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Abstract 

What makes a category seem natural or intuitive? In this paper, an unsupervised 

categorization task was employed to examine observer agreement concerning the 

categorization of nine different stimulus sets. The stimulus sets were designed to capture 

different intuitions about classification structure. The main empirical index of category 

intuitiveness was the frequency of the preferred classification, for different stimulus sets. 

With 169 participants, and a within participants design, with some stimulus sets the most 

frequent classification was produced over 50 times and with others not more than two or 

three times. The main empirical finding was that cluster tightness was more important in 

determining category intuitiveness, than cluster separation. The results were considered in 

relation to the following models of unsupervised categorization: DIVA, the rational model, 

the simplicity model, SUSTAIN, an unsupervised version of the generalized context model 

(UGCM), and a simple geometric model based on similarity. DIVA, the geometric approach, 

SUSTAIN, and the UGCM provided good, though not perfect, fits. Overall, the present work 

highlights several theoretical and practical issues regarding unsupervised categorization and 

reveals weaknesses in some of the corresponding formal models.  
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Introduction 

Without concepts, human thought would be impossible as we know it. Concepts help us 

organize briefly and efficiently the information around us, but they are also at the heart of 

many abilities which we consider uniquely human, such as reasoning on the basis of abstract 

ideas (Murphy, 2004; Pothos & Wills, 2011). The question of how concepts arise is one of 

fundamental importance for our understanding of human behavior. Many concepts are 

taught, through language, social convention, or education. This tradition of supervised 

categorization inspired highly influential formalisms, such as prototype and exemplar theory 

(e.g., Hampton, 2000; Minda & Smith, 2000; Nosofsky, 1984; Vanpaemel & Storms, 2008). 

Equally, it seems that in many situations groupings can be constructed in an unsupervised 

manner, that is, without being guided by an external teacher signal. For some time now, 

researchers have been recognizing the importance of unsupervised categorization processes 

in the understanding of human concepts.  

 The focus of the present study is unsupervised categorization in the context of free 

sorting tasks such as the following: participants receive a set of schematic stimuli, presented 

individually on printed cards; they are asked to divide the stimuli in any way they like, with 

no constraints on the number of groups or the number of elements per group. That such a 

process is unsupervised is evident in that there are no external constraints to guide 

categorization; a participant can create any kind of groups he/she wants. Several 

researchers have employed free sorting tasks, mostly to examine the impact of various 

methodological variations on participant performance (Ashby et al., 1999; Handel & 

Preusser, 1969; Handel & Imai, 1972; Handel & Rhodes, 1980; Medin et al., 1987; Milton & 

Wills, 2004; Regehr & Brooks, 1995). For example, does it make a difference whether 

participants see all the stimuli at once instead of sequentially? Are there circumstances that 
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encourage participants to create classifications on the basis of a single stimulus dimension? 

This research has produced many important insights, even though the range of stimulus 

structures employed has been typically limited. One of the objectives of the present 

research is to motivate and test a wide range of stimulus structures.  

 We seem to have a natural tendency to organize information in the world. When 

exposed to a new domain, we implicitly or instinctively look to identify the basic ‘kinds’ that 

go together. This is a paradigmatic case of unsupervised categorization, though in adult 

thought it is often hard to separate out such unsupervised categorization processes from 

influences based on linguistic labels and existing categories. This is not to say that there are 

not everyday life situations when we engage in purely unsupervised categorization 

processes similar to those in the lab-based free sorting tasks: for example, arranging books 

in a bookcase, organizing administrative paperwork, archiving literature search articles, or 

arranging household items in a garage or garden shed. In all cases, the stimuli can be 

described with a set of dimensions (not all perceptual), so that there is a similarity structure 

for the stimuli. Also, in all cases there is a sorting problem, that of deciding which items go 

together. Such examples show the relevance of unsupervised categorization in limited 

problem-solving situations, but we contend that the impact of unsupervised categorization 

in human thought is both more profound and more pervasive.  

 A controversial issue in development psychology concerns the relation between 

linguistic and conceptual development. One view is that linguistic development guides 

conceptual development, as linguistic labels are employed to facilitate the acquisition of 

concepts. An alternative view is that children first develop concepts, so that at a later stage 

labels are matched to appropriate concepts (e.g., Nelson, 1974; Quinn & Eimas, 1986; 

Schyns, 1991). Such a view is supported by evidence that parent-child interaction may 
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involve limited or no corrective feedback, when it comes to children’s inappropriate use of 

linguistic labels (e.g., Chapman et al., 1986; Nelson et al., 1993; see also, Brown & Hanlon, 

1970; Demetras et al., 1986; Johnson & Riezler, 2002). The process which allows conceptual 

development in children is in some ways analogous to a free sorting task, in that in both 

cases it is recognized that some items go with others. Indeed, developmental psychologists 

have shown that children can perform free sorting tasks like the one described above (e.g., 

Gopnik & Meltzoff, 1997). 

 The sense that certain items go together, which is thought to drive behavior in free 

sorting experiments, appears relevant in perceptual organization as well. When we interpret 

a novel visual scene there is often a very strong intuition that certain elements form groups. 

For example, in the experiments of Compton and Logan (1993, 1999), participants were 

presented with arrangements of dots in two-dimensional spaces. In some cases, there was a 

very strong intuition about the presence of groups and most participants agreed in how the 

dots should be classified. This idea, that when a set of items can be classified in an intuitive 

way there should be more consistency in participants’ classifications, is a key element of the 

present research as well. More generally, the link between perceptual organization and 

unsupervised categorization has been taken up by some researchers, who proposed models 

of unsupervised categorization based on perceptual principles (Compton & Logan, 1993, 

1999; Pothos & Chater, 2002).  

 We can extrapolate this intuition of ‘things going together’ with adult concepts as 

well. The relative contribution of supervised (through language, social interaction etc.) and 

unsupervised processes in adult concepts is difficult to quantify (cf. Malt et al., 1999; Malt & 

Sloman, 2007, for assumptions about categories induced by linguistic labels and the impact 

of linguistic labels on categorization). But, we can observe that many of our categories 
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involve coherent collections of objects, that is objects which are similar to each other or, at 

the very least, make sense together (Murphy & Medin, 1985). What is the glue which  binds 

together the members of a category? For example, why do we consider a category like 

‘chairs’ as intuitive (coherent), a category like ‘games’ as less intuitive (in the sense that 

people disagree more about the membership of this category), and a category composed of 

‘babies, the moon, and rulers’ completely nonsensical? We can call this the problem of what 

determines category intuitiveness and it is clearly a fundamental one for cognitive 

psychology. We would like to suggest that, at least part of the solution, relates to 

understanding performance in free sorting tasks. This is because there seems to be a 

fundamental equivalence between many of our concepts and the groups created in free 

sorting tasks, in that in both cases people recognize that certain items should be grouped 

together.  

Research in supervised categorization has been much more extensive than research 

in unsupervised categorization. If one considers entirely unconstrained classification tasks 

with an aim related to category intuitiveness, there are few studies, which are 

methodologically limited (e.g., Compton, 1999; Pothos & Chater, 2002). Note that 

unsupervised categorization is not the same as unsupervised learning, though it is possible 

of course that the two processes are based on similar computational principles (after all, 

they are both instances of inductive inference). The former concerns the specific (empirical) 

objective of spontaneously grouping some stimuli together. The latter is more general and 

concerns all situations of generalizing from some initial stimuli without feedback (e.g., 

Billman & Knutson, 1996; Fiser & Aslin, 2005; Reber, 1967). Also, while there has been some 

work on unsupervised categorization, much of it is not appropriate for the study of category 

intuitiveness. For example, researchers have employed sequential or concurrent 
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presentation procedures for the stimuli. However, there seems to be a strong sense of 

category intuitiveness only in the case of concurrently presented stimuli. Equally, some 

researchers have asked participants to spontaneously group a set of stimuli into a specific 

number of categories (e.g., Medin, Wattenmaker, & Hampson, 1987; Milton, Longmore, & 

Wills, 2008). Such a procedure is less appropriate when studying category intuitiveness, 

since it can restrict participant performance. We employed an unsupervised classification 

task, with no constraints in the number of groups which could be created. 

