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Abstract. We present an analysis of the diversity that exists in the rules and blacklisted 

IP addresses of the Snort and Suricata Intrusion Detection Systems (IDSs). We analysed 

the evolution of the rulesets and blacklisted IP addresses of these two IDSs over a 5-

month period between May and October 2017. We used three different off-the-shelf 

default configurations of the Snort IDS and the Emerging Threats (ET) configuration 

of the Suricata IDS. Analysing the differences in these systems allows us to get insights 

on where the diversity in the behaviour of these systems comes from and how does it 

evolve over time. This gives insight to Security architects on how they can combine 

and layer these systems in a defence-in-depth deployment. To the best of our knowledge 

a similar experiment has not been performed before. We will also show results on the 

observed diversity in behaviour of these systems, when they analysed the network data 

of the DMZ network of City, University of London. 

Keywords: security assessment; security tools; intrusion detection systems; design 

diversity 

1  Introduction 

An important part of design for security is defence-in-depth, consisting of “layers” 

of defence that reduce the probability of successful attacks. Guidance documents now 

advocate defence in depth as an obvious need1 but their qualitative guidance ignores 

the decision problems. Crucially, these questions concern diversity: defences should be 

diverse in their weaknesses. Any attack that happens to defeat one defence should with 

high probability be stopped or detected by another one. Ultimately, diversity and 

defence in depth are two facets of the same defensive design approach. The important 

questions are not about defence in depth being "a good idea", but about whether a set 

of specific defences would improve security more than another set; and about – if 

possible – quantifying the security gains.  

Network Intrusion Detection Systems (IDSs) are some of the most widely used 

security defence tools. Some of these IDSs are available open-source, and the most 

widely used open-source IDSs are Snort and Suricata. Both of these tools are signature-

                                                           
1 www.nsa.gov/ia/_files/support/defenseindepth.pdf 
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based and rely on rules to identify malicious activity. The rules identify malicious 

activity based on content, protocols, ports etc., as well as on the origin of the 

activity/traffic - in this latter case, the suspicious IP addresses are “blacklisted” and 

traffic originating from these IPs are alerted. Depending on the configuration of the IDS 

the traffic can be alerted but allowed, or alerted and dropped – the latter happens when 

the IDS is running in Intrusion Prevention System (IPS) mode.  

In this paper, we present an analysis of the diversity that exists between the Snort 

and Suricata rules and blacklisted IP addresses. We analysed the evolution of the 

rulesets and blacklisted IP addresses of these two IDSs over a 5-month period between 

May and October 2017. We used three different off-the-shelf default configurations of 

the Snort IDS and the Emerging Threats configuration of the Suricata IDS. Analysing 

the differences in these systems and how they evolve over time, allows us to get insights 

on where the diversity in the behaviour of these systems comes from. To the best of our 

knowledge a similar experiment has not been performed before. We will also show 

results on the observed diversity in behaviour of these systems, when they analysed the 

network data of the DMZ network of City, University of London. 

The rest of the paper is organised as follows: Section 2 describes the experimental 

architecture. The next three sections present results of diversity analysis of the 

following aspects of Snort and Suricata:  blacklists (Section 3); rulesets (Section 4); 

behaviour on real network traffic (Section 5). Section 6 presents a discussion of the 

results and limitations. Section 7 presents related work and finally Section 8 presents 

conclusions and further work. 

2 Description of the Experiment and the Architecture 

We ran an experiment for 5 months from 20th May 2017 to 31st October 2017. During 

these dates we did the following. We downloaded and saved snapshots of the 

blacklisted IP addresses of Snort and Suricata as they were on each day of the 

experiment. To retrieve the rules we used the pulledpork tool2. For Snort, the blacklisted 

files3 were downloaded every 15 minutes for the duration of the experiment. We 

therefore have a total of 15,812 blacklist files for Snort. Note that the total duration of 

the experiment is 165 days for which there should have been 15,840 files, but in some 

cases there were no updates for blacklisted IPs in every 15-minute slot of our collection 

period. The blacklisted IP addresses for Suricata are located inside the rules files4, so 

we extracted the blacklisted IP addresses from these rule files. We also ran pulledpork 

every 15 minutes for Suricata, but contrary to Snort, the rate of updates of the Suricata 

ET blacklists appear to be on daily basis rather than every 15 minutes. 

