A Quantum Theoretical Explanation

for Probability Judgment Errors

Jerome R. Busemeyer, Indiana University, USA
Emmanuel M. Pothos, Swansea University, UK
Riccardo Franco, Italy
Jennifer Trueblood, Indiana University, USA

December 17, 2012
October 29, 2010
Abstract

A quantum probability model is introduced and used to explain human probability judgment errors including the conjunction and disjunction fallacies, averaging effects, unpacking effects, and order effects on inference. On the one hand, quantum theory is similar to other categorization and memory models of cognition in that it relies on vector spaces defined by features, and similarities between vectors to determine probability judgments. On the other hand, quantum probability theory is a generalization of Bayesian probability theory because it is based on a set of (von Neumann) axioms that relax some of the classic (Kolmogorov) axioms. The quantum model is compared and contrasted with other competing explanations for these judgment errors including the anchoring and adjustment model for probability judgments. The quantum model introduces a new fundamental concept to cognition -- the compatibility versus incompatibility of questions and the effect this can have on the sequential order of judgments. We conclude that quantum information processing principles provide a viable and promising new way to understand human judgment and reasoning.
Over 30 years ago, Kahneman and Tversky (1982) began their influential program of research to discover the heuristics and biases that form the basis of human probability judgments. Since that time, a great deal of new and challenging empirical phenomena have been discovered including conjunction and disjunction fallacies, unpacking effects, and order effects on inference (Gilovich, Griffin, & Kahneman, 2002). Although heuristic concepts (such as representativeness, availability, anchor-adjustment) initially served as a guide to researchers in this area, there is a growing need to move beyond these intuitions, and develop more coherent, comprehensive, and deductive theoretical explanations (Shah & Oppenheimer, 2008). The purpose of this article is to propose a new way of understanding human probability judgment using quantum probability principles (Gudder, 1988).

At first, it might seem odd to apply quantum theory to human judgments. Before we address this general issue, we point out that we are not claiming the brain to be a quantum computer; rather we only use quantum principles to derive cognitive models and leave the neural basis for later research. That is, we use the mathematical principles of quantum probability detached from the physical meaning associated with quantum mechanics. This approach is similar to the application of complexity theory or stochastic processes to domains outside of physics.¹

There are at least five reasons for doing so: (1) judgment is not a simple read out from a pre-existing or recorded state, instead it is constructed from the question and the cognitive state created by the current context; from this first point it then follows that (2) drawing a conclusion from one judgment changes the context which disturbs the state of the cognitive system; and the second point implies (3) changes in context and state produced by the first judgment affects the next judgment producing order effects, so that (4) human judgments do not obey the commutative rule of Boolean logic, and finally (5) these violations of the commutative rule lead to various types of judgment errors according to classic probability theory. If we replace `human

¹ There is another line of research that uses quantum physical models of the brain to understand consciousness (Hammeroff, 1998) and human memory (Pribram, 1993). We are not following this line, and instead we are using quantum models at a more abstract level analogous to Bayesian models of cognition.
judgment' with 'physical measurement' and replace 'cognitive system' with 'physical system', then these are the same points faced by physicists in the 1920's that forced them to develop quantum theory. In other words, quantum theory was initially invented to explain non-commutative findings in physics that seemed paradoxical from a classical point of view. Similarly, non-commutative findings in cognitive psychology, such as order effects on human judgments, suggest that classical probability theory is too limited to fully explain all aspects of human cognition. So while it is true that quantum probability has rarely been applied outside of physics, a growing number of researchers are exploring its use to explain human cognition including perception (Atmanspacher, Filk, & Romer, 2004), conceptual structure (Aerts & Gabora, 2005), information retrieval (Van Rijsbergen, 2004), decision making (Franco, 2009; Pothos & Busemeyer, 2009), and other human judgments (Khrennikov, 2010).

Thus this article has two major goals. An immediate goal is to use quantum probability theory to explain some paradoxical findings on probability judgment errors. But a larger goal is to blaze a new trail that can guide future applications of quantum probability theory to other fields of judgment research. The remainder of this article is organized as follows. First we develop a psychological interpretation of quantum probability theory and compare it side by side with classic probability theory. Second we use the quantum model to derive qualitative predictions for conjunction errors and disjunction errors and other closely related findings. Third we examine the quantitative predictions of the quantum model for a probabilistic inference task and compare these predictions to a heuristic anchor-adjustment model previously used to describe order effects. Fourth, we briefly summarize other applications of quantum theory to cognition. Finally we discuss the main new ideas it contributes and issues about rationality that it raises.

I. Quantum Judgment Model.

The same quantum judgment model is applied to two different types of probability judgment problems. Both types involve probability judgments about two or more events. The first type of problem is a single judgment about a combination of events such as the conjunction or disjunction of events. According to our quantum theory, judgments about event combinations

2 Also see the special issue on quantum cognition (Bruza, Busemeyer, & Gabora, 2009).
require an implicit sequential evaluation of each component event. The second type of problem
requires an explicit sequence of judgments about a hypothesis based on evaluation of a series of
events. We argue that judgment errors arise in both tasks from the sequential evaluation of
events, because conclusions from earlier judgments change the context for later judgments.

Quantum theory requires the introduction of a number of new concepts to cognitive
psychologists. First we present these concepts in an intuitive manner that directly relates the
ideas to psychological judgments. Later we summarize the basic axioms of quantum probability
more formally and compare these side by side with classic probability used in Bayesian models.

To introduce the new ideas, let us consider the famous ‘Linda’ problem which has been
used to demonstrate the conjunction fallacy. (Many different types of stories have been used in
past research to study conjunction effects, but this story is the most famous of all). Judges are
provided a brief story about a woman named Linda, who used to be a philosophy student at a
liberal university and who used to be active in an anti-nuclear movement. Then the judge is
asked to rank the likelihood of the following events: that Linda is now \((a)\) active in the feminist
movement, \((b)\) a bank teller, and \((c)\) active in the feminist movement and a bank teller, \((d)\) active
in the feminist movement and not a bank teller, \((e)\) active in the feminist movement or a bank
teller. The conjunction fallacy occurs when option \(c\) is judged to be more likely than option \(b\)
(even though the latter contains the former), and the disjunction fallacy occurs when option \(a\) is
judged to be more likely than option \(e\) (again the latter contains the former).

1. **State representation.** To apply quantum probability to this problem, our *first postulate*
is that the Linda story generates a state of belief represented by a unit length *state vector* that can
be described by a high dimensional vector space. Each dimension of the vector space
corresponds to a *basis vector*. Formally, a basis for a vector space is a set of mutually orthogonal
and unit length vectors that *span* the vector space. That is, any point in the space can be reached
from a linear combination of the basis vectors. Psychologically, each basis vector represents a
unique combination of properties or feature values, called a *feature pattern*, which is used to
describe the situation under question. The state vector is a working memory state (Baddeley,
1992) that represents the judge’s beliefs about Linda regarding the feature patterns. On the one
hand, our use of feature vectors to represent cognitive states follows other related cognitive
research (e.g., memory, categorization) whereby information is represented as vectors in high-
dimensional spaces. On the other hand, our basis vectors and state vector are analogous to the elementary events and the probability function, respectively, used in classic probability theory.

In general the feature space used to form the basis for describing the state is constructed from long term memory in response to both the story that is presented and the question that is being asked. To make this concrete, let us consider a very simple toy example. Initially focus on the Linda story and the question about whether or not Linda is a feminist, and suppose this question calls to mind three binary features which are used to describe the judge’s beliefs about Linda for this event: she may or may not be a feminist, she can be young or old, and she can be gay or straight. Then the vector space would have eight dimensions, and one basis vector would correspond to the feature pattern (feminist, young, gay), a second would correspond to the feature pattern (not feminist, young, straight), a third would correspond to the feature pattern (feminist, old, straight), etc. In classic probability theory, these eight feature patterns would represent the eight elementary events formed by the eight conjunctions of three binary events.

In actuality, there may be many more features, and each feature may have many values, all generated by the story and the question. In particular, if there are \(n \) individual features (\(n = 3 \) features in our example) that take on \(m \) different values (\(m = 2 \) in our example), then the dimension of the feature space is \(N = n^m \). The problem of defining all the relevant features is not unique to quantum theory, and also arises in the specification of a sample space for a Bayesian model. Experimentally, one could devise artificial worlds in which the features are carefully controlled by instruction or training. For problems involving real world knowledge, there is less control, and instead, one could ask judges to list all of the relevant features. For our toy example, we restrict our discussion to the above three binary features for simplicity. But our general theory does not require us to specify this a priori. In fact, one great advantage of the quantum model is that many qualitative predictions can be derived without imposing these additional assumptions. However, later on when we present a quantitative test of the quantum model, we fully specify the feature space and its dependence on the story and the question.

To evaluate the question about feminism, the judge uses knowledge about the features based on the Linda story and other related past experience. The state vector represents the judge’s beliefs about Linda by assigning a belief value, called an amplitude, to each basis vector (feature pattern or combination of features), and the squared magnitudes of the amplitudes sum
to one. In general, amplitudes can be complex numbers, but they can always be transformed to square roots of probabilities prior to a judgment, and only the latter is used to represent a belief that is available for reporting (see Appendix A). In our toy example, the amplitude assigned to the (feminist, young, gay) basis vector represents the judge’s belief about this feature pattern. Usually the belief state has some amplitude assigned to each basis vector, in other words the belief state is a linear combination of the basis vectors (called a superposition state). But a special case is one in which a belief state exactly equals a basis vector. In this special case, the belief state has an amplitude with magnitude equal to one assigned to a single basis vector and zeros everywhere else. This corresponds to the special case in which a person is certain about the presence of a specific feature pattern. In the section on qualitative tests, we derive predictions without assuming specific values for the amplitudes. However, the section on quantitative tests describes a specific way to assign these amplitudes

2. Event Representation. An event refers to a possible answer to a question about features chosen from a common basis. For example, the answer ‘yes’ to the feminism question is one event, and the answer ‘no’ to the feminism question is the complementary event. Our second postulate is that each event is represented by a subspace of the vector space, and each subspace has a projector that is used to evaluate the event.

Consider once again our toy example with eight basis vectors. The event ‘yes’ to the specific question ‘is Linda a feminist, young, gay person’ corresponds to the subspace spanned by the basis vector (feminist, young, gay), which is a single ray in the vector space. To evaluate this event, the judge maps (more formally projects) the belief state vector down onto this ray. This is analogous to fitting the belief state to this basis vector (feminist, young, gay) using simple linear regression. This fitting process is performed by a cognitive operator called the projector that evaluates the fit of the feature pattern (feminist, young, gay). Thus the event ‘yes’ to the question ‘is Linda a feminist young gay person’ corresponds to a ray, and this ray has a projector which is used to evaluate its fit to the belief state.

Now consider a more general event such as saying ‘yes’ to the question ‘is Linda a feminist.’ Note that the question about feminism concerns only one of the many possible features that are being considered. In our toy example, a yes answer to the feminism question is consistent with only four of the basis vectors: (yes feminist, young, gay), (yes feminist, young,
straight), (yes feminist, old, gay), (yes feminist, old, straight). The span of these four basis vectors forms a four dimensional *subspace* within the eight dimensional space, which represents the event ‘yes’ to the feminist question. This is comparable to a union of these four elementary events in classic probability. To evaluate this event, the judge maps (more formally projects) the belief state down onto this four dimensional subspace. This is analogous to fitting the belief state to the four basis vectors using multiple regression. Once again, the cognitive operator that performs this mapping is called the *projector* for the ‘yes’ to the feminism question. In the event of answering no to the feminism question, the complementary subspace is used, which is the subspace spanned by the remaining four basis vectors (not feminist, young, gay), (not feminist, young, straight), (not feminist, old, gay), (not feminist, old, straight).

3. Projective Probability. Quantum theory provides a geometric way to compute probabilities. Our third postulate is that the judged probability of concluding yes to a question equals the squared length of the projection of the state vector onto the subspace representing the question.

To make this clear, first let us consider the judged probability of concluding that a specific feature pattern, say (feminist, young, gay) from our toy example, is true of Linda. To evaluate this event, the judge projects the belief state vector down onto the ray representing (feminist, young, gay), and the result of this fit is called the *projection*. In our toy example, the projection has zeros assigned to all basis vectors except the (feminist, young, gay) basis vector, and the basis vector (feminist, young, gay) is assigned a value equal to its original amplitude. Finally the judged probability for yes to this elementary event equals the squared length of this projection (the squared magnitude of the amplitude, which is analogous to the squared correlation). Psychologically speaking, the person evaluates how well each feature pattern *fits* the belief state, and the judged probability for that feature pattern equals the proportion of the belief state reproduced by the feature pattern.

Now consider the judged probability of a more general event. The judge evaluates the event ‘yes’ to the feminism question by judging how well his or her beliefs about Linda are fit by the feminism feature patterns used to describe this event. The projection for the yes response to the feminism question is made by mapping (projecting) the belief state vector down onto the subspace representing the ‘yes to the feminism question.’ In our toy example, this projection is
obtained by setting to zero the amplitudes corresponding to (not feminist, young, gay), (not feminist, young, straight), (not feminist, old, gay), (not feminist, old, straight), and retaining only the remaining amplitudes previously assigned to (yes feminist, young, gay), (yes feminist, young, straight), (yes feminist, old, gay), (yes feminist, old, straight). To continue with our example, the judged probability for ‘yes’ to the feminism question equals the square length of the projection onto the subspace corresponding to this event. This is analogous to the R^2 produced by fitting the person’s beliefs to the feminist basis vectors using multiple regression. In our toy example, the judged probability for saying yes to the feminism question equals the sum of the squared magnitudes of the amplitudes assigned to the four basis vectors (yes feminist, young, gay), (yes feminist, young, straight), (yes feminist, old, gay), (yes feminist, old, straight). In classic probability, this is computed by summing the probabilities of elementary events that form the union.

The residual difference (between the original state vector and the projection on the yes answer to feminism) equals the projection on the complementary subspace corresponding to a no answer on the feminism question. Thus the projection on the yes answer is orthogonal (i.e. uncorrelated) to the projection on the no answer to the feminism question. The judged probability for concluding no to the feminism question is determined from the projection on the no subspace, so that the no probability equals one minus the probability of saying yes. If the vector lies entirely in a subspace, then the squared projection of the vector onto the subspace will be 1, if the vector is perpendicular to the subspace, then the squared projection will be 0. Note that two subspaces are orthogonal if they correspond to mutually exclusive states of affairs.

This scheme provides a precise way to express Tversky and Kahneman’s representativeness proposal in judgment. Tversky and Kahneman suggested that the conjunction fallacy arises because participants consider Linda to be a representative case of feminists. However, previously, representativeness has been interpreted as an intuition of how much the belief about Linda based on the story matched the prototype of feminists in the question. Now we can interpret representativeness as the projection or fit of a belief state vector about Linda to the subspace corresponding to knowledge about feminists. The squared length of the projection corresponds to the proportion of the belief state reproduced by the subspace. This generalization of the concept of representativeness makes a critical difference in its application.
4. State revision. Suppose the person concludes that an event is a true fact. Our fourth postulate is that the original state vector changes to a new conditional state vector, which is the projection onto the subspace representing the event that is concluded to be true, but now normalized to have unit length. This is called Lüder’s rule (Niestegge, 2008) and it is analogous to computing a conditional probability in classic theory. Now we need to expand on what it means for a person to conclude that an event is true.

First, suppose that the judge is simply informed that the answer to the feminism question is yes. Based on this information, the amplitudes corresponding to (not feminist, young, gay), (not feminist, young, straight), (not feminist, old, gay), (not feminist, old, straight) are set to zero, and the remaining amplitudes previously assigned to (yes feminist, young, gay), (yes feminist, young, straight), (yes feminist, old, gay), (yes feminist, old, straight) are now divided by the length of this projection. Thus the new conditional state vector has unit length so that the squared magnitudes of the new amplitudes assigned by the conditional state vector sum to one. This corresponds to the normalization used to form conditional probabilities in classic probability theory.

Second, consider an example related to an inference problem used in section III for the second application of quantum theory presented in this article. Suppose a juror is evaluating guilt or innocence, which depends on whether positive or negative evidence is present. Before the evidence the belief state has amplitudes assigned to four different patterns (guilty, positive), (guilty, negative), (not guilty, positive), (not guilty, negative). Now suppose the prosecutor presents positive evidence. Based on this information, the amplitudes corresponding to (guilty, negative) and (not guilty, negative) are set to zero, and the remaining amplitudes are now divided by the length of the resulting vector so that the squared magnitude of the amplitudes of the revised state sum to one. Again this is analogous to how conditional probabilities are revised by evidence according to Bayes’ rule.

The conditional state vector is then used to answer subsequent questions. For example, if the person concludes that Linda is a feminist, then the state conditioned on this conclusion is used to judge the probability that she is also a bank teller. Following the earlier principles, the judged probability for yes to this next question is determined by projecting the conditional state vector onto the bank teller subspace and squaring this projection. In other words, the judged
conditional probability for yes to the bank teller question, given that Linda is a feminist, equals
the squared length of the projection of the conditional state (given yes to feminism) on the bank
teller subspace. Alternatively, the judged probability that Linda is a bank teller, before making
any conclusions about feminism, is simply determined by the original belief state that was
initially generated by the Linda story.

