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The Resource Constrained Project Scheduling Problem (RCPSP) is one of the most intractable combi-
natorial optimisation problems that combines a set of constraints and objectives met in a vast variety
of applications and industries. Its solution raises major theoretical challenges due to its complexity, yet
presenting numerous practical dimensions. Adaptive Memory Programming (AMP) is one of the most
successful frameworks for solving hard combinatorial optimisation problems (e.g., vehicle routing and
scheduling). Its success stems from the use of learning mechanisms that capture favourable solution
elements found in high quality solutions. This paper challenges the efficiency of AMP for solving the
RCPSP, to our knowledge, for the first time in the up-to-date literature. Computational experiments on
well known benchmark RCPSP instances show that the proposed AMP consistently produces high-quality
solutions in reasonable computational times.

Keywords: Adaptive Memory Programming, Project Scheduling, Resource Constraints

1. Introduction

Scheduling activities under the consideration of particular resource capacity and precedence con-
straints is a major complex scheduling problem faced in several different industries. Hartmann and
Briskorn (2010) discuss on scheduling applications that can be modelled as Resource Constrained
Project Scheduling Problem variants and extensions. Shop scheduling environments, sports league
scheduling, scheduling of port operations, scheduling of multi-skilled workforce and school and
university timetabling is only a sample of the RCPSP’s vast range of applications (Hartmann and
Briskorn 2010). The RCPSP model is hence not restricted only in its original field, that is project
scheduling, but also addresses major scheduling problems faced in different industries.
The RCPSP can be described as follows. Let a single project consist of a set of activities J that

must be executed to complete the project. Precedence constraints do not allow an activity i to
start before all its immediate predecessors have finished. There exists a set of resources K with
limited capacity, used for the execution of the activities. Each activity i has its own predefined
duration di and spends a specific amount of resource units for its execution rik, for each resource
k ∈ K. The goal is to find the resource and precedence feasible finish times of the activities, such
that the finish time ln+1 of the last activity is minimised.
According to Garey and Johnson (1979), the RCPSP is one of the most intractable combinatorial

optimisation problems and belongs to the NP-hard class of problems (Blazewicz et al. 1983). Due
to its complexity, as well as its practical interest, the RCPSP has attracted much attention by

∗Corresponding author. Email: d.paraskevopoulos@bath.ac.uk, Tel: +441225386233, Co-authors: Christos D. Tarantilis Email:
tarantil@aueb.gr, Tel: +302108203805, George Ioannou, Email: ioannou@aueb.gr, Tel: +302108203652

1



December 30, 2015 International Journal of Production Research IJPR˙revision3

researchers in the latest decades (Hartmann and Briskorn 2010; Kolisch and Hartmann 2006).
Although there are significant achievements in the field of exact methods (see Zhu et al. 2006 for
the multi-mode RCPSP and Brucker et al. 1998, Zamani 2001 and Demassey et al 2005 for the
single mode RCPSP) the literature still favours metaheuristics for solving realistic scale problem
instances. One of the most successful metaheuristic frameworks for solving hard combinatorial
optimisation problems is Adaptive Memory Programming. AMP has produced the best-known
results for major vehicle routing problems (Repoussis et al. 2010; Tarantilis et al. 2014; Gounaris
et al. 2014) and binary quadratic programs (Glover et al. 1998), and has been applied for solving,
among others, supply chain design problems (Cardona-Valdes et al. 2014; Velarde and Marti 2008).
Inspired and motivated by this stream of research, this paper contributes to the existing body of

work by introducing for the first time in the RCPSP literature an AMP framework for solving the
RCPSP. The proposed AMP combines memory structures to capture favourable solution elements
and in this way produce high quality solutions. Specifically, the adaptive memory monitors the
scheduling habits of the activities and the AMP framework uses this information to guide the
search towards promising and unexplored regions of the solution space. To achieve this goal, our
AMP consorts with a Greedy Randomised Reconstruction (GRR) method and a powerful local
search algorithm in the spirit of Variable Neighbourhood Search (Paraskevopoulos et al. 2008).
The resulting AMP framework was tested on large scale and well-known benchmark instances and
outperformed the state-of-the-art of the literature under 1000 and 5000 schedules examined, while
remaining highly competitive when 50000 schedules are examined.
The remainder of this paper is organised as follows. Section 2 discusses the relevant literature

mainly focusing on the AMP and the RCPSP domains. Section 3 presents the solution methodology
and describes in detail all components. Computational experience is presented in Section 4. Finally,
conclusions and further research directions are discussed in Section 5.

2. Literature Review

In this section, we first present the relevant Adaptive Memory Programming literature and then
talk about the recent developments on metaheuristics for solving the RCPSP.
Adaptive Memory Programming is a general-purpose solution framework that focuses on the

exploitation of strategic memory structures (Glover 1997). The main goal is to capture common
solution characteristics met in the search history and use this information to produce high quality
solutions. This non problem-specific rationale enabled the successful application of AMP frame-
works for solving a large variety of hard combinatorial optimisation problems.
Glover et al. (1998) developed an adaptive memory tabu search (AMP-TS) algorithm for solving

binary quadratic programs that model various combinatorial optimisation problems. The proposed
AMP-based TS collects information from the local optima throughout the search trajectory, i.e.,
captures each time a local move causes the objective function to increase or remain unchanged.
Recency and frequency information are combined to guide effectively the search to new directions
into the solution space. Computational experiments indicate the effectiveness and efficiency of the
proposed solution methodology.
In a similar fashion, Fleurent and Glover (1999) demonstrated how constructive multi-start

strategies for the Quadratic Assignment Problem (QAP) can be improved by using adaptive mem-
ory. Comparisons are made with Random Restart and Greedy Randomised Adaptive Search Proce-
dure (GRASP) (Kontoravdis and Bard 1995), which both do not consider previously met solutions.
The authors propose a framework that identifies “strong” solution elements, i.e., solution elements
that are dominant in the majority of solutions, and adjust the preferences of the construction
mechanism to apply intensification and diversification. The resulting multi-start method performs
significantly better than other multi-start approaches for the QAP. Similarly, in our paper we
demonstrate that the solution quality produced by our local search method significantly improves
when the latter method is integrated within the proposed AMP framework.
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Cardona-Valdes et al. (2014) consider the design of a two-echelon production distribution network
with multiple manufacturing plants, distribution centres and a set of candidate warehouses. Their
contribution is threefold a) the consideration of the demand uncertainty regarding the warehouse
location problem, b) the focus on both economical and service quality objectives and an AMP-TS
to address the underlying bi-objective stochastic optimisation problem. Similar to the supply chain
design problem, Velarde and Marti (2008) applied an AMP framework for solving the supplier
selection problem in an international setting under uncertainty in the macroeconomic conditions
of the associated countries. The proposed AMP uses memory structures to discourage the selection
of frequently selected suppliers and preserve a balance between intensification and diversification.
Vehicle routing problems have attracted much attention on the development of efficient AMP

frameworks. The latter have produced the best-known results when tested on well-known bench-
mark problems of classical and rich vehicle routing variants (Repoussis et al. 2010; Tarantilis et
al. 2014). Gounaris et al. (2014) presented an AMP framework to address the robust capacitated
vehicle routing problem. Subroutes of the elite set of solutions represent the favourable solution
elements and constitute the information stored in the adaptive memory. These subroutes are of
varying size and are combined to create new provisional solutions.
To our knowledge, there is not any metaheuristic framework in the RCPSP literature that ex-

plicitly utilises adaptive memory structures within a solution framework. Nevertheless, there is a
wide variety of metaheuristics for solving the RCPSP, which we discuss in the following.
Debels and Vanhoucke (2007) presented a decomposition-based Genetic Algorithm (GA) for

solving the RCPSP. The proposed algorithm selects a time window of the RCPSP schedule and
extracts the associated activities to this time window. A sub-problem is constructed and solved
via an efficient GA. The improved subproblem solution is embedded into the main solution in
a way to improve the makespan. More recently, Zamani (2013) proposed a GA that used a a
specialised crossover operator that combines two coherent parts from one parent and one part from
the other. The order of these parts change but they still remain contiguous. The author assumes
that contiguity of the parts matters to preserve the fitness of their both parents. Computational
experiments indicate the effectiveness of the method.
Swarm Intelligent (SI) population based algorithms have been also developed for solving the