We downloaded and saved the rules of Snort for three different default rule 

configurations available from the Snort webpages (Community rules, Registered rules, 

and Subscribed rules). The difference between these rules are explained in the Snort 

                                                           
2 https://github.com/shirkdog/pulledpork  
3 http://labs.snort.org/feeds/ip-filter.blf 
4 https://rules.emergingthreats.net/open/suricata/emerging.rules.tar.gz  
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website5. In summary, the website states the following for these different rules: the 

Subscribed (paid) rules are the ones that are available to users in real-time as they are 

released; the Registered rules are available to registered users 30 days after the 

Subscribed users; the Community rules are a small subset of the subscribed/registered 

rule sets and are freely available to all users. For Suricata we used the Emerging Threats 

(ET) ruleset. We ran the pulledpork to update the rules every 15 minutes, but we 

observed that rules were updated on average every 24 hours. Similar to blacklisted files, 

we saved snapshots of these rules files on each day of the experiment. 

The University’s IT team saved copies of the network traffic (in packet capture 

(pcap) format) for retrospective analysis of attacks and incidents. We replayed the pcap 

traffic collected over a one week From 2 May to 8 May 2017, to the three different 

versions of Snort outlined above and to Suricata ET.  

The data collection and analysis infrastructure runs on a virtualized environment 

based on VMware VSphere data center. This data collection setup has five data hosts 

each having, 150TB storage capacity, 200GB RAM, and 32 x 2.3GHz of CPU 

processing speed. At the start of the experiment, we installed the latest versions of these 

IDSs on the FreeBSD operating system: Snort 2.9.9.0 and Suricata 3.2.1. 

3 Diversity in the IP Blacklists of Snort and Suricata 

3.1 Analysis of each individual IDS 

In this section, we present the analysis of our research on how blacklisted IP 

addresses evolve over time in Snort and Suricata. As we mentioned previously, we 

obtained these blacklisted IPs from May 20 2017 to October 31 2017, at a sampling 

rate of every 15 minutes. We kept the same sampling frequency for Suricata to make 

the analysis as comparable as possible, though we observed that the rate of change of 

the blacklisted files was, in some cases, less frequent than every fifteen minutes for 

Snort and further less frequent for Suricata (which tended to be every 24 hours). Figure 

1 shows the evolution of the blacklisted IP addresses as obtained from Snort (left plot) 

and Suricata (right plot). The y-axis shows the total count of the blacklisted IPs and x-

axis shows the data collection points. From Figure 1 we observe a large fluctuation in 

the number of blacklisted IP addresses over time. For example around 21 June 2017 a 

large number of IP addresses were removed from the blacklists. However, afterwards, 

the number of blacklisted IP addresses increased again. In Suricata we also saw a large 

drop in the number of blacklisted IP addresses around this time, but the total number of 

blacklisted IPs did not increase again as it did for Snort. 

We note that some IP addresses remained blacklisted for the entire duration of our 

experiment (or change their states only once, e.g., they are removed from the blacklists), 

whereas we observed other IP addresses that changed state twice or more (e.g. 

blacklisted, removed, blacklisted etc.) We therefore divide the IP addresses into those 

that remained “continuously” blacklisted IP addresses (or change their states only 

                                                           
5 https://snort.org/documents/registered-vs-subscriber  
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once) and “discrete” blacklisted IP addresses (those that changed state more than once). 

General statistics are given in Table 1: the second column shows counts of the total 

number of files containing blacklisted IP addresses for the whole experiment period; 

the third column shows the total number of distinct IP addresses; the fourth and fifth 

columns show the counts of the “continuous” and “discrete” IP addresses. 

 

Fig. 1. Count of Blacklisted IPs in Snort and Suricata in our collection period 

Table 1. General Statistics of Blacklisted IP Addresses 

Blacklisted IP 

Source 

Count of 

Files 

Count of IP 

Addresses 

Count of IPs that do not 

change state 

(“continuous”) 

Count of IPs 

that change state 

(“discrete”) 

Snort 15,812  46,701 5,383   41,318 

Suricata 129  135,791  28,883 106,908  

Figure 2 gives the distribution of total time blacklisted for all the IP addresses over 

the entire period of our experiment. We plotted the proportion of IP addresses (x-axis) 

against the total time a particular IP remained blacklisted (y-axis). We observe that IP 

addresses stayed blacklisted longer in Snort than in Suricata. 

