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ABSTRACT 

Factor analysis has contributed imperatively towards solving the dimensionality problem and 

identifying the underlying factor structure governing term structure of interest rates. The 

estimated latent factors are known as level, slope, and curvature. These factors can be 

estimated using Principal Component Analysis (PCA) or Nelson-Siegel (1987) framework as 

reparameterized by Diebold and Li (2006). The two statistical methods have been shown to 

produce the same three factors. 

The thesis contributes towards testing of level, slope, and curvature factors extracted 

using the statistical models. We investigate the issues of stability in the eigenspace variables 

governing level, slope, and curvature. We develop a stability testing procedure to examine 

the presence of significant structural changes in the latent factors estimated using PCA. 

Bootstrapped critival values have been employed in order to draw inferences. Monte Carlo 

evidence suggests good finite sample size and power properties of the tests. Empirical test 

results on zero coupon bond yield curves show significant structural changes in factors. 

Further, we propose some extensions to estimating level, slope, and curvature factors 

for term structures where the interest rate maturities are coupled together into dependence 

clusters. In this, we extend the Nelson-Siegel (1987) framework to the case of modelling 

yield curves with correlation clusters. We identify the short maturity and long maturity 

clusters governing the term structure and propose a block dynamic representation to model 

the factors. We find that the proposed model generated superior forecasts than the benchmark 

model proposed by Diebold and Li (2006). 
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INTRODUCTION 

Factor analysis has been widely used in areas of finance where large number of variables is 

known to be driven by a few common sources of variations. In the literature of term structures 

of interest rates, it is well noted that around 98% of variations in bond yield term structures 

can be explained by just three factors. These effects were first established by Steeley (1990), 

Litterman and Scheinkman (1991) among others. 

Since shocks affecting interest rates disseminate contemporaneously across units, factor 

models have been employed to understand the common factors of risk in a term structure 

and how they load onto the interest rates. In using panel factor models for interest rates, 

since the risk factors are not observable and latent, estimation of these factors are commonly 
done using principal component analysis where the factors are a function of the eigenvectors. 
The loadings of these factors can be then estimated using ordinary least squares (OLS). 

Bai (2003), Kao et al. (2006) among others show that in the case of approximate factor 

models where the idiosyncratic errors are allowed to weekly correlate, OLS estimation of 
factor loadings is inconsistent when the number of cross-sectional units is not large. This 

issue is of paramount importance for empirical applications in finance where we commonly 

come across this situation. The inconsistency arises due to the fact that there is limited 

information available to estimate the factors when the number of cross sectional units is 

fixed and not large. However, in the case of using Principal Component Analysis (PCA) 

for estimating the factor loadings (that are functions of eigenvalues and eigenvectors) from a 

stationary term structure panel, we show consistency of the estimated factor loadings. 

In PCA framework, there is no guarantee that factors are the same across time. Since 

the factors are defined as factor score times the term structure panel, changes in the factor 

scores would cause the estimated factors to vary over time. In investigating changes in term 

structure factors, we therefore can simply determine the constancy of the factor scores which 

are defined in terms of the eigenvalues and eigenvectors. Perignon and Villa (2006) and Bliss 
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(1997) document the time variations in these common risk factors driving interest rates but 

do not infer anything about structural changes that might have been caused due to abrupt 

time variations or regime changes. 

Stability in the factors is crucial for modelling and forecasting of the yield curve. Authors 

usually rely on split-sample analysis in understanding whether the factors have been stable 

through time. In this dissertation we develop a statistical testing procedure in order to 

formally evaluate the stability in the factor structure of level, slope, and curvature factors 

governing the yield curve. We estimate the factors using PCA, and investigate stability of 

the eigenspace variables governing the factors. The results indicate that the PCA technique, 

based on the eigen decomposition of the correlation or covariance matrix, produce factors that 

can be subject to structural changes observed within the term structure. Several validations 

to these results, both empirical and theoretical (via simulations), have been conducted to 

robustify the findings. 

In extracting the factors via PCA, we have assumed the following. First, the contem- 

poraneous dependence structure between interest rate maturities is similar. In this case, we 

assume that the interest rate maturities are (linearly) correlated in the same way and that 

PCA would detect the principal factors by the rotation of the principal axes in the order 

to capture the direction explaining the maximum variability in the whole term structure. 

However, the estimation of the factors from a correlation matrix with multiple correlation 

clusters would fail to discover the true factors governing the entire term structure. Presence 

of multiple data clusters within the term structure would mean that PCA factors would be 

representative to part of the term structure and not to the entire maturity domain of the 

term structure. Second, the factors are static. This assumption is restrictive since the term 

structure is observed to change shapes and evolve over time. Authors have found that a 

dynamic structure to the factors better explain the movements in the term structure. We 

extend the estimation of term structure models to the case of "Block Dynamic" latent factor 

models. Particularly, we draw from the dynamic Nelson-Siegel representation of yield curve 
factors by Diebold and Li (2006) and extend the framework to the case of term structures with 
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multiple data clusters. We find that accounting for the multiple maturity clusters increase 

forecastability of the term structure. 

Object of research 

Zero coupon rates are one of the fundamental building blocks in fixed income markets. 

They are widely used in many applications from financial engineering to forecasting business 

cycles. Modelling the zero coupon bond yield term structures have therefore been of central 

interest of fixed income researchers and central bankers. Since the interest rate maturities 

within the zeros term structure have a strong dependence structure (usually measured using 

correlations or covariances), a few common factors are known to sufficiently explain most of 

the dynamics underlying the term structure panel. These latent common factors have been 

estimated using various factor analysis representations. The three principal factors governing 

the bond yield term structures have been commonly called level, slope, and curvature. The 

shape of the factor loadings associated with these three factors are flat, sloped, and curved 

respectively. Hence the factors are called level, slope, and curvature. Since the factors can 

be decomposed from a covariance matrix, they inherently capture the risk exposures due to 

movements in the yield curve. The level factor explains linear shifts in the yield curve, and 

slope and curvature factors explain the non-linear shifts observed in the yield curve. We refer 

to Litterman and Scheinkman (1991) and Diebold and Li (2006) that advocates the level, 

slope, and curvature explanations to term structure factors. 

These factors can be extracted parametrically using the Nelson-Siegel model or non- 

parametrically using PCA. For the Nelson-Siegel model, the loadings are predetermined by 

the process governing the forward rates. Nelson-Siegel (1987) recommends the functional 

form for the loadings that produce the level, slope, and curvature. 

The object of research in this dissertation is estimating and testing the term structure 
latent factors level, slope, and curvature commonly estimated using function-based statistical 

models such as PCA and Nelson-Siegel factor models. The empirical study is restricted to 

`pure' discount bonds. 



L 

Objective of research 

Modelling of yield curves with factor models would mean describing the relationship be- 

tween interest rates in a term structure and its factors, capturing the cross-sectional de- 

pendencies between rates. A stable relationship between the term structure and its factors 

(measured by the factor loadings) are assumed in practice. Further, the dependence structure 
(measured by quantities such as covariance or correlation) between rates is assumed to be 

similar. 

The objective of research in this dissertation is broadly two-fold. First, to propose a formal 

testing procedure in order to test for stability in the factor structure of the yield curves. In 

this we evaluate the stability of the eigensystem while estimating the PCA factors. Second, 

to allow for estimation of separate factors in a term structure panel that is characterized by 

more than one dependence structures (or correlation clusters). In this we model the factors 

governing the two clusters separately in a Nelson-Siegel dynamic framework and show that 

allowing for such block dynamic estimation increase forecastability of the term structure. 

Thus we propose a block dynamic Nelson-Siegel model for term structures with more than 

one dependence clusters. 

Dissertation structure 

The dissertation is comprised of four main chapters outlined below. 
Chapter one describes the various term structure theories and frameworks fundamental to 

modelling interest rates. In this, we outline the classical theories that provide an explanation 

to the contemporaneous movements across rates that cause systematic shifts in the yield 

curve. This clearly influences the yield curve shapes (normal, inverted, humped) observed 
in practice. The chapter concentrates on discussing commonly used statistical factor models 
for yield curves such as the principal components model and the Nelson-Siegel type models. 
These models generate latent factors economically interpreted as level, slope, and curvature. 

Chapter two develops a testing procedure for evaluating the stability in eigenvalues, eigen- 
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vectors, and factor loadings of level, slope, and curvature factors of the US zero coupon yield 

term structure. In this, we formulate a series of hypotheses, develop a test statistic, and 

conduct statistical tests for stability. For the US zero coupon bond yield term structure, we 

find that the variance process (measured by eigenvalues) of level, slope, and curvature factors 

were indeed unstable during the sample period considered. We find the factor structure of 

level to be unstable over the sample period considered. Slope and curvature factor structures 

are however found to be stable. We corroborate the literature that variances (volatility) ex- 

plained by the level, slope, and curvature factors are unstable over time. We find evidence 

of the presence of common economic shocks affecting the level and slope factors, unlike slope 

and curvature factors that responded differently to economic shocks and were unaffected by 

any common instabilities. 

Chapter three provides a robustification to the stability test and empirical conclusions 

drawn in chapter two. First, we provide a simulations based evidence that provides the 

validity of the use of bootstrapped critical values for the testing procedure implemented in 

chapter one. Second, we conduct stability tests on Fama-Bliss and Federal Reserve zero 

coupon bond yield term structures with daily and monthly frequencies and compare the 

results drawn in chapter two. The Monte Carlo simulation results show that the bootstrap 

procedure well approximates the finite sample distribution of the test statistics with good size 

and power properties. Conducting the stability tests on four term structures with different 

frequencies, we find that overall eigensystem of three factors are unstable, all the eigensystem 

variables governing the level factor is unstable, the long rates governing the slope factor 

are stable over time, and there is evidence of common points of instability among the three 

factors. 

Chapter four introduces a block dynamic for structure to the factors governing term 

structures with maturity clusters. In this, we generalize the dynamic representation proposed 
by Diebold and Li (2006) for constructing yield curve forecasts of the Nelson-Siegel factors 

and relax the assumption of common factor dynamics among maturity clusters within a term 

structure. The new framework is formulated in a state space system and estimated using a 
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Kalman filter. The optimization implements the Marquardt and BHHH algorithms written 

in Matlab 7. Due to space limitations, the complete listings of the source code are not 

included in the dissertation. However, careful documentation of the algorithms is presented 

in the relevant chapters. Application of the new Nelson-Siegel block dynamic factor model 

on the term structure of daily zero coupon bond yields with maturity clusters show better 

out-of-sample forecasting performance than the benchmark model proposed by Diebold and 

Li (2006). 