RCPSP. The latter are nature inspired procedures that emulate the behaviour of several species
such as ants, bees and birds. Merkle et al. (2002) presented an Ant Colony Optimisation (ACO)
algorithm for solving the RCPSP. Their algorithm uses an Activity List (AL) representation, while
a Schedule Generation Scheme (SGS) is employed both in parallel and serial fashion to produce
feasible schedules. Two pheromone strategies for the ant’s decisions are integrated.
Another algorithm that falls into the SI category of population based algorithms is the Particle

Swarm Optimisation (PSO). PSO is an evolutionary algorithm that emulates the behaviours of
birds flocking. Zhang et al. (2006) applied a PSO solution framework for addresing the RCPSP.
The proposed PSO algorithm operates on a priority-based particle representation which resembles
the Random Key (RK) representation and ensures that feasible activity sequences, in terms of
precedence constraints, are considered. The proposed PSO utilizes a parallel SGS to transform
the particles information to feasible schedules. Lately, Chen (2011) proposed a “justification” PSO
(jPSO) that enables a technique to adjust the starting times of each activity in an effort to reduce
the makespan. The resulting jPSO operates on both forward and backward planning schemes.
Regarding Scatter Search (SS) implementations, a hybrid methodology was proposed by Debels

et al. (2006). The authors developed an SS algorithm which uses the electromagnetism principles for
the solution selection. The proposed method emulates the forces in a electromagnetic field to depict
the attractiveness of a new solution to the solutions of the reference set. A Standardized RK solution
representation scheme is presented, while particular intensification procedures were developed.
Paraskevopoulos et al. (2012) proposed a Hybrid Evolutionary Algorithm (HEA), that is based on
SS, operates on an event-list representation and employs an Iterated Local Search algorithm as a
post-improvement method. It is worth mentioning that the AMP algorithm, presented herein, is
developed on the basins of the event-list (EL) representation and adopts the local search operators
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proposed by Paraskevopoulos et al. (2012). Our proposed AMP contributes to the existing body of
work by introducing an adaptive memory-based solution reconstruction procedure, able to produce
high quality solutions even in early stages of the search process; note that the proposed AMP
outperforms the state-of-the-art of the literature for large scale RCPSP instances when 1000 and
5000 schedules are examined. Furthermore, an innovative local search method is presented that
performs a thorough exploration of the solution neighbourhoods.

3. Solution Methodology

In this section, we first present the solution representation used by all the components of the
algorithm and then describe in detail the components of the main algorithm.

3.1 The event-list representation

The most popular representation schemes of the literature is the activity list and the random key
representation (Kolisch and Hartmann 2006). The main problem that typically occurs when these
representations are used, is that multiple representation lists (either ALs or RKs) can be associated
with the same solution (Debels and Vanhoucke 2007). The latter is expected to reduce the efficiency
of metaheuristic methodologies, since useless replicas of the same solution exist in the solution space
and therefore the search is typically delayed and misguided. Debels and Vanhoucke (2007) used
several transformation mechanisms and a Standardized RK representation scheme that addressed
the aforementioned problem. The Event List representation used in this paper (Paraskevopoulos
et al. 2012) addresses the inefficiencies of the AL and RK without the use of transformation
mechanisms. The structure of the EL involves time information and efficiently depicts the RCPSP
solution. Two different ELs cannot be associated with the same schedule/solution as they are
composed by sets of activities that start at the same time, i.e., the events, while these events are
ordered according to their starting times. If either the events or the order of these events, or both
are different in two particular event lists, different solutions are considered. This property of the
EL representation enables both local search to move effectively into the solution space, as well
as it equips evolutionary algorithms with an efficient inheritance process. In this paper, we took
advantage of the particular structure of the EL, and we introduce compound local search moves
that consider “event relocations” within the schedule.
Figure 1 illustrates a project of 16 activities and a capacity-limited resource. The numbers, that

appear on the x axis in Figure 1b and in the event list, indicate the starting times, i.e., the dates of
the events. The resource consumption and duration of the activities are shown in Figure 1b. The
latter shows a feasible solution of the problem, obtained by using a serial SGS.

3.2 The objective function

A hierarchical objective function is used, inspired by Paraskevopoulos et al. (2012). The primary
objective is the makespan, and the secondary objective is a measure that mainly represents the
deviation of the finishing times lsj of the activities j in a solution s from their Earliest Finishing
Times (EFTj) lower bounds calculated by the Critical Path Method (CPM). Typically, the largest
this deviation is, the less is the quality of a solution, when comparing two solutions with the same
makespan. The equation below gives the hierarchical objective function used in this paper:

f(s) = min(ls(n+1),

∑
j∈J

lsj−EFTj

EFTj+1

|J |
) (1)

where ls(n+1) is the finishing time of the last activity, i.e., the makespan, |J | the cardinality of
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(a) Project Network (b) Typical RCPSP schedule

(c) Event list representation

Figure 1. A typical Resource Constrained Project Scheduling Problem

set J , i.e., the number of activities.
This is a common practice in the relevant literature (Mendes et al. 2009), as the solution space

is largely composed by solutions with the same makespan (Czogalla and Finik 2009), and this
hierarchical objectives typically help the search to move within the space more effectively.

3.3 The Adaptive Memory Programming Framework

The proposed AMP consists of two phases; the initialisation and the exploitation phase. In the ini-
tialisation phase a construction heuristic is applied for λ iterations, throughout which µ different
and good quality solutions are selected to comprise the set M . This pool of solutions M informs
the adaptive memory α, which stores the scheduling history for each activity. In the exploitation
phase, The AMP framework manipulates M through an exploration of search trajectories initiated
from new provisional solutions. In particular, a GRR method (Kontoravdis and Bard 1995) uses
the information stored in the adaptive memory and produces a provisional solution s. Given s,
a Reactive Variable Neighbourhood Search (ReVNS) algorithm is applied for improving the solu-
tion quality. If the provisional solution s is “sufficiently” improved through the application of the
ReVNS, i.e., the provisional solution satisfies some elitist selection criteria, the pool of solutions is
updated with the new, improved by ReVNS, solution s′ and the worst cost solution is removed from
the pool. At this point, the adaptive memory is updated as well. The AMP continues with another
provisional solution (whether the previous solution was improved or not) until the termination
criteria are met. The AMP framework is described by Algorithm 1. The algorithm terminates after
a number of schedules maxSc has been examined.
The function InitialiseAdaptiveMemory uses the pool of solutions and informs the adaptive mem-

ory (see Section 3.4.1 for details). Similarly, UpdateAdaptiveMemory updates the adaptive memory
α with new information, each time a new solution s′ is inserted into the pool of solutions. Selection-
Criteria is a boolean function that returns “true” if the solution s′ meets the criteria to be inserted
into the pool of solutions, and “false” otherwise. UpdatePool removes the worst cost solution from
the pool, and inserts the new s′ one. GRR is the reconstruction method introduced in Section 3.5.1,
and produces a provisional solution s. ReV NScost and ReV NSdist are two different versions of the
ReVNS proposed in this paper, compliant with two different objectives, respectively.

5
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Algorithm 1: Adaptive Memory Programming Framework

Input: λ (initial population size), µ (pool size), where λ ≥ µ, δ (number of local search
iterations without an improvement), ϑmax (number of perturbations without an
improvement), δt (size of the time bucket)

Output: M , sbest ∈M
***Initialization Phase***
M ←ConstructionHeuristic(µ, λ);
α← InitialiseAdaptiveMemory(M ,δt) ; RCLsize = 1;
***Exploitation Phase***
while Number of schedules examined are less or equal to maxSc do

s← GRR(α,RCLsize);
s∗ ← ReV NSdist(s, δ/2, ϑmax);

(s′, h⃗)← ReV NScost(s∗, δ, ϑmax);
if SelectionCriteria(M, s′) then

UpdatePool(M, s′); RCLsize = 1;
α← UpdateAdaptiveMemory(M, s′, δt) ;

else
if RCLsize < µ then

RCLsize = RCLsize+ 1;

else
RCLsize = 1;

3.4 Initialisation Phase

The initialisation phase aims at producing an initial population of solutions that are both diver-
sified and of good quality. A construction heuristic is proposed that combines a serial SGS with a
backward, a forward and a bidirectional planning schemes. At each iteration of the initialisation
phase, the planning scheme is selected at random with equal probability and is preserved until all
activities are scheduled and a complete solution is constructed. The activity to be scheduled at a
particular iteration is selected at random from all precedence feasible activities at that iteration.
The construction heuristic is applied repeatedly until λ different solutions are created, among which
µ are selected to build the pool M . Details about the creation of the pool of solutions are given in
Section 3.4.2. The initial population is exploited in the exploitation phase.

