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Abstract 
 
The timecourse and extent of changes in pupil area in response to light are reviewed 

in all classes of vertebrate and cephalopods.  Although the speed and extent of 

these responses vary, most species, except the majority of teleost fish, show 

extensive changes in pupil area related to light exposure.  The neuromuscular 

pathways underlying light-evoked pupil constriction are described and found to be 

relatively conserved, although the precise autonomic mechanisms differ somewhat 

between species.  In mammals, illumination of only one eye is known to cause 

constriction in the unilluminated pupil.  Such consensual responses occur widely in 

other animals too, and their function and relation to decussation of the visual 

pathway is considered.  Intrinsic photosensitivity of the iris muscles has long been 

known in amphibia, but is in fact widespread in other animals.  The functions of 

changes in pupil area are considered.  In the majority of species, changes in pupil 

area serve to balance the conflicting demands of high spatial acuity and increased 

sensitivity in different light levels.  In the few teleosts in which pupil movements occur 

they do not serve a visual function but play a role in camouflaging the eye of bottom-

dwelling species. The occurrence and functions of the light-independent changes in 

pupil size displayed by many animals are also considered.  Finally, the significance 

of the variations in pupil shape, ranging from circular to various orientations of slits, 

ovals, and other shapes, is discussed. 

Keywords;   pupil, iris, constriction, dilation, vertebrate, cephalopod 
 
Abbreviations 
PLR  Pupil Light Response 
OPN  Olivary Pretectal Nucleus 
EWN  Edinger-Westphal Nucleus  
ipRGC intrinsically photosensitive Retinal Ganglion Cell 
CG  Ciliary Ganglion  
t50  Time after light exposure at which 50% constriction is reached  
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1.  Introduction 

In this review, the term pupil is restricted to the aperture formed by the iris in the 

simple eyes of vertebrates and cephalopods. In most of these animals, the size of 

the pupil changes depending on the ambient illumination, increasing in area as light 

levels fall.   Invertebrate compound eyes also have what is termed a ‘pupil’ formed 

by migration of screening pigment between the rhabdoms, altering photoreceptor 

illumination (Warrant & McIntyre, 1996; Land & Nilsson, 2012).  Such pigment 

migrations are not considered here.  

 

The functions of, and the mechanisms behind, the variations in human pupil 

diameter are well known.  The reasons for the extensive literature covering the 

human pupil are manifold:  Those interested in the biology and optics of vision study 

the pupil as it is an important mechanism that helps balance the conflicting demands 

of optimising sensitivity and spatial acuity in different light conditions and for different 

visual tasks.  However, the size of the pupil is not only related to vision and ambient 

illumination, and can be influenced by, for example, cognitive load and arousing 

stimuli.  The pupil is therefore also of interest to those investigating various 

psychological phenomena.  Understanding the neural and muscular mechanisms 

underlying changes in pupillary area is also important to clinicians, as they need to 

alter the area of the pupil pharmacologically during eye examinations. Perhaps most 

importantly, however, abnormal pupil responses are a powerful indicator of central 

nervous system pathology and trauma indicating, for example, the presence and 

location of tumours, cardiovascular anomalies, neurodegenerative disease, and 

other lesions. For all these reasons, the human pupil has been thoroughly 

researched and extensively reviewed. 
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However, much less is known about the pupil responses of other animals and no 

comprehensive reviews are available. Although Walls’s seminal book on 

comparative vision (Walls, 1942) includes references to the pupil, it is not the focus 

of the work.  Similarly, Loewenfeld’s classic book on the pupil (Loewenfeld, 1993) 

concentrates on the human pupil, although it does contain references to historical 

work on other animals.  This review will attempt to fill this gap and compare the pupil 

responses of other vertebrates and cephalopods to those of humans.   

 

There are approximately 65,000 extant species of vertebrate (The World 

Conservation Union, 2014), divided here into fish, birds, reptiles, amphibia and 

mammals, as well as 600-800 living species of cephalopod (Nesis, 1987; Hanlon & 

Messenger, 1996).  The pupil responses of only a tiny fraction of these have been 

examined.  It is also unreasonable to expect, for example, the pupils of all 25,000 

species of fish to behave in exactly the same way.  One therefore cannot talk about 

the pupil response of ‘the fish’, or any other group of animals.  This review therefore 

cannot hope to be comprehensive.  Instead, it will attempt to give an overview of the 

pupil response within different groups of animals using representative examples. 

 

2.  Iris structure  

Although the detailed structure of the iris varies between species, all have basic 

similarities. The iris of humans will serve as a representative example. 

 

The iris is the most anterior part of the uvea, which at its base is attached to the 

ciliary body from which it extends inwards (Fig. 1A) forming a circular aperture, the 
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pupil. It separates the anterior and posterior chambers of the eye and is bathed in 

aqueous humour.  Unusually for an exposed surface, the anterior iris is not covered 

by an epithelium; instead consisting of a dense network of interwoven fibroblasts 

posterior to which is a layer of melanocytes, whose thickness influences the colour of 

the iris.  The iris stroma is an example of an aereolar connective tissue made up of 

loosely arranged collagen fibres containing a variety of cell types (e.g. fibroblasts, 

phagocytes, melanocytes, mast cells), nerves, and blood vessels.  The insubstantial 

nature of the stroma allows the iris to change shape during muscular contraction, 

thereby regulating pupil size. Posteriorly, the iris is covered by a double-layer of 

pigmented epithelial cells (Fig. 1), whose cells are connected by numerous junctions 

to ensure they do not separate during iris movement (Bron et al., 1997).  

 

The irises of other animals differ in detail from that outlined above for humans.  For 

example, the iris stroma in many animals, such as frogs (Nolte & Pointner, 1975), 

toads (Rubin et al., 1986), fish (Kuchnow & Martin, 1970; Lanzing & Wright, 1981; 

Munk, 1985), and octopus (Froesch, 1973), contains layers of melanophores, 

iridophores and xanthophores.  Furthermore, the front surface of the octopus 

(Froesch, 1973) and fish (Lanzing & Wright, 1981; Munk, 1985) irises are formed by 

an epithelium, rather than the insubstantial anterior border layer described above for 

humans. However, something the irises of all normally pigmented animals have in 

common is that their posterior surfaces are covered by epithelia containing dense 

melanin, allowing the iris to function as an efficient aperture stop. 

 

Another thing most irises share is the presence of muscle.  The majority of species 

have a narrow circular sphincter pupillae running circumferentially around the 
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pupillary margin (Figs. 1A&B & 2A&C), whose contraction decreases pupil diameter.  

Many species also have a radial dilator muscle between the sphincter muscle and 

the iris root that increases pupillary area on contraction (Figs. 1A&C, 2).  In animals 

with slit-like pupils, the sphincter muscle is not circular and instead is divided into 

several bundles two of which cross and run vertically (Raselli 1923; Section 9.2.1; 

Fig. 2B). While the sphincter muscle usually lies within the iris stroma and is 

separated from the pigmented epithelium (Fig. 1B), the dilator is normally 

myoepithelial and is located within the cells of the posterior epithelium (Fig. 1C). 

 

The degree to which these two muscles are developed varies between species. 

While a sphincter muscle has been reported in most animals examined, the dilator is 

often absent.  In animals where the iris is directly involved in accommodation, such 

as amphibious species (Section 8.3.2), the iris muscles, especially the sphincter, are 

particularly well developed (Ballard et al., 1989). 

 

Classically, the iris muscles are described as unstriated in mammals, fish, and 

amphibia, but striated in birds and reptiles.  However, both pharmacological and 

histological work suggests the irises of some reptiles (Iske, 1929; Reger, 1966) and 

many birds in fact contain both striated and non-striated muscle components 

(Gabella & Clarke, 1983; Yamashita & Sohal, 1986; Scapolo et al., 1988; Barrio-

Asensio et al., 1999; Loerzel et al., 2002).  Although the non-striated tissue can be 

located throughout the iris in smooth muscle cells within the stroma, it often forms a 

distinct myoepithelial dilator muscle (Walls 1942 for review of earlier literature; van 

Oehme, 1969; Nishida & Sears, 1970; Oliphant et al., 1983; Dieterich et al., 1988).  

In chicks, unstriated iris muscle is particularly apparent early in development, after 
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which there is a transition to striated fibres, although some unstriated muscle is 

retained even in adults (Pilar et al., 1987; Volpe et al., 1993; Link & Nishi, 1998). 

 

Although iris muscles are responsible for changes in pupil size, their simple 

presence cannot be taken as proof of pupil mobility.  The bilby, an Australian 

marsupial, for example, has an iris sphincter muscle, yet its pupil is immobile 

(Arrese, 2002; Section 3.1.2.2).  Similarly, most teleost fish have pupils that lack 

significant mobility (Section 3.5.2.3), but many still possess iris muscles (Grynfeltt, 

1910; Staflova, 1969) which appear to be innervated (Munk, 1985).  We have also 

shown pronounced circular, and lesser radial, staining for filamentous actin in the 

irises of the zebrafish, as well as other teleosts, that is consistent with both iris 

sphincter and dilator muscles (Fig. 3), although these species lack mobile pupils. 

 

It seems reasonable to assume that the function of iris muscles in animals with 

immobile pupils is to maintain the size and shape of the pupil.  In fish, for example, 

the lens protrudes through the pupil and accommodation occurs via changes in lens 

position (Sivak, 1980; Ott, 2006).  If the iris were lax and not held under tension by 

some means, such as muscle, the form of the pupil could be affected during 

accommodation either directly by contact between the lens and the iris or by any 

resulting changes in aqueous flow (Munk, 1985).  

 

3.  Pupil shape and the dynamics of the pupil light response 

Although some species have fixed pupils, in most, except at the extremes of 

illumination, pupil area decreases as light levels rise.  The timecourse and extent of 

this Pupil Light Response (PLR) in different animal groups are reviewed below. 
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However, detailed comparisons between species must be treated with caution as the 

dynamics of the PLR will be influenced by a number of factors including; the intensity 

and spectral composition of the stimulating and background lights, the length of any 

preceding dark adaptation, and probably additional variables such as the time of day 

(Section 8.1) and temperature.  These are rarely the same in different studies.  The 

use of anaesthetics will also influence the response of the pupil, and where possible 

we have referred to studies involving unaesthetised animals that were either freely 

moving or lightly restrained. 

 

Comparison between studies is further complicated by the fact that the size of the 

pupil is expressed variably in terms of either its diameter or area.  Furthermore, 

these are given either in absolute units or as a proportion of the dark adapted pupil 

size.  Similarly, the time taken for constriction is usually given in terms of how long it 

takes to complete.  However, as this is usually asymptotic it is often difficult to 

determine accurately.  A more precise measure of the speed of constriction is given 

by the time taken to reach half the fully dilated area (t50), which will be used in this 

review where possible.  

 

The PLR of humans and other animals is usually studied in the laboratory using brief 

flashes of, often high intensity, light.  However, such stimulation will rarely, if ever, 

occur in the wild, where changes in illumination, most notably dawn and dusk, are 

more gradual and prolonged.  Although the response of the pupil to gradual changes 

in illumination is usually not investigated, this review will concentrate on pupillary 

responses to prolonged changes in illumination where possible. 
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Pupillary constriction can be evoked by both light falling on the retina and, in many 

species, by direct illumination of the iris muscles without involvement of the retina.  

Pupil responses that are independent of retinal illumination will be discussed 

elsewhere (Section 6).  The current section will describe the pupil responses of intact 

animals, which are the result of both iris and retinal illumination. 

 

3.1  Mammalian pupil responses 

The detailed phylogeny of the approximately 5,500 extant mammalian species 

remains a matter of debate (Meredith et al., 2011). There are 2 broad groupings; the 

egg-laying monotremes (4 species of echidnas & 1 platypus), and the live-bearing 

theria. The latter are further subdivided into marsupials (ca. 350 species) and 

placentals.   

 

3.1.1 Pupil shape 

The pupils of many mammals, such as most primates and rodents, remain circular at 

all light levels, but horizontal or vertical ovals/slits when pupils are constricted are 

also widespread (Mann, 1931; Walls, 1942; Malmström & Kröger, 2006).  Vertical 

pupils are often associated with carnivores, such as the domestic cat (Fig. 4A&B) 

and seals, while horizontal pupils are more often found in herbivores, such as 

kangaroos and many ungulates (Fig. 4D&E). However, Mann (1931) argues that 

rather than diet, pupil shape is determined mainly by activity cycles, vertical pupils 

being characteristic of nocturnal animals and horizontally elongated and circular 

pupils more common in diurnal species.  This is discussed further in section 9.2.   
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In some animals, the iris forms a dorsal operculum or umbraculum within the pupil on 

constriction (Section 9.1).  Among mammals, such protrusions are rare and only 

observed in the rock hyrax (Millar, 1973) and in some cetaceans (Walls, 1942; 

Herman et al., 1975; Dawson et al., 1979; West et al., 1991; Kröger & Kirschfeld, 

1993; Mass, 2001; Bjerager et al., 2003; Mass & Supin, 2007; Rivamonte, 2009; 

Miller et al., 2010, 2013), in whom they can form a U- or crescent-shaped constricted 

pupil, which may form two small apertures at the highest light levels (Fig. 4C). The 

corpora nigra (granula iridica) protruding from the superior and inferior iris margins of 

some large herbivours (Mann, 1931; Walls, 1942), such as camels (Rahi et al., 1980) 

and horses (Miller & Murphy, 2016; Figs. 4D&E), has a similar effect. 

 

3.1.2  Pupil dynamics 

3.1.2.1  Monotremes 

There are only a few studies of ocular structure in monotremes (e.g. Pettigrew et al., 

1998), and nothing is known of relevance to pupil mobility other than that the pupils 

are circular and the iris contains a well-developed sphincter, but no dilator (Walls, 

1942).  However, the presence of a sphincter does not necessarily imply pupil 

mobility as it may serve merely to maintain pupil shape (Section 2). 

 

3.1.2.2  Marsupials 

The PLR of marsupials is species dependent (Arrese et al., 2000; Arrese, 2002). The 

circular pupils of the strictly diurnal numbat and the nocturnal bilby are fixed, and the 

vertically oval pupil of the mainly nocturnal honey possum constricts only slightly on 

illumination, and the response is relatively slow, with a latency of 600msec and 

needing 4.8secs to reach maximal constriction. The circular pupil of the burrowing 
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bettong constricts more fully, reaching an area 32% that of the fully dilated pupil, with 

a latency of 200msec and maximal constriction taking 1.7secs.  

 

The largest pupillary constriction among marsupials is shown by the circular pupil of 

the arrhythmic fat-tailed dunnart, whose constricted pupil is extremely small, with an 

area only around 2% that of the dilated pupil.  The response is also rapid, with a 

latency of less than 200msec and its extensive constriction is completed in only 

1.6secs. 

 

Thus, in marsupials the range and speed of the PLR is related to the range of light 

levels normally encountered by the animal.  A species such as the dunnart, which 

can be active at both day and night, and may experience rapid changes in light level 

while hunting and avoiding predators during the day, would benefit from a rapid and 

extensive PLR. The other marsupials, on the other hand, normally experience more 

constant light levels, and would gain little from a highly mobile pupil. 

 

3.1.2.3 Placentals 

3.1.2.3.1 Primates   

Primates are grouped into the strepsirrhines (lemurs, galagos, pottos and lorises) 

and haplorrhini (monkeys, apes and tarsirs). While vertically elongated pupils occur 

in a number of strepsirrhines in high light levels (Walls, 1942; Mann, 1931; 

Malmström & Kröger, 2006; Beltran et al., 2007), the pupils of ‘higher’ primates are 

circular at all levels of illumination.  

 

https://en.wikipedia.org/wiki/Lemur
https://en.wikipedia.org/wiki/Hominin
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For the reasons outlined in section 1, more is known about the pupil of humans than 

any other animal, but only a brief outline is given here as many reviews are 

available.  Although not the most recent, perhaps the most informative source on the 

human pupil is the classic work by Loewenfeld (1993). 

 

The adult human pupil changes in diameter from about 8mm when fully dilated to 

around 2mm when maximally constricted.  Thus, the fully constricted pupil has an 

area about 6% of the dilated one, reducing the amount of light impinging of the retina 

by a factor of 16.  As is common to most animals, pupil size and response latency 

decrease in brighter light (Figs. 5&6). The latency in humans ranges bewteen 180-

500msec, depending principally on light intensity, but also influenced, for example, 

by the completeness of the proceeding dark adaptation, the spectral quality of the 

light, the location and extent of the retina stimulated, and the age of the person 

(Loewenfeld, 1993). During prolonged increases in light level, the pupil after its initial 

contraction redilates to varying degrees (Fig. 5D).  In response to dim light this 

redilation is rapid and may be complete, while following exposure to higher light 

levels it proceeds more slowly and is only partial.  

 

Most characteristics of the PLR of another simian, the rhesus macaque, are very 

similar to those of humans (Gamlin et al., 1998; Pong & Fuchs, 2000; Clarke et al., 

2003), with, for example, latency and area decreasing and speed increasing as a 

function of light intensity.  The major differences are that the latency of the macaque 

response is up to 100msec shorter than for humans and the response is faster. This 

may indicate a more ‘active relaxation’ of the dilator muscle in the monkey than in 
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humans (Gamlin et al., 1998), or that the muscle physiology of these animals is 

simply faster than in humans. 

 

Although detailed PLR dynamics are not available for many primates, it is clear that 

nocturnal species which are also occasionally active during the day, such as tarsirs 

and strepsirrhines, would benefit from extensive pupil movements.  Consequently, 

their dilated pupils are often almost as wide as their enlarged eyes, but in light 

constrict to small oval or circular apertures (Walls, 1942; Wolin & Massopust, 1967; 

Pariente, 1979), resulting in a larger range of pupillary area than occurs in strictly 

diurnal species. 

 

3.1.2.3.2  Rodentia 

The most studied rodent pupils are those of mice who, due to their genetic versatility, 

are frequently used as a model for mammalian ocular physiology and pathology, and 

their PLR can be monitored to assess retinal function (e.g. Lucas et al., 2003; 

MacLaren et al., 2006; Perganta et al., 2013).  As expected, the amplitude of 

contraction of the mouse pupil is a function of stimulus intensity, and the latency of 

the response to bright light is around 250msec (Grozdanic et al., 2003).  In response 

to high light levels, the mouse pupil routinely constricts to about 5% of its dilated 

area (Lucas et al., 2001; Hattar et al., 2003; Maclaren et al., 2006; Ouk et al., 2016; 

Fig. 21). 

 

Pupil constriction in rats, in comparison to mice, has a slightly longer latency 

(299msec), and in response to the same light level constricts less (Grozdanic et al., 
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2002), although comparable fully constricted areas to the mouse (4%) are possible 

(Lau et al., 1992). 

 

Most work on hamster pupils involves the non-retinally mediated response of the 

isolated iris (Bito & Turansky, 1975; Suzuki et al., 1991; Section 6).  However, the 

PLR of intact animals, in comparison to rats, is slower and in response to the same 

light level the pupil constricts less (Lau et al., 1992).  Constriction in response to 

bright light to about 9% of the dilated pupil area, is achieved within 6-8secs, although 

areas of less than 1% of the dark adapted area do occur (Hut et al., 2008). 

 

Although no detailed dynamic information is available concerning light-driven pupil 

responses in other rodents, the pupils of, for example, guinea pigs (Ostrin et al., 

2014) and grey squirrels (McBrien et al., 1993) can be contracted and dilated by 

pharmacological agents. 

 

3.1.2.3.3  Ungulata  

Given the very characteristic, horizontally rectangular, shape of the pupil of many 

ungulates such as horses and sheep (Fig. 4D), it is perhaps suprising that there are 

no detailed studies of the pupil dynamics for any members of this group.   

 

The horse’s eye is one of the largest among terrestrial vertebrates. Consequently, 

the pupil dilated by either drugs (Mughannam et al., 1999; Davis et al., 2003) or low 

levels of illumination (Roth et al., 2008) is correspondingly large, with an area six 

times greater than that of humans (Miller & Murphy, 2016). In low light levels the 

dilated equine pupil is circular and in normal daylight takes on its familiar rectangular 
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shape (Fig. 4D).  However, in very high light levels the superior corpora nigra may 

reach the inferior iris, dividing the pupil into two small apertures (Miller & Murphy, 

2016) (Fig. 4E).  Although Walls (1942) states that the horse shows only slight pupil 

mobility, it appears the total excursion of the equine pupil is in fact greater than that 

of humans, although the rate of change in area is relatively slow (Miller & Murphy, 

2016). 