Chapter 1 

REVIEW OF LITERATURE 

1.1 Introduction 

Movements in the bond yields can be characterized by defining the dynamics of the term 

structure of interest rates. The markets are complete with no arbitrage opportunities if 

the long term yields are the risk adjusted expectations of the average future short term 

yields. This implies commonality across the movements in the cross-section of the yield term 

structure. Modelling the evolution of these common factors can directly relate to modelling 

the entire yield term structure. This approach allows for obvious computational advantages 

when dealing with a large panel framework. The term structure literature has relied heavily 

on the data decomposition techniques in the factor analysis literature in order to remove the 

dimensionality issue faced in modelling interest rates panel data structures. 
Empirical evidence confirms that single factor (short rate) specifications are insufficient 

to capture all the dynamics of yields across maturities. By assuming that yield dynamics 

are driven by the same risk factor, single factor models impose the restriction that yields 

are locally perfectly correlated. However, empirical results show that yield correlations are 
different from unity - though highly correlated at similar or closer time to maturities. Further, 

the correlations are considerably reduced if the yields are in different segments of the yield 

curve. Also, literature concludes that the volatility dynamics of the yields have an inconsistent 

structure, which is neither constant nor affine in the short rate, as assumed for simplicity (e. g. 
Chapman and Pearson (2001)). This highlights the importance of multifactor term structure 

models. 

Multifactor models accommodate for the unspanned factors that can explain the evolution 
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in the term structure of interest rates better. Here the yields are functions of all these 

state factors that are unobserved. Studies have used two, three, or four leading factors 

for explaining the dynamics in the yield term structure. Leading papers show that three 

principal factors are sufficient to explain most (about 99%) of the variations in interest rates. 

Though it is difficult to interpret what these latent factors correspond to, there is a common 

consensus that the three leading factors correspond to level, steepness, and curvature of 

the term structure (Litterman and Scheinkman (1991)). Some authors relate the factors to 

macroeconomic variables and monetary policy shocks (e. g. Ang and Piazzesi (2003), Ang 

et al. (2005)). Dewachter and Lyrio (2003) suggest that the level factor corresponds to the 

long-run inflation expectation, the slope factor corresponds to the business cycle, and the 

curvature factor corresponds to the monetary policies. 

There is no clear idea of how many factors should be ideally considered in modelling the 

term structure of interest rates. Including different number of factors would generate different 

conclusions. Also, incorporating a large number of factors would generate a non-parsimonious 

representation of our data. This leads us to concerns regarding the number of optimal factors 

to be included, the dynamics of the underlying factors, what factor estimation methods should 

be employed when factors are unobserved, distributions of the latent factors, and so on. The 

factor analysis literature in macroeconomics and panel econometrics contribute towards some 

of the issues. A series of papers by Bai and Ng (2002,2006,2007), Bai (2003,2004), Bovin and 

Ng (2005,2006), Stock and Watson (2005), Kao et al. (2006) provide us with the asymptotic 

results in panel framework that can be employed into the term structure literature in finance. 

We provide some of the key results in section 1.2 which can be implemented in the term 

structure literature. 

In the following sections we introduce issues that are of interests to the development of 

the next three chapters of the dissertation. We organize the remaining sections as follows: 

Section 1.2 and 1.3 reviews the fundamentals in modelling yield curves and introduces two 

important methods of yield factor estimations namely, principal component analysis and 

exponential components models. Section 1.4 reviews some major contributions in panel factor 
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models literature in macroeconomics and econometrics and relates it to the literature on term 

structure of interest rates. 

1.2 Fundamentals in modelling term structure of interest rates 

Term structure of interest rates has been known to be forward looking and therefore well- 

suited in understanding the market expectations of the future. An explanation of the term 

structure would enable extract the relationships between the interest rate maturities and 

study their dynamics over time. Several theories have been proposed that explain the driving 

forces to change in relationships observed between interest rates. They provide a theoretical 

link between short term and long term interest rates and present an explanation to the 

different shapes of the yield curve. 
One of the simplest theories is the expectations theory which conjectures that the long 

maturity interest rates reflect the expected future short term rates. This would mean that a 

yield curve with a positive slope imply the investors view that short rates would be higher 

in the future. On the other hand, an inverted yield curve implies that investors anticipate 
decrease in future spot rates. An alternative view is the market segmentation theory that 

assumes no relationship between short and long interest rate maturities. The theory con- 
jectures that demand and supply forces in each market determine their rates and very little 

influence of neighbouring maturities affects the rates, In this, the investors are invariably 

located at the same point on the yield curve. Along this theory, the preferred habitat theory 

combines it with investor preferences and states that investors would switch between yield 

curve segments based on changes in term premiums. The third and the most appealing the- 

ory is the liquidity preference theory that coincides with the expectations hypothesis but also 

places weight on risk preferences of the investors. In this, the long rates are equal to the 

sum of average future short rates and a liquidity premium. The theory produces an upward 

sloping yield curve and consistent with empirical evidence that more often yield curves slope 
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upwards. 

A model for the term structure is required to explain the relationship between the interest 

rate maturities over time. Theoretical frameworks proposed aim to satisfy the empirical 

characteristics of evolution of interest rates observed in the market. However, not all models 

capture all the characteristics of the term structure. Financial researchers mainly use two 

approaches to modelling the dynamics of interest rates. The first type is a general equilibrium 
framework where the bond yields are modelled based on the dynamics of the short rates. In 

this, the implicit assumption is that bond prices and yields are determined by the market's 

assessment on the evolution of the short term interest rates. A general equilibrium framework 

describing the instantaneous short rates is given by the stochastic process 

drt =K (0 - rt) dt + ort dBt (1.1) 

where rc measures the speed of mean reversion and affects the shape of the yield curve, 9 

is the long run mean (equilibrium level) to which the short rate mean reverts, and o is the 

instantaneous volatility of the short rate. The parameterization for the instantaneous drift in 

the model explains the main feature of mean reversion in short rates. The framework includes 

the models of Vasicek (1977); Dothan (1978); Cox, Ingersoll, and Ross (CIR) (1985); Brennan 

and Schwartz (1979); Longstaff and Schwartz (1992) among others. 
Since fluctuations in the interest rates vary in different parts of the yield curve, a richer 

framework with several stochastic factors in addition to the short rates are necessary in 

order to capture interdependence across all maturities. Litterman and Scheinkman (1991) 

show that additional to the short rates, there are two other factors significant in explaining 

the dynamics in medium rates and the long rates. The first factor is the slope oscillation 

component that captures the differential effect in the short end and the long end of the 

curve, leading to relative steepening or flattening at different ends. The second factor is the 

curvature component that captures the differential effect on all three segments of the curve 
(short, medium, and long rate), leading to a "humped" shape to the yield curve. A technique 
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through which these features may be determined is principal component analysis. 

The equilibrium models are generally adopted by traders who trade the yield curve. These 

models can be used to spot possible mispricing in bond portfolios. The traders pick a one 

or multi factor equilibrium model and then calibrate the model using time series data. Then 

each day they reconsider the parameters (inputs) in order to model the current term structure. 

The difference between the yield curves given by the model and that existing in the market 

on that day is the potential arbitrage opportunity. 

The main criticism of the equilibrium models is that they do not automatically fit the 

current market term structure. In the equilibrium approach, we assume a functional form 

for the drift in the diffusion process of the short rate equation. Then interest rate securities 

such as zero coupon bonds are priced using this assumed drift. In this approach, we find that 

bond prices given by the model are usually inconsistent with prices observed in the market. 

Therefore the parameters are reconsidered every day in order to fit the current yield curve. 

However the fit is never perfect. 

The drawbacks of equilibrium models are overcome by modelling interest rates using a 
different approach of non-arbitrage where assets in the economy are assumed to be arbitrage 
free. In this approach, interest rate models are designed to be exactly consistent with the 

current market term structure. Here the current yield curve is observed in the market and 

the dynamics of this yield curve is then modelled with the constraint that the changes in 

yield curves would not produce any arbitrage situations. In this approach we fit the drift to 

the observable market prices of the securities of zero coupon bond prices and not the other 

way round. 

These models are generally preferred by interest rate option traders. The traders would 

use the market yield curve and solve for the model with non-arbitrage conditions. Even 

with the non-arbitrage models, an options trader is required to reconsider the model each 
day in order to match the implied volatility given by the market. Clearly, an equilibrium 

model cannot be used when trading derivatives such as options on bonds. This is because 

the underlying bond price has to match the market term structure so that the trader can 
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simultaneously hedge his options position by using the underlying. 

A common non-arbitrage model is by Heath, Jarrow, and Morton (HJM) (1992) that 

develops a process for the instantaneous forward rates and uses the non-arbitrage relationship 

implied by the bond prices in order to determine the drift and diffusion parameters of the 

rates. The drift term can be expressed in terms of the forward rates volatility processes and 

captures the full dynamics of the entire forward rate curve. 

Using a exponential factor loading specification for the forward rate curve, Nelson and 

Siegel (1987) developed a yield factor model that produced three factors that could be inter- 

preted as level, slope, and curvature as in Litterman and Scheinkman (1991). Diebold and 

Li (2006) show that the Nelson-Siegel model fit the yield curve quite well and also produce 

accurate forecasts as compared to other benchmarks. 

1.3 Modelling zero coupon yield curve using factor models 

Consider the factor representation for the term structure 

Yt=«+ryFt+ct (i. 2) 

where Yt is the Nx1 vector of yield maturities observed at time t, Ft denotes the kx1 vector 

of yield curve factors with the factor loadings matrix -y which is of dimension Nxk. et is the 

idiosyncratic errors of the system. 
In an attempt to parsimoniously model the behaviour of the yield curves over time, factor 

models (such as the above) have been widely implemented in literature. Several authors have 

suggested different parameterization and econometric techniques in order to implement this 

general framework in the case of yield curves. 

We document below two statistical framework that have been prominently applied to yield 

curve modelling, namely principal component models and exponential component models. 
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1.3.1 Principal components modelling 

In the above factor model (equation 1.2), factors driving the yield cuves are latent and there- 

fore needs to be estimated. One means of estimating these latent factors is using Principal 

Component Analysis (PCA) where the estimated principal components are the latent factors 

and the factor loadings are given as by the scaled eigenvectors. PCA is a statistical data 

exploration technique that has been employed to provide insights to interest rate movements 

and to summarize the significant shifts in the yield curve by means of a few factors. This 

data decomposition techniques have been first advocated for yield curve modelling by Steeley 

(1990) and Litterman and Scheinkman (1991) who found that the primary sources of interest 

rate risks summarized by a covariance structure can be decomposed into first few principal 

components. The first three principal components have been named level, slope, and cur- 

vature based on its economic behaviour and has been shown to capture around 95-98% of 

variations observed in yield curves. The first principal level factor is the most significant 

one, explaining all the level shifts or parallel movements noticed along yield curve maturities. 

The slope and curvature factors measure the non-parallel movements along the yield curve. 

Though the non-parallel risks explain a small amount of the overall variations observed, the 

factors have been shown to be significant for the purpose of risk management. 

Lord and Pelsser (2007) investigate whether the systematic shapes (level, slope, and cur- 

vature) extracted by the PCA are merely an artefact of principal component decomposition. 