3.4.1 The adaptive memory

A major element of the proposed algorithm is the adaptive memory α, which records the track
of the search to identify favourable time buckets for each activity and guides the search towards
high quality solution regions. The main intuition behind this strategy is that frequently visited
solution elements (favourable time buckets in this instance) can be possibly found in optimum or
higher quality solutions, especially if these elements belong to high quality solutions (Tarantilis
2005; Repoussis et al. 2010).
To capture the favourable solution elements appropriate memory structures are used. Taking

advantage of the event-list representation structure the time information needed is easily extracted
and stored in a two dimensional array α, i.e., the adaptive memory. To create the array α, the time
horizon T is divided into Tb = T/δt time buckets and the size of α is |J | × Tb, where |J | is the
number of activities and δt the size of the time bucket in time units.
Initially, all the elements {i, t} of α are set equal to 0. In the initialisation phase, α is initialised

with the information included in the pool of solutions M . In particular, each element {i, t} of α is
incremented by bs, if activity i is scheduled at time bucket t and belongs to solution s ∈ M . The
value of bs = 1/f(s) reflects the importance of the solution quality into the information stored in α,

6
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where f(s) is the primary objective as defined by equation (1). The higher the cost of a solution s,
the lower is the bs and thus the lower is the impact of the solution elements of s into the formation
of the adaptive memory. The latter is calculated according to the equation given below:

α(i, t) =
∑
s∈M

bsI
s
it, ∀i ∈ J,∀t ∈ {1, ..., T b} (2)

where i represents an activity in solution s and Isit is a binary variable equal to 1 if activity i is
scheduled within the time bucket t, i.e., (t− 1)δt ≤ STsi ≤ tδt, where STsi is the starting time of
i, and 0 otherwise. Every time, a new solution is inserted into the pool of solutions, α is updated
by using the procedure described above. Note that only the activity’s starting time STsi needs to
be (or equally the finish time lsi for the backward scheduling scheme) stored within the respective
time bucket, and not the whole execution time interval of the activity.

3.4.2 The selection criteria

The pool of solutions and the adaptive memory α are updated if certain criteria are met. The
goal is to maintain a balance between quality and diversity and to avert premature convergence.
Our diversity measure uses the distance measure of Chen et al. (2010b) between pairs of solutions,
D(s, s∗) =

∑
j∈J |lsj − ls∗j |, for two solutions s and s∗, where lsj and ls∗j are the finish times of

activity j in solutions s and s∗, respectively, J is the set of activities and M is the pool of solutions.
The total dissimilarity for pool M is then given by:

TD(M) =
∑

s,s∗∈M
D(s, s∗), (3)

where the sum is over all µ(µ− 1)/2 pairs of solutions in set M .
The creation of the initial pool of solutions proceeds as follows. The first µ solutions among the

λ generated within the Initialisation phase are inserted into M . The remaining λ− µ solutions are
then considered sequentially for replacing a solution in M . Specifically, if such a solution s satisfies
the condition f(s) < f(sbest), where sbest is a least cost solution in M , or if f(s) < f(sworst) and
TD(M) < TD(M \ {sworst} ∪ {s}), then s is inserted into M . Otherwise, s is not included in M .
When s is inserted, solution sworst ∈ M , where sworst has the largest cost among the solutions in
M , is removed from M . Note that, as soon as the pool of solutions is updated with a new solution,
the adaptive memory is updated as well. The same rationale is followed in the Exploitation Phase.

3.5 Exploitation Phase

The initial population is exploited in the second phase of AMP, the exploitation phase. In the
following, the components of the exploitation phase are presented.

3.5.1 The greedy randomised reconstruction method

The way the information is extracted from the adaptive memory, is crucial and affects the efficiency
and effectiveness of the proposed solution methodology. The information stored in the adaptive
memory, is extracted by using a greedy randomised rationale (Kontoravdis and Bard 1995), which
adaptively selects the information according to the track record of the search history.
For this purpose, a list, namely the Random Candidate List -RCLi, is used to store the highest

score elements α{i, t} of activity i, ∀t ∈ {1, ..., T b}. Each activity i is assigned with its own list
RCLi. The size of the list is dynamic and starts from 1 and increases as no improvement in the
solution quality is observed, until the maximum size µ is reached. If a better solution than sbest ∈M
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is found the RCL size is reinitialised to 1, for intensification purposes. Details on how the RCL size
is controlled are given in Algorithm 1.
The provisional solution is built step by step, by scheduling one activity at a time. Starting from

an empty schedule, a set A of precedence feasible activities is created. The first activity to be
scheduled is the activity that has the highest score α∗{i, t}, i.e., maxi∈A{α∗{i, t}}, among all the
precedence feasible activities i ∈ A. The score α∗{i, t} is derived by selecting at random one of the
elements of the list RCLi. Also, the element α∗{i, t} provides the favourable time bucket t∗i that
activity i should be scheduled.
A scheduling procedure tries then to schedule the activity i as close as possible to the desirable t∗i

without violating any resource capacity constraints. Note that, it is not always possible to schedule
all the activities to their favourable time bucket t∗i due to the resource constraints and due to the
serial nature of the scheduling procedure and they are thus scheduled as close as possible to their
t∗i . As soon as activity i is scheduled, it is removed from the set A, set A is populated with more
precedence feasible activities and the procedure iterates until A is empty, i.e., all activities i ∈ J
have been scheduled.
To illustrate the mechanics of the adaptive memory and the reconstruction procedure we pro-

vide the following example. Assume the problem instance of Figure 1 and a pool of solutions
with size µ = 9. The time horizon T is set equal to 40 and divided in time buckets of size
δt = 5, thus the number of time buckets is Tb = T/δt = 8. The adaptive memory α has a
size of 18x8, compliant with the 18 activities and the 8 time buckets available. Assume also that,
after some iterations of the reconstruction mechanism, some of the activities have already been
scheduled. Then, on a particular iteration, set A contains activities 16, 10 and 9 and the size
of RCL is equal to 2. Assume also that the adaptive memory records of these three activities
are α{9, t} = {0, 0, 0.345, 0.546, 0.034, 0, 0}, α{10, t} = {0, 0, 0.897, 0.098, 0, 0.023, 0}, α{16, t} =
{0, 0, 0.054, 0.345, 0.245, 0, 0}, with t ∈ {1, ..., 8}. Given all this information, the RCLs are created.
Because the RCL size is equal to two, the two highest score elements of each α{i, t} are selected.
Therefore the following RCLs are created: RCL9 = {0.546, 0.345}, RCL10 = {0.897, 0.098} and
RCL16 = {0.345, 0.245}. Next step, an element of RCLi for each i is selected at random. Let the
following elements be the selected ones: α∗{9, t} = 0.345, α∗{10, t} = 0.897 and α∗{16, t} = 0.345,
and the respective t∗i s are, t

∗
9 = 3, t∗10 = 3, and t∗16 = 4.

Among the three activities, the activity that has the highest score α∗{i, t} is activity 10, and
will be scheduled next. Specifically, activity 10 will be scheduled as close as possible to time bucket
4, i.e., the time interval from 15 to 20 (from (4-1)×δt to 4×δt, δt=5) within the time horizon,
without violating any resource capacity constraints. Then activity 10 is removed from set A, more
precedence feasible activities are inserted into A and the procedure continues by comparing the
adaptive memory records of the activities in the updated set A, until all activities i ∈ J have been
scheduled.

3.6 The reactive variable neighbourhood search

The provisional solution produced by the reconstruction method is subject for improvement by
a ReVNS. The basic idea of the variable neighbourhood local search is the systematic change of
neighbourhoods within local search (Paraskevopoulos et al. 2008). The systematic change of the
neighbourhood is following an increasing cardinality scheme, such that small neighbourhoods are
chosen initially and as an improvement in the solution quality is not observed, the neighbourhood
cardinality is increased by selecting different neighbourhood types. In our implementation, ymax

neighbourhood types are introduced, as many as the size of the largest event in the solution s. Note
that, the events are groups of activities that start at the same time, thus ymax is defined by the
maximum number of activities that start together at the same time in the solution s. Therefore,
for example if the largest event of a solution is composed by 5 activities, the neighbourhood types
considered are ymax =5. The neighbourhoods are created by rescheduling events of the size y,
y ∈ [1, ..., ymax], to all possible positions in the event list (see 3.6.2 for details). If an improvement
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in the total cost of the solution, in terms of equation (1), is observed, the neighbourhood index
is reinitialised to ymax. Note that, ymax fully depends on the structure of the current solution.
Consequently, despite the fact that at an iteration the neighbourhood cardinality is ymax, after
performing a specific local move, ymax must be re-calculated according to the largest size of the
event in the new solution.
The Shaking step, the Local Search phase and the Perturbation compose the ReVNS framework.