 

The size of the sheep pupil, like that of presumably most ungulates, depends on 

degree of ambient illumination (Seggie et al., 1989). Although the range of pupil 

movements in most ungulates is unclear, what seems certain is that their horizontally 

oblong or circular pupils do not close down as much as the slit-like pupils of animals 

such as cats (Section 3.1.2.3.5; Fig. 4B).  The difference in the ability of slit and 

rectangular or circular pupils to constrict is a function of the arrangement of their iris 

sphincter muscles (Fig. 2), and is discussed in section 9.2.1. 

 

3.1.2.3.4  Cetacea 

This group of aquatic mammals, which encompasses whales, dolphins and 

porpoises, are closely related to even-toed ungulates (Artiodactyla).  Pupillary area 

in the bottle-nosed dolphin depends on the level of illumination, and when 

normalised to the area of the maximally dilated pupil is very similar to that of humans 

at comparable illumination (Dawson et al., 1979).  Maximal constriction takes 9-

10secs and half maximal constriction is reached in about 1-1.8secs, depending on 

light intensity. 

 

 



18 
 

3.1.2.3.5  Carnivora  

The basic dynamics of the cat PLR are similar to those of humans having, for 

example, a comparable latency (200-300msec) and pupil area decreasing with 

increasing luminance (Lowenstein et al., 1953; Lowenstein, 1954; Watanabe et al., 

1990; Oh et al., 1995; Thompson et al., 2010; Fig. 7).  However, humans and cats 

differ widely in their range of pupil movements.  This is because the circular fully 

dilated feline pupil has an area of ca. 120mm2, which is around three times as large 

as the human pupil, while the constricted vertical slit pupil of the cat is smaller than 

the human one (Wilcox & Barlow, 1975; Hammond & Mouat, 1985 ). Thus, the cat 

pupil changes in area from light to dark by a factor of around 135 (Section 9.2.1 for 

discussion). 

 

Not all carnivores have constricted slit pupils.  The pupils of dogs and big cats, for 

example, remain circular at all light levels.  Consequently, changes in pupillary area 

in these species are relatively modest.  For example, in one study the diameter of 

the dog pupil in low light levels was 8.3mm, which reduced to 5.7mm on illumination 

(Grozdanic et al., 2007).  Thus, the constricted pupil area was still around half that of 

the dilated pupil.  In most respects the dynamics of the dog pupil response are 

similar to humans, amplitude and velocity increasing and latency decreasing in 

brighter light (Whiting et al., 2013). The response latency of the dog pupil is also 

similar to most other mammals, ranging between ca. 133-381msec (Grozdanic et al., 

2007; Whiting et al., 2013; Kim et al., 2015; Yeh et al., 2017). 

 

As in marsupials (Section 3.1.2.2), the range of pupillary movements in different 

species of pinniped is related to the range of lighting conditions the animal normally 

https://en.wikipedia.org/wiki/Carnivora
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experiences throughout the day.  The Northern elephant seal routinely dives to 

depths in excess of 500m and therefore experiences a wide range of light intensities.  

Consequently, it has a very large circular pupil in darkness, which in bright lightly 

constricts to a small slit, whose area is only 0.2% of the area of its dilated pupil, 

representing an area change by a factor of 469.  In contrast, in harbor seals and 

California sea lions, whose dives rarely exceed 100m, and who therefore experience 

lesser changes in light levels, the constricted pupils are wider slits that cause a 

lesser reduction in area to 1.4% and 3.8% of the dark adapted pupil area, 

respectively (Levenson & Schusterman, 1997). Such extensive pupillary movements 

contribute to the faster rate of dark adaptation and higher sensitivity in pinnipeds 

compared to man (Levenson & Schusterman, 1999). 

 

3.2 Bird pupil responses 

Although there are around 10,000 species of living birds, the pupils of few have been 

examined in detail.  The limited available evidence indicates that bird pupil shape 

and the PLR are remarkably conservative when compared to the variability present 

in other groups of animals. 

 

3.2.1  Pupil shape 

In all but three species of bird, the pupil remains circular at all light levels (Mann, 

1931).  The exceptions are the adult black skimmer and the king and emperor 

penguins.  Although, like other birds, these three species have large circular pupils in 

low lights levels, in daylight the pupils of the skimmer become a vertical slit (Zusi & 

Bridge, 1981), while those of the penguins become square pinholes (Martin, 1999; 

Lind et al., 2008).   
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3.2.2  Pupil dynamics 

The first avian PLR to be quantified was that of the pigeon (Gundlach, 1934), whose 

pupil fully constricted on illumination before the human pupil in the same lighting had 

even begun to do so.  This extreme rapidity of pupillary constriction has since been 

confirmed for all birds studied (pigeons – Lowenstein & Loewenfeld, 1959; 

Alexandridis, 1967a; chickens - Barbur et al., 2002; Moayed et al 2012: Owls - 

Bishop & Stark, 1965; Oliphant et al., 1983; Schaeffel & Wagner, 1992). Latencies to 

a single light flash are species specific (Kallähn, 2014) but are around 50msec, and 

maximum constriction is reached within about 100-150msec.  Under comparable 

conditions humans have a longer latency (230msec) and maximal contraction is not 

reached until much later (800msec) (e.g. Barbur et al., 2002; Fig. 8).  Consequently, 

the pupils of chickens (Barbur et al., 2002) and pigeons (Alexandridis, 1967a) are 

able to respond at higher frequencies than those of humans (Lowenstein & 

Loewenfeld, 1959; Loewenfeld, 1993).  

 

The fast dynamics of the bird PLR are easily explained by the presence of striated 

muscle in the avian iris, compared to the exclusive use of smooth muscle in the 

irises of mammals, fish and amphibia (Section 2). Pupil dilation following the 

cessation of a light stimulus, as in other vertebrates, is significantly slower than 

constriction (Lowenstein & Loewenfeld, 1959; Bishop & Stark, 1965; Alexandridis, 

1967a; Oliphant et al., 1983; Moayed et al., 2012) and is similar to that in mammals 

(Loewenfeld, 1993).  This may be because the dilator muscle of birds, unlike the 

sphincter, often has a significant smooth muscle component (Section 2). 
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The fast PLR of birds may be an adaptation to the rapid changes in light levels that 

might be experienced during flight.  This may explain why, perhaps rather bizarrely, it 

has been suggested that the degree to which the pupil of a racing pigeon can 

constrict on light exposure may be an indicator of its quality as a racing animal 

(Nyitrai et al., 2010).   

 

As in most animals, light-driven changes in bird pupil areas are related, at least to 

some extent, to the level of the illumination (Alexandridis, 1967a; Schaeffel et al., 

1986; Barbur et al., 2002; Lind et al., 2008; Figs. 6&7).  The sensitivity of contraction 

depends on both species and age.  Diurnal parrots, for example require more light 

for pupil constriction than nocturnal owls (Fig. 7), presumably because their retinae 

are less sensitive and need to maximise photon capture at higher light levels (Lind et 

al., 2008).  The pupils of young chickens constrict in response to higher light levels 

compared to those of older animals (Scaheffel et al., 1986), suggesting decreased 

retinal sensitivity in younger animals. 

 

With the exception of diving birds (Section 8.3.2) and the 3 species with non-circular 

pupils (Section 3.2.1), the PLR of most birds appear relatively modest compared to 

those of mammals (Section 3.1.2), but are comparable to those of reptiles (Section 

3.3.2) and amphibia (Section 3.4.2.2) with circular pupils.  While many mammals 

constrict their pupils to just a few percent of their fully dilated area in bright light, the 

pupils of parrots and owls never constrict to more than 30% of their dark adapted 

area (Lind et al., 2008; Fig. 7).  Similarly, while the pupils of humans closed to 19% 

of their fully dilated area in response to illumination, those of chickens only reduced 

their area to 58% of their dark adapted area (Barbur et al., 2002; Fig. 6). 
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Although the pupils of birds do not alter in area in response to simple changes in 

illumination as much as those of some other animals, they can respond well to more 

specific stimuli such as the colour red (Barbur et al 2002; Section 8.2; Fig. 8).  They 

also undergo considerable excursions in the absence of significant changes in light 

level, even prompting the suggestion that the bird pupil may sometimes be subject to 

voluntary control (Section 8.2). 

 

3.3 Reptilian pupil responses 

Extant reptiles comprise four main orders; Testudines (turtles, terrapins and 

tortoises), Sphenodontia (tuatara), Squamata (lizards and snakes), and Crocodylia 

(crocodiles, gavials, caimans, and alligators).  However, extant reptiles are not a 

natural (monophyletic) group because some, namely crocodylians (and perhaps 

testudines), are more closely related to birds than they are to other extant reptiles. In 

modern classification, there is no formal name for the non-monophyletic group 

comprising reptiles but not birds. Reptilia is sometimes used as a name for a 

monophyletic group comprising ‘reptiles’ and birds (e.g. Simões & Gower, 2017).  

However, for the purposes of this review, birds are discussed in another section 

(Section 3.2). 

 

3.3.1  Pupil shape 

In all reptiles, the dilated pupil is close to circular (Walls, 1942; Mann, 1931; Werner, 

1967), but on illumination pupil shape varies widely.  It ranges from circular in all 

testudines (Mann, 1931; Granda et al., 1995; Rival et al., 2015), some snakes 

(Mann, 1931; Werner, 1970; Brischoux et al., 2010), and many lizards (Mann, 1931; 

https://en.wikipedia.org/wiki/Testudines
https://en.wikipedia.org/wiki/Turtle
https://en.wikipedia.org/wiki/Terrapin
https://en.wikipedia.org/wiki/Tortoise
https://en.wikipedia.org/wiki/Sphenodontia
https://en.wikipedia.org/wiki/Tuatara
https://en.wikipedia.org/wiki/Squamata
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https://en.wikipedia.org/wiki/Crocodilia
https://en.wikipedia.org/wiki/Crocodile
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New et al., 2012), to a narrow vertical slit in many snakes (Mann, 1931; Walls, 1942; 

Werner, 1967; Brischoux et al., 2010), crocodylians (Mann, 1931; Allen & Neill, 1950; 

Walls, 1942), and in sphenodontia (Mann, 1931). Horizontally slit pupils are less 

common in reptiles, but occur, for example, in some tree snakes (Mann, 1931; Heath 

et al., 1969).  Additionally, in some lizards, the edges of the iris are not regular, 

resulting in a variety of unusual constricted pupil shapes (Mann, 1931).  

 

One of the strangest pupil shapes occurs in geckos.  A few diurnal species have 

circular, possibly largely immobile, pupils (Underwood, 1954; Werner, 1967, 1969). 

Most geckos, however, are nocturnal or crepuscular and their pupils constrict in the 

light to become vertical slits.  In some species, the edges of the slit are straight and 

the constricted pupil has a single elongated aperture.  In others, however, the pupil 

edges are scalloped so that when the pupil constricts the irregular edges of the iris 

overlap, forming four, vertically aligned pinholes, each with a diameter of 0.1mm or 

less (Mann, 1931; Underwood, 1951, 1954; Denton, 1956; Werner; 1969, 1972; Fig. 

9).  The function of such multiple pupillary apertures is discussed in section 9.3. The 

difference between the dilated and constricted areas in such a pupil is a factor of 

around 100-300, larger eyes showing a greater difference between light and dark 

adapted pupil size (Denton, 1956; Courjon, 1977; Frankenberg, 1979; Roth et al., 

2009).  The sizes of the two pupils of a gecko vary independently (Section 4.3) and, 

especially at lower light intensities, appear to be under voluntary control (Denton, 

1956; Werner, 1972), allowing them to perhaps have a role in the regulation of 

aggressive interactions (Section 8.2).  
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Members of all reptilian orders have the ability to rotate their eyes so that eye 

position is maintained at different degrees of pitch of the head (Munro, 1949, 1950; 

Allen & Neill, 1950; Heath et. al., 1969).  This is especially apparent in species with 

vertical slit pupils, but is also true, but less easy to see, for animals with circular 

pupils.  The utility of such eye movements is discussed in section 9.2.3. 

 

3.3.2  Pupil dynamics 

Rather surprisingly, although pupil shape has been widely discussed for various 

reptilian species and extensive pupil movements have been noted in many species 

(Steinach, 1890), information on timecourses and the extent of constriction are only 

available for two species. 

 

The pupil of the green iguana constricts rapidly (latency 70-170msec) and both the 

latency and amplitude of the response depend on light intensity (Krastel & 

Alexandridis, 1972).   However, the most comprehensively studied reptilian pupil, 

that of the red-eared slider turtle, is very different.  Compared to the iguana, its PLR 

is very sluggish, constriction taking about 5mins (Dearworth et al., 2009).  

 

The short latency of the iguana PLR is similar to that of birds (Section 3.2.2), and 

can easily be explained by the striated nature of its iris muscles (Section 2).  Since 

the turtle also has striated iris muscles, its slow response needs explanation and 

may be related to a greater reliance on the slow kinetics of melanopsin-based 

phototransduction to initiate the PLR in this species (Section 5.2.3.1). 
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The total change in area of the turtle pupil is not as great as in some animals, the 

pupil in bright white light only constricting to around 30-50% of its fully dark adapted 

area (Granda et al., 1995; Dearworth et al., 2009, 2010; Sipe et al., 2011). The pupil 

of a lizard constricts even less, reaching only 70% of its dark adapted area in bright 

light (New et al., 2012), although the pupils of some snakes contract to a greater 

degree (Werner, 1970) and, as discussed above (Section 3.3.1; Fig. 9), the gecko’s 

pupil shows extreme adaptability.   

 

Although most animals with mobile pupils constrict them in higher light levels, some 

semi-aquatic snakes, surprisingly, decrease pupillary area when underwater, where 

light levels are reduced compared to on land (Schaeffel & de Queiroz, 1990; 

Fontenot, 2008). This apparent anomaly may be related to the requirements of 

amphibious vision (Section 8.3.2). 

 

3.4 Amphibian pupil responses 

Extant amphibia, of which there are around 7000 species, all belong to the subclass 

Lissamphibia and can be divided into three orders; the Anura (frogs and toads), the 

Caudata (salamanders), and the Gymnophiona (caecilians) (Pyron & Wiens, 2011). 

 

3.4.1  Caecilians 

Caecilians lead a largely subterranean existence.  However, although their eyes are 

much reduced in size compared to those of other amphibia, and covered by a layer 

of skin or bone, they are not, as their Latin name might suggest, blind.  Structurally, 

their eyes have all the main components of those of other vertebrates; their retina is 

well-developed and contains a functional visual pigment (Mohun et al., 2010).  
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However, as predictable from their life style, their eyes are used primarily for the 

detection of light intensity and direction, to guide phototactic behaviours, and 

perhaps detect object movement, rather than detailed image formation (Wake, 1985; 

Himstedt, 1995; Mohun & Wilkinson, 2015).  The reduced nature of the iris and the 

lack of iris muscles makes changes in pupil area unlikely.   

 

3.4.2  Anura & caudata 

In contrast to caecilians, anura and caudata undergo significant pupil movements. 

 

3.4.2.1  Pupil shape 

The dilated pupil in the vast majority of amphibia, as in most vertebrates, is close to 

circular.  However, the constricted pupil shape is variable, ranging from circular in, 

for example, African clawed frogs, to vertically or horizontally elongated, as in 

midwife toads and ranid frogs, respectively.  In some anura, the constricted pupil has 

also been variously described as; pear-shaped, heart-shaped, and club-shaped with 

a variety of notches in the pupil margin related to the position of the hyaloid vessels 

during development (Mann, 1931; Fig. 10).  Several amphibia also have projections 

from the dorsal edge of the pupil, usually called umbracula (Mann, 1931; Kruger et 

al., 2013), equivalent to the opercula of other animals (Section 9.1). 

 

Aspects of amphibian ocular morphology, including pupil shape, are important 

taxonomic markers (Glaw & Vences, 1997) and pupil shape has sometimes been 

related to specific ecological variables.  It is often assumed, for example, that 

vertically elongated pupils are associated with an arboreal lifestyle.  However, while 

vertical pupils are common to all phyllomedusine frogs (Tyler & Davies, 1978), a 
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genus of Central and South American tree frogs, among mantellid frogs both 

arboreal and terrestrial species have horizontally elongated pupils (Amat et al., 

2013). Similarly, a genus of African hyperoliid tree frog has a horizontally elongate 

pupil, while those of close relatives are vertical (Roedel et al., 2009).  A reliable 

correlation between amphibian pupil shape and lifestyle remains elusive. 

 

3.4.2.2  Pupil dynamics 

Most work on amphibian pupil dynamics relates to the response of the isolated iris 

(Section 6), and there are very few detailed timecourses of the PLRs of intact 

amphibia. The first appears to be a single curve shown by Lowenstein & Loewenfeld 

(1959), who note that the frog’s pupil reacts sluggishly, compared to man. 

 

The most detailed descriptions of the PLRs of intact amphibia are for ranid frogs 

(Cornell & Hailman, 1984) and two species of newt (Henning et al., 1991). The 

newts, in response to the highest light intensity used, constricted to 44% and 51% of 

their dark adapted area respectively, while the frog reached a level of about 35%.  A 

potential drawback of these studies was that animals were pharmacologically 

immobilised, potentially affecting the pupil response.  However, my own unpublished 

observations on unrestrained intact animals confirm the work on immobilised 

animals. In response to bright white light (3.39x103 W/cm2), the pupils of 

unrestrained common frogs (Rana temporaria) constricted to 42% of their fully 

dilated area in darkness (16 responses from 4 animals; +/- 6% sd). Complete 

constriction took between 8-30secs and the t50 was on average 3.7 (+/- 1.3)secs. 

Similarly, green toads (Bufo viridis) constricted to 35-40% in a similar timeframe. 
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Thus, most intact amphibia seem to be able to constrict their pupils to about 40% of 

their dark adapted area in response to bright light.   

 

In both immobilised (Cornell & Hailman, 1984; Henning et al., 1991) and 

unrestrained (Fig. 11) animals, the degree of constriction is related to light intensity.  

In prolonged illumination the pupils of frogs (Cornell & Hailman, 1984; Fig. 11), but 

not newts (Henning et al., 1991), redilate to a certain degree.  

 

Armstrong & Bell (1968) suggested aquatic amphibia have less of a pupil response 

than terrestrial species.  Indeed, it has been reported that the sphincter muscle in the 

iris of the aquatic African clawed frog is poorly developed, and that its pupil does not 

change in size on illumination (Weale, 1956).  However, although the response is 

less than in other amphibia, even this species shows a graded PLR to illumination 

(Fig. 12), constricting to an average area 70% (17 responses from 10 animals; +/- 

11.8%) of that in the fully dilated pupil in response to bright illumination (3.39x103 

W/cm2) with t50 occurring on average 4.7secs after the onset of illumination.  Thus, 

for this one aquatic species at least, the response is indeed less than for the 

terrestrial species examined to date. 

 

3.5  Fish pupil responses 

Fish is a loosely and not consistently defined term, which encompasses a 

heterogeneous group of aquatic vertebrates that have gills throughout their lives and 

fins rather than limbs (Nelson, 1994).  Only the two largest groupings, the 

cartilaginous elasmobranchs and the bony teleosts, will be considered here, as pupil 
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data for other groups is sparse, although lungfish are known to show a degree of 

pupil mobility (Steinach, 1890; Walls, 1942; Bailes et al., 2007). 

 

Teleost fish, which account for almost half of all vertebrate species, are unusual, as 

the vast majority have no significant pupil mobility.  Living elasmobranchs can most 

conveniently be divided into the selachii (sharks) and the batoidea (skates, rays and 

sawfish).  In contrast to teleosts, with the exception of deep-sea species (Kuchnow, 

1971), the pupils of most elasmobranchs are highly mobile. Whether the pupils of 

sawfish are mobile is unknown (Wueringer, pers com).  

