controller

Figure 10.1: Registration protocol executed by client agen register with monitor-
ing controllers

Data collection setup and scenarios For the data collection setup and scenarios,
recall and consider the discussion in the experimentabdesection 6.6, pages 125

to 126.

Regarding the hardware configuration for these distribséddp experiments, consider

Table C.1 in appendix C.3, page 286.

The scheduled experiment was for the following configuratié host machines in a
local area network, each hosting deeal controller,L; € C;, and 20 agentd.4,;| =
20), with 15 locally registered, (therefoledg;| = 5) and a clusteC of 3 remote
controllers, (C| = 3). Each cluster controller hosted 20 agent;;| = 20, therefore

giving a total number of agents4| = 180. This is summarised in Table 10.1 below.

Cr 6

-ALZ‘ 15 UALz 6 x 15 =90

ARZ‘ 5 UARz 6 x5=30

C] 3

Ac; 20

Al = U AL + U Agi| +[U Acl 180

Table 10.1: Showing experimental setup
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section 10.2 next presents experimental results and pothé network latency data

and section 10.3 presents experimental results and plottefection delays data.

10.2 Experimental Results and Analysis

This section presents experimental results for the digkib setting and results for

experiments exploring the all issues discussed in thistelnapamelynetwork delays

10.2.1 A note on the presentation of results

When presenting results in this section , for each experispai orsomeof the fol-

lowing will be shown :

1. A histogram to show thdensity distributiorof the data to highlight the general

shape and any show any outliers.

2. In the case of network delays experimertinge seriesand various grobability
density function fitand a table showing correspondipgrameterandMaximum

likelihood estimation)/ LE ° are presented.

3. For thebootstrapestimation of a statistic, the density distribution of tleelr-
catesis shownin afigure followed by the correspon@@plotof the replicates

againstnormal quartiles
4. A table presenting numerical results for the bootstrdye thble shows;

e The bootstrap estimate of a statistic,e.g. mean and th&edelaas and

standard error.

SMLE is a statistical method used to determine a mathematiodalel to fit some data.
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¢ Results of the nonparametric bootstrap confidence intestahates as dis-
cussed in section 7.3. TH&ootstrap-tand the more accurateCa type

confidence intervals are presented.

5. Regarding the jacknife-after-bootstrap we have obskfas it has also been
documented elsewhere [83] pp 279-280, [107, 237] that thkkjafe-after-
bootstrap technique grossbywer-estimates this error, but that the accuracy in-
creases (and the estimate converges) with the increaBeiie. the jackknife-
after-bootstrap method is only reliable for large values3di83] p. 280. Im-
provements on this in the form of thgeighted jackknife-after-bootstrgp37],
have to my knowledge not been implemented in statisticahsoé packages in
use today. Therefore we do not use the procedure, the baptsstimates are
sufficient for our purposes. In Appendix D, page 303 howewerexperimented
with the experimental implementations of the procedurelavie and present
Figure D.1 page 307 showing results of an experiment to tigege the effect
of increasing the number of bootstrap replicatéspn theaccuracyof the error

estimates. Therefore we do not use this procedure.

10.2.2 Results for network latency

The time series and the distribution of thetwork latencyjuantityAt, as determined
by experiment is shown in Figure 10.2 (a). Figure 10.2 (b&hearious probability
distribution fits on the data. Observation of these figurektha table suggest that the
lognormal log logistic or poissonprobability distributions possibly provide the best
fits for the distribution of network delays in these expermitse This comparable with

other results done elsewhere in [123].

Furthermore, Table H.1 in Appendix H, page 345 shows pamanastimates for vari-

ous hypothesised distributions and the maximum likelihesiimators to accompany
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these distribution fits.

The next set of plots in Figure 10.3 are for the bootstrapyamabf the network delays
data. Figurea) shows the distribution of bootstrapped means for netwol&ydeand

b) shows the corresponding QQ plot.

Table 10.2 gives numerical results for the bootstrap, shgwor example confidence
intervals of(2.746, 2.958) at 95% confidence for thBCaand (2.845,2.956) at 95%

for the Bootstrap-ttype confidence intervals.
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Figure 10.3: Bootstrap mean plots
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G6T

The Bootstrap
Statistic 0 bias se
1660.953| 0.1510| 8.5083

BCa Confidence Intervals
a | 0.025| 0.050| 0.100| 0.160 0.840 | 0.900 | 0.950| 0.975| zo ahat
2.719| 2.746| 2.771| 2.787 2.913 | 2.935 | 2.958]| 2.988| 0.01504| 0.0120
Bootstrap-t Confidence Intervals

\ 2.800\ 2.845\ 2.774\ 2.783 \ 2.918 \ 2.940 \ 2.956\ 2.970\ \

Table 10.2: Results of the Bootstrap showing parameter andideence interval estimates and errors for the networkykela
experiments



10.3 Results for detection delays in the distributed settig

This section presents a summary of the main results for ttextien delays experi-
ments in the distributed setting (recall the distributiochétecture in Figure 6.4, page
123) and the data collection setup and scenarios discussled experimental design,

section 6.6 in page 125.

The scheduled experiments used the experimental setuprasasised in Table 10.1,

page, 189.

10.3.1 Results for scenario 1

The next set of figures and tables present resultsdenario 1( recall that this is where
all detection delays are recorded by each local controfi@iscussed in experimental

design, section 6.6 page 125.

Figure 10.4 shows distributions of detection delays forlacti®n of instances of this

scenario, i.e. six controllers.

For each dataset, (i.e. data for every client nodapaparametric bootstrgpof the
mean of the detection delays was performed, and Figure bOwssthe distributions
of the resulting bootstrap replicates for the mean of deteaelays for each of the
nodes. The numerical bootstrap estimates of the mean amtatsdbiasandstandard
statistics are presented at the top of Table 10.3, whererafadts of the other five

nodes can be seen.

Figure 10.6 then presents the corresponding QQ plots, sigoootstrap replicates
against normal quartiles. These figures demonstrate tlaat fxpm deviations at the

tails the replicates of the mean are normally distributed.

SNo assumption is made of the underlying probability disttiin.
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In addition, thebootstrap confidence intervalgboth theBCa and theBootstrap-t)
were also computed. The numerical results are shown in tddlenpart of Table 10.3,
where the second column shows thealue for the confidence limits. For example, to
determine the 95% confidence limits, we inspect the row dotryy = 0.975 and for

a = 0.025 giving upper and lower limit$1677.886, 1646.089] msfor the client node

nsga0412a01 in this experiment.

"Hostnames used as identifiers of machines running agerdinens instead of generic labels like
L discussed in the data collection setup.
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Figure 10.4: Detection delays, (ms) for locally monitored agents at each node. Each
node has a unique identifier
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Figure 10.5: Bootstrap Replicates Density Estimation: éxtibn delays for locally

monitored agents
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Figure 10.6: Showing the bootstrap replicates’ ggplots.eTigure shows that apart
from some deviations at the tails, the replicates moemallydistributed.
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T0Z

The Bootstrap

Nodes
Statistic nsgqa0412a01 nsqa0413b01 nsgqa0413g01| nsqa0413g03 nsqa0413j02 nsgqa0413I01
6 1660.953 1685.893 1659.375 1854.178 1851.977 1847.672
bias -0.0755 -0.0551 0.11069 -0.6033 -0.102 0.381
se 8.484 13.158 7.472 33.325 21.35 49.569
Confidence Intervals
(0%
0.025 | 1646.089 1663.014 1644.897 1798.309 1812.624 1772.723
0.050 | 1648.32 1666.385 1647.012 1806.002 1818.275 1782.276
0.100 | 1650.648 1670.137 1649.868 1816.397 1825.107 1796.012
0.16 1653.206 1673.422 1651.928 1825.247 1831.454 1806.606
0.84 | 1669.553 1698.932 1666.977 1893.080 1872.956 1907.023
BCypoints 0.9 1672.190 1703.182 1669.099 1904.864 1879.848 1927.294
0.95 | 1675.384 1708.713 1672.056 1920.293 1888.257 1956.207
0.975 | 1677.886 1713.793 1675.284 1934.157 1894.522 1985.674
z0 0.003759951] 0.002506631| -0.003759951 0.05893987 | -0.02506891| 0.05893987
ahat 0.01254519 | 0.0251825 0.01165997 | 0.03240697 | 0.01921675 | 0.06216931
0.25 | 1655.620 1679.916 1654.137 1828.536 1838.525 1825.699




c0¢

0.5 1660.612 1687.441 1659.257 1857.283 1851.336 1857.199
0.1 1650.106 1671.303 1650.396 1807.367 1825.623 1803.543
0.16 | 1653.558 1675.754 1652.46 1818.486 1831.434 1811.687
0.84 | 1670.000 1700.852 1666.666 1894.468 1873.574 1916.205
Bootstap —t | 0.9 1672.985 1704.029 1669.423 1905.653 1877.411 1955.739
0.95 | 1676.172 1708.785 1672.324 1921.87 1884.27 1996.275
0.975 | 1679.208 1718.862 1674.188 1932.500 1891.330 2035.485

Table 10.3: Bootstrap : showing parameter and confideneevaltestimates and errors for agents monitored locallywanghodes




Summary Recall that these wenaot controlled experiments, i.e., local conditions
(e.g. load profile) could potentially vary significantly asdes were machines ran-
domly chosen in the network. Inspecting Table 10.3 we caemesacross the given

nodes comparable detection delays in the approximate fa6g@ 1900 ms, a range

also suggested by results of tBeotstrap-tandBCaconfidence intervals.

Experiments on errors associated with the bootstrap shawvethor estimates converge

and also bias estimates converge.
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10.3.2 Results for scenario 2

The next set of figures and tables present results for thisasice(Recall that this
is where all detection delays recorded by local controléees collated into a single
dataset to give a combined density distribution for all lycanonitored agents as dis-

cussed in experimental design, section 6.6 page 125.

Figure 10.7 shows the distribution of detection delays &ediistribution of bootstrap

replicates for the mean for this dataset
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(a) Distribution of detection delays.
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Figure 10.7: (a) This figure shows the distribution of theed#ibn delays. As it is
outliers were not filtered out hence the skewed distribut{bh Showing the distribu-
tion of bootstrap replicates for the mean for scenario 1 @ita for locally monitored
agents), showing a peak & 1750ms for this dataset.
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90¢

The Bootstrap

Statistic 9 bias ge
1746.241| -0.759 12.64
BCa Confidence Intervals
0.025 0.050 0.100 0.160 0.840 0.900 0.950 0.975 Zo ahat
1725.492| 1728.414| 1731.976| 1734.778| 1760.379| 1764.624| 1770.299| 1775.161| 0.06270678| 0.04326342
Bootstrap-t Confidence Intervals
1738.187| 1744.887| 1731.876| 1734.896| 1761.116| 1766.963| 1772.215| 1777.454| n/a n/a

all locally monitored agents

Table 10.4: Bootstrap : showing parameter and confideneevailtestimates and errors for the experiments in the bliggd setting for



Summary For the combined datasets for all locally monitored agdmtstiean de-
tection delay isx 1750ms and the 95% BCa confidence intervals @@5.49, 1775.16]ms
and the Bootstrap-t intervals afEr38.18, 1766.96|m.s
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10.3.3 Scenario 3

The next set of figures and tables present results for scethaeie (where detection de-
lays were recorded bgll remote controllers on theusterfor eachgivenclientnode).
The data collection and analysis for this scenario is agagiscussed in experimental

design, section 6.6 page 125.

Figure 10.8 then shows the distribution of detection defaysach client node and
the corresponding distributions of bootstrap replicatessaown in Figure 10.9. Table
10.5 presents the numerical results for the data analysis/ing bootstrapping results

for the mean of detection delays and confidence intervaisatds
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Figure 10.8: The figure shows distributions of detectioragielfor remotely monitored
agents for each client node. Again, outliers were not fidey#.
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Figure 10.9: Corresponding bootstrap replicates disttibn and density estimation
for detection delays for remotely monitored agents
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TT¢

The Bootstrap

Nodes
Statistic nsga0412a01 nsqa0413b01 nsqa0413g01| nsqa0413g03| nsqa0413j02| nsqa0413101
0 21014.247 | 42842.209 | 47695.460 3635.9723 4223.7275 | 30961.2054
bias 51.965 47.55 10.090 0.98048 -0.1222 -167.291
se 1349.443 2119.74 2310.266 88.6217 77.441 2046.201
Confidence Intervals
«
0.025 | 18654.67 38856.86 43016.82 3452.742 4067.49 27007.01
0.05 | 19039.60 39474.62 43784.95 3485.913 4090.035 27613.62
0.1 19440.13 40260.12 44824.36 3522.030 4122.482 28338.01
0.16 | 19777.15 40861.48 45395.45 3545.667 4146.643 28899.34
0.84 | 22466.95 44970.21 50086.39 3724.099 4307.125 33073.9
BC,points 0.9 22947.30 45586.77 50763.75 3756.524 4330.23 33687.00
0.95 23515.15 46292.75 51749.55 3790.276 4361.541 34537.89
0.975 | 23972.88 46877.04 52472.67 3811.732 4385.44 35077.86
z0 0.04011681 | 0.02130795 | -0.003759951| -0.001253314| 0.01002668 | 0
ahat | 0.01365313 | 0.006024687| 0.006568672 | 0.008712242 | 0.00681802 | 0.01123875
0.25 | 20295.79 41437.27 46664.93 3576.712 4162.32 29873.07




AN

Bootstap — t

0.5 21042.62 42874.71 48076.17 3624.043 4225.289 31285.93
0.1 19259.52 40046.58 44874.92 3531.034 4118.288 28808.95
0.16 | 19666.10 40831.58 45980.25 3553.07 4135.384 29460.45
0.84 | 22579.15 45156.83 50092.87 3727.483 4298.497 33457.34
0.9 22999.31 45685.71 50804.87 3771.143 4319.887 33913.49
0.95 | 23347.34 46335.24 51781.79 3804.642 4348.613 34641.12
0.975 | 23826.83 46953.61 52145.7 3854.531 4371.131 34987.83

Table 10.5: Bootstrap: showing parameter and confideneevaltestimates and errors for the experiments in the bligad setting for

remotely monitored agents




Summary For the datasets in this scenario , mean detection delaysoassn Ta-

ble 10.5 were computed to range frea21014ms and 95% BCa confidence intervals
(18654, 23972)ms and Bootstrap-t interval®1042, 23826]ms at the lower end (for
nodensqa0412a0) and at the extreme end (for nodsga0413g0jLmean detection
delays was atr 47695ms with the corresponding 95% BCa confidence intervals com-

puted ag§43016, 52472]ms and Bootstrap-t intervals ¢16664, 52145]ms.

As these were not controlled experiments, the differenoegdcbe attributed to dif-
ferences in load profiles at the local nodes or cluster no@iks assumption can be
easily checked by inspecting recorded resource utilisatieasures during the periods

of the experiments.
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10.3.4 Scenario 4

The next set of figures and tables present results for thisasice where detection
delays were recorded kall remote controllers on theusterand the data pooled, i.e.
a collective population o&ll remotely monitored agents in the cluster as discussed in

experimental design, section 6.6 page 125.

All remotely monitored agents
4000 T T

3500 q
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Figure 10.10: Profile of detection delays in the cluster. 8img Detection delays from
all controllers in the cluster. The various peaks observegesents possibly various
cluster’'s node mean delays
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The Bootstrap

Statistic 0 bias se
22179.746| 43.307 560.3515
BCa Confidence Intervals
0.025 0.050 0.100 0.160 0.840 0.900 0.950 0.975 Zo ahat
21138.68| 21294.12| 21455.25| 21627.1 22808.43| 22989.61| 23190.45| 23345.21| 0.03760829| 0.004951631
Bootstrap-t Confidence Intervals
21825.62| 22214.53| 21502.96| 21682.53 | 22740.81| 22894.61| 23189.48| 23450.35

all cluster remotely monitored agents

Table 10.6: Bootstrap: showing parameter and confideneevaltestimates and errors for the experiments in the bligad setting for



Summary For the combined datasets of all cluster (remotely) moedoagents,

the mean detection delay was of the or@2t00ms as shown by the peak in Fig-
ure 10.11 and computed in Table 10.6 tode£2179ms. The 95% BCa confidence
intervals were computed to B21138, 123345]ms and the Bootstrap-t intervals to be
21825, 23450)ms The results show that apart from the odd case as observee ia-th
sults in the last scenario due to local conditions, on avemagst remotely monitored

agents experience similar detection delays when monitayebe cluster.
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10.3.5 Scenario 5

Figures 10.12 and 10.14 below present a view of the results for scefiae, i.e.
detection delays as logged by each cluster node. The daéztomh and analysis for

this scenario is discussed in experimental design, se6tbpage 125.

In these figures, the distributions of detection detailsefachclient nodeon a given

cluster node?® e.g. cluster nodectuncherandcomas is shown.

Figures 10.13 and 10.15 shows the corresponding boot&péipates for the mean for

each client node agent of each cluster controller node.

One way to interpret the figures is to say they reflect sometgua service profile

for a given client node. In ideal cases that should be conyecross clients, but
in reality it is affected by local load at the clients for exalmRecall that these are
not controlled experiments. Additionally results are etiéel to some extent by non-

uniform network delays.

Tables 10.7 and 10.8 presents results for the computatidreotstrap mean and boot-

strap confidence and associated error for each client nadgdyster controller node.

8Cluster nodes identified by hostname in the network instéadiag generic labels liké..
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Figure 10.12: Detection delays for remotely monitored dgesn cluster controller

cruncher
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Bootstrap Replicates, ThetaHat =28691.4977, SeHat =2135.1751 Bias =~76.508 Bootstrap Replicates, ThetaHat =41052.3468, SeHat =2772.4458 Bias =-56.78
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Figure 10.13: Bootstrap replicates for the mean of detattelays for remotely mon-
itored on cluster controller cruncher
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Figure 10.14: Detection delays for remotely monitored dgesn cluster controller

comas
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Figure 10.15: Bootstrap replicates for the mean of detattelays for remotely mon-
itored on cluster controller comas
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€ac

The Bootstrap

Nodes
Statistic nsgqa0412a01 nsqa0413b01 nsqa0413g01 nsqa0413g03 nsqa0413j02 nsgqa0413I01
0 28691.497 | 41052.367 | 46305.60 6674 14667.08 32767.42
bias -76.598 -56.78 -2.046 -5.897 -65.039 110.52
se 2135.18 2772.45 3075.30 388.47 1584.28 2702.07
Confidence Intervals
(0%
0.025 | 24533.41 35571.46 40389.22 5987.66 11931.89 27284.54
0.05 | 25156.18 36479.31 41269.12 6087.349 12388.15 28154.51
0.1 25899.59 37506.07 42477.02 6216.473 12768.95 29086.30
0.16 | 26484.49 38307.57 43397.29 6313.37 13202.36 29819.09
0.84 | 30854.5 43815.97 49517.75 7076.519 16428.66 35523.70
BC,points 0.9 31393.01 44680.02 50375.42 7235.276 16996.99 36359.89
0.95 | 32268.92 45868.88 51661.99 7422.498 17684.99 37396.93
0.975 | 33043.07 46595.32 52609.35 7610.075 18248.88 38291.39
z0 -0.01378689| 0.008773312| 0.01880082 | 0.01629380 | 0.05768443 | -0.02256157
ahat | 0.01364055 | 0.008926957| 0.007788226| 0.03491712 | 0.02480227 | 0.01418406
0.25 | 27047.47 39258.10 44379.32 6497.768 13749.38 31284.46




vee

Bootstap — t

0.5 28634.5 41393.6 46489.78 6742.566 14706.24 32744.7

0.1 25651.54 37614.12 42229.45 6264.196 13128.66 29707.79
0.16 | 26266.64 38238.8 42986.22 6343.522 13434.85 30363.3

0.84 | 31202.68 44375.83 49889.02 7177.005 16537.25 35604.18
0.9 31854.44 45139.06 50623.25 7347.719 17166.49 36437.92
0.95 | 32554.42 46078.71 51737.33 7456.396 17953.28 38372.22
0.975 | 33731.72 47341.16 52921.75 7547.386 18432.07 38777.18

Table 10.7: Bootstrap results: showing parameter and aamdel interval estimates and errors for the experimentsardistributed

setting for remotely monitored agents on cluster contraiencher




TAA

The Bootstrap

Nodes
Statistic nsgqa0412a01 nsqa0413b01 nsqa0413g01 nsqa0413g03 nsqa0413j02 nsgqa0413I01
0 10664.53 44895.797 | 49257.51 8446.14 11592.38 28631.69
bias -6.490 251.62 181.93 -19.98 -32.661 68.057
se 1252.97 3078.94 3562.800 965.33 1339.85 2974.52
Confidence Intervals
(0%
0.025 | 8596.055 38955.98 42644.98 6753.435 9248.765 23231.22
0.05 | 8906.755 40078.96 43709.33 7000.375 9631.675 24003.64
0.1 9268.717 41158.53 44833.58 7302.225 10048.24 24978.87
0.16 | 9575.844 41920.83 45771.72 7580.372 10331.89 25833.67
0.84 | 12024.71 48078.25 52870.39 9478.053 12904.63 31767.01
BC,points 0.9 12447.32 48883.65 54008.45 9843.472 13361.22 32634.6
0.95 | 12996.56 50044.43 55421.23 10187.13 13898.74 33933.07
0.975 | 13601.4 51129.11 56962.32 10540.89 14461.99 34929.55
z0 0.02256157 | 0.01880082 | 0.03384594 | 0.01128007 | 0.01504034 | 0.02381522
ahat | 0.03669208 | 0.008033102| 0.01061637 | 0.04691313 | 0.02750070 | 0.01825531
0.25 | 10071.60 42890.27 46983.35 7777.008 10952.49 26909.94




9¢¢

0.5 10836.68 44675.04 49064.95 8449.172 11789.81 28878.78

0.1 9475.183 40920.41 44845.75 7278.35 10146.07 24212.03
0.16 | 9715.518 41946.14 45846.17 7547.332 10652.36 25493.22
0.84 | 11974.66 47508.51 53041.9 9474.949 13000.57 31892.13

Bootstap—1t | 0.9 12353.53 48431.78 54796.74 9792.755 13378.07 32740.77
0.95 | 13398.39 49250.12 56553.38 10105.18 13882.79 33930.96
0.975 | 13941.58 50851.99 56771.18 10467.46 14534.01 34732.48

Table 10.8: Bootstrap results: showing parameter and aamdel interval estimates and errors for the experimentsardistributed

setting for remotely monitored agents cluster controlamnas



Finally Figure 10.16 shows the detection delays distrdngiand corresponding dis-
tributions for bootstrap replicates of the mean for all deta delays recorded on a
given cluster node. Table 10.16 then gives the correspgnmdimerical results for the
computations of the bootstrap mean and bootstrap confidete®als and associated

estimates of errors.

Discussion Again Recall that these weret controlled experiments, i.e., local con-
ditions (e.g. load profile) on each cluster controller nodiéld potentially vary signif-
icantly as cluster nodes were server machines in the netwkertheless inspecting
tables we can observe across the given nodes the computedieteation delays and
corresponding BCa and Bootstrap-t confidence intervalsioster node. Also note

thatin the computation in these table raw data was useautiers were not removed.
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Figure 10.16: Figure (a-c) show the distribution of detectidelays for remotely mon-
itored agents on each cluster controller and figures (d-whhe corresponding dis-
tributions for bootstrap replicates of the mean
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10.4 Summary

The purpose of the chapter was to investigate the benefitsibdition of the man-
agement and monitoring scheme. The immediate benefits s @xpected were
those to be accrued from the notiond$tributed control for example in a distributed
setting there is no one central point of control and a deaésé&d management scheme
is in place and each node is independent. The particulamgalyes that | emphasise
in this scheme are increased scalability (in that more a&gear be monitored by the

cluster) and redundancy of the setup, (in that a cluster feollee is not catastrophic).
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CHAPTER 11

Conclusion

11.1 Discussion of other issues

Regarding the termination detection mechanism proposedpnsidered the quantita-
tive aspects in preceding chapters. We can also considex &other issue. For these,

consider the following issues;

—i— In an approach where agents are given a detection pilp&mad can compose
their behavior with the detection protocol, it can be obsdithat if the detection
protocol assumes correct participation by agents, a endbfor even strategic)
deviation from the detection protocol by any agent may jediga the detection
process. Our approach considers interactions at a prawea| with the mon-
itor having some awareness of the agreed protocol speiicaay through a
protocol libraryP. One of the ways agents can put at risk the detection process
is by communicating false information about protocols, yopting not to com-
municate this information. One way is to enforce some nomtfe society ,

e.g. a marketplace/auction house can stipulate and emadeseof participation

to nullify agents’ incentives to deviate.