5. Compatibility. At this point, we have not yet defined the basis vectors used to describe
the bank teller question. In our toy example, we started by considering the feminism question,
which we assumed called to mind, in addition to the feminism feature, other related features
such as age, and sexual orientation (and other related features not included for simplicity).
However, when answering this question, we didn’t rely on any features about bank tellers or
other professional occupations. In other words, in considering the feminism question, we
deliberately chose not to include these features, because we are assuming that the person never
thought much about these unusual combinations of questions (feminism and bank teller) before.
Thus, these have to be treated as two separate questions answered one at a time. The person may
have thought about professions and their relations to salaries and other occupational features, but
more likely than not, (s)he never thought enough about feminism and professions together to
form precise beliefs about these particular combinations. Therefore, in order to answer the
question about the profession of Linda, (s)he needs to view the problem from a different
perspective and evaluate this question using knowledge about the combinations of a different set
of features relating to professions. To continue with the toy example, suppose the person
considers four professions (e.g., bank teller, doctor, insurance agent, computer programmer)
along with two levels of salary (low, high) forming eight feature patterns (each combination of
four professions and two salary levels), and the eight basis vectors corresponding to these feature
patterns span an eight dimensional vector space.³ The key idea is that the set of feature patterns
used to evaluate profession is inconsistent with the set used to think about feminism, in which
case we say the two questions are incompatible, and they must be answered sequentially.

In this toy example, only eight dimensions (e.g. four professions combined with two
levels of salary) are used for simplicity. A more realistic model could use a much larger
dimensional space. For example, suppose we use \(N = 100 \) dimensions to represent the space.

³ It is possible that some features, say gender or college major, are compatible with both feminism and bank teller.
Then to answer the question about feminism, age could be represented by say 25 age levels (young versus old now represents only two coarse categories of these 25 age levels) combined with 2 levels of feminism and 2 levels of sexual orientation. To answer the question about professions, we could use say 10 professions combined with 10 salary levels (low versus high now represents two coarse categories of the 10 salary levels). By increasing the dimensionality of the space, we can allow for more refined levels of the features, which can then be categorized in various ways.

The concept of incompatibility is formalized by using a vector space representation of knowledge -- the same vector space can be represented by many different sets of basis vectors (corresponding to different sets of feature patterns), and the same exact state (vector) can be defined by different sets of basis vectors. Each (orthonormal) set of basis vectors corresponds to a description of the situation using a particular set of features and their combinations. But different sets of basis vectors correspond to different descriptions, using different sets of features and combinations, representing complementary ways of thinking about events. Formally, we can apply a unitary operator to transform one set of basis vectors to another. This is analogous to rotating the axes in multidimensional scaling (Carrol & Chang, 1970; Shepard, 1962) or multivariate signal detection theory (Lu & Dosher, 2008; Rotello, Macmillan, & Reeder, 2004). Psychologically this corresponds to considering different perspectives or different points of view for answering questions. For example, in the second application to inference, we argue that a juror has to view evidence from a prosecutor’s point of view and then view the evidence from a defense point of view, and it is not possible to hold these two incompatible views in mind at the same time. Later on when we present our quantitative test of the quantum model, we provide a detailed description of this rotation process. However, qualitative tests of the quantum model can be derived without making these specific assumptions. So first we examine these qualitative properties of the theory, and later we examine a more specific model.

The above ideas lead us to an important fifth postulate about compatibility. If two questions can be answered using a common basis (i.e. the same basis vectors corresponding to a common set of feature patterns), then the questions are said to be compatible. If two questions must be answered using a different basis (i.e. using different sets of basis vectors corresponding to a different set of feature patterns), then the two questions are said to be incompatible. To
continue with our toy example, a question about age is compatible with a question about feminism, and a question about salary is compatible with a question about profession, but a question about feminism is incompatible with a question about profession. In order to make questions about feminism, age, and sexual orientation compatible with questions about profession and salary, a person would need to utilize a \((2 \times 2) \times (4 \times 2) = 64 \) dimensional space, with each basis vector representing one of the feature patterns produced by a unique combination of these 5 features. This is also the number of elementary events that would be required to represent the sample space in classic probability theory. Instead the person could utilize a lower 8 dimensional space by representing questions about feminism, age, and sexual orientation in a way that is incompatible with questions about occupation and salary. Thus compatibility requires using a higher dimensional space to form all combinations, whereas incompatibility can make use of a lower dimensional representation by changing perspectives. Incompatibility provides an efficient and practical means for a cognitive system to deal with all sorts and varieties of questions. But a person must answer incompatible questions sequentially.

Suppose the question about feminism is incompatible with the question about bank teller (e.g., the basis vectors are related by a rotation). Then the basis vectors used to represent the feminism question are \textit{not} orthogonal to the basis vectors used to represent the bank teller question. For example, the inner product (analogous to correlation) between the (feminist, old, straight) basis vector and the (bank teller, low salary) basis vector could be positive. More generally, the subspace for feminism lies at oblique angles with respect to the subspace for bank teller. To see the implications of using incompatible events, consider again the feminist bank teller problem again. Initially, based on the details of the Linda story, it is very difficult to imagine Linda as a bank teller; but once the person concludes that Linda is a feminist, the state is projected on to the feminism subspace, which eliminates many specific details about Linda story. (Projecting onto the feminism subspace will retain only those elements of the original Linda story which are consistent with feminism). From this more abstract projection on the feminism subspace, the person can imagine all sorts of professions for feminists (e.g., some feminists that are bank tellers). Clearly, some professions remain more probable than others given the original story, but when thinking about the more general category of feminists, the person can entertain possibilities which were extremely unlikely for Linda herself. For example, if the projection of Linda on the feminism subspace produces a state corresponding to (old, straight, feminist), then
he or she may have some past experiences associating this type of feminist with low salary bank clerks. The associations do not have to be strong, but they make it easier to imagine Linda as a feminist and a feminist as a bank teller, even though it was initially (before the ‘feminist’ question) very difficult to imagine Linda as a bank teller. In this way, quantum probability also incorporates ideas related to the popular availability heuristic (Kahneman, et al., 1982). The answer to the first question can increase the availability of events related to a second question.

Order effects. Incompatibility is a source of order effects on judgments, and it is critically here that quantum probabilities deviate from classic probabilities. To see how order effects can happen, consider the special simple case in which the judged probability of feminist given bank teller equals the judged probability of bank teller given feminist (a simple geometric example is shown in Appendix A). One order is to judge if Linda is a bank teller, and given that she is a bank teller, if she is also a feminist; this probability is obtained by the product of the probability that Linda is a bank teller and the conditional probability that she is a feminist given that she is a bank teller. On the basis of the Linda story, the judged probability for yes to bank teller is close to zero, and when this is multiplied by the probability of feminist given bank teller, it is even closer to zero. The other order is to judge if Linda is a feminist, and given that she is a feminist, if she is also is a bank teller; this probability is obtained by the product of the probability that Linda is a feminist and the conditional probability that she is a bank teller given that she is a feminist. On the basis of the Linda story, the judged probability that Linda is feminist is very high, and when this is multiplied by the same (as assumed) conditional probability of bank teller given feminist, then the product produced by the feminist – bank teller order must be greater than the product produced by the bank teller – feminist order. This order effect cannot happen with classic probability theory (because these two orders produce the same joint probability), but Appendix A provides a very simple geometric and numerical example of this order effect using quantum theory. In sum, the indirect path of thought from Linda to feminism to bank teller is a fair possibility even though the direct path from Linda to bank teller is almost impossible. In other words, asking first about feminism increases the availability of later thoughts about bank tellers.

What is the evidence for order effects and is there any reason to think that quantum theory provides a good explanation for them? It is well established that presentation order
affects human probability judgments (Hogarth & Einhorn, 1992). In section II on qualitative tests, we present evidence for question order effects on conjunction fallacies (Stolarz-Fantino, Fantino, Zizzo, & Wen, 2003), and we account for them with the quantum model. In section III on quantitative tests, we successfully fit the quantum model to the results of a new study examining order effects on inference (Trueblood & Busemeyer, 2010b). In section IV on other applications and extensions, we report some surprisingly accurate predictions of the quantum model for question order effects in attitude questionnaire research (Moore, 2002).

Theoretical Postulates. Below we summarize the five quantum postulates (Von Neumann, 1932) more formally, and we compare them to the corresponding postulates of classic probability (Kolmogorov, 1933). At a conceptual level, a key difference is that classic theory relies on a set theoretic representation whereas quantum theory uses a geometric representation.

1. Classic theory begins with the concept of a sample space, which is a set that contains all the events. Suppose (for simplicity) the cardinality of this sample space is N so that the sample space is comprised of N elementary events or points. Classic theory defines the state of a system (e.g., all of a person’s beliefs) by a probability function p that assigns a probability (a real number between zero and one inclusive) to each elementary event, and the probabilities assigned by p sum to one. If E_i is an elementary event, then $p(E_i)$ is the probability assigned to this event.

Quantum theory uses an N dimensional vector space to contain all the events. The vector space is described by a set of N (orthonormal) basis vectors, and each basis vector corresponds to an elementary event. Quantum theory defines the state of a system (e.g., a person’s belief state) by a state vector, denoted $|\psi\rangle$, which assigns an amplitude to each basis vector, and the state vector has unit length. The amplitude assigned to a basis vector, such as the basis vector $|E_i\rangle$, equals the inner product between the basis vector and state vector, denoted $\langle E_i|\psi\rangle$.

2. Classic theory defines a general event as a subset of the sample space. The event A is defined by the union of the elementary events that it contains: $A = \bigcup_{i \in A} E_i$.

Both theories are applicable to the continuum but for simplicity we will limit this presentation to the finite case.
Quantum theory defines a general event as a subspace of the vector space, and each subspace corresponds to a projector.

The projection of a state onto a ray spanned by basis vector $|E_i\rangle$ equals $P_i|\psi\rangle = |E_i\rangle \langle E_i|\psi\rangle$, where $\langle E_i|\psi\rangle$ is an inner product. The projector for this ray equals $P_i = |E_i\rangle \langle E_i|$, which is an outer product. The projector for event A spanned by a subset $\{|E_1\rangle, \ldots, |E_k\rangle\}$ of orthonormal basis vectors equals $P_A = \sum_{i \in A} P_i$.

3. In classic theory, the probability of an event equals the sum of the probabilities assigned to the elementary events contained in the subset. If A is an event, then $p(A) = \sum_{i \in A} p(E_i)$, where E_i is an elementary event.

In quantum theory, the probability of event A equals the squared length of the projection of the state onto the corresponding subspace. If P_A is the projector for subspace A, then $P_A|\psi\rangle$ is the projection, and the probability of event A equals $\|P_A|\psi\rangle\|^2 = \sum_{i \in A} |\langle E_i|\psi\rangle|^2$.

4. Suppose that event A is concluded to be a true. Given this fact, classic theory changes the original probability function p into a new conditional probability function p_A by the classic rule $p_A(B) = p(A \cap B)/p(A)$. This conditional probability is more commonly written as $p(B|A)$.

Quantum theory changes the original state $|\psi\rangle$ into a new conditional state $|\psi_A\rangle$ by what is known as Lüder’s rule: $|\psi_A\rangle = P_A|\psi\rangle/\|P_A|\psi\rangle\|$. The probability of event B given event A is known to be true equals $\|P_B|\psi_A\rangle\|^2 = \|P_B P_A|\psi\rangle\|^2 / \|P_A|\psi\rangle\|^2$.

5. Classic probability assumes a single common sample space from which all events are defined. In other words, all events are compatible. Two events from the sample space can always be intersected to form a single event in the sample space.
According to quantum theory, the same exact state can be represented by more than one basis. This allows for two kinds of events: compatible versus incompatible. If two events A and B can be described by a common basis, then they are compatible and the projectors commute ($P_B P_A = P_A P_B$). When two events are compatible, the two subspaces can be combined to form a single event represented by a single projector. If these two events cannot be described by a common basis, then they are incompatible and the projectors do not commute ($P_B P_A \neq P_A P_B$). Formally, the basis vectors used to describe event A are a unitary transformation of the basis vectors used to describe event B. If event A is incompatible with event B, then the pair of events cannot be represented by a single projector and they have to be evaluated sequentially.

If all events are compatible, then quantum theory is equivalent to classic theory (See p. 20 in Gudder, 1979). Thus incompatibility is a key new idea that distinguishes quantum and classic theories.

A short and simple tutorial of the quantum postulates appears in Appendix A. These same five quantum postulates are consistently used in both of applications presented in this article.

Implications. From these postulates we can also derive new implications for both classic and quantum theory. First, classic theory defines the negated event $\sim A$, as the complement of the subset for A, and its probability equals $p(\sim A) = 1 - p(A)$. Quantum theory defines the negation of an event as the subspace orthogonal to the event A, represented by the projector $P_{\sim A} = I - P_A$, where I is the identity operator ($I\vert\psi\rangle = \vert\psi\rangle$). Then the probability of $\sim A$ equals

$\Vert P_{\sim A}\vert\psi\rangle\Vert^2 = 1 - \Vert P_A\vert\psi\rangle\Vert^2$.

Classic theory defines the probability of the conjunction ‘A and $B’ as the probability $p(A)p(B|A) = p(A \cap B)$; but because $p(A \cap B) = p(B \cap A)$, this is also equal to $p(B \cap A) = p(B)p(A|B)$ which equals the probability of ‘B and $A’.” Thus order does not matter, and it makes sense to consider this a conjunction of events ‘A and $B’ without regard to order. In quantum theory, order does matter and the events in question have to be evaluated as a sequence (Franco, 2009): Using Lüder’s rule, the probability of event A and then event B equals $\Vert P_A\vert\psi\rangle\Vert^2\Vert P_B\vert\psi_A\rangle\Vert^2 = \Vert P_B P_A\vert\psi\rangle\Vert^2$. If the questions are compatible, so that the projectors commute, then $\Vert P_B P_A\vert\psi\rangle\Vert^2 = \Vert P_A P_B\vert\psi\rangle\Vert^2$,.
order does not matter, and the conjunction can be interpreted in the same way as in classic theory. But if the events are incompatible, then the projectors do not commute, and $|P_B P_A |\psi\rangle|^2 \neq |P_A P_B |\psi\rangle|^2$. In other words, asking a sequence of two incompatible questions corresponds to the person starting from their initial belief state, projecting onto the subspace corresponding to the answer to the first question, and then projecting the resulting state onto the subspace corresponding to the answer to the second question. Reversing the order of these projections can lead to different results. Psychologically, such order effects can be interpreted in the sense that the first statement changes a person’s viewpoint for evaluating the second statement. Given the prevalence of order effects on human probability judgments (Hogarth & Einhorn, 1992), this is an important advantage for quantum theory.

The classic probability for the disjunction of two events ‘A or B’ is the probability assigned to the union of the two subsets representing the two events, which equals

$$p(A \cup B) = p(A \cap B) + p(A \cap \sim B) + p(\sim A \cap B) = p(A) + p(\sim A \cap B) = 1 - p(\sim A \cap \sim B).$$

The last form, $1 - p(\sim A \cap \sim B)$, is commonly used because it extends most easily to disjunctions involving more than two events. It is clear that $p(A \cup B) = p(B \cup A)$ so that the order does not matter for classic theory, and so it makes sense to define this as a disjunction of events ‘A or B.’ Quantum theory assigns a probability to the sequence ‘A or then B’ equal to

$$|P_B P_A |\psi\rangle|^2 +|P_{\sim B} P_A |\psi\rangle|^2 +|P_B P_{\sim A} |\psi\rangle|^2 = |P_A |\psi\rangle|^2 +|P_{\sim B} P_{\sim A} |\psi\rangle|^2 = 1 -|P_{\sim B} P_{\sim A} |\psi\rangle|^2.$$

Again we use the form $1 -|P_{\sim B} P_{\sim A} |\psi\rangle|^2$ because this extends most easily to disjunctions involving more than two events. This form also makes it is clear that order does matter for quantum theory when the events are incompatible.

The classic probability rule for inferring a hypothesis on the basis of new evidence is Bayes rule, which is essentially derived from the definition of a conditional probability. A quantum analogue of Bayes rule is obtained from postulate 4, which is known as Lüder’s rule. In the section on quantitative tests we provide a more detailed description of the quantum model applied to inference problems.
Clearly, the sequential order that questions are considered is a major aspect of the application of quantum probability to human judgments. Any application of quantum theory must specify this order. In the section on quantitative tests we present an experiment in which we directly manipulate this order. However, in other problems the order of processing is not controlled, and the individual is free to choose an order. Sometimes there is a causal order implied by the questions that are being asked. For example, when asked to judge the likelihood that ‘the cigarette tax will increase and a decrease in teenage smoking occurs’ is it natural to assume that the causal event ‘increase in cigarette tax’ is processed first. But for questions with no causal order, such as ‘feminist and bank teller’, we assume that individuals tend to consider the more likely of the two events first. Note that a person can easily rank order the likelihood of individual events (feminism versus bank teller) before going through the more extensive process of estimating the probability of a sequence of events (feminism and then bank teller conditioned on the answer to the question about feminism). There are several ways to justify the assumption that the more likely event is processed first. One is that the more likely event matches the story better and so these features are more quickly retrieved and available for consideration. A second reason is that individuals sometimes conform to a confirmation bias (Wason, 1960) and seek questions that are likely to be confirmed first. Finally, our assumption of considering the more likely event first is analogous to the assumption that most important cues are considered first in probability inferences (Gerd Gigerenzer & Goldstein, 1996). For more than two events, the same principle applies and the events are processed in rank order of likelihood.