 

3.5.1  Pupil shape 

While dilated pupils of sharks are close to circular (Fig. 13A), constricted pupil shape 

varies from circular, to elliptical, to various orientations of slits. The fully constricted 

pupil of the swell shark, for example, consists of little more than a slit which, as in 

many other species (Franz, 1931; Young, 1933a; von Studnitz, 1933; Kuchnow, 

1971), has a small pinhole at either end (Fig. 13B). Although it has frequently been 

suggested that nocturnal sharks have slit-like constricted pupils, while those of 

diurnal species are circular (Franz, 1905; Young, 1933a; Walls, 1942), there are 

exceptions to such a generalisation (Gilbert et al., 1981; McComb et al., 2009). 

 

Many skates and rays are characterised by the growth of dorsal iris operculae during 

constriction (Bateson, 1890; Franz, 1905; Kuchnow, 1971; Kuchnow & Martin, 1972; 

Collin, 1988; Franz, 1931; Young, 1933a; Walls, 1942; Gruber & Cohen, 1978; Nicol, 

1978; Sivak & Luer, 1991), resulting in a variety of pupil shapes, depending on the 
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species and light level, including crescent moons and multiple pinholes (Figs. 

14A&B). 

 

The immobile pupils of most teleosts are circular, or nearly so, although some depart 

from circularity and possess aphakic spaces within, for example, teardrop-shaped 

pupils (Section 9.5). Although the dark adapted pupils of those few teleost species 

with mobile irises are also circular (Figs. 13C&E), their shape can be quite different 

when constricted.  The pupil of the plainfin midshipman, for example, contracts in the 

light to two small, almost independent, pinholes (Fig. 13D; Walls, 1942; Douglas et 

al., 1998).  The constricted pupil of the armoured catfish, on the other hand, displays 

a dorsal operculum, similar to that observed in skates and rays, forming a crescent-

shaped light adapted aperture (Fig. 13F; Douglas et al., 2002).  Other substrate 

living teleosts, such as flatfish (Bateson, 1890; Walls, 1942), mudskippers (Munk, 

1970), and scorpaeniformes (Figs. 14C&D), also have dorsal intrusions into the pupil 

(Section 9.1 for a discussion of the possible function of such operculae).  

 

3.5.2  Pupil dynamics 

3.5.2.1  Sharks 

As first suggested by Franz (1905, 1906), the pupils of nocturnal and diurnal sharks 

behave differently (Young, 1933a; Kuchnow 1970, 1971). 

 

Nocturnal species have a rather slow PLR, taking up to 15mins to constrict fully to 

about 2-20% of the dilated area and show no signs of redilation in continued 

illumination (Young, 1933a; Gruber, 1967; Kuchnow, 1971).  Fig. 15, for example, 

shows the timecourse of constriction of a dark adapted nocturnal swell shark to 
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prolonged bright illumination.  The pupil steadily constricts over a period of several 

minutes to a horizontal slit tilted at 20º to the body axis connecting 2 small pinholes 

with an aperture of around 2% of the dark adapted area (Fig. 13B; Douglas et al., 

1998). 

 

In diurnal species, on the other hand, although the extent of light-evoked constriction 

is similar to that of nocturnal species, the response is much faster, often occurring 

within a minute or less, and in continued illumination the pupils re-open to some 

extent following initial constriction (Franz, 1906; Young, 1933a; Kuchnow & Gilbert, 

1967; Kuchnow, 1970, 1971; Gilbert et al., 1981).  As in various species of bird 

(3.2.2), the pupils of diurnal sharks have a higher threshold for pupil constriction than 

those of nocturnal species (Kuchnow, 1970). 

  

3.5.2.2  Skates & rays 

Like nocturnal sharks, the PLRs of skates and rays are slow, taking between 5-

15mins to constrict fully (Nicol, 1978; Kuchnow, 1971).  The decrease in area on 

constriction of their opercular pupils (Figs. 14A&B) varies considerably with species, 

with the area of the light adapted pupil ranging between 85-27% of the fully dilated 

pupil area (Nicol, 1978; Kuchnow, 1971), although it would not be surprising if the 

pupils of other species constricted to a greater degree. 

 

3.5.2 3 Teleosts 

Although very limited pupil responses have been elicited in both intact teleosts and 

isolated eyes by either electrical stimulation (Beer, 1894; Nilsson, 1980; Somiya, 

1987; Fujimoto et al., 1995) or changes in ambient illumination (Brown-Séquard, 
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1859; Steinach, 1890; Studnitz, 1932a) in several species, such movements are very 

small and unlikely to be of any physiological significance, and many may be the 

result of the protruding lens displacing the iris during accommodative movements. 

 

Extensive pupillary excursions in response to light have been described in only a few 

bony fish.  Qualitatively, highly contractile pupils have been noted in eels (Steinach, 

1890, 1892; Studnitz, 1932a; Brown-Séquard, 1847a&b, 1859; Magnus, 1899; Guth, 

1901; Seliger, 1962), stargazers and monkfish (Beer, 1894; Young 1931, 1933b), 

oyster toadfish (Rubin & Nolte, 1981), and pearlfish (Walls, 1942).  Preliminary data 

indicated that some flatfish also have mobile pupils (Beer, 1894; Bateson, 1890; 

Steinach, 1890).  The pupil of the sole contracts to 20% of its dilated area within 10-

20secs of light exposure, while other species such as brill, turbot, plaice, scaldback 

and flounder also constrict, but to a lesser degree (Douglas, unpubl). The pupils of 

various members of the scorpaeniformes probably also have mobile pupils (Figs. 

14C&D). 

 

Detailed timecourses have only been published for the PLRs of two teleosts.  

 

The plainfin midshipman shows pupillary constriction that is as fast and extensive as 

that of man (Douglas et al., 1998). Half maximal contraction is reached 0.4-0.8secs 

after light onset, with the fully constricted pupil having an area around 5% of the 

dilated pupil (Fig. 15). The degree of constriction depends on the level of illumination 

and, as in the stargazer (Young, 1931), in prolonged illumination at all but the 

highest intensities, the pupil redilates somewhat after its initial constriction (Fig. 16). 
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The pupils of armoured suckermouth catfish also display extensive pupil responses, 

contracting to an area about 30% of that of the dilated pupil, although these 

movements occur much more slowly than in the midshipman, full constriction taking 

35-40mins (Douglas et al., 2002; Fig. 17).  The catfish also shows no signs of an 

increase in pupil area during prolonged illumination (Fig. 17).  Both the slow 

timecourse of the response and the lack of redilation in the catfish are similar to the 

responses of nocturnal elasmobranchs (Kuchnow, 1971; Douglas et al., 1998; see 

above).  

 

It is noteworthy that the few teleosts that do have mobile pupils, with the exception of 

the eel and pearlfish, are bottom-dwelling species that try to conceal themselves in 

the substrate.  The functional significance of this will be discussed in section 7.2. 

 

3.5.2.3.1  Why do most teleosts not have mobile pupils? 

When looking for a proximate cause for the lack of a mobile pupil in most teleosts, 

one must ask whether there is something about the teleost eye that prevents iris 

mobility.  The most obvious thing would be a lack of iris muscles.  However, most 

teleosts have an iris sphincter muscle and sometimes a dilator (Grynfeltt, 1910; 

Section 2; Fig. 3).   

 

Another explanation for the lack of pupil mobility may be that, as noted elsewhere 

(Section 8.3.2), the cornea is optically ineffective underwater so the lenses of teleost 

fish have to be optically more powerful than those of non-aquatic animals and are 

therefore spherical in most species.  The large size of the lens means it protrudes 

through the pupil, effectively blocking it and possibly preventing changes in its area.  
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Such an argument receives some support from other aquatic species.  The pupils of 

elasmobranchs are generally highly mobile (Sections 3.5.2.1 & 3.5.2.2), and their 

lenses are usually more flattened than those of teleosts (Sivak, 1990, 1991).  

Similarly, the armoured catfish has a subspherrical lens and a mobile pupil (Douglas 

et al., 2002). However, this argument is weakened by the fact that other teleosts also 

have non-spherical lenses (Sivak, 1990), yet do not have mobile pupils.  

Furthermore, dolphins (Rivamonte, 2009) and other cetacea (West et al., 1991), 

have both round lenses and mobile pupils (Dawson et al., 1979). 

 

It has been suggested that the ultimate cause for a lack of pupil mobility in teleosts is 

that retinal light and dark adaptation in these animals involves retinomotor 

movements (for reviews, Burnside and Nagle, 1983; Wagner et al., 1992; Burnside 

and Kingsmith, 2010).  Changes in pupillary area and the positional shifts of 

photoreceptors and retinal pigment epithelial melanin were thought to have “a mutual 

relationship” (Duke-Elder, 1958), with pupillary mechanisms representing the more 

“advanced” form of adaptation (Walls, 1942; Ali, 1975).  Thus, teleost fish might have 

no need for mobile pupils as they display retinomotor movements.  However, such a 

view is untenable as many animals, including amphibia, elasmobranchs (Gilbert et 

al., 1981), eels (Studnitz, 1932a), and plainfin midshipman (Douglas et al., 1998), 

have both extensive retinomotor movements and significant pupillary responses. 

 

In truth, neither the proximate nor the ultimate causes for of the lack of pupillary 

responses in the majority of teleost have been resolved. 
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3.6  Cepahlopod pupil responses 

There are around 800 living species of cephalopod divided into 2 subclasses; the 

Nautiloidea and Coleoidea.  The nautiloids are often referred to as living fossils as 

they have changed little for millennia, and the more ‘advanced’ coleoids diverged 

from ancestors not dissimilar to modern day nautiloides about 420 million years ago. 

While all extant nautiloides belong to a single order with only a few species, living 

coleoides are more diverse and include squid, octopus and cuttlefish (Allcock et al., 

2015).  While nautiloides have ‘primitive’ pinhole eyes, coleoids have eyes that are 

optically similar to those of vertebrates (Muntz, 1999). 

 

3.6.1  Pupil shape 

The dark adapted pupils of all cephalopods are large and frequently close to circular.  

On light exposure, however, the pupil can take on a variety of more irregular forms.  

In octopus, for example, the constricted pupil frequently becomes a horizontal 

rectangle (Magnus, 1902; Weel & Thore, 1936; Douglas et al., 2005; Talbot & 

Marshall, 2011; Fig. 18A), often in the brightest light consisting of little more than 2 

small pinholes at the end of an elongated aperture (Fig. 18B). In squid, on the other 

hand, the constricted pupil is often crescent-shaped (McCormick & Cohen, 2012; 

Talbot & Marshall, 2011; Chung & Marshall, 2017; Fig. 18C), but can also be either a 

horizontal (Talbot & Marshall, 2010) or a vertical (Matsui et al., 2016) slit.  

 

The oddest pupil shape is that of the cuttlefish, which can assume the shape of an 

extended or flattened W when constricted (Muntz, 1977; Douglas et al., 2005; Talbot 

& Marshall, 2011; Mäthger et al., 2013; Chung & Marshall, 2017; Fig. 18E). It seems 

different regions of this complex pupil are controlled locally with, for example, only 
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the back or the front of the W dilating when the animals fixate objects of interest, 

such as approaching divers, in different directions (Talbot & Marshall, 2010). 

 

Octopus have a statocyst-oculomotor system similar to the vestibulo-ocular system 

of vertebrates (Budelmann & Young, 1984).  Thus, whatever the orientation of the 

animal, the slit pupil always remains horizontal (Wells, 1960).  On removal of the 

statocysts, the position of the pupil reflects the position of the head, which is 

determined by how the animal is sitting on the substrate, and its ability to perform 

visual discriminations is impaired (Wells, 1960).  Reptiles (Section 3.3.1) and other 

vertebrates (Section 9.2.3) show similar rotatory eye movements. 

 

3.6.2.  Pupil dynamics 

It has been known for over 100 years that both major groups of cephalopods have 

pupils whose size varies depending on light intensity (Beer, 1897; Bateson, 1890; 

Magnus, 1902; Weel & Thore, 1936), although accurate timecourses of the 

responses did not become available until much later. 

 

The PLRs of all cephalopods studied to date are extensive, the pupil area usually 

reducing, depending on the species, to less than 5-20% of its fully dilated area in 

bright light, and often being too small to measure accurately.  However, the speed of 

the response varies between different groups of cephalopods.   

 

In Nautilus, the pupil response is comparatively sluggish; full constriction to bright 

light occuring in around 90secs (Hurley et al., 1978). The pupils of coleoid 
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cephalopods respond more quickly, although earlier estimates of their dynamics 

considerably underestimated the speed of constriction (Muntz, 1977). 

 

The most rapid PLRs have been recorded in two species of cephalopod in the order 

sepiidae, t50 occurring in on average 320msec (Douglas et al., 2005; Fig. 19).  Only 

birds have similarly rapid responses (Section 3.2.2).  

 

Pupil constriction in the Atlantic brief squid (McCormick & Cohen, 2012) and the 

Japanese flying squid in response to bright light is only slightly slower than in 

cuttlefish. Octopoda, such as the curled octopus, show similar PLRs (Douglas et al., 

2005; Fig. 19).  Perhaps surprisingly, in the Southern reef squid even embryonic 

stages show limited light-induced pupil closure, and some individuals fully constrict 

their pupil when aged only 2 days (Bozzano et al., 2009).  

 

Even more surprisingly, a deepsea octopus, Japetella diaphana, also has a PLR, 

although less extensive and more sluggish than that of other coleoids.  In response 

to light the pupil constricts to about 8% of its dilated area in approximately 15secs 

(t50 8.5secs) (Fig. 20).  Adult Japetella are usually found at depths of around 700-

950m and there is no evidence of diel vertical migration (Young, 1978). 1000m is the 

lower limit to which visually usable sunlight can penetrate the clearest oceans 

(Denton, 1990), and in most waters sunlight disappears at considerably shallower 

depths. It is therefore surprising that Japetella diaphana, a species thought to live at 

depths at which there is little or no sunlight, has a PLR at all. As bioluminescence, 

the only other source of illumination at such depths, is unlikely to be bright enough to 

cause pupil constriction, the PLR of this species remains a mystery. 
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Cephalopod pupil size is not only influenced by the ambient illumination, but also 

reflects the ‘arousal’ of the animal.  Such light-independent movements are 

discussed further in section 8.2.  

 

4.  Consensual pupil responses 

In humans, light shone into only one eye evokes a similar contraction of the pupil in 

both the stimulated and unstimulated eye (Fig. 5A-C).  These are known as the 

direct and consensual responses, respectively.  When both eyes are illuminated 

simultaneously, the pupil constricts more than when either eye alone is stimulated. 

While the direct response depends on both the classical central neural circuits 

(Section 5), as well as any intrinsic iris response (Section 6), central pathways alone 

will drive the consensual response. 

 

Early studies suggested that consensual responses are restricted to ‘higher’ 

mammals (Steinach, 1890; Harris, 1904).  Although this view is still widespread (e.g. 

Lowenfeld, 1993), there is ample evidence that consensual pupil responses do in 

fact occur among ‘lower’ mammals, as well as in non-mammalian species, although 

the direct response is always larger than the consensual one in these animals. Such 

differences between the direct and consensual response can usefully be expressed 

as a percentage (degree of consensual/direct constriction). 

 

No response in the unilluminated eye following unilateral illumination or identical 

responses in both eye, are almost certainly a true indication for the absence or 

presence of a consensual response.  However, a lesser response in the 
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unilluminated eye must be treated with some caution, as it might be the result of two 

artefacts; the ‘unilluminated’ eye was either stimulated by scattered light or light 

reached it via transcranial illumination.  The latter is a particular problem in birds, 

where large eyes are separated by only a thin bony septum (Steinach, 1890; Levine, 

1955; Schaeffel et al., 1986). 

 

4.1  Mammals 

Early work suggested that ‘lower’ mammals such as ungulates, rodents and rabbits 

did not have consensual pupil responses, while in ‘higher’ mammals such as dogs, 

cats, lions and primates, the stimulated and unstimulated eye behaved identically 

(Steinach, 1890; Harris, 1904).  However, this work was mainly qualitative and we 

now know the situation is not this clear cut. 

 

Following unilateral illumination in humans and other primates the responses of the 

stimulated and unstimulated eyes are indeed identical, or nearly so (Lowenstein & 

Friedman, 1942; Carpenter & Pierson, 1973; Smith et al., 1979; Loewenfeld, 1993; 

Clarke et al., 2003). There has been a report that in the rhesus macaque the 

consensual response is both significantly slower and smaller than the direct 

response (Pong & Fuchs, 2000), but this may be the result of experimental error 

(Clarke et al., 2003).  The consensual light response in mice also has the same 

amplitude and latency as the direct response, although its velocity may be somewhat 

slower (Grozdanic et al., 2003; Hussain et al., 2009).   

 

In dogs (Grozdanic et al., 2007) and cats (Lowenstein et al., 1953; Lowenstein, 

1954) the consensual response is slightly reduced (ca. 95%) compared to that of the 
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illuminated eye.  In rats, the amplitude of the consensual response is reduced even 

further to 76-78% of the direct response (Trejo et al., 1989; Grozdanic et al., 2002), 

and only a small consensual response has been reported in the horse (Harris, 1904).  

The same author suggested that in rabbits only the stimulated eye contracts, 

although later studies indicate the rabbit too has a degree of consensual response 

(Inoue, 1980). 

 

Thus, most, if not all, mammals have a consensual pupil response, whose similarity 

to the direct response varies depending on the species. 

 

4.2  Birds 

True consensual pupil responses (i.e. those not caused by stray light) are generally 

assumed to be absent in birds (Steinach, 1890; Harris, 1904; Levine, 1955; Gregory 

& Hopkins, 1974; Bishop  & Stark, 1965; Schaeffel et al., 1986; Schaeffel & Wagner, 

1992).  However, two studies cast at least some doubt on such a generalisation.  

Intact chickens (Schaeffel et al., 1986) and owls (Tyto alba - Schaeffel & Wagner, 

1992; Bulbo bulbo & Strix ulula – Steinach, 1890), like other birds, have been 

reported to have pupils that behave independently.  However, other studies in which 

the optic nerve of one eye was severed have come to a different conclusion.  In both 

chickens (Li & Howland, 1999), and a different species of owl (Athene noctua; 

Berlucchi & Strata, 1964), illumination of the operated eye did not induce constriction 

of its pupil, as the afferent limb of the reflex arc had been cut.  It also did not induce 

any constriction in the contralateral eye, showing the absence of any transcranial 

illumination.  However, illumination of the unoperated eye did result in some pupil 
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constriction in the operated eye of both species. This suggests that chickens, and at 

least one species of owl, do have a degree of neuronal consensual response.  

 

Interestingly, bird pupils often change in area in the absence of alterations in the 

ambient illumination, responding, for example, to sounds and vocalisation, and 

possibly have an element of voluntary control (Sections 3.2.2 & 8.2).  While, simple 

light-driven pupil responses may not be consensual, such more centrally controlled 

pupil responses are similar in both eyes (Harris, 1904; Gregory & Hopkins, 1974). 

 

4.3  Reptiles 

Early reports on 15 species suggested the pupils of all reptiles reacted independently 

to light (Steinach, 1890).  The lack of a consensual response was subsequently 

confirmed for geckos (Denton, 1956; Werner, 1972), Vietnamese leaf turtles (Henze 

et al., 2004), and iguanas (Krastel & Alexandridis, 1972).  However, careful 

examination shows the red-eared slider turtle does have a consensual response, 

although the unstimulated eye constricts to a lesser degree (35%) than the 

stimulated one (Dearworth et al., 2010). 

 

4.4  Amphibia 

In four species of salamander, the pupils of the two eyes behaved independently 

(Steinach, 1890; Henning et al., 1991). However, although early studies suggested 

anura also lack consensual pupillary responses (Steinach 1890; Harris, 1904; von 

Studnitz, 1932b), at least two species of frog on unilateral illumination showed pupil 

contraction in the unstimulated eye, albeit slower and of lower amplitude than in the 

stimulated eye (Campenhausen, 1963). 
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4.5  Fish 

Among elasmobranchs, rays appear to have a consensual response (Bateson, 1890; 

Franz, 1931), whereas sharks do not (Bateson, 1890; Steinach, 1890; Franz 1931; 

Studnitz, 1933; Kuchnow, 1971).  Only a few teleost fish have mobile pupils (Section 

3.5.2.3).  In the plainfin midshipman both eyes constrict when only one is illuminated, 

but the unstimulated eye responds to a lesser degree (70%; Douglas et al., 1998).   

Other teleosts with mobile pupils lack any form of consensual response (Nilsson, 

1980; Steinach, 1890; Young, 1931).   