Some suggest that the shapes hold for any factors extracted from a highly correlated and 

ordered system such as a bond yield term structure. The paper provides the sufficient con- 

ditions under which a term structure factors display the level-slope-curvature effect. They 

show that the ordered correlation matrix with positive elements display such effects. Others 

suggest that the effect arised due to the method constructing the curves. Using simulations 
Lekkos (2000) show that when the forward rates are independent, the correlation matrix 

governing the zero coupon yields display level, slope, and curvature. 
Suppose matix E explains the centered interest rate changes (covariances) or the stan- 
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dardized changes (correlations) in interest rates. Using PCA, we estimate the eigenvalues 

ai >_ A2 > 
... 

> AN of the matix E satisfying the equality 

JE - nrI =o (1.3) 

where A= (A1) A2, ..., AN)' and their corresponding vectors Qi, ßa, ...,, ßN satisfying the two 

conditions 

Eß =Aß: (1.4) 

, ßsß; =1 (1.5) 

The conditions ensure that the characteristic vectors , ßi for i=1,2, ..., N are orthogonal 
to each other and are of unit length. The factor loadings matrix y is by definition the unit 

length eigenvectors scaled by its singular value (eigenvalues) where 

i=1, ... 
N (1.6) 'Yi = Qi'i12 for 

Geometrically, PCA is a multivariate procedure in which we rotate the axes in multidi- 

mensional space such that maximum variability in term structure data is projected onto its 

principal axes (or principal components). In other words, we rotate the axes in order to find 

linear combinations (or principal components) of the original variables that can summarize 

as much information, in the original variable, as possible. Since the original term structure 

is raw and noisy, the PCA technique tries to find a linear basis' that is able to effectively 

express the original dataset. This first rotation of axes gives us the first basis vector or the 

first principal component. Since the basis vectors are orthonormal, the PCA restricts the 

subsequent rotations to directions perpendicular to the previous directions. This means that 

'A basis is a set of vectors that, in a linear combination, can represent every vector in a given vector space, 
and such that no element of the set can be represented as a linear combination of the others. In PCA, the 
Basis vector is extracted using eigen decomposition and are the eigenvectors. 
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the second basis vector captures the maximum variations in term structure data that is or- 

thonormal to the first; the third basis vector captures the maximum variations orthonormal 

to the first and the second basis vectors; and so on. This process gives us N basis vectors 

(principal components). In PCA we impose the linearity assumption in order to filter noise 

in the term structure data and express the data as a linear combination of its basis vectors. 

Alternative to using the PCA in extracting the factors of yield curves, Matzner-Luber and 
Villa (2004) propose using a functional PCA . This functional analog of the PCA considers 

extracting the principal components from data that is assumed to be a set of functions or 

curves. Unlike the PCA, at each step the FPCA estimate orthogonal basis functions (than 

basis vectors) that accounts for the maximum variations. In this case, the primary aim is 

to summarize most of the variations in data with fewer basis functions as possible. The 

paper finds that the resuts from PCA and FPCA are indeed different. FPCA has a distinct 

advantage that one can also estimate the yields for maturities not observed in the original 

term structure. 

PCA assumes a stable contemporaneous correlation structure over time. In the case of 
bond yield curves, Periognon and Villa (2006) test the time-varying nature of covariances and 

advocate for the use of common principal component analysis (CPCA). The changing nature 

of variances is well supported by empirical evidence. Bliss (1997), Phoa (2000), Chapman and 

Pearson (2001) show that even though the risk factors of the term structure have remained 

constant over time, the variances of the factors have been time-varying. CPCA accounts 

for the time-variation of the eigenvalues with constant eigenvectors and therefore a practical 

extension of PCA in the field of modelling bond yield curves. Since the methodology is based 

on maximum likelihood, tests based on the likelihood function can be constructed in order to 

test several empirical restrictions on yield curves. Implementing this methodology on Fama- 

Bliss bond yields term structure, Periognon and Villa (2006) show that appointment of new 
Federal Reserve chairmans played an important role in characterizing the time variation in 

loadings of the common factors driving interest rates. 
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1.3.2 Exponential components framework 

This class of models provide a functional form for the instantaneous forward rates and model 

the yield curves under the objective measure. The models belonging to this class are also 

called the Nelson-Siegel class of models following the seminal contribution by Nelson-Siegel 

(1987). Central banks and fixed income traders heavily rely on directly the Nelson-Siegel 

model or modified version of this model. The Bank of International Settlements (2005) tech- 

nical documentation show that the participating central banks of Belgium, Finland, France, 

Germany, Italy, Norway, Spain, and Switzerland use the Nelson-Siegel class of models to 

estimate zero-coupon yield curves. Bernadell et al. (2005) report that the foreign reserve 

management of the European Central Bank use a regime switching Nelson-Siegel model. 
Given the simplicity in estimating the parameters using a two step cross-sectional OLS re- 

gression (as in Fabozzi et al. (2005), Diebold and Li (2006)) and the time series forecastability 

properties of the model, as documented by Diebold and Li (2006), these models have been 

widely implemented in practice. A series of research papers by Diebold and coauthors, and 

others have shown the usefulness and extension of these models in various settings. In this 

section, we briefly outline the Nelson-Siegel class of models as introduced in literature. 

Consider the price of a zero-coupon bond 

p (t, T) e-v(t, 
T)(T-t) (1.7) 

where y (t, T) is the yield to maturity of a bond with time to maturity T=T-t. 
From the above, if we know the price of a zero-coupon bond in the market, we can calculate 

the yield to maturity as 
In p (t, T) 
(T - t) 

Since we usually observe coupon bonds traded mainly for long term maturities, we can 

extract the zero-coupon bond prices from the coupon bearing bonds. A coupon bearing bond 
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can be seen as a sum of constituting coupons, each coupon payment seen as a single zero- 

coupon bond. Suppose c1. is the coupon paid at time r, then the price of a coupon bond can 

be written as T 

p (t, T) _ cT " e-v(t, T) (*-tý (1.8) 
T=t 

where y (t, T) is the zero coupon spot rate at time t for a time to maturity of r periods. The 

spot rate curve can be determined by calculating y (t, T) for different times to maturity Tr - t. 

Given the spot rate curve, the forward rate at time t for investments at time r for time to 

maturity T -, r can be determined by the formula 

(T - t) y (t, T) - (T - t) y (t, , r) 
,f 

(t, T, T) =T-z (1.9) 

The instantaneous forward rate can be obtained for infinitesimal time to maturity 

fltýTý = li Of(t, r, r+h) 

= y(t, T)-(T-t)ay`t'T+ 
%) 

ay 

_ 
p' (t, T) 
p (tý T) 

Integrating, we find that the zero coupon rate is an equally weighted average forward rate 

y (týT) _ (T 
1 

t) 
ft T 

f(t, T)dr (1.10) 

Nelson and Siegel (1987) considered the instantaneous forward rate for time to maturity 

r to be 

f (T) = Ql + Q2 (e Tl') + ß3 (eP) (1.11) 

where ßo, ß1l Q2 are the coefficients and A is a constant decay parameter. Solving the integral, 
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we get the Nelson-Siegel formulation for the yield curve 

(1.12) Y(r) = Q1 + (ß2 + 03) 
11 r/Ar/ý) 

- 133 
(e-'/, \) 

Nelson and Siegel (1987) show that the assumed exponential polynomial functions are general 

enough to generate monotonic and humped shaped curves as observed in the market. The 

parameters of the model have the following explanations: ß1 specifies the long rates to which 

the forward rate curve horizontally asymptotes, 02 is the weight attached to the short term 

component, and ß3 is the weight attached to the medium term component. The parameter 

A is a time constant measuring the point of the beginning of the decay. 

Svensson (1994) provides a generalization to higher order models including four factors. 

The Svensson (1994) model incorporated an additional hump shaped parameter with a seper- 

ate decay parameter. The forward rate is assumed to take the form 

f (r) = ßl + ß2 (e-T l'\1) + Qs 
(7 

e-T/al 
1+ 

p4 
(fe_1/A2) 

(1.13) 

and the yield curve formulation of the model becomes 

Y(T) _ 01+ß2 
(1 'r/A1+03 (1 

T/A1, 

ý1 

- e-T al 1 +p4 (1 
T/A2/ý' 

- e-''/-\'ý 1.14 

where the parameter Q4 is the loadings to the additional medium term component introduced 

in the model. This generalization of the model helps fit the data well as it accounts for 

term structures with more than one maximum or minimum along the maturity spectrum. 

Recently, concerns have been raised about multicollinearity problems when al a2. De 

Pooter (2007) introduces an "Adjusted" Svensson (1994) model that addresses this issue. 

The paper proposes forward rates taking the form 

f (T) = Qi + 02 ýe Tl )+93 (fe_mi) 
+ ß4 

(em 
+ 

L2 
e-2T/-" - e`2T/ail (1.15) 
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and the "Adjusted" Svensson (1994) yield curve model is 

Y(T) + 
(1- 

+03 +04 
1-- 

e'2T/a2 1.16 - 
ý1 Q2 

1/ 

(1_ 

TIA1 

)( 

TIA2 

) 

Comparing the fit of the adjusted version of the Svensson model to the original model, 

the paper finds that the adjusted fourth component is steeper and increases at a faster rate. 

Various extensions of these models have been proposed to increase flexibility. Bjork and 

Christensen (1999) introduced an additional fourth factor to the Nelson-Siegel model forward 

curve function 

f (T) = ß1 + Q2 (e-'IA) + ß3 (e_n1A) 
fi + /34 (e-2'/a) (1.17) 

and the four factor model of the yield curve is 

1'(T) = ßl + Q2 
1- e'Tlý + Qs 

1- e`T/A 
- e_r/a Q4 

(1 ( 

TlA 

)\ 

Tl'ý 

ý\ 

2Tl'ý 

where the parameter ß4 is the weight to fourth component that is attached to short-term 

maturities. In this model, the slope factor of the term structure is captured by the weighted 

sum of ß2 and ß4 coefficients. Bliss (1997) estimated the term structure by relaxing the 

assumption of constant decay parameter A for the short and meduim term components. The 

paper assumes the forward rate structure to be 

(e'7ýaý) +Qý ýZe'Týý`a1 (1.19) f (r) = ß1 +Q2 

and the yield curve model is 

-6 T/'`'1 (1.20) Y(r) = al + a2 (1 
i-IA 

)+ 
03 (1 

'r/A2 

The yield curves of the model collapses to the original Nelson-Siegel curves when al = A2 

Recently, Diebold and Li (2006) modified the Nelson-Siegel (1987) model to provide eco- 
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nomic meaning to the three components of the model and provide a dynamized version of 

the model widely known for forecastability. The reformulation of the Nelson-Siegel model is 

given by 

R 
(1- 1 (1 e-Týa (1.21) Yt (T) =Felt + 02t 1 r» 

) 
'+ 03t 1 -r 

where Olt is the factor loading associated with the first component which can be interpreted 

as the level factor, ß2t is the factor loading for the second component which captures the 

slope factor mostly influencing the short term factors, and , ß3t is the factor loading for the 

third component associated with the medium rates, interpreted as the curvature factor load- 

ings. The paper proposes a two-step OLS cross-sectional regression procedure to estimate the 

unknown parameters. Alternatively, one can represent the framework in a state space formu- 

lation and use Kalman filtering to estimate the parameters. Koopman, Mallee, and van der 

Wel (2007) analysed the dynamic Nelson-Siegel model of Diebold and Li (2006) by introduc- 

ing time varying factor loadings. They introduce a step function and a cubic-spline function 

to the decay parameter A and investigate the evolution of the factor loadings. Further, the pa- 

per also includes common time-varying volatility factors specified as a spline function. These 

generalization show significant improvements in model fit and forecast ability. 

