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The dominant dimension of cohomological Mackey functors

Markus Linckelmann

Abstract

We show that a separable equivalence between symmetric algebras preserves the dominant di-
mensions of certain endomorphism algebras of modules. We apply this to show that the dominant
dimension of the category coMack(B) of cohomological Mackey functors of a p-block B of a finite
group with a nontrivial defect group is 2.

1 Introduction

Let k be a field. Following Tachikawa [11], the dominant dimension of a finite-dimensional k-algebra
A, which we will denote by ddim(A), is the largest nonnegative integer d such that there exists an
injective resolution

0 // A // I0 // I1 // · · ·

of A as a right A-module with the property that In is projective for 0 ≤ n ≤ d− 1, provided there is
such an integer. If for any injective resolution I of A the term I0 is not projective, then ddim(A) =
0, and if there exists an injective resolution I of A such that In is projective for all n ≥ 0, then we
adopt the convention ddim(A) = ∞. By a result of Müller [9, Theorem 4] the dominant dimension
is equal to the obvious left module analogue. In order to calculate ddim(A) it suffices to consider
a minimal injective resolution of A as a right A-module. A finite-dimensional k-algebra A is called
symmetric if A is isomorphic to its k-dual A∗ as an A-A-bimodule. Given two symmetric k-algebras
A and B, we say that an A-B-bimodule M induces a separable equivalence between A and B if M is
finitely generated projective as a left A-module and as a right B-module such that A is isomorphic
to a direct summand of M ⊗B M∗ as an A-A-bimodule and B is isomorphic to a direct summand of
M∗ ⊗A M as a B-B-bimodule. In that case we say that A and B are separably equivalent. This term
has been coined by Kadison in [3]; we follow the usage as in [5].

Theorem 1.1. Let A, B be symmetric k-algebras. Let M be an A-B-bimodule inducing a separable
equivalence between A and B. Let U be a finitely generated A-module such that A is isomorphic to a
direct summand of U , and let V a finitely generated B-module such that B is isomorphic to a direct
summand of V . Suppose that M∗ ⊗A U ∈ add(V ) and that M ⊗B V ∈ add(U). Then the dominant
dimensions of EndA(U) and of EndB(V ) are equal.

This will be proved in the next section. If k has prime characteristic p and if A is a source algebra
of a block B of a finite group algebra kG with a defect group P , then, by the source algebra version [6,
Theorem 1.1] of a result of Yoshida in [13], the category coMack(B) of cohomological Mackey functors
of G associated with B is equivalent to the right module category of the endomorphism algebra E =
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EndA(⊕Q≤P A⊗kQ k). The dominant dimension of coMack(B) is defined as the dominant dimension
of E.

Theorem 1.2. Suppose that k has prime characteristic p. Let G be a finite group and B a block of
kG with a nontrivial defect group P . The dominant dimension of coMack(B) is equal to 2.

We will present a proof of Theorem 1.2 as an application of Theorem 1.1 (in conjunction with
some results from [6], [7], [9]). It is possible to prove Theorem 1.2 more directly; see Remark 3.1. As
pointed out by the referee, Theorem 1.2 can also be deduced from results due to Bouc, Stancu and
Webb in [2] and standard properties of cohomological Mackey functors from Thévenaz and Webb [12];
see Remark 3.2. Further material on (cohomological) Mackey functors can be found in [10].

2 Proof of Theorem 1.1

Let A be a finite-dimensional k-algebra, and let U , V be finitely generated A-modules. We use
without further reference the following standard facts (see e. g. [1, II.2]). If V belongs to add(U),
then HomA(U, V ) is a projective right EndA(U)-module, and any finitely generated projective right
EndA(U)-module is of this form, up to isomorphism. Given two idempotents i, j in A, every ho-
momorphism of right A-modules iA → jA is induced by left multiplication with an element in jAi.
Multiplication by i is exact; in particular, if Z is a complex of A-modules which is exact or which
has homology concentrated in a single degree, the same is true for finite direct sums of complexes of
the form iZ. Translated to endomorphism algebras this implies that for any two A-modules V , W in
add(U), any homomorphism of right EndA(U)-modules HomA(U, V ) → HomA(U,W ) is induced by
composition with an A-homomorphism V → W . Thus any complex of finitely generated projective
right EndA(U)-modules is isomorphic to a complex obtained from applying the functor HomA(U,−)
to a complex of A-modules Z whose terms belong to add(U). Moreover, if HomA(U,Z) is exact, then
so is any complex of the form HomA(U ′, Z), where U ′ ∈ add(U). We use further the well-known
fact that if A, B are symmetric algebras and if M is an A-B-bimodule which is finitely generated
projective as a left A-module and as a right B-module, then the functors M ⊗B − and M∗ ⊗A −
between mod(A) and mod(B) are biadjoint.