In the Shaking step, a local move is applied and a neighbouring solution s′ is produced. The local
search preserves the neighbourhood type y and performs only local moves of this neighbourhood
type y. Note that, after δ iterations that the local search has not found any better solution,
the procedure terminates and the best solution is returned. To escape from local optima, the
perturbation mechanism is applied to guide the search towards unexplored regions of the solution
space and apply diversification. The pseudocode of the proposed ReVNS is given by Algorithm (2).

Algorithm 2: Reactive Variable Neighbourhood Search

Input: Provisional solution s, δ (number of local search iterations without an improvement),
ϑmax (number of perturbations without an improvement), δt (size of the time bucket)

Output: sReV NSbest

ϑ = 1; g⃗ ← 0; h⃗← 1;
ymax =ReturnSizeofEvents(s);y = ymax;
while ϑ < ϑmax do

s′ ←Shaking(s, y);
ymax =ReturnSizeofEvents(s′);

(s∗, g⃗, h⃗, ymax)← LocalSearch(y, ymax, δ, s
′, g⃗, h⃗);

if f(s∗) > f(s)&y > 1 then
y = y − 1;

else if f(s∗) > f(s)&y = 1&ϑ < ϑmax then

s← Perturbation(s∗, h⃗, ϑ); ϑ = ϑ+ 1;
ymax =ReturnSizeofEvents(s); y = ymax;

else if f(s∗) < f(s) then
s← s∗; ymax =ReturnSizeofEvents(s);y = ymax;

else if f(s∗) < f(sReV NSbest) then
sReV NSbest ← s∗;ϑ = 1;⃗g ← 0;

The function ReturnSizeofEvent scans the current solution, finds the maximum number of ac-
tivities that start (or finish if backward scheduling scheme is considered) at the same time, and
returns this value. Shaking picks at random one particular neighbour, of the neighbourhood type
y. Details on LocalSearch and Perturbation are explained in the following sections. Prior to this,
however, we describe the two versions of the proposed ReVNS, according to two different objective
functions.

3.6.1 The two versions of the ReVNS

There are two versions of the ReVNS: the cost minimisation ReV NScost and the distance minimi-
sation ReV NSdist. The first version of ReVNS is using the equation (1) as the objective function.
The second version of ReVNS, can be described as follows. Due to precedence and resource con-
straints the procedure described in Section 3.5.1 cannot accurately transfer the adaptive memory
information to a solution’s schedule. In other words, there are deviations between the favourable
time-bucket t∗i and the time bucket an activity i is actually scheduled. The latter fact is inevitable
since the schedules are built in a sequential fashion. To achieve a more efficient inheritance of
the adaptive memory information, ReV NSdist is applied using a different objective than this of
makespan minimisation, just before the cost minimisation takes place (see Algorithm 1 for details).

9
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The new objective is related to the total distance between the desired (extracted by the adaptive
memory) and the actual starting times for the activities of the provisional solution s and is given
below:

f ′(s) =

N∑
i=1

|STsi − t∗i δt| (4)

where STsi are the starting times of activity i in solution s and t∗i is the favourable time-bucket
for activity i. Therefore, Algorithm (2) can be broken down to two versions, Algorithm (2a) where
f(s) is equation (1) and Algorithm (2b) where f(s) is equation (4).

3.6.2 The neighbourhood operators

ReVNS operates compound moves and uses a frequency based memory (represented by memory
structure g⃗) to escape from local optima by penalising neighbours met before. An array g⃗ of size
|J |xTb is used to store the number of times a particular activity i has participated into a local
move and has been scheduled in the time bucked t. After an improvement in the solution quality
is observed, g⃗ is reinitialised to the zero vector. Note that the role of g⃗ is totally different than this
of the adaptive memory α and they contain different types of information; g⃗ stores information
regarding the local search history to help penalising frequently selected moves and guide effectively
the trajectory local search, and on the contrary adaptive memory α consorts with the pool of
solutions to capture favourable solution elements, which are combined to produce high quality
provisional solutions.

(a) Current solution (b) Step 1

(c) Step 2 (d) Final neighbouring solution

Figure 2. Local search operator-event relocation

10
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Figure 2 illustrates the process of evaluating a neighbouring solution using the event relocation
operator, based on the problem instance shown in Figure 1. Given the current solution, assume
that we examine relocating the event that is composed by activities 16 and 8, as the arrow shows.
All events up to that position remain as they are in the schedule and from that point and onwards
everything is rescheduled (Figure 2b). First the relocated event is scheduled (Figure 2c) and then
all the rest events are scheduled as early as possible. Note that, even though we consider event
relocations, the activities are scheduled independently as early as possible. In the neighbouring
solution (Figure 2d), new events have emerged and thus a new Event List is created. Note that,
this is only a single neighbour created by the event relocation operator.
The following equation defines the local move cost from solution s to a trial solution s′ as

∆fmove(s, s
′) = f(s′)− f(s) + β

∑
i∈J

Tb∑
t=0

zitgit, (5)

where β is a scaling parameter, defined as the fraction of the f(sbest)/|J |, and zit has a value
equal to 1 if the activity i is scheduled in time bucket t in the current local move from s to s′, and
a value 0 otherwise. The component β

∑
(i∈J

∑Tb

t=0 zitgit, is added to the cost of the local move to
penalise moves that involve frequently selected activities.
Trial solutions with smaller values of ∆fmove are generally preferred. However, it may be that

this number is large enough to prevent the search from selecting a high-quality neighbour s′. To
avert such cases, an aspiration criterion is used: if f(s′) < f(sReVNSbest), the penalty component is
ignored so that ∆fmove = f(s′)− f(s).
It is worth denoting that as soon as, a local move is applied the structure of the solution changes

and ReturnSizeofEvents is called again and a new value for ymax is calculated, the y′max. If the
current neighbourhood type y > y′max then y = y′max, otherwise no action is required.

3.6.3 The perturbation strategy

A major component of the proposed ReVNS is its perturbation strategy. The goal is to partially
rebuild the current local optimum solution, such that the new diversified solution preserves some
information from the local optimum. The proposed perturbation strategy performs local moves of
neglected activities during local search and tries to reschedule them to the least favourable time
buckets. For this purpose, a long term memory h⃗, similar to g⃗, is introduced that stores the number
of times the activity i has participated in a local move and has been scheduled into a particular
time bucket t. Initialization sets hit = 1 for all i ∈ J , and t = 1, ..., Tb. The hit values have a
similar purpose to the git values of Section 3.6.2 except that h⃗ is never re-initialised, instead a
scaling process is applied for the hit. Specifically, to avoid hit become very large for some (i, t), we
periodically divide hit by himin for all i ∈ J , where himin = mint=1,...,Tb

hit,with hit > 1.
The perturbation normally “ruins and recreates” a part of the current solution in order to

move to unexplored regions of the solution space. The part of the solution we ruin and recreate
in this proposed perturbation is defined by a subset F ⊆ J of activities that are subject for
rescheduling during the perturbation process. Specifically, ϑ/ϑmax of the total number of activities

are selected and stored in list F such that |F| = ϑ|J |
ϑmax

. The activities that comprise the list F
are selected as follows. The set of activities J are sorted in an ascending order of their average
score of hit = (

∑Tb

t=0,hit>1 hit)/Tb. The function SortActivities will thus sort the more neglected
during the search activities in the top of the list R and the less neglected towards the end. Next,
FillCandidateSet considers the fraction ϑ/ϑmax and starts from the top of the list, inserts activities

to the list F and it stops until the index i = ϑ|J |
ϑmax

is met. Then, an iterative process relocates-
reschedules all activities i ∈ F . In the following we explain how rescheduling is done.
Each activity i has its own allowable range of relocation positions [wi, vi] in the event list, where

wi, vi the earliest and latest positions in the event list that the particular activity can be relocated-

11
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Algorithm 3: Perturbation

Input: Q a large positive number, Local optima solution s∗, ϑ and ϑmax (number of

perturbations without an improvement), long term memory h⃗
Output: s
R← SortActivities(⃗h);
F ← FillCandidateSet(ϑ, ϑmax, R);
while F ̸= ∅ do

i← SelectFirstActivity(F);
min=Q;pos=0;time=0;
for all possible relocation positions pos in the event-list for activity i do

time=CheckMove(pos, i);
if hi,time < min then

min=hi,time; pos
∗ = pos;

if min ̸= Q then
s← ApplyMove(s∗, i, pos∗);s∗ ← s;
F ← RemoveFirstElement(F);

else
F ← RemoveFirstElement(F);

rescheduled, respectively, according to the precedence constraints. A function CheckMove is used
to return the time the activity i will be scheduled after the local move is applied on the position
pos. The goal is to select the position for relocation-rescheduling that corresponds to the minimum
value hi,time for all times time that are derived by scheduling activity i at all the possible positions
wi and vi in the event list. Given the best position pos∗ a local move is applied to relocate activity
i from its original position to the position pos∗ in the event list. Then, a serial SGS is called to
calculate the new timings for all activities i ∈ J and produce a solution s. Finally, the procedure
removes the first element from the list F and iterates with the next activity in the list, until the
list F is empty.