The Dynamized Nelson-Siegel model as proposed by Diebold and Li (2006) has become 

popular in fitting the cross-section of bond yields and significant in explaining the yield curve 

dynamics. The dynamic factors extracted from the model corroborate to the interpretation 

of level, slope, and curvature. Unifying the cross-sectional and time series properties into 

the model has proved to generate economically significant forecastability both in the short 

and long horizons as shown by Diebold and Li (2006). Diebold, Ji, and Li (2006) show that 

there exist no three factor affine term structure model that generates the Nelson-Siegel (1987) 

three factors. The paper suggest that the unforecastability of affine term structure models 
documented in literature could not be therefore contributed to the Nelson-Siegel factors. 

Further, the papers finds that the cross section of yields are well explained by the loadings 

of the model. 
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Diebold, Rudebusch, and Aruoba (2006) extend this yield model also to include macroeco- 

nomic variables in order to study the dynamic interactions between the macro economy and 

yield factors. They find evidence of bilateral interactions between macro variables and future 

movements in yield curve. This flexibility of matching changes in yield curves to exogeneous 

variables have also lead to studies about cross-country yield curve interactions. Diebold, Li, 

and Yue (2007) study dynamic properties of global bond yield curves by modelling the cross- 

country yield curve factors. They extract the global bond yield factors from U. S., Germany, 

Japan, and U. K. government bond yields, decompose the variations of country yields into 

global and idiosyncratic components, and study the evolution of the dynamics of global bond 

yield curve factors. The paper finds existence of economically significant global factors with 

global level and global slope factors reflecting global inflation and global real activity. In a 

similar vein; Koivu, Nyholm, and Stromberg (2007) model the yield curves across multiple 

currency areas in order to capture cross-effects of adverse movements in one currency area 

affecting the dynamic evolution of other currency areas. The paper defines one currency 

economy yield curve as the `cardinal' yield curve and models cross-country interactions as 

spreads to the cardinal yield curve. For the U. S., German, and Japanese markets; the paper 

finds that the spreads are well modelled with the Nelson-Siegel model with little estimation 

errors. The Nelson-Siegel model has also been applied to predicting US NBER recessions 

from 1973 to 2004 by Nyholm (2007). Since central banks intervene by lowering (or increas- 

ing) short rates to stimulate (or dampen) economic growth, the evolution of the slope factor 

capturing the shape of the yield curve is known as a good predictor of economic activity. The 

paper implements a regime switching dynamic Nelson-Siegel model where the slope factor 

exhibit switches between regimes based on the states of macroeconomic variables predicting 

recession. The findings of the paper provide a new approach to modelling and forecasting 

recessions. 
Given the widespread empirical merits of the dynamic Nelson-Siegel model, various au- 

thors have also considered investigating the theoretical consistency of this framework. Since 

the model does not fall under the affine class of term structure models (Diebold, Ji, and 
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Li (2004)) and initially shown to unsatisfy the principles of non-arbitrariness (Bjork and 

Christensen (1999)), concerns have been raised in using this model. Recently, two papers 

contribute to this research question, Christensen, Diebold, and Rudebusch (2007) and Coro- 

neo, Nyholm, and Vidova-Koleva (2008). The first paper derives an arbitrage correction term 

that is incorporated into the dynamic Nelson-Siegel model to ensure arbitrage-freeness of the 

model. The authors find that imposing the non-arbitrage constraints significantly improves 

the forecastability of the model, supporting the imposition of the restrictions. The predictive 

gains are more significant in the case of moderate to long term rates and for long forecast 

horizons. Coroneo, Nyholm, and Vidova-Koleva (2008) confirms the non-arbitrariness of the 

Nelson-Siegel model using a very different approach. The paper conducts a statistical test 

for equality between factor loadings of Nelson-Siegel model and factor loadings derived from 

an non-arbitrage model. The find that factor loadings of the two models are statistically 

indifferent. Performing an out-of-sample forecasting exercise, the authors show that both the 

models performed equally well. The results of the paper indicate that non-arbitrariness of 

the model might be induced by misspecification of the imposed Nelson-Siegel curvature factor 

loadings structure. 

1.4 Panel factor analysis 

Factor analysis and principal component analysis have been originally developed in order 

to capture the main sources of variations and covariations among the N independent ran- 

dom variables in a panel framework. These methods were extended by Geweke (1977) and 

Brillinger (1964) into dynamic factor models and dynamic principal component analysis re- 

spectively, that were able to predict the covariation in economic variables by few underlying 
latent factors. Although the two methods differed for small N, they gave similar inferences 

as N increased and was large. Chamberlain and Rothschild (1983) then distinguished the 

dynamic models into exact and approximate dynamic factor models. In the case of exact 
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dynamic factor models, the idiosyncratic terms are assumed to be mutually uncorrelated 

whereas the approximate factor models relaxes this restriction and allows for limited cor- 

relation among the idiosyncratic terms. Applications in finance particularly favor the ap- 

proximate factor models where the idiosyncratic terms are weekly correlated and where large 

number of cross-sectional units can be competently summarized by a few common factors. 

Consider the factor representation for N cross-sectional by T time-series term structure 

panel: 

Yt = 'y'Ft + et (1.22) 

where Yt is an Nx1 vector of cross sectional observations from the panel data structure at time 

period t, ry is an rxN matrix of the factor loadings, Ft is the rx1 vector of common factors for 

all cross-sectional units at time period t, and et is the NxI vector of idiosyncratic components 

which are allowed to be weakly correlated in an approximate factor model framework. y'Ft 

are known as the common components. The sources of idiosyncrasies in bond prices include 

bid-ask effects, tax effects, liquidity, and transaction costs that can be explained by using an 

approximate factor structure to the model. In the term structure literature, it is reasonable to 

assume that the errors are independent of the factors, i. e E [etFF_, ] =0 for all s. Since yields 

and the common components are functions of the maturities, empirical evidence suggest high 

positive cross correlations between error terms of neighbourby maturities (say est, ejt for i and 

j close to each other). Also, yields in levels models are shown to have strong positive time 

series correlations, that can be removed by taking forward differences (see De Jong (2000)). 

Since the right hand side variables are unobservable, one can use principal component 

analysis in order to estimate the factors and their loadings. In classical factor analysis, where 
the cross-sectional dimension N is finite, the covariance matrix of the yields, E= AN + ci 

where 12 is the covariance matrix of the errors st and under some assumptions, we can obtain 
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a root-T consistent estimator of E, say t where 

T 

E=T11E(Yt-Yt)(Yt-Yt)ý (1.23) 
t=l 

This forms the basis for using the principal component analysis in order to estimate the factor 

loadings in the case of N fixed and large T. Bai (2003) show that for panels with N fixed, 

using OLS one can only estimate the factor loadings (y) consistently but not the factors (Ft). 

For large N and T panels, both the factors and their loadings can be estimated consistently. 
The issue of consistency of the estimated common components clearly depend on the 

dimensions of the panel under consideration. Connor and Korajczyk (1986) prove the consis- 

tency of the latent factors estimated via principle component analysis when the cross-sectional 
dimension (N) is greater than the time-series dimension (T). However, from standard fac- 

tor analysis literature (see Anderson (2003)) it is well-known that consistent estimation of 

latent factors cannot be achieved when either N or T is finite. Bai and Ng (2002) and Bai 

(2003) developed an inferential theory for large panels where the cross-sectional dependence 

is explicitly considered in the factor loadings representation. Bai (2003) proves consistency 

of the estimated factors and the factor loadings, for N and T tending infinity. It also shows 

consistency of the estimates when T is fixed but under the assumption of (i) asymptotic 

orthogonality between the estimated factors and the idiosyncratic errors, and (ii) asymptotic 
homoskedasticity in the idiosyncratic errors, for all T as N tends to infinity, The results 

suggest that the limiting distributions of the "estimated factors" are asymptotically normal 

and the rate of convergence of the estimated factors is min 
{VN__, T 1. When the true factor 

loadings are all known, then the true factors can be estimated by cross section least squares 

and the rate of convergence of estimated factors is VNY. Else if the factor loadings are un- 
known and estimated, then the rate of convergence of the estimated factors is min 

{ 
, IN, T}. 

In the case of the "estimated factor loadings", the limiting distributions is again asymp- 
totically normal and the convergence rate is min 

{N, 
vfT- 

Y When the true factors are all 

observable, then the true factor loadings can be estimated by time series regression and the 
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rate of convergence of estimated factor loadings is výT_. Else if the true factors are unknown 

and estimated, then the rate of convergence of estimated factor loadings is min 
{N, VTT I-A 

recent paper, Heaton and Solo (2006) evaluated the importance of using large dimensional 

panels in approximate factor models framework. The paper showed that the consistency and 

rate of convergence derived for the case of large dimensional panels depend on the rate at 

which the cross-sectional correlation of the model disturbances grow, as N grows to infinity. 

The implication of this finding is the empirical application of these asymptotic results for real 

world situations where we work with panels of finite dimensions. 

Since the factors are generally unobserved, they can be estimated from sample covariance 

matrices using statistical techniques. There exist estimation procedures such as maximum 

likelihood and principal component analysis in order to estimate the latent factors and their 

factor loadings. Though the maximum likelihood method is successful to estimate factors in 

low-dimensional systems, there arise computational complexities in maximizing the likelihood 

functions over large number of variables as the cross-sectional dimensions increase. Principal 

component analysis however is easy to compute for higher dimensional panels and therefore 

have been widely used in the term structure literature. Chamberlain and Rothschild (1983) 

show that the principal component estimators converge to the maximum likelihood estimators 

as N increase. Bai and Ng (2006) developed test statistics in order to compare the observed 

economic variables with estimates of the observed factors and gather inferences on whether 

the observed variables were in fact the underlying unobserved factors. 