Proof of Theorem 1.1. The following argument from the proof of [6, Theorem 3.1] shows that we have
add(M⊗B V ) = add(U) and add(M∗⊗AU) = add(V ). By the assumptions, we have add(M⊗B V ) ⊆
add(U). Thus add(M∗ ⊗A M ⊗B V ) ⊆ add(M∗ ⊗A U) ⊆ add(V ). Since B is isomorphic to a direct
summand of the B-B-bimodule M∗ ⊗A M , it follows that V is isomorphic to a direct summand of
M∗⊗AM⊗BV . Thus the previous inclusions of additive categories are equalities. The same argument
with reversed roles shows the second equality.

Set E = EndA(U) and F = EndB(V ). By the assumptions, add(U) contains all finitely gener-
ated projective A-modules; similarly for add(V ). In particular, if U ′ is a projective A-module, then
HomA(U,U ′) is a projective right E-module, and by [7, Proposition 3.2], HomA(U,U ′) is also an
injective right E-module. Let

0 // E // I0 // I1 // · · ·
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be an injective resolution of E as a right E-module. Suppose that there is a positive integer d such
that In is projective for 0 ≤ n ≤ d− 1. We will show that there is an injective resolution

0 // F // J0 // J1 // · · ·

of F as a right F -module such that Jn is projective for 0 ≤ n ≤ d − 1. Since the right E-modules
In are projective and injective for 0 ≤ n ≤ d − 1, it follows from [7, Proposition 3.2] that there are
finitely generated projective A-modules Un for 0 ≤ n ≤ d− 1 such that the sequence

0 // E // I0 // I1 // · · · // Id−1

is isomorphic to a sequence of the form

0 // HomA(U,U) // HomA(U,U0) // HomA(U,U1) // · · · // HomA(U,Ud−1)

which is obtained from applying the functor HomA(U,−) to a sequence of A-modules

0 // U // U0
// U1

// · · · // Ud−1

It follows from the remarks at the beginning of this section that for any A-module U ′ in add(U),
applying the functor HomA(U ′,−) to the previous sequence of A-modules yields an exact sequence of
right EndA(U ′)-modules of the form

0 // HomA(U ′, U) // HomA(U ′, U0) // HomA(U ′, U1) // · · · // HomA(U ′, Ud−1)

By the assumptions, the A-module U ′ = M ⊗B V belongs to add(U). Thus we obtain an exact
sequence of the form

0 // HomA(M ⊗B V,U) // HomA(M ⊗B V,U0) // · · · // HomA(M ⊗B V,Ud−1)

Since M ⊗B − is left adjoint to M∗ ⊗A −, it follows that the previous exact sequence is isomorphic
to an exact sequence of the form

0 // HomB(V,M∗ ⊗A U) // HomB(V,M∗ ⊗A U0) // · · · // HomB(V,M∗ ⊗A Ud−1)

Since the A-modules Un are projective for 0 ≤ n ≤ d − 1, it follows that the B-modules M∗ ⊗A Un

are projective as well, hence in add(V ). By [7, Proposition 3.2], the projective right F -modules
HomB(V,M∗ ⊗A Un) are therefore also injective. Thus the preceding sequence is the beginning of
an injective resolution of the right F -module HomB(V,M∗ ⊗A U) which has the property that its
first d terms are projective. Since V belongs to add(M∗ ⊗A U), it follows that F = HomB(V, V )
is isomorphic, as a right F -module, to a direct summand of a direct sum of finitely many copies of
the right F -module HomB(V,M∗ ⊗A U). This implies that F has an injective resolution as a right
F -module whose first d terms are projective. This shows that ddim(F ) ≥ ddim(E) (including the
case where both are ∞). Exchanging the roles of A, E and B, F , respectively, yields the result.
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3 Proof of Theorem 1.2

We suppose in this section that k is a field of prime characteristic p. Let G be a finite group and B a
block of kG with a nontrivial defect group P . Let i ∈ BP be a source idempotent of B and set A =
iBi; that is, A is a source algebra of B. Note that A, B, kP are symmetric algebras. It is well-known
that A and kP are separably equivalent via the bimodule AkP and its dual, which is isomorphic to

kPA; see e. g. [4, Proposition 4.2] for a proof (the hypothesis on k being algebraically closed in that
paper is not needed for this result). We present first a proof of Theorem 1.2 as an application of
Theorem 1.1, and then remark on how to deduce Theorem 1.2 directly from existing results in the
literature.