4. Numerical experiments

Computational experimentation was conducted on the benchmark problem instances of Kolisch et
al. (1995) for the evaluation of the proposed AMP. The problem instances come in the sets J30,
J60, and J120 which include problems with 30, 60, and 120 activities, respectively. In total, J30
contains 480 instances, J60 contains 480 instances and J120 contains 600 instances. The proposed
algorithm was developed in Visual C++ 2010, and run on a PIV 2,8 GHz PC.
The basis of comparisons among heuristic methodologies for the RCPSP is the number of sched-

ules examined and is used as the termination criterion. The main goal is to assess on the design
of an algorithm and not on the programming skills of the developers (Kolisch et al. 1995). Thus,
the termination criterion followed in this paper, as well as in the literature, is the 1000, 5000 and
50000 schedules examined.

4.1 Parameter settings-ReVNS

To investigate on the ReVNS’ suitability to serve as an improvement method integrated into AMP,
ReVNS was tested as an autonomous multi-start solution method.
ReVNS introduces two parameters; a parameter δ to define the maximum number of local search

oscillations that an improvement is not observed, and the maximum number of perturbations
performed ϑmax, without an improvement into the current solution. A balance between the number

12
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of the restarts and the ReVNS iterations on each initial solution, is preserved.

4.1.1 Maximum number of perturbations ϑmax

The purpose of perturbation is to perturb a solution, such that to produce diversified solution
structures while keeping some of the elements of the local optima. We have conducted compu-
tational experiments to define θmax. The latter indicates a) (explicitly) the maximum number of
perturbations that will be applied on a single solution without observing any cost improvement
before ReVNS restarts from new solution and b) (implicitly) the number of activities that will be
removed and rescheduled at each perturbation. For example, if θmax=3, 1/3 of the total number
of activities will be removed and rescheduled at the first perturbation, and 2/3 of activities will
be removed and rescheduled at second etc. We tried different values for θmax, i.e., 2, 3, 4, 5 and
6. Higher numbers than 3 created weak perturbations as less number of activities were being re-
moved and rescheduled, whereas 2 was creating low quality solutions. Based on this observation,
the number of perturbations ϑmax is set equal to 3.

4.1.2 Maximum number δ of local search iterations without improvement

The size of the largest event into various solutions, was found to vary between 3 and 6 according
to the specifications of the incumbent problem instances. Local search will thus perform at the
worst case 3×δ iterations without an improvement, as the number of neighbourhood types is equal
to the size of the largest event in the current solution. If the latter quantity is multiplied by the
number of perturbations ϑmax, we can roughly estimate the number of ReVNS iterations without
an improvement. The goal is to preserve a balance between multiple restarts and ReVNS, under
the limitations of the total number of schedules examined. Therefore, δ was set equal to 10, which
means 3× 10× 3 = 90 local search iterations without an improvement.

4.2 Parameter settings-AMP

The proposed AMP introduces five parameters; the pool size |M | = µ, the number of initial
solutions λ considered to build the pool of solutions, the maximum local search oscillations that
an improvement has not been observed δ, the number of perturbations ϑmax, and the size of the
timebucket used by adaptive memory δt. The parameter λ was set according to the termination
criterion, i.e., equal to 100 if the maximum number of schedules maxSc examined is 1000, λ=200
if maxSc=5000, and λ=500 if maxSc=50000. Since δ and ϑmax are common parameters for the
ReVNS, and are discussed previously, in the following the sensitivity of parameters µ and δt is
discussed.

4.2.1 Size of the time bucket δt

Parameter δt is the size of the time bucket used to store information about the starting times (or
finishing times when a backward SGS is considered) of the activities. Giving small values to δt
leads to keeping more precise information in the adaptive memory. To fully exploit this feature a
large pool of solutions should be employed to provide to the detailed adaptive memory different
scheduling positions of the activities in the time horizon. As δt increases the different starting times
of an activity in different solutions in the pool, tend to be associated to the same time bucket. At
this case, there is no need for a large pool and a smaller one shall be employed. Small values for
δt=2 or δt=3 combined with large pool sizes led to a delayed convergence, exceeding the limited
number of schedules. To the other end, large values, e.g., δt=10 caused a premature convergence.
Finally, according to several numerical experiments, δt was set equal to 5.
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Table 1. Calibration of the parameter µ

Instances
Avg Total Cost for different µ
8 10 12 14

6-1 152.20 152.80 152.30 151.80
7-1 105.00 105.10 105.80 105.50
11-1 179.20 179.40 179.90 180.50
12-1 142.80 143.60 143.10 143.40
16-1 202.30 202.60 202.10 202.10
17-1 143.90 144.00 143.80 143.90
26-1 178.10 180.30 179.50 179.30
27-1 111.60 111.80 111.80 112.10
31-1 204.20 205.30 204.80 205.50
32-1 150.90 151.10 150.90 151.10
36-1 216.00 216.20 216.40 216.30
37-1 148.80 149.10 148.90 148.90
46-1 196.20 196.40 196.70 198.10
47-1 142.70 144.30 144.80 144.50
51-1 213.00 214.90 213.90 214.50
52-1 182.90 184.10 183.80 183.80
56-1 242.80 242.80 242.70 243.20
57-1 190.30 190.00 190.00 190.10
Avg 172.38 172.99 172.84 173.03

4.2.2 Size of the pool of solutions µ

Aiming to achieve a high level of efficiency in limited number of schedules one must consider
the speed of convergence into the limited number of schedules. To investigate on this, we run a
sample of large scale problems of class J120 with different parameter settings for µ and the average
result over ten runs for each parameter setting is shown in Table 1. The termination criterion was
maxSc=50000 schedules, while the rest of the parameters were set fixed λ=500, δt = 5, δ = 10 and
ϑmax = 3. As Table 1 shows, the effect of the µ varies according to the different problem solved.
On average, the best value for µ seems to be 8, and this is fixed for all the runs of AMP.

4.3 Comparative Analysis

Experimentation was conducted on both the ReVNS and the AMP framework to challenge their
efficiency, compared to the-state-of-the-art of the RCPSP literature.

4.3.1 The performance of the ReVNS

To investigate on the appropriateness of the ReVNS as a post-improvement method integrated into
the proposed AMP, numerical experiments were conducted considering ReVNS as an autonomous
solution method, and local search algorithms of the literature was the basis of comparisons, pre-
sented in Table 2.
Table 2 provides the performance results of ReVNS compared to local search methods proposed

in literature for the RCPSP. There are not many local search methods in literature for the RCPSP.

Table 2. Comparisons of the ReVNS to local search metaheuristics on benchmarks sets J30, J60, and J120.