 Part of the success of research in supervised categorization can be attributed to the 

existence of standard datasets (e.g., Medin and Schaffer, 1978; Shepard, Hovland, and 

Jenkins, 1961), specific dependent variables (e.g., classification probability of novel 

instances or speed of learning), and detailed computational comparisons between 

competing formal models (Minda & Smith, 2000; Nosofsky, 1990). With the present work, 

we try to make progress in unsupervised categorization in all these respects. First, we 

motivate a dependent variable appropriate for the study of category intuitiveness. Second, 

we specify a range of stimulus sets, created so as to contrast various factors possibly 

relevant in free sorting performance, and collect data from a large population sample. Third, 

we concurrently apply several computational models of unsupervised categorization. Medin 

et al. (1987) provide an eloquent statement motivating a modeling effort in unsupervised 

categorization (p.43): “The categories which people normally create and use represent a 

tiny subset of the many possible ways in which entities and experiences could be 

partitioned. Therefore, a central question is what basic principles underlie category 

construction.” The objective of the unsupervised categorization models is exactly this, to 

provide hypotheses about the computational principles (and mechanisms) which underlie 

category construction. 
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The dependent variable  

In supervised categorization, researchers typically study the probability with which novel 

instances are classified to the different trained categories. We think that having such a 

specific, simple dependent variable has facilitated the development of supervised 

categorization models. What is an appropriate empirical measure of classification 

intuitiveness? That is, under what circumstances can we say that a particular classification is 

psychologically more intuitive than another? 

 Consider Figure 1, assuming that such diagrams correspond to psychological spaces 

and each point to a physical stimulus. The A and B panels show two different classifications 

for the same stimulus set. Which classification is more intuitive? We expect that participants 

will produce the more intuitive classification more frequently (cf. Compton & Logan, 1993, 

1999). Therefore, in comparing alternative classifications for the same stimulus set, higher 

relative frequency can be interpreted as higher intuitiveness. We can now extend this 

discussion for different stimulus sets. Let’s assume that the classification in panel A is the 

preferred classification for this stimulus set (the one which is produced most frequently) and 

likewise for panel C. Inspection of these classifications leads to an impression that the 

classification in panel C is less intuitive (e.g., the clusters are closer to each other). In other 

words, in panel C there is a less striking/ obvious best way to classify the stimuli. 

Accordingly, we expect participants to disagree more on how the stimuli should be classified 

and (therefore?) that the preferred classification will be produced with a lower frequency, 

compared to the one in panel A.  

 Overall, we propose that the main dependent variable in unconstrained 

unsupervised categorization experiments should be the frequency of the preferred 
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classification (in fact, our results show that this variable correlates nearly perfectly with the 

number of distinct classifications produced for each stimulus set). Two qualifications are in 

order. First, we are not proposing that there is no other information in unsupervised 

classification results. Rather, our point is that this dependent variable is the most practical 

way with which to examine participant performance and formal models of unsupervised 

categorization. Second, how well this variable ‘works’ is ultimately an empirical issue and it 

may turn out that an alternative measure of category intuitiveness is better. However, there 

are no indications from the present results that this is the case.  

 

   

Figure 1. Hypothetical stimulus groupings that vary in intuitiveness. Classifications A should 

be more intuitive than classification B, since it involves more cohesive clusters. Classification 

A should also be more intuitive than classification C, since the clusters in the latter are less 

discriminable compared to the former.  

 

The empirical challenge 

The space of possible classifications is vast. For ten stimuli there are about 100,000 

classifications (Medin & Ross, 1997) and for 16 stimuli 10.4 billion possible classifications. It 

is remarkable that ordinarily only a tiny fraction of the possible classifications are 

psychologically relevant, and one has to wonder about just how intuitive a particular 

A B C
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classification has to be in order to stand out amongst so many alternatives. The large 

problem space could potentially lead to high performance variability, so that large sample 

sizes would be required. We adopted a population sample of 169 participants and assessed 

the adequacy of the sample size by comparing classification results across two conditions, 

manipulating the instructions, but employing identical stimuli. Note that in unsupervised 

categorization there are no aspects of the procedure to prevent idiosyncratic strategies and 

participant performance can be very variable. By contrast, in supervised categorization, the 

task forces conformity into participants’ responses, since participants are required to learn a 

division of stimuli into the same categories.  

 Regarding the selection of stimuli, note first that in supervised categorization, 

researchers have been able to specify stimulus sets for which there are very precise 

expectations about how the predictions of categorization models would differ (e.g., 

Feldman, 2000; Medin and Schaffer, 1978; Shepard et al., 1961). In supervised 

categorization, an experimenter is free to specify classifications of arbitrary complexity. This 

is why it has been possible to, for example, identify classifications (such as the 5-4), which 

can discriminate between flexible computational models. In unsupervised categorization, a 

researcher cannot employ arbitrarily complex classifications. She is constrained to the study 

of classifications which are likely to be produced spontaneously. The design objective then 

becomes one of trying to anticipate the factors which are likely to influence the 

spontaneous preference for different classifications.  

We identified four characteristics which are likely to be relevant. The first such 

characteristic is the proximity of clusters, whereby the straightforward intuition is that when 

clusters are closer to each other the corresponding classification would be less intuitive. The 

second one is the number of clusters. Is it the case that classifications having more clusters 
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are more intuitive than equivalent ones having few, larger clusters? Some unsupervised 

categorization models make this prediction (Pothos & Chater, 2002). The third characteristic 

is the relative size of clusters, since it is possible that classifications involving equally sized 

clusters may appear more intuitive than ones having clusters of varying sizes. The final 

characteristic is the spread (or tightness) of clusters, that is the degree of similarity between 

the members of each cluster. For perfectly separated clusters, this characteristic 

distinguishes between clusters which are ‘tightly packed’ versus ones which are less so (cf. 

Rosch &Mervis, 1975). We stress that the above characteristics are hypotheses of the 

factors which might be affecting the intuitiveness of classifications. The empirical results 

may show all or none of these factors to be relevant in determining differences in 

unsupervised categorization.  

 Finally, we chose to create two-dimensional stimuli, as this allowed more flexibility in 

manipulating the above characteristics. In unsupervised categorization tasks, with two-

dimensional stimuli there is the possibility of emergent configural dimensions, or, 

conversely unidimensional biases (Medin et al., 1987). We think these are unlikely 

possibilities for our data, as the instructions emphasized to participants that they should 

employ both stimulus dimensions and because unidimensional biases have been 

demonstrated primarily in spontaneous classification tasks in which participants were asked 

to divide items into a particular number of groups (Pothos & Close, 2008). Our results (the 

observed classifications and multidimensional scaling analyses) confirmed that the 

experimenter-assumed dimensions were equivalent to the psychological ones.  

 

The modeling challenge  
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Categorization models can help us understand the underlying psychological process. We 

applied baseline versions of six unsupervised categorization models, with the view to 

identify the principles which appear most promising in the formalization of unsupervised 

categorization and category intuitiveness. This is the first comprehensive comparison of 

unsupervised categorization models (for limited previous efforts see Pothos & Bailey, 2009, 

and Pothos, 2007). One problem is that the implementation of the models has yet to 

converge (contrast with comparisons of exemplar and prototype models). Nevertheless, we 

can identify the essential aspect of each model (Table 1 provides a more detailed overview 

of the main model properties).  

 Most models of categorization involve an assumption that categories should be 

preferred if they maximize within category similarity, while minimizing between category 

similarity (Rosch & Mervis, 1975). We created a geometric approach model, so as to 

examine how far we can get in terms of modeling the empirical results with just this basic 

intuition. The DIVA model (Kurtz, 2007) is a connectionist model, which assumes that 

different statistical structure can be extracted from different categories. Thus, categories 

can be flexibly represented. The SUSTAIN model (Love, Medin, & Gureckis, 2004) also 

assumes that categories can be flexibly represented, but SUSTAIN explores flexibility in 

terms of a continuum between purely exemplar and purely prototypical representations. 

The Unsupervised Generalized Context Model (UGCM) emphasizes a different kind of 

flexibility, that of stimulus representation. According to the rational model (Anderson, 

1991), categorization is about consistency with an underlying statistical model for category 

structure. Finally, according to the simplicity model (Pothos & Chater, 2002), categorization 

is a process of data compression. We will revisit the issue of model intuitions in the General 

Discussion. Once we have explored the models’ application to the present empirical data 
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set, it will be possible to consider, and evaluate, in more specific terms the explanation 

about category intuitiveness from each model.   
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Table 1. A summary of the key characteristics of the models of unsupervised categorization considered in this work.  

 

 Geometric DIVA Rational Simplicity SUSTAIN Uns. GCM 

Formal principle Similarity rules!  Connectionist auto-
encoding: clusters 
reflect different 
statistical structure 

Classification depends 
on Bayesian posterior 
of new stimulus given 
categories 

More efficient 
information encoding 
of similarity more 
intuitive classification 

Similarity with 
additional 
assumptions about 
dimensional selection 

Similarity, but psych. 
space can be flexibly 
transformed.  