Another important question concerns the number of factors in existence. The number 

of factors governing the term structure of interest rates have been commonly assumed to be 

three. The three factors namely level, slope, and curvature have been found to significantly 

explain most of the variations in the yield curve. Therefore we do not estimate the number 

of factors and assume the number of latent factors to be given and equal to three. Connor 

and Korajczyk (1993) estimated the number of factors using sequential limit asymptotics 

whereby N tends to infinity first, followed by T. Cragg and Donald (1997) shows that the 

BIC information criterion could be used to infer about the rank of a consistently estimated 
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sample covariance matrix for N and T fixed. Stock and Watson (1999) assumes that VN/T 

goes to infinity and estimates the number of latent factors. Bai and Ng (2002) considers 

N and T to be infinite and develops a statistical procedure that consistently estimates the 

number of factors from observed data. The paper allows for hetroskedasticity in both the 

cross-sectional and time-series dimensions, and weak serial dependence and cross-sectional 

dependence. The paper proposes that the true number of factors r can be estimated by 

minimizing one of the following information criteria: 

ICl(r) = 1n(V(r, Fr))+r 
( 

NT 
) 

In 
(NNT+T) 

(1.24) 

IC2(r) = ln(V(r, Er)) +r( NT 
)inCir; (1.25) 

IC3(r) = ln(V(r, Fr))+r ("I CNT2 
(1.26) A'NT 

) 

where F'" are the r factors, and V (k, F? ) be the overall sum of squared residuals (divided by 

NT) from time series regression on Y for r factors for all i, defined as 

NT 

V (r, F') = min(NT)'1 >> (Yt - Ft) a (1.27) 
i=i t=i 

The estimated number of factors for r is obtained from minimizing the information criterion 
in the range r=0,1, ..., r..... where rm is some pre-specified upper bound for the number 

of factors. The convergence rate CNT = min{N, T} in the stationary model framework. For 

a non-stationary framework, Bai (2004) shows that CNT = min{N, T2}. The finite sample 

properties for the information criteria show that in small panels IC3 is less robust than IC1 

and IC2, however, as N and T exceed 40, the estimates are rather precise with small standard 
deviations. 

Recently Amengual and Watson (2007) proposed an extension of Bai and Ng (2002) 

by modifying the information criteria for the case of consistently estimating the number of 
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dynamic factors for large N and T approximate factor model framework. Estimating the 

dynamic factors is important when working with dynamic factor models and care should be 

taken to distinguish between the number of significant static factors, estimated by decompos- 

ing the covariance matrix of the original data and the number of significant dynamic factors, 

estimated from the spectral density matrix of the orginal data; governing the underlying 
dynamic factor model. In the recent paper, Bai and Ng (2007) proposed an ultimate method- 

ology for determining the number of dynamic factors from the estimated number of static 

factors, without being required to estimate the dynamic factors itself. The static factors were 

estimated using the Bai and Ng (2002) information criteria. 



Chapter 2 

TESTING FOR INSTABILITY IN FACTOR STRUCTURE OF 

YIELD CURVES 

ABSTRACT 

A widely relied upon but a formally untested consideration is the issue of stability in 

factors underlying the term structure of interest rates. In testing for stability, practitioners 

as well as academics have employed ad-hoc techniques such as splitting the sample into a few 

sub-periods and determining whether the factor loadings have appeared to be similar over 

all sub-periods. Various authors have found mixed evidence on stability in the factors. In 

this chapter, we develop a series of hypotheses and statistically evaluate the factor structure 

stability of the US zero coupon yield term structure. We find that the level, slope, and curva- 

ture factors were indeed unstable during the sample period considered. The level instability 

was caused due to structural changes common to all maturities; the slope instability was 

caused due to structural changes affecting the short rates; and the curvature instability was 

caused due to structural changes affecting the long rates. We find evidence of the presence 

of common economic shocks affecting the level and slope factors, unlike slope and curvature 
factors that responded differently to economic shocks and were not affected by any common 
instability. 
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2.1 Introduction 

Statistical models using factor decomposition techniques such as principal component analysis 

(PCA), where the yield curve dynamics can be summarized by a few estimated principal 

factors have been highly favored in extracting the yield curve factors. Instabilities present 

within the factor structure of yield curves have commonly been assumed to be nil. This 

inherently implies that the latent factors, generally extracted using PCA rotations, are robust 

to structural changes. Some authors informally test for factor structure instabilities using 

graphical methods. The term structure literature that uses statistical factor models have 

all relied upon graphical methods for analysing the stability of the factors. The standard 

procedure implemented in this regard has been to divide the sample data into sub-periods 

and to identify the factor loading for the corresponding sub-periods. If the explanatory power 

of the factor loadings appeared to be similar over all sub-periods, then the factors were said to 

be stable over time. There have been no other formal tests conducted in this respect except a 

recent paper by Audrino et al. (2005) that concluded instability in the filtered innovations of 

the principal factors governing the US Discount bond yields. The instability detected in the 

paper could not however be interpreted directly as instability in the level, slope, or curvature 

factors. 

This chapter develops a formal stability test on all the eigenspace variables associated 

with the level, slope, and curvature factors of the US zero coupon yield term structure. 

In particular, we consider instabilities in factors that are associated with instabilities in 

eigenvalues, instabilities in eigenvectors, and instabilities in the factor loadings governing 

the system. These eigenspace variables are estimated using PCA. We formalize a series of 

hypotheses in order to test for instabilities present in the eigenspace variables of the factors. 

To anticipate the results, we find that the eigenvalues (volatility) of the level, slope, and 

curvature factors were unstable over the sample period considered. The level instability was 

caused due to structural changes common to all interest rate maturities; the slope instability 

was caused due to structural changes affecting the short rates; and the curvature instability 
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was caused due to structural changes affecting the long rates. We find evidence of the presence 

of common economic shocks affecting the level and slope factors, unlike slope and curvature 

factors that responded differently to economic shocks and were not affected by any common 

instability. 

The remainder of this chapter is structured as follows. Section 2.2 provides an account 

of the instability in yield curves documented in literature. We motivate the formal testing of 

instability in the yield factor structures by examining the evolution of eigenspace variables 

(eigenvalues, eigenvectors, and factor loadings) graphically. In Section 2.3 we present the 

factor analysis framework for the term structure level, slope and curvature factors, estimated 

using the principal component analysis. We provide the asymptotic properties of the esti- 

mated eigenspace variables for the three factors, which is applied into developing the stability 

testing procedure. In Section 2.4 we formulate six hypotheses for statistically evaluating the 

stability in the eigenspace variables governing the level, slope, and curvature factors of the 

yield curves and device the test statistics for evaluating each hypothesis. Section 2.5 describes 

the dataset used and presents the results of the testing procedure developed in previous sec- 

tions. Section 2.6 concludes with the summary and findings of the study. The relevant proofs 

are presented in the Appendix of the chapter. 

2.2 Yield curve dynamics instability 

Modelling the dynamics of interest rates is vital in trading fixed income securities that are 

sensitive to movements in interest rates. The concern is to fit the interest rates data within 

a framework (model) that is able to capture the future evolution of the term structure of 

interest rates. This is important for valuation of securities such as interest rate derivatives. 

Also, given that we understand the process that governs the interest movements, we are able 

to analyse and alter the risk exposures at a given point of time. Bliss and Smith (1997) 

argue that model selection and stability of the parameters underlying the process are closely 



2.2 Yield curve dynamics instability 33 

related. The paper illustrates by critically examining the findings of Chan et al. (1992) 

and show that the unaccounted structural break, caused due to Fed change in the monetary 

policy, has indeed affected the conclusions drawn. 

Structural changes have also been modelled by allowing for regime switches in interest 

rates. Following the seminal work of Hamilton (1989) that introduced modelling the short 

rates using a regime switching process, authors such as Lewis (1991), Evans and Lewis (1995), 

Garcia and Perron (1996), Gray (1996), and Ang and Bekaert (2002) have studied regime 

switches in interest rate models. Empirical evidence suggest that not only the short rates but 

also the whole term structure of interest rates might experience shifts in regimes caused due to 

business cycle expansions and contractions, changes in monetary policies and regime changes 

in economic variables such as consumption and inflation. Bansal and Zhou (2002) show that 

term structure models incorporating regime shifts provide considerable improvements over 

multifactor CIR and affine models. They develop a model allowing for regime switches in 

both the state vector and the risk premium and show that the model accommodates for the 

conditional joint dynamics (the conditional distribution) of short and long yields. 

The presence of instabilities in the short and long term yields can also seep into the factor 

structures governing these yields. One of the earlier work in factor analysis of term structure 

of interest rates is the Nelson-Siegel (1987) model. This parsimonious representation is very 

popular among practitioners for calibrating the yield curve. Since the model is linear in 

coefficients, they are estimated using ordinary least squares. The coefficients of the yield 

curves were interpreted to be level, slope, and curvature. Various other authors have found 

the same statistical interpretation to the coefficients estimated via statistical techniques such 

as the principal component analysis and factor analysis. Litterman and Scheinkman (1991) 

show that the three principal factors, explaining around 99 percent of the changes in treasury 

bond yields, could be interpreted to be the level (or parallel movement component), slope 
(or slope oscillation component), and curvature component. The level factor or the parallel 

movement component alone was the most important factor that accounted for an average of 
89 percent of the variations observed in the yield changes data. 
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Given the widespread use of factor analysis for term structure of interest rates, there 

arises a need to evaluate the factor structure stability of interest rates. Many authors have 

assumed that the principal factors driving the evolution of interest rates are stable or robust 
through time. Some use ad-hoc methods to investigate factor stability. For instance, Bliss 

(1997) divided the sample period January 1970 - December 1995 into three sub-periods of 

arbitrary lengths and investigated the change in the factor loadings. Since the factor loadings 

patterns in the different sub-periods seemed similar in the case of all three factors, the factors 

were concluded to be stable. However, the factor volatilities were found to fluctuate over the 

sub-periods considered. In the forecasting setting using the Nelson-Siegel model, Diebold 

and Li (2006) found similar results with stable factors and time-varying factor volatilities. 
Since the parameters were stable over time, the proposed model produced much accurate 
forecasts at both the short and long horizons than other standard forecasting benchmarks. 

Since empirical results noted the time-varying nature of volatility associated with the factors, 

Perignon and Villa (2006) accounted for a time-varying covariance matrix when estimating the 

factor structure of interest rates. Using the U. S. term structure data between January 1960 

and December 1999, Perignon and Villa observed that the factor structure (factor loadings) 

remained constant across sub-periods considered but the volatility (eigenvalues) of the factors 

varied through time. Reisman and Zohar (2004) use the yield to maturity data of US discount 

bonds from 1982. They found that the first two principal components were quite stable; the 

third component was marginally stable; and the fourth component was unstable. Fabozzi et 

al. (2005) used the Nelson-Siegel (1987) model to parameterize twelve monthly yields term 

structure data from June 7,1994 to September 5,2003. They plot the factor loadings from 

the model, and observed that the level and slope coefficients of the model seemed stable, while 
the curvature coefficient showed instability. Chantziara and Skiadopoulos (2005) evaluated 

stability in the principal factors of the term structure of petroleum futures by performing the 

principal component analysis (PCA) individually on two sub-periods before and after May 

1997, the cut-off date being identified as the beginning of the Asian crisis, Since the PCA 

results for the two sub-periods were not different from the results obtained for the whole 



2.2 Yield curve dynamics instability 35 

sample, the paper concluded stability in the factor structure over the whole sample period. 