Pr. Set Algorithm RS Reference
% Dev

1000 5000 50000
J30 ReVNS EL This paper 0.03 0.01 0.00

AILS EL Paraskevopoulos et al. (2012) 0.05 0.01 0.00
SA AL Bouleimen and Lecocq (2003) 0.38 0.23 n/a
TS AL Nonobe and Ibaraki (2002) 0.46 0.16 0.05
TS-insertion rules AL Artiques et al. (2003) n/a n/a n/a
Hybrid LS techniques AL Pesek et al. (2007) n/a n/a n/a

J60 ReVNS EL This paper 11.47 11.10 10.88
AILS EL Paraskevopoulos et al (2012) 11.34 11.10 10.91
SA AL Bouleimen and Lecocq (2003) 12.75 11.90 n/a
TS AL Nonobe and Ibaraki (2002) 12.97 12.18 11.58
Hybrid LS techniques AL Pesek et al. (2007) n/a n/a 11.10
TS-insertion rules AL Artiques et al. (2003) n/a 12.05 n/a

J120 ReVNS EL This paper 34.74 33.36 32.21
AILS EL Paraskevopoulos et al (2012) 34.38 32.67 32.66
TS-insertion rules AL Artiques et al. (2003) n/a 36.74 n/a
TS AL Nonobe and Ibaraki (2002) 40.86 37.88 35.85
SA AL Bouleimen and Lecocq (2003) 42.81 37.68 n/a
Hybrid LS techniques AL Pesek et al. (2007) n/a n/a n/a
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The results reported herein, as well as in other papers of literature (Tseng and Chen 2006), take
into consideration one schedule at each iteration of the local search. Thomas and Salhi (1998) was
not included in the comparisons as the authors have used different benchmarks for their evaluation
tests. Lastly, the filter and fan method proposed by Ranjbar (2008) was not considered as the
author does not report results with respect to the different schedule modes, i.e., 1000, 5000 and
50000 schedules.
The second column of Table 2 gives the abbreviations for the solution methodologies, i.e., SA

for Simulated Annealing, VNS for Variable Neighbourhood Search, TS for Tabu Search, AILS for
Adaptive Iterated Local Search and hybrid LS for hybrid Local Search. The third column reports
the representation schemes, while the next column gives the references. Lastly, the multicolumn
that follows reports the average deviation % from the optimum and from the CPM lower bounds.
In particular, for J30 set the % deviation is calculated with regard to the optimum values and
for J60 and J120 the % deviations are derived with the CPM lower bounds. The three different
columns refer to the different termination criteria of 1000, 5000, and 50000 schedules examined.
Table 2 shows that ReVNS performs better than the local search methods of literature for all
termination criteria. In particular, ReVNS at 50000 schedules achieves 0,00 (%), 10,88 % and 32,21
% deviations for J30, J60 and J120 sets, respectively.

Table 3. Statistics on the results derived by AILS and ReVNS on the J30 benchmark set

Measure
AILS ReVNS

1000 5000 50000 1000 5000 50000
Sum of all costs 28334 28319 28317 28326 28319 28317
Average cost 59.03 59.00 59.00 59.01 59.00 59.00
Geometric mean cost 57.52 57.50 57.50 57.51 57.50 57.50
Max % Dev from CPM LBs 2.94 1.92 1.18 2.94 1.92 1.18
No of Optimum solutions 463 476 479 470 476 479
Avg. % Dev from Optima 0.05 0.01 0.00 0.03 0.01 0.00

Table 4. Statistics on the results derived by AILS and ReVNS on the J60 benchmark set

Measure
AILS ReVNS

1000 5000 50000 1000 5000 50000
Sum of all costs 38635 38521 38483 38679 38551 38477
Average cost 80.49 80.25 80.17 80.58 80.32 80.16
Geometric mean cost 78.65 78.47 78.41 78.72 78.53 78.42
Max % Dev from CPM LBs 110.39 105.20 103.90 106.49 105.20 102.60
No of Optimum solutions 295 295 295 295 295 295
Avg. % Dev from CPM LBs 11.35 11.10 10.91 11.47 11.10 10.88

Table 5. Statistics on the results derived by AILS and ReVNS on the J120 benchmark set

Measure
AILS ReVNS

1000 5000 50000 1000 5000 50000
Sum of all costs 76256 75773 75279 76476 75686 75038
Average cost 127.09 126.29 125.47 127.46 126.14 125.06
Geometric mean cost 120.83 120.17 119.52 121.20 120.10 119.21
Max % Dev from CPM LBs 209.9 208.08 203.03 203.96 203.03 200.00
No of Optimum solutions 144 162 168 150 160 170
Avg. % Dev from CPM LBs 34.38 32.67 32.66 34.74 33.36 32.21

To compare AILS and ReVNS separately, we derived different statistical measures shown below
in the Tables 3, 4 and 5. ReVNS is in general better than AILS in J30 and J60 benchmark sets,
and this difference becomes larger when it comes to the large problem instances of the benchmark
set J120, under the limit of 50000 schedules. More specifically, ReVNS achieves a better sum of all
costs by 241 units, a better average cost by 0.41, a better geometric mean cost by 0.31, a better
maximum % deviation from the CPM LBs by 3.03, it produces two more optimum solutions than
AILS, and a better average % deviation from the CPM LBs by 0.45.
Note that, in Tables 4 and 5 (and in Tables 8 and 9), the row No of Optimum solutions indicate

the number of solutions for which the total cost matches with the Lower Bound derived by the
CPM. Therefore, there could be more optimum solutions found, but this information is not known.
This is not the case for the J30 benchmark set, as for the latter all optimum solutions are known.
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Table 6. Comparisons to the-state-of-the-art algorithms on benchmarks sets J30, J60, and J120.

Pr.
Algorithm RS Reference

% Dev.
Set 1000 5000 50000
J30 AMP EL This paper 0.02 0.01 0.00

ReVNS EL This paper 0.03 0.01 0.00
HEA EL Paraskevopoulos et al. (2012) 0.03 0.01 0.00
AILS EL Paraskevopoulos et al. (2012) 0.05 0.01 0.00
GA-MBX AL Zamani (2013) n/a n/a 0.00
SS-PR AL Mobini et al. (2009) 0.05 0.02 0.01
b-GA RK Goncalves et al. (2011) 0.32 0.02 0.01
GA. TS-PR AL Kochetov and Stolyar (2003) 0.10 0.04 0.00
GAPS RK Mendes et al. (2009) 0.06 0.02 0.01
ACOSS AL Chen et al. (2010b) 0.14 0.06 0.01
SS-FBI RK Debels et al. (2006) 0.27 0.11 0.01
GA TO-RK Debels and Vanhoucke (2007) 0.15 0.04 0.02
GA-hybrid FBI AL Valls et al. (2008) 0.27 0.06 0.02
NG (FBI) AL Agarwal et al. (2011) 0.13 0.10 n/a
jPSO AL Chen (2011) 0.29 0.14 0.03
TS AL Nonobe and Ibaraki (2002) 0.46 0.16 0.05
GA AL Hartmann (2002) 0.38 0.22 0.08
ANGEL AL Tseng and Chen (2006) 0.22 0.09 n/a

J60 HEA EL Paraskevopoulos et al. (2012) 11.05 10.72 10.54
b-GA RK Goncalves et al. (2011) n/a 11.56 10.57
SS-PR AL Mobini et al. (2009) 11.12 10.74 10.57
AMP EL This paper 11.09 10.74 10.65
GA-MBX AL Zamani (2013) n/a n/a 10.65
GAPS RK Mendes et al. (2009) 11.72 11.04 10.67
ACOSS AL Chen et al. (2010b) 11.72 11.04 10.67
GA TO-RK Debels and Vanhoucke (2007) 11.45 10.95 10.68
SS-FBI RK Debels et al. (2006) 11.73 11.10 10.71
GA-hybrid FBI AL Valls et al. (2008) 11.56 11.10 10.73
GA. TS-PR AL Kochetov and Stolyar (2003) 12.21 11.27 10.74
ReVNS EL This paper 11.47 11.10 10.88
AILS EL Paraskevopoulos et al (2012) 11.34 11.10 10.91
NG (FBI) AL Agarwal et al. (2011) 11.51 11.29 n/a
jPSO AL Chen (2011) 12.03 11.43 11.00
GA AL Hartmann (2002) 12.21 11.70 11.21
ANGEL AL Tseng and Chen (2006) 11.94 11.27 n/a
TS AL Nonobe and Ibaraki (2002) 12.97 12.18 11.58

J120 ACOSS AL Chen et al. (2010b) 35.19 32.48 30.56
HEA EL Paraskevopoulos et al. (2012) 33.32 32.12 30.78
GA TO-RK Debels and Vanhoucke (2007) 34.19 32.34 30.82
AMP EL This paper 33.08 31.80 30.88
GA-hybrid FBI AL Valls et al. (2008) 34.07 32.54 31.24
GA-MBX AL Zamani (2013) n/a n/a 31.30
SS-PR AL Mobini et al. (2009) 34.49 32.61 31.37
GAPS RK Mendes et al. (2009) 35.87 33.03 31.44
SS-FBI RK Debels et al. (2006) 35.22 33.10 31.57
GA. TS-PR AL Kochetov and Stolyar (2003) 34.74 33.36 32.06
ReVNS EL This paper 34.74 33.36 32.21
AILS EL Paraskevopoulos et al (2012) 34.38 32.67 32.66
b-GA RK Goncalves et al. (2011) n/a 35.94 32.76
jPSO AL Chen (2011) 35.71 33.88 32.89
NG (FBI) AL Agarwal et al. (2011) 34.65 34.15 n/a
GA AL Hartmann (2002) 37.19 35.39 33.21
ANGEL AL Tseng and Chen (2006) 36.39 34.49 n/a
TS AL Nonobe and Ibaraki (2002) 40.86 37.88 35.85