Summary of the Quantum Judgment Model. When given a story, the judge forms a belief state that is represented by a state vector in a possibly high dimensional (feature) vector space. An answer to a question about an event is represented by a subspace of this vector space. The judged probability of an answer to a question equals the squared projection of the belief state onto the subspace representing the question. Two questions are incompatible if the two subspaces require the use of different sets of basis vectors. If the events involved in conjunction and disjunction questions are incompatible, then they must be processed sequentially, and the more likely of the two questions is processed first. In the latter case, the conclusion from the first question changes the state, and affects the second question, producing order effects which in turn cause conjunction and disjunction errors. Judgments about hypotheses are revised according to Lüder’s rule, which uses the normalized projection to update the state based on the observed
evidence. If the sequence of evidence involves incompatible events, then the inference judgments exhibit order effects.

Now we are prepared to apply the quantum judgment model to conjunction and disjunction errors and related phenomena. Later we present a quantitative test for order effects on inference. The qualitative tests are important because they do not require making specific assumptions regarding the dimension of the feature space, or the amplitudes assigned to the initial state, or the relations between the incompatible features. The quantitative test is important to describe how to make these specifications as well as to examine the capability of the model to make precise predictions in comparison with previous models.

II. Qualitative predictions for conjunction and disjunction questions

Conjunction and Disjunction Fallacies. There is now a large empirical literature establishing the findings of both conjunction fallacies (Gavanski & Roskos-Ewoldsen, 1991; Sides, Osherson, Bonini, & Viale, 2002; Stolarz-Fantino, et al., 2003; Tversky & Kahneman, 1983; Wedell & Moro, 2008) and disjunction fallacies (Bar-Hillel & Neter, 1993; Carlson & Yates, 1989; Fisk, 2002). These findings are very robust and occur with various types of stories (e.g., female philosophy students who are now feminist bank tellers, high pressure business men who are over 50 and have heart disease, Norwegian students with blue eyes and blond hair, state legislatures that increase cigarette taxes and reducing teenage smoking), and various types of response measures (e.g., choice, ranking, probability ratings, monetary bids) (Sides, et al., 2002; Wedell & Moro, 2008). These fallacies are not simply the result of misunderstanding the meaning of probability, because they even occur with bets in which the word ‘probability’ never appears. For example, Sides et al. (2002) found that participants preferred to bet on the future event ‘cigarette tax will increase and teenage smoking will decrease’ over betting on the single event ‘teenage smoking will decrease.’

Moreover, both fallacies have been observed to occur at the same time (Morier & Borgida, 1984). For example, Morier and Borgida (1984) used the Linda story and found that the mean probability judgments were ordered as follows (where $J(A)$ denotes the mean judgment for event A): $J($feminist$) = .83 > J($feminist or bank teller$) = .60 > J($feminist and bank teller$) = .36 > J($bank teller$) = .26$ ($N = 64$ observations per mean, and all pair wise differences are statistically
significant). These results violate classic probability theory which is the reason why they are called fallacies.

The quantum model starts with a state vector \(|\psi\rangle \) that represents the belief state after reading the Linda story; the event ‘yes to the feminist question’ is represented by a subspace corresponding to the projector \(P_F \); the event ‘yes to the bank teller question’ is represented by an \textit{incompatible} subspace corresponding to the projector \(P_B \); and finally, the event ‘no to the feminist question’ is represented by an orthogonal subspace corresponding to the projector \(P_{\neg F} \) so that \(P_F + P_{\neg F} = I \). Our key assumption is that the projector \(P_F \) does not commute with the projector \(P_B \) (Franco, 2009). When considering a conjunction, the more likely event is considered first, and because ‘yes to feminist’ is more likely than ‘yes to bank teller’, the judged probability of the event ‘feminist and bank teller’ equals \(\|P_F|\psi\rangle\|^2 \|P_B|\psi\rangle\|^2 = \|P_B P_F|\psi\rangle\|^2 \).

For the conjunction fallacy, we need to compare the probability for the single event \(\|P_B|\psi\rangle\|^2 \) with the probability for the conjunction \(\|P_B P_F|\psi\rangle\|^2 \), and a conjunction fallacy is predicted when \(\|P_B P_F|\psi\rangle\|^2 > \|P_B|\psi\rangle\|^2 \). To do this comparison, we decompose the quantum probability of the bank teller event by expanding this event as follows:

\[
\|P_B|\psi\rangle\|^2 = \|P_B I|\psi\rangle\|^2 = \|P_B(P_F + P_{\neg F})|\psi\rangle\|^2 = \|P_B P_F|\psi\rangle\|^2 + \|P_B P_{\neg F}|\psi\rangle\|^2
\]

\[
= \|P_B P_F|\psi\rangle\|^2 + \|P_B P_{\neg F}|\psi\rangle\|^2 + \langle \psi_{B,\neg F} | \psi_{B,F} \rangle + \langle \psi_{B,F} | \psi_{B,\neg F} \rangle,
\]

where \(|\psi_{B,F}\rangle = P_B P_F |\psi\rangle \) and \(|\psi_{B,\neg F}\rangle = P_B P_{\neg F} |\psi\rangle \). The last term on the right hand side of Equation 1, denoted \(\delta_B = \langle \psi_{B,\neg F} | \psi_{B,F} \rangle + \langle \psi_{B,F} | \psi_{B,\neg F} \rangle \), is called the interference term for the bank teller event.\(^5\) There is another interference, \(\delta_{\neg B} \), corresponding to the probability \(\|P_{\neg B}|\psi\rangle\|^2 \), but the two interferences must sum to zero so that \(\delta_B + \delta_{\neg B} = 0 \) (see Appendix B). Thus one of these interference terms must be negative, and we argue that \(\delta_B < 0 \), because this makes it less likely to judge that Linda is a bank teller. Also the story suggests that the probability \(\|P_B P_{\neg F}|\psi\rangle\|^2 \) of Linda ‘not to be a feminist and to be a bank teller’ is small. Under these conditions, the interference can be sufficiently negative so that \(\delta_B < -\|P_B P_{\neg F}|\psi\rangle\|^2 \), and consequently \(\|P_B P_{\neg F}|\psi\rangle\|^2 + \delta_B < 0 \),

\(^5\) The interference equals an inner product plus its conjugate, and so it is a real number. Cross product interference terms also arise in other applications of decision theory (Luce, Ng, Marley, & Aczel, 2008).
Quantum Probability 21

which implies \(\|P_B P_F|\psi\rangle \|^2 > \|P_B|\psi\rangle \|^2 = \|P_B P_F|\psi\rangle \|^2 - |(\|P_B P_{-F}|\psi\rangle \|^2 + \delta_B) | \) as required to explain the conjunction fallacy.

The interference, \(\delta_B \), is determined by the inner product of two projections: One is the projection, \(|\psi_{B,F}\rangle \), of the initial state first on the ‘she is a feminist’ subspace and then onto ‘she is a bank teller’ subspace; the second is the projection,\(|\psi_{B,-F}\rangle \), of the initial state first onto ‘she is not a feminist’ subspace and then on to ‘she is a bank teller’ subspace. Recall that the inner product is analogous to the correlation between two vectors. For many judges, the features matching ‘feminist bank teller’ may be negatively correlated (pointing in a dissimilar direction) with the features matching ‘not feminist bank teller’, thus producing negative interference.

Next consider the disjunction probability, in which the person judges the probability of saying no to ‘Linda is neither a bank teller nor a feminist.’ First note that when processing the two events ‘Linda is not a bank teller’ versus ‘Linda is not a feminist’ the former is more likely than the latter, and so the former is processed first. In this case, we need to compare the single event \(\|P_F|\psi\rangle \|^2 = 1-\|P_{-F}|\psi\rangle \|^2 \) with the probability for the disjunction \(1-\|P_{-F} P_{-B}|\psi\rangle \|^2 \), and disjunction fallacy is predicted when \(\|P_F|\psi\rangle \|^2 = 1-\|P_{-F}|\psi\rangle \|^2 > 1-\|P_{-F} P_{-B}|\psi\rangle \|^2 \), or equivalently when \(\|P_{-F} P_{-B}|\psi\rangle \|^2 > \|P_{-F}|\psi\rangle \|^2 \). To do this, we mathematically decompose the quantum probability that Linda is not a feminist as follows:

\[
\|P_{-F}|\psi\rangle \|^2 = \|P_{-F} P_{-B}|\psi\rangle \|^2 + \|P_{-F} P_B|\psi\rangle \|^2 + \langle \psi_{-F,B}|\psi_{-F,B}\rangle + \langle \psi_{-F,B}|\psi_{-F,B}\rangle. \tag{2}
\]

In this case, the interference is \(\delta_{-F} = \langle \psi_{-F,B}|\psi_{-F,B}\rangle + \langle \psi_{-F,B}|\psi_{-F,B}\rangle \). Once again there is a corresponding interference \(\delta_F \) for \(\|P_F|\psi\rangle \|^2 \), and these two interferences must sum to zero \((\delta_F + \delta_{-F}) = 0 \) (see Appendix B). Thus one of these two interference terms must be negative, and we argue that \(\delta_F > 0 \), because this makes it more likely that Linda is a feminist. If the interference for \(\delta_{-F} \) is sufficiently negative so that \((\|P_{-F} P_B|\psi\rangle \|^2 + \delta_{-F}) < 0 \), then \(\|P_{-F} P_B|\psi\rangle \|^2 > \|P_{-F}|\psi\rangle \|^2 = \|P_{-F} P_B|\psi\rangle \|^2 - |(\|P_{-F} P_B|\psi\rangle \|^2 + \delta_{-F}) | \) as required to explain the disjunction fallacy.

The interference, \(\delta_{-F} \), is determined by the inner product of two projections: One is the projection, \(|\psi_{-F,B}\rangle \), of the initial state first on the ‘she is a not a bank teller’ subspace and then onto ‘she is a not a feminist’ subspace; the second is the projection,\(|\psi_{-F,B}\rangle \), of the initial state first on to ‘she is a bank teller’ subspace and then on to ‘she is a not a feminist’ subspace. For
many judges, the features matching ‘not a bank teller and not a feminist’ may be negatively correlated (pointing in a dissimilar direction) with the features matching ‘bank teller and not a feminist’, thus producing negative interference.

To complete the analysis of conjunction and disjunction fallacies, we must check to see what the quantum model predicts for the remaining ordinal relations reported by Morier and Borgida (1984). The quantity $\|P_B|\psi_F\rangle\|^2$ is a probability so that $1 \geq \|P_B|\psi_F\rangle\|^2 \geq 0$, and it mathematically follows that

$$\|P_F|\psi\rangle\|^2 \cdot 1 \geq \|P_F|\psi\rangle\|^2 \cdot \|P_B|\psi_F\rangle\|^2 = \|P_B P_F|\psi\rangle\|^2.$$ \hspace{1cm} (3)

Therefore, the quantum model must predict that the event ‘Linda is a feminist’ is judged at least as likely as the conjunction.

Now consider the order of the conjunction versus disjunction. The Linda story is designed so that the probability $\|P_{\neg B} P_F|\psi\rangle\|^2$ corresponding to the ‘Linda is a feminist and she is not a bank teller’ conjunction is more likely than the probability $\|P_{\neg F} P_{\neg B}|\psi\rangle\|^2$ corresponding to ‘Linda is not a bank teller and she is not a feminist’ conjunction.\(^6\) This design implies that

$$\|P_{\neg F} P_{\neg B}|\psi\rangle\|^2 < \|P_{\neg B} P_F|\psi\rangle\|^2 + \|P_{\neg F}|\psi\rangle\|^2,$$

but it is also true that

$$\|P_{\neg B} P_F|\psi\rangle\|^2 + \|P_{\neg F}|\psi\rangle\|^2 = 1 - \|P_B P_F|\psi\rangle\|^2$$

$$\implies \|P_B P_F|\psi\rangle\|^2 < 1 - \|P_{\neg F} P_{\neg B}|\psi\rangle\|^2.$$ \hspace{1cm} (4)

and Equation 4 implies that the conjunction is less likely than the disjunction. This last prediction is important because, even though human judgments tend to satisfy this constraint, there is no requirement for them to do so. Therefore, if both the conjunction and disjunction fallacies occur, then the quantum model must produce the order reported by Morier and Borgida (1984). This is not true of theoretical explanations that we present later, which are free to produce consistent or inconsistent orderings of disjunction and conjunction events depending on free parameters.

\(^{6}\) In fact, the empirical results are that $\|P_{\neg B} P_F|\psi\rangle\|^2 = .47 > \|P_{\neg F} P_{\neg B}|\psi\rangle\|^2 = .40$.

Now the quantum model is forced to make another strong qualitative prediction. Both conjunction and disjunction effects require the events to be incompatible; for if the events are compatible, then there is no interference (see Appendix B). But incompatible events produce order effects. To simultaneously explain both the conjunction and disjunction fallacies, the model requires the following order constraint (see Appendix B): $\|P_F P_B |\psi\rangle\|^2 < \|P_B P_F |\psi\rangle\|^2$. This constraint exactly fits our psychological explanation of order effects that we presented earlier -- the first likely event increases availability of the second unlikely event. In other words, processing the likely event first facilitates retrieving relevant thoughts for the second event, which then increases the likelihood of the conjunction. By contrast, if the unlikely event is processed first, it is hard to imagine any thoughts at all in favor of this unlikely event from the very beginning, which lowers the probability of the conjunction.

Order Effects. The quantum explanation for conjunction and disjunction errors must predict that order of processing is a critical factor for determining whether or not the fallacy will occur. One effective way to manipulate this order is to ask people to judge the conjunction first or last when judging the likelihood of events. For example, after hearing a story, a person could be asked to judge the unlikely event U first, and then judge the conjunction $\text{``}U \text{ and } L\text{''}$; or they could be asked these questions in the opposite order. The quantum model predicts smaller effects when the conjunction is presented last, because in this case, the person evaluates the probability, $\|P_U |\psi\rangle\|^2$, for the unlikely event first, and so is encouraged to use this probability estimate to determine the conjunction probability for $\text{``}U \text{ and } L\text{''}$. But in the latter case we must predict that $\|P_U |\psi\rangle\|^2 \cdot \|P_L |\psi_U\rangle\|^2 = \|P_L P_U |\psi\rangle\|^2$, and mathematically it follows that $\|P_U |\psi\rangle\|^2 \cdot 1 \geq \|P_U |\psi\rangle\|^2 \cdot \|P_L |\psi_U\rangle\|^2$; therefore no conjunction error can occur. This reduction does not happen in the reverse order when the conjunction is evaluated first, because in this case, the `start with the higher probability event first' rule applies and the conjunction is always computed from the opposite order $\|P_L |\psi\rangle\|^2 \cdot \|P_U |\psi_L\rangle\|^2 = \|P_U P_L |\psi\rangle\|^2$, which produces conjunction errors as given by Equation 1.

In fact, conjunction errors are significantly larger when the conjunction is rated first as opposed to being rated last (Gavanski & Roskos-Ewoldsen, 1991; Stolarz-Fantino, et al., 2003). In the study by Stolarz-Fantino et al. (2003), when the single judgment for the unlikely event was made first, the mean judgment for the unlikely event was $J(U) = .14$ compared to $J(U \text{ and } L) = \ldots$
.17 for the conjunction \((N = 105, \text{ not significantly different})\); but when the conjunction was rated first, the mean judgment for the conjunction was \(J(U \text{ and } L) = .26\) compared to \(J(U) = .18\) for the unlikely event \((N = 102, \text{ significantly different})\). Similar robust and large effects of order were reported by Gavanski and Roskos-Ewoldsen (1991). This order effect also explains why ratings produce fewer errors than rank orders (Wedell & Moro, 2008) -- the latter procedure does not require any estimates of the constituent events ahead of time.

Averaging Type Errors. One of the earliest explanations for conjunction and disjunction fallacies is that these judgments are based on the average of the likelihoods of the individual events (Abelson, Leddo, & Gross, 1987; Fantino, Kulik, & Stolarz-Fantino, 1997; Nilsson, 2008; Wyer, 1976). For example, if one averages the likely event \(L\) with an unlikely event \(U\), then the average must lie in between these two likelihoods. If one assumes that more weight is placed on the unlikely event for the conjunctive question, and that more weight is placed on the likely event for the disjunction question, then this model can accommodate both fallacies at the same time.

An important source of support for the averaging model is another fallacy called the averaging error (Fantino, et al., 1997). This finding involves a story followed by questions that are unlikely \((U)\), moderately likely \((M)\), and very likely \((L)\) to be true based on the story. These questions produce the following reversal in the order for the mean judgments: \(J(U) < J(U \text{ and } M)\) but \(J(M \text{ and } L) < J(L)\), which again violates classic probability theory.