 

Fig. 2: Total time (Hours) an IP remained Blacklisted 
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3.2 Diversity analysis of the blacklisted IP Addresses 

We then analysed the similarity and diversity in the Snort and Suricata blacklisted 

IP addresses. We compared blacklisted IP addresses from the Snort and Suricata 

sources at exact time/date points (to the nearest second). In total, out of 15,812 Snort 

files, and 129 of Suricata, 128 files had a common date/time overlap. The analysis on 

this section is based on this overlap.  Figure 3 shows the date/time slots for which the 

analysis was carried out (in the x-axis) and the counts of different categories of 

blacklisted IP addresses (y-axis). We have three main categories of interest: IP 

addresses which were blacklisted in Snort only (depicted as “_snort” in the graph), IP 

addresses which were blacklisted in Suricata only (“_suricata”), and IP addresses which 

were blacklisted in both Snort and Suricata (“_snort_suricata”). We observe that the 

overlap between the two blacklisted IP addresses sets is relatively small and the total 

number of IPs that appear in blacklists of both Snort and Suricata is relatively constant 

for the duration of our experiment.  

 
Fig. 3. Diversity in Blacklisted IPs as collected from Snort and Suricata sources 

 

Table 2 shows the general statistics for all IPs and the data points in the dataset of 

128 files of blacklisted IP addresses in Snort and Suricata. We have a total of 177,504 

distinct IP addresses observed in either Snort or Suricata in these 128 files. Of these, 

3,991 have been observed in both Snort and Suricata. We can think of each data point 

in our dataset consisting of an IP/date pair, and for each of these data points the value 

is either “observed in Snort-only” (abbreviated 01), “observed in Suricata only” 

(abbreviated 10), or “observed in both Snort and Suricata” (abbreviated 11). The 

statistics for these data points are given in the last three rows of Table 2. Table 3 then 

shows a more detailed breakdown for each of the 177,504 IP addresses.  The first two 

columns show the totals count of IP addresses which in the observation period were 

observed in Snort only, Suricata only, or both in Snort and Suricata at the same time 

(these are depicted as “single state” IP addresses). The third and fourth columns show 

the total number of IP addresses in which we observed multiple states over the 

experiment period. For example, the first row shows that there are 79 IP addresses that 

were observed in both Snort and Suricata blacklisted files, but never at the same time. 

Columns 5 and 6 then show a further breakdown of these IP addresses depending on 

where they were observed first: for these 79 IP addresses, 35 were observed in Snort 

blacklists first, and 44 in Suricata. 
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Table 2. Statistics of the datapoints observed in Snort and Suricata overlapping periods 
Total number of IPs in the 128 files of Snort 46,187

Total number of IPs in the 128 files of Suricata 135,308

Total number of IPs observed in either Snort or Suricata 177,504

Total number of IPs observed in both Snort and Suricata 3,991

Total number of data points (IP/date pairs) observed in Snort 

and Suricata overlapping periods. 

Snort only (01) 1,129,180

Suricata only (10) 2,219,330

 Snort and Suricata (11) 113,152

Table 3. Statistics of blacklisted IPs observed in Snort and Suricata overlapping periods 
Single states Count of 

IPs 

Multiple 

states 

Count of 

IPs 

Observed first 

in: 

Count of 

IPs 

Snort only (01)  42,196(01,10) only 79 Snort (01) 35

 Suricata (10) 44

Suricata only  (10) 131,317(01,11) only 2,834 Snort (01) 1,257

 Both (11) 1,577

Both Snort and Suricata only 

(11) 

588(10,11) only 250 Snort (01) 84

Both (11) 166

(01,10,11) 

only 

240 Snort (01) 102

Snort (01) 82

 Both (11 56

Figure 4 shows the  IP addresses for which we observed multiple states (i.e. those of 

columns three and four from Table 3). The  x-axis shows the number of date/time points 

and the y-axis shows the enumeration of those blacklisted IP addresses. We kept the 

same ordering of the plots as the corresponding rows in column 3 of Table 3: the top-

left plot shows the 79 IP addresses that were either observed in both Snort and Suricata 

but not at the same time, the top right the 2,834 observed in Snort only, or both Snort 

and Suricata at the same time etc.) The bottom-left plot shows an interesting behavior 

for IPs that are either in Suricata or in both. From time to time it appears many IP 

addresses are being removed from Snort, before being reinstated again (we can see 

blocks of red (Snort and Suricata) becoming green (Suricata only), and then red again).    