Proof of Theorem 1.2. With the notation above, set U =⊕Q A⊗kQk, where Q runs over the subgroups
of P , and set E = EndA(U). By [6, Theorem 1.1] we have coMack(B) ∼= mod(Eop). Set V =
⊕Q kP ⊗kQ k, where Q runs as before over the subgroups of P , and set F = EndkP (V ). As in the
proof of [6, Theorem 1.6], the functor A⊗kP − sends V to add(U) and the functor kPA⊗A − sends
U to add(V ), because A has a P × P -stable k-basis, hence preserves the classes of p-permutation
modules. By definition, the dominant dimension of coMack(B) is equal to ddim(E). It follows from
Theorem 1.1 that ddim(E) = ddim(F ). We have ddim(F ) ≥ 2 by the general Morita-Tachikawa
correspondence. Since the argument is very short, we sketch it (the dual argument for left modules is
in the proof of [9, Theorem 2], for instance). Let 0→ V → I0 → I1 → · · · be an injective resolution
of V as a kP -module, with In finitely generated for all n ≥ 0. The modules In are also projective
since kP is symmetric. Applying HomkP (V,−) yields an exact sequence

0 // HomkP (V, V ) = F // HomkP (V, I0) // HomkP (V, I1)

of right F -modules. The last two terms are projective as right F -modules because the finitely generated
injective kP -modules I0 and I1 are in add(V ), and the last two terms are also injective right F -modules
by [7, Proposition 3.2] or by [8, (17.2)].

By Müller’s Lemma 3 in [9], in order to show that ddim(F ) = 2, it suffices to show that Ext1kP (V, V )
is nonzero. The summand of V indexed by P is the trivial kP -module. Since P is nontrivial, it follows
that Ext1kP (k, k) 6= {0}, and hence Ext1kP (V, V ) 6= {0}. Theorem 1.2 follows.

Remark 3.1. One can prove Theorem 1.2 also without using Theorem 1.1, by showing directly that
Ext1A(U,U) is nonzero, and then applying [9, Lemma 3] as in the proof above. Indeed, as mentioned
above, kP is isomorphic to a direct summand of A as a kP -kP -bimodule. Thus A⊗kP k has a trivial
summand as a left kP -module. With U , V as above, we have U ∼= A ⊗kP V . An Eckmann-Shapiro
adjunction implies that we have an isomorphism Ext∗A(U,U) ∼= Ext∗kP (V,ResAkP (U)). Both V and
ResAkP (U) have a trivial summand, and hence Ext∗kP (k, k) is a summand of Ext∗A(U,U) as a graded
k-vector space. In particular, Ext1A(U,U) is nonzero since Ext1kP (k, k) is nonzero.

Remark 3.2. As pointed out by the referee, Theorem 1.2 follows also from [2, Proposition 5.2].
We sketch the referee’s argument. As before, the Tachikawa-Morita correspondence implies that the
dominant dimension of coMack(B) is at least 2 (this follows also from the proof of [2, Proposition 5.2]).
The fact that it is at most 2 can be deduced from [2, Proposition 5.2] as follows (using without further
comment notation and results on cohomological Mackey functors from [12], such as the fact that
restriction and induction of cohomological Mackey functors to/from a subgroup preserves projectives
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and injectives). Dualising the statement of [2, Proposition 5.2] implies that for a nontrivial finite cyclic
p-group, the projective Mackey functor FPk has injective dimension 2. That is, its minimal injective
resolution (in the category of cohomological Mackey functors) has three nonzero terms, the last of
which is necessarily nonprojective (since otherwise it would split off the resolution). Thus, reverting
to cohomological Mackey functors of G belonging to B, if U is a trivial source module belonging to B
with a nontrivial vertex, then the restriction of an injective resolution of the projective cohomological
Mackey functor FPU to a nontrivial cyclic subgroup of a vertex of U has an injective resolution of FPk

for that cyclic subgroup as a direct summand, and hence the third term of any injective resolution of
FPU is nonprojective. This shows that coMack(B) has dominant dimension equal to 2.
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