This finding also rules out an additive model which assumes that judgments are made by adding (rather than averaging) the signed evidence of individual events (Yates & Carlson, 1986). According to an additive model, if \(J(M \text{ and } L) < J(L)\) then signed evidence for \(M\) is negative, but if this is true then we should also observe \(J(U) > J(U \text{ and } M)\), but the opposite occurs.

For these unlikely \((U)\), moderately likely \((M)\), and very likely \((L)\) type of questions, the quantum model must always predict the order \(|P_L|\psi||^2 > |P_L|\psi||^2 \geq |P_U|\psi||^2 \geq |P_U|\psi||^2\), which satisfies the second inequality that forms the averaging error. The first inequality in the averaging error is simply a conjunction fallacy, \(|P_U P_M|\psi||^2 > |P_U|\psi||^2\), which we have already explained using negative interference (see Equation 1). Thus the quantum model also explains this averaging error.
Event Likelihoods. In general, the interference term, δ, will depend on both the story and the question. For the Linda story, the event ‘Linda is a feminist’ was designed to seem likely (producing a large projection for the likely event L, denoted $\|P_L|\psi\rangle\|^2$) whereas the event ‘Linda is a bank teller’ was designed to be unlikely (producing a small projection for the unlikely event U, denoted $\|P_U|\psi\rangle\|^2$). From Equation 3, it follows that the size of the conjunction error is bounded by

$$\|P_L|\psi\rangle\|^2 \geq \|P_LP_L|\psi\rangle\|^2 \geq \|P_L|\psi\rangle\|^2,$$

and it shrinks to zero if $\|P_L|\psi\rangle\|^2 = \|P_L|\psi\rangle\|^2$. In fact, researchers find that both fallacies depend on the difference between the likelihoods of the two events (Gavanski & Roskos-Ewoldsen, 1991; Wells, 1985; Yates & Carlson, 1986). For example, the mean estimates reported by Gavanski and Roskos-Ewoldsen (1991) were \(J(A)=.28, J(B)=.19, J(A \text{ and } B)=.18\) when both events \((A,B)\) were unlikely; \(J(A)=.77, J(B)=.23, J(A \text{ and } B)=.38\) when event A was unlikely and event B was likely; and \(J(A)=.76, J(B)=.69, J(A \text{ and } B)=.67\) when both events (A,B) were likely. The mean estimates reported by Fisk (2002) were \(J(A)=.36, J(B)=.14, J(A \text{ or } B)=.27\) when both events (A,B) were unlikely; \(J(A)=.23, J(B)=.73, J(A \text{ or } B)=.59\) when event A was unlikely and event B was likely; and \(J(A)=.80, J(B)=.62, J(A \text{ or } B)=.75\) when both events (A,B) were likely.

The constraint on the judgments imposed by Equation 5 implies another strong prediction of the quantum model. Only a single conjunction error can occur – that is when the conjunction is judged more likely than the lower likelihood event. When examining the mean or median of probability estimates, this prediction is generally supported (Gavanski & Roskos-Ewoldsen, 1991). Furthermore, it is also generally found that single conjunction errors are overwhelmingly most frequent (Yates & Carlson, 1986). Double conjunction errors are infrequent, but they occasionally occur with two highly likely events, and the latter could be easily caused by judgments errors when all the events are rated almost equally high (Costello, 2009).

An averaging model also predicts that conjunction and disjunction errors are larger for the (unlikely, likely) combination of events and that only single conjunction errors can occur. But the quantum and averaging models make distinct predictions for the extreme case of complementary events A and not A. For complementary events, the quantum model must predict that the probability of the conjunction is zero ($\|P_{A\text{ and }A}|\psi\rangle\|^2 = 0$) and the probability of the
disjunction is one $(1 - \|P_{\neg A}P_A|\psi\|)^2 = 1 - 0$). Thus the quantum model must predict no conjunction or disjunction errors for this extreme case, except those produced accidently by random error (Costello, 2009). However, an averaging model must predict that these effects remain as large as ever for this extreme condition because the average must always fall between the likelihood of A and the likelihood of not A. For example if A is highly likely to be true, then $\neg A$ is highly likely to be false, and the averaging model predicts that the conjunction will fall in between these two mutually exclusive events. In fact, conjunction and disjunction errors are greatly reduced when the events are mutually exclusive (Wolfe & Reyna, 2009).

Event Dependencies. The quantum model makes another strong prediction concerning the effect of dependencies between events on the conjunction fallacy. In classic theory, if $p_L(U) > P(U)$ so that knowledge of event L increases the probability of event U, then there is a positive dependency of event L on event U. According to the quantum model, an event L has a positive dependency on an event U if $\|P_U|\psi_L\| > \|P_U|\psi\|$. To produce a conjunction fallacy, the quantum model requires

\[
\|P_U|\psi_L\|^2 = \|P_U|\psi\|^2 - \|P_U|\psi_L\|^2 \geq \|P_U|\psi\|^2
\]

\[
\Rightarrow \|P_U|\psi_L\|^2 \geq \|P_U|\psi\|^2 / \|P_L|\psi\|^2 > \|P_U|\psi\|^2.
\]

Thus the quantum model is forced to predict that conjunction errors occur only when there is a positive dependency of the unlikely event on the likely event. For example, according to the quantum model, knowing that Linda is a feminist increases the likelihood that she is a bank teller. In fact, the presence of dependencies between events A and B has been shown to affect the rate of conjunction fallacies -- a positive conditional dependency generally increases the frequency of conjunction errors (Fisk, 2002).

Both classic and quantum theories predict that dependencies between events strongly influence the probability judgment for a sequence of events. This property is important because the averaging model, which simply averages the likelihoods of the individual events, fails to consider event dependencies. Not surprisingly, human judgments are strongly influenced by event dependencies, as cleverly shown by Miyamoto, Gonzalez, and Tu (1995). In their design, judges evaluated four conjunctions of events including ‘A and X’, ‘A and Y’, ‘B and X’, ‘B and
Contrary to an averaging model, violations of independence were observed: \(J(A \text{ and } X) > J(B \text{ and } X) \) but \(J(A \text{ and } Y) < J(B \text{ and } Y) \). According to the averaging model, the common event \(X \) in the first comparison cancels out and so the first inequality implies that event \(A \) is more likely than event \(B \); similarly, the common event \(Y \) in the second comparison cancels out and so the order established by the first comparison should be maintained for the second comparison (but it is not). According to both the classic and quantum models, the probability of event \(A \) conditioned on the state \(X \) is larger than \(B \), but the opposite occurs conditioned on the state \(Y \).

Event Relationships. One of the major criticisms of the representativeness heuristic concerns the effect of manipulating the relatedness between the two events. Suppose two stories are told, one about the liberal college student named Linda, and another about an intellectual but somewhat boring man named Bill. After hearing both stories, the judge could be asked two related questions concerning the same person such as ‘is Linda a feminist and is Linda a bank teller’, or alternatively the judge could be asked two unrelated questions such as ‘is Linda a feminist and does Bill play jazz for a hobby.’ It turns out that the conjunction fallacy is almost equally strong for related and unrelated questions (Gavanski & Roskos-Ewoldsen, 1991; Yates & Carlson, 1986). This finding has been interpreted as evidence against the representativeness heuristic and evidence for a simple averaging rule. But this is not a problem for the quantum interpretation of the representativeness heuristic.

The quantum model predicts that conjunction errors only occur when there is interference, and interference can only occur when the two projectors do not commute. Thus the key question is whether or not the projectors commute, that is, whether or not the subspaces are based on a compatible set of basis vectors representing a common set of features.

Having already considered the case of related questions, let us now consider the case of unrelated questions (e.g. is Linda a feminist and does Bill play jazz for a hobby?). According to the quantum model, the knowledge obtained from the two stories is represented by a state vector \(|\psi\rangle \) that now must contain knowledge about features of both Linda and Bill. The projector \(P_{LF} \) represents the question ‘is Linda a feminist’ and another projector \(P_{BJ} \) represents the question ‘does Bill play jazz for a hobby.’ The key question is whether or not these two projectors commute. Given that the judge never heard of these two people before, and given that the judge is unlikely to know anything about the co-occurrences of women who are feminists and men who
are jazz players, the judge cannot form a compatible representation that combines all these features in a consistent representation. Instead, the judge must fall back on a simpler incompatible representation that uses one set of features to evaluate the Linda question, and a different set of features to evaluate the Bill question. Thus we expect these two projectors to be non-commutative. This is exactly the property required to produce the conjunction error.

Given that that the projectors for the two unrelated questions are incompatible, then the probability for the conjunction is obtained by first projecting the belief state on the ‘Linda is a feminist’ subspace followed by the projection on the ‘Bill plays jazz for a hobby’ subspace. The interference effect produced by this incompatible representation depends on the particular stories and questions. In this particular example, negative interference implies that thoughts evoked by thinking about a woman who is not a feminist are negatively correlated with thoughts about a man who plays jazz for a hobby.

Further support for the idea that the unrelated questions are answered by incompatible subspaces comes from the finding of order effects found in the same studies by Gavansky and Roskos-Ewoldsen (1991). Conjunction errors were found to be more frequent and significantly larger when the conjunction question (e.g. Linda is a feminist and Bill plays jazz for a hobby) was presented first as opposed to being presented last.

Unpacking Effects. A finding that is closely related to the disjunction error is the implicit unpacking effect (Rottenstreich & Tversky, 1997; Sloman, Rottenstreich, Wisniewski, Hadjichristidis, & Fox, 2004). In this case, a person is asked to rank order the likelihood of the same logical event when it is described in the ‘packed’ form B versus in the ‘unpacked’ form (B and A or B and $\sim A$). When an event (e.g., death by murder) is unpacked into a likely cause (murder by a stranger) and an unlikely cause (murder by an acquaintance) then the unpacked event is judged to be more likely than the packed event, which is called subadditivity (Rottenstreich & Tversky, 1997). But if an event (e.g. death by disease) is unpacked into an unlikely cause and a residual (death from pneumonia or other diseases), then the packed event is judged to be more likely than the unpacked event (Sloman, et al., 2004). Support theory

7 The unpacking effect refers to a comparison between the sum of judgments of individual events versus the judgment of the union of these events. However, these findings are affected by the response scale used to make judgments, as well as judgment errors produced by judging individual events. We focus on the implicit unpacking effect which simply asks a person to order the likelihood of two events.
(Tversky & Koehler, 1994) was designed to explain the first (subadditivity), but it cannot explain the second (superadditivity).

This effect is especially interesting because it provides an example where both positive and negative interference is required to explain the opposing results. According to the quantum model, the probability for the unpacked event B can be decomposed as follows

$$\left| \left| P_B|\psi\rangle \right| \right|^2 = \left| \left| P_B \cdot (P_A + P_{\neg A})|\psi\rangle \right| \right|^2 = \left| \left| P_B P_A|\psi\rangle \right| \right|^2 + \left| \left| P_B P_{\neg A}|\psi\rangle \right| \right|^2 + \delta,$$

where δ is the interference term.\(^8\) The probabilities for the two unpacked events sum to

$$\left| \left| P_B P_A|\psi\rangle \right| \right|^2 + \left| \left| P_B P_{\neg A}|\psi\rangle \right| \right|^2.$$

In general the interference, δ, can be positive or negative, depending on the inner product between the projection $P_B P_A|\psi\rangle$ and $P_B P_{\neg A}|\psi\rangle$. In all of the previous examples, we assumed that this inner product was negative, producing negative interference, resulting in a conjunction and disjunction effect. To account for subadditivity we again need the interference to be negative, but to account for the opposite superadditive effect, the interference must become positive. The quantum model agrees with the intuition provided by Sloman et al. (2004) that when unpacking an event into an unlikely event and a residual, the indirect retrieval paths produced by unpacking make it difficult to reach the conclusion, and now it is easier to reach the conclusion directly from the packed event. The positive interference implies that the projection of the initial state first onto pneumonia and then on to death is positively correlated (pointing in a similar direction) with the projection of the initial state first on to the residual (diabetes, cirrhosis, etc.) and then onto death.

Conditional versus Conjunction Probabilities. Both classic and quantum probability models make a strong prediction concerning the comparison of the probability of a conjunction with the conditional probability involving the same events. According to classic probability theory, $p_L(U) \geq p(L) p_U(U) = p(L \cap U)$ and similarly the quantum model must obey

$$\left| \left| P_U|\psi_L\rangle \right| \right|^2 \geq \left| \left| P_L|\psi\rangle \right| \right|^2 \cdot \left| \left| P_U|\psi_L\rangle \right| \right|^2 = \left| \left| P_U P_L|\psi\rangle \right| \right|^2.$$

\(^8\) Bordely (1998) first pointed out that quantum theory provides an alternative explanation for unpacking effects.
A conditional fallacy occurs when the probability of a conjunction strictly exceeds the conditional probability.

The evidence regarding this fallacy is mixed. Tversky and Kahneman (1983) reported a study involving an unlikely (U) event ‘die from heart attack’ and a likely (L) causal event ‘age over 50.’ The mean judgment for the conditional probability equaled \(J(U \text{ given } L) = .59 \); the mean judgment for the conjunction probability equaled \(J(U \text{ and } L) = .30 \); and the mean judgment for the unlikely event equaled \(J(U) = .18 \). Thus the conditional event exceeded the conjunction event, but the conjunction exceeded the single event. Hertwig, Bjorn, and Krauss (2008) found no differences between the conditional and conjunction probabilities, and used this to argue that people confuse or misinterpret these two types of questions. Miyamoto, Lundell, and Tu (1988) investigated the conditional fallacy using four different stories. In one of the stories, the conditional exceeded the conjunction, in another the conditional equaled the conjunction, and in two other stories the conjunction exceeded the conditional. The largest fallacy occurred with a story based on rain and temperature in Seattle, which produced the results (\(N = 150 \)):
\[
J(L) = .71 > J(L \text{ and } U) = .61 > J(U \text{ given } L) = .49 > J(U) = .47
\]

(9a)

However, there was little difference between the conditional probability \(J(U \text{ given } L) \) and the single event probability \(J(U) \), and so it is possible that the participants ignored the conditioning event \(L \) when judging the conditional ‘U given L.’ More research is needed on this important question.

Conjunction of Three Events. The quantum model also makes clear predictions for conjunctions involving two and three constituent events. According to the quantum model, the judgment for the conjunction of unlikely (U), medium (M), and likely (L) events must be lower than the conjunction for a medium (M) and likely (L) event. This follows from the fact that
\[
\|P_L|\psi\rangle\|^2 \cdot \|P_M|\psi_L\rangle\|^2 \geq \|P_L|\psi\rangle\|^2 \cdot \|P_M|\psi_L\rangle\|^2 \cdot \|P_U|\psi_{M,L}\rangle\|^2.
\]

The quantum model predicts a higher judgment for a conjunction of an unlikely (U), likely (L1), and another likely (L2) event as compared to an unlikely (U) and likely (L2) event under the following condition (for simplicity, suppose \(L2 \) is more likely than \(L1 \)):
\[
\|P_{L2}|\psi\rangle\|^2 \cdot \|P_{L1}|\psi_{L2}\rangle\|^2 \leq \|P_{L2}|\psi\rangle\|^2 \cdot \|P_U|P_{L1}|\psi_{L2}\rangle\|^2 \rightarrow \|P_U|\psi_{L2}\rangle\|^2 \leq \|P_U|P_{L1}|\psi_{L2}\rangle\|^2.
\]
Expanding the left hand term (as we did in Equation 1) produces the expression

\[
\| P_U |\psi_{L2}\rangle \|^2 = \| P_U (P_{L1} + P_{-L1}) |\psi_{L2}\rangle \|^2 = \| P_U P_{L1} |\psi_{L2}\rangle \|^2 + \| P_U P_{-L1} |\psi_{L2}\rangle \|^2 + \delta. \tag{9b}
\]

It follows that the required inequality, \(\| P_U |\psi_{L2}\rangle \|^2 \leq \| P_U P_{L1} |\psi_{L2}\rangle \|^2 \), will hold if the interference is sufficiently negative so that \(\delta < -\| P_U P_{-L1} |\psi_{L2}\rangle \|^2 \). In this case, the judgment for a conjunction of three events is judged more likely than a conjunction of two events.

In fact, both of these predicted results have been experimentally obtained. Judgments for the conjunction of an unlikely, moderate, and likely event were found to be lower than judgments for the conjunction of the same moderate and likely event (Stolarz-Fantino, et al., 2003; Winman, Nilsson, Juslin, & Hansson, 2010). Furthermore, judgments for an unlikely, likely, and second likely event were found to be higher than judgments for the conjunction of the same unlikely and likely event (Winman, et al., 2010). Previously, these results were explained by an averaging model, but they are also consistent with the quantum model.