Item presentation Concurrent  Trial by trial  Trial by trial  Concurrent  Trial by trial Concurrent 

Sensitivity to 
similarity  

Both within and 
between category 

Flexible Indirectly encoded via 
the likelihood term 

Both within and 
between category 

Formulated in terms 
of within category 

Formulated in terms of 
within category 

Relative size of 
clusters 

Neutral  ? Bigger favored  Bigger favored ? Neutral 

Spread out clusters Bad ? Should lead to less 
conservative 
extensions/ less 
probable 
classifications 

Does not matter as 
long as clusters well-
separated 

Does not matter  Depends on the 
sensitivity parameter 

Dimensional selection None Flexible None None Fewer dimensions 
preferred 

Flexible 

Psychological space Euclidean N/A N/A Non-metric; only 
relative magnitude of 
similarities matters 

Euclidean Any power metric 
allowed; sensitivity 
parameter allows 
blurring 

Dependence between 
dimensions 

Independent Any allowed Independent Independent Independent Depends on power 
metric (city block= 
independence) 

Parameters None Spawning parameter Coupling parameter None Tau parameter Upper limit of the 
sensitivity parameter 

 

Notes: ‘Spread out clusters’ relates to the least similarity between any two items in the same cluster and so is different from within category 

similarity, which is an average. ‘Dependence of dimensions’ refers to whether the dimension values of cluster members are related. For 

example, if you see ‘claws’, do you expect to see ‘fur’ as well? The ‘Number of parameters’ row refers to parameters whose value has to be 

chosen by the experimenter. 
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DIVA 

The DIVA model (Kurtz, 2007) consists of a three-layer, feedforward neural network with a 

bottleneck hidden layer that is trained auto-associatively using backpropagation. The model 

operates by recoding the input at the hidden layer and then decoding (reconstructing the 

original input) in terms of different channels consisting of a set of output units (separate 

weights connect the units of each channel to the hidden layer). Each channel corresponds to 

a different category. In supervised learning tasks, DIVA assesses how well the input is 

reconstructed by each category (channel) and reconstructive success determines 

classification. That is, the model assumes that an exemplar belongs to a category if it can be 

reconstructed by the category. According to DIVA, a category can be any collection of 

exemplars which can be successfully reconstructed by the same category channel, which 

means that the exemplars must share some statistical regularity. For example, one category 

can correspond to all items that have value 1 on feature F1, or all items for which F1 and F2 

are perfectly correlated, or all items such that feature F1 has value 1 unless features F2 and 

F3 each have value 0. Psychologically, this means that categories can be flexibly represented 

(e.g., as overall similarity or rules or any combination of critical features).  

 In unsupervised categorization, the model begins with a single channel and 

additional channels are recruited whenever the existing ones yield reconstructive errors 

below the spawning threshold (lower values make it easier for new categories to be 

created). After the evaluation of a stimulus and selection of a category channel, one 

supervised training trial with the input equal to the target is conducted and the error signal 

is applied only to the selected channel. A classification arises in the form of category 

channels that specialize in reconstructing sets of stimuli with similar properties. 
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 A geometric similarity approach 

Rosch and Mervis (1975) extensively considered what determines category prototypes and 

the basic level of categorization, and their corresponding proposal, involving maximizing 

within category similarity, while minimizing between category similarity, has had a major 

influence in categorization research. This idea can be considered as a general proposal for 

category intuitiveness. We created a ‘geometric approach’ on the basis of this max within, 

min between similarity principle, so as to explore how far we can get in terms of modeling 

the empirical results with just this basic intuition. Note the geometric approach is not meant 

to be a proper model for the range of Rosch and Mervis’s (1975) ideas; several researchers 

have tried to create such a model, showing that this is not a straightforward exercise (e.g., 

Corter & Gluck, 1992; Gosselin & Schyns, 2001; Jones, 1983; Medin, 1983; Murphy, 1991; 

note that these models are specified in terms of features, not distances in psychological 

space).  

Within category similarity was measured as the average similarity of all stimulus 

pairs such that both stimuli are in the same category (computing an average is appropriate 

since in this way within category similarity does not depend on the size of the category). For 

categories with only one element, within category similarity was considered the similarity 

between the category member and its nearest neighbor (otherwise, the greatest preference 

is for clusters with a single item). Between category similarity corresponded to the average 

similarity of all pairs of stimuli such that the two stimuli in each pair were in different 

categories. The ratio of within category similarity to between category similarity was taken 

to be an index of category intuitiveness. A ratio approach for combining within and between 

category similarities has been employed in previous categorization work (e.g., Estes, 1994) 

and also guarantees that the resulting index of category intuitiveness will always be 
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sensitive to both within category similarity and between category similarity. By contrast, in a 

difference approach within category similarity would typically dominate (cf. Mervis & Crisafi, 

1982; Murphy, 1991). This approach is really the most basic arithmetic description of the 

similarity structure in a partitioned stimulus set; the other models can be seen as ways to 

employ the same similarity information in more elaborate ways.  

 

The rational model 

The rational model is an incremental, Bayesian model of categorization, which classifies a 

novel instance into the category which is most likely given the feature structure of the 

instance (Anderson, 1991; Sanborn, Griffiths, & Navarro, 2010). For example, the category 

‘cats’ may be highly likely for a novel instance with features (‘has fur’, ‘can purr’), because 

cats are fairly common (high prior probability) and these particular features are typical for 

cats. In the continuous version of the rational model, the probability of classification of a 

novel instance with feature structure F into category k depends on the product           . 

                , where i indexes the stimulus dimensions and x indicates the different 

values dimension i can take. Each         term corresponds to the probability of displaying 

value x on dimension i in category k, and feature values within a category are assumed to be 

independent (for a more general approach see Heller, Sanborn, & Chater, 2009). Finally, the 

probability that an object comes from a new category is given by      
   

        
 , where n 

is the number of classified stimuli, and c is the coupling parameter. Lower values of the 

coupling parameter make it less likely that dissimilar stimuli will be included in the same 

cluster and vice versa. We implemented the continuous version of the rational model, as 

described in Anderson (1991; Pothos & Bailey, 2009; Sanborn et al., 2010).  
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 The simplicity model 

The simplicity model (Pothos & Chater, 2002) is an implementation of Rosch and Mervis’s 

(1975) proposal within the information-theoretic framework of minimum description length 

(note that minimum description length and Bayesian updating can be formally related; e.g., 

Chater, 1996). The model first counts all similarities within categories and all similarities 

between categories. It then postulates that all within category similarities should be greater 

than all between category similarities. The more these constraints, and the more correct 

they are, the more intuitive the corresponding classification is predicted to be. The model 

takes into account the information cost of identifying and correcting erroneous constraints 

and also that of specifying a particular classification. Because of the latter, the simplicity 

model automatically determines the appropriate number of clusters. In other words, the 

simplicity model encodes the similarity information between the stimuli in a set either 

without or with categories and assesses category intuitiveness in terms of the difference 

between the respective codes.  

 

SUSTAIN 

SUSTAIN aims to capture both supervised and unsupervised categorization in the same 

framework (Gureckis & Love, 2003; Love, Medin, & Gureckis, 2004), but of interest here is 

only its unsupervised component. SUSTAIN favors clusters of similar items. When a to-be-

categorized item is presented to the model, it activates each existing cluster in memory, in a 

way based on the similarity of the item to each cluster. In addition, learned attention 

weights in the model can bias this activation in favor of dimensions which are more 

predictive for categorization. Note that SUSTAIN is biased to focus on a subset of stimulus 

dimensions. The most activated cluster is the one to which the new instance is assigned. If 
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no cluster is activated enough (as determined by the tau parameter), then a new cluster is 

created. Finally, category representation in SUSTAIN is adaptively determined and can be 

anything between the extremes of a purely exemplar representation and a purely prototype 

one.  

 

The UGCM 

The UGCM (Pothos & Bailey, 2009) is a modification of the standard GCM (Nosofsky, 1984). 

With the standard GCM, behavioral data are typically fit by adjusting the model parameters 

until the classification probability GCM predicts for a test stimulus is as close as possible to 

the empirically observed one. An error term for the GCM can be computed as         
 , 

whereby Oi are the observed probabilities and Pi are the predicted probabilities. In its 

unsupervised mode, the intuitiveness of a classification is estimated by considering how well 

each stimulus is predictable given the assignment of the other stimuli to their intended 

categories. Suppose we are interested in evaluating a classification for a set of stimuli, {1 2 

3}{4 5 6 7 8 9} (the numbers  are stimulus ids). We can consider each item in turn as a test 

item whose classification is to be predicted, and all the other items as training items whose 

classification is given. UGCM parameters are adjusted until the predicted classification 

probabilities for individual ‘test’ items are as close as possible to 100% for the classification 

of interest. The lower the sum of all the corresponding error terms, the more intuitive a 

classification is predicted to be, according to the UGCM. The parameters of the UGCM are 

automatically set so as to make the examined classification as intuitive as possible—but this 

does not imply that participants will likewise consider the classification intuitive. Thus, none 

of the parameters of the UGCM are manipulated with a view to achieve better 

correspondence with empirical results and so this model can be parameter free, as is the 
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geometric model and the simplicity model (but note that in practice we manipulated the 

upper limit for the sensitivity parameter).   