Fig. 4. Distribution of blacklisted IPs on which we observed multiple states: top-left (01,10); 

top-right (01,11); bottom-left (10,11); bottom-right (01,10, 11). Note: 0 (white) = no data.  
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4 Diversity in Rules used by Snort and Suricata 

4.1 Overall Analysis 

In this section, we present results of the quantitative analysis of the diversity in Snort 

and Suricata rulesets. For this analysis, we collected rulesets of Snort and Suricata from 

20 May 2017 to 31 October 2017. We considered the following Snort rulesets available 

from the Snort website: Community, Registered and Subscribed. For Suricata we used 

the Emerging Threats (ET) rulesets. Similar to blacklisted IP addresses, our sampling 

rate was every 15 minutes. However, the rate at which the rules were updated was much 

lower compared with blacklisted IP addresses: mainly every 24 hours, but sometimes 

with lags of 5 days with no updates. Snort Community rules are an exception where we 

noticed an update of 4 rules multiple times a day. We present the analysis from 

comparing the rulesets across all versions once every 24 hours. 

Table 4 shows the details of the data that we used for this analysis. The total number 

of rules for Suricata is double that for Snort Registered and Snort Subscribed (which 

are very similar), while the total number of rules in Snort Community is much smaller. 

Additionally, we looked at how the rules change. We noticed that for some rules the 

SID (Signature ID) remains the same, but the version number of that rule may change: 

columns four and five of Table 3 give these counts. More than 80% of the Snort 

Registered and Subscribed rulesets, and 97% of Suricata ET rulesets reported version 

changes during the experiment.  

Table 4. General Statistics of Different Rule Sets 
Rule Set Number of 

Files 
Number of  
Rules 

Rules with no version changes 
during the experiment 

Rules with versions changes
during the experiment 

Snort Reg 52 10,675 2,259 8,416 

Snort Sub 51 10,736 2,399 8,337 

Snort Com 166 903 472 431 

SuricataET 106 19,584 523 19,061 

Figure 5 shows the count of rules of each of these rulesets as they evolve over the 

duration of the experiment. We notice that the total number of rules in each set remains 

relatively constant for the duration of the experiment.  

4.2 Snort Diversity analysis 

Next, we look at a comparison of the rulesets of Snort. The SID along with the 

version number is a unique identifier for each rule, and they are used consistently across 

the different rulesets (i.e. the same SID and same version number in Registered and 

Subscribed means that the rule is also the same). Figure 6 shows the diversity in time 

among the Snort rulesets. The y-axis shows, in a log scale, the counts of rules in 

different categories for each day of the experiment (x-axis). “_reg” is the count of rules 

which are only in the Snort Registered set, “_reg_com” shows only those rules that in 

the Registered and Community rulesets etc. We notice that the majority of the rules are 

those that exist in both Registered and Subscribed rulesets (brown dots), followed by 

those that are common amongst all three rulesets (pink dots), and those that exist in the 

Subscribed ruleset only (orange dots).   
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Fig. 5. Snort and Suricata rule counts over the duration of the experiment 

 

 
Fig. 6. Time Progression of Diversity in Snort Rules 

 

Tables 5 and 6 show a similar analysis to what we described for Blacklisting in tables 

2 and 3, but now applied to the different rulesets of Snort. For the cases where we have 

multiple states per SID (e.g. changing from “Subscribed” to “Subscribed and 

Registered” etc.) we are showing all the combinations that have at least one SID (the 

total number of combinations is 27 but most of those combinations have not been 

observed in our experiment– i.e. there is no data for them). As expected, in cases where 

there are multiple states we tend to observe them first in the Subscribed ruleset. Figure 

7 shows the time it takes for the Snort Subscribed ruleset to become available on the 

other rulesets (i.e. the SIDs in the sets: (10,100), (10,110), (10,110,111) and 

(10,11,110,11) from Table 6). The figure confirms what is stated in the Snort website 

for these Subscribed rules: most of these become available to Registered users on 

average 30 days after they are available in the Subscribed ruleset. 
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Table 5 Statistics of the datapoints observed in the Snort rulesets overlapping periods 
Total number of SIDs in the Snort Registered ruleset 12,161

Total number of SIDs in the Snort Subscribed ruleset 12,257

Total number of SIDs in the Snort Community ruleset  959

Total number of distinct SIDs in any of three rulesets.  12,267

Total number of data points (SID/date pairs) observed 

in Snort rulesets.  