 

4.6  Cephalopods 

Among cephalopods the situation appears equally varied. Illumination of only one 

eye in Nautilus results in constriction of both eyes to the same degree, although the 

unilluminated eye tends to redilate somewhat, which the stimulated eye does not 

(Hurley et al., 1978).  In coleoid cephalopods, on the other hand, the two pupils are 

usually said to react independently (Magnus, 1902; Weel & Thore, 1936; Hanlon & 

Messenger, 1988), although this has only been quantitatively investigated in three 

species.  In cuttlefish and curled octopus (Douglas et al., 2005) the unstimulated eye 

shows no response to unilateral illumination.  In Atlantic brief squid, however, the 

unstimulated eye does contract, although it is less sensitive and contracts to a lesser 

degree (29%) than the stimulated eye (McCormick & Cohen, 2012).   
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4.7  Relationship between consensuality, binocular vision and decussation at the 

optic chiasm 

Steinach (1890), after an extensive survey, concluded that the pupils of all 

vertebrates except ‘higher’ mammals responded independently to illumination.  

Interestingly, following a similar study, Harris (1904) reached exactly the same 

conclusion, although he seemed unaware of the extensive work of his predecessor. 

Both authors assumed that only the optic nerve fibres of mammals partially 

decussated at the optic chiasm, while those of other species crossed completely, 

explaining why only mammals had consensual pupil responses. However, such a 

view is too simplistic. 

 

Firstly, although consensual responses are more widespread in mammals than in 

other vertebrates, as is clear from the preceding sections, they do occur in all 

vertebrate classes.  Secondly, although the view that only mammals have uncrossed 

fibres at the optic chiasm is still widespread (e.g. Leff, 2004), it is known that some 

members of all vertebrate classes do in fact have varying degrees of uncrossed 

fibres projecting ipsilaterally (Ebbesson, 1984; Ward et al., 1995; Jeffery, 2001). The 

degree of crossing over at the optic chiasm cannot be easily related to any single 

variable, such as a particular mode of life or taxonomic position (Ward et al., 1995). 

 

There is, however, a (loose) correlation between the extent of the consensual pupil 

response and the position of the eyes.  Thus, animals with frontal eyes and a large 

binocular field of view often have a well-developed consensual pupil response, while 

it is less pronounced in animals with more lateral eyes. Within mammals, for 

example, primates have large horizontal binocular fields of around 120º and near 
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identical direct and consensual pupil responses.  Carnivores, such as cats and dogs, 

also have large binocular overlaps (Heesy, 2004) and only slightly reduced 

consensual pupil responses.  Rats have more laterally placed eyes (binocular field 

85º; Hughes, 1979) and have a significantly reduced consensual response , while 

rabbits, whose eyes are even more lateral (binocular field 24º; Hughes & Vaney, 

1982), have only a small consensual response.  Similarly, the eyes of most birds 

point laterally, with only a small horizontal binocular field limited to 20º-30º (Martin, 

2007, 2009), and mostly lack consensual pupil responses.  However, there are 

exceptions to such a general correlation.  The mouse, for example, has lateral eyes 

(binocular field ca. 40º; Drager, 1978), yet the direct and consensual pupil response 

are almost identical.  Conversely, owls are the only birds with frontal eyes and 

extensive binocular fields (Martin 2007), and consequently exhibit true binocular 

stereopsis (Willigen et al., 1998), yet all but one study suggest their pupils behave 

independently. 

 

4.8  Function of the consensual pupil response 

In the laboratory, the consensual pupil response is investigated by exposing one eye 

to illumination while keeping the other in darkness.  However, in nature animals will 

never be subjected to such uneven illumination, and most of the time differences in 

illumination between the two eyes, if present at all, will only be slight.  The question 

must therefore be asked, what is the purpose of a consensual pupil response? 

 

The preceding section (Section 4.7) suggests that animals with larger binocular fields 

tend to have a greater degree of consensuality in their pupil response.  Since such 

animals often use stereoscopic cues to judge distance (Collett & Harkness, 1982), 
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they may benefit from having a similar pupil size for both eyes, as differences in pupil 

size could result in differences in image quality in the two eyes, which would impair 

binocular fusion.  Another advantage of a consensual pupil response in animals with 

large visual binocular fields might be that the uneven illumination of the two retinae 

resulting from significantly different pupil sizes, might give an illusory depth 

component to lateral motion (Pulfrich effect).  

 

 Lateral-eyed animals, however, may be disadvantaged by identical pupil responses 

in their two eyes, as these might be seeing quite different things.  In fact, the two 

eyes of animals with large monocular fields behave independently in ways other than 

their PLR.  For example, while in primates and some carnivorous mammals with 

forward facing eyes, the movements of the two eyes are perfectly coordinated, in 

some lateral-eyed non-mammalian vertebrates, such as the chameleon and a few 

fish, they move totally independently (Land, 2015 for review).  Similarly, animals with 

frontal eyes and true stereoscopic vision, such as primates (Bishop & Pettigrew, 

1986) and owls (Schaeffel & Wagner, 1992; Glasser et al., 1997), always show 

binocularly coupled accommodation.  Lateral-eyed reptiles (Schmid et al., 1992; Ott 

et al., 1998; Henze et al., 2004) and birds (Glasser et al., 1997; Schaeffel et al., 

1986), on the other hand, can accommodate independently in their two eyes (Ott, 

2006 for review). 

 

Thus, animals with lateral eyes and large monocular fields of view will not only view 

different scenes with their two eyes, their eyes may also behave independently to 

examine objects within those scenes. In fact, there is ample evidence that in some 

species the two eyes actually perform different functions.  Lateralisation at both a 
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structural and functional level is widespread in both vertebrates (Bisazza et al., 1998) 

and cephalopods (Byrne et al., 2002), and either one eye or the other can be used 

preferentially for a specific behaviour. 

 

Given the independence of visual physiology and even function in the two eyes of 

animals with large monocular fields, it is no surprise that the pupils should behave 

independently too. In fact such animals could be disadvantaged if the pupils were 

always the same size.  Imagine a small ground feeding, lateral-eyed, lizard with one 

eye focussed on a close potential prey item and the other eye keeping a wary look 

out for a distant approaching predator, such as a raptor.  The eye examining the prey 

object might benefit from a dilated pupil, as it needs to assess its distance using a 

monocular cue such as its accommodative state, which would be impaired by the 

large depth of field of a constricted pupil (Section 8.3.1).  The other eye viewing the 

sky, on the other hand, may benefit from a constricted pupil that reduces glare. 

 

5.  Neural pathways underlying retinally-mediated pupil responses  

The muscles of the iris can be made to contract in two ways; direct action of light on 

the muscle fibres and by release of neurotransmitters from postganglionic fibres of 

the autonomic nervous system.  The relative importance of these two forms of 

control is species specific and only nervous control is described in this section.  

Direct muscle photosensitivity is discussed elsewhere (Section 6).  

 

Autonomic control of iris muscles is performed by sympathetic and parasympathetic 

reflex arcs, which are remarkably conserved in all vertebrate groups (Nilsson, 1994; 

Neuhuber & Schrödl, 2011; McDougal & Gamlin, 2015 for reviews).  The degree of 
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retinal illumination is detected by retinal photoreceptors, and specialised retinal 

ganglion cells carry the afferent signals away from the eye within the optic nerve.  

Central components of the afferent elements of the parasympathetic pathway are 

only known in detail for mammals and birds, and involve areas of the pretectum 

projecting to the accessory oculomotor nucleus, most commonly referred to as the 

Edinger-Westphal nucleus (EWN), in the rostral mesencephalon.  Less is known 

about the central projections of the afferent limb of the sympathetic pathway. 

 

In all vertebrates, efferent preganglionic parasympathetic fibres arise from the EWN 

and travel within the 3rd cranial nerve, the oculomotor, to synapse in the ciliary 

ganglion (CG), from where postganglionic fibres enter the globe and run in the 

suprachoroid towards the iris.  Preganglionic fibres forming the beginning of the 

efferent limb of the sympathetic reflex arc arise from species-specific segments of 

the spinal cord and project to cranial sympathetic chain ganglia, such as the superior 

cervical ganglion in mammals and birds.  Although sympathetic chain ganglia are 

present in elasmobranchs, there is apparently no sympathetic innervation of the eye 

(Young, 1933a).  In all other species, postganglionic sympathetic fibres run from the 

chain ganglia to innervate the iris muscles.  As the distance from the chain ganglia to 

the effector muscle is relatively long, this route is often a circuitous one. 

 

Although all vertebrates possess similar autonomic reflex arcs controlling the iris 

muscles, there are significant differences between classes and species, which will be 

outlined below. 
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5.1  Retinal photoreceptors underlying the pupil response 

Traditionally the eye is thought of as providing a detailed optical image of the world 

through light acting on rods and cones at low and high light levels respectively.  

These image-forming photoreceptors were until recently considered the only trigger 

for light-evoked, retinally-mediated, pupillary constriction (Loewenfeld, 1993). 

However, during the last 20 years it has become apparent that the eye has another, 

non-rod non-cone, photoreceptor controlling many of the non-image-forming 

functions of the eye, such as providing input to the body’s endogenous clocks to 

synchronise an animal’s behavioural, physiological, and biochemical rhythms to the 

daily light/dark cycle.   

 

The properties of the photoreceptors underlying the diverse functions of the eye are 

very different.  While image-forming photoreceptors, especially cones, respond 

quickly and briefly, their responses diminishing after a few seconds in order to 

provide spatial and temporal detail, a photoreceptor for non-image-forming vison 

needs to measure overall light levels over a longer period of time, and requires a 

more sustained response.  It is therefore not surprising, although it undoubtedly 

came as a great shock to many, that light-mediated responses, such as the resetting 

of circadian rhythms (Freedman et al., 1999) and the regulation of pineal melatonin 

levels (Lucas et al., 1999), persisted in mice with neither rods nor cones, implying 

the existence of another type of retinal photoreceptor.  This has now been identified 

as a class of intrinsically-photosensitive retinal ganglion cells (ipRGCs) containing 

the visual pigment melanopsin (Berson et al., 2002; Hattar et al., 2002), which 

comprise around 1% of ganglion cells in the mammalian retina (Bailes & Lucas, 

2010; Lucas, 2013 for reviews).  
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These ipRCGs are not a homogenous class of cell, and in mice, several different 

morphological subtypes project to diverse regions in the brain, and have many 

different functions (Ecker et al., 2010).   

 

As the PLR is primarily a response to overall light levels, it is not surprising that 

ipRGCs have also been implicated in its control.  Thus, like other non-image-forming 

processes, near normal pupil response occur in mice lacking rods and cones (Lucas 

et al., 2001; Fig. 21), but are lost once the ipRGCs are also eliminated (Hattar et al., 

2003; Panda et al., 2003).  The involvement of ipRGCs in the pupil response has 

now been shown to be widespread among other mammals too, including primates 

(Gamlin et al., 2007; Young & Kimura, 2008; McDougal & Gamlin, 2010) and dogs 

(Yeh et al., 2017).   

 

In mammals, rods, cones and ipRGCs all contribute to the PLR, their relative 

contributions depending on stimulus intensity, wavelength and time since light onset 

(Lall et al., 2010; Markwell et al., 2010; Lucas et al., 2014; McDougal & Gamlin, 2015 

for reviews).   Most simply, while rods and cones underlie the initial rapid pupillary 

closure at all but the highest intensities, the ipRGCs are responsible for sustained 

pupillary closure, especially at higher intensities of illumination, compensating for the 

rapidly adapting traditional photoreceptors.   

 

Melanopsin-containing ipRGCs also play a role in the pupil responses of non-

mammalian vertebrates.  The slower pupil response of turtles compared to man 

(Section 3.3.2) might, for example, be explained by a more prominent role for 
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melanopsin in this species (Section 5.2.3.1).  Inner retinal photoreceptors also 

contribute to the PLR of chickens (Valdez et al., 2009), and melanopsin is involved in 

the intrinsic iris photosensitivity of amphibia (Section 6). It seems likely that 

melanopsin will be involved, to varying degrees, in the pupil responses of most 

vertebrates. 

 

5.2  Postreceptoral neural pathways controlling pupil size 

In the following sections, the principal innervation of the iris muscles will be outlined.  

Thus, in mammals for example, the parasympathetically induced contraction of the 

sphincter muscle is emphasised.  However, it is likely that iris muscles in most 

species in fact have dual and opposing autonomic innervation, so that the 

mammalian sphincter is also inhibited by sympathetic innervation, although this is 

sparse compared to the excitatory parasympathetic control (see references in 

Armstrong & Bell, 1968; Nilsson, 1980; Neuhuber & Schrödl, 2011; McDougal & 

Gamlin, 2015).  

 

Furthermore, the iris is also innervated by neurons in the ophthalmic portion of the 

trigeminal ganglion of birds and mammals and the profundus ganglion of fish, 

amphibia and reptiles.  Such fibres can release peptides in response to, for example, 

inflammation, noxious stimuli, or changes in temperature, which then influence the 

muscles of the iris as well as performing their ‘normal’ sensory functions (see 

references in Neuhuber & Schrödl, 2011; McDouglal & Gamlin, 2015). 

 

Neither dual autonomic innervation nor control of iris muscles by trigeminal neurons 

is discussed further here.   
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Details of innervation have mostly been elucidated either pharmacologically or by 

lesioning/stimulating specific neural pathways. Barr (1989) reviews much early 

comparative information on the innervation of iris muscles, while Neuhuber & 

Schrödl (2011) give a more recent review.  

 

5.2.1  Mammals  

For obvious reasons (Section 1), most is known about the neural pathways 

underlying pupil constriction and dilation in primates, and these have been 

extensively reviewed (e.g. see references in McDougal & Gamlin, 2015; Fig. 22).  

Only these are briefly described here, as the pathways are broadly similar for all 

mammals. 

 

5.2.1.1  Innervation of the sphincter 

The output of all retinal photoreceptors involved in the pupil response is conducted 

by the axons of the ipRGCs within the optic nerve, through the optic chiasm, and 

along the optic tract. Although the majority of tract fibres end in the lateral geniculate 

nucleus of the thalamus, most of the ipRGC axons leave the optic tract before it 

reaches the thalamus, at the superior brachium, and some synapse in the OPN. As 

all retinal ganglion cells, including those projecting to the pretectum, undergo partial 

decussation at the optic chiasm, the OPN receives input from the temporal retina of 

the ipsilateral eye and the nasal retina of the contralateral eye.   

 

There have been suggestions that different ipRGC subtypes differentially innervate 

the OPN (Baver et al., 2008).  In mice, M1 ipRCGs project to the outer shell of the 
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OPN, and are most probably the main drivers of the PLR, while the core of the OPN 

receives input from other classes of ipRGCs as well as non-melanopsin ganglion 

cells, which may or may not be involved in controlling the pupil (Ecker et al., 2010). 

 

From the OPN information is relayed by short neurons that synapse bilaterally on 

preganglionic parasympathetic neurons in the EWN of the midbrain (Kozicz et al., 

2011). Efferent signals pass along parasympathetic fibres within the oculomotor (3rd 

cranial) nerve to the orbit, where they synapse in the CG. Postganglionic fibres travel 

in the short ciliary nerves, through the choroid, to the sphincter pupillae, where they 

release acetylcholine which, via muscarinic receptors (largely, but not exclusively, 

M3), causes the sphincter to contract and reduce the size of the pupil. 

 

5.2.1.2  Innervation of the dilator 

Pupillary dilation is brought about by lessening the parasympathetic input to the 

sphincter, and by sympathetic activation of the dilator muscle. Sympathetic 

preganglionic fibres arise from the intermediolateral nucleus in the 8th cervical to the 

2nd thoracic spinal segments, an area known as the ciliospinal center of Budge (and 

Waller), and travel in the sympathetic trunk to the superior cervical ganglion. 

Postganglionic neurons travel up the neck next to the internal carotid artery as the 

internal carotid nerve.  At the level of the cavernous sinus, the nerve breaks up to 

form an interweaving network of fibres, the carotid plexus, around the carotid artery. 

Some of the axons from this plexus form the sympathetic root of the CG, pass 

through the CG without synapsing and, mostly travelling in the short ciliary nerves, 

innervate the iris dilator. Other postganglionic sympathetic fibres reach the dilator in 

long ciliary nerves, which are branches of the nasociliary nerve (not shown in Fig. 
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22).  These sympathetic fibres travel within the choroid and release noradrenaline 

onto the dilator, which, acting on α1 receptors, causes pupillary area to increase. 

 

5.2.2  Birds  

5.2.2.1  Innervation of the sphincter 

The neural pathway underlying the PLR has been thoroughly described for the 

pigeon and is very similar to that outlined for humans above (Section 5.2.1.1).  A 

small subset of large retinal ganglion cells project to an area of the contralateral 

pretectum (area pretectalis), which when stimulated causes pupil constriction.  There 

are no ipsilateral projections from the retina to this area.  From here fibres reach the 

contralateral EWN and send preganglionic oculomotor nerve parasympathetic fibres 

to the CG, which gives rises to postganglionic neurons that innervate the iris 

sphincter muscle (Gamlin et al., 1984). 

 

In mammals, anti-muscarinic drugs such as atropine cause pupil dilation.  In adult 

birds, however, such drugs usually have little effect, but those that block nicotinic 

acetylcholine receptors, as in turtles (Section 5.2.3.1), are effective in causing pupil 

dilation (Campbell & Smith, 1962; Mikaelian et al., 1994; Ramer et al., 1996; Loerzel 

et al., 2002; Barsotti et al., 2010a&b, 2012; Petritz et al., 2016).  The muscarinic 

action of acetylcholine on the iris sphincter of mammals, but its nicotinic action in 

birds and turtles, is easily explained by these muscles being smooth in mammals 

and striated in birds and reptiles (Section 2). Consequently, in developing chicks, 

when iris muscles are smooth, the receptors on the sphincter are muscarinic, and 

nicotinic receptors only appear in adults when most muscle becomes striated (Pilar 

et al., 1987).   
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5.2.2.2  Innervation of the dilator 

Sympathetic control of the avian dilator is derived from preganglionic spinal neurons 

located in the lowermost cervical and uppermost thoracic segments that, as in 

mammals, project to the superior cervical ganglion from where postganglionic fibres 

reach the muscle (Kirby et al., 1978; Neuhuber & Schrödl, 2011).  

 

While in the pigeon the dilator muscle has been described as vestigial or absent 

(Pilar et al., 1987; Gamlin et al., 1984), in other species, although not as well 

developed as the sphincter, it is readily apparent (Zenker & Krammer, 1967; van 

Oehme, 1969; Nishida & Sears, 1970; Oliphant et al., 1983; Scapolo et al., 1988; 

Pilar et al., 1987; Dieterich et al., 1988). Its control appears variable, perhaps 

because it can consist of both striated and smooth components (Section 2). Thus, 

while some studies indicate cholinergic control (Pilar et al., 1987), and show little 

effect of adrenergic drugs on pupil size (Campbell & Smith, 1962; Zenker & 

Krammer, 1967), others suggest adrenergic control of the dilator (Nishida & Sears, 

1970; Kirby et al., 1978) and, for example, find phenylephrine to cause dilation 

(Loerzel et al., 2002).  

 

5.2.3 Reptiles  

The neural pathways underlying pupil responses have been examined in some detail 

for the red-eared slider turtle.  Broadly speaking they are similar to those described 

for mammals (Section 5.2.1) and birds (Section 5.2.2). 
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5.2.3.1  Innervation of the sphincter 

Pupil constriction involves parasympathetic elements of the 3rd cranial nerve 

synapsing in the CG and the postganglionic action of short ciliary nerves releasing 

acetylcholine onto the sphincter muscle.  Thus, stimulation of both the 3rd nerve and 

short ciliary nerves, as in alligators (Iske, 1929), results in a decrease in pupil area 

(Dearworth et al., 2009) and acetylcholine antagonists block constriction (Dearworth 

et al., 2007). 

 

As noted in section 5.2.1.1, while in mammals contraction of the iris sphincter muscle 

is brought about by the action of acetylcholine on muscarinic receptors, in the turtle 

and birds the acetylcholine acts on nicotinic receptors (Dearworth et al., 2007).  