As it appears empirically, the stability analyses on factors were carried out by graphically 

plotting the factor loadings and by weighing the similarity in results over time. The standard 

procedure implemented in this regard was to divide the data into sub-periods and to identify 

the factor loading for the corresponding periods. If the explanatory power of the factor 

loadings appeared to be similar over all periods, then the factors were concluded to be stable 

over time. There were no other formal tests conducted in this regard. The first formal test 

(to the best of our knowledge) in evaluating stability of factors governing interest rates was 

introduced in Audrino et al. (2005) that considered a three-factor model with conditional 

hetroskedastic factors. The paper found contradicting conclusions that the factor loadings 

of the US discount bond yields were in fact unstable over the period January 1986 to May 

1995. The paper used independent filtered innovations in order to find the principal factors 

for the different sub-periods considered and then using a regression framework on the filtered 

innovations, tested the hypothesis that the regression coefficients (factor loadings) in the 

different sub-periods are indeed equal. Since the authors constructed factors on the filtered 

innovations, the instability detected could not be interpreted as instability of the level, slope, 

or curvature factors. 

The main contribution of this chapter is to introduce a testing framework that would 

enable us to formally investigate the instability present in the factor structure of level, slope, 

and curvature of the yield curves. 

2.2.1 A first examination of factor structure instability 

As evident in the term structure literature, the instability risks present in the yield curves 

can persist also within its factor structures. As a first examination to this argument, we carry 

out some graphical analyses for the term structure of US zero coupon bond yields between Jan 
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1999 and May 2006 obtained from Datastreaml. First, we arbitrarily split the seven and half 

year's bond yield data into three approximately equal, two and half year subsample periods; 

Jan '99 - June '01, July '01 - Dec '03, and Jan '04 - May '06 and graphically investigate 

whether the eigensystem has remained stable over the three subperiods. 

We perform the principal component analysis on the 5 year holding period returns data 

for the three subsamples, in order to extract the level, slope, and curvature factors that drive 

the evolution of change in interest rates data. We concur with Litterman and Scheinkman 

(1991) when we consider the first three principal factors in explaining the evolution of term 

structure of interest rates. In order to extract the three principal factors using PCA, we 

perform the following steps: 

1. Form the covariance matrix from the change in yields panel data for the three subsample 

periods considered. 

2. Compute the eigenvalues and the corresponding eigenvectors from the covariance matrix 

for each period. 

The eigenvectors are the principal components and the eigenvalues present the explanatory 

power of the corresponding eigenvectors. 

Second, we graphically investigate instability along the short end, medium term, and long 

end of the yield curve separately over the three subsample periods. For this, we draw the 

direction of the principal axes (which are the eigenvectors), along with the scatter plot of 

the original yield changes data for the three subsample periods. In order to visualize the 

direction of the eigenvectors, we have to limit our analysis to two dimensions. We use the 

three month and six month rate as a proxy for the short end of the curve; the five year and 

seven year rate as a proxy for the medium term of the curve; and the ten and twelve year 

rate as a proxy for the long end of the curve. 
'The information on the data sources are detailed in section 2.5.1, where we undertake formal empirical 

tests on the issue of factor structure stability. 
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Third, in order to examine the evolution of the entire eigenspace, we conduct recursive 

PCA by expanding the estimation window at every run by including one new observation 

and then record the evolution of the eigenvalues, eigenvectors and the factor loadings. We 

undertake two recursive schemes, namely the Forward Recursive Scheme (FRS) and Backward 

Recursive Scheme (BRS). The two schemes allow us to evaluate stability in an informal way. 

The FRS allows us to visually gauge the impact of adding one extra observation at each 

recursion and the BRS allows us to visually gauge the impact of removing one observation 

at each recursion. The instability can be seen as the abrupt increase in variability at a point 

in time in the case of the FRS and a reduction in variability at a point in time in the case of 

the BRS. This FRS and BRS patterns can also be used to check if there are more than one 

change affecting the variability in the recursion. 

Figures 2.1 to 2.7 present the results towards the preliminary study of the issue of insta- 

bility. Figure 2.1 shows the evolution of three principal factors determined over the three 

subsamples. We observe that considering the first three principal components would be suffi- 

cient in explaining the dynamics of the term structure and therefore we can say that though 

the three factors vary in detail, the term structure responsiveness to these factors has re- 

mained stable over time. This stability result concurs with that recorded by Bliss (1997), 

Perignon and Villa (2006), and others. However, the bar charts show that the level risks, 

captured by the first principal component, was the highest in the third Subsample period; 

the slope risks, explained by the second principal component, was the lowest in the third 

subsample period, and the curvature risks, explained by the third principal component, was 

the highest in the second subsample period. This means that the shocks to the term structure 

varied during the subperiods considered, though we are unable to (at the point) make any 

statistical inference of instability. 

Insert Figures 2.1 to 2.4 here] 

Figures 2.2,2.8, and 2.4 plot the short run, medium term, and long run principal axes (also 

called principal components or directional vectors) for the three subsample period considered. 
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The two directional vectors are orthogonal to each other by construction. The plot shows 

how well the principal axes explain the variability in yields. The table below the plot records 

the eigenvalues (volatility), eigenvectors, and the percentage of variances explained by the 

two principal components. For the case of short rates, if we compare the direction of the 

principal axes across the three subsample period, we find that the first principal axis differ 

across the three subsamples and by the orthogonality condition, so does the second principal 

axis. Further, we observe that the sample data for the short rates are dispersed distinctly 

across the three subsample periods. This means there exists different volatility patterns 

during the three subperiods and support the argument for allowing distinct time-varying 

covariance matrices. Therefore considering a constant covariance matrix decomposition of 

principal components may induce instability in the components. For the case of medium 

term and long term rates governing the yield curves (2.3 and 2.4 respectively), we find that 

the two eigenvalues have similar directional vectors for the three subsample periods, with 

around 99% explanatory power of the variances. 

Further consider the recursive plots of the eigenvalues, eigenvectors, and factor loadings 

(Figures 2.5,2.6, and 2.? ). The plots obtained from the recursion clearly show endurance of 
instability in the eigensystem. In the case of eigenvalues governing the factors (Figure 2.5), 

we can clearly see that the dynamics have not remained the same over time even though the 

percentage variation explained by the eigenvalues have remained the same. The eigenvalues 
for the level and curvature factors seems to have one prominent change but the eigenvalues 

governing the slope seems to have more than one abrupt changes. Looking at the recursion 

patterns for eigenvectors (Figure 2.6), the level and curvature eigenvectors show two promi- 

nent patterns and the slope eigenvector shows three prominent patterns suggesting possible 

structural changes in the eigenvectors. In the case of factor loadings (Figure 2.7), The FRS 

suggest one possible pattern change in the case of level, and two pattern changes in the case of 

slope and curvature. However, if we also consider the BItS, we can see there exist one possible 
intermittent blip in all the three level, slope, and curvature factor loadings. The observations 

of pattern changes surely corroborate the time-varying nature of the eigensystem, which may 
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have caused possible structural breaks in the series. In order to formally conclude instability 

in the data, we would further require a formal test that would evaluate the significance of the 

observed blips in data. 

Insert Figures 2.5 to 2.7 here] 

Summarizing the preliminary results, we have used various ad hoc graphical techniques 

in order to infer about the term structure stability. By evaluating the three arbitrarily split 

subsamples, we find that the shocks contributing to the level, slope, and curvature instability 

risks have varied during the three subsamples. Also, we find that the directional axes of the 

short end interest rates have varied over time. The forward and backward recursive plots give 

us an idea about the evolution of the eigenspace variables and we find indications of instability 

in them. In Section 2.4 we develop a formal statistical test for stability and empirically 

evaluate a series of hypotheses in order to infer about the instability risks associated with the 

level, slope, and curvature factors. 

2.3 Framework and estimation of eigenspace variables 

In this chapter, we use the classical principal component analysis framework, which incorpo- 

rates the approximate structure in the cross sectional correlation among units. The factor 

structure is considered static, as we do not assume any dynamic evolution for the factors. 

Consider the stationary representation for term structure of interest rates with cross-sectional 
(N) and time-series (T) dimension and with (r) factors: 

Yt = ry'Ft + et t= 1,2, ..., T (2.1) 

Let Yt = (Y1 , ..., YNt)' be the term structure panel with Yt being an Nx1 vector of cross 

sectional observations from the panel data structure at time period t, ry is an rxN matrix 
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of the factor loadings, Ft is the rx1 vector of common factors for all cross-sectional units at 

time period t, and et = (Cu, t..., Crrt)' is the Nx1 vector of idiosyncratic disturbances. In the 

term structure literature, the number of common factors that are sufficient in order to explain 

the dynamics of interest rates are commonly established to be equal to three. Therefore we 

consider the case of r=3. The factor loadings matrix loads the factors on to the variables, 

explaining the correlation between the factors and the variables. The factor loadings (-y) can 

be computed as the unit length eigenvectors matrix multiplied by its singular value, which is 

the square-root of eigenvalues. Thus ^y characterizes the unit length eigenvectors in its true 

size and encompasses in them the information of direction as well as magnitude. 

The loadings underlying the factor structure of Y, by definition is a function of eigenvalues 

and eigenvectors. In order to estimate the loadings, we use the principal component analysis 
(PCA) that undertakes the eigen decomposition of the covariance matrix E of Y. When E is 

unknown, we estimate the sample variance covariance matrix whose elements at position i, j 

is given as 
r ýtj 

_E (yit - µ': ) 
(Yjt 

_' µ; 
) i, N (2.2) 

ý, ý T -1 t=l 
/ 

where (y; 
l, ..., y;,, ) for i=1, ..., N are each independent and identically distributed. 

In Principal Component Analysis we estimate the eigenvalues Al > A2 >__ 
... 

> AN of the 

matix E satisfying the equality 
JE-AII=0 (2.3) 

where A= (A1, A2, ..., AN)l and their corresponding vectors ß1iß2, ...,, ßN satisfying the two 

conditions 

Eß1 = )1�Q; (2.4) 

ß; ß; =1 (2.5) 
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The conditions ensure that the characteristic vectors L3 for i=1,2, ..., N are orthogonal 

to each other and are of unit length. 

The estimated vectors , ß1,02i .,, ß;, .., ON are such that the vector , ß; Y is the directional 

vector that captures the maximum variability in Y. Therefore the estimation of ß; can be 

seen as solution to the optimization problem 

max E(ß; Y Y'ß; ) 

= max 0. iE, Os 

(2.6) 

subject to the conditions ß; ßs =1 and /31Y' 1 , ß1Y' for i<j. The orthogonality condition 

between the characteristic vectors means that 

0=E 
[(ßY') (= E (0. Y'YA: ) = QEQ: (2.7) 

The Lagrangian equation to be maximized is therefore 

j-1 

Lj = Eßj - ß(ßj#j - 1) -2 OjQ3Eýj (2.8) 

where ý and 0= (¢l, 
..., ýiý_1) are the Lagrange multipliers and j=1,2, ..., N. The solution to 

this optimization problem satisfies the equation (2.4) and (2.3) and therefore the eigenvalues 

)% summarize the amount of variability captured by the corresponding eigenvector Qs. 