01 (Snort Reg. only) 4

10 (Snort Sub. only) 4,255

11 (Snort Com. only) 100

100 (Snort Reg. and Sub. only) 469,390

101 (Snort Reg. and Com. only) 0

110 (Snort Sub. and Com. only) 210

111 (In all three only) 41,913

Table 6. Statistics of SIDs observed in the different Snort rulesets 
Single 

states 

Count of 

SIDs 

Two states Count 

of SIDs 

Observed 

first in: 

Count 

of SIDs 

Three states Count 

of SIDs 

Observed 

first in: 

Count 

of SIDs 

(01) 0 (01,100) 4 01 0 (10,110,111) 17 10 17 

100 4 110 0 

111 0 

(10) 91 (10,100) 480 10 480  

(11,100,111) 

 

1 

11 0 

100 0 100 1 

111 0 

(11) 10 (10,110) 3 10 3 (11,110,111) 2 11 0 

110 0 110 2 

111 0 

(100) 10,733 (11,111) 76 11 0 (100,110,111) 2 100 0 

110 2 

111 76 111 0 

(101) 0 (100,111) 24 100 17 Four states Count 

of SIDs 

Observed 

first in: 

Count 

of SIDs 111 7 

(110) 2 (110,111) 7 110 7 (10,11,110,111)1 10 1 

111 0 11 0 

(111) 814 110 0 

111 0 

  

 
Fig. 7. The time lag for Subscribed rules to appear in the other Snort Rulesets  

4.3 Diversity Analysis of Snort and Suricata Rules 

Suricata ET rules use different SIDs to Snort, so the comparison of Snort and 

Suricata rules was done using the “content” field in the rules. This field contains the 

“signature” of the malicious payload of a packet that is inspected by the IDS. Hence, 
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the ‘content’ field represents the important signatures information for a malicious 

traffic that these IDSs are intended to detect/capture. Not all Snort and Suricata rules 

have the ‘content’ field so the analysis in this section is based on only those rules that 

have it (73.4% of the rules of Snort Registered and Subscribed have this field, 77.8% 

of Suricata ET and 97.7% of Snort Community rules have the “content” field).   

Figure 8 shows the diversity of Snort and Suricata rulesets based on the content field. 

Here, the x-axis shows the days and the y-axis the number of SIDs with content fields, 

in log scale. The shortcut notation is the same as previous (e.g., “_ET” represents the 

SIDs observed only in the Suricata ET ruleset etc.) The largest overlap between Suricata 

and Snort is in the rules that exist in ET, Registered and Subscribed rulesets (the 

magenta dotted line that hovers around the 100 mark in the y-axis).  

Tables 7 and 8 show a similar analysis to what we described in Tables 5 and 6, but 

constrained to just the rules with the “content” field, and also including Suricata ET. In 

addition to the binary shorthands we used in Table 5, we also use “1000”, “1001” etc., 

to represent Suricata ET and their overlaps with the different rulesets of Snort. These 

tables confirm that there is relatively little overlap between Suricata ET and Snort rules.  

 
Fig. 8. Diversity in Time of the Snort and Suricata rulesets 

 

Table 7. Datapoints observed in  Snort and Suricata for rules with the contents field 
Total number of SIDs in Snort Reg. ruleset with content field 7,840

Total number of SIDs in Snort Sub. ruleset with content field 7,901

Total number of SIDs in Snort Com. ruleset with content field 883

Total number of SIDs in Sur. ET ruleset with the contents field 15,239

Total of distinct SIDs with content field in any of the rulesets above  23,014

Total number of data points (SID/date pairs) observed in Snort and 

Suricata rulesets for SIDs with content field. Abbreviations (not seen 

in previous tables):  

“1000” – Suricata ET only 

“1001” – ET and Reg. only 

“1010” – ET and Sub. only 

“1011” – ET and Com. only 

“1100” – ET and Reg. and Sub. only  

“1101” – ET and Reg. and Com. only 

“1110” – ET and Sub and Com. only 

“1111” – ET and Reg. and Sub. And Com. only 

Data point 

count 

 Data point 

count 

1000 644,159

01 11001 0

10 2,4431010 8

11 741011 0

100 278,9111100 4,236

101 01101 0

110 1771110 0

111 34,4091111 748
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Table 8. Statistics of SIDs with content field in the different Snort and Suricata rulesets 
Single 

states 

Count of 

SIDs 

Two states No. 