Interestingly, early studies on another reptile, the alligator, gave somewhat different 

results, suggesting the control of the sphincter was similar to that in mammals 

involving the muscarinic action of acetylcholine (Iske, 1929).  However, the alligator 

sphincter muscle has both smooth and striated components (Reger, 1966), 

potentially explaining the variation in control of the reptilian iris sphincter muscle 

(Dearworth et al., 2007). 

 

In comparison to mammals, pupillary constriction in the turtle is relatively slow, taking 

up to 5mins (Dearworth et al., 2009; see Section 3.3.2).  However, direct stimulation 

of the efferent pathway results in much faster pupillary constriction (Dearworth et al., 

2009), suggesting the cause of the sluggish PLR of turtles is to be found within the 

afferent part of the reflex arc.  In the turtle, pupillary constriction may, for example, 

be more reliant than mammals on melanopsin-containing ipRGCs, whose dynamics 

are slow (Dearworth et al., 2011; Section 5.1).  
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5.2.3.2  Innervation of the dilator 

In the red-eared slider turtle, pupil dilation, as in mammals, is mediated via the action 

of noradrenaline on α1 receptors (Dearworth & Cooper, 2008), suggesting the 

presence of sympathetic innervation of a dilator muscle similar to that described in 

sea turtles (Brudenall et al., 2008).  

 

5.2.4 Amphibia  

Although direct iris photosensitivity (Section 6) is perhaps the principle way of 

contracting amphibian iris sphincter muscles, there is ample evidence that their iris 

muscles also receive extensive autonomic innervation. 

 

5.2.4.1  Innervation of iris muscles in caudata 

The innervation of the iris of salamanders has been little studied.  In the Spanish 

ribbed newt, section of the 3rd cranial nerve leads to slower and smaller PLRs 

(Henning et al., 1991). Furthermore, in this species and fire salamanders a prectecal 

area that projects to the CG via the oculomotor nerve has been identified as being 

involved in pupillary constriction (Henning & Himstedt, 1994), suggesting 

parasympathetic control of the iris sphincter muscle. The sluggish nature of the dark 

response in these species (Henning & Himstedt, 1994), as well as morphological 

data for the Japanese common newt (Okamoto, 1988), suggests caudata do not 

have an iris dilator muscle.  Since both catecholamines and acetylcholinesterase 

were localised to the pupillary margin of the newt iris and two types of varicosities 

were described within nerve endings, which in other species have been linked to 

cholinergic and adrenergic innervation, it is possible the iris sphincter receives a dual 
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innervation, as has been suggested for some anura (Section 5.2.4.2) (Okamoto, 

1988).   

 

5.2.4.2  Innervation of iris muscles in anura 

Pupil constriction in anura is perhaps solely the result of the direct action of light on 

the sphincter muscle (Section 6).  Although it was initially proposed this muscle could 

be made to contract by stimulation of cholinergic parasympathetic fibres within the 

3rd cranial nerve (Armstrong & Bell, 1968), this could not be confirmed (Morris, 1976).  

Despite some contradictory evidence (e.g. Studnitz, 1932b; Kotsuka & Naito, 1960), 

most data indicate that in both frogs (Ducret and Kogo, 1931; Hafter, 1932) and 

toads (Armstrong & Bell, 1968; Morris, 1976; Rubin & Nolte, 1984) β-adrenergic 

sympathetic innervation, arising from the 2nd, 3rd or 4th spinal root (Morris, 1976), 

results in pupil dilation.  As there is no structural evidence for a dilator muscle in 

either Northern leopard frogs (Nolte & Pointner, 1975) or cane toads (Armstrong & 

Bell, 1968), pupil dilation is generally assumed to be brought about by sympathetic 

inhibition of the sphincter muscle.  However, toads might in fact have myoepithelial 

fibres that could function as a dilator (Rubin et al., 1986).  A clear unified picture of 

anuran iris innervation is therefore yet to emerge. 

 

5.2.5  Fish  

While in mammals, birds, reptiles and amphibia the iris sphincter muscle is either 

primarily under parasympathetic control or receives no innervation, and the dilator 

muscle, when present, is primarily innervated by sympathetic fibres, in fish the 

control of these muscles is reversed.  
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5.2.5.1  Innervation of iris muscles in teleosts 

In a variety of teleosts, the iris sphincter muscles are sympathetically innervated 

(Young, 1931&1933b; Nilsson, 1980; Somiya, 1987) and can be made to contract 

cholinergically &/or adrenergically.  However, it is possible that the adrenergic 

responses are non-specific and the sympathetic innervation of the teleost iris 

sphincter muscle is cholinergic (Rubin & Nolte, 1981).  The iris dilator muscle, when 

present, is under cholinergic parasympathetic control from fibres within the 

oculomotor nerve (Young, 1931, 1933b; Somiya, 1987). The often contradictory 

literature on the innervation of fish iris muscles is reviewed by Nilsson (1994). 

 

5.2.5.2  Innervation of iris muscles in elasmobranchs 

Little is known about the control of elasmobranch iris muscles.  As in teleosts, the 

dilator muscle is parasympathetically controlled by fibres within the 3rd cranial nerve 

projecting to the CG (Young, 1933a; Kuchnow, 1971), from where (possibly 

cholinergic) fibres act on the dilator muscle. It has been suggested that the sphincter 

receives no innervation and responds only to direct illumination (Young, 1933a; 

Section 6).  However, the iris sphincter muscles of some elasmobranchs have been 

shown to have nerve terminals on them (Kuchnow & Martin, 1970), suggesting a 

degree of nervous control of this muscle, at least in some species.  

 

5.2.6  Cephalopods 

Although it is probable that cephalopods, like most vertebrates, possess both iris 

sphincter and dilator muscles (Magnus, 1902), the presence of a dilator has yet to be 

clearly demonstrated anatomically (Froesch, 1973). The fast rate of cephalopod pupil 

dilation, however, is strongly suggestive of the presence of such a muscle.  
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Little is known about the neural pathways underlying the cephalopod pupil response.  

Early observations regarding its central components in octopus (Magnus, 1902) were 

later questioned by Weel & Thore (1936).  However, a region between the posterior 

pedal and ventral magnocellular lobes, which receives direct input from the optic 

lobe, has been identified as being involved in the control of pupil diameter 

(Budelmann & Young, 1984).  Three ganglionated nerves, when stimulated, affect 

the size of the pupil; two (n. ophthalmicus superior posterior & n. oph. inferior) 

causing constriction and one (n. oph. superior medialis) resulting in dilation.   It is 

also known that pupil constriction in Sepia results from the application of 

acetylcholine (Chichery & Chanelet, 1972), although in other cephalopods atropine 

does not block constriction (Beer, 1897). 

 

6.  Intrinsic iris photosensitivity 

Light activated pupillary constriction is traditionally thought of as a centrally-mediated 

reflex, in which illumination of retinal photoreceptors, by way of the optic nerve, 

triggers motor neurons leading to contraction of the iris sphincter muscles (Section 

5).  However, it has been known for over 150 years that the pupils of some amphibia 

and fish constrict on illumination even in the absence of retinal input (Brown-

Séquard, 1847a&b, 1859; Steinach, 1892; Magnus, 1899; Guth, 1901; Franz, 1906).  

Since then, numerous studies using, intact eyes removed from the head, isolated 

irises or iris muscles, intact eyes within the body following optic nerve section, or 

small spots of light directed only at the irises of intact animals, have shown that the 

irises of most, and perhaps all, amphibia, are directly photosensitive (Weale, 1956; 

Campenhausen, 1963; Glaus-Most, 1969; Barr, 1989 for reviews and references 
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listed below).  Significant intrinsic iris photosensitivity has also been reported in other 

fish (Franz, 1906, 1931; Young, 1933a; Seliger, 1962; Kuchnow, 1971; Rubin & 

Nolte, 1981; Douglas et al., 1998), several mammals (Bito & Turansky, 1975; Zucker 

& Nolte, 1978; Suzuki et al., 1991; Lau et al., 1992; Krivoshik & Barr, 2000; Xue et 

al., 2011; Semo et al., 2014; Vugler et al., 2015), a reptile (Sipe et al., 2011), and 

embryonic chicks (Pilar et al., 1987; Tu et al., 2004; Valdez et al., 2009).  

 

However, intrinsic iris photosensitivity, while obviously widespread, is not universal in 

animals with mobile pupils.  While some, mainly nocturnal/crepuscular, mammals, for 

example, appear to have intrinsically photosensitive irises (see references above), 

diurnal species, including primates, do not (Xue et al., 2011). Similarly, while in some 

teleost fish the isolated iris responds to light, in the stargazer such changes in pupil 

area cease following disruption of the optic nerve (Young, 1931, 1933b), and in the 

gecko illumination of only the iris is ineffective in eliciting pupillary closure (Denton, 

1956). Although Barr (1989) goes so far as to suggest that in all but a very few 

animals the isolated iris is capable of some contraction, it may not always be 

physiologically significant.  

 

Barr & Alpern (1963) provided the first detailed timecourse for pupillary constriction 

in an isolated amphibian iris in an unidentified species of frog, showing an average 

latent period of under a second with maximum tension developing in ca. 4-5secs.  

Later studies show similar dynamics for the isolated irises of toads (Armstrong & 

Bell, 1968), frogs (Glaus-Most, 1969; Kargacin & Detwiler, 1985), and axolotls (Barr, 

1988). Just like the PLR following nervous stimulation, the intrinsic pupil response is 

related to light intensity (Fig. 23).  
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The pupil responses of isolated irises and intact animals are sometimes very similar 

(Studnitz 1932a &1933; Steinach, 1892), which led to the suggestion that the pupil 

responses in these animals are entirely the result of direct iris photosensitivity.  

Furthermore, in sharks the sphincter muscle seems to receive no innervation and 

contract solely in response to its own photosensitivity (Young, 1933a; Section 

5.2.5.2).  However, often the response of the isolated iris is significantly slower and 

less extensive than that of the intact eye (Campenhausen, 1963; Bito & Turansky, 

1975; Henning et al., 1991; Lau et al., 1992; Douglas et al., 1998; Sipe et al., 2011).  

There is also ample evidence that the autonomic nervous system has a significant 

role to play in the pupil responses of all animals (Section 5), and the existence of a 

consensual pupil light response in many animals (Section 4) could not be explained 

by intrinsic iris photosensitivity. Thus, the complete pupil response usually requires 

some retinal input. 

 

Structurally, intrinsically photosensitive irises appear little different to those of other 

species, containing no specialised photoreceptive cells or organelles (Bell, 1965; 

Armstrong & Bell, 1968; Nolte & Pointner, 1975; Zucker & Nolte, 1981; Rubin et al., 

1986).  It is therefore assumed that the sarcolemma of the iris sphincter contains the 

visual pigment.  Early evidence, based on the similarity of the action spectrum of the 

isolated iris response and the absorption spectrum of the rod visual pigment 

(Magnus, 1899; Seliger, 1962; Barr & Alpern, 1963; Bito & Turansky, 1975; Barr, 

1988), and the localisation of rhodopsin and elements of its phototransduction 

cascade in the iris (Blaustein & Dewey, 1979; Ghosh et al., 2004; Xue et al., 2011), 

indicated that it might underlie intrinsic iris photosensitivity.  Such a suggestion is not 
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unreasonable, as embryologically the iris muscles have a common developmental 

origin with the retina.   

 

However, the relatively recent discovery of the plethora of novel visual pigments 

(Foster & Hankins, 2002; Davies et al., 2015), both within and outside the retina, 

requires a reappraisal of the role of rod visual pigments in intrinsic iris 

photosensitivity.  One of these novel opsins, melanopsin, which underlies many non-

image-forming visual responses, including part of the retinally-mediated pupil 

response (Section 5.1), has an absorption spectrum very similar to that of rod visual 

pigments, with maximum sensitivity around 480nm (Lucas et al., 2001; Bailes & 

Lucas, 2010).  It has also been localised in the iris of amphibia (Provencio et al., 

1998), turtles (Cheng et al., 2017), and mice (Xue et al., 2011; Vugler et al., 2015).  

Furthermore, the isolated iris response of mice disappears in melanospin knockout 

animals (Xue et al., 2011; Semo et al., 2014; Vugler et al., 2015), and the action 

spectrum of the intrinsic pupil response closely matches the absorption spectrum of 

melanopsin (Xue et al., 2011). However, the intrinsic iris response is unaffected in 

rhodopsin knockout mice (Xue et al., 2011).  It thus seems likely, that in many 

species, melanospin, rather than rhodopsin, underlies the intrinsic photosensitivity of 

the iris sphincter muscle.   

 

Interestingly, the non-opsin based cryptochrome has been shown to take on the role 

of the visual pigment in embryonic chick irises (Tu et al., 2004), although it is not 

involved in mice (Xue et al., 2011).  It also cannot be ruled out that, as has been 

suggested in turtles (Sipe et al., 2011), more than a single pigment type might 

underlie intrinsic iris photosensitivity. 
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The signalling pathways linking opsin-based visual pigment activation to iris 

sphincter contraction are beginning to be elucidated (Barr, 1989: Krivoshik & Barr, 

2000; Xue et al., 2011).  Either rhodopsin or melanopsin is coupled, via a G-protein, 

to a typical smooth muscle phosphorylation contraction cascade involving 

phospholipase C (Krivoshik & Barr, 2000; Xue et al., 2011) and the release of 

intracellular calcium (Barr & Alpern, 1963; Bito & Turansky, 1975; Zucker & Nolte, 

1978: Rubin & Nolte, 1984; Kargacin & Detwiler, 1985; Barr & Gu, 1986, 1987; Barr, 

1989; Suzuki et al., 1991; Krivoshik & Barr, 2000; Xue et al., 2011). Unlike in retinal 

photoreceptors, cyclic nucleotides appear not to be involved directly in the 

transduction process (Rubin & Nolte, 1984, 1986; Kargacin & Detwiler, 1985), 

although they may have a modulatory role (Barr, 1989).  

 

In many animals, there are thus two distinct pathways leading to contraction of the 

iris sphincter muscle; a reflex arc involving retinal photoreceptors and the brain and 

intrinsic photosensitivity of the iris sphincter muscle itself. However, at least in mice, 

there may be a third way of triggering pupil constriction; a local intraocular reflex 

involving the retina. The pupil response of animals whose optic nerve has been 

destroyed is influenced by cholinergic transmission from ipRGCs that project from 

the peripheral retina and ciliary body directly to the iris (Semo et al., 2014; Schmidt 

et al., 2014).  Retinal rods, but not cones, also have a role to play in the pupil 

response of isolated mouse eyes (Vugler et al., 2015).  

 

The centrally-mediated component of pupil constriction is so well established that an 

obvious question is, what is the purpose of additional intrinsic iris photosensitivity?   
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Most simply perhaps, an intrinsic iris response allows sustained contraction of the 

pupil once it has constricted and the retina receives reduced illumination.  The 

retinally-mediated component of the PLR is presumably required so that the state of 

adaptation of the retina can be assessed.  Furthermore, as the PLR is more than a 

simple response to overall light levels that serves to regulate retinal illumination, and 

can respond to quite complex stimuli (Sections 7&8), central involvement in its 

control is required. 

 

7.  Function of changes in pupil area related primarily to light intensity 

7.1  The pupil as a way of optimising visual performance in different light levels 

The difference between a cloudy night and a bright sunlit day can expose an animal 

to a range of light levels of over 10 log units during a 24hr period, which far exceeds 

the dynamic range of any one photoreceptor. Although the eyes of vertebrates are 

generally optimised for vision in either high or low light levels, most maintain some 

vision at all times by switching between two differentially sensitive photoreceptors; 

the rods which optimise sensitivity in low light levels, and the less sensitive cones 

underlying high spatial acuity in brighter light.  The switch from rod to cone-based 

vision and the adjustment of their sensitivity involves a number of complex 

biochemical and neurobiological retinal processes (Perlman & Normann, 1998; Lamb 

& Pugh, 2004). 

 

Such retinal light and dark adaptation is usually accompanied by changes in pupillary 

area.  As the iris acts as an aperture stop, photon capture by the retina will be 

enhanced by a large pupil, easily explaining the dilated pupil in low light levels.  

Animals at high light levels, however, will benefit from smaller pupils as all lenses 
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suffer from optical imperfections.  For example, spherical aberration is caused by 

light going through the periphery of the lens being focussed closer to it than more 

central rays (Section 9.1.1; Fig. 25).  A large aperture would thus reduce image 

quality, as most of the lens is used to form the image.  Large pupils may further 

reduce image quality, as they result in a decreased depth of field. Thus, a constricted 

pupil enhances image quality by reducing the amount of spherical aberration and 

increasing the depth of field, although if it is too small diffraction may become a 

problem (McDougal & Gamlin, 2015).  Although, pupillary constriction probably 

serves to reduce spherical aberration in many species, it may not do so in all 

(Section 9.1.1). 

 

If an animal lived in an environment where the level of illumination did not fluctuate, it 

would not need any means of light or dark adaptation and its pupil would probably be 

fixed. The greater the variation in light level experienced by an animal the more 

extensive any adaptive mechanisms need to be.  As will be described in a later 

section (9.2.1), nocturnal animals that nonetheless are sometimes active during the 

day, and therefore experience a wide range of light levels, often have pupil shapes, 

such as slits, that allow a greater change in pupil area than the circular pupils of 

strictly diurnal or nocturnal species.  Marsupials that live in relatively constant 

illumination have pupils that change little, if at all, while species that experience a 

wider range of light levels show a greater range of pupil areas (Section 3.1.2.2).  

Nocturnal primates (Section 3.1.2.3.1) and geckos (Section 3.3.1) have a greater 

range of pupil sizes than strictly diurnal species.  Similarly, the greatest pupillary 

excursions among pinnipeds are seen in deeper diving species, which experience 

the greatest range of light levels (Section 3.1.2.3.5).  Also, while most birds show 
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relatively modest light-evoked pupil responses, pupillary area altering retinal 

illumination by a factor of only around 3-4 (Section 3.2.2), the pupil of the King 

Penguin, which dives to dimly-lit depths to feed, can change in area by a factor of 

300 (Martin, 1999; Section 3.2.1).  Thus, the extent of the PLR is greater in animals 

that experience a wide range of illumination. 

 

Although large changes in pupil area are clearly possible, the variation in retinal 

illuminance resulting from most pupil responses is in fact fairly limited (1.2 log units 

in the case of humans; see Section 9.2.1), thus providing only a modest contribution 

to adjusting to the much wider range of light levels animals can be exposed to.   

 

Although the pupil, especially a circular one, may not be able to compensate for 

anything like the whole range of light levels an animal might be exposed to, its 

advantage is that it is usually very rapid, while the other processes involved in light 

and dark adaptation, although more effective, often take several minutes.  Thus, a 

mobile pupil allows the visual system to regain optimal sensitivity more rapidly by 

smoothing out fast changes in ambient light levels.  It could, for example, reduce the 

amount of visual pigment bleached in bright light, thereby reducing the amount of 

regeneration that has to occur once the ambient illumination decreases, allowing a 

faster rate of dark adaptation.   

 

Thus, changes in pupil area are part of a suite of changes involved in light and dark 

adaptation, and pupil diameter is continually adjusted to optimise visual performance 

in response to changing environmental lighting conditions and different visual tasks, 

balancing the conflicting demands of sensitivity and spatial acuity.  
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7.2  Camouflage  

The blackness of the pupil, and its often regular circular outline, make the eye 

particularly visible.  Sometimes, such as when the eye is used for social interactions 

(Section 8.2), such conspicuousness is clearly advantageous and the visibility of the 

pupil is further enhanced by the colouration of the sclera and iris. For example, 

determining where another animal is looking is important for certain forms of social 

interaction in some animals (Davidson et al., 2014), as it might, for example, indicate 

the location of an object of interest.  In humans, the large white exposed sclera has 

been interpreted as an aid to determining gaze direction (Kobayashi & Kohshima, 

2001). 

 

However, its conspicuousness, its sensitivity and the reliance of many animals on 

vision, also make the eye particularly vulnerable to attack.  Furthermore, it may at 

times be advantageous to conceal one’s direction of gaze, possibly accounting for 

the more pigmented scleras of non-human primates (Kobayashi & Kohshima, 2001). 

Cott (1940), in his classic text on animal camouflage, considered the eye inherently 

conspicuous and the most difficult of all organs to conceal.   