Comparison of Explanations. The classic (Kolmogorov) probability model fails to explain conjunction and disjunction fallacies because, when given a story \(S \) and two uncertain events \(U \) and \(L \), it requires \(p(U \cap L| S) \leq p(U| S) \) and \(p(U \cup L| S) \geq p(L| S) \). However, it is possible that people evaluate the conditional in the wrong direction (G. Gigerenzer & Hoffrage, 1995). Classic probability theory does allow \(p(S|U \cap L) > p(S|U) \) and \(p(S|U \cup L) < p(S|L) \). This explanation fails to predict any ordering for \(p(S|U \cap L) \) versus \(p(S|U) \), nor does it predict any ordering for \(p(S|U \cup L) \) versus \(p(S|U \cap L) \). A more serious problem is that this idea cannot explain why the fallacy occurs for a conjunction of future events that entail the current state. For example, given the current cigarette tax and teenage smoking rate, people prefer to bet on the event that ‘an increase in cigarette tax from the current rate and a decrease in teenage smoking from the current rate’ rather than the event ‘a decrease in teenage smoking from the current rate’ (Sides, et al., 2002). In this case, if we let \(S \) represent the current state of the world, then we are asked to compare \(p(S \cap U \cap L| S) = p(U \cap L| S) \) versus \(p(S \cap U| S) = p(U| S) \). If the conditional is reversed, then we have \(p(S|S \cap U \cap L) = p(S) = p(S|S \cap U) \) which fails to explain the findings.

Support theory (Tversky & Kohler, 1994) proposes that unpacking an event into its component parts increases the availability of the components, and thus the unpacked event is
judged to be more likely than the logically identical packed event. This theory provides an account of unpacking effects when they are subadditive, but not when they are superadditive. Tversky and Kohler (1994) also mentioned that support theory can explain conjunction errors as an effect of unpacking an unlikely event (e.g., bank teller). However, support theory fails to explain disjunction errors, because a packed event (such as feminism) is judged greater than the union of this same event with another separate event.

The most popular models for both conjunction and disjunction fallacies are the averaging model (Wyer, 1976) and adding (Yates & Carlson, 1986) models. These models seem especially plausible when conjunction errors are obtained without presenting any story, and judges are simply given numerical likelihoods on which to base their judgments (Gavanski & Roskos-Ewoldsen, 1991). In the latter case, it is hard to see how one could use a representativeness type heuristic that relies on feature descriptions when there are no features to use. The averaging model assumes that each item is assigned a likelihood value (zero to one), and the judgment for a conjunction or disjunction question equals the weighted average of these likelihoods. The adding model assumes each item is assigned a signed value of evidence (negative one to positive one), and the judgment for a conjunction or disjunction question equals the weighted sum of evidence. Different weights must be assigned to the unlikely and likely events to explain both the conjunction and disjunction errors. The averaging model turns out to be superior to the adding model, because the latter is ruled out by averaging type errors. But the averaging model also has some serious deficiencies. One of the most important is that it fails to account for interdependence among events. An item is assigned a likelihood value independent of the other items with which it is paired. This independence assumption is falsified by empirical violations of independence. Also this model fails to account for the effect of event dependencies on the size and rate of conjunction errors, and it fails to explain the reduction in conjunction and disjunction errors when using mutually exclusive events. Finally, the averaging model cannot account for double conjunction errors and the conditional fallacy, but these findings are still open to question.

A probability judgment model based on memory retrieval has also been used to explain conjunction errors (Dougherty, Gettys, & Odgen, 1999). Two specific types of models were proposed, one for judgments based on stories (vignettes), and the other for judgments based on
training examples, but all of the studies in our review are based stories (vignettes), and so we limit our discussion to the first model. According to the vignette memory model, information about the story is stored in a memory trace (column) vector. A single question is represented by a probe vector of the same length with values assigned to features related to both the question and the story, and zeros otherwise. A conjunctive question is represented by a single conjunctive probe, which is the direct sum of the two vectors, one vector representing each separate item. Retrieval strength (echo intensity) to a question is determined by the inner product between the memory trace vector and the question probe vector, and relative frequency judgments are proportional to echo intensity. In Appendix C, we show that the vignette memory predicts the same order as an averaging model and thus it shares many of the same advantages and disadvantages of the averaging model. Like the averaging model, the vignette memory model has no explicit mechanism for explaining event dependencies on conjunction errors. The latter problem arises from the fact that the conjunctive probe is simply the direct sum of the separate item probes.

The quantum judgment model provides a common simple explanation for both conjunction and disjunction errors as well as unpacking effects and averaging errors. More importantly, it also makes a number of strong, testable, a priori predictions that are supported by the empirical results. This includes (a) the ordering of the most likely event compared to either disjunction or disjunction events (Equation 3), (b) the ordering of judgments for conjunction and disjunction events (Equation 4), (c) the effect of event dependency on the conjunction fallacy (Equation 5), (d) the effect of event likelihood on conjunction fallacy (Equation 6), (e) the order of a conditional versus a conjunction (Equation 8), (f) the effect of event order on the conjunction fallacy, (g) the occurrence of conjunction fallacies for three events (Equation 9), and (h) conjunction errors for unrelated events. Overall, the predictions of the quantum judgment model agree with all of the well established empirical findings. The quantum model has some difficulty with double conjunction errors and the conditional fallacy, but the empirical status of these latter two findings remains weak. So far we have relied on evidence based on qualitative properties which provide tests of general principles. Next we turn to a more specific quantitative comparison of the averaging model and the quantum model.
III. Quantitative predictions for order effects on inference

Inference tasks provide an ideal paradigm for testing the quantum model. The hypotheses and different types of evidence can be controlled to manipulate the feature space, and the order that evidence is presented is easy to manipulate. Also, one of the oldest and most reliable findings regarding human inference is that the order in which evidence is presented affects the final inference (Hogarth & Einhorn, 1992). Consider the following example from a medical inference task (Bergus, Chapman, Levy, Ely, & Oppliger, 1998). Physicians (N = 315) were initially informed about a particular women’s health complaint, and they were asked to estimate the likelihood that she had an infection on the basis of (a) the patient’s history and physical exam and (b) laboratory tests, presented in different orders. For one order, the initial estimate started out at .67; after seeing the history/physical it increased to .78, and then after also seeing the lab test it decreased to .51. For the other order, the initial estimate again started at .67; after seeing the lab test it decreased to .44; and then after also seeing the history/physical it increased to .59. This is called a recency effect, because the same evidence had a larger effect when it appeared at the end as opposed to the beginning of a sequence. Recency effects are commonly observed in inference tasks whenever a sequence of judgments is made, one after each new piece of evidence (Hogarth & Einhorn, 1992). One might suspect that these order effects arise from memory recall failures, but it turns out that memory recall is uncorrelated with order effects in sequential judgment tasks (Hastie & Park, 1988).

Order effects are problematic for a Bayesian model for the following reason. Suppose we have two abstract events \{A, B\} and a hypothesis \(H\); then

\[
p(H|A \cap B) = p(H|A) \cdot \frac{p(B|H \cap A)}{p(B|A)} = p(H|B) \cdot \frac{p(A|H \cap B)}{p(A|B)} = p(H|B \cap A),
\]

and the order used to evaluate these two events does not matter because the events commute \(A \cap B = B \cap A\). To account for order effects, a Bayesian model needs to introduce presentation order (e.g. event \(O_1\) that \(A\) is presented before \(B\), and event \(O_2\) that \(B\) is presented before \(A\)) as another piece of information, so that we obtain \(p(H|A \cap B \cap O_1) > p(H|A \cap B \cap O_2)\). But without specifying \(p(H)p(O_1|H)p(A|H \cap O_1)p(B|H \cap O_1 \cap A)\), this approach simply re-describes the empirical result, and such a specification is not known at present. One difficulty that arises for
this approach is that presentation order is randomly determined, and order information is irrelevant.

To explain order effects, Hogarth and Einhorn (1992) proposed an anchor-adjust model in which order is not simply another piece of information, but rather evidence is accumulated one step at a time with a weight that depends on serial position. Recently, Trueblood and Busemeyer (2010b) developed a quantum inference model in which order is an intrinsic part of the process of sequentially evaluating information represented by incompatible perspectives. However, the previous studies provided too few data points to provide a sufficiently strong test of the two competing models. Therefore Trueblood and Busemeyer (2010a) conducted a larger study of order effects to compare these two models. First we summarize this study and its basic findings. Then we describe the details of fitting both the anchor-adjust model and the quantum model to the results. Finally, we summarize the comparison of fits produced by the two competing models.

Order Effects on Criminal Inference. The Trueblood and Busemeyer (2010a) study included total of 291 undergraduates from Indiana University. Each one participated in a computer controlled experiment in which they read fictitious criminal cases (robbery, larceny, or burglary) and made judgments of guilt or innocence on a zero to one probability scale. A sequence of three judgments was made for each case: one before any presenting any evidence, and two more judgments after presentations of evidence by a prosecutor and a defense. For a random half of the cases, the prosecution was presented before the defense, and for the other half the defense was presented first. For example, in one case, participants read a short story (one short paragraph) about a burglarized warehouse, made an initial judgment based on no information, read a strong prosecution (described by three sentences), made a second judgment based only on this prosecution, read a weak defense (described by one sentence), and made a third judgment based on both the prosecution and the defense. Altogether, each person was presented with eight cases based on the experimental design shown in Table 1. Each case was different for each person, and the assignment of cases to orders was counterbalanced across participants, which produce approximately 38 participants per order condition (See Trueblood & Busemeyer, 2010a for details). Note that different groups of participants are needed to produce different orders of evidence, and as far as we know, 12 order conditions is the largest existing
study of order effects on inference. The main results are shown in Table 1, which shows the mean judgment, averaged over participants and across the eight cases.

Table 1: Estimation of guilt following evidence (initial value equals .46)

<table>
<thead>
<tr>
<th>After First Evidence</th>
<th>After Second Evidence</th>
<th>Averaging version of Anchor-Adjust Model</th>
<th>Quantum Inference Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>WP = .651</td>
<td>WP, WD = .516</td>
<td>.578</td>
<td>.552</td>
</tr>
<tr>
<td>WP, SD = .398</td>
<td></td>
<td>.436</td>
<td></td>
</tr>
<tr>
<td>SP = .805</td>
<td>SP, WD = .687</td>
<td>.748</td>
<td>.587</td>
</tr>
<tr>
<td>SP, SD = .54</td>
<td></td>
<td>.4373</td>
<td>.527</td>
</tr>
<tr>
<td>WD = .390</td>
<td>WD, WP = .619</td>
<td>.499</td>
<td>.589</td>
</tr>
<tr>
<td>WD, SP = .779</td>
<td></td>
<td>.747</td>
<td>.758</td>
</tr>
<tr>
<td>SD = .278</td>
<td>SD, WP = .495</td>
<td>.401</td>
<td>.568</td>
</tr>
<tr>
<td>SD, SP = .69</td>
<td></td>
<td>.756</td>
<td>.702</td>
</tr>
</tbody>
</table>

W = weak evidence, S = strong evidence, P = Prosecution, D = Defense

Trueblood and Busemeyer, 2010b, provide more detailed results separately for each of the eight separate cases, but the results were consistent across cases, and so here we only present a summary. The initial judgment (prior to any information) produced a mean probability equal to .459 (this is not shown in the table). This small bias against guilt reflects the instruction to assume innocence at the beginning. The first column of Table 1 shows the effect of the first piece of information, which demonstrates a clear effect produced by manipulating the evidence. The second column shows the judgment after both pieces of evidence, which provide four tests for order effects. The strongest example is SP, SD = .54 < SD, SP = .69, which is a recency effect equal to .15; the other three recency effects were approximately equal to .10. All four tests for order effects produced strong and statistically significant recency effects (all with p < .001, see Trueblood & Busemeyer, 2010b for details).
Anchor-Adjust Inference Model. Hogarth and Einhorn (1992) proposed a heuristic model of inference in which a new state of belief equals the previous (anchor) state plus an adjustment:

\[C_n = C_{n-1} + w_n [s(E_n) - R_n], \] (10)

where \(C_n \) is the new belief state after observing \(n \) pieces of information, \(C_{n-1} \) is the previous belief state after observing \(n-1 \) pieces of information, \(s(E_n) \) is the evidence provided by the \(n \)th piece of information, \(w_n \) is a weight and \(R_n \) is a reference point for this serial position.

Furthermore, Hogarth and Einhorn (1992) proposed the following principle for setting the serial position weight: if \([s(E_n) - R_n] > 0\) then \(w_n = (1 - C_{n-1}) \) and if \([s(E_n) - R_n] < 0\) then \(w_n = C_{n-1} \).

Different versions of the model can be formed by imposing assumptions on the evidence, \(s(E_n) \), and the reference point, \(R_n \). One important variation is the averaging model, which is formed by assuming that \(0 \leq s(E_n) \leq 1 \), and setting \(R_n = C_{n-1} \).\(^9\) Hogarth and Einhorn (1992) prove that the averaging model is guaranteed to produce recency effects, which is found in all tests shown in Table 1. Another important version is the adding model, which is formed by assuming \(-1 \leq s(E_n) \leq 1 \) and setting \(R_n = 0 \). As pointed out by Hogarth and Einhorn (1992), the adding model is not guaranteed to produce recency effects.

Recall that the averaging model provides a better explanation than the additive model for conjunction and disjunction errors. In fact, the adding model was ruled out by the averaging type errors discussed earlier. We think it is important for a model to be consistent across both probability judgment paradigms, the conjunction/disjunction and inference paradigms. Therefore we focus here on the averaging model. Of course this is only one version of the anchor and adjust model, and more complex versions can always be constructed by relaxing the assumptions about the serial position weight and the reference point. But the averaging model is one of the primary models proposed by Hogarth and Einhorn (1992) for recency effects, and it is also one of the primary models for explaining conjunction and disjunction fallacies. Trueblood and Busemeyer, 2010a,b present more model comparisons including averaging, adding models, and even more complex anchor-adjust models, but the conclusions we reach remain the same.

\(^9\) In this case \(C_n = C_{n-1} + w_n [s(E_n) - C_{n-1}] = (1 - w_n) C_{n-1} + w_n s(E_n) \) and for \(n=2 \)
\[C_2 = (1 - w_{n-2}) (1 - w_{n-1}) C_0 + w_{n-2} (1 - w_n) s(E_1) + w_n s(E_n) \]
The averaging model cannot make any predictions for the first judgment (before presenting any evidence), and so this mean (.459) was used to initiate the averaging process, $C_0 = .459$, and then the model was fit to the remaining 12 conditions based on the second and third judgments. The averaging model requires estimating four parameters to fit the 12 conditions in Table 1. These four parameters represent the four values of $s(E)$ corresponding to the four types of evidence WD, SD, WP, SP. We fit the four parameters by minimizing the sum of squared errors (SSE) between the predicted and observed mean probability judgments for each of the 12 conditions, which produced a SSE = .0704 (standard deviation of the error = .0766, $R^2 = .9833$). The predicted values are shown under the two columns labeled Anchor-Adjust in Table 1. The model correctly predicts the recency effects, but despite the high R^2, the model fit is only fair. For example, the model severely overestimates the recency effect for the SDSP vs. SPSD comparison (predicted effect equals .319, observed effect equals .15). Also, the model fails to reproduce the correct ordering across all the conditions. For example, the averaging model predicts that SDSP = .756 > WDSP = .747 when in fact SDSP = .69 < WDSP = .779. There are many other substantial quantitative prediction errors, which illustrate that even when the model is designed to produce recency effects, it still remains a challenge to fit these order effects.

Quantum Inference Model. Before introducing the quantum model proposed by Trueblood and Busemeyer (2010a), let us first think about how a classic Bayesian model would be set up for this task. A simple classic probability model would be based on a sample space containing eight elementary events formed by combining 2 types of prosecutor evidence with two types of defense evidence and 2 hypotheses. A quantum model could be set up in the same manner by using a single basis formed by eight basis vectors, one corresponding to each of these eight elementary events. Then the events would all be compatible and the quantum model would make the same predictions as the classic Bayesian model. But this model would not produce any order effects. Instead, Trueblood and Busemeyer (2010b) proposed a quantum model that was designed to be as simple as possible for application to this criminal inference task.\(^\text{10}\) The basic idea is that the judge evaluates two types of evidence (positive vs. negative) regarding two hypotheses (guilty vs. innocent) from three points of view: a naïve point of view, the prosecutor’s point of view, and the defense point of view. Using this basic idea, only a four

\(^{10}\) Trueblood and Busemeyer (2010b) used this same quantum inference model to fit the results from the Bergus et al (1998) medical inference study and a criminal inference study by McKenzie, Lee, and Cheng (2002).
A dimensional vector space is required. (In the following presentation, a superscript T is used to represent a transpose of a matrix, and a superscript † dagger is used to represent a conjugate transpose of a matrix. In particular, [row vector]T is a column vector.)