—ii— Regarding termination, other issues that need consglénclude detection de-
lays, the maximum time that can elapse between terminatidrita detection.

This has been evaluated in Chapters 7, 8, 10 for the varidupseConsidera-
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tions have to be made on how this delay can be minimized foispeygific de-
tection mechanism adopted. In our framework the param&iec®ntrol waves
can be adjusted for example. Other issues arise if agentsiExmultiple pro-
tocols. This has been considered in the conversation maadsh gn Chapter
5. The setup will also need to consider the fact that agentsbeaexecuting
different stages of the protocol, so that generalised spwigle control waves
may not useful in minimising detection delays. In future ke can consider
modifying the framework to allow a given monitor to maintagent groups and
associations depending on protocols used, stages in thecpt@nd conversa-

tion partners for example.

—iii— Another issue relates to structuring the detectiorcina@isms such that there is
no adverse effect on the execution of underlying protocatstaat no unneces-
sary bottlenecks are introduced in the infrastructure efdbciety. The frame-
work we describe does not require that we modify the progaaly. augment
or embed in the protocol some control messages. The maiibpobsttieneck
would be the use of a single entity, the monitor, in detectargrination. We
have proposed possible distribution possibilitie€hmapter 5 and evaluation of
various scenarios i€hapter 10 for the distributed configuration. Indeed dis-
tribution is a general problem for most services in distidousystems, services
such as directory , naming services and is also well studietistributed sys-
tems. There , there exists a number of approaches and sduti@ddress this
concern, for example distribution, hierarchical setugs @s used in the Do-
main Name Service, DNS, group communications etc. Finayargue that in
addition to detecting termination, with relatively sim@etensions, our mech-
anism can also be used to provide some level visibility ofgtecess of agent

interactions which may be of value in high level manageméagent societies
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in practical applications.

11.2 Summary

Research in multiagent systems is diverse and varied, grecssing and drawing from
many fields of research. There has been some progress mddethebretical foun-
dations of agents and multiagent system, agent communiciinguages, interaction
protocols, social semantics, methodologies, multiagaméworks and others. How-
ever while progress has been made, challenges exists atl reapecially in the prac-
tical aspects of development and deployment of agents anslibport frameworks of
management and control of agent societies say comparedrtodeae in grid com-
puting.

Experiments and experiences with an attempt to deploy ag@nservices on a global
network called AgentCities [66] are recounted in [242] a6d][lists concrete chal-

lenges for this service environment, quote;

—i— Automation, i.e. management of autonomy: Understantow to effectively
automate systems in an open environment, how to control amége deployed
automated systems. This must draw on work from mathemattacstol theory

to distributed systems and agent technology.

—ii— Interoperability, i.e. communication:- How to enalole-line software systems
to interact with one another in increasingly flexible waysnfigurable interac-

tion sequences, communication about arbitrary domains.

—iii— Coordination:- Putting in place frameworks that elesditomatic creation, main-
tenance, execution and monitoring of contracts and agretsnbetween auto-

mated systems to fulfil their business objectives.
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—iv— Knowledge acquisition (interfaces between worldspttiRg in place frame-
works that enable automatic creation, maintenance, exe&cahd monitoring
of contracts and agreements between automated systenisltihé&ir business

objectives.

We positioned our research to make a contribution to thegostt above, observing
that multiagent systems are inherently distributed andraplemented on distributed
systems infrastructures, and noting (as has been else\@#atp that research efforts
in agents infrastructure support should necessarily d@on@xperiences and coordi-

nate with distributed systems research.

11.3 Contributions

We claim to have made a number of contributions as discussauhipter 1, page 9.

On atheoretical levelwe have considered the distributed termination detegirob-
lem and research from distributed systems and consideradhe agent model and

used this a basis for developing a class of agent control amesims.

1. To this end, irChapter 5, section 5.6 page 110 we listed contributions towards
a termination detection model for agents, where we predaf@initions related
to protocols and defined minimal information agents carstegwith interaction

observers.

2. We presented an agent conversation model, defined somiegies and pre-

sented algorithms for their implementation.

3. combining all these we presented distributed a distitbprotocol for termina-

tion detection and considered distribution possibilities
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On apractical leve] we have offered a structured and systematic, methodiqarex

mental, data collection and analysis framework, i.e.

1. In Chapter 6 we have offered a prototype implementatiahuesed it not only to
evaluate the proposed mechanism and two configurations lexplore the use

of an implementation in agent middleware.

2. In Chapter 6 we defined an extensive experimental and datgsss framework
that uses robust resampling methods for quantitativeljuatiag a prototype in

this research that can also be used evaluating future batioms.

3. The experimental work here can also set a benchmark forefutork.

Aspects of these contributions have been previously puddisn [174] and docu-
mented [171] and is subject of papers in progress [173, 18&]lting from research

discussed in this thesis.

11.4 Ciritical Review

The ideal definition of an agent is that of an entity that isaotmous. And, an ideal
multiagent system is one with no global control. It is wortting that the work dis-
cussed in this thesis treads on these aspects to a certaged¥ge have put forward a
proposal for a mechanism that contribute towards manageoh@gents by requiring
as part of society rules for participation, for agents tagtey partial behaviour speci-
fications. This is not so much a problem as in multiagent aggstems, protocols are

deemed public and individual agent strategies are neclygsavate.

Regarding scalability, as the numbers of hosted agentsaser there are a number of

issues:
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—i— The size of the —matrix data structure and cost of searching it will necessarily
increase. But as discussed the best solution will be inibligton and possibly
exploring more efficient procedure for organising searghiratrix type struc-

tures.

—ii— Regarding the contralaves(page 106) , there maybe concerns regarding mes-
sage complexity depending on the scale required and on ¢qedncy of the

generated waves.

—iii— Regarding graph algorithms for protocol graphs therbe issues with large
protocol graphs as discussed in section A.4, as there issminuch graph
algorithms can be improved as for graph traversal eitheaditefirst or depth-

first search are used as a basis.

Regarding the quantitative experiments, the results aactialysis are as quoted in
Part 11l , Chapters 7 to 10. In the experimental observations, there wstances
of high variability and outliers in recorded data presurgahle possibly to the un-
derlying agent framework middleware and network delayd,taerse were considered
by scheduling a number of experimental runs, using robsstm@ling methods (see
chapter 6, page 114) that incorporates outliers and in gtglulited setting, conducting
experiments to estimate distributions of network delage hapter 10, page 191 and
Appendix H, page 342) to factor into the experimental ressuith the quantitative
experiments we have explored and have a sense of how the mi&cisaperform in
an existing agent middleware, results that can also irtteessarchers of these agent

frameworks.
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11.5 Directions for future work

In addition to addressing issues raised above in the gtreditavaluation and the crit-
ical review, as discussed before, results from the areamwiination detection may be
used in the related area of garbage collection. We propdaesfwork to consider a
follow up and consider how to derive timely garbage col@tschemes for multiagent

interactions.

And evidently lurking behind is the issue how much degreeutbmomy do agents
really have in real applications and how much of this autoypoeed be constrained
when dealing with issues surrounding infrastructure sugdpo agents, assuming that
the notion of autonomy can be captured in some way. Theresaearch efforts in the
area of agents autonomy [180] and some attempts at captawitogpomy [240] that

may give some directions for future work in this direction.

11.6 Related Work

The work on this thesis was inspired by a short paper [241]disaussed distributed
guiescencealetection in a multiagent negotiation and posited a salutiere based

on the Dijkstra and Scholten’s algorithm (example of a tigalgorithm, see section
2). The work was specific to multiagent negotiation, and ther&¢hm there is used a
basis of a quiescence detection protocol, a protocol thattades as a layer on top of

an underlyingnediatedhegotiation protocol.

The first contribution of that work was a formulation of thestributed quiescence
detection problem in multiagent, multi-issue negotiatidhe negotiation considered
there is mediated, i.e. the negotiation model compriseg@fts and mediators. Medi-
ators facilitate the negotiation by managing informatiomfand enforcing negotiation

rules [241].
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The negotiation protocol comprises two general type of agss, namely OFFER
(sent by agents to mediators) and NOTIFY (sent by mediategénts). The form
and content of these messages varies according to domaitfisjpeles enforced by

mediators and negotiation policies of the agents [241].

Applying the Dijkstra and Scholten’s algorithm to the negtbon model involves re-
quiring that agents augment their behaviors by passing ractting ACK messages
according to the detection protocol, i.e. their overalldgbr is then a composition of
their basic negotiation behavior with the transition deagmrepresenting the algorithm
[241].

As a second contribution, the work identifies and discusisesrastances under which
agents may have incentives to deviate from the basic prbtsmbdiscusses a modi-
fication to the negotiation framework that is argued to pmedienited incentive for
agents to deviate [241], this is because they compose thleaviior with the detection
protocol and hence unilateral deviation from the detegpiaiocol by any agent may

jeopardize the detection process.

The wider area of monitoring througiverhearing assuming petri-nets is discussed
in [103, 101], where the work focuses on and explores the tiselored petri-nets
to represent legal joint conversation states and messagkesanmsiders the general
overhearingapproach and provides a formalisation and the buildingkgdor the

overhearing.

We have focused our work on termination detection and pealaruntime mechanism
for making this explicit. We considered a distributed sgstecentric view to design
a class of controllers and an architecture for terminatietection and provided an
extensive experimental framework to provide benchmarkgHis and future work.

We viewed protocols as finite state machine graphs. Firate shachine formalism is

L QOrigionally discussed by [183] within BDI frameworks and [3g].
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by far the most widely used with interaction protocols, axplering and working with

graphs brings the benefits of results and techniques froaritiignic graph theory.

Termination detection is semantically related to problékesgarbage collection and
SO we can position our future work to venture into that aretnér enhancing research

effort in multiagent infrastructures.

238



REFERENCES

[1] FIPA interaction protocol library specification, Novéeer 08 2000.

[2] T Agerwala. Towards a theory for the analysis and synthesis of systehisiex
ing concurrencyPhD thesis, Johns Hopkins University,Baltimore, MD, 1975.

[3] Alfred V. Aho, J. D. Ullman, and M. Yannakakis. Modelingmmunications
protocols by automata. IRroceedings of the 20th Symposium on the Founda-
tions of Computer Sciencpages 267—-273, October 1979.

[4] Mukesh Singhal Ajay D. KshemkalyaniDistributed Computing: Principles,
Algorithms, and System&€ambridge University Press, 2008.

[5] Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojcie Skut, and Mehryar
Mohri. Openfst: A general and efficient weighted finite-st@ansducer library.
In Proceedings of the Ninth International Conference on Inmgetation and
Application of Automata2007.

[6] Eduardo Alonso and Esther Mondragon. Agency, learning animal-based
reinforcement learning. 1Agents and Computational Autononhgcture Notes
in Computer Science, pages 1-6. Springer Verlag, 2003.

[7] Vipin Kumar Ananth Grama, George Karypis and Anshul Guphtroduction
to parallel computing Pearson Addison Wesley., 2003.

[8] T. W. Anderson. On the distribution of the two-sampleroea-von mises crite-
rion. Ann. Math. Statist.33(3):1148-1159, 1962.

[9] T. W. Anderson and D. A. Darling. Asymptotic theory of tan "goodness of
fit" criteria based on stochastic process&sn. math. stat.23:193-212, 1952.

[10] J.P. Ansart. Protocol specification, testing, andfieaiion vi. In G.V. Bochman
and B. Sarikaya, editor$roc. IFIP WG 6.1 6th Intl. Workshop on Protocol
Specification, Testing and Verificatiddontreal, Canada, 10-13 June 1982.

[11] J.P. Ansart, O. Rafig, and V. Chari pwd. Protocol desmipand implementa-
tion language (pdil), protocol specification, verificatiamd testing ii. InProc.
IFIP WG 6.1 2nd Workshop on Protocol Specification, Verifaagnd Testing
Idyllwild, North Holland, May 1982.

[12] P. Anthony, W. Hall, V Dung Dang, and N. R. Jennings. Awmous agents
for participating in multiple auctions. IRroceedings IJCA1 Workshop on E-
Business and the Intelligent WeReattle WA, 2001.

239



[13] Eshrat ArjomandiA study of parallelism in graph theor2hD thesis, 1976.

[14] Alexander Artikis. Dynamic protocols for open agens@ms. IPAAMAS '09:
Proceedings of The 8th International Conference on Autan@gents and
Multiagent Systemgages 97-104, Richland, SC, 2009. International Founda-
tion for Autonomous Agents and Multiagent Systems.

[15] J. Ayache and J. Courtiat. A specification and impleragah language for
protocols, protocol specification, testing, and verifigati In Proc. IFIP WG
6.1 2nd Workshop on Protocol Specification, Verification dedting North
Holland, 1982.

[16] Ozalp Babaoglu and Keith Marzullo. Consistent globaltes of distributed
systems: Fundamental concepts and mechanisms. In S. MetlezditorDis-
tributed Systemgpages 55-96. Addison-Wesley, 1993.

[17] S. Bapat and A. Arora. Message efficient terminatioredgbn in wireless sen-
sor networks. IriProc. INFOCOM Computer Communications Workshops IEEE
Conference oypages 1-6, 13-18 April 2008.

[18] Mihai Barbuceanu and Mark S. Fox. The design of a coatitom language
for multi-agent systems. IBCAI '96: Proceedings of the Workshop on Intelli-
gent Agents lll, Agent Theories, Architectures, and Laggggages 341-355,
London, UK, 1997. Springer-Verlag.

[19] Mihai Barbuceanu and Mark S. Fox. Integrating commatie action, conver-
sations and decision theory to coordinate agent®AGENTS '97: Proceedings
of the first international conference on Autonomous aggrdges 49-58, New
York, NY, USA, 1997. ACM.

[20] Mihai Barbuceanu and Wai-Kau Lo. Conversation oridnpeogramming for
agent interaction. Ifssues in Agent Communicatigmages 220-234, London,
UK, 2000. Springer-Verlag.

[21] Bernhard Bauer, JOrg P. Muller, and James Odell. Agenit LA formalism
for specifying multiagent software systemsaternational Journal of Software
Engineering and Knowledge Engineerjrid.(3):207-230, 2001.

[22] Martin Beer, Mark D’inverno, Michael Luck, Nick Jenrgs, Chris Preist, and
Michael Schroeder. Negotiation in multi-agent systenk&owl. Eng. Rey.
14(3):285-289, 1999.

[23] F. Bellifemine, A. Poggi, and G.Rimassa. Jade a fipagg@ant agent frame-
work. In PAAM 99 pages 97-108, 1999.

240



[24] Fabio Luigi Bellifemine, Giovanni Caire, and Dominicéznwood.Developing
Multi-Agent Systems with JADHohn Wiley & Sons, NJ, April 2007.

[25] Federico Bergenti and Alessandro Ricci. Three apgreado the coordination
of multiagent systems. pages 367-372, 2002.

[26] G.V.Bochmann and C. A. Sunshine. Formal methods in camoation proto-
col design.IEEE Transactions on CommunicatiQi30OM-28:624—-631, 1980.

[27] Olivier Boissier, Julian A. Padget, Virginia Dignum,a@riela Lindemann,
Eric T. Matson, Sascha Ossowski, Jaime Simédo Sichman, aret S&zquez-
Salceda, editors. Coordination, Organizations, Institutions, and Norms in
Multi-Agent Systems, AAMAS 2005 International Workshop&gents, Norms
and Institutions for Regulated Multi-Agent Systems, ANMRID05, and Orga-
nizations in Multi-Agent Systems, OOOP 2005, Utrecht, Teg&tlands, July
25-26, 2005, Revised Selected Papgdume 3913 ol_ecture Notes in Com-
puter ScienceSpringer, 2006.

[28] T. Bolognesi and E. Brinksma. Introduction to the is@&fication language
lotos. In P.H.J.van Eijk, C.A.Vissers, and M.Diaz, editdrise Formal Descrip-
tion Techniqgue LOTO$ages 23-73. Elsevier, 1989.

[29] Alan H. Bond and Les Gasser, editoBistributed Artificial Intelligence Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

[30] Rafael H. Bordini, Mehdi Dastani, Jirgen Dix, and Am&Fallah Seghrouchni,
editors. Multi-Agent Programming: Languages, Platforms and Apgplic
tions Multiagent Systems, Artificial Societies, and Simulated&izations.
Springer, July 2005.

[31] Wassim Bouaziz and Eric Andonoff. Dynamic executiorcobrdination pro-
tocols in open and distributed multi-agent systemsKES-AMSTA '09: Pro-
ceedings of the Third KES International Symposium on Ageat\ulti-Agent
Systems: Technologies and Applicatiopages 609-618, Berlin, Heidelberg,
2009. Springer-Verlag.

[32] B.Pehrson. Protocol verification for osComputer Networks and ISDN Sys-
tems 18:185-201, 1989/90.

[33] G. W. Brams.Petri Nets: theory and practiceMasson, 1985.

[34] D. Brand and P. Zafiropulo. Synthesis of protocols folimited number of
processes. li€omputer Network Protocqalpages 29-40, Gaithersberg, MD,
May 1980.

241



[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Daniel Brand and Pitro Zafiropulo. On communicatingtBrstate machines.
ACM, 30(2):323-342, 1983.

Paolo Bresciani, Anna Perini, Paolo Giorgini, Faustar@higlia, and John
Mylopoulos. Tropos: An agent-oriented software developimeethodology.
volume 8, pages 203-236, Hingham, MA, USA, 2004. Kluwer Asad Pub-
lishers.

J. Brzezinski and J. Helary. Distributed terminatigtettion : General model
and algorithms. IrProceedings of the 13th IEEE International Conference of
Distributed Computing Systemgage 21, Pittsburgh, USA, 25-28 May 1993.
INRIA.

Paolo Busetta, Luciano Serafini, Dhirendra Singh, dod#&nho Zini. Extending
multi-agent cooperation by overhearing.@ooplS '01: Proceedings of the 9th
International Conference on Cooperative Information 8ysf pages 40-52,
London, UK, 2001. Springer-Verlag.

Lawrence Cabac and Daniel Moldt. Formal semantics tdMA agent interac-
tion protocol diagrams. In James Odell, Paolo Giorgini, didcy P. Mdller,
editors, The Fifth International Workshop on Agent-Oriented Sofenv8ys-
tems (AOSE-2004). Proceedingmges 97-111, New York, USA, July 2004.
Columbia University.

Angelo Canty and Brian RipleyBoot: Bootstrap R Function2007. R package
version 1.2-30.

Brahim Chaib-Draa, Marc-André Labrie, Mathieu Bemgr and Philippe
Pasquier. Diagal: An agent communication language baselbtogue games
and sustained by social commitmentdutonomous Agents and Multi-Agent
Systemsl3(1):61-95, 2006.

Walid Chainbi. Using the object paradigm to deal witle thgent paradigm:
capabilities and limits. pages 585-589, 2001.

J. Chambers, W. Cleveland, B. Kleiner, and P. Tuk&yaphical Methods for
Data Analysis Wadsworth, 1983.

K. M. Chandy, J. Misra, and L.M. Haas. Distributed dextl detection ACM
Transactions on Computer Systerhd11-156, 1983.

K. M. Chandy and Jayadev Misra. How processes ledbistrib. Comput.
1(1):40-52, 1986.

242



[46] K. Mani Chandy and Leslie Lamport. Distributed snapgshoDetermining
global states of distributed system&SCM Transactions on Computer Systems
3(1):63-75, 1985.

[47] G ChartrandIntroductory Graph TheoryDover Publications, 1984.

[48] Yuchee Tseng. Detecting termination by weight-thmogvin a faulty distributed
system.Journal of Parallel and Distributed Computing (JPDZ5:7-15, 1995.

[49] H. Chernoff and E. L. Lehmann. The use of maximum likebld estimates in
chi’2 tests for goodness of filnnals of math. statisticpages 579—, 1954.

[50] Paolo Ciancarini, Andrea Omicini, and Franco Zambtn€loordination tech-
nologies for internet agentdlordic J. of Computing6(3):215-240, 1999.

[51] P. R. Cohen and H. J. Levesque. Communicative actionarfdicial agents.
pages 65-72, June 1995.

[52] W.J ConoverPractical Nonparametric StatisticdViley, 1980.

[53] Rosaria Conte.Social Order in Multiagent System¥luwer Academic Pub-
lishers, Norwell, MA, USA, 2001.

[54] Rosaria Conte, Cristiano Castelfranchi, and FranknDig. Autonomous norm
acceptance. IATAL '98: Proceedings of the 5th International Workshop on
Intelligent Agents V, Agent Theories, Architectures, aadduagespages 99—
112, London, UK, 1999. Springer-Verlag.

[55] Thomas T. Cormen, Charles E. Leiserson, and Ronald edRiIntroduction

to algorithms chapter 14, pages 262—-267. MIT Press, Cambridge, MA, USA,

1990.

[56] Jordi Cortadella, Michael Kishinevsky, Luciano Lawag and Alexandre
Yakovlev. Deriving petri nets from finite transition systeniEEE Trans. Com-
put, 47(8):859-882, 1998.

[57] R. Cost. Modeling agent conversations with coloredipsts. InWorking
Notes of the Workshop on Specifying and Implementing Csatren Policies
pages 59-66, Seattle, Washington, May 1999.

[58] R. S. Cost, T. Finin, and Y. Labrou. Jackal: A java-batmsal for agent devel-
opment. INAAAI-98, Workshop on Tools for Agent Developmbtadison, WI,
1998.

243



[59] Rost S. Cost, Ye Chen, Tim Finin, Yannis Labrou, and Yemd Using col-
ored petri nets for conversation modeling. In Frank Dignuna Blark Greaves,
editors,Issues in Agent Communicatigmages 178-192. Springer-Verlag: Hei-
delberg, Germany, 2000.

[60] J. P. Courtiat, J. M. Ayache, and B. Algayres. Petri ragesgood for protocols.
SIGCOMM Comput. Commun. Rel4(2):66—74, 1984.

[61] B. Cox, D. Tygar, and M. Sirbu. Netbill security and tsaction protocol. 1995.

[62] F. Cristian, H. Aghali, R. Strong, and D. Dolev. Atomimladcast: From simple
message diffusion to byzantine agreementPtac. 15th Int. Symp. on Fault-
Tolerant Computing (FTCS-13)ages 200-206, Ann Arbor, MI, USA, Septem-
ber 1985. IEEE Computer Society Press.

[63] Flaviu Cristian. Probabilistic clock synchronizatioDistributed Computing
3(3), September 1989.

[64] Flaviu Cristian and Farnam Jahanian. A timestamp-tha$eckpointing pro-
tocol for long-lived distributed computations. 8ymposium on Reliability in
Distributed Softwargpages 12—-20, 1991.

[65] Ralph B. D’Agostino and Michael A. Stephens, editorssoodness-of-Fit
Techniquesvolume 68 of STATISTICS: Textbooks and Monographdarcel
Dekker, New York, 1986.

[66] Jonathan Dale, Bernard Burg, and Steven Willmott. Téendcities initiative:
Connecting agents across the world. In Walt TruszkowskijsBdpher Rouff,
and Michael G. Hinchey, editorgf RAC volume 2564 of_ecture Notes in Com-
puter Sciencgpages 453-457. Springer, 2002.

[67] Jonathan Dale, Steven Willmott, and Bernard Burg. Agéies: Challenges
and deployment of next-generation service environmemnt®rdc. Pacific Rim
Intelligent Multi-Agent System2002.

[68] Danthine. Protocol representation with finite stateehiaes. IEE transactions
on communication28(4):632-643, 1980.

[69] A.C Davison and D.V Hinkley. Bootstrap Methods and Their Application
Cambridge University Press, 1997.

[70] S. De, M. Sameeruddin, V. Sharma, N. Nandi, and H. Du#anew termi-
nation detection protocol for mobile distributed systers.Proc. 10th Inter-
national Conference on Information Technology (ICIT 20(pgges 148-150,
17-20 Dec. 2007.