 

Some animals therefore attempt to hide the eye using masking body patterns such 

as black stripes, or disguise the eye’s true location by using false eyes to misdirect 

an observer (Cott, 1940; Walls, 1942; Neudecker, 1989). Such patterning is 

particularly obvious in some teleost fish (Fig. 24), where the lack of eyelids and 

nictitating membranes makes ocular conspicuousness, as well as protection, a 

particular problem. 
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While such mechanisms for concealing the eye may be applicable in colourful reef 

fish, they are inappropriate for bottom-dwelling species that are trying to blend in with 

the substrate.  While it is a relatively simple matter for them to match the colour and 

texture of the skin to the background, the eye, especially the pupil, is less easy to 

disguise.   

 

This may explain why mobile pupils in teleost fish are largely confined to species that 

live on, or in, the substrate (Section 3.5.2.3).  Pupillary constriction in higher light 

levels might serve to conceal the otherwise very prominent dark circular pupil, as the 

anterior surface of the iris usually matches the bodily pigmentation.  In lower light 

levels, when potential predators and prey will be able to perceive less detail, the 

pupil can expand to increase the concealed animal’s sensitivity.  

 

Dorsal operculae (Fig. 14), which will conceal the eye from predators and prey 

viewing the hiding animal from above (Section 9.1), will aid crypsis in bottom 

dwelling fish.  This will be further enhanced by disrupting the regular outline of the 

otherwise circular pupil with an operculum whose edge is serrated or feathered (Fig. 

14). 

 

Using pupillary constriction to conceal the eye, while perhaps most obvious in fish, 

need not be restricted to this group.  The vertical slit pupils of snakes that are 

ambush predators (Brischoux et al., 2010; Section 9.2.3), and the multiple pinholes 

of the gecko pupil (Roth et al., 2009; Section 9.3; Fig. 9C), may serve a similar 
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function, as they are less regular and have a reduced area in comparison to a single 

circular pupil. 

 

8.  Changes in pupil size not related to ambient light level 

Perhaps the most obvious causes of changes in pupil diameter unrelated to light 

level are pathological (Loewenfeld, 1993), and result from interruptions in the neural 

pathways controlling pupillary responses (Section 5).  Although the changes in pupil 

diameter related to pathology, and their usefulness in diagnosing neurological 

disease, have been the main drivers for pupil research (Section 1), this will not be 

discussed further in this section. 

 

8.1  Rhythmic changes in pupil diameter 

The human pupil undergoes slow rhythmic contractions in constant illumination, 

especially when sleepy, known as hippus or pupillary unrest (Loewenfeld, 1993; Fig. 

5D).  Similar contractions are observed in other mammals such as rhesus macaques 

(Pong & Fuchs, 2000), dogs (Whiting et al., 2013), and mice (McGinley et al., 2015) 

but not in, for example, dolphins (Dawson et al., 1979).  Rhythmic variations in pupil 

size are also widespread in birds (Steinach, 1890; Alexandridis, 1967b; Raidal, 1997; 

Kallähn, 2014; Meekins et al., 2015) and cephalopods (Douglas et al., 2005) and 

have been reported after prolonged dark adaptation in turtles (Steinach, 1890; 

Granda et al., 1995).  Respiration (Ohtsuka et al., 1988) and heart rate (Calcagnini et 

al., 2001) can also influence pupil size.  Finally, the pupils of at least mice, humans 

and birds are subject to the influence of endogenous circadian clocks, and are thus 

influenced by the time of day (Owens et al., 2012; Münch et al., 2012; Valdez et al., 

2015; Bonmati-Carrion et al., 2016).  
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8.2  Influence of ‘higher level processing’ on pupil size 

In humans, there is ample evidence that the pupil is not controlled solely by the 

subcortical pathways outlined in section 5.2.1, and that higher level processing 

affects pupil size too.  Such influences can be the result of both visual, as well as 

non-visual, neural activity.  Although such changes in pupil size are usually not as 

large as those elicited by changes in light levels, they can be significant (Loewenfeld, 

1993). 

 

The human pupil, for example, responds to changes in colour, structure, and 

movement in the absence of net changes in total light flux (Barbur & Forsyth, 1986; 

Barbur et al., 1992; Barbur, 2004). The pupil is also affected by various physiological 

influences. Thus, pupillary diameter increases in times of stress responding, for 

example, to pain (Höfle et al., 2008), fear, and loud noises (Nunnally et al., 1967). It 

is also influenced by tiredness (Wilhelm et al., 1998) and physical activity (Ishigaki et 

al., 1991).  

 

However, perhaps most surprisingly, pupil size is also influenced by factors that 

might be termed psychological.  To give a few examples from a vast literature: Pupil 

diameter is increased when viewing emotionally arousing stimuli (Bradley et al., 

2008).  Classically, pictures of attractive members of the opposite sex cause pupil 

dilation and members of the opposite sex with dilated pupils are rated as more 

attractive than those with smaller pupils (Hess, 1975).  The stimuli do not even have 

to be real.  For example, the pupil constricts more when seeing a picture of the sun 

compared to viewing an indoor scene of equal brightness.  Even imagining a bright 
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stimulus leads to pupil constriction (Mathôt & Stigchel, 2015 for review).  Pupil size is 

also influenced by cognitive tasks, such as mental arithmetic and number recall 

(Beatty, 1982; Granholm et al., 1996; Steinhauer et al., 2004; Laeng et al., 2012).  

 

The pupils of non-human animals are also subject to influences other than light.  For 

example, several authors (Beer, 1897; Magnus, 1902; Weel & Thore, 1936) have 

noted that when groups of cephalopods were kept within the same tank, and 

therefore exposed to very similar light levels, their pupils were constricted to varying 

degrees. It is therefore not surprising that extensive pupil movements are often seen 

in cephalopods despite the lack of any change in light level (Douglas et al., 2005).  

For example, their pupils dilate when they are ‘aroused’ during fighting, mating or 

viewing food (Beer, 1897; Bateson, 1890; Weel & Thore, 1936; Packard & Sanders, 

1971; Muntz, 1977; Hurley et al., 1978).  A large pupil, even in bright light, might 

serve a number of functions. It could, for example, be an intraspecific signal during 

courtship displays (Wells, 1966; Packard, 1972) or be part of a series of deimatic 

displays that help create the illusion of larger size when facing a potential predator 

(Wells, 1966; Hanlon & Messenger, 1988, 1996; Messenger, 2001).  Because small 

pupils increase depth of field, a large pupil may also facilitate depth perception if the 

accommodative system is being monitored to provide information about object 

distance (Section 8.3.1). 

 

Another group of animals whose pupil size seems only loosely related to changes in 

ambient illumination are birds.  While pupil area often changes relatively little despite 

quite large variation in ambient illumination (Section 3.2.2), pupillary diameter can 

change markedly even without any obvious alteration in light level.  The wide 
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variation in pupil diameter under seemingly constant light conditions prompted 

several earlier authors to suggest the bird pupil might be subject to voluntary control 

(Harris, 1904; Mann, 1931; Walls, 1942).   

 

More specific visual stimuli can sometimes have a greater effect on pupil diameter in 

birds than simple changes in illumination.  For example, the chicken pupil constricts 

more to isoluminant red stimuli than it does to a change in overall light flux (Barbur et 

al., 2002; Moayed et al., 2012; Fig. 8).  This suggests that the colour red may have a 

special significance to the animal. Various behavioural studies, for example, show 

that chickens prefer the colour red in a variety of situations (Roper & Marples, 1997; 

Salzen et al., 1971; Ham & Osorio, 2007).  

 

The pupils of birds also respond to non-visual stimuli, dilating, for example, to sound 

(Loewenfeld, 1958; Bala & Takahashi, 2000).  Pupils of a ‘talking’ parrot also 

constricted bilaterally prior to, and during, vocalisation, and when “attending” to the 

speech of others (Gregory & Hopkins, 1974). Whether such constriction serves a 

useful function, such as a social signal “commanding other birds attention” (Gregory 

& Hopkins, 1974) or is simply an expression of arousal is unclear.  Sound also leads 

to pupil dilation in other vertebrates, such as cats (Watanabe et al., 1990). 

 

Non-light related pupil activity has also been reported in reptiles. The pupils of 

snakes dilate when the animal is “excited, angry or frightened” (Munro, 1949), but 

constrict in response to tactile stimuli (Fontenot, 2008).  It has also been suggested 

that in geckos, a dilated pupil is a sign of aggression, and that constriction of the 

pupil might serve to inhibit aggression from other individuals (Werner, 1972). Thus, 
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some reptiles, like birds, may have a degree of voluntary control over pupil diameter 

(Denton, 1956; Werner, 1972).  Given the striated nature of the iris muscles in these 

species (Section 2), this cannot be completely discounted. The neural substrates for 

such voluntary control are, however, unknown. 

 

8.3  The iris and pupil in accommodation 

8.3.1  The pupil near response 

In humans and other higher primates, the pupil constricts on viewing close objects, 

which, due to the consequent increase in depth of field, along with the accompanying 

accommodative lens changes and ocular convergence (the near triad), serves to 

improve image quality (McDougal & Gamlin, 2015).   

 

Some reptiles (Ott et al., 1998; Henze et al., 2004) and birds (Schaeffel et al., 1986; 

Schaeffel & Wagner, 1992; Glasser et al., 1997) also show pupillary constriction on 

accommodation.  However, in birds at least, the extent of this near response, and its 

binocular nature, depends on the species.  Accommodation is always accompanied 

by a near pupillary constriction in barn owls and, like accommodation in this species, 

is symmetrical in the two eyes (Schaeffel & Wagner, 1992).  However, in the 

chicken, whose eyes are more laterally positioned, constriction of the pupil is not as 

strongly correlated with accommodative effort, especially in younger chickens, and 

the responses are independent in the two eyes (Schaeffel et al., 1986).  

 

In primates, all three components of the near triad are independent, in the sense that 

one does not cause the other two.  They simply have a common cause.  However, in 

reptiles and birds the iris muscles are actively involved in changing the focus of the 
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lens by ‘squeezing’ it (Ott, 2006), so that changes in pupil area when viewing close 

objects may simply be a by-product of accommodation. 

 

There is also one situation in which a small pupil when viewing close objects is a 

disadvantage.  Many animals with laterally placed eyes use monocular cues, such as 

the accommodative state of their eye, to determine their separation from an object 

(Collett & Harkness, 1982). However, eyes with a single small aperture have a large 

depth of field, minimising the need for accommodation. Consequently, animals with a 

single constricted pupillary aperture cannot use the accommodative state of the eye 

as a cue to distance.  This may explain why cephalopods, a group of animals that  

are able to judge distances with accuracy (Wells, 1966; Chung & Marshall, 2014), 

maintain a wide pupil when viewing close objects such as prey (Weel & Thore, 1936; 

Wells, 1966), making accommodation a more useful cue to distance. Similarly, it has 

been suggested that chameleons, who are known to monitor their accommodation to 

judge distance, maintain wide pupils when aiming their tongues at prey even in high 

light levels (Harkness, 1977), although the existence of a pupil near response in 

these animals (Ott et al., 1998) is hard to reconcile with such a suggestion. The 

possession of multiple constricted pupillary apertures overcomes the problems 

caused by the greater depth of field of single stenopaic openings (Section 9.3) 

 

8.3.2  A role for the pupil in amphibious vision 

The curvature of the cornea, and its higher refractive index than air, ensure it is the 

major refractive surface in non-aquatic animals. Underwater, however, the cornea 

loses its refractive ability, as its front and rear surfaces border aqueous media of 

similar refractive index.  The lenses of aquatic species are therefore the major 
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refractive element, and consequently are spherical, and optically more powerful, than 

the relatively flattened lenses of terrestrial species.  

 

This presents amphibious animals, which would benefit from seeing in both media, 

with an obvious problem.  If they have the optics of a typical terrestrial animal, when 

their eyes are submerged, they will become hyperopic, as the cornea is lost as a 

refractive surface.  Conversely, animals with the rounded lenses typical of aquatic 

animals will be very myopic in air.  Conventional methods of accommodation could 

not provide focussed vision in both media. Nonetheless, by both refractive and 

behavioural measures, many amphibious mammals, birds and snakes have been 

shown to have similar visual abilities in air and water (Schusterman & Balliet, 1971; 

Herman et al., 1975; Howland & Sivak, 1984; Sivak et al., 1987, 1989; Ballard et al., 

1989; Murphy et al., 1990; Schaeffel & Mathis, 1991; Katzir & Howland, 2003). 

 

One way of achieving this is to have a powerful lens suitable for underwater vision, 

while minimizing the refractive capability of the cornea in air, by either reducing its 

overall curvature or incorporating flattened facets (Wilson, 1970; Howland & Sivak, 

1984; Dawson et al., 1987; Sivak et al., 1987, 1989; Hanke et al., 2006, 2009).  In 

addition, many aquatic mammals, for example, have spherical lenses typical of 

aquatic animals (West et al., 1991), but constrict their pupil to form a single 

stenopaic aperture in air, thereby affording a large depth of field (Sivak et al., 1989; 

Levenson & Schusterman, 1997; Hanke et al., 2006, 2009). 

 

Pupillary constriction to increase depth of field may also explain the counterintuitive 

constriction of the pupil in aquatic snakes when submerged, and the lack of a 
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relationship between the level of illumination and pupil size (Schaeffel & de Queiroz, 

1990; Fontenot, 2008; Section 3.3.2).  Constricting the pupil underwater, despite the 

fact that light levels are lower here than on land, would serve to maintain spatial 

acuity.  Interestingly, humans may be able to do something analogous. The Moken, 

are a nomadic tribe of sea gypsies whose children forage underwater, often without 

facemasks. Their acuity underwater is about twice as good as that of untrained 

Europeans, a feat they achieve by maximal accommodation and constricting their 

pupils (Gislen et al., 2003, 2006). 

 

An alternative method of ensuring adequate vision in both air and water is to have a 

pliable flattened lens in air, which is forced through a rigid pupil formed by well-

developed iris musculature when underwater.  This forms a highly refractive curved 

‘nipple’ on the anterior surface of the lens, allowing some amphibious species to 

accommodate by as much as 50-60D (Sivak, 1980; Levy & Sivak, 1980; Murphy et 

al., 1990; Katzir & Howland, 2003). 

 

9.  The significance of pupil shape 

While most dilated pupils are close to circular, on constriction they can take on a 

variety of forms; some remain circular, while others become elliptical or form narrow 

vertical or horizontal slits. Some, constricted pupils take on even more complex 

shapes, including; crescent moons, Ws, and multiple pinholes.  The distribution of 

pupil shapes has been noted in section 3 and here their functional significance will 

be discussed. 
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9.1  Dorsal operculae 

In several vertebrates, the dorsal iris protrudes into the pupil forming an operculum 

or umbraculum (umbrella).  In most instances, the area of the pupil covered by the 

operculum increases as light levels rise.  Such structures are relatively rare in 

terrestrial animals, but have been described in the rock hyrax (Millar, 1973).  Several 

amphibia also have projections from the dorsal edge of the pupil (Section 3.4.2.1) 

and the corpora nigra extending from the dorsal iris of ungulates is functionally 

equivalent (Section 3.1.1; Fig. 4D). However, operculae are most well developed in 

animals living underwater, such as; cetaceans (Section 3.1.1; Fig. 4C), bottom 

dwelling skates and rays (Section 3.5.1; Figs. 14A&B), as well as substrate-living 

teleosts (Section 3.5.1; Figs. 13F, 14C&D). The W-shaped pupil of Sepia (Section 

3.6.1; Fig. 18E), and the crescent-shaped aperture of some squid (Fig. 18C), are 

also formed by operculae.  

 

Such dorsal intrusions could have several functions. Perhaps most obviously, in 

animals that live on the substrate, operculae would help disguise the very visible 

dark, circular, pupil, especially when seen from above (Section 7.2).  Furthermore, 

the light field, especially underwater, is very uneven.  Dorsal operculae will reduce 

the intensity of the potentially dazzling, or even damaging, downwelling light, while 

leaving the dimmer illumination from other directions less attenuated (e.g. Mäthger et 

al., 2013; Section 9.4).  

 

Another advantage of a fully constricted opercular pupil is that, like a slit pupil 

(Section 9.2.1), it can potentially close down to much greater degree than a circular 

one, virtually preventing the access of any illumination.  Operculae can also have 
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irregular serrated edges (Figs. 14B-D), so that when constricted these overlap the 

ventral iris forming multiple small apertures (Franz, 1931; Murphy & Howland, 1991; 

Sivak & Luer, 1991; Gruber & Cohen, 1978 ) the function of which will be discussed 

in section 9.3. 

 

9.1.1  Crescent-shaped pupils 

Dorsal iris operculae can result in U-shaped or crescent-like pupils in some 

cetaceans (Section 3.1.1), substrate-dwelling fish (Section 3.5.1; Figs. 13F, 14), and 

cephalopods (Section 3.6.1; Fig. 18C).  As noted above, such pupils may 

camouflage the eye when seen from above and selectively reduce the amount of 

downwelling illumination.  They also enlarge the visual field slightly in comparison to 

a circular pupil, enhance the contrast of high spatial frequencies, could be used as a 

focus indicator (Section 9.4), and reduce the effect of diffraction while limiting the 

depth of field (Murphy & Howland, 1991).   

 

In a lens with a uniform refractive index, such as a glass marble, light rays passing 

through the lens periphery are focussed closer to the lens than more central rays 

(Fig. 25), resulting in large amounts of positive spherical aberration and reduced 

image quality.  The lenses of most animals suffer from far less spherical aberration 

than a marble, as they have refractive index gradients, with outer shells having a 

reduced refractive index compared to more central ones.  In terrestrial animals, the 

effects of spherical aberration within the lens are further minimised as the cornea is 

the major refractive surface and the pupil can constrict, limiting the passage of light 

to only part of the lens. However, underwater the cornea is lost as a refractive 

element (Section 8.3.2), so that the lens is the only refractive surface.  Furthermore, 
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in most teleost fish, the lens protrudes through an immobile pupil, so that the whole 

lens is involved in image formation.   

 

Although, fish lenses are generally well corrected for spherical aberration (Sivak, 

1990 for review; Jagger, 1992; Kröger & Campbell, 1996; Kröger et al, 1994, 2001; 

Garner et al., 2001; Schartau et al., 2009), it has been suggested that a constricted 

crescent-shaped pupil could fulfil a similar function to the mobile circular pupil of 

other animals (section 7.1), reducing spherical aberration by restricting light to only 

part of the lens (Murphy & Howland, 1991).  It could be argued that, if crescent-

shaped pupils in fish serve to decrease spherical aberration, the lenses of species 

with such pupils would show greater degrees of spherical aberration than those of 

species with large, immobile, circular, pupils.   

 

In comparison to a marble, both suckermouth catfish, who have crescent-shaped 

pupils, and goldfish, whose pupils are immobile, circular, and large, have significantly 

less spherical aberration.  However, the lenses of both species are equally well 

corrected, each lens showing only small differences in back vertex distance for laser 

beams passing through the lens at different pupil heights, with both animals 

displaying a balance between negative 3rd order and a positive 5th order aberrations 

(Fig. 25).   As the catfish lens is not perfectly corrected for spherical aberration, 

restricting light to the lens periphery through a crescent-shaped pupil will lead to a 

small, but significant, improvement of image quality.  However, goldfish, arguably a 

more visual species than the catfish, have a similar degree of aberration yet, since 

they have large immobile pupils, must use the whole of their lens to form an image.   
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This might suggest that it is unlikely that the main purpose of the crescent-shaped 

pupil in suckermouth catfish is to decrease the effects of spherical aberration.  This 

is in line with the observation that the clearnose skate, which also has a crescent-

shaped pupil, similarly displays very little spherical aberration (Sivak, 1991; Sivak & 

Luer, 1991).  However, it is important to note that the absence of a crescent-shaped 

pupil in goldfish does not necessarily mean it cannot reduce aberration in catfish.  

Evolution does not universally impose the same solution to a specific problem on all 

animals. 

 

9.2  Elongated pupils 

Substantially elongated pupils are rare in teleost fish and occur in only one species 

of bird (Zusi & Bridge, 1981).  However, in mammals (Section 3.1.1), reptiles 

(Section 3.3.1), amphibia (Section 3.4.2.1), and elasmobranchs (Section 3.5.1) both 

horizontally and vertically elongated pupils are widespread.  There is broad 

agreement that in terrestrial animals, based largely on work on snakes, but 

encompassing other groups too, that vertically elongated pupils are found in largely 

nocturnal or polyphasic ambush predators.  Diurnal active predators have circular 

pupils and horizontally elongate pupils are common in herbivorous prey species 

(Walls, 1942; Mann, 1931; Brischoux et al., 2010; Banks et al., 2015). 