SIDs 

Observed 

first in: 

Count 

of SIDs 

Three states Count 

of SIDs 

Observed 

first in: 

Count 

of SIDs 

10 57 (01,100) 1 01 0 (10,110,111) 18 10 18 

100 1 110 0 

111 0 

100 6,548 (10,100) 315 10 314 (11,110,111)  

2 

11 0 

100 1 110 2 

111 0 

110 2 (10,110) 2 10 2 (1000,1010,1100) 1 1000 1 

110 0 1010 0 

1100 0 

111 760 (11,111) 72 11 0     

  

111 72   

1000 15,113 (100,111) 3 100 3     

111 0 

1100 96 (110,111) 7 110 7     

111 0   

1111 17   

  

5 Diversity in the Behavior of Snort and Suricata 

So far, we looked at the diversity that exists in the internals of these products and the 

way in which they evolve. In this section, we will analyse how this diversity in design 

manifests itself in the alerting behavior of these products when analyzing network 

traffic. We analysed 7 days of pcap data from 2 May to 8 May 2017. The data was 

captured in the DMZ network of the City, University of London. In those 7 days, we 

had 326GB, 330GB, 280GB, 252GB, 186GB, 204GB and 316GB of network data 

respectively. The breakdown of the traffic based on different types of protocols is listed 

in Figure 9.  

 
Fig. 9. Count of sessions per protocol for each day of experiment 

We analysed this data using Snort and Suricata with the rulesets discussed so far (we 

used one snapshot of the ruleset for the analysis). Figure 10 presents the results. We 

used the same notations as in Sections 3 and 4 (e.g. “_et” means alerted by Suricata ET 

only). We notice that Snort Registered and Subscribed rules generated alerts of an order 

of magnitude more than Suricata ET. As observed in the ruleset and blacklisted IP 

addresses analysis from Sections 3 and 4, there is little overlap in the alerts of Suricata 

1

100

10,000

1,000,000

100,000,000

02/05/2017 04/05/2017 06/05/2017 08/05/2017

N
o

. o
f 

se
ss

io
n

s

Date

TCP

Connections

UDP

Connections

ICMP

Connections



12  Asad et al.  

ET and Snort, which means these systems exhibit very diverse alerting behavior when 

analysing this traffic.  

 
Fig. 10. Number of Alerts generated by different combinations of rulesets of Snort and Suricata 

6 Discussion and Limitations 

The results are intriguing, and they show that there is a large amount of diversity in 

the rules and blacklists of Snort and Suricata. Whether this diversity is helpful or 

harmful for a given deployment depends on the context. The rules and blacklists alert 

for potentially harmful behavior that has been observed somewhere in the world by 

users of these products. In a different deployment, the alerts from some of these rules 

may not cause harm. For example, a service or port for which a rule alerts may not exist 

in that environment. Hence even if the alerts are for malicious traffic it is likely that 

this attack will not cause any harm in the systems of that deployment. The dataset we 

used in Section 5, real traffic that the University’s IT team gave us access to, is 

unfortunately not labelled, so we cannot do a conventional analysis of sensitivity and 

specificity of these IDSs and their diverse combinations. We did share the findings with 

the University’s IT team and they found the results interesting. Currently they use a 

smaller subset of Suricata ruleset for analysis. Interestingly, they mentioned that even 

if the alerts are for services that they do not run (hence would be harmless in their 

environment) they would like to know about them as it gives them insight on security 

exposure for services that users may request in the future, and also because they can 

use the alerts to check if they are precursors for attacks on other services that they value. 