244



[71] Ronald F. DeMara, Yili Tseng, and Abdel Ejnioui. Tieratyjorithm for dis-
tributed process quiescence and termination detectidnma18, pages 1529—
1538, November 2007.

[72] P. Dembinski and S. Budkowski. Specification languasfelee. In M. Diaz,
Jean-Pierre Ansart, Jean-Pierre Courtiat, P. Azema, adthati, editors,The
formal description technique Estellpages 35-75. North-Holland, 1989.

[73] Ralph Depke, Reiko Heckel, and Jochen Malte KiidRales in Agent-Oriented
Modeling volume 11. 2001.

[74] Thomas J. DiCiccio and Bradley Efron. Bootstrap comniickeintervals Statis-
tical Science11(3):189-228, 1996.

[75] Frank Dignum. Agents, markets, institutions, and peols. Lecture Notes in
Computer Sciengd991:98-114, 2001.

[76] Frank Dignum and Mark Greaves. Issues in agent commatioit. An intro-
duction. Inlssues in Agent Communicatiomages 1-16, London, UK, 2000.
Springer-Verlag.

[77] Edsger W. Dijkstra, W. H. J. Feijen, and A. J. M. van Geste Derivation
of a termination detection algorithm for distributed cortgiions. Information
Processing Lettersl 6(5):217-219, 1983.

[78] E.W. Dijkstra and C.S Scholten. Termination detecfiondiffusing computa-
tions. Information Processing Letterd1(1):1-4, August 1980.

[79] Dolev, Halpern, and Strong. On the possibility and isgbility of achieving
clock synchronization. JCSS: Journal of Computer and System Scigng2s
1986.

[80] Edmund H. Durfee. Scaling up agent coordination stigee Computer
34(7):39-46, 2001.

[81] B. Efron. Another look at the jackniféAnnals of Statistigs/(1):1-26, 1979.

[82] B. Efron and R. Tibshirani. Bootstrap methods for s&maderrors, confi-
dence intervals, and other measures of statistical acguftatistical Science
1(1):54-75, 1986.

[83] B. Efron and R Tibshirani. An Introduction to the Bootstrap Chapman &
Hall/CRC, 1994.

[84] Bradley Efron. Better bootstrap confidence intervdisurnal of the American
Statistical Associatior82(397):171-185, 1987.

245



[85] Bradley Efron. Jackknife-after-bootstrap standaners and influence func-
tions. Journal of the Royal Statistical Society. Series B (Methagioal),
54:83-127, 1992.

[86] Amal El Fallah-Seghrouchni, S. Haddad, and H. MazoBRzatocol engineering
for multi-agent interactionLecture Notes in Computer Sciend®47:89-101,
1999.

[87] Marc Esteva.Electronic institutions. from specification to developtmeRhD
thesis, Universitat Politecnica de Catalunya, 2003.

[88] Shaheen S. Fatima, Michael Wooldridge, and Nichola¥eRnings. Multi-issue
negotiation under time constraints. MAMAS '02: Proceedings of the first
international joint conference on Autonomous agents antiagent systems
pages 143-150, New York, NY, USA, 2002. ACM.

[89] W. Feller. Introduction to Probability Theory and Its Applicationgolume |.
Wiley, New York, 3rd edition, 1968.

[90] James Filliben. Dataplot—an interactive high-levahguage for graphics non-
linear fitting, data analysis, and mathematics Phloceedings of the Third An-
nual Conference of the National Computer Graphics AssmmnatAnaheim,
CA, 1982.

[91] James J. Filliben. The probability plot correlatioreffccient test for normality.
Technometricsl7:111-117, 1975.

[92] Nissim Francez. Distributed terminatio®MCM Trans. Program. Lang. Syst.
2(1):42-55, 1980.

[93] Les Gasser. Perspectives on organizations in muéntgystems. Lecture
Notes in Computer Scienc2086:1-16, 2001.

[94] Alan Gibbons and Wojciech RytterEfficient parallel algorithms Number
0521388414. Cambridge University Press; Reprint editi989.

[95] J.D Gibbons.Nonparametric Statistical Inferencéarcel Decker, New York,
2004.

[96] Martin Charles GolumbicAlgorithmic Graph Theory and Perfect Graph&n-
nals of Discrete Mathematics. North Holland, Feb 2004.

[97] Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs
chapter 2, pages 22—-45. Annals of Discrete MathematicghNdwlland, Feb
2004.

246



[98] Mark Greaves, Heather Holmback, and Jeffrey Bradsh&fvat is a conversa-
tion policy? pages 118-131, 2000.

[99] Zahia Guessoum and Jean-Pierre Briot. From activecthj® autonomous
agents. IEEE Concurrency7(3):68-76, July-September 1999. Special series
on Actors and Agents, edited by Dennis Kafura and JeandBot.

[100] Leo J. Guibas and Robert Sedgewick. A dichromatic &awork for balanced
trees. INSFCS '78: Proceedings of the 19th Annual Symposium on Feunda
tions of Computer Sciencpages 8-21, Washington, DC, USA, 1978. IEEE
Computer Society.

[101] Gery Gutnik. Monitoring large-scale multi-agent systems using overingga
PhD thesis, Bar llan University, 2006.

[102] Gery Gutnik and Gal A. Kaminka. A scalable petri netregentation of interac-
tion protocols for overhearing. IAAMAS pages 1246-1247. IEEE Computer
Society, 2004.

[103] Gery Gutnik and Gal A. Kaminka. A scalable petri netresgentation of inter-
action protocols for overhearing. pages 1246-1247, 2004.

[104] Peter Hall. On the bootstrap and confidence interveit® Annals of Statistics
14(4):1431-1452, December 1986.

[105] Peter Hall. The Bootstrap and Edgeworth Expansio8pringer Verlag, New
York, 1992.

[106] J.Y Halpern, B. Simons, R. Strong, and D. Dolev. Faolierant clock syn-
chronisation. InProceedings of the 3rd ACM Symposium on Princi- ples of
Distributed Computinpages 89-102, Vancouver, August 1984. ACM Press.

[107] R. Hill and J. Arbaugh P. Cartwright, A. Nielsen. JacKing the bootstrap:
some monte carlo evidenceCommunications in Statistics : Simulation and
Computation26:125-139, 1997.

[108] C. A. R. Hoare. Communicating sequential process&sommun. ACM
21(8):666-677, 1978.

[109] C.A.R. Hoare.Communicating Sequential ProcessBisimber 0-13-153271-5.
Prentice Hall International Series in Computer Scienc8519

[110] M Hollander and D. A. WolfeNonparametric Statistical MethodViley, 1973.

[111] G.J Holzmann.Design and Validation of Computer Protocol®rentice-Hall
Englewood Cliffs, New Jersey 07632, Bell Laboratories,1.99

247



[112] G.J. Holzmann. The model checker spiEEE Trans. on Software Engineer-
ing, 23(5):279-295, May 1997.

[113] G.J. Holzmann.SPIN Model Checker, The: Primer and Reference Manual
Addison Wesley Professional, 2004.

[114] J. Hopcraft and J Ullmanintroduction to automata theory , languages and
computation Addison Wesley, 1979.

[115] John E. Hopcroft and Jeffrey D. Ullmanintroduction to Automata Theory,
Languages and ComputatioAddison-Wesley, 1979.

[116] S.T.Huang. Termination detection by using distrdalsnapshotdnf. Process.
Lett, 32(3):113-120, 1989.

[117] Shing-Tsaan Huang. Detecting termination of distiéal computations by ex-
ternal agents. IRroceedings of the 9th International Conference on Distiol
Computing Systems (ICDC®rnges 79-84, Washington, DC, 1989. IEEE Com-
puter Society.

[118] Shing-Tsaan Huang and Pei-Wen Kao. Detecting termainaof distributed
computations by external agentaformation Science and Engineering187—
201, 1991.

[119] P.J HuberRobust StatisticsJohn Wiley and Sons, New York, 1981.

[120] Marc-Philippe Huget and Jean-Luc Koning. Interactpyotocol engineering.
In Marc-Philippe Huget, editoCommunication in Multiagent Systewslume
2650 ofLecture Notes in Computer Scienpages 179-193. Springer, 2003.

[121] Marc-Philippe Huget and Jean-Luc Koning. Requiretraaralysis for interac-
tion protocols. ICEEMAS pages 404-412, 2003.

[122] Ross lhaka and Robert Gentleman. R: A language forataddysis and graph-
ics. Journal of Computational and Graphical Statistié§3):299-314, 1996.

[123] M. Sriram lyengar and Mukesh Singhal. Effect of netktatency on load
sharing in distributed systems]. Parallel Distrib. Comput. 66(6):839-853,
2006.

[124] Ivar Jacobson, Grady Booch, and Jim Rumbaudte Unified Software Devel-
opment ProcessAddison-Wesley, 1999.

[125] C.Jarque and A. Bera. Efficient tests for normalityyloscedasticity and serial
independence of regression residuélsonometric Letters:255-259, 1980.

248



[126] N. R. Jennings. Coordination techniques for distebuartificial intelligence.
pages 187-210, 1996.

[127] N.R.Jennings and M. Wooldridgépplications of intelligent agentSpringer-
Verlag New York, Inc., Secaucus, NJ, USA, 1998.

[128] K. Jensen.Coloured Petri Nets. Basic Concepts, Analysis Methods aad-P
tical Use. Volume 1 EATCS monographs on Theoretical Computer Science.
Springer-Verlag, Berlin, 1997.

[129] C. Johnson. What is research in computing sciencd).200

[130] Richard Jones and Rafael LinGarbage Collection:Algorithms for Automatic
Dynamic Memory Managemeniohn Wileys and Sons, 1996.

[131] Karen KafadarTesting for Normality. Henry C. Thode,,drolume 98. January
2003.

[132] Elizabeth A. Kendall. Agent roles and aspectsEROOP '98: Workshop ion
on Object-Oriented Technologyage 440, London, UK, 1998. Springer-Verlag.

[133] Paul KlempererAuctions: Theory and Practice The Toulouse Lectures in Eco-
nomics Princeton University Press, 2004.

[134] Donald E. Knuth.Fundamental Algorithmssolume 1. Addison Wesly, 3 edi-
tion, 1997.

[135] Mamadou Tadiou Kone, Akira Shimazu, and Tatsuo Nakaji The state of the
art in agent communication languagé&nowl. Inf. Syst.2(3):259-284, 2000.

[136] Jean-Luc Koning, Marc-Philippe Huget, Jun Wei, and Wang. Extended
modeling languages for interaction protocol designPiac. of Agent-Oriented
Software Engineering (AOSE) 2001, Agents 2@0D1.

[137] H Kopetz and W. Ochsenreiter. Clock synchronisatiodistributed real-time
systemslEEE Transactions on Computer86(8):933-940, August 1987.

[138] William H Kruskal and Allen Wallis. Use of ranks in orgeiterion variance
analysis. Journal of the American Statistical Associatjct/(260):583—621,
December 1952.

[139] V. Kumar, A. Grama, A. Gupta, and G. Karypisitroduction to Parallel Com-
puting Benjamin/Cummings, 1993.

249



[140] Y. Labrou and T. Finin. Semantics for an agent commatnon language. In
M. Wooldridge and N. R. Jennings, editofurth International Workshop
on Agent Theories, Architectures, and Languagegies 199-203, Providence,
Rhode Island, USA, 1996. Springer Verlag.

[141] Yannis Labrou, Tim Finin, and Yun Peng. Agent commaftimn languages:
The current landscap¢EEE Intelligent System44(2):45-52, / 1999.

[142] Richard Lai and Ajin Jirachiefpattana&Communication protocol specification
and verification Springer, 1998.

[143] T. H. Lai, Y. C. Tseng, and X. Dong. A more efficient megsaptimal algo-
rithm for distributed termination detection. Rroc. Sixth International Parallel
Processing Symposiymages 646—-649, 23-26 March 1992.

[144] Ten-Hwang Lai and Li-Fen Wu. An (n -1)-resilient algbm for distributed
termination detectionlEEE Trans. Parallel Distrib. Syst6(1):63—-78, 1995.

[145] L. Lamport, R. Shostak, and M. Pease. The Byzantinee@d Problem. In
Advances in Ultra-Dependable Distributed Systems, N., &urd. Walter, and
M. M. Hugue (Eds.), IEEE Computer Society Prd&EE Computer Society
Press, 1995.

[146] Leslie Lamport. Time, clocks, and the ordering of égen a distributed system.
ommunications of the ACN21(7):558-565, 1978.

[147] Leslie Lamport and P. M. Melliar-Smith. Synchronigiolocks in the presence
of faults. J. ACM 32(1):52-78, 1985.

[148] Leslie Lamport and P M Melliar Smith. Byzantine clocknshronization.
SIGOPS Oper. Syst. Re20(3):10-16, 1986.

[149] H.W Lilliefors. On the Kolmogorov-Smirnov test for moality with mean and
variance unknown.Journal of the American Statistical Associatj@®2:339—
402, 1967.

[150] Michael Winikoff Lin Padgham.Developing intelligent agent systemgohn
Wiley and Sons Ltd, 2004.

[151] Fabiola Lopez y. Lopez and Michael Luck. Modelling ms for autonomous
agents. INENC '03: Proceedings of the 4th Mexican International Coafee
on Computer Sciengpage 238, Washington, DC, USA, 2003. IEEE Computer
Society.

250



[152] J. Lundelius and N. Lynch. A new fault-tolerant algbm for clock synchro-
nization. InProceedings of the 3rd ACM Symposium on Principles of Dis-
tributed Computingpages 75—-88, Vancouver, August 1984.

[153] Nancy Lynch.Distributed Algorithmschapter 2, pages 21-22. Morgan Kauf-
mann, 1996.

[154] Benedita Malheiro and Eugenio Oliveira. Argumerdatas distributed belief
revision: Conflict resolution in decentralised co-opematnulti-agent systems.
In EPIA '01: Proceedings of thelOth Portuguese Conference rbifictal In-
telligence on Progress in Artificial Intelligence, KnowtglExtraction, Multi-
agent Systems, Logic Programming and Constraint Sojyirages 205-218,
London, UK, 2001. Springer-Verlag.

[155] H.B Mann and D.R Whitney. On a test of whether one of tavadom variables
Is stochastically larger than the othémnals of Mathematical Statistic$8:50—
60, 1947.

[156] Wendy L. Martinez.Computational Statistics Handbook with MATLABhap-
man & Hall/CRC Press, 2002.

[157] K.A Marzullo. Maintaining the Time in a Distributed System: An Example of a
Loosely-Coupled Distributed ServicBhD thesis, Stanford University, Depart-
ment of Electrical Engineering, 1984.

[158] Keith Marzullo and Susan Owicki. Maintaining the timea distributed system.
SIGOPS Oper. Syst. Re¥9(3):44-54, 1985.

[159] Jeff Matocha and Tracy Camp. A taxonomy of distributachination detection
algorithms.J. Syst. Softw43(3):207-221, 1998.

[160] F. Mattern. Algorithms for distributed terminatioetéction.Distributed Com-
puting, 2(3):161-175, 1987.

[161] F. Mattern. Global quiescence detection based onitatedribution and recov-
ery. Information Processing Letter80(4):195-200, 1989.

[162] N. Maudet and B. Chaib-Draa. Commitment-based ankbglee-game-based
protocols: new trends in agent communication languadgé@sowl. Eng. Rey.
17(2):157-179, 2002.

[163] W.S. McCulloch and W. Pitts. A logical calculus of traeas of immanent in
nervous activityBulletin of Mathematical Biophysic§:115-133, 1943.

251



[164] P. Merlin. Specification and validation of protocol$EEE Transactions on
Communication27(11):1671- 1680, 1979.

[165] D. L Mills. Network time protocol version 4 referencadcaimplementation
guide. Technical Report 06-6-1, University of Delaware)el@2006.

[166] David L Mills. Computer Network Time Synchronization: the Network Time
Protocol Crc, 2006.

[167] R Milner. Communication and Concurrencifentice- Hall, 1989.

[168] Jayadev Misra. Detecting termination of distributednputations using mark-
ers. INPODC '83: Proceedings of the second annual ACM symposiuntion P
ciples of distributed computingpages 290-294, New York, NY, USA, 1983.
ACM.

[169] Neeraj Mittal, Felix C. Freiling, S. Venkatesan, andcia Draque Pensor. On
termination detection in crash-prone distributed systeuitis failure detectors.
J. Parallel Distrib. Comput.68(6):855—-875, 2008.

[170] C.Z. Mooney and R.D. DuvalBootstrapping. A Nonparametric Approach to
Statistical InferenceSAGE, 1993.

[171] T. Motshegwa, M. Schroeder, R. Kloos, P. Noy, and J. Gloch. Control and
management of agents and their services. Technical ReAS-2002-7-1,
Department of Computing, City University, London, UnitethBom, 2002.

[172] Tshiamo Motshegwa. Bootstrapping detection delaks evaluation of a dis-
tributed termination detection protocol for agents. Foothing, Applied Com-
puting.

[173] Tshiamo Motshegwa. Conversation model for disteltermination detection
of multiagent interactions.

[174] Tshiamo Motshegwa and Michael Schroeder. Interaatimnitoring and ter-
mination detection for agent societies: Preliminary rissuh Andrea Omicini,
Paolo Petta, and Jeremy Pitt, editdeESAW volume 3071 ol ecture Notes in
Computer Scienggages 136—-154. Springer, 2003.

[175] Bernard Moulin and Brahim Chaib-draa. An overview gdtdbuted artificial
intelligence. pages 3-55, 1996.

[176] T. Murata. Petri nets: Properties, analysis and appbns. InProceedings of
the IEEE volume 77, pages 541-580, April 1989.

252



[177] M. Naimi. Global stability detection in the asynchows distributed computa-
tions. InProc. Workshop on the Future Trends of Distributed Compgu8ys-
tems in the 19909ages 87-92, 14-16 Sept. 1988.

[178] N. Nataran. A distributed scheme for detecting comication deadlocks.
IEEE Transactions on Software Engineerin@:531-537, 1986.

[179] Matthias Nickles, Michael Rovatsos, and Gerhard Waients And Computa-
tional Autonomy: Potential, Risks, And Solutiohscture Notes in Computer
Science. Springer Verlag, 2004.

[180] Matthias Nickles, Michael Rovatsos, and Gerhard Wadents And Computa-
tional Autonomy: Potential, Risks, And Solutioiscture Notes in Computer
Science. Springer Verlag, 2004.

[181] NIST/SEMATEC. NIST/SEMATECH eHandbook of Statistical MethoWsst,
2004.

[182] Bill Nitzberg and Virginia Lo. Distributed shared meny: A survey of issues
and algorithmsComputey 24(8):52-60, 1991.

[183] David G. Novick and Karen Ward. Mutual beliefs of mplé conversants: A
computational model of collaboration in air traffic contrbd AAAI, pages 196—
201, 1993.

[184] Mariusz Nowostawski and Martin Purvis. The conceptaatonomy in dis-
tributed computation and multi-agent systemslAm '07: Proceedings of the
2007 IEEE/WIC/ACM International Conference on Intellig&gent Technol-
ogy, pages 420-423, Washington, DC, USA, 2007. IEEE Computeeg§o

[185] Lin Padgham, John Thangarajah, and Michael Winikéftiml protocols and
code generation in the prometheus design tool. In EdmundudeB, Makoto
Yokoo, Michael N. Huhns, and Onn Shehory, editétAMAS page 270. IFAA-
MAS, 2007.

[186] G. Papp. Using petri nets for modelling of finite stataamines and protocols.
Hiradastechnika41(12):301-311, 1990. NewsletterInfo: 39.

[187] S. Paurobally and Jim Cunningham. Achieving commaeraction protocols
in open agent environments. Working Notes of Challenges in Open Agent
Systems '03 WorkshpMelbourne, Australia, July 2003.

[188] J.L. Peterson. Petri netACM Surveys9(3):223 — 252, 1977.

253



[189] C.A. Petri. Communications with Automatd&hD thesis, Rome Air Develop-
ment Center, Rome, NY, 1966.

[190] Jeremy Pitt and Abe Mamdani. Communication proto@olsiulti-agent sys-
tems: A development method and reference architecturdssimes in Agent
Communicationpages 160-177, London, UK, 2000. Springer-Verlag.

[191] J.V. Pitt and A. Mamdani. A protocol-based semantarsan agent communi-
cation language. IRroceedings 16th International Joint Conference on Artifi-
cial Intelligence IJCAI'99 pages 486491, Stockholm, Sweden, 1999. Morgan-
Kaufmann Publishers.

[192] R.L Plackett. Karl pearson and the chi-squared t&sternational Statistical
Review51:59-72, 1983.

[193] J. Postel. User datagram protocol. Technical rep®tt,United States, 1980.

[194] Michael J. Quinn and Narsingh Deo. Parallel graph @llgms. ACM Comput.
Surv, 16(3):319-348, 1984.

[195] Parameswaran Ramanathan, Kang G. Shin, and Ricky WerBEault-tolerant
clock synchronization in distributed system&EE Computer23(10):33—-42,
1990.

[196] A. S. Rao and M. P. Georgeff. Bdi-agents: from theorytactice. InPro-
ceedings of the First Intl. Conference on Multiagent Systean Francisco,
1995.

[197] Brian D. Ripley. The R project in statistical comp@inMSOR Connections.
The newsletter of the LTSN Maths, Stats & OR Netwd(k):23-25, February
2001.

[198] J.S Rosenschein and G.ZlotkiRules of Encounter:Designing conventions for
automated negotiation among ComputdiT Press, Boston, 1994,

[199] K Sabnani. An algorithmic technique for protocol ¥eation. IEEE Transac-
tions on Communicatiqr8:924-931, August 1988.

[200] Kassem Saleh. Synthesis of communications protoesisannotated bibliog-
raphy. SIGCOMM Comput. Commun. Re26(5):40-59, 1996.

[201] Michael Schroeder. An efficient argumentation fraragwfor negtiating au-
tonomous agents. IMAAMAW ’'99: Proceedings of the 9th European Work-
shop on Modelling Autonomous Agents in a Multi-Agent Warédjes 140-149,
London, UK, 1999. Springer-Verlag.

254



[202] John R. SearleSpeech Acts: An Essay in the Philosophy of Langu&gpgm-
bridge University Press, January 1970.

[203] Sandip Sen and Gerhard Weiss. Learning in multiaggstems. pages 259—
298, 1999.

[204] J. Shao and D. Tulr'he Jackknife and Bootstragpringer Verlag, 1995.

[205] S.S Shapiro and M.B Wilk. An analysis of variance testformality (complete
samples)Biometrikg 52, 3,4:591-6, 1965.

[206] N. Shavit and N Franchez. A new approach to the deteatfdocally indica-
tive stability. In L. Kott, editor,Intl. Collog. Automata, Languages, and Pro-
gramming volume 226, pages 344-358, Washington, DC, 1986. Lecttesn
Computer Science, Springer Verlag.

[207] David SheskinHandbook of Parametric and Nonparametric Statistical Rroc
dures Number 1584884401. CRC Press, 2003.

[208] Kang G. Shin and P. Ramanathan. Clock synchronizaifoa large multi-
processor system in the presence of malicious fauEEE Trans. Comput.
36(1):2-12, 1987.

[209] Yoav Shoham. Agent-oriented programmidgtificial Intelligence, 60(1):51—
92, 1993.

[210] Yoav Shoham and Kevin Leyton-BrownAlgorithmic, Game-Theoretic, and
Logical FoundationsCambridge University Press, 2009.

[211] J. L. Simon.Resampling: The New Statistick997.

[212] M. Singh. On the semantics of protocols among distauntelligent agents.
In IEEE International Phoenix Conference on Computers and@amcations
pages 379-386, Phoenix, Arizona, April 1992. IEEE.

[213] Munindar P. Singh. A social semantics for agent comication languages.
In Frank Dignum and Mark Greaves, editolssues in Agent Communication
pages 31-45. Springer Verlag: Heidelberg, Germany, 2000.