The factor variables can be consistently estimated in an approximate factor model frame- 

work, only in the case of large N and large T (see Bai (2003)). For term structure of interest 

rates, since the number of maturities (N) is small and fixed, the variables estimated in a 
factor model framework (such as the one proposed by Bai (2003)) cannot be consistently 

estimated. This is mainly because the factors themselves are unobserved and cannot be 

estimated consistently for the case of N fixed. 
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We estimate the eigenspace variables from the term structure indirectly, without observing 

the factors themselves. Estimating the term structure model using PCA provides us with 

consistent estimates for the factor loadings since the factors loadings are defined in terms 

of the eigenvalues and eigenvectors obtained via eigen decomposition that are consistent for 

panels with large number of observations. In the following subsection, we derive the limiting 

distributions of the eigenvalues and eigenvectors of a covariance matrix, which is Wishart 

distributed and combine the results in order to get the limiting distributions of the factor 

loadings for the case of large time dimension interest rate panels. The limiting distributions 

of the eigenspace variables are help us construct the asymptotic test statistics for evaluating 

the issue of eigensystem instability. 

2.3.1 Asymptotic properties of the eigenspace variables 

In this section, we systematize the inferential theory for the eigenvalues, eigenvectors, and 

the factor loadings that are estimated using the classical principal component analysis. Let 

Z= (Z',,..., 4) be NXT matrix such that ZZ' = (T - 1) E in equation (2.2). Therefore 

T 

ztzi (2.9) 
c_1 

where zt = (yt - yv) is the demeaned vector and zt � NN(O, E). 

Definition. (N - variate Wishart distribution) Let xl,..., x, be k-independent N- vectors. 
Suppose each xi ' NN(O, E). Let U= x1xi + x2x2 + ... + XkXk. Then U is said to have a 
N- variate Wishart Distribution with k degrees of freedom and covariance matrix E. That 
is, 

Ü^ýWN(E, k) 
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According to the above definition, E(T -1) = ýt 
1 ztzi =1 yzt yjt N WN(E, T - 1). 

Therefore 

ýNWN((T-1)-IE, T-1) (2.10) 

The density function of matrix t is 

1'-N 
III ý(T-N-2) 

e_a 
T-i trýEE'lý 

JN (2.11) 
22 N(T-1)7t ä N(N-1) Iý: I (T-1) 

i=1 

where r(. ) is the gamma function. 

The following theorem provides the rate of convergence and the limiting distribution of 
the eigenvalues and eigenvectors decomposed from a covariance matrix E. 

Theorem. (Limiting distribution of eigenvalues and eigenvectors) Let yl,..., yT be indepen- 

dently distributed, each being an N- vector of NN (0, E) . Define A= (A1, A2, ..., AN)' aNx1 

vector of independent eigenvalues and Q= (p1,02, 
..., 

ON) aNxN matrix of orthogonal eigen- 

vectors. The sample covariance matrix i; is such that t- WN ((T -1)-'E, T- 1) . Then as 
T --ºoc, 

(A - A) =O (T-1/2) (2.12) 
(p 

_ 0) = OPT-1/2) (2.13) 

where the sequence 
(A 

- A) and are independent to each other. The limiting dis- 

tribution is given by 

VT (A 
- A) -+ N(0, T) (2.14) 
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where T= diag (2\i, 2),..., 2\2) and 

ýp 
_ pý N(0, ©) (2.15) 

where 0= EN (Ut3 (9 ©, j) with 
i=l j=l 

N 

E Ai 

k=l 

'3kßk for i=j2.16 

k#i 

-Q'Q: for i 

and Utj is an NxN matrix that has 1 in the if h position and Q's elsewhere. 

Proof: see Appendix 2.7.1 

Corollary. (Limiting distribution of factor loadings) Consider Al > A2 > ... > AN and 

p1,02i ...,, 
ON as the first N ordered eigenvalues and their corresponding eigenvectors of E 

respectively. Define , ßsA "2 
= -(j as the ith factor loading vector where 'yz = (Yu, 7i2) .., ryiN)' 

and -y = (ryl, 
... ) yN) . From the theorem above, since ä{ 

-A is independent of I3j 
- , 

ß; we can 

show that 

(7 -'Y) = Op(T-112) 

\(7 Y) 
d* N(0, I') 

(2.17) 

(2.18) 

where 11 = 
>N >N (Uij ®W) where U1 is an NXN matrix that has 1 in the ijh 

i= j=1 

position and 0's elsewhere. The asymptotic covariance matrix 

aj0tij +2 lai0: for i=j 
(2.19) 

() A )'12 e4j for i0j 

Proof: see Appendix 2.7.2 
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The above corollary gives us the rate of convergence and the limiting distribution of the 

factor loadings matrix, j i. Let be the estimated covariance matrix of XF. As T -+ co, 

T. ' is consistent since it is a continuous function of the estimated eigenvalues and 

eigenvectors that are consistent. The corollary states the consistency of the estimated covari- 

ance matrix for the factor loadings, as a consequence of the continuous mapping theorem. 

In the case of estimating factor loadings in stationary approximate factor models using 

regression methods, it is well known that since the factors (Ft) are unknown and usually 

estimated via principal component analysis, the factor loadings estimated in regression are in 

fact inconsistent for the case of fixed number of cross sectional units (N). The inconsistency 

is due to the fact that there is limited information available to estimate the factors when the 

number of cross sectional units is fixed and not large. A recent paper Heaton and Solo (2006) 

evaluated the importance of using large N dimensional panels when using PCA to estimate 

approximate factor models. The paper showed that the consistency and rate of convergence 

derived for this case depend on the rate at which the cross sectional correlations of the model 

disturbances grow as N grows to infinity (that is, the rate at which the maximum eigenvalues 

of covariance matrix of the error terms grow with N). This means that for panels where 

there is an increase in the cross-correlation of the disturbances with growing N, we would 

need N really large. The implication of this finding is that the issue of inconsistency in 

finite dimensional panels is dependent on the panel data under consideration and have to be 

explored case by case. This conclusion pertains in the case of term structure of interest rates 

where the cross sectional interest rate maturities are finite. Since the inconsistency of the 

estimated factor loadings in a regression framework is induced by inconsistency in estimation 

of the unobserved factors in the case of fixed N dimensional panels, we do not estimate the 

factor loadings in a regression framework but simply as an eigen decomposition problem. The 

factor loadings are defined in terms of the eigenvalues and eigenvectors, which are consistent 
for panels with fixed N and for large number of observations (T). 
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2.4 Testing for instability in the eigensystem 

In this section, we formulate a series of hypotheses that will enable us to evaluate stability 

among the eigenspace variables of the yield curves. Since we are primarily concerned with 

the level, slope, and curvature factors governing the yield curves, we investigate stability in 

the eigenspace variables of the first three principal factors. 

We examine instability by testing the null hypothesis of no change point against the 

alternative of at least one change point happening at the unknown time, T. We definer as a 
fraction of the sample space T such that r= [T6] where e= [0,1]. We define the eigenvalues, 

eigenvectors, and the factor loadings for the sample split around the unknown time point r 

as 

Aa 
A= 

for t=1, ..., z for some T 
Ab fort =T+I, .., T 

ß; 
,j= 

= 1, ..., T for t 
for some r b 

, Dt fort =r+1, ..., T 

ry=m 
'ys = 

or t= 1, 
..., T 

for some T 
ryb fort = 7-+ 1, ..., T 

We test the following hypotheses in order to gather inference on instability in the under- 
lying eigensystem of the yield curves: 

1. Ho: Aa=Ab 
H1: AQ#Ab 

II. H0 =A; 

Hl: A 0 Ab fori=1,2,3 
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III. Ho ß; 

Hl : ßs ßb 

IV. H0: Qp=Qp 

Hl: dap ßi 
Nt 

V. Ho 7jn = yjb 

for i=1,2,3 

for i=1,2,3, and p=1,2, ..., N 

Hl :y 76 'y for i=1,2,3 

VI. Ho : y; =ybandyj' =yjb 

H1: y drys or yj" 0 ryjb 

Remarks: 

for i, j=1,2,3 and ioj 

" In testing the series of hypotheses formulated above, we aim to study the economic 

shocks causing structural changes and their impact on the eigensystem of the yield 

curves. Since the risks associated with the yield curves are summarized within its 

eigensystem, we are able to envisage which economic shocks have caused what kind of 

risks. 

" Hypothesis I tests for the stability of the overall eigensystem by testing the restriction 

on A= (A1, A2, A3)' . The result from this test would help us conclude whether there 

persist structural changes in the eigensystem of the yield curves. 

.A natural extension to this would be asking the question "What kind of structural 

changes have occurred? ". Hypotheses II, III, and V tests for instabilities in the individ- 

ual level, slope, and curvature factor magnitude, direction, and loadings respectively. 
The result from these tests would help us conclude whether the instability has been 

induced by level breaks, slope breaks, or rather curvature breaks. The corollary to this 

test would be to understand the risks associated with level, slope, and curvature shocks. 
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9 Hypothesis IV relates to testing for instability in each factor, and understanding which 

interest rates have experienced structural changes, causing the instability. 

" Hypothesis VI, unlike the previous ones, tests for common structural changes in factors. 

Since the level, slope, and curvature factors are correlated, the test tries to capture 

change points in one factor that might ripple into the other factors causing common 

change points in all factors. 

In what follows, we develop the stability test statistics for evaluating the six hypotheses 

formulated above. Define II = (A, ß, ry) as the parameters. Let ft' and IIb be the consistent 

estimators of HI and II6. The limiting distribution of 11 for the restricted sample space before 

the break and after the break, given the change point T is 

Äa-A N(0, T°) 

ý/T 
(IIa 

- II) = ßßa - /3 -º N (0, (2.20) 

7a-'Y N(0, ` a) 

and 
Ab-A N(o, rb) 

, /T (II° 
- II) =J pb 

-p -º N (0, Gb) (2.21) 

ib _f N (0, fib) 

where the superscript a and b denote estimation from restricted sample before and after the 

break respectively. The associated covariance weighting structure Ta = E°, Tb = E, ©° = 
ea jb =eE6= E' and 1b =E We have derived the limiting distribution of these 

eigenspace variables in previous section. 

In testing the hypothesis I, we construct the Wald test statistic under the null hypothesis 

of no structural change in A against the alternative of at least one structural change in A can 
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be constructed as under: 

Wj (Tý ((na - A) - 
(Ab - A))' 

* 
iZ' [(T°) + (rb)] -1 Z 

[(Ia) + (Ib)] 1 ((Aa 
-- A) - 

(Ab 
-AJJ (2.22) 

where Z-N (0, ja + 'Y'b) 

Define 'Y' = ?a+T where ^k is positive definite. Using Cholesky decomposition, we have 

T= LL' and I-1 = L-1L-1i where L is a lower triangular matrix with strictly positive 

diagonal entries. Premultiplying Z by the inverse of L, 

L-1Z N (o, L-'rL") 

=N (0, L-1LL'L-") 

=N (0, I, ) 

Therefore using this result, we can show asymptotically 

WI(T) a+ Z''Y'_1Z = Z'L-"L-1Z = Q(r) (2.23) 

where for a given T= [Te], Q (T) - x2 (q) with the degrees of freedom q corresponding to the 

number of restrictions being tested. Thus the distribution of our test statistic under the null 
is asymptotically pivotal. 