 

Experimental investigation 

 Participants and design 

Participants were 169 students at Swansea University, who took part for a small payment.  

Each participant classified nine stimulus sets, one after the other (the order of stimulus sets 

was randomized for each participant). A between-participants condition related to whether 

the stimuli were described in a neutral way (87 participants) or as real-world objects (82 

participants). 

 

 Stimuli 

We created nine stimulus sets so as to reflect four intuitions about the considerations which 

might be relevant in unsupervised categorization: proximity of clusters, number of clusters, 

relative size of clusters, and spread of clusters (Figure 2). The ‘two clusters’ stimulus set is a 

baseline stimulus set of two well-separated, equally sized clusters. The ‘three clusters’ and 

the ‘five clusters’ stimulus sets involve greater numbers of (nearly) equally sized clusters. 

The ‘unequal clusters’ stimulus set alters the relative size of the two clusters. The ‘spread 

out clusters’ stimulus set involves two perfectly separated and equally sized clusters, but 

whose spread is broader compared to the ‘two clusters’ one. The ‘poor two clusters’ 

stimulus set retains only one aspect of classification structure which might correspond to 

classification intuitiveness: the existence of a simple linear boundary separating the two 

clusters. The ‘random’ stimulus set involves stimuli randomly sampling the available 

psychological space. Participants might be consistent in their classifications in such a case if 



21  category intuitiveness 
 

they simply employ some kind of proximity strategy anchoring each cluster on extreme 

stimuli. Finally, the ‘embedded’ stimulus set is there to examine whether participants might 

be able to pick out a fairly cohesive cluster amidst noise. The main intended characteristics 

of the stimulus sets are tabulated in Table 2. The proximity of clusters for a stimulus set was 

approximated as the average distance between all prototypes in a classification and the 

spread of clusters as the maximum distance between any two points in the same cluster.  

 The stimuli were made from two continuous dimensions, which were mapped to the 

length of a ‘body’ (horizontal dimension) and the length of the ‘legs’ after the joint (vertical 

dimension) of schematic spider-like stimuli (Figures 2, 3). By choosing such stimuli, both 

dimensions of physical variation were lengths, and so a Weber fraction in mapping the 

Figure 2 values to physical values could be assumed (8%; Morgan, 2005; note we do not 

claim that 8% increases correspond to the smallest noticeable differences in the physical 

dimensions, rather that they correspond to comfortably noticeable differences). For both 

dimensions, the actual lengths were between 40mm and 80mm. Also, the stimulus 

dimensions were such that it appears that no analytic effort is required to perceive them 

concurrently.  
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Figure 2. The nine stimulus sets employed in this study. The stimuli in a set are indexed by a 

number from 0 to 15. The grouping of points indicates the preferred classifications. For the 

Ambiguous Points and Embedded stimulus sets there were two and six, respectively, 

preferred classifications with the same frequency; we randomly chose one of these 

classifications for the figure.  

 

Figure 3. Some examples of the stimuli used.  
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Table 2. A summary of the characteristics of the nine stimulus sets employed in this study.  

 

 Number of well-
defined clusters 

Relative size of 
clusters 

Between cluster 
separation 

Av. dist. between 
cluster prototypes 

Cluster spread Max dist. between any 
points in the same cluster 

Two clusters 2 Same High 10.25 Medium 2.83 

Unequal clusters 2 Different  High 10.30 High/ Medium 3.61 

Spread out clusters 2 Same High/ Medium 8.66 High 4.24 

Three clusters  
3 

Approximately 
same 

High/ Medium 8.48 Medium/ Low 2.24 

Ambiguous points 2 Same Medium/ Low 6.10 High 4.24 

Poor two clusters 2 Different Low 4.61 High/ Medium 3.61 

Five clusters 
5 

Approximately 
same 

Medium 8.05 Low 1.41 

Random  5 Different  Low 5.97 High 4.47 

Embedded 8.2 Different  Medium 6.30 High 4.74 

 

Note: The number of clusters for the Embedded stimulus set was computed as the average number of clusters for all the classifications which 

were produced with the same, highest frequency. 



24  category intuitiveness 
 

We examined whether the similarity structure of the actual stimuli conformed to the 

assumed coordinate representation. We created 12 stimuli which randomly spanned the 

coordinate space. We then asked 30 experimentally naïve participants (Swansea University 

students) to provide similarity ratings for these stimuli. Each participant was shown all 

possible stimulus pairs in this set of 12 stimuli, excluding identities: there were 12x12 – 12 

(identities) = 132 trials. Stimulus presentation and response recording were computer 

controlled. Each trial started with a fixation point for 250ms, followed by the two stimuli in a 

pair one after the other for 1000ms each, followed by a 1-9 Likert ratings space. Similarity 

results from all participants were then averaged and subjected to a Euclidean distance, 2D 

multidimensional scaling (MDS) procedure (stress 0.115). The correspondence between the 

coordinate representation and the one based on similarity ratings can be quantified with 

the Orthosim procedure (Barrett et al., 1998), which allows the computation of various 

similarity indices between two sets of coordinates for the same set of items. Based on 

recommendations in the Orthosim documentation, we adopted  a ‘procrustes’ approach, 

according to which the coordinate configurations to be compared are first normalized and 

rotated/ reflected to remove any of the arbitrariness in MDS solutions, and the ‘double-

scaled Euclidean distance’ coefficient, for which 0 corresponds to complete dissimilarity, 1 

to identity. This coefficient was 0.911, indicating very close correspondence between the 

assumed coordinates and the similarity-ratings based representation. This analysis shows 

that participants perceived the stimuli in the assumed way.  

 

Procedure 

Participants received the stimuli in each set in a pile; the stimulus sets were presented in a 

random order. The two dimensions of the stimuli were described and it was emphasized 
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that they were equally important. In one instructional condition, the stimuli were described 

as ‘objects’ and the two dimensions as ‘rectangle length in the center and thin parallel lines 

length on the sides’. In the other, a scenario was presented saying how new spiders are 

discovered all the time around the world. Participants were then told about a recent 

expedition to the Amazon, during which several new spiders were identified. All these new 

spiders had broadly similar structure, but differed in terms of the length of their bodies and 

legs. In both instructional conditions, participants were told to consider the stimuli in each 

set independently, that is, as if the current stimulus set was the only one they had received. 

They were asked to spread the items in front of them and classify the items in a way that 

seemed natural and intuitive, using as many groups as they wanted, but not more than 

necessary. It was stated that more similar objects should end up in the same group, so as to 

prevent participants from adopting idiosyncratic strategies. Participants were told to 

indicate their groupings by arranging the objects in each group in separate piles. After the 

participant had left, the experimenter recorded the participant’s classifications by noting 

the stimuli which were grouped together (each stimulus was associated with a number, 

written on the back of the stimulus). 

 

Empirical results – Frequency of the preferred classification 

A few classifications contained errors in how they were recorded (e.g., an item might be 

missing from the classification transcript). In some cases, we were able to conservatively 

carry out a correction, but where this was not possible a classification was not included in 

the analyses. Table 3 shows the classifications recorded correctly for each stimulus set (the 

max is 169). There was a problem with missing classifications only for the ‘embedded’ 

stimulus set. Our experience with the task is that it is more difficult to record classifications 
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which involve more erratic clusters. Therefore, it is not appropriate to scale the dependent 

variable (frequency of the preferred classifications), because the missing classifications are 

more likely to be ones which were more random. Notwithstanding this point, the results 

hardly change if some appropriate scaling is carried out.  

Tables 3 shows that we observed more than 1100 unique classifications. This result 

was surprising, given that in some cases participants were asked to classify stimuli 

conforming to a simple two- or three-cluster classification, and informs the complexity of 

the task of analyzing this data. Indeed, many of the classifications produced appear to 

reflect random individual variation in classification strategy (note that restricting the 

number of allowed categories and employing fewer stimuli decreases performance 

variability; Milton et al., 2008). We would like to argue that the best way (or at least the 

most practical way) to make sense of this large and noisy dataset is by focusing on the 

frequency of the preferred classification in each stimulus set.  

Note first that the instructional manipulation can be used to check whether the 

frequency of the preferred classifications is a robust variable. If classification intuitiveness 

drives participants’ classification preferences, as we would like to assume, then we should 

observe the same pattern of results, regardless of whether participants received the realistic 

or neutral instructions. This was the case (Table 3). Correlating the frequency of the 

preferred classification for different stimulus sets, as a function of instructions, we obtained 

r=.92, p<.0005. 

We then examined how the frequency of the preferred classification relates to 

measures of classification variability in each stimulus set. One such measure is the number 

of distinct classifications and another one is entropy, computed as            , where pi is 

the probability of each classification in a stimulus set. Entropy is a measure of how easy it is 
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to identify a particular item in a set and so it is highest when there are many equiprobable 

classifications. The frequency of the preferred classification correlated highly with both 

measures (-.98 and -.99, in both cases p<.0005). Thus, the frequency of the preferred 

classification captures entirely two measures of variability in participants’ classifications and 

nothing new would be gained by considering classification variability separately.  