[214] Mark Smith. Formal verification of communication pvobl. In Reinhard
Gotzhein and Jan Bredereke, editdfsrmal Description Techniques IX: The-
ory, Applications, and Tools FORTE/PSTV’96: Joint Intdroaal Conference
on Formal Description Techniques for Distributed Systenm$@ommunication
Protocols, and Protocol Specification, Testing, and Vatfan, pages 129-144,
Kaiserslautern, Germany, 1996. Chapman & Hall.

255



[215] R. G. Smith. The contract net protocol: High-level gommication and control
in a distributed problem solver. IRroceedings of the 1st International Con-
ference on Distributed Computing Systemages 186-192, Washington, DC,
1979. IEEE Computer Society.

[216] P. SprentApplied nonparametric statistical methodShapman and Hall, Lon-
don, 2nd edition, 1993.

[217] P. SprentData driven statistical method€hapman and Hall, London, 1998.

[218] T. K. Srikanth and Sam Toueg. Optimal clock synchratin. InSymposium
on Principles of Distributed Computingages 71-86, 1985.

[219] R. G Staude and S. J SheathRobust EstimationJohn Wiley and Sons, New
York, 1990.

[220] Larry M. Stephens and Michael N. Huhns. Multiagenttegss and societies of
agents. In Gerhard Weiss, editMultiagent Systems: A Modern Approach to
Distributed Artificial Intelligence pages 79-120. The MIT Press, Cambridge,
MA, USA, 1998.

[221] M.A Stephens. Edf statistics for goodness of fit andescomparisonsJournal
of the American Statistical Associatiqggages 730—737, 1974.

[222] MA. StephensGoodness-of-Fit Techniquashapter Tests based on EDF statis-
tics. Marcel Dekker, 1986.

[223] Carl A. Sunshine. Survey of protocol definition andifresition techniques.
SIGCOMM Comput. Commun. Re¥(3):35-41, 1978.

[224] Milind Tambe and Hyuckchul Jung. Towards conflict lesion in agent teams
via argumentation, April 22 2000.

[225] R Development Core TeamR: A Language and Environment for Statistical
Computing R Foundation for Statistical Computing, Vienna, Aust2805.
ISBN 3-900051-07-0.

[226] Gerard Tel. Introduction To Distributed Algorithmschapter 13. Cambridge
university Press, 2000.

[227] Gerard Tel and Friedemann Mattern. The derivationistridbuted termination
detection algorithms from garbage collection schen®&GSM Transactions on
Programming Languages and Systedf§(1):1-35, January 1993.

256



[228] Gerard Tel and J. van Leeuwen. The derivation of grapinkmg algorithms
distributed termination detection protocofscience of Computer Programming
10:107-137, 1988.

[229] Thorsten Thadewald and Herbert Buumining. Jarque-test and its competi-
tors for testing normality - a power comparisajournal of Applied Statisti¢s
34(1):87-105, 2007.

[230] John Thangarajah, Lin Padgham, and Michael Winikd*ometheus design
tool. In AAMAS '05: Proceedings of the fourth international joinhéerence
on Autonomous agents and multiagent sysi@ages 127-128, New York, NY,
USA, 2005. ACM.

[231] Rodney W. Topor. Termination detection for distriéditcomputationsinfor-
mation Processing Letterd8(1):33-36, 1984.

[232] T. E. Truman.A Methodology for the Design and Implementation of Commu-
nication Protocols for Embedded Wireless SysteiD thesis, UNIVERSITY
OF CALIFORNIA, BERKELEY, 1998.

[233] Yu-Chee Tseng and Cheng-Chung Tan. Termination teteprotocols for
mobile distributed system$EEE Transactions on Parallel and Distributed Sys-
tems 12(6):558-566, 2001.

[234] J Tukey.Exploratory Data AnalysisAddison-Wesley, 1977.

[235] N. Vasanthavada and P.N. Marino. Synchronisationaoftftolerant clocks
in the presence of malicious failureslEEE Transactions on Computers
37(4):440-448, 1988.

[236] Gregor von Bochmann. Finite state description of camitation protocols.
Computer Networks2:361-372, 1978.

[237] Jin Wang, J. Sunil Rao, and Jun Shao. Weighted jacklatfier-nootstrap: a
heuristic approach. IWWSC '97: Proceedings of the 29th conference on Win-
ter simulation pages 240-245, Washington, DC, USA, 1997. IEEE Computer
Society.

[238] Xinli Wang and Jean Mayo. A general model for detectingtributed termi-
nation in dynamic systemsParallel and Distributed Processing Symposium,
International 1:84b, 2004.

[239] Gerhard Weiss. Agent orientation in software engimge volume 16, pages
349-373, New York, NY, USA, 2001. Cambridge University Rres

257



[240] Gerhard Weil3, Michael Rovatsos, and Matthias Nick{&spturing agent auton-
omy in roles and xml. IRAMAS ’'03: Proceedings of the second international
joint conference on Autonomous agents and multiagentregsgpages 105-112,
New York, NY, USA, 2003. ACM.

[241] Michael Wellman William and William E. Walsh. Distuited quiescence de-
tection in multiagent negotiation. ICMAS '00: Proceedings of the Fourth In-
ternational Conference on Multiagent Systems (ICMAS-2@2@e 317, Wash-
ington, DC, USA, 2000. IEEE Computer Society.

[242] Steven Willmott, Simon G. Thompson, David Bonnefogirigia Charlton, lon
Constantinescu, Jonathan Dale, and Tianning Zhang. Agesetcbdynamic ser-
vice synthesis in large-scale open environments: Expeggfrom the agentci-
ties testbed. IMAMAS pages 1318-1319. IEEE Computer Society, 2004.

[243] Michael Winikoff. Designing commitment-based ageamteractions. InIAT
'06: Proceedings of the IEEE/WIC/ACM international coriece on Intelli-
gent Agent Technologyages 363—-370, Washington, DC, USA, 2006. IEEE
Computer Society.

[244] Michael Winikoff. Implementing commitment-basedaractions. INPAAMAS
'07: Proceedings of the 6th international joint conferenee Autonomous
agents and multiagent systemages 1-8, New York, NY, USA, 2007. ACM.

[245] Michael Winikoff, Wei Liu, and James Harland. Enhamgicommitment ma-
chines. pages 198-220, 2004.

[246] Michael Wooldridge. Semantic issues in the verifeatof agent communica-
tion languagesAutonomous Agents and Multi-Agent Syste3(k):9—-31, 2000.

[247] Michael Wooldridge.An Introduction to Multi-Agent Systemgohn Wiley &
Sons, 2001.

[248] Michael Wooldridge and Nicholas R. Jennings. Pitfall agent-oriented devel-
opment. INAGENTS '98: Proceedings of the second international cemes
on Autonomous agentsages 385-391, New York, NY, USA, 1998. ACM.

[249] Michael J. Wooldridge and Nicholas R. Jennings. Adkabries, architectures,
and languages: A survey. pages 1-39. Springer-Verlag,.1994

[250] Xinfeng Ye and John A. Keane. Token scheme: An algoritbr distributed
termination detection and its proof of correctnessIAP Congress (1)pages
357-364, 1992.

258



[251] Pinar Yolum and Munindar P. Singh. Synthesizing firstate machines for
communication protocols. Technical report, Raleigh, NGAJ2001.

[252] Pinar Yolum and Munindar P. Singh. Commitment mackinén ATAL 01:
Revised Papers from the 8th International Workshop onligezit Agents V|
pages 235-247, London, UK, 2002. Springer-Verlag.

[253] Franco Zambonelli and Andrea Omicini. Challenges esgkarch directions
in agent-oriented software engineeringutonomous Agents and Multi-Agent
Systems9(3):253-283, 2004.

259



PART IV
APPENDICIES

260



APPENDIX A

Termination Detection for protocols

A.1 lllustration for the diffusing conversations algorithm

Consider Figure A.1 showing the execution trace of Algonith discussed in section
5.4 in page 93. This trace illustrates that the algorithwerrses the tree in breadth-first
and at each node evaluating whether there are any descsmdanersation nodes i.e.
evaluating if Ry ansitive = 0 , testing for if the protocol is active usingtive Protocol
predicate and removing that node with a procedureove if the above is true. When
G eventually becomes empty, the associated figgdefined in Definition 10 in page

84) of a conversation can be set.
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Figure A.1: Showing example trace of executing Algorithnf 4 diffusing
computation tree for a conversatign= (V, E) rooted atC.
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A.2 Other possible implementations of a global c-matrix

There are various other possibilities for logically impkeming the a global—matrix

M, namely;

1. Consider a set of controllers coordinating vitauple space The tuple space
functioning as ashared memoryor global c-matrix structure allowing overlap
over controllers, i.e. allowing), . C. (M; ;) # 0, and providing an update

protocol for the tuple space by controllers, e.g. Figure A.2

2. Consider a combination @fand3, i.e. divideM logically by allowing each
controller to manage a separate copy ef-a matriz and allow overlaps, and
consider controllers coordinating viataple spacehat functions as ahared

cachefor the global c-matrix structure, e.g. Figure A.3.

Figures A.2 and A.3 next illustrate configurations one anadl t@spectively as dis-

cussed above.
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T update(M; )

update(M; ;)

o1 (v ), (M)

" update(M )

Figure A.2: Showing example global matrix allocated acrosstrollers al-
lowing overlaps, i.e[),.x Cr (M j) # 0
using a tuple space
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T update(M;)

Figure A.3: Showing example global matrix allocated acrosstrollers al-
lowing overlaps, i.e[),.x Cr (M j) # 0
, using locak: — matrix structures and tuple as cache
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A.3 Algorithms

Considering setup, M in the tuple space is treated as a local matrix by controiiers
{C, | n € N} with theupdate protocol providing a concurrehtvrite mechanism to
the structure. In this setup then, the procedure for gl@yatination involves a test of

thelocaltermination predicate orM in the tuple space.

In setup4, the update protocol can be extended to provide a mechaniseplicate
entries of locak — matriz structures held by controllers dd in the tuple space in a
cache updafe Therefore in this setup the procedure for global termaratinvolves a
cache update and a test of thwealtermination on the cache. Consider Algorithm 8

that implements this scheme.

Though concurrency control is not strictly necessary if mtedduce a constraint that even though
Mnen Cn (M z‘,j) # () may hold, controllerg€, andC» say, will work with different conversations in

the vector(Cy,).
2The update can be periodic or triggered by a designatedattamtf, with a sync signal say.
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Algorithm 8 Algorithm for synchronisation of cache updates acrossrotiats in
{C, | n € N}, with global termination reported by controll€s for agent;

procedurejlobaltermination ()

INPUT: -M in the tuple space;
DATA STRUCTURES: locat — matriz m;C ={C, | n € N}

forall C, € Cdo
if C,, # Co then
sync(Cyp)
else
cacheupdate(M,; m)
F «— localterminantion (M, 1)
end if
end for

procedure-acheupdate ()

INPUT: -M ¢ — matriz in the tuple spacan local c — matrix
forall m,; do
(M; j — F) — A\, 4<, inactive(m; ; — Cy)
append(m; j — (Ci), M j — (Cy))
end for
return (F)
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A.4 Discussion and complexity analysis

Algorithms discussed in Chapter 5 primarily worked on gsaphd used set operations
extensively. For graphs, complexity in primarily influeddey the number of nodes

and branching factor.

Consider the graph traversal algorithm that performeachability analysiqAlgo-
rithm 2 in page 81) invoked by Algorithm Xkfp, page 80 which computes shortest

unique termination paths on a given protocol graph.

Theupdateprocedure, Algorithm 3 in page 82 is of ord@fn x K x m), wheren is
the number of elements @fP, K is the number of elements df andm is the number

of elements of4,,

But as remarked, the procedure for computing shortest enigumination pathstp
can be performed off-line, and is only performed once givgmmaocol and can be
performed only once on a set of protocdbs,a protocol library if one exists. Further-
more, the interaction protocol graphs for agents are ialdyinot very large, e.g. the
contract-nefprotocol given as an example in section 5.3, page 70 or centid FIPA
agent interaction protocol suite. For large protocol gephere exist a lot of work in
the area of parallel graph algorithms [13, 194, 94] or [7] tten be explored in future

work.

Regarding set operations used in these algorithms, mutliepkend on their imple-
mentation and data structures used. [55] explains thatarysearch tree of heiglht
can implement any of the basic dynamic set operatiang) (%) time. This is clearly
reasonable for small graphs (sma)l and performance maybe no better than with a

linked list[55] if heighth is large.

Again most of the protocol graphs are small. For large graBkg-Black trees [100]

3SEARCH, INSERT,DELETE, MAXIMUM,MINIMUM,SUCCESSOR, PREBCESSOR.
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that guarantee that basic dynamic-set operations@key n) in the worst case [55]
can be used. Regarding implementation, there are prognagnianguages libraries

that implement container data structures and efficientadjmars on them.

In section 5.4, page 85, we modelled conversations as dhiffusomputation trees,
however, we can add another conversation scenario to timases in section 5.4.1
page 83 and extend the conversation model to model somedimpaas between con-
versations involving a particular agerdand different agentgandk. For example, see
Figure A.4 where completion af,, ; depends ort; ; ;, and in that case the diffusing

computation for the conversation is no longer a tree but @igégraph.

() )

i .. ________________ , ____________ --

Figure A.4: Showing an extended model for conversatiorth, dd@pendencies between
computation trees

Computational complexities of procedures on graph strestare well known and

briefly discussed next and summarised in Table A.1 below.

In general, a common way of representing graphs as datdwstesads to consider an
adjacency matrix [47], and its representational data &iras. An analysis of the com-
plexity issues in algorithmic graph theory is given in [96Hesummarised in Appendix

J, page 372 and we cite the analysis there.
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i.e. LetG = (V,FE) be a graph whose vertices have been (arbitrarily) ordered

v1, Vg, . .. U,. The adjacency matrigM) = (m, ;) of G is ann x n matrix with entries

0 Zf Uﬂ)j%E
1 Zf UZ"UJ'EE

mij =

for example consider Figure A.5, then the adjacency maris given by

00100

10010
2
3
b 5

(@G
varss [of——el2 e [e—f [eJ—f [1]
(b) adjacency lists of G

Figure A.5: G

and can be represented as a an adjacencydisG given in Figure J.1 (b).

4Regarding adjacency lists, for each verteof G an adjacency listdj (v;) can be created, con-
taining those vertices adjacentdqp
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Adjacency matrix Adjacency sets Adjacency sets
stored as an array stored as lists stored sequen-

tially
Is v;u; an edge? O (1) O (d;)” O (d;)”
Mark each vertex which O (n) O (d;) O (d;)
is adjacent ta;
Mark each edge O (n?) O (e) O (e)
Add an edge;v; O (1) om™ O (e)
Erase an edge v, O (1) O (dy) O (e)

Table A.1: Some typical graph operations and their compjexith respect to three
data structures. If the adjacency sets are sorted then #dresst entries can be reduced
to O (log d;) using a binary search, but the double starred entry will gase taD (d;)
[97]

[96] reasons that, by definition, the main diagonal of M izallos, and M is symmetric
about the main diagonal if and only if G is an undirected graphd if M is stored as
a 2-dimensional array, then only one step (more preci®ely) time) is required for
the statements "is;v; € £? or "erase the edggv;. An instruction such as "mark
each vertex which is adjacent t9" requires scanning the entire columiand hence
takesn steps. Similarly, "mark each edge" takessteps. The space requirement for

the array representation@ (n?).

Table A.1 above discussed in [97] and in Appendix J in pagesBit®v some typical
graph operations and their complexity with respect to tllega structures, where n is

the number of vertices, e is the number of edgéss the degree of vertex.

Regarding the—matriz data structure we introduced in section 5.4, page 84 if say fo
a particular applications the data structure has some grepeperhaps by the nature
of the interactions type and agents relationships if amy,iéthe matrix is sparse say,

there is even more possibilities for efficient algorithmsdearching it. These search

5But in our discussion of the diffusing computation thoughextéended® with some closure, e.qg.
reflexive so the graph is acyclic.
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algorithms can useful if say thguiescencés required (i.e. if the objective is to check

if all agents or a group of agents have terminated converssti

Regarding the logical global— matriz M introduced in Definition 14 in page, 96,as
an implementation point for the shared memory based alieenaf the distributed
termination detection protocol , the global- matriz M can be mapped directly to
existing agent registries. This will optimise procedunesisas garbage collection that
may follow the termination detection procedure to avoidlaaping agent registration

on registries and controllers.
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APPENDIX B

Prototype Implementation

B.1 Java Agent Development Framework

The prototype and experiments were developed within theEJAgent platform [23].
In principle the ideas discussed in this research could d®yped in other tools and
platforms which supports and provide mechanisms for ermging agent interaction
protocols. JADE has emerged as a popular choice and is in sgcead use in the
research community as an implementation framework for sed agents and has

success in large testbed project like Agentcities [66].

The details of the JADE platform and its design philosopteydiscussed in detail in

[24] and | summarise them here.

JADE [23], is a software framework fully implemented in Jé&aaguage. Its goal is to
simplify the development of multi-agent systems while eimgustandard compliance
through a comprehensive set of system services and ageotsrnipliance with the
FIPA! specifications:, i.e. naming service and yellow-page servnessage transport

and parsing service, and a library of FIPA interaction pcots ready to be used.

In complying to FIPA specifications, JADE includes all thesandatory components

that manage the platform, i.e. the ACC, the AMS, and the DF.agent commu-

The Foundation for Intelligent Physical Agents (FIPA) wasnfied in 1996 to produce software
standards for heterogeneous and interacting agents antlaased systems.
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nication is performed through message passing, where FIPA i8 the language to

represent messages.

The agent platform can be distributed on several hosts. @myJava application, and
therefore only one Java Virtual Machine (JVM), is executacach host. Each JVM
is basically a container of agents that provides a complete¢ime environment for

agent execution and allows several agents to concurrexglyuée on the same host.

The communication architecture offers flexible and effitimessaging, where JADE
creates and manages a queue of incoming ACL messagesepaesch agent; agents
can access their queue via a combination of several modeskiby, polling, time-
out and pattern matching based. The full FIPA communicatimdel has been im-
plemented and its components have been fully integratedraiction protocols, en-
velope, ACL, content languages, encoding schemes, omésl@gd finally, transport

protocols.

The transport mechanism can be adapted to each situatiargrigparently choosing
the best available protocol. Java RMI, event-notificatidi;TP, and [IOP are cur-
rently used,but more protocols can be added. Most of thedctien protocols defined
by FIPA are already available and can be instantiated a&#&nidg the application-

dependent behaviodrof each state of the protocol.

In the jade execution model agents are implemented as oradlper agent, but
agents often need to execute parallel tasks. In additiohgortulti-thread solution,
offered directly by the JAVA language, JADE also supportsesiuling of cooperative
behaviours. The run-time includes also some ready to usavimhrs for the most

common tasks in agent development.

2The computational model of an agent is multitask, wherestgsk behaviours) are executed con-
currently.
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B.2 Implementation

The finite state machine based interaction protocols wepdeimented using JADE’s

FSM behaviour template. In the experimental setup, a nuragents executing a

protocol are instantiated. Figures B.1, B.2, B.3 B.3 shovious processes executed
by agents and controllers. JADE provides a construct caleehaviourthat can

implement these agent processes.

TONT n
AGENTS CONTROLLER

execut eProtocol s registration hand| eRegi stration

regi ster Protocol s()

\
‘
a
YO8
c

4>
regi sterPat hs()

quer ySnapshot s

’——-— Pol 1 ()

eeniaeet . SnapShot s

handl eSnapshot Queri es

deriveTerm nati onPat hs AppendsnapShol

Figure B.1: Showing processes executed by agents and tt®lbers for reg-
istration, derivation of termination paths and collectiohprotocol execution
traces

Figure B.1, shows;

| — A process for executing protocols given protocol speatians.

Il — A process for registration. Depending on the experimeriie run, agents can

register their full protocol specifications to the conteollor the sub-protocol
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comprising ofterminations paths

Il — A process for deriving termination paths given protbgpecifications. This can
be done off line from protocol specification from the protiddwary or done on

agent initialisation.

IV — A process for maintaining protocol execution snapshdtsis handles queries

from the controllers on protocol execution.

V — A process to handle protocols or sub-protocol regisiratiThe process main-
tains data structures. The tuple notatioh/ D;, (A4;, (P;))) for shows that an
agent has an identifieel/ D;. An agent has aagent proxyA; that encapsu-
lates protocol specificatiorig’;) for that agent. Similarly if only sub-protocols
or termination paths were registerédi/ D;, (A;, (T'F;))), represents the tuple
where (T'P;) represents the specifications of the sub-protocols or textioin

paths.

Figure B.2 completes Figure B.1 by showing;

VI— A process for collecting protocol execution snapshdtse process buffers pro-
tocol execution traces, and maintains data structuresrganising and main-

taining protocol execution snapshots for agents monitored

VIl — A process for monitoring protocols and making terminatexplicit given pro-
tocol or sub-protocol or termination paths specificatiams protocol execution

snapshots.

3For experimental setup purposes it does not really matterthe protocol or subprotocols are
obtained, in reality there will be a protocol library tha¢tbontrollers can access as proposed in Chapter
5, page 109 in Figure 5.14.
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AGENTS CONTROLLER

execut eProtocol s handl eRegi stration

N

det ection

evaluateAgainst (S, TP)|P))
..........

———:  query() }

handl eSnapshot Queri €s . B
T eeieeeent : SnapShot s

AppendSiapShot (S, S,)

Figure B.2: Showing processes executed by agents and theolbers for
monitoring protocol execution and termination detection.

Figure B.3 on the other hand shows processes involvedmtroller-to-controllerin-
teractions in the decentralised setup. Controllers miairgeofiles and can register
with each other and use a load balancing mechanism. The &xpiteitly shows for

each controller;

VIl — A process for registering with remote controllers. ddacontroller maintains a
data structure to representjifile P f;shown as a tupléC'I D;, (Ld, Cp, (AID;)))
whereC'I D; is the controller identifier.d is metric representing local loa@yp
represents capacity, i.e. threshold load aAdD;) a sequence agent identifiers

for registered agents registered with this controller.

IX — A process for handling registration requests by remoterollers. This hosts re-
mote controllers’s profile representations against cdietrmentifiers as shown

in the diagram as the tupl€' 1Dy, P f;)
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CONTROLLER CONTROLLER

registration control | erRegi stration

(CID;, (Ld, Cp, (AID;)))

(CID;\Pf;)
agent Regi stration udt agent Regi stration
1
control | erRegi st ra:ti on
1 K A
AID;. (A}, (P,) . _ (AID;, (i, (P))))
| register
1
1
(AID;, (A;, (TP))) : (AID;, (4i, (TP)))
1D;, (Ld,Cp, (AID;
(I, Pf) . (CID;,(Ld.Cp, (AID;)))
1
! \/
1
1
| oadBal dnce ! oadBal ance
1
1
1
1
updateProfile(Pf;) updateProfile(Pf;)

updateAgentRegistration(AlD;, (Pi)|AID;. (T Pi)) updateAgentRegistration(AID;, (Pi)|AID;, (TPi))

fowardRegistration(AID; {Pi)|AID; (TPi)) fowardRegistration(AID;, (Pi)|AID;. (T Pi))

Figure B.3: Showing processes for controller-controligiaraction in the dis-
tributed setup. Processes are for registration, load balag

X — A load balancing process. This for forwarding agent regisns to available
remote controllers in the cluster. This is triggered if lolcad exceeds a de-
fined threshold. The process also refreshes the local dlems@rofile stored
remotely and updates agent registration data structuresaaiving forwarded

agents registration requests.

For experimental data Figure B.4 introduces a data cofleqirocess for agents and
controllers . There are entries for agents and the protecéing executed, this repre-

sented as atupled/ D;, PID;). For each protocol execution atuple/ D;, T'a;, T'c;, AT, R, Ec)
is given, representing a protocol identified D;. Each agent marks and records the

start and end of protocol executidfig,;. The controller record®'c; the termination

time of the monitored protocol on the controller’s sid€l” then is the detection delay.
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, R is a computational resource utilisation mefridhe experimental cycle is recorded

askFec.