The judgment process begins by describing this four-dimensional space in terms of four basis vectors used to make a judgment from the naïve point of view: \{\ket{N_{G+}}, \ket{N_{G-}}, \ket{N_{I+}}, \ket{N_{I-}}\}, representing (guilty, positive), (guilty, negative), (innocent, positive), (innocent, negative), respectively. The initial state equals

$$\ket{\psi} = n_{G+} \ket{N_{G+}} + n_{G-} \ket{N_{G-}} + n_{I+} \ket{N_{I+}} + n_{I-} \ket{N_{I-}}.$$

For example, the third coordinate, n_{I+} represents the amplitude $\braket{N_{I+}}{\psi}$ initially assigned to the basis vector $\ket{N_{I+}}$. To be concrete, we represent $\ket{N_{G+}}$ by the column vector $[1,0,0,0]^T$, represent $\ket{N_{G-}}$ by the column vector $[0,1,0,0]^T$, represent $\ket{N_{I+}}$ by the column vector $[0,0,1,0]^T$, and represent $\ket{N_{I-}}$ by the column vector $[0,0,0,1]^T$. Thus the initial state vector $\ket{\psi}$ assigns a column vector of amplitudes $\vec{n} = [n_{G+}, n_{G-}, n_{I+}, n_{I-}]^T$ to the four basis vectors. We start with $n_{G+} = n_{G-} = (1/\sqrt{2})(\sqrt{.459})$ and $n_{I+} = n_{I-} = (1/\sqrt{2})(\sqrt{.541})$. The positive or negative sign of the evidence has no meaning at this point because the judge has no idea what the evidence is about (we label it positive or negative for convenience, but at this stage, it only represents two possible types of evidence). Equating the amplitudes for the two types of unknown evidence is analogous to using a uniform prior in a Bayesian model when nothing is known. The amplitude for guilt is lower because the instructions inform the person to assume innocent until proven guilty, and the .459 is chosen to reproduce the observed value of the first judgment (before any evidence is presented).

This is also the same initial state used for averaging model. The probability of guilt from this naïve perspective is obtained by first projecting this initial state onto the subspace for guilt. The projector for guilty equals $\vec{P}_G = \ketbra{N_{G+}}{N_{G+}} + \ketbra{N_{G-}}{N_{G-}}$ which is represented by a 4×4 diagonal matrix with ones in the diagonals of the first two rows, and zeros elsewhere. The projection equals $\vec{P}_G \cdot \vec{n} = [(1/\sqrt{2})(\sqrt{.459}), (1/\sqrt{2})(\sqrt{.459}), 0, 0]^T$, and so the probability of guilt from the naïve judgment point of view equals $\|\vec{P}_G \cdot \vec{n}\|^2 = .459$. This initial state was chosen to reproduce the observed mean judgment of guilt equal to .459, slightly favoring not guilty, before any information is provided.
Next, suppose the prosecutor presents positive evidence favoring guilt followed by a likelihood judgment. This requires an evaluation according to a different set of basis vectors, \{\ket{P_{G+}}, \ket{P_{G-}}, \ket{P_{I+}}, \ket{P_{I-}}\}, again representing (guilty, positive), (guilty, negative), (innocent, positive), (innocent, negative), but now representing the prosecutor’s viewpoint. The initial state can be expressed in this basis as

\[\ket{\psi} = p_{G+} \cdot \ket{P_{G+}} + p_{G-} \cdot \ket{P_{G-}} + p_{I+} \cdot \ket{P_{I+}} + p_{I-} \cdot \ket{P_{I-}}. \]

For example, the first coordinate, \(p_{G+}\), represents the amplitude \langle P_{G+} | \psi \rangle initially assigned to the basis vector \(\ket{P_{G+}}\). Note that the amplitudes assigned according to the naïve perspective are different than those assigned according to the prosecutor’s perspective because the latter reflect the prosecutor’s arguments for guilt. The four prosecutor basis vectors can be represented by a \(4 \times 4\) unitary matrix denoted \(U_{np}\), with the first column representing \(\ket{P_{G+}}\), the second column representing \(\ket{P_{G-}}\), the third column representing \(\ket{P_{I+}}\) and the fourth column representing \(\ket{P_{I-}}\). Later we will show exactly how we compute the unitary matrix, \(U_{np}\), but at this point we will assume it is known, and continue with the evaluation of the prosecutor’s evidence. First we consider how to revise the initial state based on the prosecutor’s positive evidence. The projector for the ‘positive evidence’ is denoted \(P_+\) and it is spanned by \{\ket{P_{G+}}, \ket{P_{I+}}\}. According to principle 4, \(\ket{\psi_+} = P_+ \ket{\psi} / \| P_+ \ket{\psi} \|\), and

\[P_+ \ket{\psi} = |P_{G+} \rangle \langle P_{G+} | \psi \rangle + |P_{I+} \rangle \langle P_{I+} | \psi \rangle \]

\[= p_{G+} \cdot |P_{G+} \rangle + 0 \cdot |P_{G-} \rangle + p_{I+} \cdot |P_{I+} \rangle + 0 \cdot |P_{I-} \rangle, \]

and therefore

\[\ket{\psi_+} = \frac{p_{G+}}{(|p_{G+}|^2 + |p_{I+}|^2)^{\frac{1}{2}}} \cdot |P_{G+} \rangle + 0 \cdot |P_{G-} \rangle + \frac{p_{I+}}{(|p_{G+}|^2 + |p_{I+}|^2)^{\frac{1}{2}}} \cdot |P_{I+} \rangle + 0 \cdot |P_{I-} \rangle. \]

The revised state \(\ket{\psi_+}\) is now represented in the prosecutor basis by the column vector of amplitudes \(p_+ = [p_{G+}, 0, p_{I+}, 0]^T / (|p_{G+}|^2 + |p_{I+}|^2)^{\frac{1}{2}}\). Next consider how to determine the probability of guilt after being presented with the prosecutor’s positive evidence. The projector for ‘guilty’ is denoted \(P_G\) and it is spanned by
\{ |P_{G+}\rangle , |P_{G-}\rangle \}$. According to principle 3, \(\| P_G|\psi_+\rangle \|^2 = \| (P_{G+} + P_{G-}) |\psi_+\rangle \|^2 \), and because \(P_{G+} \) and \(P_{G-} \) are orthogonal projections, it follows that
\[
\| P_{G+} |\psi_+\rangle + P_{G-} |\psi_+\rangle \|^2 = \| P_{G+} |\psi_+\rangle \|^2 + \| P_{G-} |\psi_+\rangle \|^2 ,
\]
and because the evidence is positive we have \(\| P_{G-} |\psi_+\rangle \|^2 = 0 \) so that
\[
\| P_G|\psi_+\rangle \|^2 = |\langle P_{G+} |\psi_+\rangle |^2 = |p_{G+}|^2 / (|p_{G+}|^2 + |p_{I+}|^2) .
\] (11)

Equation 11 provides a simple formula for computing the probability of guilt following the positive evidence by the prosecutor. All that is needed to use it is the column vector of amplitudes \(p = [p_{G+}, p_{G-}, p_{I+}, p_{I-}]^\dagger \) assigned to the four prosecutor basis vectors. These are related to amplitudes for the naïve basis by the unitary transformation,
\[
p = U_{np}^\dagger \cdot n = U_{pn} \cdot n ,
\]
which is described later. At this point we will continue with the evaluation of the defense evidence.

Finally, suppose the defense presents negative evidence after the positive evidence given by the prosecutor. Now the judge needs to view the two hypotheses and two types of evidence from the defense perspective. This entails a change of perspective to the defense basis, which requires an evaluation according to the four basis vectors \(|D_{G+}\rangle , |D_{G-}\rangle , |D_{I+}\rangle , |D_{I-}\rangle \). The revised state can be re-expressed in terms of this basis as
\[
|\psi_+\rangle = d_{G+} \cdot |D_{G+}\rangle + d_{G-} \cdot |D_{G-}\rangle + d_{I+} \cdot |D_{I+}\rangle + d_{I-} \cdot |D_{I-}\rangle .
\]
For example, the second coordinate, \(d_{G-} \), represents the amplitude \(\langle D_{G-} |\psi_+\rangle \) assigned to the basis vector \(|D_{G-}\rangle \) at this point. Note that the amplitudes for the defense differ from the amplitudes for the prosecutor because the defense tries to persuade the judge to view the evidence from a different perspective, which weakens the prosecution and strengthens the defense. The four defense basis vectors can be represented by a 4×4 unitary matrix, denoted \(U_{nd} \), with the first column representing \(|D_{G+}\rangle \), the second column representing \(|D_{G-}\rangle \), the third column representing \(|D_{I+}\rangle \) and the fourth column representing \(|D_{I-}\rangle \). Later we will show exactly how we compute the
unitary matrix, U_{nd}, but at this point we will assume it is known, and continue with the evaluation of the defense evidence. Now consider how to revise the state based on the defense negative evidence. The projector for the ‘negative evidence’ is denoted P_- and it is spanned by $\{|D_{G-}\rangle, |D_{I-}\rangle\}$. According to principle 4, $|\psi_{+-}\rangle = P_-|\psi_+\rangle / \|P_-|\psi_+\rangle \|$, and

$$P_-|\psi_+\rangle = P_{G-}|\psi_+\rangle + P_{I-}|\psi_+\rangle = |D_{G-}\rangle\langle D_{G-}|\psi_+\rangle + |D_{I-}\rangle\langle D_{I-}|\psi_+\rangle$$

$$= 0\cdot|D_{G+}\rangle + d_{G-}|D_{G-}\rangle + 0\cdot|D_{I+}\rangle + d_{I-}\cdot|D_{I-}\rangle.$$

Finally, consider how to determine the probability of guilt after being presented with the prosecutor’s positive evidence and the defense’s negative evidence. The projector for ‘guilty’ is denoted P_G and it is spanned by $\{|D_{G+}\rangle, |D_{G-}\rangle\}$. According to principle 3, we obtain

$$\|P_G|\psi_{+-}\rangle\|^2 = |d_{G-}|^2 / (|d_{G-}|^2 + |d_{I-}|^2).$$

(12)

In sum, Equation 12 provides a simple formula for computing the probability of guilt following the positive evidence by the prosecutor and then negative evidence by the defense. All that is needed for this formula is the vector of amplitudes $d_+ = [d_{G+}, d_{G-}, d_{I+}, d_{I-}]$ assigned to the four defense basis vectors. These amplitudes are related to amplitudes for the prosecutor basis by the unitary transformation,

$$d_+ = U_{nd}^\dagger U_{np} p_+ = U_{dn} U_{np} p_+,$$

which is described next.

It is time to return to the question about how to specify the unitary matrices. A unitary matrix is one that satisfies $U\cdot U^\dagger = I = U^\dagger \cdot U$, and this is necessary for the quantum model in order to preserve lengths and inner products of the basis vectors (Nielsen & Chuang, 2000). The model uses three different bases: one for the naïve point of view, one for the prosecution point of view, and one for the defense point of view. This in turn implies three unitary matrices that relate the amplitudes of the three bases: U_{pn} that transforms amplitudes of the naïve basis into amplitudes of the prosecutor basis; U_{dn} that transforms amplitudes of the naïve basis into amplitudes of the defense; and U_{dp} which transforms amplitudes of the prosecutor into amplitudes of the defense. However, the last one is derived from the first two by the relation $U_{dp} = U_{dn} U_{np}$, with $U_{np} = U_{pn}^\dagger$.
and furthermore $U_{pd} = U_{dp}^\dagger$ and so we only need to describe how to construct U_{dn} and U_{pn} and all the rest are determined from just these two.\footnote{The relation between $U_{dp} = U_{dn}U_{np}$ follows from the fact that $U_{nd} \cdot d = n = U_{np} \cdot p$ and so $d = U_{dp}U_{np} \cdot p$.} Note that these unitary transformations are used independently of the particular belief state, and the same transformation from one set of coordinates to another is used for initial belief states as well as revised belief states. In short, the transformations are only used to change the coordinate system used to represent the current belief state.

Any unitary matrix can be constructed from a Hermitian matrix, $H = H^\dagger$, by the complex matrix exponential transformation $U = \exp(-i \cdot x \cdot H)$ (see Nielsen & Chuang, 2000 p. 84), where x is a parameter.\footnote{This matrix exponential is the solution to the Schrödinger equation. It is a function that is commonly available in matrix programming languages.} Trueblood and Busemeyer (2010b) used a Hermitian matrix that was previously developed for two earlier psychological applications involving four dimensional vector spaces (see Pothos & Busemeyer, 2009, and Busemeyer, Wang, & Mogilianksy, 2009). In these previous applications, the Hermitian matrix H is constructed from two components, $H = H_1 + H_2$, defined by

$$H_1 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}, \quad H_2 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}. \quad (13)$$

The purpose of H_1 is to rotate amplitudes to favor either the presence of positive evidence or negative evidence; and the purpose of the second of H_2 is to rotate beliefs toward guilt when positive evidence is present and to rotate beliefs toward innocence when negative evidence is present. Together these two matrices coordinate beliefs about evidence and hypotheses. The parameter x determines the degree of rotation and this is a free parameter in the model. We allow a different parameter value of x for U_{pn} versus U_{dn}. We also allow a different parameter value of x for strong and weak evidence. Altogether this produces four free parameter values for x, one for each combination of the four types of evidence WP, SP, WD, SD. This way of constructing the unitary matrices was chosen because it was the same as used in previous applications, and it is as simple as we can make it. Just as with the anchor-adjust model, more complex models are possible. (See Trueblood and Busemeyer, 2010b, for more details on this topic).
To summarize, start with the naïve initial state \(n = \sqrt{0.5 \cdot (\sqrt{4.59} \cdot \sqrt{4.59} \cdot \sqrt{5.41} \cdot \sqrt{5.41})^T} \), and compute the two unitary matrices \(U_{pn} = \exp(-i \cdot x_p \cdot H) \) and \(U_{dn} = \exp(-i \cdot x_d \cdot H) \) with \(H \) defined by Equation 13. First consider the prosecutor – defense order. Transform \(p = U_{pn} \cdot n \), set \(p_+ = [p_{G+}, 0, p_{I+}, 0]^T / (|p_{G+}|^2 + |p_{I+}|^2)^{0.5} \), and then take the squared magnitude of the first coordinate of \(p_+ \) to obtain the probability of guilt following the first positive evidence. Next transform to \(d_+ = U_{dn} U_{np} \cdot p_+ \), set \(d_{+,-} = [0, d_{G-}, 0, d_{I-}]^T / (|d_{G-}|^2 + |d_{I-}|^2)^{0.5} \), and take the squared magnitude of the second coordinate of \(d_{+,-} \) to obtain the probability of guilt following the second negative evidence. Next consider the defense – prosecutor order. Transform \(d = U_{dn} \cdot n \), set \(d_- = [0, d_{G-}, 0, d_{I-}]^T / (|d_{G-}|^2 + |d_{I-}|^2)^{0.5} \), and then take the squared magnitude of the second coordinate of \(d_- \) to obtain the probability of guilt following the first negative evidence. Next transform to \(p_- = U_{pn} U_{nd} \cdot d_- \), set \(p_{-,+} = [p_{G+}, 0, p_{I+}, 0]^T / (|p_{G+}|^2 + |p_{I+}|^2)^{0.5} \), and take the squared magnitude of the first coordinate of \(p_{-,+} \) to obtain the probability of guilt following the second positive evidence. Recency effects occur because the two operations of (1) unitary transformation used to change the point of view followed by (2) projection on type of evidence, do not commute. This causes the judgments after each piece of evidence to be order dependent, and the last point of view has the greatest impact.

The quantum model requires fitting four parameters, a pair \((x_{p,s}, x_{d,s})\) for strong evidence and another pair \((x_{p,w}, x_{d,w})\) for weak evidence, to the 12 conditions in Table 2. We fit the four parameters by minimizing the sum of squared errors (SSE) between the predicted and observed mean probability judgments for each of the 12 conditions plus the initial judgment, which produced a SSE = .0058 (standard deviation of the error = .022, \(R^2 = .9986 \)). The predicted values are displayed in the last two columns of Table 1. This quantum model provides a very accurate fit, and it is a clearly better fit than the averaging model. Note that the quantum model correctly predicts all of the recency effects and it also correctly reproduces ordering of the probabilities across all conditions. The only place where the model makes a noticeable error is for the SP condition where it overestimates the strength of this evidence.

Summary of the Quantitative Test. There were three purposes for this quantitative test of the quantum model. One was to extend the quantum model from the conjunction/disjunction paradigm to the inference paradigm. The second was to provide a detailed example showing how
to construct a vector space and unitary transformations relating different incompatible bases. The third was to provide a quantitative test that compares the quantum model with another heuristic model, the averaging model, for explaining order effects on inference. The averaging model was chosen for comparison because it was the strongest candidate for explaining conjunction-disjunction errors, and it was also designed specifically to explain recency effects observed in inference tasks.

Both the quantum model and the averaging model used the same initial belief, and both models were allowed to fit a separate parameter to the SP, WP, SD, and WD types of evidence. Thus both models had the same number of parameters (although the relative complexity of these models remains unknown). The models were fit to 12 different conditions in Table 1, which provides a challenging data set with strong recency effects. It is not so easy to fit these 12 conditions, because the averaging model did not even succeed in reproducing the correct ordering across all the conditions. The quantum succeeded in producing a very accurate fit to all 12 conditions.