The frequency of the preferred classification dominates for all stimulus sets for 

which there is a salient classification structure: the frequency of the next most preferred 

classification is much lower than the frequency of the preferred one (Table 3). Most of the 

other classifications produced for a stimulus set would have a frequency of just one. The 

distributional properties of all the classifications in each stimulus set can be examined with 

the Rand index of classification similarity (Rand, 1971). It is computed as the pairs of items 

that are both in the same cluster, or both in different clusters, divided by all pairs, and so it 

ranges from 0 to 1, corresponding to totally different or identical classifications respectively. 

We examined the Rand similarity of all classifications produced for a stimulus set with the 

preferred one (in the few cases when there was more than one classification with the same 

highest frequency we selected one at random) and computed the mean and standard 

deviation of these Rand index values. The correlations between the mean Rand index and 

the standard deviation of the Rand values with the frequency of the preferred classification 

for each stimulus set were .31 and -.30 respectively; as both results were non-significant, we 

do not discuss them further.   

Despite the encouraging analyses above, future work may reveal aspects of the data 

in unsupervised categorization tasks not captured by the frequency of the preferred 

classifications. An important advantage of the frequency of the preferred classifications is 
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that it is a practical dependent variable, in that it makes application of the computational 

models relatively straightforward.  
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Table 3. Summary of the empirical results of the study.  

 

Stimulus set  Frequency of most preferred1 Frequency of next most preferred1 Distinct classifications produced  Classifications recorded    

___________________________________________________________________________________________________________________ 

 

Two clusters   32 (20, 12)   5     122    169 

Unequal clusters  33 (17, 16)   7     113    169 

Spread out clusters  8 (5, 3)    3     149    168 

 

Three clusters   55 (32, 23)   4     100    167 

Ambiguous points  3 (1, 2)    3     158    167 

Poor two clusters  17 (11, 6)   3     140    167 

 

Five clusters   60 (27, 33)   8     81    168 

Random   3 (2, 1)    2     158    168 

Embedded   2 (1,1)    2     148    154 

____________________________________________________________________________________________________________________ 

Note: 1 ‘Preferred’ corresponds to the classification preferred by participants for the corresponding stimulus set.  In parentheses we show the 

frequency of the preferred classification, as a function of the two types of instructions participants received; the first number corresponds to 

realistic instructions and the second to neutral instructions.  
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Empirical results – key findings  

Our results indicate that the number of clusters does not affect classification salience. In 

fact, we were surprised to find that the preferred classifications for the stimulus sets ‘three 

clusters’ and ‘five clusters’ were produced with a higher frequency than the one for the ‘two 

clusters stimulus set’. Relatedly, it appears that smaller, tighter clusters are preferred to 

more spread out ones, even in cases where the latter are very well separated.  

 The above intuitions can be made more precise with the information in Table 2. We 

carried out a regression analysis with frequency of the preferred classification for each 

stimulus set as the dependent variable and four independent variables: cluster spread, the 

number of well defined clusters, between cluster separation, and whether the size of the 

clusters is balanced or not (a binary variable). Accordingly, this regression analysis can show 

which characteristics of the stimulus sets contribute more to the frequency (and so salience) 

of the preferred classification. The overall regression was significant (F(4,8)=29.80, R2=.97, 

p=.003) and the standardized betas were -.98, .19, -.16, .02 for the factors cluster spread, 

between cluster separation, size balanced, and the number of clusters respectively.  

 Finally, note that the preferred classifications in the ‘three clusters’ and ‘five clusters’ 

stimulus sets showed sensitivity to both dimensions of stimulus variation, since the 

corresponding three and five cluster classifications could not have been produced unless 

participants were attending to both dimensions. This finding (together with the MDS results) 

provides evidence against a hypothesis that there might have been an emergent feature 

driving classification performance and against the presence of a unidimensional bias in our 

experiments. This was as intended, given that the instructions emphasized that both 

dimensions should be considered (cf. Medin et al., 1987; Milton, Longmore, & Wills, 2004; 

Pothos & Close, 2008).  
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Modeling  

We assume that the higher the frequency of the preferred classification, the more intuitive 

this classification should be relative to alternative classifications for the same stimuli. The 

objective of the models is then to predict differences in the frequency of the preferred 

classification between stimulus sets. For example, why were participants fairly consistent in 

identifying the preferred classification in the ‘two clusters’ and ‘unequal clusters’ cases, but 

in the case of the, seemingly equivalent, two-group classification for the stimulus set ‘spread 

out clusters’, the preferred classification was identified with a much lower frequency? 

 We have standardized the comparison between the models as much as possible by 

employing the same test for the performance of each model. Specifically, the nine stimulus 

sets give us nine data points, the frequency of the preferred classification for each stimulus 

set. The application of the models aimed at predicting the differences between these 

frequencies. For example, if the preferred classification for one stimulus set was produced 

more frequently than the preferred classification for another stimulus set, does a model 

correctly predict that the former classification should be more intuitive than the latter?  

 All models which assume sequential presentation of the stimuli (DIVA, the rational 

model, and SUSTAIN) were applied by manipulating a single parameter, which has an 

equivalent function in each of the models. Specifically, for DIVA we manipulated the 

spawning threshold, for the rational model the coupling parameter, and for SUSTAIN the tau 

parameter. In all cases, these parameters correspond to whether the models are 

conservative as regards their category extensions or not. Regarding the models which 

assume concurrent presentation, the geometric approach and the simplicity model are 
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parameter free, while for the UGCM we manipulated the upper limit of the sensitivity 

parameter. The sections below briefly discuss some application details for the models.  

 

 DIVA 

We employed the latest version of DIVA (Kurtz, in preparation) which uses a linear 

activation function at the output layer and a default value for learning rate of 0.15. Other 

model details follow from Kurtz (2007): the hidden layer consisted of two nodes and the 

initial weights were randomized within a range of zero +/- 0.5. To simulate a spontaneous 

classification task, DIVA generated a sort based on two learning passes, i.e., two evaluations 

of each stimulus set (the second pass allows learning to be applied to examples that were 

experienced at the beginning of the first pass, i.e., before the structure of the sort had taken 

form). There was one free parameter: the spawning threshold (a single value of the 

spawning threshold was employed for all simulations). Pilot testing revealed good 

performance with a spawning threshold of 0.067. Note that similar performance was 

observed across a range of values around 0.067, and there was no evidence that another 

range of values would produce a qualitatively better fit to the human data. 

The experimental stimuli were encoded as input patterns consisting of the two 

continuous dimension values, scaled by 1/10. For each of the nine datasets, DIVA was tested 

170 times with random assignment of initial weights and random order of presentation for 

the two passes through the stimulus set. To generate category intuitiveness values, we 

counted the frequency with which the preferred classification was produced for each 

stimulus set (in the second pass). Where the frequency of the preferred classification is 

higher, DIVA predicts the classification to be more intuitive. 
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 A geometric approach to similarity  

DIVA is a trial by trial model, so that a measure of category intuitiveness can be derived by 

employing several different orders and counting the number of times the empirically 

preferred classification is produced. The geometric approach assumes concurrent 

presentation of all items and, so a different approach is necessary. For each stimulus set, we 

considered the intuitiveness value of the empirically preferred classification (when there 

were more than one classifications which were produced with the highest frequency, we 

computed the intuitiveness value of all these classifications and considered the prediction of 

the model to correspond to the best possible intuitiveness value; an analogous approach 

was adopted for the simplicity model and the UGCM). Psychological similarity was equated 

with Euclidean distance.  

Note that the geometric approach could be augmented by an attentional salience 

mechanism, such that instead of computing distance as                 
 

      it is 

computed as                    
 

     , where    are dimensional weights. We 

considered all possible combinations of weights from 0 to 1 in 0.1 increments for the 

weights of the first dimension, so as to identify the dimensional weights leading to best 

correspondence with empirical results. In brief, this approach did not lead to more accurate 

predictions (see the Appendix). Perhaps retrospectively it is unsurprising that attentional 

selection does not aid the geometric approach. All stimulus sets were designed either so 

that their most obvious classification structure would be evident in two broadly equally 

weighted dimensions (e.g., ‘three clusters’, ‘five clusters’) or so that it would not matter 

whether the stimuli were classified on the basis of both dimensions or one (e.g., ‘two 

clusters’, ‘unequal clusters’). 