AGENTS handl eRegi stration CONTROLLER
execut eProt ocol s

resourceProfiler

detection

evaluateAgainst (S), TPj|P))

11T

,Faj, Tej, AT, R, E¢
SnapShot s

quer ySnapshot s
e

query()

or($s_{i}, S {i}9)

Figure B.4: Showing agents-controller interaction proses for data collec-
tion and resource profiling

‘derived from the operating system function calls to give apd memory utilisation, e.g. through
Linux function calltop
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APPENDIX C

Experimental design and data analysis

C.1 Data collection setup

Figure C.1 gives an illustration of the data collection sters discussed iExample
12 in page 125, where we considered a set of agdpts_ A that reside in the same
host as some remote controller, and consider C A< be agents registered with an

R; € C.
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Figure C.1: Data collection setup, showing local and remaaatrollers in a
distributed setting
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C.2 Data collection during experimental cycles

An illustration figure for experimental data collection. i$lustrates various ways

data collected during experimental cycles as discussedga b 75.
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Plot (D)
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Detection delays Dataset D
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cycle 1 time series cycle 2 time series ‘ cycle 2 time series
o sl 72 Ta
(a) Time series dataset
Plot (6(D.,))
e -
Caleulate statistic § (D)
-
- Cal statistic 0 (D,) .
77777777777777777 - Calculate statistic § (D,,)
. - -
Dataset, Dy ‘ Dataset, D, ‘ Dataset, D,, ‘
cycle 1 time series ‘ cycle 1 time series cycle 1 time series
To Ul 72 Tn
(b) Cyclic dataset
Plot (4(D.))
e -
Calculate statistic 6 (D;)
-
- Calculate statistic 6 (Dy + D) i
Mmoo - Prd Calculate statistic 6 (3 D,,)
- - e
P -
Dataset, Dy ‘ Dataset, Dy + D2 ‘ Dataset, Y D,
‘ cycle 1 time series ‘ cycle 2 time series ‘ cycle n time series o
o at 2 Ta
(c) Accumulated dataset

Figure C.2: Figures a-c show various data collection sceosifor time series data
over experimental cycles
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Figure C.3: Data collection and analysis for the distribdteetting
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C.3 Hardware used in experiments

Regarding the hardware configuration in the distributedsekperiments, consider

Figure C.1 below.

285



98¢

| Os | Arch & Kernel | Cpu(s)(Ghz) | Cache (KB)| Ram (GB)| Swap (GB)
Core Cluster Nodes

Controller ,R; | GNU/Linux 32 bit 1686, | 4 x 2.4 Intel Xeon 512 1.03 2.09
2.4.20-8 SMP

Controller ,R; | GNU/Linux 32 bit 1686,| 2 x 0.866 Pentium Il | 256 0.904 1.06
2.4.22 SMP (Coppermine)

(Coppermine) | 256 0.513 1.05

Controller ,R; | SunOS 5.9 64 bit 4-way| 4 x 1.6 SUNW | 1000 8.2 37
Superscalar | UltraSPARCIIIi
SPARC V9

Client Nodes

Clients ,L; GNU/Linux 32 bit 1686,| 1 x 3.20 Pentium IV 1024 0.512 8.03

2.4.20-8 SMP

Table C.1: The hardware specifications for machines usedhenetxperiments for the distributed setting. The first four
machines are controllers in the cluster as described in ttpeamental architecture



APPENDIX D

Tutorial on resampling statistical methods

D.1 The Bootstrap

The Bootstrap ( see [81][69, 211, 204] for details) refers to the process of repéated
drawing samples, with replacement, from data colleéténstead of trusting theory to
describe the sampling distribution of an estimator (e.gam)ewe estimate that distri-
bution empirically. Drawing bootstrap samples of size(from an origional sample
of also sizen) yield k new estimates. The distribution of these bootstrap estisnat
provides an empirical basis for estimating standard eooc®nfidence intervals. The
bootstrap essentially "simulates” repeating the expearirhnewever many times as re-

quired.

Detailed bootstrap procedures and algorithms are desciibiéne standard reference
on the Bootstrap [83]. The general procedure for performivgbootstrap can be

written as follows;

More formally [83] pp. 44,

e Consider a random sample x#& (zs,...,x,,) from an unknown probability distri-
bution '. We wish to estimate a parameter of interestt(F') on the basis of:

Typically for this purpose we calculate the estiméates(z).

'Brad Efron wrote the key paper rediscovering the bootstnaihés famous 1979 paper in the Annals
of Statistics.
2Unlike monte carlo simulations which fabricate their ddiagtstrapping works with real data.
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Algorithm 9 The Bootstrap algorithm

SetB > 1000
repeat
e Draw a resample with replacement from the data.
e Calculate the resample mean.
e Save the resample mean into a variable.
until B TIMES
e Make a histogram and normal quartile plot of the B means.
e Calculate the standard deviation of the B means.

e Bootstrap methods depend on theotstrap sample Define F' to be the em-
pirical distribution, putting the probability/» on each of the observed, i =
1,2,...,n. A bootstrap sample is then defined to be a random sampleef.siz

drawn fromF’, sayz* =z, a3,....%, written®

F— (27,23, ... 7)) (D.1)

) n

D.1 can also be understood to mean that the bootstrap datespdj 3,....x;
are a random sample of sizedrawnwith replacementrom the population of.

objects {1,2,...,x,).

e Corresponding to a bootstrap datasets a bootstrap replication of

0 = s(z*) (D.2)

The quantitys(z*) is the result of applying the same function)46 «* as was
applied tozx, e.g. if s(z) is the sample mean then s(z*) is the mean of the

bootstrap dataset,= » "(z;/n)

i=1

3The star notation indicates that is not the actual data setbut rather the randomized, or resam-
pled version of.

288



e The bootstrap estimate of(f), the standard error of a statisticis a plu-in
estimate that uses the empirical distribution functfoin place of the unknown

distribution F. Specifically the bootstrap estimateef (0) is defined by

N

sep(67) (D-3)

i.e. the bootstrap estimate of(0) is the standard error @ffor data set of size

n randomly sampled fronf'.

e Recalling that the standard error of the meawritten sex(z) is the square root

of the variance of

ser(7) = [var(z)]? = “7% (D.4)

and that apart from the mean, there exist no formulae to ctenpumerical
values of the ideal estimates exactly. The bootstrap dlgarbelow is a compu-

tational way of obtaining a numerical value ©f <9*>

PROCEDURE - BASIC BOOTSTRAP

1. Given arandom samples (x1,2,...,x,) , calculated.
2. Sample with replacement from the original sample tagetz7, x3,....2)

3. Calculate the same statistic using the bootstrap sanmpdéap 2 to geté*.

AN

. Repeat steps 2 through 3, B times.

5. Use this estimate of the distributioné)(i.e., the bootstrap replicates) to obtain

the desired characteristic (e.g., standard error, bias onftdence interval).
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B is generally a large number, typically 1000*

Bootstrap Estimate of Standard Error When our goal is to estimate the standard
error of using the bootstrap method, we proceed as outlm#tki previous procedure.
Once we have the estimated distributionfowe use it to estimate the standard error

for . This estimate is given by

1

SEB<):{B 11;310*17 6" } (D.5)
where
o— L XB: o (D.6)
B b=1

It is worth observing that Equation D.5 is just the samplad#ad deviation of the
bootstrap replicates, and Equation D.6 is the sample metreddiootstrap replicates.
[83] show that the number of bootstrap replicatéshould be between 50 and 200
when estimating the standard error of a statistic. Ofterctimece of B is dictated by
the computational complexity of the sample size n, and the computer resources that

are available.

PROCEDURE - BOOTSTRAP ESTIMATE OF THE STANDARD ERROR

1. Given arandom sample= z4, ..., z, calculate the statistig.

2. Sample with replacement from the original sample tageta?,. .. 270

4Even larger value if for example more accurate estimatesegyaired, e.g. if narrower bands of
confidence intervals are desirable.
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3. Calculate the same statistic using the sample in step etting bootstrap repli-

catesf*.
4. Repeat steps 2 through,times.

5. Estimate the standard error of using Equations D.5 and D.6

Estimates of bias The standard error of an estimate discussed above is oneiraeas
of its performance. Bias is another quantity that measurestatistical accuracy of
an estimate. The bias in an estimator gives a measure of hal srwr we have, on

average, in our estimate when we Us& estimate our parametér

Bias is defined as the difference betweendkpected valuef the statistic and the
parameter,

Bias (T) =E[T] — 6. (D.7)

clearly if the estimator isinbiasec¢then the expected value of our estimator equals
the true parameter value, $8) = 6. Normally in order to determine the expected
value in Equation D.7, thdistributionof the statistic T must be known, i.e. the expec-
tation in Equation D.7 is taken with respect to the true distion F. In these situations,
the bias can be determined analytically [156]. When theiligion of the statistic is
not known, then we can use methods such as the jackknife armbtitstrap discussed
in this section to estimate the biasBf To get the bootstrap estimate of bias, we use
the empirical distribution as before. We resample from tmgieical distribution and
calculate the statistic using each bootstrap resampliliggethe bootstrap replicates

f=0. We use these to estimate the bias from the following:

~

biasp = 0" — 0 (D.8)
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whered* is given by the mean of the bootstrap replicates (Equati@).DVe are

interested in the bias in order to correct for it. The biasrrected estimator is given

by
0 =0 — biasy (D.9)

and using Equations D.8 D.9 we have
§=20— ¢ (D.10)

More bootstrap samples are needed to estimate the biasathaaquired to esti-

mate the standard error. [83] recommend tBat 400.

The procedure for estimating the bias is given below.

PROCEDURE - BOOTSTRAP ESTIMATE OF THE BIAS

1. Given arandom sample= (z1,...,x,), calculate the statisti:
2. Sample with replacement from the original sample taigets 23°, ..., 270,

n

3. Calculate the same statistic using the sample in step etting bootstrap repli-

catesf*.
4. Repeat steps 2 through3,times.
5. Using the bootstrap replicates, calculdte

6. Estimate the bias of using Equation D.8.
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D.2 Bootstrap confidence intervals

Bootstrap allows calculation of confidence intervals in anber of ways, namely the

standard intervalthebootstrap-t intervahnd thepercentilemethod.

Bootstrap Standard Confidence Interval This is based on the parametric of the
confidence interval. It can be shown that the- «) .100% confidence interval for the

mean can be found using

w|e

P<X_Z<l—z>;ﬁ<u<x_z< 4

Similarly, the bootstrap standard confidence intervalvegiby

) S — (D.11)

(é — =g - z(a/Q)SEé> (D.12)

where SEj; is the standard error for the statisticobtained using the bootstrap
[170]. The confidence interval in Equation D.12 can be usednithe distribution for

fis normally distributed or the normality assumption is sliale.

Bootstrap-t Confidence Interval for this type of intervals, first generate B boot-

strap samples, and for each bootstrap sample the followiagtdy is computed:

*b H;b B é
z 5 = =
SE*B

(D.13)

As before 6+ is the bootstrap replicate éf but SE*B is the estimated standard

error of for that bootstrap.

Once we have th& bootstrapped values from Equation D.13, the next step isto e
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timate the quantizes needed for the endpoints of the irtefMae «/2—th quartile,

denoted by*/2 of the z**, is estimated by

# <Z*b S tOZ/Q)
B

a2 = (D.14)

This is then used to calculate the bootstraponfidence interval, which as a result

is given by

(é _¢(1=a/2) . g § — (/2 . SE@) (D.15)

where SE is an estimate of the standard erroréof The bootstrapt interval is
reported to be suitable fdocation statisticssuch as the mean or quantizes. How-
ever, its accuracy for more general situations is quedhilen®3]. The procedure for

determining the bootstrafpintervals is outlined below:

PROCEDURE - BOOTSTRAP-T CONFIDENCE INTERVAL

1. Given a random sample= (z1,...,,) , calculate).
2. Sample with replacement from the original sample taget= 23°, ..., 27,

3. Calculate the same statistic using the sample in step Qtﬁ}bg

4. Use the bootstrap sampt&to get the standard error 6f. This can be calcu-

lated using a formula or estimated by the bootstrap.
5. Calculate:** using the information found in steps 3 and 4.
6. Repeat steps 2 through 5, B times, whBre- 1000.

7. Order thez*”’s from smallest to largest. Find the quantizésAa/Q) andt(@/2),
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8. Estimate the standard err6£¢ of  using the B bootstrap replicates of
(from step 3).

9. Use Equation D.15 to get the confidence interval.

[156] observes that the number of bootstrap replicatesateaneeded is quite large
for confidence intervals. It is recommended tlat> 1000. If no formula exists for
calculating the standard error 6f, then the bootstrap method can be used. This
means that there are two levels of bootstrapping: one fo'rrfgiptheSE*b and one for
finding thez**, which can greatly increase the computational burden. Kamele,
say thatB = 1000 and we use 50 bootstrap replicates to fifvg*t, then this results in

a total of 50,000 resamples.

Bootstrap Percentile Interval This is an improved bootstrap confidence interval
based on the quantizes of the distribution of the bootseapaates. This technique
has the benefit of being more stable than the bootstriagnd it also enjoys better

theoretical coverage properties [83].

The bootstrap percentile confidence interval is given by:

(ejg(“/ 2 gt/ 2>) (D.16)

WhereHj‘B(“/Q) is thea/2 quartile in the bootstrap distribution 6f. For example, if
a/2 = 0.025 and B = 1000, thend;\"**" is thes** in the 25h position of the ordered

0.975)

bootstrap replicates. Similarly;( is the replicate in position 975. The procedure

is the same as the general bootstrap method, and is outhribd steps below.

PROCEDURE - BOOTSTRAP PERCENTILE INTERVAL
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1. Given a random sample= (z1, ..., z,) , calculate. .
2. Sample with replacement from the original sample tagets 23°, ..., 2.

n

3. Calculate the same statistic using the sample in step @tting bootstrap repli-

catesf*.
4. Repeat steps 2 through 3, B times, whBre- 1000.
5. Order the*> from smallest to largest.
6. Calculate and®3 - («/2) andB - (1 — «/2).
BCa Intervals The BC, (bias-corrected and acceleratgtlootstrap confidence in-
terval is an improvement on the bootstrap percentile imtleanad is superior to all the

other intervals discussed here. As discussed above, the apd lower endpoints of

the bootstrap percentile confidence interval are given by:

PercentileInterval : (920,9;%) = (HE(Q/Q),@*B(la/z)) (D.17)

where (if for example we are considering 90% interv&lﬁ),is the bootstrap repli-
cate in the t position and of the ordered list of replicates. Similarlythis example,

Oy, is the bootstrap replicate in thet®osition.

The BC, interval adjusts the endpoints of the interval based on avampeters; and

z,. The(1 — «) .100% confidence interval using the method is

PercentileInterval : <€£O,€;ﬁ) = (Q*B(al),eg(ag)) (D.18)

where
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ZAO + Z(Q/Q) )

= ¢ Z
o1 (Zo + =4 (20 n Z(O‘/Q))

(D.19)

ZAO + Z(l_a/Q) )

— Pz
@ (ZO T4 0

In Equation D.20P denotes thastandard normatumulative distribution function,
therefore0 < a; < 1 and0 < ay, < 1. Therefore the end points of the interval in
Equation D.18 are adjusted using the information from tis&ithution of the bootstrap

replicates(instead of basing the endpoints on the confevell — «).

Note from Equation D.20 that if bothandz, the BC, is the same as the bootstrap

percentile interval.

0+ 2(e/2
_ — P (22 =
ay = @{o 00 £ 2@m) =@ (%) = a/2

The factorsz, anda are bias correction and acceleration respectively [15& Th
bias-correction is based on the proportion of boots&?é\meplicates that are less than

the statistid) calculated from the original sample. It is given by

i <9;b < é)

Zy=®! 5

(D.20)
where® ! denotes the inverse of the standard normal cumulativelision func-

tion. The acceleration parameteis obtained using the jackknife procedure as fol-

lows,
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(D.21)

whered~i is the value of the statistic using the sample with th¢h data point

removed (the—th jackknife sample) and

9G>::j£:904> (D.22)

=1
More theoretical details can be seen in see Efron and TeosHit993] and Efron

[1987].

D.3 The Jackknife

Jacknife (also referred to as QuenouilBukey Jackknife) is another resampling tech-
nique, developed before the Efron’s bootsttapike the bootstrap, it also aims at pro-
viding a computational procedure to estimate and comperisatbias and to derive
robust estimates of standard errors and confidence inseldatkknife though is a less
general technique than the bootstrap, and it explores thplsavariation in a different
way from the bootstrap. Jackknifed statistics are develdyyesystematically dropping
out subsets of data one at a time and assessing the resatiagon in the studied pa-
rameter [170]. We discuss it here because in practise jéiekisitypically used in
conjunction with the bootstrap in a technique terrdadkknife-After-Bootstragpvhich

we have used in our analysis.

Regarding jackknife, suppose we wish to estimate the bidsrenstandard error of

SFirst introduced by Quenouille in 1949 and later developeddhn W. Tukey in 1958.
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0. 6 might be the mean, the variance, the correlation coefficiesbme other statistic

of interest, then consider the following definition;

Definition 17. Jackknife
Suppose we have a sample= z4,...,z, and an estimatof = s (x). The jackknife

focuses on the samples that leave out one observation ata tim

x (i) = (v1, T2, ..., i1, Tit1, -+, Tp) (D.23)

for: = 1,2,...,n called jackknife samples. Thg, jackknife sample consists of

the data set with théth observation removed. let
0 iy = S (:L’(i)) (D24)

be thei;;, jackknife replication of).

The jackknife estimate of bias is defined by

biasjoor = (n— 1) (92.) - é) (D.25)
where
. 1 e -
o) = — > b (D.26)
=1

the jackknife estimate of standard error defined by

n

%
o = {”; S (0 - 62.>)2} (D.27)

i=1

Theoretical details of the jacknife especially justifioatbf the factor! in Equation

D.27 can be seen in [83].
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The procedure for the jackknife is summarised below.

PROCEDURE - JACKKNIFE

1. Leave out an observation.

2. Calculate the value of the statistic using the remainarge points to obtain

~

3. Repeat steps 1 and 2, leaving out one point at a time, Uintibg, are recorded.
4. Calculate the jackknife estimate of the biaﬁmfsing Equation D.25.

5. Calculate the jackknife estimate of the standard errdruding Equation D.27.

Comparisons between the bootstrap and jackknife are adsogBed in [83] pp. 145,
to advise how to chose between the two methods. What is watihgnis that the
jackknife can be viewed as a simple approximation of the stoayp for the estimation
of standard errors and bias. It is also worth noting that élckknife can fail badly if
the statistidd is not "smooth'é, such as is the case with the median ( median is not a

diffentiableor smooth function of)

As stated before it is common practise to use the jackknifeomunction with the

bootstrap in a technique terméackknife-After-Bootstragrhich we discuss next.

D.3.1 Jackknife-After-Bootstrap

When using the bootstrap to get estimates of standard emcbbias, the values ob-
tained are also estimates, therefore they also have ersociased with them. This

error arises from two sources, one of which is the usual sagphriability because

SIntuitively the idea of smoothness is that small changebéndata set cause only small changes in
the statistic.
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we are working with the sample instead of the population. dther variability comes

from the fact that we are working with a finite number B of bawats samples.

The so callegacknife-after-bootstragechnique can be used to estimate this variability.
The technique allows us to obtain estimates of variatiomircfionalé of a bootstrap
distribution without performing a second level bootstrafhe characteristic of the
problem and the procedure is similar to that of the bootstrie main difference

being that the resampling is dongthoutreplacement [156].

For example, suppose a bootstrap estimate of some st@éigficestimate of standard

error) has been obtained. Denote this estimatgsas

To obtain the jackknife-after-bootstrap estimate of vaeability of +z, one data
point at a time is left out and using the bootstrap methodudﬂtlefy](;l) on the re-
maining data points. We continue in this way until we haverthalues ofy; " . An

estimate of the variance of; using they](;l) values, is as follows

n

A~ N 77, - 1 —i =
VaTjack (V) = o Z(%(B ) 73)2 (D.28)

whereyp = % Z 'y](;i)
=1
[156] and [83] give details and discuss an efficient way ofqrening the jackknife-

after-bootstrap summarised in the procedure below.

PROCEDURE - JACKKNIFE-AFTER-BOOTSTRAP

1. Given arandom sample= (z1,z2,...,x,,), Calculate a statistic of intere@t

2. Sample with replacement from the original sample to gedadirap sample

b —
T =X, T,

7Such as bias and standard error of a statistic.
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3. Using the sample obtained in step 2, calculate the sarististéhat was deter-

mined in step one and denote W
4. Repeat steps 2 through 3, B times to estimate the distribaf 6.

5. Estimate the desired feature of the distribution of (estgndard error, bias, etc.)
by calculating the corresponding feature of the distrioutf 6*>. Denote this

bootstrap estimated feature as.

6. Now get the error inz. Fori = 1, ..., n, find all sampleg:*® = xf, 3.k that
do not contain the point;. These are the bootstrap samples that can be used to

calculatey!; ™.
7. Calculate the estimate of the variance of using Equati@8D

The procedure can also provide information on the influefieach observation on the
functionals [83]. Regarding the JAB, it is also worth mentigg one caveat; simulation
studies have shown that, in general, jackknife after boagisitandard error estimates
tend to be too large. This especially true for where bogtsseamples was not large.
The JAB estimates were inflated and performed poorly A tepicalled weighted
jackknife after bootstrap [237] have been proposed ressiwee of these difficulties.

For our purpose we use large bootstrap samplé900, to mitigate these effects.

D.4 Computational statistical tools support for resamplirg tech-

niques

DATAPLOT, R, SPLUSMand MATLAB™and other modern tools provide computa-
tional in-built statistical functions or contributed guts for performing the bootstrap
and jacknife-after-bootstrap capabilities which colieslly can be used to perform the

bootstrap and the jackknife-after-bootstrap as desciiidte above discussion.
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We have used these tools to perform analysis. Table 1-5mrasaimmary of the

results of the analysis for various experiments.
The bootstrap plot that results from plotting the bootstegpicates

Below we present results obtained using these tools. Appéngresents scripts

written for these purposes.

The detailed procedure and algorithms for the bootstraptitned in Efron and Tib-

shirani. For determining estimates for the standard ethegrocedure is as follows:

e What does the sampling distribution for the statistic lo&k?
¢ What is a 95 percent confidence interval for the statistic?

e Which statistic has a sampling distribution with the snsildariance? That is,

which statistic generates the narrowest confidence iriterva

D.5 Experiences with jacknife-after-bootstrap

Recall that as the bootstrap estimdtémve an associated uncertainty as they are esti-
mates. Thegackknife-after-bootstrampethod provides a mechanism for giving a mea-

sure of this uncertainty, in particular the uncertaintyhiait standard errors.

In addition,it is worth noting though ( as also discussedieay, the jackknife-after-
bootstrap procedure tends to over-estimate these erspscially for small values of

B (the number of bootstrap replicates chosen).

Figure D.1 below shows results of theckknife-after-bootstrapxperiment in which
the number of bootstrap samples was varied in order to obskeeffect it had on the

estimate of the error. The dataset used for this examplesije of six datasets in

8 Are by definition themselves estimates.
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Table 10.3 (table has 6 columns,one for each node),pagd28fdre this experiment
can be easily repeated for the other datasets. As can bevelideom the figure, the
estimate of th&tandard errorconverges and becomes more accurate with an increase
in bootstrap samples. Therefore the values quoted ijattidnife-after-bootstrapec-

tion of Table D.1 are taken from the last experiment with the largest vafug.

the jacknife-after.bootstrap procedure is described enappendix ,where for every

selected

1. Bz’&sB — g — é, the bootstrap estimate of bias of the mean.
2. v = Var (0) is the bootstrap estimate of the variance of the mean.