4.3.2 Performance of the AMP

Having tested the proposed improvement method’s performance, the comparative analysis proceeds
by evaluating AMP’s performance. Table 6 reports the results of metaheuristic methodologies of
the literature on J30, J60 and J120 problem sets. The table has an identical structure to Table 2.
The second column presents the abbreviations of the solution methodologies as originally named
by the authors (ACOSS – Ant Colony Optimization Scatter Search, PR–Path Relinking, GAPS–
Genetic Algorithm for Project Scheduling, GA-MBX–Genetic Algorithm Magnet-based Crossover,
b-GA–biased Genetic Algorithm, FBI–Forward Backward Improvement, ANGEL–ANt colony op-
timization GEnetic algorithm Local search, NG–NeuroGenetic). The next column give the repre-
sentation scheme, e.g., TO-RK for the Topological Order Random Key representation, while the
next column gives the references. Lastly, the multicolumn presents the % deviations as described
in Table 2. The order of the papers is in accordance to the algorithmic performances under 50000
schedules, for each different benchmark set.
In Table 6, the Decomposition-based GA (DBGA) of Debels and Vanhoucke (2007) is not con-

sidered, since the authors do not report the number of schedules, since the latter cannot be explic-
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itly calculated due to the decomposition phase of the algorithm. Nevertheless, the authors report
DGBA’s computational times, thus included in the Tables 10 and 11.
AMP achieves 0, 02%, 0, 01% and 0, 00% average deviation from the optimum solutions of the

J30 set at 1000, 5000 and 50000 schedules, respectively. Regarding the J60 set, AMP obtains
11,09 %, 10,74 and % 10,65 % average deviation from the CPM lower bounds. On the large
scale benchmark set J120, our AMP outperforms all the solution approaches when 1000 and 5000
schedules are examined, presenting 33.08 % and 31.80 % deviations from the CPM lower bounds.
The latter results improve the current best results presented by Paraskevopoulos et al. (2012)
by 0.24% and 0.32%. When 50000 schedules are examined, AMP remains competitive presenting
30.88 % deviation from the CPM lower bounds. Lastly, it is worth mentioning that, ReVNS holds
a good ranking in the list of Table 6, justifying his role as an improvement method. Nevertheless,
the AMP framework is by far better than the ReVNS, improving by 1.66%, 1.56% and 1.33%
the results produced by ReVNS for 1000, 5000 and 50000 schedules respectively, highlighting the
effectiveness of AMP and its impact on the solution quality.
To compare HEA and AMP separately, we present different statistical measures in Tables 7, 8

and 9. One could observe that AMP’s performance is very competitive compared to HEA’s. AMP’s
main strength is to produce very good results in fewer schedules examined, as clearly shown in
Table 6. More specifically, regarding the 5000 schedules examined, AMP achieves a better sum
of all costs by 179 units, a better average cost by 0.3, a better geometric mean cost by 0.24, it
produces 4 more optimum solutions than HEA and it lastly achieves a better average % deviation
from the CPM LBs by 0.32. AMP performs also better than HEA under the limitation of 1000
schedules. Specifically, AMP achieves a better sum of all costs by 137 units, a better average cost
by 0.23, a better geometric mean cost by 0.2, a better maximum % deviation from the CPM LBs
by 4.04, it produces 6 more optimum solutions than HEA and it lastly achieves a better average
% deviation from the CPM LBs by 0.24.

Table 7. Statistics on the results derived by HEA and AMP on the J30 benchmark set

Measure
HEA AMP

1000 5000 50000 1000 5000 50000
Sum of all costs 28326 28319 28317 28323 28319 28317
Average cost 59.01 59.00 59.00 59.01 59.00 59.00
Geometric mean cost 57.51 57.50 57.50 57.51 57.50 57.50
Max % Dev from CPM LBs 2.94 1.92 1.18 1.92 1.92 1.18
No of Optimum solutions 470 476 479 472 476 479
Avg. % Dev from Optima 0.03 0.01 0.00 0.02 0.01 0.00

Table 8. Statistics on the results derived by HEA and AMP on the J60 benchmark set

Measure
HEA AMP

1000 5000 50000 1000 5000 50000
Sum of all costs 38532 38425 38361 38539 38420 38389
Average cost 80.28 80.05 79.92 80.07 80.32 80.01
Geometric mean cost 78.48 78.31 78.22 78.51 78.32 78.27
Max % Dev from CPM LBs 106.49 103.9 101.3 105.2 101.3 101.3
No of Optimum solutions 297 297 297 297 297 297
Avg. % Dev from CPM LBs 11.05 10.72 10.54 11.09 10.74 10.65

Table 9. Statistics on the results derived by HEA and AMP on the J120 benchmark set

Measure
HEA AMP

1000 5000 50000 1000 5000 50000
Sum of all costs 75663 74979 74096 75526 74800 74277
Average cost 126.11 124.97 123.49 125.88 124.67 123.8
Geometric mean cost 120.12 119.16 117.99 119.92 118.92 118.23
Max % Dev from CPM LBs 207.07 198.99 195.96 203.03 202.02 196.97
No of Optimum solutions 144 162 173 150 166 171
Avg. % Dev from CPM LBs 33.32 32.12 30.78 33.08 31.80 30.88
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4.3.3 Comparisons on the computational times

In this section the computational times are reported. There are papers that report running times
that are linked to 5000 (and lower) schedules, while other report more than 50000 schedules or
they do not mention the number of schedules, all included in Tables 10 and 11.

Table 10. Computational times for up to 5000 schedules examined

Pr.
Alg. Reference

Dev. Orig. CPU(s)
PCPUS

Nrm. CPU(s) No Sch. CPU
Set % Avg. Max. Avg Max. (*1000) GHz
J30 AMP This paper 0.01 0.1 1.5 1610 0.1 1.5 5.0 2.80

HEA Paraskevopoulos et al. (2012) 0.01 0.2 1.6 1610 0.2 1.6 5.0 2.80
b-GA Goncalves et al. (2011) 0.02 1.8 n/a 1565 1.8 n/a 5.0 2.40
ACOSS Chen et al. (2010b) 0.14 0.1 3.3 1121 0.1 2.3 5.0 1.86
GA-MBX Zamani (2013) n/a 0.2 n/a 1121 0.1 n/a 5.0 1.86
SS-PR Mobini et al. (2009) 0.02 0.1 0.2 1763 0.1 0.2 5.0 3.00
DBGA Debels and Vanhoucke (2007) 0.04 0.1 n/a 998 0.1 n/a 5.0 1.80
SS-FBI Debels et al. (2006) 0.11 0.1 0.1 998 0.1 0.1 5.0 1.80
ANGEL Tseng and Chen (2006) 0.08 0.1 n/a 250 0.1 n/a 2.0 1.00
LSSPER Palpant et al. (2004) 0.00 10.3 123.0 1374 8.8 105.0 1.1 2.30
TS Nonobe and Ibaraki (2002) 0.05 9.1 n/a 145 0.8 n/a 5.0 0.30

J60 AMP This paper 10.74 4.6 55.2 1610 4.6 55.2 5.0 2.80
HEA Paraskevopoulos et al. (2012) 10.72 5.4 47.6 1610 5.4 47.6 5.0 2.80
b-GA Goncalves et al. (2011) 11.56 0.5 n/a 1565 0.5 n/a 5.0 2.40
ACOSS Chen et al. (2010b) 10.98 0.7 13.8 1121 0.5 9.6 5.0 1.86
GA-MBX Zamani (2013) n/a 0.4 n/a 1121 0.3 n/a 5.0 1.86
SS-PR Mobini et al. (2009) 10.74 0.2 0.4 1763 0.3 0.4 5.0 3.00
DBGA Debels and Vanhoucke (2007) 10.95 0.1 n/a 998 0.1 n/a 5.0 1.80
SS-FBI Debels et al. (2006) 11.10 0.2 0.3 998 0.1 0.2 5.0 1.80
ANGEL Tseng and Chen (2006) 11.27 0.8 n/a 250 0.1 n/a 2.0 1.00
LSSPER Palpant et al. (2004) 10.81 38.8 223.0 1374 33.1 190.3 2.2 2.30
TS Nonobe and Ibaraki (2002) 11.55 24.5 n/a 145 2.2 n/a 5.0 0.30