 



34  category intuitiveness 
 

 Rational model 

The rational model is a trial by trial model of unsupervised categorization and so it was 

applied in a way analogous to that for DIVA and SUSTAIN. For each stimulus set, we counted 

the number of times the model produced the preferred classification across 5000 randomly 

selected stimulus presentation orders (and confirmed replicability of the results across a 

second set of 5000 random presentation orders). We explored a range of values for the 

coupling parameter, c (0.1, 0.25, 0.333, 0.4, 0.5, 0.667, 0.75, and 1) and the best 

correspondence between rational model results and predictions was identified for c=0.333. 

Note that we also examined the Gibbs Sampler (Sanborn et al., 2010) algorithm, but this 

procedure did not improve the rational model predictions.  

 

 Simplicity model 

The simplicity model assumes concurrent presentation of all stimuli. It was used to compute 

the intuitiveness value for the preferred classification for each stimulus set (the simplicity 

model has been designed to do exactly this). The model’s predictions are expressed in terms 

of the ratio [codelength with categories] / [codelength without categories], as is typically 

the case.  

 

SUSTAIN 

SUSTAIN assumes trial by trial presentation (Gureckis & Love, 2002; Love, Medin, & 

Gureckis, 2004). Stimuli were presented to the model as coordinate pairs, such that each 

dimension was scaled between 0 and 1. Initially, attention along both dimensions was set to 

be equal (initial lambda= 1.0) but SUSTAIN could adjust these values to emphasize 

differences along either dimension. Once stimulus presentation has finished, the 
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classification SUSTAIN produced was extracted by examining which stimuli activated the 

same cluster. For each stimulus set this process was repeated 170 times and we counted the 

number of times the preferred classification was produced. SUSTAIN was applied with only 

one free parameter, the tau parameter. We explored 40 potential values for tau, equally 

spaced between 0.18 and 0.9, choosing the solution (tau=0.586) that led to closest 

correspondence with empirical results. Note that SUSTAIN’s operation depends on 

parameters other than tau, but these were not fitted in this application, rather we recycled 

a single set of global parameters from a previous study (the ones employed in the 

unsupervised fits of SUSTAIN in Love, Gureckis, & Medin, 2004).  

Note that the proponents of SUSTAIN have argued that the tau parameter reflects 

individual differences in the preference for more conservative or liberal classifications. Thus, 

the SUSTAIN fit to a single stimulus set should involve a range of tau values, drawn from a 

particular tau distribution. However, applying SUSTAIN on the basis of a single tau value for 

all stimulus sets was consistent with how the other sequential models were applied. Our 

approach means that SUSTAIN predictions tend to show less variability and that they are a 

little less accurate, compared to an approach involving estimating the mean and variance of 

the tau distribution and using a range of different tau values even for the same stimulus set. 

 

 Unsupervised GCM  

We computed a sum of squared residuals value for the preferred classification for each 

stimulus set. When examining classifications which involve well-separated clusters, the 

UGCM can always find a value of the sensitivity parameter high enough to perfectly predict 

the target classifications. Accordingly, for the UGCM to produce meaningful predictions for 

the present stimulus sets the sensitivity parameter, c, had to be restricted (Pothos & Bailey, 
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2009). We examined several upper limits for the sensitivity parameter (0.001, 0.005, 0.01, 

0.05, 0.075, 0.1, 0.15, 0.20, 0.25, 0.30. 0.35). The best fit was identified for an upper limit for 

c or 0.20. For each stimulus set and classification, we optimized the UGCM parameters 300 

times with random parameter starting values (the starting value for a parameter was always 

within its allowed range). Without exception, the value for the sensitivity parameter 

identified in this way was equal to its upper limit. Note that these 300 runs of the UGCM per 

stimulus set are not like the number of presentation orders for DIVA or SUSTAIN, they are 

simply a measure of the computational effort for achieving UGCM global fits (even though 

the model has only one free parameter, it does have several other parameters which need 

to be optimized for each classification and stimulus set).  

 

 Model comparison and discussion 

Predictions from all models are shown in Table 4, Figure 4. We first examined the Pearson 

correlations between the model predictions for category intuitiveness (Table 4) and the 

frequency of the preferred classification, for the different stimulus sets (employing Kendall’s 

tau or Spearman’s rho correlation coefficients leads to a nearly identical pattern of results). 

However, some of the models benefit from a free parameter and others do not. We 

therefore next computed the Akaike Information Criterion (AIC; Akaike, 1974) for each 

model, which allows meaningful comparisons between models with different numbers of 

parameters. When applied to Pearson correlations,           
    

 
   . In this 

equation, n and k correspond to the number of data points and model parameters 

respectively, and r is the unadjusted correlation (Table 5). DIVA, the geometric approach, 

SUSTAIN, and the UGCM all provide a reasonable, but not perfect, account of the data, and 

the rational model and the simplicity model do not do as well (note that as the models are 
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not nested it is not meaningful to examine whether one model performs significantly better 

than another; e.g., Ashby, 1992; Ashby & O’Brien, 2008; Pitt et al., 2002). This is an 

important finding of the present research. Our analysis is the first extensive application of 

categorization models to spontaneous classification results and Table 5 illustrates that most 

models are in need of some revision. To illustrate the stimulus sets for which different 

models had difficulty, we normalized empirical results and model predictions on a zero 

(least intuitive) to one (most intuitive) scale and plotted the predictions of each model 

against empirical results (Figure 4).  

   

   

Figure 4. The empirical data and model predictions, normalized on a zero to one scale.  

 

We next examined the relation between model predictions and the four stimulus 

characteristics, so as to better understand why some models performed better than others 

and, more generally, the properties of the different models (the general properties of 

models are not always obvious from their implementational details). Table 6 shows the 
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correlations between the intuitiveness predictions from each model and the four main 

characteristics of the stimulus sets, noting that the most and least important characteristics 

in determining category intuitiveness were cluster spread and the number of well-defined 

clusters respectively. The worst performing models, the simplicity model and the rational 

model, make predictions sensitive to the number of clusters. But, sensitivity to this 

characteristic of stimulus structure is ‘misleading’, since empirical results showed that it 

does not influence category intuitiveness. By contrast, the best performing models are most 

sensitive to cluster spread. Note that the sensitivity of the UGCM to between-cluster 

separation is a direct result of manipulating the upper limit of the sensitivity parameter (if 

this is set to a high enough value, then the UGCM shows no sensitivity to between-cluster 

separation). Note also that the rational model is insensitive to cluster spread. But, the 

general Bayesian intuition is that more spread out clusters would allow less conservative 

extensions (see, e.g., Stewart & Chater, 2002), so that tighter clusters should be preferred. 

This intuition was not born out in the rational model analyses; we further discuss this issue 

in the General Discussion Section. 

 Finally, the models differ considerably in their implementation, but sometimes such 

differences can be misleading. We therefore next examined how much different models 

converged in their predictions. Where there is a high degree of convergence, we may 

perhaps conclude that the performance of two models should be considered equivalent, 

despite any differences in AIC. This was the objective of Table 7 and Figure 5, where it can 

be seen that DIVA, the Geometric approach, and SUSTAIN all correlate highly with each 

other, and less so with simplicity and the rational model. This is an inevitably graded 

conclusion, but it does inform a distinction between better and worse performing models. 

We next created a similarity matrix for the models by computing Pearson correlations for 
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their predictions; i.e., the similarity between model X and model Y would be the absolute 

value of the correlation between the predictions of the two models (Table 7). We then 

derived a two-dimensional MDS representation, shown in Figure 5, so as to further illustrate 

model similarities (the stress of the MDS solution was 0.006).  
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Table 4. Model performance for the category intuitiveness results of the present study. The entries for each model correspond to model 

output linearly transformed onto a range from the lowest (2) to the highest (60) observed classification frequencies.  

Stimulus set  Human data DIVA1 Geometrical approach2  Rational model3 Simplicity4  SUSTAIN5 UGCM6 

___________________________________________________________________________________________________________________ 

 

Two clusters  32  60   58   60  60  60  60 

Unequal clusters 33  30   55   53  60  26  60 

Spread out clusters 8  2   23   12  60  2  60 

 

Three clusters  55  44   56   37  42  49  60 

Ambiguous points 3  2   13   2  2  2  6 

Poor two clusters 17  12   2   8  48  29  48 

 

Five clusters  60  34   60   2  10  59  57 

Random  3  2   8   2  13  2  19 

Embedded  2  2   26   2  11  2  2 

____________________________________________________________________________________________________________________ 

Raw model output for:  

Five clusters  60  47   0.145   0  74.9%  168  0.25 

Embedded   2  0   0.288   0  74.3%  0  4.41 

____________________________________________________________________________________________________________________ 

Note: the predictions from each model were based on: 1The number of times the preferred classification has been produced in 170 runs of the 

DIVA model. 2Average of all within category distances divided by average of all between category distances. 3The number of times the 

preferred classification is produced across 5000 random presentation orders of the stimuli. 4Percentage codelength of the preferred 

classification. 5The number of times the preferred classification was produced in 170 runs of SUSTAIN. 6Sum of squares error term.  
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Note, this is the original table (from cat intuitiveness 6):  

Table 4. The predictions for category intuitiveness from all the models of unsupervised categorization.  