3. SE (vp) is the bootstrap estimate of the standard error in the estiofgs.
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{0135

The Bootstrap

Nodes
Statistic nsgqa0412a01 nsqa0413b01 nsgqa0413g01| nsqa0413g03 nsqa0413j02 nsgqa0413I01
6 1660.953 1685.893 1659.375 1854.178 1851.977 1847.672
bias -0.0755 -0.0551 0.11069 -0.6033 -0.102 0.381
se 8.484 13.158 7.472 33.325 21.35 49.569
Confidence Intervals
(0%
0.025 | 1646.089 1663.014 1644.897 1798.309 1812.624 1772.723
0.050 | 1648.32 1666.385 1647.012 1806.002 1818.275 1782.276
0.100 | 1650.648 1670.137 1649.868 1816.397 1825.107 1796.012
0.16 1653.206 1673.422 1651.928 1825.247 1831.454 1806.606
0.84 | 1669.553 1698.932 1666.977 1893.080 1872.956 1907.023
BCypoints 0.9 1672.190 1703.182 1669.099 1904.864 1879.848 1927.294
0.95 | 1675.384 1708.713 1672.056 1920.293 1888.257 1956.207
0.975 | 1677.886 1713.793 1675.284 1934.157 1894.522 1985.674
z0 0.003759951] 0.002506631| -0.003759951 0.05893987 | -0.02506891| 0.05893987
ahat 0.01254519 | 0.0251825 0.01165997 | 0.03240697 | 0.01921675 | 0.06216931
0.25 | 1655.620 1679.916 1654.137 1828.536 1838.525 1825.699




90¢

0.5 1660.612 1687.441 1659.257 1857.283 1851.336 1857.199
0.1 1650.106 1671.303 1650.396 1807.367 1825.623 1803.543
0.16 | 1653.558 1675.754 1652.46 1818.486 1831.434 1811.687
0.84 | 1670.000 1700.852 1666.666 1894.468 1873.574 1916.205
Bootstap —t | 0.9 1672.985 1704.029 1669.423 1905.653 1877.411 1955.739
0.95 | 1676.172 1708.785 1672.324 1921.87 1884.27 1996.275
0.975 | 1679.208 1718.862 1674.188 1932.500 1891.330 2035.485

Table D.1: Bootstrap : showing parameter and confidencevaitestimates and errors for agents monitored locally\srgnodes
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Figure D.1. (a) Showing how the estimate of thtandard errorin the bootstrap
estimate of the variance of the mea$if (y5) vary with an increase in number
of bootstrap replicates,B. (b) The bootstrap estimate efuéiriance of the mean,
(v = Var (é)) and (d) the bootstrae(seftimate of the biaBidss = g — 6) in
the same experiment



APPENDIX E

Statistical tests

E.1 Goodness of fit tests

A note on distributional measures and goodness of fit test Parametric statistics
simplifies description of data, but recall that they reqtime assumption of normality
of the data being investigated to hold. If it can be establistinat the data follows a
normal distribution, then we can safely assume that a pdaticet of measurements (
e.g. moments,variations) can be properly described byeemand standard deviation
for example, otherwise any conclusions drawn may be mebasag So the first task

was to ascertain this assumption of normality for the deieatelays datasets.

Often transformation of the original data can be used tonatlee use of parametric
statistics, i.e. under a mathematical transformation (eggarithm), the resulting data
may be normally distributetl These transformations can be viewed as entirely legit-
imate as they only change the scale on which the analysisng kdene. And inverse

transform can then be used to get to the original scales.

If normality test fails, for example in skewed or peakedmisitions, other theoretical
parametric models can Weated for example , log-normal, gamma, logistic etc. To
assess how well a particular model fits, firstly, a visual @$jon of the frequency

histogram with an overlaid plot of the desired distributean be made, and secondly

' This data is then said to be lognormal
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a goodness-of-fit test can be conducted to test the hypettiegithe data comes from
a given distribution. In essence, the normality test is aigphease of goodness-of-fit

test.

A detailed discussion of goodness-of fit and normality carsdsn in [131] [65] and

[181].

For testing the normality of the detection delays data setsed the tests beldw
Each test defines a statistic and calculates a p-value. Whéeest would suffice, |
considered all these test for completeness and compaptipeses. [229] discusses

and compares the power of some of these standard normalisygecedures.

The lower half of table presents the results.

1. Anderson-Darling test [9], Statistid, is calculated as

n

A=—n— 2 S P 1inlpe) +in( - poie) €D

i=1

wherep;y = ®([x;) — 7]/s). Here,® is the cumulative distribution function of
the standard normal distribution amchinds are mean and standard deviation of

the data values. The p-value is computed from

7 = A(1.0 + 0.75/n + 2.25/n?) (E.2)

2. Shapiro-Wilks [205]. The statisti¢l] , is calculated as

W= (iaiw))/im ~-7) (E-3)

Wherez; are ordered sample values.

2As implemented in the RM, Matlab ™and DATAPLOT "Msoftware packages .
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3. Lillie test [149]. The statistid) is calculated a$) = max D, D~

DT = max i/n— py D™ = max pu — (i —1)/n (E.4)

i=1,..., =1

.....

where againp;) = ®([z; — 7]/s). Here,® is the cumulative distribution func-
tion of the standard normal distribution. The p-value is pabed from the dis-
tribution of the modified statisti& = D(y/n — 0.01 + 0.85/4/n) as described
in [221]

4. Jarque-Bera [125]. The statistitB , is calculated as

JB — %<S2 n @) (E.5)

WhereS is the sample skewnesdgs; sample kurtosis both defined as usual in

terms of third and forth central moments, p, i.e. asS = uz/o® and K =

,M4/U4

5. Pearson test [49, 192]. The statistit.is calculated as
P=> (Ci— E;)*/E, (E.6)
Where(; is the number of counted anfg is the number of expected observa-
tions (under the hypothesis) in class

6. Cramer-von Mises test [8]. The test statisti¢,, is calculated as

1 " 2 — 1
W = + E ( 5 — E.7
12n — (p( ) 2n ) ( )

wherep,) = ®([z;) — 7]/s), and® is the cumulative distribution function of
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the standard normal distribution.

| have also performed some data transformations and cosaluncirmality tests on
the resulting data, see appendix All test confirm that thenadity assumption cannot

really be made for the detection delays data.

For exploratory purposes , | have also fitted some theoratiarpetric distributions to

the data. The results are shown in appendices.

A note on distributional measures and goodness of fit test Parametric statistics
simplifies description of data, but recall that they reqtime assumption of normality
of the data being investigated to hold. If it can be establistnat the data follows a
normal distribution, then we can safely assume that a pdatiset of measurements (
e.g. moments,variations) can be properly described byatamand standard deviation
for example, otherwise any conclusions drawn may be me&gagSo the first task

was to ascertain this assumption of normality for the deieatelays datasets.

Often transformation of the original data can be used tonatlee use of parametric
statistics, i.e. under a mathematical transformation (eggrithm), the resulting data
may be normally distributedl These transformations can be viewed as entirely legit-
imate as they only change the scale on which the analysisng dene. And inverse

transform can then be used to get to the original scales.

If normality test fails, for example in skewed or peakedriisitions, other theoretical
parametric models can Wted for example , log-normal, gamma, logistic etc. . To
assess how well a particular model fits, firstly, a visual @$jon of the frequency
histogram with an overlaid plot of the desired distributean be made, and secondly

a goodness-of-fit test can be conducted to test the hypettegithe data comes from

3This data is then said to be lognormal.
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a given distribution. In essence, the normality test is aigphease of goodness-of-fit

test.

A detailed discussion of goodness-of fit and normality carsdsn in [131] [65] and

[181].

For testing the normality of the detection delays data setsed the tests beldw
Each test defines a statistic and calculates a p-value. Whéeest would suffice, |
considered all these test for completeness and compaptipeses. [229] discusses

and compares the power of some of these standard normalitygeocedures.

The lower half of table presents the results.

1. Anderson-Darling test [9], Statistid, is calculated as

n

A= —n— 2 S P ine) +in( - poi)] E8)

i=1

wherep;y = ®([x;) — 7]/s). Here,® is the cumulative distribution function of
the standard normal distribution amchnds are mean and standard deviation of

the data values. The p-value is computed from

7 = A(1.0 + 0.75/n + 2.25/n?) (E.9)

2. Shapiro-Wilks [205]. The statisti¢l] , is calculated as

W= (iaix(i))/i(% —7) (E.10)

Wherez; are ordered sample values.

4As implemented in the RM, Matlab™ and DATAPLOT ™software packages.
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3. Lillie test [149]. The statistid) is calculated a$) = max D, D~

DT = max i/n— py D™ = max pu — (i —1)/n (E.11)

i=1,..., =1

.....

where again;) = ®([z; — 7]/s). Here,® is the cumulative distribution func-
tion of the standard normal distribution. The p-value is pabed from the dis-
tribution of the modified statisti& = D(y/n — 0.01 + 0.85/4/n) as described
in [221]

4. Jarque-Bera [125]. The statistitB , is calculated as

JB = %<S2 n @) (E.12)

WhereS is the sample skewnesdgs; sample kurtosis both defined as usual in

terms of third and forth central moments, p, i.e. asS = uz/o® and K =

,M4/U4

5. Pearson test [49, 192]. The statistit.is calculated as
P=>(C; - E)*/E, (E.13)
Where(; is the number of counted anfg is the number of expected observa-
tions (under the hypothesis) in class

6. Cramer-von Mises test [8]. The test statisti¢,, is calculated as

1 - 2 — 1
_ - E.14
W 12n+;(p(> o7 ) (E.14)

wherep,) = ®([z;) — 7]/s), and® is the cumulative distribution function of
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the standard normal distribution.

| have also performed some data transformations and cosaluncirmality tests on
the resulting data, see appendix All test confirm that thenadity assumption cannot
really be made for the detection delays data.

For exploratory purposes , | have also fitted some theoratiarpetric distributions to

the data. The results are shown in appendices.
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qTe

DISTRIBUTIONAL NORMALITY TESTS

ANDERSON-DARLING

A= —n— 10 20— llnlpg) + (1~ pgisn)]

Statistic| A 26.99178 | 6.518426| 11.87086| 11.07163| 4.86468 | 68.7629 | 11.86567| 4.23203 | 43.77127
P-value 3.160e-61| 5.45e-16 | 1.80e-28 | 1.23e-26 | 4.85e-12 | 1.68e-132| 1.85e-28 | 1.61e-10 | 3.00e-93
Conclusion REJECT
WILKSON-SHAPIRO
Statistic| W 0.94143 | 0.97707 | 0.95221 | 0.96082 | 0.98741 | 0.84531 | 0.97045 | 0.98697 | 0.91408
p-value 1.71e-25 | 6.40e-16 | 3.27e-23 | 4.30e-21 | 4.58e-11 | 5.90e-38 | 2.85e-18 | 2.57e-11 | 4.23e-30
Conclusion REJECT
SHAPIRO-FRANCIA W = (Z?:l aix(i))/Z?zl(xi —7)
Statistic| W 0.941533 | 0.977359| 0.95234 | 0.96110 | 0.98803 | 0.84541 | 0.97064 | 0.98726 | 0.91364
p-value 3.34e-23 | 1.45e-14 | 3.70e-21 | 3.17e-19 | 5.60e-10 | 2.60e-34 | 1.03e-16 | 2.21e-10 | 2.20e-27
Conclusion REJECT
LiLLIE (KOLG-SMIR) Dt =maxi—y,. ni/n —pu), D™ =maxi—1__,pu — (i —1)/n
Statistic| D 0.107311 | 0.040742| 0.041497| 0.04118 | 0.03484 | 0.14700 | 0.05665 | 0.034663| 0.10399
p-value 2.25e-53 | 5.61e-07 | 2.98e-07 | 3.89e-07 | 4.96e-05 | 2.10e-102| 5.55e-14 | 5.61e-05 | 5.35e-50
Conclusion REJECT

JARQUE-BERA

JB = (52 U5




9T¢

Statistic | X2 391.5488 | 53.03562| 453.9846| 237.4310| 40.43232| 1920.713 | 72.68503| 42.78078| 589.0186
p-value 0 3.04e-12| O 0 1.66e-09 | O 1.11e-16 | 5.13e-10| O
Conclusion REJECT
PEARSON P =Y (C; — E;)?/E;
Statistic | P 520.8587 | 231.6351| 142.4349| 166.3462| 98.1617 | 625.0502 | 205.6223| 108.9965| 465.7974
p-value 1.06e-86 | 5.15e-30 | 2.72e-14 | 2.53e-18 | 1.92e-07 | 6.05e-108| 2.91e-25| 5.07e-09 | 1.37e-75
Conclusion REJECT
CRAMER-VON MISES W= +>" (pe — %21)
Statistic| W 4.648875 | 0.655082| 1.28574 | 1.29745 | 0.73091 | 10.99672 | 1.54436 | 0.58801 | 7.43111
p-value 6.91e+51 | 1.35e-07 | 3.75e-10 | 3.70e-10 | 3.87e-08 | Inf 6.43e-10 | 4.60e-07 | 7.29e+197
Conclusion REJECT

Table E.1: Showing results of a number of normality tests lbulatasets for experiments where the agent numbers meditaas

varied from 5 to 100. All normality tests reject the hypoikeahat the data is normally distributed as evidenced by levalpes, i.e.

p — values < 0.05




E.2 Hypothesis Tests

Regarding the hypothesis to be tested, we can consider aded st with the null
hypothesis being that tHecation parameters for the partial and full protocol da¢ds
are equaj and with the alternative hypothesis just being tihatre is a difference be-

tween the location parameters.

Hoy @ pn = po, Hy @y # o (E.15)

But a more relevant test is the one sided hypothesis test et we suspect the partial

protocol datasets to have lower location parameter thafuthgrotocol datasets.

Ho:pn = po, Hy pn < po (E.16)

i.e. the null hypothesis can be stated aghére is no difference in the location
parameter for the partial protocol and full protocol dataseThe corresponding alter-
native hypothesis can be stated ag:he location parameter for the partial protocol

dataset is less than that of the full protocol dataset

| ran thewilcox.test procedure with the data vectors from the two data sets and for
each of the experiments when the agent numbers were vaaged 10 through to a
100. Results are shown in Table E.2. The results show thastaestrong evidence
across all experiments against the null hypothesis, asrsbgwhe very low p-values,

and by extension a strong evidence toward alternative Ingsa.
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Wilcoxon rank sum test
Data: Pproto.data and Fproto.data
10 agents experiments
W = 93638, p-value< 2.2e-16
alternative hypothesis: true location shift is less than O
30 agents experiments
W = 26503.5, p-value: 2.2e-16
alternative hypothesis: true location shift is less than O
50 agents experiments
W =693222.5, p-value: 2.2e-16
alternative hypothesis: true location shift is less than O
100 agents experiments
W = 1008896, p-value: 2.2e-16
alternative hypothesis: true location shift is less than O

Table E.2: Showing results of the non parametric Wilcoxopatiyesis test for the
partial and full protocol datasets for experiments with ageumbers varied from 10 to
100. The very low p-value are a strong evidence against dicgefhe null hypothesis
and strong evidence for considering the alternative

E.3 Repeatability of experiments

A note on repeatability of experiments and analysis of variace To check whether
experiments were repeatable, for every experiment, a nuailvans were scheduled.
For example Figure E.1 shows the box plots of the data forraxyeatal runs for the 10
and 70 agents experiments. The corresponding, Table Ba&slasults of the Kruskal-
Wallis test (a non parametric equivalent of the ANOVA tesbn these experimental

runs. The related results for the multiple comparison ptaoe are shown in Figure
E.l

KRUSKAL-WALLIS ANOVA TABLE

SOURCE | SS DF MS CHI-SQ PrROB > CHI-SQ

10 AGENTS

Columns| 2.1750e+09| 1 2.1750e+09| 2.2230e+03| 0
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Error 1.1760e+09| 3424 | 3.4347e+05

Total 3.3510e+09| 3425

70 AGENTS

Columns| 2.4878e+08| 1 2.4878e+08| 254.2751 0

Error 3.1023e+09| 3424 | 9.0604e+05

Total 3.3510e+09| 3425

Table E.3: Results for the non-parametric anova using Kadékallis test

The sensitive multiple comparisons test results as showigure E.1 and the kruskal-
wallis tests results in Table E.3 do show differences in tdoation parameter across

the experimental runs, but the boxplots indicate that tfferéinces are reasonable.
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Figure E.1: Showing plot for the multiple comparison testsX experimental runs for
the 10 and 70 agent full protocol experiment
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APPENDIX F

All summary statistics

F.1 Partial Protocol data sets
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Figure F.1: Figures (a)-(d) show 4-plots for the purpose&xploratory data analysis
for centralised experiments using the partial protocolestie where agent numbers
were varied from 10 through to 25
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Figure F.2: Figures (a)-(d) show 4-plots for the purpose&xploratory data analysis
for centralised experiments using the partial protocoletie where agent numbers
were varied from 30 through to 100
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F.2 Full Protocol datasets
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SUMMARY STATISTICS

NUMBER OF OBSERVATIONS = 5317
3k 3k 3k >k ok ok 3k 3k 3k sk ok ok Sk 3k 3k sk ok ok ok 3k 3k 3k >k >k ok Sk Sk 3k sk >k ok ok sk 3k 3k sk ok ok Sk 3k 3k sk ok ok ok 3k 3k 3k >k >k 3k ok 3k 3k sk >k ok ok 3k 3k 3k ok ok ok sk 3k k sk k ok k
* LOCATION MEASURES * DISPERSION MEASURES *
3k >k 3k >k 3k >k 3k >k 3k >k 3k >k 3k 3k 3k 5k >k 3k >k 3k %k 3k >k 3k %k 5k >k 3k >k 3k >k 3k >k >k 3k >k 5k 5k 3k >k 3k %k 5k >k 5k >k 3k >k 5k >k >k 3k >k 5k >k 3k >k 3k %k 3k >k 3k >k 3k >k >k >k >k >k k k
* MIDRANGE = 0.3564000E+04 * RANGE = 0.2470000E+04 *
* MEAN = 0.2021928E+04 * STAND. DEV. = 0.4257777E+03 *
* MIDMEAN =  0.2882001E+04 * AV. AB. DEV. = 0.3228591E+03 *
* MEDIAN = 0.2795000E+04 * MINIMUM = 0.2329000E+04 *
* = * LOWER QUART. =  0.2597000E+04 *
* = * LOWER HINGE = 0.2597000E+04 *
* = * UPPER HINGE = 0.3158000E+04 *
* = * UPPER QUART. = 0.3158000E+04 *
* = *  MAXIMUM = 0.4799000E+04 *

3k 5k 3k >k 3k >k 5k 3k >k 3k >k 3k >k 3k >k >k 3k >k 3k >k 3k >k >k 5k >k 3k >k 3k >k 5k >k >k 3k >k 3k >k >k >k >k 3k >k 3k >k 3k >k >k >k >k 3k >k 3k >k >k >k >k %k >k 3k >k >k %k >k %k >k %k %k %k %k >k k >k

* RANDOMNESS MEASURES * DISTRIBUTIONAL MEASURES *
3k >k 3k >k 3k >k 3k >k 3k 3k 3k >k 3k 3k dk 3k >k 3k >k 3k %k 3k >k 3k >k 3k >k k >k 3k 3k k >k >k 3k >k 3k >k 3k >k 3k %k 3k >k 5k >k 3k 3k k >k >k 3k >k 3k >k 3k >k 3k %k 3k >k 3k >k 3k %k >k %k >k >k >k k
* AUTOCO COEF = 0.4246227E+00 * ST. 3RD MOM. = 0.1471157E+01 *
* = 0.0000000E+00 * ST. 4TH MOM. = 0.5648685E+01 *
* = 0.0000000E+00 * ST. WILK-SHA = -0.3380893E+03 *
* = * UNIFORM PPCC =  0.9070824E+00 *
* = * NORMAL PPCC = 0.9325916E+00 *
* = * TUK -.5 PPCC =  0.6920604E+00 *

= * CAUCHY PPCC = 0.2227653E+00 *

3k 5k 3k >k 3k >k 5k 3k 5k 3k >k 3k >k 3k >k >k 3k >k 3k >k 3k >k 5k 5k >k 3k >k 3k >k 5k >k >k 3k >k 3k >k >k >k >k 3k >k 3k >k 3k >k >k >k >k 3k >k 3k >k >k >k >k >k >k 3k >k >k %k > >k >k %k %k %k %k >k k >k

(a) 5 Agent Experiment
SUMMARY STATISTICS

NUMBER OF OBSERVATIONS = 16910
3k >k >k ok 3k 3k 3k sk ok ok Sk 3k 3k sk >k ok ok Sk 3k 3k sk >k ok ok Sk 3k 3k sk ok ok Sk 3k 3k sk ok ok Sk 3k 3k 3k >k >k ok e 3k 3k sk >k ok ok Sk 3k 3k ok ok ok K 3k 3k ok >k ok ok ok 3k 3k %k %k kK k
* LOCATION MEASURES * DISPERSION MEASURES *
3k >k 3k >k 3k >k 3k >k 3k >k 3k >k 3k 3k 3k 5k >k 3k >k 3k %k 3k >k 3k %k 5k >k 3k >k 3k >k 3k 5k >k 3k >k 5k >k 3k >k 3k %k 5k >k 5k >k 3k >k 3k >k >k 3k >k 5k >k 3k >k 3k %k 3k >k 3k >k 3k >k >k >k >k >k kK
* MIDRANGE = 0.7022500E+04 * RANGE = 0.6155000E+04 *
* MEAN =  0.5628141E+04 * STAND. DEV. = 0.9632474E+03 *
* MIDMEAN =  0.5644754E+04 * AV. AB. DEV. = 0.6999647E+03
* MEDIAN = 0.5395000E+04 * MINIMUM = 0.3945000E+04 *
* = * LOWER QUART. =  0.4950000E+04 *
* = * LOWER HINGE =  0.4950000E+04 *
* = * UPPER HINGE = 0.6074000E+04 *
* = * UPPER QUART. =  0.6074000E+04 *
* = *  MAXIMUM = 0.1010000E+05 *

3k 5k 3k >k 3k >k 5k 3k >k 3k ok 3k >k 3k >k >k 3k >k 3k >k 3k >k >k 3k >k 3k >k 3k >k 5k >k >k 3k >k 3k >k >k >k >k k >k 3k >k 5k >k >k >k >k 3k >k 3k >k >k >k >k 3k >k 3k >k >k %k >k >k >k %k %k %k %k >k k >k

* RANDOMNESS MEASURES * DISTRIBUTIONAL MEASURES *
3 >k 3k >k 3k >k 3k >k 3k 3k 3k >k 3k 3k dk 3k >k 3k >k 3k %k 3k >k 3k 5k 3k >k 3k >k 3k 3k k 3k >k 3k >k 3k %k 3k >k 3k %k 3k >k 5k >k 3k >k k >k >k 3k >k 3k >k 3k >k 3k %k 3k >k 3k >k 3k >k >k %k >k >k >k k
* AUTOCO COEF = 0.7945901E+00 * ST. 3RD MOM. = 0.1405107E+01 *
* = 0.0000000E+00 * ST. 4TH MOM. = 0.5350581E+01 *
* = 0.0000000E+00 * ST. WILK-SHA = -0.5873189E+03 *
* = * UNIFORM PPCC =  0.9122940E+00 *
* = * NORMAL PPCC = 0.9451001E+00 *
* = * TUK -.5 PPCC =  0.6660264E+00 *
* = * CAUCHY PPCC = 0.1550779E+00 *

3k 5k 3k >k 3k >k 5k 3k 5k 3k >k 3k >k 3k >k >k 3k >k 3k >k 3k >k >k 5k >k 3k >k 3k >k 5k >k >k 3k >k 3k >k 5k >k >k 3k >k 3k >k 3k %k >k %k >k 3k >k 3k >k >k >k >k %k >k 3k >k >k %k >k %k >k %k %k %k %k >k >k k

(b) 10 Agent Experiment

Figure F.3: Showing summary statistics for 5, 10 agent expents
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SUMMARY STATISTICS

NUMBER OF OBSERVATIONS = 21424
3k 3k >k 5k ok 3k 3k 3k ok ok ok sk 3k Sk sk ok ok ok sk 3k 3k sk ok ok ke Sk 3k sk >k ok ok Sk 3k 3k ok ok ok Sk 3k 3k sk ok ok ok 3k 3k 3k >k >k 3k Sk Sk 3k sk >k ok ok 3k 3k 3k ok ok ok sk 3k 3k ok ok ok ok k
* LOCATION MEASURES * DISPERSION MEASURES *
3k >k 3k >k 3k >k 3k >k 3k >k 3k >k 3k 3k 3k 3k >k 3k >k 3k 5k 3k >k 3k %k 5k >k 3k >k 3k >k 3k >k >k 3k >k 5k %k 3k >k 3k %k 5k >k 5k >k 3k >k 3k >k >k 5k 5k 5k >k 3k >k 3k %k 3k >k 3k >k 3k >k >k >k >k >k k >k
* MIDRANGE = 0.1336450E+05 * RANGE = 0.7295000E+04 *
* MEAN = 0.1237764E+05 * STAND. DEV. = 0.9852908E+03 *
* MIDMEAN = 0.1238323E+05 * AV. AB. DEV. =  0.8050829E+03 *
* MEDIAN = 0.1214500E+05 * MINIMUM = 0.9717000E+04 *
* = * LOWER QUART. = 0.1161900E+05 *
* = * LOWER HINGE = 0.1161900E+05 *
* = * UPPER HINGE = 0.1321100E+05 *
* = * UPPER QUART. = 0.1321100E+05 *
* = *  MAXIMUM = 0.1701200E+05 *