J120 AMP This paper 31.80 45.6 167.5 1610 45.6 167.5 5.0 2.80
HEA Paraskevopoulos et al. (2012) 32.12 43.5 137.1 1610 43.5 3.7 5.0 2.80
b-GA Goncalves et al. (2011) 35.94 1.8 n/a 1565 1.8 n/a 5.0 2.40
ACOSS Chen et al. (2010b) 32.48 3.8 39.8 1121 2.6 0.1 5.0 1.86
GA-MBX Zamani (2013) n/a 0.7 n/a 1121 0.5 n/a 5.0 1.86
SS-PR Mobini et al. (2009) 32.61 0.7 1.1 1763 0.8 0.0 5.0 3.00
DBGA Debels and Vanhoucke (2007) 32.18 0.3 n/a 998 0.2 n/a 5.0 1.80
SS-FBI Debels et al. (2006) 33.10 0.7 0.9 998 0.4 0.0 5.0 1.80
ANGEL Tseng and Chen (2006) 34.49 4.8 n/a 250 0.7 n/a 2.0 1.00
LSSPER Palpant et al. (2004) 32.41 207.9 501.0 1374 177.5 427.6 5.0 2.30
TS Nonobe and Ibaraki (2002) 34.99 645.3 n/a 145 58.1 n/a 5.0 0.30

To be able to normalise the computational times according to the different computational power
used, we used the performance lists of http://www.cpubenchmark.net/. All the comparisons were
made according to the Passmark CPU Score (PCPUS). As we were unable to find PCPUS for Sun
and AMD 400 MHz systems on http://www.cpubenchmark.net/, we used an Intel equivalent. Every
computational time was normalised by using AMP as the reference point, e.g., Nrm. CPU(Alg)=
PCPUS(Alg)Orig.CPU(Alg)/PCPUS(AMP).
Tables 10 and 11 report the papers sorted according to the date of publication. The four first

columns are common with the previous tables , while the fifth and the sixth column present
the average and the maximum CPU time in seconds, respectively, as reported by the original
authors. Note that the abbreviation LSSPER stands for Local Search with SubProblem Exact
Resolution, PBA stands for Population based approach and FF stands for Filter and Fan. The
seventh column reports the score of PCPUS, and using that, columns eight and nine report the
normalised running times. The number of schedules and the processor’s frequency is reported
on the tenth and eleven columns, respectively. This is not sufficient though for determining the
effectiveness of the solution approaches, since the computer architecture and operating systems
must also be thoroughly investigated. Tables 10 and 11 indicate that the running times of AMP
are reasonable, illustrating its effectiveness in solving large scale RCPSPs.

5. Conclusions and Further Research

This paper presented, for the first time in the relevant literature, an AMP framework for solving the
RCPSP. The proposed AMP combined adaptive memory stratagies to effectively guide the search
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Table 11. Computational times for 50000 (and more) schedules examined.
Pr.

Alg. Reference
Dev. Orig. CPU(s)

PCPUS
Nrm. CPU(s) No Sch. CPU

Set % Avg. Max. Avg Max. (*1000) GHz.
J30 GA-MBX Zamani (2013) 0.00 1.3 n/a 1121 0.9 n/a 50 1.86

AMP This paper 0.00 0.2 3.7 1610 0.2 3.7 50 2.80
HEA Paraskevopoulos et al. (2012) 0.00 0.2 2.9 1610 0.2 2.9 50 2.80
b-GA Goncalves et al. (2011) 0.01 18.0 n/a 1565 17.4 n/a 50 2.40
SS-PR Mobini et al. (2009) 0.01 0.8 1.4 1763 0.9 1.5 50 3.00
SS-PR(fast) Mobini et al. (2009) 0.02 0.7 1.4 1763 0.7 1.5 n/a 3.00
GAPS Mendes et al. (2009) 0.01 5.0 n/a 340 1.1 n/a 50 1.33
FF Ranjbar (2008) 0.00 5.0 5.0 1763 5.5 5.5 n/a 3.00
DBGA Debels and Vanhoucke (2007) 0.02 0.5 n/a 998 0.3 n/a 50 1.80
SS-FBI Debels et al. (2006) 0.01 0.7 1.3 998 0.4 0.8 50 1.80
PBA Valls et al. (2004) 0.10 1.2 5.5 145 0.1 0.5 n/a 0.40
VNS Fleszar and Hindi (2004) 0.01 0.6 5.9 250 0.1 0.9 n/a 1.00
TS-FBI Valls et al. (2003) 0.06 1.6 6.2 145 0.1 0.6 n/a 0.40

J60 GA-MBX Zamani (2013) 10.65 2.8 n/a 1121 2.0 n/a 50 1.86
AMP This paper 10.65 15.3 93.8 1610 15.3 93.8 50 2.80
HEA Paraskevopoulos et al. (2012) 10.54 16.3 89.2 1610 16.3 89.2 50 2.80
b-GA Goncalves et al. (2011) 10.57 5.3 n/a 1565 5.2 n/a 50 2.40
SS-PR Mobini et al. (2009) 10.57 2.0 3.0 1763 2.2 3.3 50 3.00
SS-PR (fast) Mobini et al. (2009) 10.91 1.1 n/a 1763 1.2 n/a n/a 3.00
GAPS Mendes et al. (2009) 10.67 20.1 n/a 340 4.2 n/a 50 1.33
FF Ranjbar (2008) 10.56 5.0 5.0 1763 5.5 5.5 n/a 3.00
DBGA Debels and Vanhoucke (2007) 10.68 1.1 n/a 998 0.7 n/a 50 1.80
SS-FBI Debels et al. (2006) 10.71 1.9 2.6 998 1.2 1.6 50 1.80
PBA Valls et al. (2004) 10.89 3.7 22.6 145 0.3 2.0 n/a 0.40
VNS Fleszar and Hindi (2004) 10.94 8.9 80.7 250 1.4 12.5 1653 1.00
TS-FBI Valls et al. (2003) 11.12 2.8 14.6 145 0.2 1.3 n/a 0.40

J120 GA-MBX Zamani (2013) 31.30 5.8 n/a 1121 4.0 n/a 50 1.86
AMP This paper 30.88 118.5 601.0 1610 118.5 601.0 50 2.80
HEA Paraskevopoulos et al. (2012) 30.78 123.5 551.0 1610 123.5 551.0 50 2.80
b-GA Goncalves et al. (2011) 32.76 18.0 n/a 1565 17.4 n/a 50 2.40
SS-PR Mobini et al. (2009) 31.37 7.1 10.1 1763 7.7 11.1 50 3.00
SS-PR (fast) Mobini et al. (2009) 32.27 6.2 n/a 1763 6.7 n/a n/a 3.00
GAPS Mendes et al. (2009) 31.44 112.5 n/a 340 23.7 n/a 50 1.33
FF Ranjbar (2008) 31.42 5.0 5.0 1763 5.5 5.5 n/a 3.00
DBGA Debels and Vanhoucke (2007) 30.69 3.0 n/a 998 1.9 n/a 50 1.80
SS-FBI Debels et al. (2006) 31.57 6.7 9.2 998 4.1 5.7 50 1.80
PBA Valls et al. (2004) 31.58 59.4 264.0 145 5.4 23.8 n/a 0.40
VNS Fleszar and Hindi (2004) 33.10 219.9 1127.0 250 34.1 175.0 10778 1.00
TS-FBI Valls et al. (2003) 34.53 17.0 43.9 145 1.5 4.0 n/a 0.40

into the solution space, while using a ReVNS as an improvement method. The proposed ReVNS
conducts a thorough exploration of the solution neighbourhood and consorts with a perturbation
strategy to escape from local optima.
The main goal of this paper was to prove whether the AMP framework, which is quite successful

in solving hard combinatorial optimisation problems, is suitable for solving large scale RCPSPs.
Computational experiments on well known RCPSP instances showed that AMP produces con-
sistently high quality solutions for all data sets and performance criteria. In particular, AMP
outperforms all solution methodologies for large scale RCPSPs under the termination criteria of
1000 and 5000 schedules, while remaining highly competitive when the 50000 schedules are used
as a termination criterion. It is worth mentioning also that, ReVNS, a major AMP component,
presents a good performance justifying its role as an improvement method.
Challenging the proposed adaptive memory strategies for capturing elite solution elements of

other important variants of the classical RCPSP, e.g., multiple modes and/or multiple projects, is
a worth pursuing research avenue.
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