Stimulus set  Human data DIVA1 Geometrical approaches2  Rational model3 Simplicity4  SUSTAIN5  UGCM6 

___________________________________________________________________________________________________________________ 

 

Two clusters  32  85  0.153   5000   50.2%  170   0 

Unequal clusters 33  41  0.166   4374   50.0%  71   0 

Spread out clusters 8  0  0.300   885   50.2%  0   0.02 

 

Three clusters  55  61  0.160   3005   58.9%  139   0 

Ambiguous points 3  0  0.341   0   78.7%  0   4.09 

Poor two clusters 17  15  0.387   510   55.9%  80   0.91 

 

Five clusters  60  47  0.145   0   74.9%  168   0.25 

Random  3  0  0.361   0   73.1%  0   3.13 

Embedded  2  0  0.288   0   74.3%  0   4.41 

____________________________________________________________________________________________________________________ 

Notes: 1The number of times the preferred classification has been produced in 170 runs of the DIVA model. 2Average of all within category 

distances divided by average of all between category distances. 3The number of times the preferred classification is produced across 5000 

random presentation orders of the stimuli. 4Percentage codelength of the preferred classification. 5The number of times the preferred 

classification was produced in 170 runs of SUSTAIN. 6Sum of squares error term.  

 

 



42  category intuitiveness 
 

 

Table 5. Correlations between model predictions (as shown in Table 7) and the number of 

times the preferred classification was produced for each stimulus set (the first column in 

Table 3).  

Model    Correlation Free parameters       

____________________________________________________________ 

DIVA    .799**   1  -26.93 

Geometric approach  -.834**  0  -30.48 

Rational model  .434   1  -19.65 

Simplicity   -.207   0  -20.17 

SUSTAIN   .896**   1  -32.39 

UGCM    -.709*   1  -24.06 

_____________________________________________________________ 

Note: A ‘*’ indicates two-tailed significance at the .05 level and a ‘**’ at the .01 level. Lower 

values of       indicate better correspondence between empirical results and model 

predictions.  
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Table 6. Correlating the intuitiveness predictions for each model with the four characteristics of the stimulus sets, as shown in Table 2. The 

characteristics have been ordered in terms of their empirical importance.  

 

Characteristic  Correlation with model predictions  
 

  

Cluster spread  SUSTAIN DIVA Geometr.  UGCM Rational Simplicity 
 -.93** -.78* .74* .67* -.32 .12 

       

Between cluster 
separation 

Geometr. Rational DIVA UGCM Simplicity SUSTAIN 

 -.85* .82* .70* -.66* -.59 .49 

       

Size balanced Geometr. SUSTAIN DIVA UGCM Rational Simplicity 
 -.44 .41 .41 -.35 .14 -.03 

       

Number of clusters Simplicity UGCM  Rational DIVA SUSTAIN Geometr. 
 .63 .57 -.48 -.29 -.21 .06 

Note: A ‘*’ indicates two-tailed significance at the .05 level and a ‘**’ at the .01 level. 
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Table 7. The correlations between the predictions of the models.  

   DIVA  Geometrical approach  Rational model  Simplicity   SUSTAIN  UGCM 
   ________________________________________________________________________________________ 
DIVA     -.85**    .80**  -.45  .93**   -.68* 

Geometric approach       -.67*  .30  -.77*   .61 

Rational model         -.74*  .55   -.62 

Simplicity             -.30   .78* 

SUSTAIN               -.69* 

___________________________________________________________________________________________________________ 

Note: A ‘*’ indicates two-tailed significance at the .05 level and a ‘**’ at the .01 level.  
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Figure 5. A schematic impression of which models make more similar predictions, for the 

stimulus sets employed in this study; smaller distance in this space reflects greater similarity 

in model predictions.  

 

General discussion 

It is often the case that cognitive process cannot be guided by an external, supervisory 

signal, so that it is unsupervised. Research onto unsupervised cognition has been extensive 

and relates to most key cognitive processes (e.g., Chater, 1996; Elman, 1990; Feldman, 

2009; Fiser & Aslin, 2005; Quinn & Eimas, 1986; Schyns, 1991). We have suggested that 

unsupervised categorization specifically is an important aspect of category intuitiveness, 

that is, our impression that it makes sense to place certain objects in the same category. 

Very little research has been done on unsupervised categorization with unconstrained free 

sorting tasks, perhaps because of the difficulty associated with organizing participant 
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responses into a meaningful dependent variable. We argued that the frequency of the 

preferred classification for a stimulus set is a suitable dependent variable.  

 The main empirical finding of the study was that the tightness of clusters appears to 

outweigh the separation between clusters, in determining category intuitiveness. This is a 

significant finding because current theorizing about the psychology of categorization 

frequently emphasizes the latter factor over and above the former. For example, Table 4 

shows that many models managed to capture the relative goodness between the ‘two 

clusters’ and ‘poor two clusters’  stimulus sets (for which separation varies), but no model 

predicted a superiority for the ‘five clusters’ stimulus set over the ‘two clusters’ one. What is 

the source of participants’ preference for tight clusters? With both adult and child 

participants, it is generally the case that more variable categories encourage more liberal 

category extensions (Hahn et al., 2005; Mareschal et al., 2002; Rips, 1989; Smith & Sloman, 

1994; Stewart & Chater, 2002). We can thus speculate that classifications which involve 

tight clusters are more intuitive exactly because there is less ambiguity about cluster 

membership. If this intuition proves correct, it would favor categorization models for which 

classification depends directly on the distributional properties of categories (e.g., some 

revision of the rational model).   

 Category intuitiveness was influenced by cluster separation nearly as much as by 

whether clusters were equally sized or not. The importance of the latter characteristic in our 

data possibly follows from the result regarding cluster tightness. For example, compare the 

stimulus sets ‘spread out clusters’ and ‘poor two clusters’ for which the frequencies of the 

preferred classifications were 8 and 17 respectively. In the case of ‘poor two clusters’, 

perhaps higher category intuitiveness was observed because participants could easily 

identify the tighter, smaller cluster, which presumably then enabled a consistent 
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classification of the rest of the items in the stimulus set. Note that this speculation goes 

exactly against the predictions of the rational model and the simplicity model: both these 

models predict that category intuitiveness depends on cluster size (e.g., these models had 

difficulty predicting the superiority of the ‘five clusters’ stimulus set, compared to the ‘two 

clusters’ one, even though clusters were larger in the latter case).  

 Relatedly, the number of clusters proved to not affect classification intuitiveness at 

all. For example, the preferred classification in both the ‘five clusters’ stimulus set and the 

‘random’ one had five clusters, but the category intuitiveness of the former was 60 and of 

the latter only three. From a psychological point of view, perhaps it makes sense that 

category intuitiveness is not affected by the number of categories, as this would mean that 

acquiring new, well-separated categories, does not interfere with the category intuitiveness 

of existing categories. But this finding, again, presents a challenge to formal models which 

depend on cluster size (because we wanted to have the same number of stimuli in each set, 

increasing the number of clusters decreases the number of stimuli per cluster). Moreover, 

most current categorization studies (modeling and experimental) involve only two clusters. 

The present findings recommend the importance of extensions with more clusters.  

Finally, performance with the ‘three clusters’ and ‘five clusters’ stimulus sets showed 

that there was no unidimensional bias in participants’ classifications (see also Milton & 

Wills, 2004; Milton et al., 2008; Pothos & Close, 2008). It is possible that unidimensional 

biases in category formation are more common with paradigms which require participants 

to form a specific number of categories (Murphy, 2004, p.129). Also, perhaps participants 

were encouraged to employ both stimulus dimensions in the present study because of the 

instructions encouraging them to do so. Note, however, that in previous work without such 

instructions, but with a similar unconstrained categorization task, we also failed to observe a 
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general unidimensional bias (Pothos & Close, 2008). In line with our present conclusion, 

intuition regarding natural categories suggests that they are not typically based on a single 

feature or dimension. Equally, it is important to explore whether our finding generalizes to 

more realistic categorization situations (e.g., more stimuli and categories). Of course, this 

point applies to all our empirical conclusions, though it is worth noting the consistency in 

the pattern of results for, e.g., the ‘two clusters’, ‘three clusters’, and ‘five clusters’ stimulus 

sets, for which tighter clusters led to increased category intuitiveness, regardless of the 

number of clusters. 