How can individual user organizations decide whether diversity is a suitable option 

for them, with their specific requirements and usage profiles? The cost is reasonably 

easy to assess: costs of the software products, the required middleware (if any), added 

complexity of management, hardware costs, run-time costs and possibly more complex 

diagnosis and more laborious alert sifting. The gains in improved security (from 

protection to attacks and exploits) are difficult to predict except empirically. This 

uncertainty will be compounded, for many user organizations, by the lack of 

trustworthy estimates of their baseline security. We note that, for some users, the 

evidence we have presented would already indicate that diversity to be a reasonable and 

relatively cheap precautionary choice, even without predictions of its effects. These are 

users who have serious concerns about security (e.g., high costs for interruptions of 

service or undetected exploits), and sufficient extra personnel to deal with a larger 

number of alerts.  

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

_et _reg _sub _reg_sub _sub_et _com_reg_sub _reg_sub_et _com_reg_sub_etN
o

. o
f 

A
le

rt
s

Diverse IDS sets

02/05/2017
03/05/2017
04/05/2017
05/05/2017
06/05/2017
07/05/2017
08/05/2017



 13 

7 Related Work 

The security community is well aware of diversity as potentially valuable [2], [3]. 

Discussion papers argue the general desirability of diversity among network elements, 

like communication media, network protocols, operating systems etc. Research projects 

studied distributed systems using diverse off-the-shelf products for intrusion tolerance 

(e.g. the U.S. projects Cactus [4], HACQIT [5] and SITAR6; the EU MAFTIA project7), 

but only sparse research exists on how to choose diverse defenses (some examples in 

[6], [7] [3, 8]).  

A very extensive survey on evaluation of intrusion detection systems is presented in 

[9]. This survey analyses and systematizes a vast number of research works on the field. 

The main features analyzed in the survey are the workloads used to test the IDSs, the 

metrics utilised for the evaluation of the collected experimental data, and the used 

measurement methodology. The survey demonstrates that IDS evaluation is a key 

research topic and that one of the main benefits that IDSs evaluation can bring are 

related with guidelines on how to improve IDS technologies.  

8 Conclusions 

In this paper, we presented an analysis of the diversity that exists between the Snort 

and Suricata rules and blacklisted IP addresses. We analysed the evolution of the 

rulesets and blacklisted IP addresses of these two IDSs over a 5-month period between 

May and October 2017. We used three different off-the-shelf default configurations of 

the Snort IDS and the Emerging Threats configuration of the Suricata IDS. We 

performed the analysis to provide insight to Security architects on how they can 

combine and layer these systems in a defence-in-depth deployment. We also showed 

results on the observed diversity in behaviour of these systems, when they analysed the 

network data of the DMZ network of City, University of London.  

The main conclusions from our analysis are:  

- There is a significant amount of diversity in the blacklists of Snort and Suricata, and 
this is maintained throughout our observation period. The amount of overlap 
between these IPs is relatively small. Depending on the adjudication mechanism 
that a system architect wishes to deploy, having access to a larger pool of blacklisted 
IP addresses may be beneficial to increase protection against a larger pool of 
malicious sources. However, if a user observes a large number of false positives 
from these blacklists at a given period of time, then diversity can be help to keep 
the false positive rate low (for example by only raising alarms only if an IP appears 
in multiple blacklist) until the vendors “clean up” the blacklists;   

- We observe a significant amount of diversity in the rules of Snort and Suricata. 
When analyzing the rules based on the “content” field, only 1% of the rules of Snort 
and Suricata return a match. This indicates that these systems would alert on 

                                                           
6 http://people.ee.duke.edu/~kst/sitar.html  
7 http://research.cs.ncl.ac.uk/cabernet/www.laas.research.ec.org/maftia/  
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potentially very diverse traffic. This is indeed confirmed from a small experiment 
that we ran with real traffic from City, University of London. There was very little 
overlap in the alerting behavior of these products. 

We have underscored that these results are only prima facie evidence for the 

usefulness of diversity. What is important is to assess these products in real deployment 

on their capability to improve the security of a given system. The results presented here 

will, we hope, provide the security architects with the evidence on the diversity that 

exists in the design of these products and whether this diversity remains as these 

products evolve.  

As further work, we plan to investigate the diversity with IDSs and other defence-

in-depth tools in real deployments, with labelled datasets, to assess the benefits as well 

as potential harm that diversity may bring due to the interplay between the risks from 

false negatives and false positives. Currently we are investigating the adjudication 

mechanisms that can help balance the risks associated with these failures. 
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