The quantitative test reported here is based on the average across eight individual criminal cases presented to the participants. Trueblood and Busemeyer (2010a,b) provide a more thorough analysis of each of the eight cases, and they show that the quantum model continues to fit better than the averaging model for all eight cases. Trueblood and Busemeyer (2010a,b) also compared the quantum model to the additive model (again with both using four parameters), and the quantum continues to fit better than the additive model. More importantly, Trueblood and Busemeyer (2010a,b) derived an important qualitative prediction from the quantum model that distinguishes the quantum model from the additive model. This property is based on the fact that the additive model is insensitive to the interdependence of evidence, whereas the quantum model is sensitive to this interdependence. Trueblood and Busemeyer (2010a,b) report the results of a second experiment designed to test this property, and the predictions strongly supported the quantum model over the additive model. Finally, Trueblood and Busemeyer (2010b) compared the quantum model to a more complex version of the anchor–adjust model (one that allowed the reference \(R \) to be a free parameter, and used a logistic response function, which entailed more parameters than the quantum model). The two models were compared by using a challenging set
of order effects on inference reported by McKenzie, Lee, and Chen (2002), and the quantum model continued to produce a better fit than the anchor – adjust model.

We do not claim that we have proven the quantum model to be the correct explanation for recency effects on inference. Nor have we proven the quantum model is always better than the anchor – adjust model. Much more research is needed to establish these facts. What we conclude is that this quantitative test makes a convincing case for considering the quantum model to be a viable new candidate for modeling human inference and it deserves to enter the model testing fray.

IV. Other applications and extensions.

The quantum model presented here has been successfully applied to several other interesting areas, which demonstrates the generality of the theory. Below we briefly summarize three of these other applications. We also point out third area that needs further theoretical and experimental research.

Attitude questions. Question order effects are ubiquitous in survey research (Moore, 2002), and quantum theory provides a natural explanation for these effects. In one example of a Gallup poll (N = 1002) reported in Moore (2002), half the participants were asked the pair of questions ‘is Clinton honest and trustworthy’ and then ‘is Gore honest and trustworthy’, and half were asked the same pair of questions in the opposite order. Clinton received 50% agreement when asked first and 57% when asked second; Gore received 68% when asked first and 60% when asked second. (This is called an assimilation effect, because the candidates become more similar after the first question). In another example Gallup poll (N = 1015) presented by Moore (2002), half the participants were asked `is Gingrich honest and trustworthy' and then `is Dole honest and trustworthy', and the other half were asked the same in the opposite order. Gingrich received 41% agreement when asked first and 33% when asked second; Dole received 60% agreement when asked first and 64% when asked second (which is called a contrast effect because the candidates become more different on the second question). Two other kinds of order effects are also found called additive effects and subtractive effects (Moore, 2002). In all of the studies reviewed by Moore (2002), order effects were found so that \(p(\text{AyBn}) \neq p(\text{BnAy}) \) and
\[p(\text{AnBy}) \neq p(\text{ByAn}) \] was observed, where for example \(p(\text{AyBn}) \) is the probability of yes to question A followed by no to question B.

Wang and Busemeyer (2010) assumed that answers to back to back questions such as those reviewed in Moore (2002) are made using a sequence of projectors. For example, \(p(\text{AyBy}) = ||P_BP_A |\psi\rangle||^2 \) and \(p(\text{ByAy}) = ||P_A P_B |\psi\rangle||^2 \). If the projectors are non-commuting, then the sequence of projections produces order effects. This is the same assumption that we use to predict conjunction and disjunction errors. Wang and Busemeyer (2009) were able to derive all of the order effects reported in Moore (2002) from this simple model; but more importantly, they derived the following parameter free prediction from the model: If questions are answered back to back and no new information is presented in between questions then

\[
q = [p(\text{AyBn}) + p(\text{AnBy})] - [p(\text{ByAn}) + p(\text{BnAy})] = 0,
\]

Surprisingly, for the three data sets that satisfied the test requirement, the observed results produced an average \(q = .008 \) (average z test statistic = .44, \(N \approx 1000 \)), which is a highly accurate prediction. These results provide strong evidence that the quantum model can make precise and accurate predictions regarding order effects on judgment.

Decision making. The more specific quantum model described in section III also has been used in two of our earlier applications in decision making. Pothos and Busemeyer (2009) used this model to explain a phenomenon called the disjunction effect (Shafir & Tversky, 1992). This has been studied most frequently using the prisoner dilemma paradigm, which is a two player game and each player can choose to defect or cooperate. The phenomena refers to the surprising fact that the probability of defecting when the move of the opponent is unknown turns out to be less than the probability of defecting when either of the opponent’s move is known. The quantum model used a four dimensional vector space to represent the four combinations of beliefs about the opponent’s move (opponent defects or not), and actions by the player (player defect or not). This quantum model was compared to a Markov model which used the same four states, and while the quantum model provided a highly accurate description of the disjunction effect, the Markov model failed to do so.

\[\text{If new information is inserted in between questions, thus violating a key assumption used to derive the prediction, then we find strong and statistically significant deviations (see Wang and Busemeyer, 2009).} \]
Busemeyer et al. (2009) used the same quantum model to explain a phenomenon called the interference of categorization on decision making. This phenomenon has been studied in a categorization –decision task in which participants are shown a face, and then they are asked to either (a) categorize the face as good or bad, or (b) make a decision to act friendly or defensive or (c) categorize the face and decide on an action. The interference effect refers to the surprising fact that the probability of attacking was higher when no categorization was made as compared to when the action was preceded by a categorization. Once again the quantum model used a four dimensional vector space to represent the combinations of categorizations (good, bad) and actions (friendly, defensive). As before, the quantum model was compared to a Markov model which used the same four states, and while the quantum model provided an accurate description of the results, the Markov model failed to so.

One limitation of the quantum probability model presented here is that it fails to describe the dynamic process that produces a judgment. Consequently we cannot predict the distribution of judgments or the time needed to make a judgment. However, some preliminary progress along this line has made (Busemeyer, Wang, & Townsend, 2006; Fuss & Navarro, 2008).

Quantum judgment process. This article presents a theory of probability judgments, where the judged probabilities are based on the postulates described in section I. There are at least two important questions that we still need to address. How are these judgments made and how does one judgment affect a later judgment?

The first question is what cognitive mechanism is used to produce a probability judgment? In physics, it is not possible to ask an electron to judge the probability that it’s in an excited as opposed to ground state. The physicist can only force the particle by a measurement interaction to resolve into a definite yes or no answer. Humans, however, are capable of making judgments. As in the case with many Bayesian judgment models, we remain agnostic about the exact mechanism used to generate these judgments. But if forced to speculate, then one idea is that beliefs in a quantum judgment model are assessed in the same way as familiarity in a memory recognition model. With regard to this idea, it is useful to compare the quantum model with a memory process model for probability judgments (MinervaDM, Dougherty et al., 1999). According to the memory model, probability judgments are determined by an ‘echo intensity,’ which equals the sum of the cubed inner products between vectors representing the memory for
the story and a vector representing the question. According to the quantum model, probability judgments are determined by a ‘squared projection,’ which equals the sum of the squared inner products between each basis vector entailed by a question and a belief state based on the story. In short, the ‘squared projection’ from quantum theory is analogous to the ‘echo intensity’ from MinveraDM.

The second question is how does one judgment affect a later judgment? According to our postulate 4, the belief state is updated when the judge concludes that a new event has occurred or a new fact is true. This is the same principle that is used to update conditional probabilities in classic probability theory. The two probability theories only differ when incompatible events are involved in the judgment. Below we examine the two types of judgment problems reviewed in section II and III.

Let us start with the juror inference task in which evidence is presented followed by a probability judgment of guilt. The presentation of new evidence causes the state to be revised by projecting the state onto the subspace consistent with the evidence. This is the same assumption that would be used in a Bayesian updating model or the averaging model. After this update, the person judges the probability of guilt. The belief state used to make this judgment contains the square roots of the judged probabilities for guilt and innocence. This judgment does not require the juror to resolve his or her uncertainty about guilt (i.e., the juror does not have to conclude whether the defendant is definitely guilty or not). Therefore the judgment about guilt leaves the juror in the same indefinite and uncertain state regarding guilt as before judgment. If instead we ask the juror to resolve all uncertainty and make a firm decision (definitely decide guilty versus not guilty), then the conclusion that the juror finally reaches about guilt could change the juror’s state of belief from an indefinite to a definite state (and affect later punishment judgments).

Finally, consider the probability judgment for the conjunction task. If the person is asked to judge the probability that Linda is a feminist bank teller, then first the person judges the probability that feminism is true of Linda; second, the person projects the state onto the subspace for the feminism event in order to judge the conditional probability of bank teller given that feminism is true. The person only judges the probability of bank teller at this point, and is not required to reach any firm conclusions. Therefore the state remains indefinite about the bank teller question after the probability judgment about bank teller, and the final state immediately
after this sequence equals the projection on the feminism event. Now suppose another question about Linda is asked afterwards. One hypothesis is that the person remains passively in the state left over from the previous judgment (the normalized projection of Linda on feminism). However, people are not passive entities like particles in physics, and instead they are capable of actively changing their own state (by reading information or retrieving new thoughts). A more plausible hypothesis is that the person refers back to the Linda story before another judgment is made, and thereby resets the state to one based on the original Linda story.14

Contribution of quantum ideas to psychology and rationality

Quantum probability theory introduces a new concept to the field of psychology – that is the concept of compatibility between events. More accurately, we should say ‘re-introduce’ this distinction, because Niels Bohr (one of the founding fathers of quantum theory) actually borrowed the idea of complementarity (Bohr’s term for incompatibility) from William James (one of the founding fathers of psychology). Quantum theory also raises some questions about the rationality of human judgments. Is this probability system rational, and if not, then why would people use this system? These two issues are addressed below.

Compatibility. The key new principle that distinguishes classic and quantum probabilities is the concept of compatibility. According to classic probability, all events are subsets of a common sample space, S, that is, all events are based on a common set of elementary events. Questions about different events, A, and B, must refer to this same common space S, which makes the two questions compatible. In the present application, each of the elementary events represents a combination of feature values, and so a classic representation requires one to assign probabilities to all of the combinations for all of the features. If there are a lot of features, then this involves a large number of elementary events, resulting in a very complex probability function. To simplify this probability function, Bayesian theorists often impose strong conditional independence assumptions, which may or may not be empirically valid.

14 One can go on asking how this is done using quantum computing and information principles, and one answer is to use if-then types of control U gates (see Nielsen and Chuang, 2000), but this is getting too far into the realm of speculation with respect to the data at hand.
Quantum theory allows a person to use an incompatible representation. In other words, a person is not required to use a single (but very large) common set of features and their combinations. Instead, one set of features and their combinations could be used to answer a question \(A \), and another set of features and their combinations could be used to answer another question, \(B \). The features can be selected to answer a specific question. The person does not have to assign probabilities to all the combinations from both questions \(A \) and \(B \). Moreover, forming all combinations for answering all possible questions could easily exceed a person’s knowledge capabilities. This is especially true if one considers all the various sorts of questions that a person might be asked. It is a lot more practical and efficient for a person to use an incompatible representation, because one only needs to assign probability amplitudes to the set of feature patterns needed to answer a specific question. Quantum theory achieves this efficiency by using different basis vectors to represent different questions within the same vector space. Quantum theory retains coherence among these different incompatible questions by relating them through a (unitary) rotation of the basis vectors. In other words, one question might require viewing the problem from a first perspective, but then a second question might require viewing the problem from a different perspective. The two perspectives are complementary in the sense that they are systematically related by a rotational transformation.

An important question for any quantum model of cognition is the following: when will two questions rely on a compatible versus an incompatible representation? We argue that a compatible representation may be formed under two circumstances. The first is when the judge has received a sufficiently extensive amount of experience with the combinations of feature values to form a belief state over all of these combinations. If an unusual or novel combination of events is presented, and the person has little or no experience with such combinations, then they may not have formed a compatible representation, and they must rely on incompatible representations of events that use the same small vector space but require taking different perspectives. In fact, conjunction errors disappear when individuals are given direct training experience with pairs of events (Nilsson, 2008), and order effects on abductive inference also decrease with training experience (H. Wang, Todd, & Zhang, 2006). A second way to facilitate the formation of a compatible representation is to present the required joint frequency information in a tabular format (Wolfe, 1995; Wolfe & Reyna, 2009; Yamagishi, 2003). Instructions to use a joint frequency table format would encourage a person to form and make
use of a compatible representation that assigns amplitudes to the cells of the joint frequency tables.

Quantum rationality. Both classic (Kolmogorov) and quantum (von Neumann) probability theories are based on a coherent set of principles. In fact, classic probability theory is a special case of quantum probability theory in which all the events are compatible. So why do we need to use incompatible events, and isn't this irrational? In fact, the physical world obeys quantum principles and incompatible events are an essential part of nature. Nevertheless, there are clear circumstances where everyone agrees that the events should be treated classically (such as random selection of balls from urns or dice throwing). Perhaps in these circumstances a person uses a quantum representation because he or she is willing to trade some accuracy for a simpler (lower dimensional) representation of uncertainty. Furthermore, it remains an empirical question whether quantum or Bayesian methods are more useful for modeling probabilities of very complex sequences when the joint probabilities are largely unknown.\(^{15}\) Also, incompatible events may be essential for understanding our commonly occurring but nevertheless very complex human interactions. For instance, when trying to judge something as uncertain as winning an argument with another person, the likelihood of success may depend on using incompatible representations that allows viewing the same facts from different perspectives. As another example, judges or jurors in a courtroom setting must adopt both prosecution and defense perspectives for viewing the same facts (Trueblood & Busemeyer, 2010b).

Human judges may be capable of using either compatible or incompatible representations, and they are not constrained or forced to use just one. The use of compatible representations produces judgments that agree with the classic laws of probability, whereas the use of incompatible representations produces violations. But the latter may be necessary to deal with deeply uncertain situations (involving unknown joint probabilities), where one needs to rely on simple incompatible representations to construct sequential probabilities coherently from quantum principles. In fact, both types of representations, compatible and incompatible, may be available to the judge, and the context of a problem may trigger the use of one or the other (Reyna & Brainerd, 1995). More advanced versions of quantum probability theory (using a Fock

\(^{15}\) In this case, a Bayesian model must approximate by using conditional independence assumptions that could be false.
space, which is analogous to a hierarchical Bayesian type model) provide principles for combining both types of representations (Aerts, 2009).

Concluding Comments. During the 19th century, it was hard for scientists to imagine that there could be any geometry other than Euclidean geometry; but non Euclidean geometries eventually became essential for many important scientific applications. During the 20th century, it was equally hard for scientists to imagine that there could be any probability theory other than classic probability; but quantum probability became essential to physics. It’s importance for psychology is beginning to be recognized as well (Shiffrin, 2010).

Quantum theory is one of the most elegant and internally consistent creations of the human mind. It was developed by several ingenious physicists as a way to assign probabilities to physical events. This article explores its potential for assigning probabilities to psychological events, specifically in the context of human judgment. In fact, we have utilized the basic axioms of quantum probability theory and simply augmented them with an additional postulate, regarding the order in which multiple questions are evaluated. On the basis of uncontroversial assumptions regarding the relatedness of different pieces of information and the similarity between different instances, we showed how it is possible to account for many of the basic findings in human probabilistic judgment. The main aspect of quantum theory which makes it successful relates to order effects in probability computations. Order effects arise in quantum theory because it is a geometric theory of probabilities: probabilities are computed from projections to different subspaces. But, as we have shown, it is typically the case that the order with which these projections occur can affect the eventual outcome. Empirical findings on human judgment indicate strong order effects as well and it is for this reason that quantum theory appears to provide an intuitive and parsimonious explanation for such findings. We conclude that quantum information processing principles provide a viable and promising new way to understand human judgment and reasoning.
References

Quantum Probability

Appendix A

The first part of this appendix provides a simple geometric and numerical example of an order effect based on the vectors shown in Figure 1 below (visual display limits this to three dimensions). Our example expresses all the vectors in terms of coordinates with respect to the standard \(X, Y, Z\) basis in Figure 1. In this figure, one basis is generated by the \(X = [1, 0, 0], Y = [0, 1, 0],\) and \(Z = [0, 0, 1]\) basis vectors. The blue \(X,Y,Z\) basis could represent three mutually exclusive and exhaustive answers to an \(X\)or\(Y\)or\(Z\) question. A second basis is generated by the \(U = [1/\sqrt{2}, 1/\sqrt{2}, 0], V = [1/2, -1/2, 1/\sqrt{2}],\) and \(W = [-1/2, 1/2, 1/\sqrt{2}]\) basis vectors. The orange \(U,V,W\) basis could represent three mutually exclusive and exhaustive answers to another incompatible \(U\)or\(V\)or\(W\) question. The initial state is represented by the black vector \(S = [-.6963, .6963, .1741]\) in the figure.