 The role of the computational models is to provide an explanation of psychological 

process in terms of formal principles. In an ideal world, the characteristics of category 

intuitiveness we empirically identified (such as the importance of cluster tightness), would 

follow naturally from a formal model of the categorization process. We applied six models, a 

geometric model (which was a simple formalization of Rosch and Mervis’s, 1975, max-

within, min-between similarity proposal), DIVA (Kurtz, 2007), the rational model (Anderson, 

1991), the simplicity model (Pothos & Chater, 2002), SUSTAIN (Love et al., 2004), and the 

UGCM (Pothos & Bailey, 2009). This is currently the most comprehensive comparison of 

unsupervised categorization models, so it is interesting to examine how model differences 

in theory and implementation translate to differences in prediction. We standardized model 

application, by extracting the same measure from all models, that is numbers which can be 

interpreted as category intuitiveness. Note that some models are better suited to 

computing category intuitiveness than others (notably the simplicity one), but it turned out 

this did not make any difference in the accuracy of predictions. 

In unsupervised categorization, a key intuition is that of Rosch and Mervis’s (1975), 

that naïve observers should prefer categories which maximize within category similarity and 
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minimize between category similarity. The geometric model was an arithmetic expression of 

this intuition and it was meant to help explore how good a coverage of results can be 

achieved from just this basic intuition, without the additional elaborations of the ‘proper’, 

so to say, models. It turned out to be one of the three best performing models, together 

with SUSTAIN (Love et al., 2004) and DIVA (Kurtz, 2007). The success of the geometric model 

raises questions regarding the added value of the computational models of unsupervised 

categorization. 

Both SUSTAIN and DIVA allow for flexible category representations and their success 

with the present data indicates that this is a theme which should be explored further in 

unsupervised categorization. Specifically, in SUSTAIN, at one extreme, category 

representation is analogous to that in exemplar models, at another extreme to prototype 

models. Category representations evolve adaptively, depending on the complexity of the 

learning problem. DIVA is based on an autoassociative connectionist architecture, so 

flexibility in category representation is consistent with the properties of such models. In 

DIVA, categories can be represented as overall similarity or rules or any combination of 

critical features, though it is not currently clear whether the full representational flexibility 

allowed by DIVA is needed in unsupervised categorization.   

 The UGCM (Pothos & Bailey, 2009) also provided a good account of empirical results. 

Its main characteristic is the flexibility it allows in the form of psychological space (and the 

way similarity is computed). According to the UGCM, categories are more intuitive if the 

stimuli in different categories are better separated. However, separation can be considered 

both with respect to the original stimulus representations and with the alternative 

representations which are allowed by the UGCM mechanisms (e.g., attentional weighting, 

the stretching or compression of psychological space, response-biasing of different 
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categories, and changes in both the metric structure of the space and the similarity 

function). Note that the UGCM’s performance is dependent on employing a particular value 

for the upper limit of the sensitivity parameter. For low upper limits for c there is a high sum 

of squares error for the preferred classifications for all stimulus sets; this is because for low 

c values, the UGCM cannot differentiate between any clusters, however well separated. 

Conversely, for high upper limits for c, the clusters in all classifications can be made 

perfectly separated (note that all preferred classifications were linearly separable). For 

intermediate values for the upper limit for c, as the upper limit is gradually increased, the 

sum of squares error term drops more rapidly for the preferred classifications for the 

structured stimulus sets, than for the unstructured ones. Therefore, there is an optimal 

value for the c upper limit which allows a differentiation between the model predictions for 

the structured and unstructured stimulus sets. The success of the UGCM suggests a possible 

convergence between supervised and unsupervised categorization processes (cf. Colreavy & 

Lewandowsky, 2008).  

 The rational model (Anderson, 1991; Sanborn et al., 2010) understands 

categorization as a process of Bayesian inference. A category extension is acceptable if a 

novel instance is probable given the distributional characteristics of the category members 

and depending on the prior probability of the category as well (this prior depends on the 

category cardinality). The rational model did less well. We think the problem has to do with 

the category priors, which are set up so that the more the stimuli which have been seen by 

the model, the greater the penalty for the creation of new clusters. When there are several 

well-formed clusters, this seems to prevent the model from identifying the correct 

classification. For example, for the ‘five clusters’ stimulus set, with c=0.42, in the predicted 
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preferred classification, one of the intended clusters is broken up to clusters with individual 

items, but with c=0.43 the preferred classification consists of an all-inclusive category. 

 The simplicity model (Pothos & Chater, 2002) also did less well. The simplicity model 

assumes that categorization is a process of information compression: we organize 

experience into categories because this allows us to represent the same information in a 

more compact way. Such an informational approach implies that, as long as two categories 

are well-separated, it does not matter how much further separated they are and that 

classification intuitiveness should rapidly increase with increasing cluster size, for well-

separated clusters. Especially the latter prediction was not supported in our results and 

some hierarchical version of the model might be more appropriate (cf. Hines et al., 2007).  

 The AIC values for model performance (Table 5) and the data on the correlations 

between model predictions (Table 7) led us to identify a class of well-performing models 

(geometric approach, DIVA, and SUSTAIN) and a class of poorly-performing models (rational 

model, simplicity model), with the UGCM in between and closer to the better-performing 

models. Note that in Table 6 SUSTAIN, DIVA, and the geometric approach are the three 

models which best capture the ‘cluster spread’ characteristic of the stimulus sets (this was 

the characteristic which affected empirical results the most). Thus, overall, our results 

indicate that a promising avenue for understanding the psychology of category intuitiveness 

is maximizing within category similarity, while minimizing between category similarity, and a 

process of adaptive/ flexible category representation (as embodied in DIVA or SUSTAIN).  

 Finally, the present research required us to consider which is a good dependent 

variable for studying category intuitiveness. Arguably, the success of the research tradition 

in supervised categorization is partly due to the fact that researchers agreed on what is a 

pertinent, practical dependent variable (classification probabilities for new instances). We 
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proposed that frequency of the preferred classification in different stimulus sets is an 

appropriate variable. First, it corresponds to a simple intuition regarding the raw empirical 

data, that is, that if more participants prefer a particular classification, then this 

classification is more likely be intuitive/ obvious. Second, it is a practical variable, in that it is 

both easy to measure and it is easy to employ in computational modeling. Third, it 

correlates extremely highly with measures of variability in participants’ classifications, so 

that it fully captures an important characteristic of the raw empirical data. Fourth, the 

preferred classification for a stimulus set typically dominates participant performance, in 

that, for structured stimulus sets, its frequency is many times over the frequency of the next 

preferred classification. Finally, it appears that classifications other than the preferred one 

are just too noisy; our pilot examinations revealed little structure. Overall, it is of course 

possible that useful information could be extracted from a more detailed dependent 

variable. However, there was no evidence that this might be the case from our analyses.  

 In conclusion, the present research has identified several important challenges in the 

study of category intuitiveness. For example, there were methodological issues regarding 

the motivation of appropriate stimulus sets and measurement variables, empirical findings 

which contrasted intuition from formal categorization models, and the complexity of 

assessing categorization models which, though purporting to address the same cognitive 

process, vary widely in implementation. But, we have argued that category intuitiveness is a 

key aspect of our effort to understand the psychology of categorization and so deserving 

further consideration from the research community.   
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Appendix. Augmenting the geometric approach with attentional weights 

(supplementary online material) 

Dimensional weighting in the geometrical approach would correspond to:  

 

Instead of computing distances as 

                
 

 

 

   

 

 

To computing distances as:  

                   
 

 

 

   

 

 

We explored a straightforward scheme, whereby we simply attempted to identify a 

set of attentional weights for all stimulus sets, which would lead to best fit. That is, 

attentional weights are free parameters (just one free parameter, since the attentional 

weights for the two dimensions are constrained to sum to 1). Also, we assume that 

participants employed the same attentional weights for all 9 stimulus sets. We could not 

have different free parameters for dimensional weights for each stimulus set separately, 

since in this way we would be introducing 9 free parameters for 9 data points.   

To implement this scheme, we explored all combinations of attention weights from 

[0,1] to [1,0] in 0.1 steps. In the cases of the stimulus sets Ambiguous Points and Embedded, 

we examined the classification which was favored in the basic version (without attentional 

weighting) of the geometric approach.  

The table below shows the correlations between the empirical data and the 

geometric approach predictions, for different values of the weight for the first dimension.  

 

Correlation  w1 
-0.7469 1 
-0.7678 0.9 
-0.7902 0.8 
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-0.8081 0.7 
-0.8224 0.6 
-0.8323 0.5 
-0.8364 0.4 
-0.8301 0.3 

-0.805 0.2 
-0.7507 0.1 
-0.6089 0 

 

The case for which w1=0.5 corresponds to the case reported in the paper (modulo 

some minor rounding error), for which the dimensional weights of the two dimensions are 

equal. It can be seen that the highest possible correlation (-0.8364) is only very slightly 

higher than the correlation without dimensional weighting (-0.8323). This analysis clearly 

shows that this attentional weighting scheme does not improve the ability of the geometric 

approach to account for the empirical results.  

 

 

 