 

Theoretically, there are a number of functional advantages elongated pupils have 

over circular ones, which need not always be mutually exclusive.  Three of these are 

discussed further below.  Additionally, elongated pupils may play a role in 

camouflaging the eye, which is discussed further elsewhere (Section 7.2). 
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9.2.1  Allow a greater range of aperture sizes 

In a recent survey of pupil shapes in terrestrial animals (Banks et al., 2015), pupils 

were classified as either; circular, subcircular, vertical slits or horizontal.  The 

horizontally elongated pupils, such as found in many ungulates (Section 3.1.1; Fig. 

4D), were not considered true slits due to their rectangular shape. However, the 

elongated pupils of many elasmobranchs (Section 3.5.1) probably can be considered 

slits, whatever their orientation. 

 

Constriction of a circular pupil by a sphincter muscle running around the pupillary 

margin (Fig. 2A) can normally only change retinal illuminance to a limited degree, as 

there are physical spatial constraints limiting the size of the constricted aperture 

(Walls, 1942).  For example, the circular pupils of humans (Section 3.1.2.3.1) and 

dogs (Section 3.1.2.3.5) change in area by a factor of only about 16 and 2 

respectively, and the reduction in retinal illumination this produces is relatively 

modest (1.2 & 0.3 log units, respectively).  However, the lateral sphincter muscles in 

the irises of animals with slit-like pupils are composed of two bundles crossing above 

and below the pupil and contract with a “scissor-like” action (Raselli, 1923; Fig. 2B), 

allowing a much greater reduction in pupil area.  Thus, the large dilated circular 

pupils of the cat and elephant seal, for example, form narrow vertical slits on 

constriction, decreasing pupil area by a factor of 135 and 469 respectively (Section 

3.1.2.3.5), allowing greater attenuation of retinal illumination (2.1 & 2.7 log units).  

 

An animal whose eye is adapted for vision in low light levels by, for example, the 

possession of a tapetum lucidum and a retina dominated by sensitive rods, may be 

compromised in daylight if it relied on a circular pupil.  Slit-like pupils among 



82 
 

terrestrial species are therefore usually found in predominantly nocturnal animals 

that nevertheless are sometimes abroad during the day (Walls, 1942; Mann, 1931; 

Brischoux et al., 2010; Rival et al., 2015; Banks et al., 2015).  Strictly diurnal or 

nocturnal terrestrial animals, on the other hand, tend to have circular pupils, as they 

would derive less benefit from being able to adapt to a wide range of illumination.  

Among elasmobranchs, however, the situation is less clear; although slit pupils are 

common among nocturnal species and circular pupils are found in diurnal animals, 

there are a number of exceptions (Section 3.5.1). 

 

Although this is the traditional explanation for the presence of a slit pupil, as pointed 

out by Land (2006), the suggestion that slit pupils necessarily allow greater pupillary 

closure than circular ones is “not entirely convincing”.  Some animals with circular 

pupils, such as tarsiers, are able to form very small pinholes when constricted 

(Walls, 1942; Duke-Elder, 1958).  Similarly, the circular pupil of hamsters can 

become very constricted following pharmacological manipulation (Hut et al., 2008), 

even though such constriction might never be reached in natural conditions.  Thus, 

some animals with circular pupils can constrict their pupil to a great extent, 

suggesting slit pupils might have other functions, at least in some animals. 

 

9.2.2  Decrease the effect of chromatic aberration 

Image quality is degraded by longitudinal chromatic aberration, which occurs 

because the refractive index of a substance varies with wavelength. Short 

wavelengths are refracted more strongly than longer ones and are therefore focused 

closer to a lens, causing image blur if a range of wavelengths form the image.  
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Some animals minimise the chromatic blur circle by using multifocal lenses (Kröger 

et al., 1999), which consist of concentric shells of differing refractive index, each 

shell focussing a specific wavelength on the retina (Fig. 26A).  Thus, there is one 

plane in the retina in which several wavelengths are sharply focussed.  The efficacy 

of such multifocal lenses is reduced by a constricted circular pupil as it will shade the 

outer shells of the lens (Fig. 26B), so that some wavelengths will not be focussed on 

the retina (Malmström & Kröger, 2006).  As elongated pupils allow the entire width of 

the lens to be involved in image formation, even in high light levels, they could be an 

adaptation for reducing the effects of chromatic aberration (Fig. 26C). 

 

However, some animals, such as many birds and mice, have multifocal lenses yet 

pupils that are circular when constricted (Malmström & Kröger, 2006; Lind et al., 

2008).  This requires explanation, as it does not fit easily with the preceding 

argument. The solution proposed (Lind et al., 2008) is a ‘switching pupil’, in which 

the transition from fully dilated to constricted pupils occurs over a narrow range of 

light intensities.  The dilated pupil will benefit from the multifocal optics of the lens, 

while the fully constricted pupil may have little need for them due to its large depth of 

field.  The potentially detrimental effects of intermediate states of pupil constriction 

are minimised by the rapid ‘switching’ between constricted and dilated states. 

 

9.2.3 Enhance vision for certain orientations 

Neither of the above arguments explains why some pupils are elongated in the 

vertical direction and others in the horizontal (Banks et al., 2015).  Specifically, why 

do terrestrial nocturnal ambush predators tend to have vertically elongated pupils, 
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while in herbivores they are horizontally elongated?  It may be related to their 

different foraging modes. 

 

It was suggested that vertically elongated pupils will increase the depth of field in the 

horizontal plane (Heath et al., 1969; Brischoux et al., 2010) and that this might 

explain the presence of such pupils in nocturnal sit-and-wait foraging snakes, whose 

prey will approach in the horizontal plane relative to the head of the predator 

(Brischoux et al., 2010).  However, Banks et al. (2015) have argued that with a 

vertically elongated pupil, the depth of field will in fact be greater for vertical 

contours, so that a range of distances will be in focus, whereas images of horizontal 

contours at different distances will be blurred. Ambush predators must be able to 

estimate distances accurately to catch their prey.  The increased vertical depth of 

field will allow them to use stereopsis to estimate distances of vertical contours, while 

defocus blur can be used to judge distances of horizontal objects.  

 

Herbivorous animals, likely to be preyed upon by others, must be able to detect 

potential predators approaching along the ground to avoid capture.  This is aided by 

the horizontally elongated pupils of these species as, in contrast to vertical pupils, 

they reduce image blur in the horizontal plane, improving the image quality of objects 

on the ground (Banks et al., 2015).  A horizontally elongated pupil also allows the 

eye to capture more light in the important horizontal plane, while reducing the 

amount of light from less important directions. 

 

If elongated pupils indeed serve to improve object detection in various orientations, it 

is important that their orientation relative to the environment is maintained as the 
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animal moves in space (Land, 2015).  Appropriate compensatory eye movements 

have been observed in several herbivorous mammals (Banks et al., 2015), and 

some reptiles (Section 3.3.1), as well as in cephalopods (Section 3.6.1). 

 

9.3  Multiple apertures 

The constricted pupil in several species forms two or more apertures.  The most 

obvious example are several species of gecko, where the constricted pupil forms 

four vertically aligned pinholes (Fig. 9C).  Similarly, the dorsal operculae of some fish 

have serrated edges (Fig. 14), so that when these overlap the ventral iris margin 

several pinholes arranged into a crescent can be formed.  Less spectacularly, the 

elongated constricted pupils of many sharks have a small aperture at either end of 

the slit (Fig. 13B), and the pupil of one of the few teleost fish to undergo pupillary 

closure, the plainfin midshipman, also consists of two small apertures (Fig. 13D). 

Similar pupils are found in some cetaceans (Section 3.1.1; Fig. 4C), as well as in a 

few terrestrial vertebrates (Murphy & Howland, 1991 for review) including horses 

(Miller & Murphy, 2016; Fig. 4E). The pupil of some cephalopods, such as cuttlefish 

(Muntz, 1977) and octopus (Fig. 18B), can also constrict to form two apertures. 

 

Multiple pinholes, like other constricted pupil shapes, will decrease retinal 

illumination, but will result in slightly larger visual fields than a single aperture with a 

similar area (Walls, 1942).  Furthermore, as long as the apertures are equidistant 

from the optical axis, such pupils, like the crescent-shaped pupils discussed above 

(Section 9.1.1) and small single aperture pupils (Section 7.1), will decrease the 

effects of spherical aberration (Murphy & Howland, 1991; Miller & Murphy, 2016).  

However, the big advantage multiple aperture pupils have over those with a single 
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small aperture is their effect on depth of field.  As noted previously (Section 8.3.1), 

many animals, especially those with lateral eyes, judge the distance of objects, by 

monitoring their accommodative system (Collett & Harkness, 1982).  A single small 

aperture has a large depth of field making accommodation a less reliable measure of 

distance.  This is probably why cephalopods (Section 8.2) and chameleons (Section 

8.3.1) have large pupils when viewing nearby prey.  Multiple pinholes would serve a 

similar purpose as, like larger pupils, they have a reduced depth of field; only images 

in the focal plane forming a single image on the retina, all other distances giving 

multiple images (Denton, 1956; Murphy & Howland, 1986, 1991; Banks et al., 2015). 

An animal with multiple pupillary apertures must accommodate precisely to obtain a 

focussed image and thus has a very accurate measure of distance even when its 

pupil is constricted. 

 

9.4  The W-shaped pupil of the cuttlefish 

The constricted pupil of cuttlefish often approximates the shape of a W (Section 

3.6.1; Fig. 18E).  Like other irregular pupil shapes, this could serve a cryptic function 

(Section 7.2; Douglas et al., 2005).  In a similar way to that suggested for crescent-

shaped pupils (Section 9.1.1), the constricted pupil of cuttlefish could also indicate 

the sign of defocus which could be used to guide accommodation (Schaeffel et al., 

1999): The pupil would be imaged as an upright or an inverted W, depending on 

where the object is focused relative to the retina. However, neither of these 

explanations fully accounts for the shape of the cuttlefish pupil.  Camouflage is, for 

example, an unlikely function when the cuttlefish is away from the ocean floor.  

Furthermore, its pupil will only appear as a W when seen from the side.  From in 

front and behind, both of which are behaviourally important to cuttlefish, the pupil will 
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be a vertical slit, negating its effectiveness as a focus indicator (Mäthger et al., 

2013). 

 

An alternative explanation for the shape of the cuttlefish pupil has therefore been 

proposed (Mäthger et al., 2013).  By comparing the distribution of the underwater 

light field and the shape of the pupil when viewed from different directions, it seems 

that the most likely function of the constricted cuttlefish pupil is to balance the 

vertically uneven light field.  It will reduce light from the dorsal part of the visual field 

more than horizontal illumination, thus minimising scattering of direct sunlight, 

improving the contrast of objects in dimmer parts of the visual scene.  

 

Cephalopods often exhibit spectacular changes in colour, both for camouflage and 

display (Messenger, 2001; Mäthger et al., 2009).  It has therefore always been rather 

disappointing that an animal with otherwise such a sophisticated visual system 

seems to be colour blind.  ERG recordings, visual pigment extraction, and 

behavioural spectral sensitivity measures, all indicate most cephalopods have only a 

single visual pigment (Wells, 1978; Hanlon & Messenger, 1996; Muntz, 1999 for 

reviews).  They also cannot be trained to distinguish colours (Messenger et al., 1973; 

Messenger, 1977), and only match their body pigmentation to the background 

intensity rather than wavelength (Marshall & Messenger, 1996; Mäthger et al, 2006).  

Thus, with the exception of the firefly squid (Michinomae et al., 1994), the weight of 

evidence is against colour vision in cephalopods.  However, it has recently been 

suggested that the peculiar shape of the Sepia pupil might, in theory, allow the 

animal to perceive colour through exploiting spherical aberration in a non-axial pupil 

(Stubbs & Stubbs, 2016a&b).  However, the utility of such a mechanism in the 
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natural environment has been questioned (Gagnon et al., 2016), and it will need 

extensive behavioural verification in order to counteract the weight of evidence 

indicating the lack of chromatic discrimination by cephalopods. 

 

9.5 Aphakic spaces 

In most animals, the iris completely covers the periphery of the lens.  However, in 

three genera of diurnal arboreal colubrid snake the pupil is elongated and often 

described as ‘keyhole-shaped’.  As the pupil is horizontally wider than the lens, the 

rostral portion of the pupil is not filled by the lens (Mann, 1931; Walls, 1942; 

Henderson & Binder, 1980).  Apart from these few snakes, such aphakic gaps have 

only been reported in fish.  Although they occur in some elasmobranchs (Franz, 

1931), they are most frequent in teleosts and can be of two basic forms (Munk & 

Frederiksen, 1974): Usually, only a portion of the pupil, often located rostrally, is 

unfilled by the lens, resulting in a tear-drop shaped pupil (Fig. 27).  In some 

bathypelagic species, however, the aphakic space can be circumlental; with a 

spherical lens surrounded by a larger circular pupil. 

 

Lateral-eyed animals, such as most snakes and fish, will normally have a restricted 

frontal field of view. Whilst a large lateral monocular field of view is clearly important 

to such animals, behaviourally relevant stimuli also occur in front of the animal, 

especially if they are moving in that direction.  Rostral aphakic spaces, which are 

often associated with ‘sighting’ grooves on the head, will significantly increase the 

frontal binocular visual field (Walls, 1942; Henderson & Binder, 1980; Warrant & 

Locket, 2004).  Light from objects in front of the animals will reach the lens through 

the rostral aphakic space and be imaged on the temporal retina which usually 
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contains a region of high photoreceptor density (Section 9.6), allowing detailed 

analysis of objects in front of the animal and facilitating accurate binocular estimation 

of their distance.   

 

During accommodation, rather than changing the curvature of their lens, fish move 

their lens towards and away from the retina (Sivak, 1980; Ott, 2006).  As the lens 

protrudes through the pupil, such movements would only be possible in a plane 

perpendicular to the pupil if the lens completely filled a circular pupil.  Aphakic gaps 

allow lens movements in the plane of the pupil.  Rostral aphakic gaps would facilitate 

accommodative lens movements along a rostral-caudal axis, further enhancing 

frontal vision (Sivak, 1978, 1979). 

 

Circumlental aphakic spaces, which occur primarily in fish inhabiting the light-

restricted bathypelagic zone, apart from increasing the visual field in all directions, 

may aid sensitivity by increasing retinal illumination (Munk & Frederiksen, 1974; 

Warrant & Locket, 2004). 

 

9.6 Retinal topography and pupil shape 

The structure of the retina is rarely, if ever, uniform across its entire surface.  

Different areas are specialised for specific functions:  Areas of increased cone and 

ganglion cell density, for example, are associated with higher resolution due to finer 

sampling of the visual field and less convergence of photoreceptor output.    

However, even if it were desirable to have the entire retina composed of tightly 

packed cones linked to individual ganglion cells to maximise visual acuity throughout 

the visual field, this would not be energetically sustainable and would require an 
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unreasonably large optic nerve and excessive central processing.  Thus, such retinal 

specializations only cover some of the retina and subtend just a small part of the 

visual field.  As it is reasonable to expect such regions to be positioned so as to 

sample visual space mostly appropriately for any given species, they, not 

surprisingly, take on a variety of forms and are found in different locations within the 

retinae of various species, which can be related to the life style of the animal 

(Hughes, 1977; Collin, 1999; Moore et al., 2016).   

 

Single areas of increased photoreceptor/ganglion cell density, such as the human 

fovea, are common.  Horizontal visual streaks of increased cell density aligned with 

the horizon are also widespread in vertebrates (Hughes, 1977; Collin & Pettigrew, 

1988b; Collin, 1999; Lisney & Collin, 2008; Moore et al., 2016) as well as 

cephalopods (Muntz, 1999; Talbot & Marshall, 2010, 2011). Thus, terrestrial 

vertebrates grazing in the open plains or aquatic organisms foraging near the 

substrate will benefit from sampling the horizon most thoroughly in order to keep a 

lookout for potential predators and detecting prey.  

 

Two or more separate areas of increased cell density are also frequently observed.    

Bottom dwelling armoured catfish, for example, have two areas of high ganglion cell 

density; one located in the temporal retina, affording high resolution of objects in 

front of the animal, and a second area in the nasal retina facilitating increased 

resolution of objects from behind (Douglas et al., 2002).  A similar arrangement is 

observed in, for example, other teleost fish (Collin & Pettigrew, 1988a; Collin, 1988) 

and cetacea (Mass & Supin, 2007).  
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Sometimes the shape and location of these specialised retinal areas appears to be 

mirrored by the form of the constricted pupil.  Many ungulates, for example, have 

horizontally elongated pupils (section 3.1.1) and frequently have retinal streaks with 

a similar orientation (Schiviz et al., 2008; Moore et al., 2016).  A similar correlation 

exists in some cephalopods (Talbot & Marshall, 2011).  Notable is the pyjama squid, 

which lies buried in the substrate with only the tops of its laterally positioned eyes 

protruding.  As a pupil located centrally would be looking at the mud, the pupil of this 

species is shifted dorsally, while the ventral retina has a band of high photoreceptor 

density (Talbot & Marshall, 2010).  Similarly, other aquatic animals with a nasal and 

temporal area of high ganglion cell density sometimes have either crescent shaped 

pupils (Douglas et al., 2002), tapered pupils (Collin & Pettigrew, 1988a) or, as in 

cetaceans (section 3.1.1), pupils consisting of two small pinholes. 

 

However, pupillary shape and the form of any retinal specialisation are frequently not 

in synchrony.  Many mammals, such as rabbits (Hughes, 1977) and several species 

of Artiodactyla (Schiviz et al., 2008), for example, have elongated visual streaks yet 

posses circular pupils.  Similalrly, teleost fishes (Collin & Pettigrew, 1988a&b; Collin, 

1999) and birds have a plethora of forms of retinal specialisations, yet virtually all 

have simple circular pupils (sections 3.2.1 and 3.5.2.3).  Similarly, elasmobranchs 

with horizontal visual streaks can have either horizontal or vertical slit pupils 

(McComb et al., 2009) and cats have vertical slit pupils (Fig. 4B) yet have a 

horizontal retinal streak (Hughes, 1977).. These are just a few of the many examples 

suggesting pupil shape and the form of any retinal specialisation are usually not 

coincident. 
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In fact, it would in some ways be surprising to find any similarities between the 

locations of retinal specialisations and pupil shape.   In humans, the pupil is located 

at the nodal point of the eye.  Consequently, the pupil functions as an aperture stop, 

affecting the amount of light reaching the retina.  It is not a field stop.  Perceptually, 

this is obvious as our field of view does not shrink as the pupil constricts.  Thus, if a 

horizontally elongated pupil of an ungulate, for example, aligned with the horizon 

also acts as an aperture stop, it will not affect the visual field.  It will, however, 

maximise the amount of illumination reaching the eye from the possibly more 

relevant lateral directions, while decreasing the amount of ‘distracting’ vertical 

illumination. 

 

In the horse, however, the pupil is located in front of the nodal point of the eye.  As a 

result, in this species the horizontal rectangular shape of the pupil will give it a wider 

view of the horizon than would a circular pupil of the same surface area (Murphy & 

Howland, 1986; Miller & Murphy, 2016). This affords the horse an extended view of 

the horizon, while reducing the variation in brightness between the sky and ground. 

 

10.  Conclusions 
 
Apart from teleost fish, the majority of vertebrates and cephalopods have pupils 

whose area decreases as light levels rise.  However, the degree of constriction is 

highly variable, ranging from relatively modest in, for example, most birds and 

amphibia, to changes in area of over 100 fold in some Carnivora.  In general, 

animals active in low light levels, who may nonetheless sometimes be abroad during 

the day, and thus are exposed to a large range of light levels, have the greatest 

range of pupil sizes. 
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The rate of pupillary constriction is also very variable.  Constriction can occur in little 

more than a second in cephalopods and birds, but take many minutes in, for 

example, nocturnal sharks.  The fast pupil response of birds is a result of their 

striated iris musculature, and may be an adaptation to the rapid changes in light level 

sometimes experienced during flight. However, for animals that only use their pupil 

to adapt to the more gradual changes in light level experienced at twilight, a much 

slower rate of change is appropriate. 