3k 5k 3k >k 3k >k 5k 3k >k 3k >k 3k >k 3k >k >k 3k >k 3k >k 3k >k >k 5k >k 3k >k 3k >k 5k >k >k 3k >k 3k >k >k >k >k 5k >k 3k >k 5k >k >k %k >k 3k >k 5k >k >k >k >k 3k >k 3k >k >k >k >k >k >k %k %k %k %k >k >k k

* RANDOMNESS MEASURES * DISTRIBUTIONAL MEASURES *
3k >k 3k >k 3k >k 3k >k 3k >k 3k >k >k 3k k 3k >k 3k >k 3k %k 3k >k 3k >k 3k >k k >k 3k 3k dk >k >k 3k >k 3k >k 3k >k 3k %k 3k >k 5k >k 3k >k k >k >k 3k >k 3k >k 3k >k 3k %k 3k >k 3k >k 3k >k >k %k >k >k >k k
* AUTOCO COEF = -0.3532879E-01 * ST. 3RD MOM. =  0.6062595E+00 *
* = 0.0000000E+00 * ST. 4TH MOM. = 0.3205218E+01 *
* = 0.0000000E+00 * ST. WILK-SHA = -0.3354115E+03 *
* = * UNIFORM PPCC =  0.9707130E+00 *
* = * NORMAL PPCC = 0.9767389E+00 *
* = * TUK -.5 PPCC =  0.6588120E+00 *

= * CAUCHY PPCC = 0.1502470E+00 *

3k 5k 3k >k 3k >k 5k 3k 5k 3k ok 3k >k 3k >k >k 3k >k 3k >k 3k >k 5k 5k >k 3k >k 3k >k 5k >k >k 3k >k 3k >k >k >k >k 3k >k 3k >k 3k >k >k %k >k 3k >k 3k >k >k >k >k 3k >k 3k >k >k >k >k >k >k %k %k %k %k >k k >k

(a) 20 Agent Experiment
SUMMARY STATISTICS

NUMBER OF OBSERVATIONS = 23314
3k 3k 3k >k >k ok 3k 3k 3k ok ok ok sk 3k 3k sk ok ok ok 3k 3k 3k >k >k ok Sk Sk 3k sk >k ok ok Sk 3k 3k ok ok ok sk 3k 3k sk ok ok ok 3k 3k 3k >k >k ok ok 3k 3k sk >k ok ok 3k 3k 3k >k ok ok sk 3k sk ok k ok k
* LOCATION MEASURES * DISPERSION MEASURES *
3k 3k 3k >k 3k >k 3k >k 3k >k 3k >k 3k 3k 3k 5k >k 3k >k 5k %k 3k >k 3k %k 5k >k 3k >k 3k >k 3k 5k >k 3k >k 5k %k 3k >k 3k %k 5k >k 3k >k 3k >k 5k >k >k 3k 5k 5k >k 3k >k 3k %k 3k >k 3k >k 3k >k %k >k >k >k >k k
* MIDRANGE = 0.1715650E+05 * RANGE = 0.1207500E+05 *
* MEAN =  0.1760411E+05 * STAND. DEV. = 0.1411312E+04 *
* MIDMEAN = 0.1762307E+05 * AV. AB. DEV. = 0.1167766E+04 *
* MEDIAN = 0.1712900E+05 * MINIMUM = 0.1111900E+05 *
* = * LOWER QUART. = 0.1651300E+05 *
* = * LOWER HINGE = 0.1651300E+05 *
* = * UPPER HINGE = 0.1904900E+05
* = * UPPER QUART. =  0.1904900E+05
* = *  MAXIMUM = 0.2319400E+05 *
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* AUTOCO COEF = -0.2015251E+00 * ST. 3RD MOM. = 0.4725470E+00 *
* = 0.0000000E+00 * ST. 4TH MOM. = 0.2211800E+01 *
* = 0.0000000E+00 * ST. WILK-SHA = -0.4984297E+03 *
* = * UNIFORM PPCC = 0.9714868E+00 *
* = * NORMAL PPCC = 0.9635677E+00 *
* = * TUK -.5 PPCC =  0.6231364E+00 *
* = * CAUCHY PPCC = 0.1427646E+00 *
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(b) 30 Agent Experiment

Figure F.4: Showing summary statistics for 20, 30 agent Brpents
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SUMMARY STATISTICS

NUMBER OF OBSERVATIONS = 27413
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* MIDRANGE = 0.2415050E+05 * RANGE = 0.2167700E+05 *
* MEAN =  0.2338939E+05 * STAND. DEV. = 0.2435642E+04 *
* MIDMEAN = 0.2341896E+05 * AV. AB. DEV. =  0.2120906E+04 *
* MEDIAN = 0.2287900E+05 * MINIMUM = 0.1331200E+05 *
* = * LOWER QUART. =  0.2128000E+05 *
* = * LOWER HINGE = 0.2128000E+05 *
* = * UPPER HINGE = 0.2571200E+05 *
* = * UPPER QUART. = 0.2571200E+05 *
* = *  MAXIMUM = 0.3498900E+05 *

3k 5k 3k >k 3k >k 5k 3k >k 3k >k 3k >k 3k >k >k 3k >k 3k >k 3k >k >k 5k >k 3k >k 3k >k 5k >k >k 3k >k 3k >k >k >k >k 5k >k 3k >k 5k >k >k %k >k 3k >k 5k >k >k >k >k 3k >k 3k >k >k >k >k >k >k %k %k %k %k >k >k k

* RANDOMNESS MEASURES * DISTRIBUTIONAL MEASURES *
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* AUTOCO COEF = -0.1445579E-01 * ST. 3RD MOM. = 0.3875467E+00 *
* = 0.0000000E+00 * ST. 4TH MOM. =  0.2782674E+01 *
* = 0.0000000E+00 * ST. WILK-SHA = -0.4959662E+03 *
* = * UNIFORM PPCC =  0.9786684E+00 *
* = * NORMAL PPCC = 0.9678799E+00 *
* = * TUK -.5 PPCC =  0.6320242E+00 *

= * CAUCHY PPCC = 0.1418798E+00 *
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(a) 40 Agent Experiment
SUMMARY STATISTICS

NUMBER OF OBSERVATIONS = 31882
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* MIDRANGE = 0.3152500E+05 * RANGE = 0.2075400E+05 *
* MEAN =  0.2018180E+05 * STAND. DEV. = 0.2817885E+04 *
* MIDMEAN = 0.2919943E+05 * AV. AB. DEV. =  0.2275700E+04 *
* MEDIAN = 0.2954800E+05 * MINIMUM = 0.2114800E+05 *
* = * LOWER QUART. =  0.2748400E+05 *
* = * LOWER HINGE =  0.2748400E+05 *
* = * UPPER HINGE = 0.3137600E+05 *
* = * UPPER QUART. = 0.3137600E+05 *
* = *  MAXIMUM = 0.4190200E+05 *
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* RANDOMNESS MEASURES * DISTRIBUTIONAL MEASURES *
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* AUTOCO COEF =  0.1621292E+00 * ST. 3RD MOM. = -0.4408322E+00 =*
* = 0.0000000E+00 * ST. 4TH MOM. = 0.2420063E+01 =*
* = 0.0000000E+00 * ST. WILK-SHA = -0.3858649E+03 *
* = * UNIFORM PPCC =  0.9809257E+00 *
* = * NORMAL PPCC =  0.9799967E+00 *
* = * TUK -.5 PPCC = 0.6121349E+00 *
* = * CAUCHY PPCC = 0.1181198E+00 *
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(b) 50 Agent Experiment

Figure F.5: Showing summary statistics for 40, 50 agent Brpents
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SUMMARY STATISTICS

NUMBER OF OBSERVATIONS = 31897
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MIDRANGE = 0.3425250E+05 * RANGE = 0.2189700E+05 *

*  MEAN = 0.3462034E+05 * STAND. DEV. = 0.3305890E+04 *
* MIDMEAN = 0.3464385E+05 * AV. AB. DEV. = 0.2619900E+04 *
* MEDIAN = 0.3497700E+05 * MINIMUM = 0.2330400E+05 *
* = * LOWER QUART. =  0.3284000E+05 *
* = * LOWER HINGE =  0.3284000E+05 *
* = * UPPER HINGE = 0.3705400E+05 *
* = * UPPER QUART. =  0.3705400E+05 *
= *  MAXIMUM = 0.4520100E+05 *
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% AUTOCO COEF = 0.2307196E+00 * ST. 3RD MOM. = -0.5565903E+00
* = 0.0000000E+00 * ST. 4TH MOM. =  0.2742768E+01 *
* = 0.0000000E+00 * ST. WILK-SHA = -0.3651406E+03 *
* = * UNIFORM PPCC =  0.9734833E+00 *
* = * NORMAL PPCC = 0.9817482E+00 *
* = * TUK -.5 PPCC = 0.6199930E+00 *
= * CAUCHY PPCC = 0.1137837E+00 *
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(a) 40 Agent Experiment

SUMMARY STATISTICS
NUMBER OF OBSERVATIONS = 16477
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* MIDRANGE = 0.4061300E+05 * RANGE = 0.3793400E+05 *
* MEAN = 0.4032761E+05 * STAND. DEV. = 0.4198260E+04 *
* MIDMEAN = 0.4054351E+05 * AV. AB. DEV. = 0.3201970E+04 *
* MEDIAN = 0.4019000E+05 * MINIMUM = 0.2164600E+05 *
* = * LOWER QUART. =  0.3798700E+05 *
* = * LOWER HINGE = 0.3798700E+05 *
* = * UPPER HINGE =  0.4299400E+05 *
* = * UPPER QUART. =  0.4299500E+05
* = *  MAXIMUM = 0.5958000E+05 *
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* AUTOCO COEF =  0.2472570E+00 * ST. 3RD MOM. = 0.2060684E+00 x*
* = 0.0000000E+00 * ST. 4TH MOM. =  0.4255906E+01 *
* = 0.0000000E+00 * ST. WILK-SHA = -0.1803309E+03 *
* = * UNIFORM PPCC =  0.9556414E+00 *
* = * NORMAL PPCC = 0.9869096E+00 *
* = * TUK -.5 PPCC = 0.7210979E+00 *
* = * CAUCHY PPCC = 0.1933749E+00 *
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(b) 50 Agent Experiment

Figure F.6: Showing summary statistics for 40, 50 agent Brpents
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SUMMARY STATISTICS

NUMBER OF OBSERVATIONS = 20522
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* MIDRANGE = 0.4940700E+05 * RANGE = 0.6254400E+05 *
* MEAN 0.5080186E+05 * STAND. DEV. = 0.7051735E+04 *
* MIDMEAN =  0.5052490E+05 * AV. AB. DEV. = 0.5334674E+04 *
* MEDIAN = 0.5079550E+05 * MINIMUM = 0.1813500E+05 *
* = * LOWER QUART. = 0.4730225E+05 *
* = * LOWER HINGE = 0.4730300E+05
* = * UPPER HINGE = 0.5537600E+05 *
* = * UPPER QUART. = 0.5537675E+05
* = * MAXIMUM = 0.8067900E+05 *
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*

RANDOMNESS MEASURES

*

* AUTOCO COEF =  0.3237467E+00 * ST. 3RD MOM. = -0.5456704E+00 x*
* = 0.0000000E+00 * ST. 4TH MOM. = 0.3907562E+01 *
* = 0.0000000E+00 * ST. WILK-SHA = -0.2048621E+03 *
* = * UNIFORM PPCC =  0.9512460E+00 =*
* = * NORMAL PPCC = 0.9875441E+00 *
* = * TUK -.5 PPCC =  0.7004446E+00 *
* = * CAUCHY PPCC = 0.1686039E+00 *

*
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Figure F.7: Showing detection delays summary statisticsélfe 5 agent ex-
periment
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APPENDIX G

Partial Protocol experimental runs results

To check repeatability, for each number of agents sevenaéraxental runs were

made. Tables below presents results for example for the &dtagxperiments.
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TEE

The Bootstrap

Experimental Runs

Statistic 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
0 40434.99| 40436.47| 45425.46| 42701.33 52765.26| 52295.44] 52322.59] 40503.44| 40186.41
Confidence Intervals
blo | 40385.82| 40391.19| 45338.68| 42613.78| 52667.94| 52210.67| 52234.37| 40446.68| 40135.91
BC bhi | 40482.52| 40480.54| 45517.59| 42778.27| 52876.83| 52388.56| 52410.85| 40559.74| 40237.42
“ Z0 -0.01 0.02 0.03 -0.01 -0.01 0.00 0.00 -0.03 0.01
ahat | -0.00 -0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.00
Percentile phi | 40365.76| 40387.85| 45316.20| 42643.30| 52668.22| 52218.43| 52228.84| 40457.01| 40127.81
plo | 40501.04| 40486.53| 45551.85| 42757.99| 52855.40| 52373.52| 52410.31| 40552.70 40240.10
Percentile-t p-Iq 40384.81| 40389.05| 45333.98| 42622.16| 52665.52| 52206.22| 52237.56| 40448.84| 40136.19
pthi | 40482.82| 40482.14| 45516.86| 42780.11| 52862.93| 52382.95| 52402.87| 40565.09| 40237.86
Hybrid hblq 40390.66| 40393.33| 45335.93| 42620.95| 52668.58| 52207.82| 52238.48| 40442.07| 40133.11
hbhi | 40481.26| 40482.77| 45521.42| 42771.81| 52867.27| 52380.03| 52404.50| 40557.23| 40236.27
Table G.1: Bootstrap : showing parameter, confidence irgleegtimates,errors for 70 agent experimental runs, witeise

the sample mean




A%

The Bootstrap

Experimental Runs

Statistic 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
0 29200.66| 29201.13| 29629.02| 29121.28| 29008.43| 29342.12| 37147.58| 37146.98| 36085.56
Confidence Intervals
blo | 29163.56] 29163.67| 29580.78] 29078.53] 28970.18] 29298.02] 37094.76] 37095.10] 36016.50
Be bhi | 29242.54 29242.42| 29680.17| 29157.78| 29047.69| 29384.65 37196.58| 37196.17| 36162.14
“ zo | 0.04 0.03 001  |[-003 [-0.02 [-001 [-0.05 |[-0.04 [0.04
ahat | 0.00 0.00 0.00 -0.00  [-0.00 [0.00 -0.00  |-0.00 [0.00
percentile | PM_| 29156.38] 29162.64] 29588.56] 29092.97] 28969.07| 29299.46] 37079.24] 37083.89] 36004.01
plo | 29249.72| 29241.01] 29673.55) 29149.41] 29046.98| 29388.92| 37214.09| 37212.18 36162.69
Percentile-t_P10_| 29163.44 29160.02] 29578.14] 29080.10| 28968.12] 29295.25| 37094.16| 37094.55| 36017.61
pthi | 29239.90] 29239.09] 29676.95] 29160.74 29047.30| 29385.12| 37197.35] 37197.19] 36149.10
Hybrid hblo | 29163.65| 29161.73| 29577.71 29080.22| 28964.72| 29298.59| 37095.36] 37094.35| 36012.22
hbhi | 29242.35| 29242.69] 29679.13] 29161.21] 29044.75| 29383.65 37199.09] 37196.30| 36150.14

Table G.2: Bootstrap : showing parameter and confidencevmateestimates and errors for 50 agent experimental runs




Figure G.3 below show density distributions of the boofsteplicate of the men for
the 9 experiments for the 70 agent centralised experim@splots of the replicates

are also presented.

Figure G.2 shows QQ plot of the replicate for the 9 experimémtthe 70 agent cen-

tralised experiments. these plots suggests that the atépti@are normally distributed
1

IThis is not surprising given the central limit theorem.
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QQ Plot of Sample Data versus Standard Normal
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G.1 Resampling, Bootstrap confidence intervals
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APPENDIXH

Network latency and Synchronisation

The notion of time in distributed systems and the resultimtgerent limitations of a
distributed system relating in particular to the absenca cbmmon (global) clock
and the difficulty in reasoning abotemporal orderingof events are well studied in

distributed systems research with early work published 46].

The area of clock synchronisation is also well researchdia @arly notable work
done by [147] [148, 62, 63, 157].
To address these problems, a number of algorithms for cipuétsonisation have also

been published in [106, 152, 218, 137, 235],

Extended surveys of these algorithms and synchronisatiotogols can be seen in
[208] and [195].

In the paragraphs that follow | only give a brief overview b&se topics, sufficient
only in providing context for this research when dealingwviame and synchronisation
related issues while conducting experiments in the distieith setting. Full details can

be seen in the original papers and surveys mentioned above.

Overview In generalwhen dealing with time in a distributed system;

e We may need to know the time soregenthappened on a specific node. For

this, one approach is to synchronise that node’s clock vathesexternahu-
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thoritativesource of time. The main issue with this approach is to cangidw

difficult it is to achieve this synchronisation.

e We may need to know the time interval, @lative order between two events

that happened on different nodes.

— The observation here is that, if their clocks are synchemhie somé&nown
degree of accuracy, we can measure time relative to eachdlock. The

issue here is whether this (accuracy) is always consistent.

¢ We cannot ignore the networkisipredictability

To relate all these issues to the experiments | conductedeardistributed setting ,
| was specifically interested in determinidgtection delayas discussed throughout
this thesis, but this time with the observation delegatedreamote node, the controller.

Theevent (termination), occurkcally and is detectecemotely

Generally dealing with time in distributed systems reqaicensideration of mainly
three aspectsphysical clockscoordinated universal timandsynchronisationSince
there is no common clock in this case, one standard appraachisito employ atomic
clocks to minimise clock drift and synchronise with timevas that haveoordinated

universal timeUTC receivers, to try to compensate for unpredictable agtwelays.

H.1 Clock synchronisation algorithms

A large number of algorithms for clock synchronisation héaeen proposed in the
literature. In general, because of the variable and unknocovynmunication delays
between processors, there are limits imposed on the extemhith processor local
clocks can be synchronised. In addition, there is need tsidenfailures, and also

complications do arise especially when arbitrary failuses considered. Therefore
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there has been work done in these areas. In particular a fewvdtical results are
known that study the limitations of clock synchronisatiowar different system mod-

els, e.g. [152, 79, 147].

These clock synchronisation algorithms discussed in tieeature differ from each
other in their assumptions about thwck hardware network topology andfailure
models The algorithms take either a software or a hardware centedv of clock
synchronisation [195]. All these algorithms provide imt&rclock synchronisation.
External synchronisation is provided if one of the clocksassidered as the external,

real-time reference.

The basic idea of software synchronisation algorithms & #ach processor peri-
odically correctsits local clock value according to the values of other cloitk®-
ceives throughmessage passing195] discusses various classes of software based
synchronisation protocols, namefggnvergence function with averagiegemplified

by [147, 152]convergence function without averagif2d.8], consistency-basdd45].

For the purposes of experiments described in this chapgerdag clock synchroni-
sation | used a software based protocol, NTP, (discussesvb@lidely implemented

and available in UNIX based operating systems.

Network Time Protocol, NTP [166]is example ofdsstributed algorithnfor time

synchronisation is the famous

NTP has been implemented as an internet protdolThe protocol can be used to
synchronise clocks on packet switchechetwork with variable latency. It uses the

User Datagram Protocol, UDP [193], at the transport layer lans been designed

INTP is documented in the standard internet protocol regfeestomments (RFC) document
RFC1305)

2And also refers to a program (ntp daemon with utilities. } ttrplements the protocol and controls
the computer clock.
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particularly to resist the effects of variable latency.

NTP utilises a hierarchical network of servers, watimary serverconnected directly
to a time source, angkcondary serveirnnected to the primary servers in a hierarchy.

Servers higher up are presumed to be more accurate thaneatlkewels.

NTP uses Marzullo’s algorithm [158, 157] with the UP@me scale. The more recent
implementation of NTP, NTPv4 [165] is reported to be capalblmaintaining time to
within 10 ms over the public internet, and can achieve accuracies of208 better

in local area networks under ideal conditions [166].

NTP provides several synchronisation modes, nanmmalyiticast modgused mainly
in local area networkgrocedure call modewhich provide high accuracy and mainly
used in file servers, and ymmetric modevhere there is an exchange of detailed

messages and history is maintained.

H.2 Network latency experiments

As discussed, the physical clocks on the cluster nodes waehsonised using the
NTP protocol as described abolehence we assumed common time and negligible

drift. To determine network latency experienced by contteksages in the distributed

setting, an experiment was also conducted.

Figure 10.2 presents an event diagram for the procedure followeshwdetermining
the distribution of the network latency and the clock drifthe experimental setup
and an algorithm as suggested by the diagram is as followsaidus points in the

running of overall experiments, a local time is recorded and timer started andiag

3High-precision atomic time standard.
4And the experiments conducted in the distributed settinigndic span exceedingly longs period to
warrant concern about clock drifts.
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message sent from nodél to N2. On arrival, local time,, ° is recorded and ping

message sent back to not¥@. On arrival at nodeV1 local timet,3 is recorded.

N1 N2

tor t11

t12 At

223

owy [eqo[3

Figure H.1: Event diagram for network delays

To determine the estimate ©f, time on nodeV1 corresponding to;; we use equation
H.1

1

where clearly
(H.2)

At ~ t13 —t1;

5As determined by jav&ystem.currentTimeMillis@ystem call.
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is thenetwork latencyncurred by messages between nodes.
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143

Probability Density Function Parameter Estimation

o)

Distribution | Prob.Plot Estimate MLE MLE Err MLE CL | MLE CU Est.cov. of parameter est.
1 3.01696 | 52.637 25739 25945 1 o

Normal o 14.6407 | 37.2252 3753 3899 I 2770.65 1.13476E-11
Log Likelihood -4231.87 o 1.13476E-12 1385.72
1 10.1491 | 0.00200282| 10.1452 | 10.1530 1 o

Poisson o 0.145532| 0.00141641| 0.1428 0.1484 I 4.01127e-06  3.0558e-14
Log Likelihood -50902.2 o 3.0558e-19 2.00621e-0
a 47.0423 | 0.912333 | 45.2877 | 48.8649 1 o

Lognormal | b 549.33 10.7105 528.7335| 570.7281| a 0.832352 -9.71967
Log Likelihood -50931.1 b -9.71967 114.715
1 25652.5 | 51.361 25552 255753 1 o

Log Logistic | o 2142.23 | 24.5086 2095 2191 " 2637.95 39.1888
Log Likelihood -51021.3 o 39.1888 600.673

Table H.1: Showing parameter estimate and Maximum Likekhestimates



APPENDIX |

Distributed Termination detection

[.1 Tracing Algorithms

Dijkstra-Scholten algorithm A formalisation of this algorithm in given in ([226]),
and proceeds a follows; Consider the stéijef a process partitioned into two subsets,
passiveand active Also consider a séP of all processes an sétf of all message
channels between any given pair of processes.

Then consider a predicaterm given in theorem 1

Theorem 1. Theorem

term <= (Vp € P : state, = passive)

A(Vp € E : M,, does not contaifmes) a message.)

Proof. If all processes are passive, no internal or send event iscapfe. If, more
over no channel contains(aes) message, no receive event is applicable, hence no
basic event is applicable at all. If some process is actiseral or internal event is
possible in that process and if some channel conta{nsca) message the receipt of a

message is applicable. O

During the distributed computation, consider that thera special node,an initiator

D, and that the detection algorithm maintains a computatie&Zr= (Vr, Er) with
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the following properties:

1. EitherT is empty, or is a directed tree with the rogt as the initiator

2. The set V- includes all processes and all basic messages (messagéy tea

underlying computation) in transit.