Figure 1

To become familiar with the quantum method of calculating probabilities, let us first compute the probabilities for saying yes to question \(X\) (squared length of the projection of \(S\) onto
the ray spanned by X), as well as the probability of saying yes to question W (squared length of the projection of S on the ray spanned by W). In general, the projection of a state onto a ray is determined by the inner product of the state and the basis vector that spans the ray. The inner product between a vector T with coordinates $[t_1, \ldots, t_N]$ and another vector S with coordinates $[s_1, \ldots, s_N]$ is defined (using Dirac bracket notation) as $\langle T | S \rangle = \sum (t_i^* \cdot s_i)$. (Here t_i^* is the conjugate of t_i, but in this example, all of the coordinates are real and so $t_i^* = t_i$). First, consider the probability of choosing X when asked question X or Y or Z from state S. The event ‘yes’ to X is represented by a ray spanned by the basis vector X. The inner product between X and S, equals $\langle X | S \rangle = (1) \cdot (-.69631) + (0) \cdot (.69630) + 0 \cdot (.17410) = -.6963$, the projection of S onto X equals the point labeled $A = (-.6963) \cdot X$ in the figure, and the probability of choosing this answer equals $|-.6963| \cdot |X| = (.6963)^2 \cdot 1 = .4848$. Note that it is arbitrary whether we use the basis vector X or $X^* = (-X)$ to span the ray representing question X, because they both span the same ray. In the latter case, the inner product equals $\langle X^* | S \rangle = +.6963$, yet the projection is exactly the same $A = (+.6963) \cdot X^* = (-.6963) \cdot X$. In other words, the question is represented by a ray, and the ray spanned by the basis vector X does not have a positive or negative direction. Next consider the probability of choosing W when asked question U or V or W from state S. The projection of S on the basis vector W is determined by the inner product $\langle W | S \rangle = (-1/2) \cdot (-.6963) + (1/2) \cdot (.6963) + (1/\sqrt{2}) \cdot (1741) = .8194$, the projection equals the point labeled $B = (.8194) \cdot W$, and the probability of choosing this answer equals $|.8194 \cdot W| = (.8194)^2 \cdot 1 = .6714$.

To examine the order effect, compare (a) asking U first and then X with (b) asking X first and then U. (Consider U the bank teller event, and consider X the feminist event.) Note that in the figure, the probability of X given U equals $|\langle X | U \rangle|^2 = .50 = |\langle U | X \rangle|^2$ which also equals the probability of U given X. In this example the inner product between the initial state S and the basis vector U is zero, $\langle S | U \rangle = 0$, so these two vectors are orthogonal. (We made these two vectors orthogonal so that it is easy to visualize the relation in the figure. We could easily adjust all the vectors slightly so that the probabilities are small but non-zero and make the same point below.) The fact that S and U are orthogonal implies that the probability of saying yes to question U directly from the initial state S is zero. But, if we first ask whether X is true, then there is a probability (.4848) of answering yes; and if the answer is yes to X, then the projection
of X on U equals $(1/\sqrt{2}) \cdot U$, and so now there is a probability $(1/\sqrt{2})^2 = .50$ of saying yes to U given yes to X. Thus the probability from the direct path $S \rightarrow U$ equals zero, but the probability of the indirect path $S \rightarrow X \rightarrow U$ equals $.4848 \times .50 = .2424$. Therefore, this is an example in which the joint probability of first saying yes to X and then yes to U exceeds the single probability of saying yes to U when it is asked first.

The second part of this appendix explains why we can always choose a basis using basis vectors that produce amplitudes which are square roots of probabilities. The reason being that at the time of judgment, the phase of an amplitude is not meaningful, because it is not unique, and so it can be ignored, and we only need to consider the magnitude.

Consider a basis $\{|E_1\rangle, \ldots, |E_N\rangle\}$ for describing a state $|\psi\rangle$ in an N dimensional space. The state vector $|\psi\rangle$ can be represented in the $|E_j\rangle$ basis by expressing it as a linear combination

$$|\psi\rangle = \sum |E_j\rangle \langle E_j|\psi\rangle.$$

The amplitude $\langle E_j|\psi\rangle$ assigned to the basis vector $|E_j\rangle$ equals the inner product between the state vector and the basis vector. In general, this inner product can be a complex number expressed as $\langle E_j|\psi\rangle = R_j e^{i\phi_j}$, with $0 \leq R_j \leq 1$, and R_j^2 equals the probability for the ray spanned by the basis vector $|E_j\rangle$. Note that $e^{i\phi_j} \cdot e^{-i\phi_j} = 1$ so that

$$|\psi\rangle = \sum |E_j\rangle \langle E_j|\psi\rangle = \sum |E_j\rangle (e^{i\phi_j} \cdot e^{-i\phi_j}) \langle E_j|\psi\rangle = \sum e^{i\phi_j} \cdot |E_j\rangle \cdot (e^{-i\phi_j} \langle E_j|\psi\rangle) = \sum |F_j\rangle \langle F_j|\psi\rangle.$$

What we have done here is change from the $|E_j\rangle$ basis to the $|F_j\rangle$ basis for describing the state vector $|\psi\rangle$. But $|F_j\rangle = e^{i\phi_j} \cdot |E_j\rangle$ spans the same ray as $|E_j\rangle$, and the squared magnitude of the amplitude $(|F_j|\psi\rangle)^2 = |e^{-i\phi_j} \langle E_j|\psi\rangle|^2 = R_j^2$ produces the same probabilities as $(|E_j|\psi\rangle)^2 = R_j^2$. Suppose a question about an event corresponds to a subspace spanned by $\{|E_j\rangle, j \in X\}$, where X is the set of basis vectors that define the event in question. This subspace corresponds to the projector $P_X = \sum \langle E_j|\psi\rangle |E_j\rangle$ for $j \in X$. Then the matrix representation of P_X with respect to the $|E_j\rangle$ basis is the $N \times N$ matrix P_X with $\langle E_j|P_X|E_j\rangle = 1$ in rows $j \in X$ and $\langle E_j|P_X|E_j\rangle = 0$ otherwise; the matrix representation of P_X with respect to the $|F_j\rangle$ basis is exactly the same matrix P_X with the value $\langle F_j|P_X|F_j\rangle = e^{-i\phi_j} \langle E_j|P_X|E_j\rangle e^{i\phi_j} = \langle E_j|P_X|E_j\rangle = 1$ in row $i \in X$ and zero otherwise. Finally, the
probability of the event in question equals \(\|P_X|\psi>\|^2 = \|P_X \cdot E\|^2 = \|P_X \cdot F\|^2 \) Therefore we can represent the state using either basis. To make the state more meaningful for cognition, we can choose to orientate the basis vectors so that they represent the state vector by using the square roots of probabilities. Then why do we need the phases?

The phases of the amplitudes are critical when a unitary transformation is used to change from one basis to another basis. Suppose \(A \) is an \(N \times 1 \) unit length column vector with complex coordinates \([a_1, ..., a_N] = [|a_1| e^{i\theta_1}, ..., |a_N| e^{i\theta_N}] \); for this vector, we can define a unitary matrix \(U_A = \text{diag}[e^{-i\phi_1}, ..., e^{-i\phi_N}] \) so that \((U_A \cdot A) \) is now a positive real unit length vector containing coordinates \([|a_1|, ..., |a_N|] \) in this new basis. Suppose \(B \) is another \(N \times 1 \) unit length column vector with coordinates \([b_1, ..., b_N] = [|b_1| e^{i\phi_1}, ..., |b_N| e^{i\phi_N}] \); again for this vector we can define a unitary matrix \(U_B = \text{diag}[e^{-i\phi_1}, ..., e^{-i\phi_N}] \) so that \((U_B \cdot B) \) is also a positive real unit length vector with coordinates \([|b_1|, ..., |b_N|] \). Finally, suppose the original complex vectors \(A \) and \(B \) are related by an \(N \times N \) complex valued unitary transformation matrix \(U_{BA} \) so that \(B = U_{BA} \cdot A \). Then we have the following relations

\[
B = U_{BA} \cdot A \Rightarrow (U_B \cdot B) = (U_B \cdot U_{BA} \cdot U_A^{-1}) \cdot (U_A \cdot A).
\]

The positive real vector \((U_A \cdot A)\) produces the same probabilities for events as the complex vector \(A\), and the positive real vector \((U_B \cdot B)\) produces the same probabilities for events as the complex vector \(B\), and the matrix \((U_B \cdot U_{BA} \cdot U_A^{-1})\) is the unitary matrix that transforms \((U_A \cdot A)\) into \((U_B \cdot B)\). So we get the same exact answers using \{\(A, B, U_{BA}\)\} or \{\((U_A \cdot A), (U_B \cdot B), (U_B \cdot U_{BA} \cdot U_B^{-1})\)\}, and the latter only uses the square roots of probabilities. However, the phases remain important for the unitary transformation because \(|b_j| = \sqrt{\sum |u_{ij}| a_j} \neq \sqrt{\sum |u_{ij}|^2 a_j} \), and this is exactly where the interference enters the theory.

The unitary transformation can be interpreted as a fully interconnected hidden unit neural network: input \((U_A \cdot A)\) \Rightarrow\ associative network \((U_B \cdot U_{BA} \cdot U_A^{-1})\) \Rightarrow\ \((U_B \cdot B)\) output. Instead of using logistic hidden units as in a standard connectionist model, the unitary transformation uses sine-cosine units. We only require that the output amplitude \((U_B \cdot B)\) be explicitly available for awareness or reporting, and the phase captures implicit memory interference effects produced by
the wave mechanical oscillations of the underlying neural based retrieval system represented by the unitary operator (Acacio de Barros & Suppes, 2009).
Appendix B

The purpose of this appendix is to prove the following two propositions:

1. The conjunction and disjunction fallacies occur only if the events are incompatible.

2. The simultaneously explanation of both the conjunction and disjunction fallacies requires the following order constraint: \(\|P_F P_B|\psi\rangle\|^2 < \|P_B P_F|\psi\rangle\|^2 \).

But before we begin, recall that \(|\psi\rangle \) is a vector within a finite dimensional vector space defined on a field of complex numbers (technically, a finite dimensional Hilbert space). \(P_A \) denotes a projector on the subspace \(A \) which is a Hermitian matrix that satisfies \(P_A \cdot P_A = P_A \).

Proposition 1: The conjunction and disjunction fallacies occur only if the events are incompatible.

Proof:

If the events are compatible, then the projectors commute, \(P_B P_F = P_F P_B \), and the interference term equals

\[
\langle \psi_B, \neg F|\psi_{B,F}\rangle = \langle \psi|P_F P_B P_B P_F|\psi\rangle = \langle \psi|P_B P_F P_F P_B|\psi\rangle = 0 \text{ because } P_{\neg F} P_F = 0.
\]

If the interference term is zero then the probability of the single event, shown on the left hand side of Equation 1, is simply the sum of the two conjunction probabilities, and so the left hand side must be greater than or equal to each individual conjunction probability on the right hand side. QED.

We need prove two lemmas before proving the second proposition.

Lemma 1: The interference term for event \(\neg F \) is the negative of the interference term for event \(F \).

Proof:

\[
1 = \|P_F|\psi\rangle\|^2 + \|P_{\neg F}|\psi\rangle\|^2 \\
= \left[\|P_F P_B|\psi\rangle\|^2 + \|P_F P_{\neg B}|\psi\rangle\|^2 + \delta_F \right] + \left[\|P_{\neg F} P_B|\psi\rangle\|^2 + \|P_{\neg F} P_{\neg B}|\psi\rangle\|^2 + \delta_{\neg F} \right]
\]
Lemma 2: The following two expressions for the interference terms are equivalent:

\[\delta_B = \langle \psi_{B,-F}|\psi_{B,F}\rangle + \langle \psi_{B,F}|\psi_{B,-F}\rangle = 2 \cdot \text{Re}[\langle \psi|P_B P_F|\psi\rangle - ||P_B P_F|\psi||^2] \]

\[\delta_F = \langle \psi_{F,-B}|\psi_{F,B}\rangle + \langle \psi_{F,B}|\psi_{F,-B}\rangle = 2 \cdot \text{Re}[\langle \psi|P_F P_B|\psi\rangle - ||P_F P_B|\psi||^2] \]

Proof:

Note that \(\langle \psi_{B,F}|\psi_{B,-F}\rangle = \langle \psi_{B,-F}|\psi_{B,F}\rangle^* \) (where * indicates the conjugate) so that

\[\delta_B = \langle \psi_{B,-F}|\psi_{B,F}\rangle + \langle \psi_{B,F}|\psi_{B,-F}\rangle = 2 \cdot \text{Re}[\langle \psi|P_B P_F|\psi\rangle] \]

\[\delta_F = \langle \psi_{F,-B}|\psi_{F,B}\rangle + \langle \psi_{F,B}|\psi_{F,-B}\rangle = 2 \cdot \text{Re}[\langle \psi|P_F P_B|\psi\rangle] \]

where \(\text{Re}(x) \) is the real part of the complex number \(x \). It then follows that

\[\delta_B = 2 \cdot \text{Re}[\langle \psi_{B,-F}|\psi_{B,F}\rangle] = 2 \cdot \text{Re}[\langle \psi|P_{-F} P_B P_F|\psi\rangle] = 2 \cdot \text{Re}[\langle \psi|P_{-F} P_B P_F|\psi\rangle] \]

\[= 2 \cdot \text{Re}[\langle \psi|(I - P_F)P_B P_F|\psi\rangle] = 2 \cdot \text{Re}[\langle \psi|P_B P_F|\psi\rangle - ||P_B P_F|\psi||^2] \].

A similar argument applies to produce the alternative expression for \(\delta_F \). QED.
Proposition 2: The simultaneously explanation of both the conjunction and disjunction fallacies requires the following order constraint: $||P_F P_B|\psi||^2 < ||P_B P_F|\psi||^2$.

Proof:

Recall from Equation 1 the interference term from bank teller event equals $\delta_B = \langle \psi_{B,-F}|\psi_{B,F}\rangle + \langle \psi_{B,F}|\psi_{B,-F}\rangle$, and the conjunction error requires $\delta_B < -||P_B P_F|\psi||^2$. Recall from Equation 2 that the interference term from the not feminist event equals $\delta_{\sim F} = \langle \psi_{\sim F,B}|\psi_{\sim F,-B}\rangle + \langle \psi_{\sim F,-B}|\psi_{\sim F,B}\rangle$, and the disjunction error requires $\delta_{\sim F} < -||P_{\sim F} P_B|\psi||^2$. Also note from Lemma 1 that $\delta_{\sim F} = -\delta_F$. From this last expression it follows that $-\delta_F < -||P_{\sim F} P_B|\psi||^2$ which then implies that $\delta_F > ||P_{\sim F} P_B|\psi||^2$. Using the new expression for the interference based on Lemma 2, we see that the two inequalities require that

$$\delta_F = 2 \cdot \text{Re}[\langle \psi|P_F P_B|\psi\rangle] - ||P_F P_B|\psi||^2 > ||P_{\sim F} P_B|\psi||^2$$

$$> -||P_{\sim F} P_B|\psi||^2 > 2 \cdot \text{Re}[\langle \psi|P_B P_F|\psi\rangle] - ||P_B P_F|\psi||^2} = \delta_B.$$

But $\text{Re}[\langle \psi|P_F P_B|\psi\rangle] = \text{Re}[\langle \psi|P_B P_F|\psi\rangle]$, which implies that $-||P_F P_B|\psi||^2 > -||P_{\sim F} P_B|\psi||^2$ and therefore we require $||P_F P_B|\psi||^2 < ||P_B P_F|\psi||^2$. QED.
Appendix C

According to the vignette version of the memory model, information about the story is stored in a memory trace (column) vector denoted T. A single question A is represented by a probe (column) vector of the same length, P_A, with values assigned to features related to both the question and the story, and zeros otherwise. Retrieval strength (echo intensity) to a question is determined by the inner product between the memory trace vector and the question probe vector, $I_A = \langle P_A | T \rangle / N_A$. Note that the inner product is normalized by dividing it by a number, N_A, that depends on the number of nonzero elements in the question probe vector. Frequency or relative frequency judgments are assumed to be proportional to echo intensity (which requires the intensity to be non-negative). A conjunctive question ‘L and U’ is represented by a single conjunctive probe, which is the direct sum (concatenation) of two minivectors (this is the same as summing two non-overlapping vectors). If P_L is a row minivector for L with length N_L, and P_U is a row minivector for U with length N_U, and 0_N is a row vector of N zeros, then $P_{L\&U} = [P_L | P_U] = [P_L | 0_{N_L}] + [0_{N_U} | P_U] = P_L + P_U$. The echo intensity of this conjunction probe produces something akin to an average,

$$(I_{L\&U})^{1/3} = \frac{\langle P_{L\&U} | T \rangle}{N_{L\&U}} = \frac{\langle P_L + P_U | T \rangle}{N_{L\&U}}$$

$$= \frac{\langle P_L | T \rangle}{N_{L\&U}} + \frac{\langle P_U | T \rangle}{N_{L\&U}}$$

$$= (N_L/(N_L+N_U)) \cdot (I_L)^{1/3} + (N_U/(N_L+N_U)) \cdot (I_U)^{1/3}$$

which is a weighted average

$$= w_L \cdot (I_L)^{1/3} + w_U \cdot (I_U)^{1/3},$$

with weights $w_L = N_L/(N_L+N_U)$ and $w_U = N_U/(N_L+N_U)$. The intensity is the cube $[(I_{L\&U})^{1/3}]^3 = I_{L\&U}$ and the cubic function is monotonically increasing, so the intensity is ordered the same as $(I_{L\&U})^{1/3}$.
Author Notes

This material is based upon work supported by the National Science Foundation under Grant No. 0817965. We thank Rich Shiffrin, Marius Usher, Duncan Luce, and other anonymous reviewers for comments on this work.