 

In birds and sharks, diurnal species have a higher threshold for pupil constriction 

than nocturnal animals, presumably because their retinae are less sensitive.  It is 

likely the same holds true for other animals. 

 

Pupil responses are uncommon in teleost fish, and largely restricted to bottom-

dwelling species, suggesting a role in camouflaging the eye, rather than vision.  

However, it remains unclear why all teleosts do not make use of the other, visual, 

advantages offered by a mobile pupil. 

 

Representatives of all vertebrate groups and cephalopods, contrary to earlier 

assumptions, have varying degrees of consensual pupil responses.  In general, 

animals with lateral eyes tend to have a lesser consensual response than species 

whose eyes are forward facing.  Consensuality may aid binocular fusion, facilitating 

stereoscopic depth perception in animals with frontally positioned eyes.  Lateral-eyed 

animals, on the other hand, will benefit from the two eyes behaving independently, 

as they will view quite different visual scenes and may perform unrelated tasks. 
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Perhaps the most surprising development in visual science in the last 20 years has 

been the identification of a class of novel, non-rod non-cone, photoreceptor in the 

retina.  These newly described photoreceptors are involved in various non-image 

forming functions of the eye, which require the assessment of overall light levels, 

rather than detailed image formation.  Not surprisingly, these melanopsin-containing, 

intrinsically-photosensitive retinal ganglion cells are also involved in the PLR of 

many, and perhaps most, vertebrates.  Although their precise role in regulating pupil 

size remains to be fully defined, they are principally involved in sustained responses 

at high light levels.  

 

The autonomic control of iris muscles is relatively conserved across different 

vertebrates, although the nature of the receptor on the effector muscle is variable.  In 

mammals, birds, and reptiles, parasympathetic innervation activates the sphincter 

muscle and sympathetic fibres usually control the dilator.  The picture for amphibia is 

less clear, perhaps due to the predominance of direct sphincter photosensitivity and 

the possible absence of dilator muscles.  In both teleost and elasmobranch fish, the 

roles of the sympathetic and parasympathetic pathways are reversed compared to 

other vertebrates; the parasympathetic system activating the dilator and sympathetic 

fibres controlling the sphincter muscle, although it is still uncertain whether the 

elasmobranch sphincter muscle receives any direct innervation at all. 

 

Many animals show a degree of light-evoked pupil constriction even in the absence 

of retinal input.  Such intrinsic iris photosensitivity is especially well-developed in 

amphibia, but occurs in all groups of vertebrate and cephalopods.  It is, however, not 
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universal.  An opsin-based visual pigment, such as rhodopsin or melanopsin, located 

in the sarcolemma of the sphincter muscle is coupled, via a G-protein, to a smooth 

muscle contraction cascade involving phospholipase C.  Such intrinsic iris responses 

allow sustained pupillary constriction, even when retinal illumination is reduced by 

the pupil. 

 

Functionally, changes in pupil area help balance the conflicting demands of retinal 

sensitivity and spatial acuity; dilation serving to enhance retinal illumination in low 

light levels, and constriction resulting in improved image quality in brighter light by 

decreasing the amount of spherical aberration imposed by the lens.  In some 

species, most notably substrate-dwelling teleost fish and some reptiles, pupil 

constriction serves mainly to camouflage the eye by obscuring the otherwise very 

conspicuous pupil. 

 

As the changes in light level experienced by most animals far exceed the variation in 

retinal illumination produced by changes in pupil area, pupillary changes are not 

sufficient to adjust fully the sensitivity of the retina during light and dark adaptation.  

They are, perhaps, a rapid mechanism that can smooth out the effects of fast 

changes in light levels until other, more efficient, ways of adjusting retinal sensitivity 

take over. 

 

It is well known that in humans, the pupil is subject to small rhythmic changes in size 

in constant illumination (hippus), and endogenous circadian clocks influence pupil 

size.  The same is true for the pupils of several other species.  Similarly, in humans 

stimulus colour can influence pupil size, even in the absence of changes in total light 
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flux.  Chickens also respond most vigorously to equiluminant red stimuli.  

Psychological factors such as cognitive load and arousal also affect human pupil 

size.  The pupils of non-human animals are also subject to such ‘internal’ stimuli that 

are unrelated to light.  In ‘aroused’ cephalopods, for example, pupillary area may be 

important in courtship and deimatic displays.  Tactile and auditory stimuli also affect 

pupil size.  Although members of all vertebrate and cephalopods groups display pupil 

responses unrelated to ambient illumination, this property is particularly apparent in 

birds and cephalopods.  It is furthermore possible, that the striated iris muscles of 

reptiles and birds are subject to a degree of voluntary control. 

 

The pupils of some animals, like those of humans, constrict when viewing close 

objects.  However, since constricted pupils have a larger depth of field, some 

animals with lateral eyes maintain a dilated pupil at near, to enable the use of 

accommodation as an accurate cue to object distance.  The greater depth of field 

afforded by a constricted pupil is also used by some amphibious species to 

compensate for the lack of a refractive cornea underwater, allowing focussed vision 

in both air and water. 

 

While dilated pupils in most species are circular, constricted pupil shape is highly 

variable, and, depending on species, can be; circular, elliptical/rectangular, a narrow 

vertical or horizontal slit, or have a more complex shape, such as a crescent, or even 

consist of multiple apertures.  

 Dorsal operculae are common, especially in aquatic species, and potentially 

serve a number of functions, including; compensating for the uneven light field 
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underwater, disguising the eye when seen from above, and reducing the 

degree of spherical aberration.  

 Elongated pupils could also serve a number of functions, for example; 

allowing a large range of pupil areas in animals active in widely varying 

conditions of illumination, permitting the whole lens to be used to allow 

multifocal lenses to offset the effects of chromatic aberration, and enhancing 

object detection in specific orientations.   

 The main advantage of pupils consisting of multiple apertures may be that, 

unlike constricted single apertures, they have a narrow depth of field, allowing 

accommodation to be used as an accurate indicator of object distance.  

 The remarkable W-shaped pupils of cuttlefish most likely serve to balance the 

unevenly distributed underwater light field.  Although it has recently been 

suggested they could, theoretically, facilitate colour vision in animals such as 

cuttlefish with only a single visual pigment, the weight of evidence indicates 

cuttlefish cannot  perceive colour. 

 Rostral aphakic gaps, often resulting in ‘tear drop’ shaped pupils in some fish 

and snakes, will increase the frontal visual field in such lateral-eyed animals, 

and allow fish to accommodate in the plane of the pupil, further enhancing 

frontal vision. 

 Although most animals have variously shaped areas of retinal specialisation, 

such as regions of increased photoreceptor or ganglion cell density, as the 

pupil acts as an aperture stop rather than a field stop, the form of these areas 

is largely independent of the shape of the pupil. 

Although convincing arguments can be made to explain the shape of the pupils of 

many animals, a multitude of questions remain unanswered:  Why, for example, are 
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almost all bird pupils circular, and why do some frogs have vertical slit pupils while in 

others they are horizontal, even when the animals seem to occupy similar optical 

environments? 
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Figure 1 Toluidine blue stained sections of human iris. 
(A) Lower power micrograph of the whole iris. (B)&(C) higher power micrographs 
showing the sphincter and dilator muscles, respectively. C-cornea; CB-ciliary body; 
ABL-anterior border layer; S-stroma; PM-pupil margin; SP-sphincter pupillae muscle; 
PE-posterior pigment epithelium; DP-dilator pupillae muscle. 
 
 

 
 

 

Figure 2  Iris muscles in animals with different pupil shapes.  
(A) shows the circumerfential sphincter muscle typical of animals with circular pupils.  
(B) illustrates the two crossing sphincter bundles in a slit pupil.  (C) shows the 
sphincter fibres in an animal with a rectangular pupil, most of which are circular but 
some sphincter fibres are orientated radially and anchored to connective tissue 
(stippled area).  In all irises the dilator muscles are radial (from Walls, 1942).  
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Figure 3 Wholemount of zebra fish (Danio rerio) iris stained with phalloidin 
coupled to alexa488, viewed under (blue) fluorescence.  This shows filamentous 
actin and reveals staining consistent with the presence of a sphincter and dilator 
muscle in the iris of a species whose pupils are static (Wagner & Douglas, unpubl). 
 

 
 
 

Figure 4 Mammalian pupil shape 
(A)  The partially constricted and (B) constricted vertical slit pupil of a cat (Felis 
catus), which is typical of many carnivores (SL Douglas).  (C)  Constricted pupil of a 
bottlenose dolphin (Tursiops truncatus), where the dorsal operculum has occluded 
most of the pupil leaving only a small rostral aperture and a larger temporal gap 
(from Rivamonte, 2009).  The pupil of the horse (Equus ferus caballus) in (D) 
moderate and (E) high light levels respectively.  In the partially constricted, 
horizontally rectangular pupil, typical of many ungulates, the superior corpora nigra is 
clearly visible intruding into the pupil.  In the fully constricted pupil, the corpora nigra 
reaches the inferior pupil margin, forming 2 small apertures (from Miller & Murphy, 
2016). 
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Figure 5 Human pupillary light reflexes in response to varying levels of 
illumination. 
(A)-(C) show responses to 1sec monocular flashes of white light of 3 different 
intensities in the stimulated (solid line) and unstimulated (dashed line) eye.  Periods 
of light are outlined by the double arrows. (D) shows the responses of the stimulated 
eye to 3 different intensities of prolonged illumination.  The divisions on the abscissa 
represent 0.1 secs (modified from Lowenstein & Loewenfeld, 1959). 
 

 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 6 Pupil area as a function of luminance in humans and chickens 
(Gallus gallus domesticus).  
Human data are indicated by the dashed line and those of chickens by the solid line.  
Data are taken from Barbur et al (2002), where experimental details can be found.   
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Figure 7 Degree of pupil constriction as a function of light level in blue 
fronted parrots (Amazona aestival), snowy owls (Bubo scandiacus), and cats 
(Felis catus).  
The parrots (solid line) require most illumination for constriction and the cats 
(triangles) least.  The cat pupil constricts to a greater degree than the bird pupils 
(from Lind et al., 2008).  
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Figure 8 Changes in pupil size in humans and chickens (Gallus gallus 
domesticus) in response to simple changes in light flux and isoluminant red 
light stimulation. 
Human data are indicated by the dashed lines and those of chickens by the solid 
lines.  Reponses to changes in light flux are indicated by the black curves and the 
red curves represent responses to red light. Data are taken from Barbur et al (2002), 
where experimental details can be found.  The duration of the 0.5sec stimulus is 
indicated by the vertical dotted grey lines.  The red stimulus was rendered 
isoluminant by being buried in dynamic luminance contrast noise. 
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Figure 9 Pupils of helmet geckos (Tarentola chazaliae). 
 in different light intensities.  
(A) Pupil area as a function of light intensity. (B)&(C) Pictures of fully dilated and 
constricted pupils (from Roth et al., 2009). 
 

 
 

 

Figure 10 Constricted pupil shapes of various frogs.  
(A)-(D) Bombinator pachypus, (E) Alytes obstetricians, (F) Pelobates fuscus, (G) 
Rana arvalis., (H) Bufo vulgaris (from Mann, 1931). 
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Figure 11  Pupil area of the right eye of a single unrestrained common frog 
(Rana temporaria) following various exposures to 501nm light.   
In order of increasing effectiveness the intensities of the exposures were; 2.43x10-1 
μW/cm2; 9.98x10-1 μW/cm2; 2.79 μW/cm2; 4.77 μW/cm2 (dotted); 1.41x101 μW/cm2 
(dotted); 1.65x101 μW/cm2; 2.44x101 μW/cm2; 5.01x101 μW/cm2. A minimum of 
5mins in darkness elapsed between successive light stimuli. The variable duration of 
the responses is due to movement of the animal (Douglas, unpubl). 
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Figure 12 Pupil area of the right eye of a single unrestrained African clwed 
frog (Xenopus laevis) following various exposures to 501nm light.   
In order of increasing effectiveness the intensities of the exposures were; 3.00x10-1 
μW/cm2; 4.77 μW/cm2; 1.41x101 μW/cm2; 1.65x101 μW/cm2; 5.01x101 μW/cm2. The 
final, and most effective, response was following intense white light illumination 

(3.39x103 W/cm2; dotted line).  A minimum of 14mins in darkness elapsed between 
successive light stimuli (Douglas, unpubl). 
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Figure 13 Infrared images of pupils from 3 species of fish in darkness (left) 
and after light exposure (right). 
(A)&(B) The swellshark (Cephaloscyllium ventriosum), whose constricted pupil is a 
slanted horizontal slit with 2 pinholes at either end. (C)&(D) The plainfin midshipman 
(Porichthys notatus), whose pupil consists of 2 small apertures on light adaptation. 
(E)&(F) The armoured catfish (Liposarcus pardalis), with a horseshoe-shaped 
constricted pupil.  Dorsal is at the top of the figures and rostral on the right (images 
A-D from Douglas et al.1998; E&F from Douglas et al., 2002). 
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Figure 14 Irregular pupils with dorsal operculae in various bottom dwelling 
fish.  
(A) bluespotted ray (Neotrygon kuhlii), (B) Eastern shovelnose ray (Aptychotrema 
rostrate), (C) crocodile fish (Cymbacephalus beauforti), (D) false stone fish 
(Scorpaenopsis diabolus) (NJ Marshall). 
 

 
 

 

Figure 15 Pupil response of a swell shark (Cephaloscyllium ventriosum) and 
a plainfin midshipman (Porichthys notatus) in response to prolonged exposure 
to a bright (6.75x104 μW/cm2) white light.  
The swellshark is shown by the dashed line and triangles. The fully dilated pupil 
areas of the elasmobranch and teleost pupil were 7.78mm2 and 4.73mm2 
respectively (from Douglas et al., 1998). 
 

 
  

0

20

40

60

80

100

0 1 2 3 4 5

%
 d

il
a

te
d

 p
u

p
il
 a

re
a

 

Time in light (mins) 
15 

=
 



130 
 

Figure 16 Pupil responses of an individual plainfin midshioman (Porichthys 
notatus) during 30 seconds exposure to different intensities of 501nm light.  
In order of the degree of constriction after 30 secs light exposure, intensities are; 

complete darkness, 2.72x10-3 W/cm2, 1.44x10-2  W/cm2, 7.07x10-2 W/cm2, 

2.14x10-1 W/cm2, 2.71x10-1 W/cm2, 2.85 W/cm2 (dashed), 3.27x 02 
W/cm2.  Also 

shown is the response to maximum intensity (6.75x104 W/cm2) white light exposure 
(from Douglas et al., 1998). 
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Figure 17  Pupil response of an individual armoured catfish (Liposarcus 
pardalis) during 60 minutes exposure to different intensities of white light.  
In order of increasing effectiveness, these are; complete darkness, 8.4x10-2 µW/cm2, 
1.37 µW/cm2, 4.6x101 µW/cm2, 2.65x102 µW/cm2 , 5.6x103 µW/ cm-2 (from Douglas 
et al., 2002). 
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Figure 18 Cephalopod pupils 
(A) Partially constricted pupil of an octopus (Abdopus aculetus) forming a horizontal 
rectangle (R Caldwell). 
(B) Fully constricted pupil of an octopus (Callistoctopus aspilosomatis) consisting of 
2 pinholes at either end of a horizontal slit (R Caldwell). 
(C) Constricted ‘horseshoe-shaped’ pupil of a squid (Loligo sp.) (NJ Marshall). 
(D) Partially constricted and (E) constricted pupil of a cuttlefish (Sepia officinalis). 
 

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
Figure 19 Relative pupil area of 3 species of cephalopod after exposure to 
white light.  
Common cuttlefish (Sepia officinalis) (189 μW/cm2 ; solid line; Douglas et al., 2005), 

striped pyjama squid (Sepioloidea lineolate) (15 W/cm2; dotted line; Partridge, 
White & Douglas, unpubl) and curled octopus (Eledone cirrhosa) (445 μW/cm2; 
dashed line; Douglas et al., 2005) 
 

 
  

0

20

40

60

80

100

120

0 0.5 1 1.5 2

%
 d

il
a

te
d

 p
u

p
il
 a

re
a

 

Time in light (secs) 

A B 

D 

C 

E 



133 
 

Figure 20 Relative pupil area of a deepsea octopus (Japetella diaphana) 
after exposure to bright white light.   
Responses of 2 animals, with mantle lengths 27mm and 36mm represented by the 
solid and open symbols respectively, are shown. Animals were caught off the coast 
of Guatamala and kept in darkness at 4ºC for 12-18hrs before light exposure 
(Douglas, unpubl).  
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Figure 21 Pupil light responses of wild-type and rodless-coneless (rd/rd cl) 
mice (Mus musculus).  
Dark adapted mice were exposed continuously to bright white light (3mW/cm2).  The 
wild type animals are shown by the dotted line and open circles. Areas are the mean 
for 6 mice per genotype (from Lucas et al., 2001). 
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Figure22 Schematic representation of the parasympathetic and 
sympathetic innervation of the primate iris (from McDougal & Gamlin, 2015). 
 

 
 

Figure 23  Pupil area of an isolated common frog (Rana temporaria) 
eye following various exposures to 501nm light.   
In order of increasing effectiveness at 60mins the intensities of the exposures were; 
2.43x10-1 μW/cm2, 9.98x10-1 μW/cm2, 4.77 μW/cm2 (dashed), 2.79 μW/cm2, 
1.65x101 μW/cm2, 2.44x101 μW/cm2, 1.41x101 μW/cm2 (dashed), 5.01x101 μW/cm2. 
A minimum of 5mins in darkness elapsed between successive light stimuli (Douglas, 
unpubl). 
 

 

70

80

90

100

0 20 40 60

%
 d

il
a

te
d

 p
u

p
il
 a

re
a

 

Time in light (secs) 



136 
 

Figure 24  Body patterns on teleost fish that serve to conceal the location of 
the eye.  
(A) weedy scorpionfish (Rhinopias aphanes), (B) blue surgeonfish (Paracenthurus 
hepatus), (C) flying gurnard (Dactyloptena orientalis), (D) juvenile boxfish (Ostracion 
cubicus), (E) butterflyfish (Chaetodon ulietensis), (F) juvenile angelfish 
(Pomacanthus imperator) (S Parish & NJ Marshall).  
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Figure 25  Lens back vertex distance as a function of beam entry position for 
the goldfish (Carassius auratus) and a suckermouth armoured catfish 
(Pterygoplichthys etentaculus). 
The lenses of both the goldfish (dashed line) and the catfish(solid line) show little 
spherical aberration in comparison to a glass marble (dotted line).  The back vertex 
was determined by analysing the path of a laser beam as it traversed the lens, as 
detailed in Douglas et al (2002). Aberration is represented by a non-linear regression 
fitted to the data using the following equation for back vertex distance (x); x = a + by2 
+ cy4, where ‘a’ represents back vertex focal length, ‘b’ the 3rd order spherical 
aberration, ‘c’ the 5th order spherical aberration, and ‘y’ the normalised beam entry 
position.  Back vertex distance has been expressed relative to the maximum so that 
lenses with different diameters can be more easily compared.  The beam entry 
positions have been normalised so that the edges of the lens represent 1 and –1.  
Curves shown are the average spherical aberration function fitted to six lenses of C. 
auratus (x=2.10-0.52y2+0.55y4) and two lenses of P. etentaculus (x=2.47-
0.80y2+0.68y4), and a single glass marble (x=25.91-19.03y2-3.89y4) (Douglas, 
unpubl). 
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Figure 26 Effect of pupil shape on multifocal lenses. 
A multifocal lens has concentric zones of differing refractive index that focus distinct 
wavelengths on the retina.  The iris is shown by the outermost black region and the 
zones focussing red, green and blue light by the regions with corresponding colours.  
When the pupil is dilated (A) all zones of the lens are available and the entire 
spectrum is focused on the retina. With a constricted circular pupil (B) only blue light 
is focussed, while a slit pupil (C) still allows all wavelengths to be imaged on the 
retina (modified from Lind et al., 2008).  
 

 

 
 

 
 
Figure 27 The eye of a yellow boxfish (Ostracion cubicus), showing a rostral 
aphakic space in the pupil (NJ Marshall). 
 

 