That is, the vertices are nodes of the network and messageansit. Steps of the

computation trigger updates.

The initiator, P, callsAnnouncenvhen P, ¢ Vr; By the first property] is empty in
this case, and by the second propeity;n holds.

To preserve the properties of the computation tree whendbie bomputation evolves,
T must be expanded when a basic message is sent or when a praitaagthe tree,

becomes active.

When a process sends a basic messag@ees), (mes) is inserted into a tree and the
father of (mes) is p.

When a procesg, not in the tree, becomes active by the receipt of a message fr
some procesg, ¢ becomes the father gf

To represent the sender of a message explicitly, a basicagesses) sent byg will

be denoted a&nes, q) [226].

The removal of nodes from is also necessary, for two reasons. First a basic message
is deleted when it is received. Second, to ensure progregeafetection algorithm

the tree must collapse within a finite number of steps afteniteation. Messages are
the leaves ofl’; processes maintain a variable that counts the number ofsives in

T. The deletion of a son of procepsoccurs in a different process it is either the

receipt of a son message, or the deletion of a son preceBs prevent corruption of
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p's son count, a signal messageg, p) can be sent tp when a son op is deleted.
This message replaces the deleted som @hd its deletion, i.e., its receipt, occurs in

procese andp decrements its son count when its receives a signal.

The Dijkstra-Scholten algorithm achieves an attractiviaeae between the control
communication and the basic communication; for each basgsage sent fromto g

the algorithm sends exactly one control message fraay [226].

The Dijkstra-Scholten algorithm was generalised to deeéinéd basic computations
by [206] to give a Shavit-Franchez algorithm. In that algon, the computation graph
is aforest of which each tree is rooted at an initiator of the basic cotagan. The

tree rooted ap is denotedl,. The algorithm maintains a graph F =£VEr) such that

1. either F is empty or F is a forest of which each tree is rooteuh initiator; and

2. Vg includes all active processes and all basic messages.

As in the Dijkstra-Scholten algorithm, termination is d#&zl when the graph becomes
empty. Unfortunately, in the case of a forest it is not tiivtasee whether the graph is

empty. Details of this algorithm can be seen in [206, 226]

[.2 Some Selected Algorithms, some optimisations and robtrsess

considerations

To expand on the various schemes for detecting terminabelow is a discussion of

a selection of algorithms.
1) An (N -1)-Resilient Algorithm for Distributed Terminati on Detection

[144] presents a fault-tolerant termination detectioroatym based on a previous

LA forest is a disjoint union of trees.
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fault-sensitive scheme by [78]. The proposed algorithm tcéerate any number of
crash failures. It runs as efficiently as its non fault-tateérpredecessor if no process
actually fails during the computation, and otherwise isconly a small amount of
cost for each actual failure. It is assumed that the undeglgopmmunication network
provides such services are reliable end-to-end commuamicdtilure detection, and
fail flush.

2) Detecting Termination of Distributed Computations By External Agents [118]
presents two algorithms for detecting termination of distted computations moni-
tored by an external controlling agent. The first algoritlenbased on theveighted
throw countingscheme [118]. Weights are assigned to each active procdds aach
message in transit. The agent has a weight, too. The algonithintains an invariant
that the sum of all the weights equals one. The agent corglingetermination when

its weight equals one. A space-efficient encoding of the htsig also proposed.

The second algorithm adopts the distributed snapshotsrszh&/hen a process be-
comes idle, it takes a local snapshot and sends the snapshetdgent. The agent puts
the local snapshots together to form a global snapshot aedi@es the termination

by checking the recorded state in the global snapshot.

[117] observes that by comparison, the first one is bettaoifage space is the ma-
jor consideration, while the second is more suitable fol-tieze systems, because no
waiting is employed on the processes due to terminatiorctiete The second al-
gorithm is also optimal in minimizing the message complexdnly one additional

message carrying the local snapshot is needed per idletiEgs |

3) A Distributed Termination Detection Scheme [250] proposes a fully distributed

scheme for detecting the termination of distributed corafpoms. The scheme does not
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require a pre-defined detector, and takes into accountgmabsuch as network delay
and the non-order-preserving arrival of messages. It imeld that the scheme can be
applied to any kind of connection topology. The correctrigsse scheme is presented
in terms of showing that the global stable condition holdewkhe scheme declares
the termination of the computation. The upper bound of thalmer of the messages

which are used to detect termination is also discussed [250]

[.3 Static and dynamic termination algorithms

[37] then discusses details of the static and dynamic teatioin algorithms following
the above termination definitiostatic and dynamic

In the static termination case a control proc€ssalled a controller is associated with
each application proceds. The role ofC; is to observe the behaviour & and to
cooperate with other controllels; to detect occurrence of the predic&&rm In
order to detect static termination, a controller, €4, initiates detection by sending a
control message query to all controllers,including its@licontroller sayC; responds
with a messagéld,) whereld; is abooleanvalue. C, then combines all the boolean
values received in reply messages to compdite= Algign(ldi>'

If td is true,C, concludes that termination has occurred, otherwise itsapd query
messages. The basic sequence of sending of query messikmeeddy the reception
of associated reply messages is calledbhae

In the static termination algorithm, to ensure safety whendontrollerC; computes

the valueld; sent back in a reply message, the valugs....., [d,, must be such that
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Ai<icn ldi= Sterm

= VP, € P:passive; N (NE; = @) A = ful filled;(ARR;)

A controller C; delays a response to a contgplerymessage as long as the following

predicate that can be evaluated locally is false;
passive; A (noack; = @) N\ = ful filled;(ARR;)

When this predicate is false, the static termination caleoguaranteed. Regarding
correctness, the values reported by the wave must no misstivety of processes in
the wake of the wave. [4] proposes that this could be accamgd in the following
manner; Each controll€r; maintains a boolean variables;, initialised to truei f f P,

is initially passive in the following way

e When P, becomes activeyp; is set to false.

e When(; sends a reply messagedq it sends the current value gp; with this

message, and then sejs to true

Thus if a reply message carries value true frofto C,,, it means thai”; has been
continuously passive since the previous wave and the messagved and not yet
consumed are not suffice to activdteand all output channels @ are empty. Figure
graphically illustrates this algorithm. Furthermore,g@eted below is a sequence of
statements executed by controllers. The statements a#eldls1 to S6, with S5 only
executed by,. In these statementsessageefers to any message of the underlying

computation, whilsgueriesandrepliesare control messages.
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@ Compute [Id;

1
1
1
1
I
1
1
I
1
1
1

@ Compute A\, _, ., (Id;)

@ Conclude termination

Figure I.1: An algorithm for static termination

S1: whenP; sends a message £

notack; := notack; + 1

S2: when a message froR) arrivesp,

sendack to C;

S3: whenC; receives ack frond;

notack; := notack; — 1
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S4: whenP; becomes active

cp; = false

S5: WhenC; receives query frond/,,

(S5 is only executed bg,) wait until

((passive; A (notack; = @)) A = ful filled;(ARR;);
ld; -= cp;;

cp; = true;

sendreply(ld;) to C,,

S6: When controlle€’, decides to detect static termination

repeatsend query to al’;;
receivereply(ld;) from all C;;
td = /\1§z’gn(|di)

until td

claim static termination

Regarding dynamic termination, recall that dynamic teation can occubeforeall
messages computation has arrived, because of this, teromd a computation can

be detected sooner than in static termination. For the disyearmination algorithm,

considerC,, to denote the controller that launches the waves.

In addition tocp; each controllelC;,has two vector variables, say denotgd;, that

count messages respectively sent to and received from etlegy process, i.e. repre-

sent

e s;[j] denotes the number of messages sentitp P;;
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e 7;[j] denotes the number of messages receiveft ity P;;

1
1 @ Compute
1
1 ANE; = {cij|c;; # 0}

1
\ 1
: @ Compute Id; | :
1
| \ I
| | 1
1 1 1
| 1 I
1 I 1
| ' |
! * """""""" r
! I channel ¢; ; !
\
T
\ » >

/' update(S[i, ], s;)

(8 Compute
Ni<i<n(ld;)

Figure 1.2: An algorithm for dynamic termination

First, C,, sends to eacly; a query message containing the vedisfl, i, .., S[n, i),
denoted byS|., ). Upon receiving this query message,computes the set NV E; of

its non-emptychannels. This is an approximate knowledge but is suffid@ensure

correctness.

ThenC; computesd;, which is truef and only if P, has been continuously passive
since the previous wave and its requirement cannot be &dfitly all the messages

arrived and not yet consumed R R;) and all messages potentially in its input channels

354




(ANE;). C; sends ta’, a reply message carrying the valuésand vectors;. Vector

s; is used byC,, to update rows|:, | and thus gain more accurate knowledge.

Vector variables; andr; allow C, to update its (approximate) global knowledge about
messages sent by ea¢hto eachP; and get an approximate knowledge of the set
of non-empty input channels. | have used figure do depict tha raspect of this

algorithm and steps.

Also consider the formalisation of the algorithm below, wéhall the controllers’;

execute statementsl to S4 as defined below and where ortly, executesSs.

S1: whenP; sends a message £

silj] = silj] +1

S2: when a message froR) arrives atP;

rilg] = rilg] + 1
S3: whenP, becomes active

cp; = false

S3: whenC; receivesqueryV|l..n]) from C, (where
V[l..n] = S[l..n, ] is the ith column of S)

ANE; == {P; : V[j] > riljl}

ld; := cp; N~ ful filled;(ARR; U NE;)

cp; = (state; = passive); sendreply(ld;, s;)toC,
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S5: when controlle€’, decides to detect dynamic termination
repeatfor eachC;

sendquery(S[1..n,]) to C; (i.e. theith column of S sent t@;)
receivereply(ld;, s;) from all C;;

Vi e [1.n]: S[i,.] :== s

td = N\ oo, (i)

until td;

claim dynamic termination

[.4 Contemporary taxonomy for algorithms

Recent research activity Research in the field was very active in the 1980's 1990’s
with vast number of algorithms proposed. Research outpsitshiece slowed down

with one or two algorithms proposed per year in recent tinleghe recent research

work;

1. [169] (Mittal & Vankatesan, 2008), presents a transfdramethat can be used to
convert any fault-sensitive termination detection altjoni (for a fully connected
network topology) into fault-tolerant termination deteat algorithm capable
of coping with process crashes. The transformation assanpesfect failure
detector. It is also shown there that under the assumpti@uerithe scheme is

optimal in terms of message complexity

2. [17] (Bapat & Arora, 2008) proposes a message efficientiteation detection
in a wireless sensor network ,WSN. The topology assumea tisethat of a
multi-hop network of WSN nodes each with a unique identifiEne wireless

communication links between the nodes is bidirectionaltaedeliability either
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way is not necessarily the same. The algorithm assumes mbyde for a base
station node and assume unique identifiers for nodes henseagymmetric.
The algorithm is no message optimal but claimed to be messifigeent as it
detects termination from reports of only a subset of nodeeeametwork. The
discussion of the proposed algorithm does not cover falgitaace, but evidently
the algorithm suffers the same fault tolerance issues gk to schemes with

central entities.

. [71], (DeMara et al ) presents a tiered algorithm claimedbe time-efficient
and message-efficient for process termination. The alguariises a global in-
variant of equality between process production and consompt each level of
process nesting to detect termination regardless of execunterleaving order
or network transit time. Then correctness of the algoritsraalidated for ar-
bitrary process launching hierarchies. Regarding perdmicr, the algorithm is

compared to existing schemes including credit terminagigorithms.

. [70], (De et al, 2007) proposes an application layer basedified weight-
throwing protocol for the distributed termination detectiproblem. The proto-
col is proposed for a purely mobile distributed environmeitih no static hosts.
The mobile hosts are considered with limited functionalityhe discussion of

the effect of mobility on the proposed algorithm and is given

. [238] (Wang & Mayo, 2004) proposes a symmetric algoritlssuming asyn-
chronous communication. The algorithm assumes a moreaeretwork topol-
ogy of a combination of a logical ring for the initial processand a number of
computation trees Efficiency gains are made by circulatorgrolling messages
at most once around the ring. The algorithm assumes theneoafaulty pro-
cesses, but that processes can be created and acceptaletecesses during

the computation.
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In the tables that follow, | update Matocha’s taxonomy witbge and other algorithms
that have since been published to incorporate current $remthr example a large
proportion of recent algorithms have been in mobile and les® networks area and
are flexible when it comes to topology assumptions. Mostrélgos are asynchronous

and have no restrictions when considering message arrival.

The taxonomy and its element are depicted in Figure 2.1.

DTD Algorithms

communicatio:
protocol

{e.g synchronous || asynchronous ||... }

algorithm
symmetry

{e.g symmetric | token ||... }

fault
tolerance

{e.g fault tolerant | non-fault tolerant ||... }

algorithm type

{e.g cyclic wave || Tree wave/|... }

message
optimality

{e.g optimal || non-optimal ||.. }

communication
channel

{e.g FIFO | non-FIFO |.. }

network
topology
process
knowledge

{e.g tree || hamiltonian cycle | ring |... }

{e.g successors || node information ||... }

Figure 1.3: A taxonomy for distributed termination detectisuggested

Tables I.1 through to 1.7 show the classification for eachaedégories of the taxonomy.
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Algorithm Cyclic Tree General Non-repetitive Parental re- Credit re- Other

wave wave wave wave sponsibility  covery

6G€

(Francez,1980) v

(Dijkstra & Scholten,1980)

(Francez et. al, 1981) v

(Misra & Chandy, 1982) v

(Chandy &Misra, 1985) v

(Szymaski et. al, 1985) v

(Mattern 1987) v

(Muller, 1987) v

(Huang, 1988) v

(Mattern, 1989) v

(Vankatesan, 1989) v

(Lai et al.,1992) v

(Wang and Mayo, 2004) v

(De et al, 2007) v'(not clear!)
(Mittal & Vankatesan, 2008) v'(not clear!)

continued on next page ...
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Tablel.1 ... continued from previous page

Algorithm

(Bapat & Arora, 2008)

Cyclic Tree General Non-repetitive Parental re- Credit re-
wave wave wave wave sponsibility  covery
v'(not

clear!)

Other

Table I.1: DTD algorithms and their associated type, adhfrtam [159]




Algorithm Hamiltonian Computation Spanning No require- Other

cycle tree tree ment

T9€

(Francez,1980) v

(Dijkstra & Scholten,1980) v

(Francez et. al, 1981) v

(Misra & Chandy, 1982) v

(Dijkstra et. al.,1983) v

(Kumar, 1985) v

(Chandy &Misra, 1985) v
(Szymaski et. al, 1985) v

(Mattern 1987) v v

(Muller, 1987) v

(Huang, 1988) v

(Mattern, 1989)

(Vankatesan, 1989) v

(Lai et al.,1992) v

(Wang and Mayo, 2004) v (logical ring)
(De et al, 2007) (mobile hosts)

continued on next page ...
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Tablel.2 ... continued from previous page

Algorithm Hamiltonian Computation Spanning No require- Other
cycle tree tree ment
(Mittal & Vankatesan, 2008) (fully  connected
network)
(Bapat & Arora, 2008) (multihop network)

Table I.2: DTD algorithms and their necessary topology péethfrom [159]




€9¢

Algorithm Specialized

po only

po at run time

Token

Symmetric

(Francez,1980) v
(Dijkstra & Scholten,1980)
(Francez et. al, 1981)

(Misra & Chandy, 1982)
(Dijkstra et. al.,, 1983)

(Kumar, 1985)

(Chandy &Misra, 1985)
(Szymaski et. al, 1985)
(Mattern 1987)

(Muller, 1987)

(Huang, 1988)

(Mattern, 1989)

(Vankatesan, 1989)

(Lai et al.,1992)

(Wang and Mayo0,2004)

(Mittal & Vankatesan, 2008) (failure

detector)

NN

(central entity)

v

continued on next page ...




¥9€

Tablel.3 ... continued from previous page

Algorithm Specialized pg only po at run time Token
(Bapat & Arora, 2008) v/ (unique
ids)

Symmetric

Table 1.3: DTD algorithms and their process symmetry, astditom [159]




g9¢

Algorithm Successors Node information Upper bound on net éther None

ameter

(Francez,1980) v
(Dijkstra & Scholten,1980) v
(Francez et. al, 1981) v

(Misra & Chandy, 1982) v
(Dijkstra et. al.,1983) v

(Rana,1983) v

(Arora and Sharma,1983) v

(Kumar, 1985) v

(Chandy &Misra, 1985) v

(Szymaski et. al, 1985) v
(Shavit and Francez, 1986)

(Mattern 1987) v

(Muller, 1987) v

(Huang, 1988)

(Huang, 1989)

(Mattern, 1989)

logical clocks

distance function

(list of p;s)

(central entity)

continued on next page ...
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Tablel.4 ... continued from previous page

Algorithm Successors Node information Upper bound on net @ther None
ameter

(Vankatesan, 1989) v

(Lai et al.,1992) v

(Mayo and Kearns,1994) v logical clocks

(Wang and Mayo,2004) v'(in ring) process can't leave or be de-

stroyed before termination

(Mittal & Vankatesan, 2008) v/ v

(Bapat & Arora, 2008) v'(base station)
Table 1.4: DTD algorithms and their process knowledge, tethfrom [159]




Algorithm Synchronous Communication

Asynchronous Comication

(Francez,1980) v (CSP)
(Dijkstra & Scholten,1980)

(Francez et. al, 1981) v (CSP)
(Misra & Chandy, 1982) v (CSP)

(Dijkstra et. al.,1983) v
(Rana,1983) v (CSP)
(Arora and Sharma,1983) v
(Misra, 1983)

(Kumar, 1985)

(Chandy &Misra, 1985)
(Szymaski et. al, 1985) v
(Shavit and Francez, 1986)
(Mattern 1987)

(Muller, 1987)

(Huang, 1988)

(Mattern, 1989)

(Vankatesan, 1989)

(Lai et al.,1992)

(Mayo and Kearns,1994)
(Wang and Mayo, 2004)

(De et al, 2007)

(Mittal & Vankatesan, 2008)
(Bapat & Arora, 2008)

"can be modified for"

v
v
v'(though in CSP)

N N N NN

AN

v

Table I.5: DTD algorithms and their communication protocatiapted and extended [159]
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Algorithm FIFO No restriction

(Francez,1980)

(Dijkstra & Scholten,1980)
(Francez et. al, 1981)
(Misra & Chandy, 1982)
(Dijkstra et. al.,, 1983)
(Rana,1983)

(Arora and Sharma,1983)
(Misra, 1983)

(Kumar, 1985) v
(Chandy &Misra, 1985) v
(Szymaski et. al, 1985) v
(Shavit and Francez, 1986)
(Mattern 1987)

(Muller, 1987)

(Huang, 1988)

(Mattern, 1989)

(Vankatesan, 1989) v
(Lai et al.,1992) v
(Mayo and Kearns,1994)

N N N N NN

NN

(Wang and Mayo, 2004) v

(De et al, 2007) v

(Mittal & Vankatesan, 2008) v

(Bapat & Arora, 2008) v'(not stated explicitly)

Table 1.6: DTD algorithms and their restrictions on message/al , adapted and extended

[159]
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Algorithm Fault tolerant Not fault tolerant

(Francez,1980)

(Dijkstra & Scholten,1980)
(Francez et. al, 1981)
(Misra & Chandy, 1982)
(Dijkstra et. al.,,1983)
(Rana,1983)

(Arora and Sharma,1983)
(Misra, 1983) v
(Kumar, 1985)

(Chandy &Misra, 1985)
(Szymaski et. al, 1985)

N N N NN

(Shavit and Francez, 1986)
(Mattern 1987)

(Muller, 1987)

(Huang, 1988)

(Mattern, 1989)

(Vankatesan, 1989) v
(Lai et al.,1992)

(Mayo and Kearns,1994)
(Wang and Mayo, 2004)

(De et al, 2007)

NN N N N NN

SSERNEENEEN

(Mittal & Vankatesan, 2008) v (assumes perfect failure detector)

(Bapat & Arora, 2008) v

Table 1.7: DTD algorithms and their fault tolerance, addpad extended [159]
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Algorithm Optimal Not optimal
(Francez,1980) v

(Dijkstra & Scholten,1980) v

(Francez et. al, 1981) v

(Misra & Chandy, 1982) v

(Dijkstra et. al.,1983) v
(Rana,1983) v

(Arora and Sharma,1983) v

(Misra, 1983) v

(Kumar, 1985) v

(Chandy &Misra, 1985) v

(Szymaski et. al, 1985) v

(Shavit and Francez, 1986) v

(Mattern 1987) v (If star or complete graph) v'(Otherwise)
(Muller, 1987) v

(Huang, 1988) v

(Mattern, 1989) v

(Vankatesan, 1989) v'If constant number of failures)  v/(Otherwise)
(Lai et al.,1992) v

(Mayo and Kearns,1994) v

(Wang and Mayo, 2004) v (“close to")
(De et al, 2007) v

(Mittal & Vankatesan, 2008) v/

(Bapat & Arora, 2008) v (but efficient)

Table 1.8: DTD algorithms and their message optimality,eld and extended [159]
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APPENDIX J

Graphs, representation and complexity of algorithms

In general a common way of representing graphs as datastesds to consider an
adjacency matrix [47], and its representational data &iras. An analysis of the

complexity issues is given in [96] and summarised here.

i.,e. LetG = (V,FE) be a graph whose vertices have been (arbitrarily) ordered

U1, 2, . ..v,. The adjacency matrigM) = (m, ;) of G is ann x n matrix with entries

{O Zf ViV; ¢ E
ml-,j =

1 Zf ViV; ek

for example consider Figure J.1, the adjacency matriis given by

and can be represented as a an adjacency list of G given ireRidu(b). [96] reasons
that, by definition, the main diagonal of M is all zeros, anddsymmetric about the
main diagonal if and only if G is an undirected graph. If M isrstd as a 2-dimensional
array, then only one step (more precisély1) time) is required for the statements "Is

viv; € I or "Erase the edge;v; An instruction such as "mark each vertex which is
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(@ G
s [ 33— [ ]

(b) adjacency lists of G

Figure J.1: G

adjacent ta); requires scanning the entire columand hence takessteps. Similarly,
"mark each edge" takeg steps. The space requirement for the array representation i
O (n?).

Some of the performance figures above can be improved upon tukelensity of M

is low. We use the term sparse to indicate thaf| < n?, i.e., the number of edges is
much less than?. One of the most talked about classes of sparse graphs grattze

graphs' for which Euler proved thatF|| < 3n — 6.

Regarding adjacency lists, for each vertgxof G an adjacency listdj (v;) can be
created, containing those vertices adjacent td he adjacency lists are not necessarily
sorted although one might wish them to be (see Figure J.1 sphce requirement for
the adjacency list representation of a graph witrertices ana edges is

OO 1+d)])=0(n+e)

LA graph that can be embedded on a plane.
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whered,; denotes the degree ofThus, from storage considerations, it is usually more
advantageous to use adjacency lists than the adjacencix taagtore a sparse graph.
Often, it is also advantageous from time considerationsdesa sparse graph using
adjacency lists. For example, the instruction "mark eaatexewhich is adjacent to
v; requires scanning the listdj (v;) and hence takes dj steps. Similarly, "mark each
edge" take® (e) steps using adjacency lists, a substantial saving overdjaeency
matrix for a sparse graph. However, erasing an edge is mon@lea with lists than
with the matrix as shown in Table 2.2. Thus there is no repritasien of a graph that is
best for all operations and processes. Since the seledteparticular data structure
can noticeably affect the speed and efficiency of an algorittecisions about the rep-
resentation must incorporate a knowledge of the algoritionbe applied. Conversely,
the choice of an algorithm may depend on how the data is liyitigven. For exam-
ple, an algorithm to set up the adjacency lists of a spargehgsall take longer if we
are initially given its adjacency matrix as anx n array rather than as a collection
of ordered pairs representing the edges. A graph problemidsts be linear in the
size of the graph, or simply linear, if it has an algorithm @hhcan be implemented
to run inO (n + ¢)0 steps on a graph with vertices and: edges. This is usually the
best that one could expect for a graph problem. By a carefuktelof algorithm and
data structure a number of simple problems can be solvedeaditime; these include

testing for connectivity, biconnectivity , and planarigg]
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