Since the eigenvectors and the factor loadings are also asymptotically Normal, we can 

test all the other five hypotheses using the statistic W(7-), which when normalized with their 

respective asymptotic variances, can again be shown to converge to a chi-squared as above. 

The form of the Wald statistics corresponding to the five hypotheses are given below. 
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(ab)2 

WII (Z, T) 26 
(2.24) 

[(2 
` /6/ + 

(2()2,1_E)] 

LG 
j_ai +ba WIII ýZ 

ýTý= 
(Nti 

- ýi) Diý 
0i- 

ýi 
) 

(2.25) 

2 
ip) 

Wlv (i, p, -r) `ý 
a-p6 

where ©. 
PP is ppth position of matrix GI., s= . ý6) 
I is 

WV (j, T) = 
(y; 

- yb)I 
{+]' 

is 
(ryf 

- fib) (2.27) 

W2T+ 
ý6 

/\7+ ý/ ryi _ yb 
2.2Ö 

VI(, 
. 
ýý )abab, 

a, }ab +Im. ýý33 
331 7ý -7ý 

Note that the Wald test derived in the above framework are equivalent to the F test 

or Chow type tests. One could also use the Langrange Multiplier (LM) or the Likelihood 

Ratio (LR) tests in order to test the linear restrictions. It is possible to show that Wald, LM 

and LR type tests have the same asymptotic distributions. When the date of the structural 

change is unknown but known to fall within a finite range, Andrews (1993) and Andrews and 

Ploberger (1994) introduced the "Sup j, "Expo, and "Avgj tests for the Wald, LM and LR 

test statistics and derived its asymptotic distributions. If we define the Wald test statistic as 
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W for a break occurring at time r, then 

SupW = max W (2.29) 
tl <T<t2 

1 
t2 

+1LW 
(2.30) AvgW = t2 - tl 

l 

1 t' (w)] 
ExpW = In 

t2 tl exp (2.31) 
T=t1 

where the breakpoint r lies between tl and t2 such that tl = [Tel], t2 = [Te2], tl 34 t2i e2 = 

1- El, and tl is bounded away from zero and t2 is bounded away from boundary, T. This 

condition is required since the proposed test statistic is unbounded in limit at the boundaries. 

Andrews (1993) suggested the restricted interval tl = 0.15T and t2 = 0.85T such that el and 

e2 lies in the interval [0.15,0.85] and T denotes the number of observations in the sample. 

Therefore the test statistics does not capture the breakpoints occurring at the end of sample. 

Under the null of no structural change, according to the continuous mapping theorem the 

asymptotic distributions of the test statistics converge as follows: 

SupW -+ max Q(E) (2.32) 
El GEGEN 

AvgW J 
Eý 

Q(e)de (2.33) 
E1 

ExpW -d º In IJ 
E2 

exp 
(Q()) 

de] (2.34) 
L E1 

where if we know the break point fraction e, Q(E) will be X2 (q) with the degrees of freedom q 

corresponding to the number of restrictions being tested. In the GMM estimation framework, 

Andrews (1993) and Andrews and Ploberger (1994) provide the critical values for Sup, Avg, 

and Exp of the Wald test statistic using Monte Carlo simulation. The Monte Carlo criti- 

cal values provided by Andrews and Ploberger break down under various circumstances as 
documented by Diebold and Chen (1996), Hansen (2000), and O'Reilly and Whelan (2005). 
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O'Reilly and Whelan (2005) proposed a wild bootstrap approach for generating critical values 

for the Sup statistic in dynamic time series models. 

In providing inference on the eigensystem stability, we rely upon the test statistic distri- 

bution obtained using the bootstrap methodology. In this, we bootstrap the space vector of 

N maturities by resampling across time. 

Insert Table 2.1 here] 

It is well established that the bootstrap procedures provide much accurate and reliable 

inferences than asymptotics based inferences. Andrews (1993) and Andrews and Ploberger 

(1994) provide asymptotic critical values for the Sup, Avg, and Exp of optimal tests based on 

a regression type framework. We know that the principal component analysis provides a dif- 

ferent solution than the least squares solution, in which the least squares problem minimizes 

the vertical distance between the points and the principal component analysis problem min- 

imizes the orthogonal distances between the points. The following diagram tries to explain 

this notion: 

[Insert Figure 2.8 here] 

Since the estimation framework developed in this chapter is based on orthogonal rotation 

of axes and different to the regression type framework in Andrews' papers, we use the boot- 

strapped critical values rather than asymptotic critical values provided by Andrews. Since 

the Wald test statistic is asymptotically pivotal, the asymptotic distribution of the test sta- 

tistics does not depend on a particular data generating process under the null. Therefore 

bootstrap distribution can consistently estimate the asymptotic distribution of the test sta- 

tistics and provide more reliable inference than asymptotically based inferences by removing 

the finite sample biases. Davidson and MacKinnon (1999) find that for asymptotically pivotal 
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test statistics using critical values from the bootstrap will produce smaller size distortions 

(reduced by an order of T'1/2) than when using the critical values obtained from the first 

order asymptotics. Using the bootstrapped critical values, one may be able to mimic the 

skewness and kurtosis of the empirical distribution that is not captured by the first order 

limiting distribution. 

In order to construct the bootstrap distribution of the test statistics, we undertake the 

following steps: 

1. For a given value of e, the break fraction and a, the significance level, randomly draw 

the vector of maturities from the TxN term structure data in order to construct the 

TxN bootstrapped data. 

2. Then construct the covariance matrix for the bootstrapped data and conduct the prin- 

cipal component analysis in order to estimate the eigenspace variables A, %3, y. 

3. Compute the Wald statistics Wk (.,, r) for k=1,2,... 
' 6 and calculate the Sup, Avg, and 

Exp of the Wald statistics. 

4. Repeat steps 1 through 3 for BR number of bootstrap replications. 

5. Determine the c% bootstrap critical value for Sup, Avg, and Exp of the various Wald 

statistics. 

A set of Monte Carlo experiments are conducted in order to study the finite sample prop- 

erties of the tests proposed. The simulation results with 5000 Monte Carlo runs and 500 boot- 

straps show good size (at 5% significance level) and power properties for varied cross sectional 
dimension panels (N = 5,10,20), with three possible change points (ir = T/3, T/2,2T/3), 

and three possible break sizes generated from different intervals of the uniform distribution. 

Overall, we find that the empirical size of the bootstrap tests is very close to the nominal 

size in the case of Sup, Avg, and Exp of almost all of the six Wald type test statistics. In 
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the case of testing the curvature factors, we find under-sizing for small N. However, we see 

substantial size improvements as N increase. In terms of power performance, we find that 

the test statistics WI () , WI, (), W111(") , Wv () and Wvj (") show power essentially close to 

one. The test statistic Wiv (") however show low power in evaluating the curvature factor 

for small N and small structural change magnitudes. There is however power gain as the 

magnitude of structural change increase. The full set of results is presented in chapter three. 

2.5 Empirical results 

2.5.1 Data 

We use the term structure of US zero coupon bond yields obtained from Datastream. The 

term structure of zeros are extremely useful in fixed income applications such as pricing bonds, 

swaps, and other fixed income derivatives; financial engineering the interest rates exposures; 

obtaining the forward rate curves, par yield curves; and so on. Thus understanding the 

stability issues of the factors governing the zero coupon yield term structure will provide 

an explanation to possible problems encountered in statistical modelling techniques such as 

principal component analysis and factor analysis commonly used in literature. Table 2.2, 

summarizes the datasets used in the previous studies that directly or in passing evaluates 

term structure stability. 

[Insert Table 2.2 here] 

Insert Figure 2.9 here] 

The term structure of US zero coupon bond yields from Datastream include 21 maturities 

of 3,4,5,6,7,8,9,10,11,12,24,36,48,60,72,84,96,108,120,132 and 144 months. Figure 

2.9 plots the evolution of the bond yield curve over the sample period considered. The sample 
period extends from 11 Jan 1999 to 31 May 2006, with daily frequency (1927 observations). 
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The data period covers both the period of downturn (during the technology stock boom in 

2001) and recent upswings, where the risk aversion of investors is high causing gains in the 

bond markets. The bond yields data for maturities less than three months were filtered out 

in order to reduce the market microstructure effects and avoid liquidity issues. On the same 

note, we use the five day change in yields or the five day holding period returns in order to 

perform the eigen decomposition on its covariance structure as recommended by Lardic et 

al. (2003) and as commonly used in factor analysis literature of term structure of interest 

rates. Working with changes rather than levels allow us to reduce the high autocorrelation 

and work in a stationary framework. 

2.5.2 Stability testing results 

Table 2.3 records the results from implementing the Sup, Avg, and Exp test statistics for the 

six hypotheses formulated above along with p-values in italics. The tests are evaluated for 

significant structural changes within the restricted sample period [0.15T, 0.85T] . 
We avoid 

the boundaries since the test statistic will produce unstable results at the boundaries as 
documented by Andrews (1993). We test the linear restrictions of equality in eigenspace 

variables for a given change point occurring at time rr using the Wald test. In practice since 

we do not know this change point r, we calculate the weighted statistics Sup, Avg, and 
Exp for all possible change points within the restricted sample period. The conclusions are 
drawn only when the results from all the three weighted statistics Sup, Avg, and Exp are in 

agreement with each other. 

Insert Table 2.8 here] 

Investigating stability in the overall eigensystem 

Evaluating the weighted test statistics for tier (? -) , we reject the null in favor of the al- 
ternative that Aa 34 Ab. Thus the Sup, Avg, and Exp test statistics of Wf (r) infer that 
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significant changes persist in the eigensystem of the yield curves. Instability in the vector of 

eigenvalues would mean structural instability in the variance process governing the factors. 

The instability detected has also been concluded in literature by Bliss (1997), Andrino et al. 

(2005) among others. 

It is worth mentioning that the conclusions on instability in the factors governing the 

volatility are indeed different to the conclusions drawn in this chapter where we evaluated 

the volatility governing the factors. The distinction lies within the fact that the information 

extracted (using eigen decomposition) from the covariance matrix of the yields are different 

than the information summarized in the covariance matrix of unobserved volatility. In regard 

to the latter, Perignon and Villa (2006) document the time-varying nature of the volatility 

governing the factors and Bliss (1997) reported instability present in the factor volatility 

structures using graphical methods. 

Investigating stability in eigensystem of the level factor 

Evaluating the weighted test statistics for W11(1, rr) , WIII (1,, r) , and Wv (1,, r) we reject 

the null in favor of the alternative that ai 94 )i, ßi ß, and Yi Yi respectively. Thus 

according to all the three weighted measures (Sup, Avg, and Exp) for the various hypotheses, 

we can conclude that all the three eigenspace variables (eigenvalues, eigenvectors, and factor 

loadings) governing the level factor has had statistically significant structural changes induc- 

ing instability. The result differs to the graphical inferences gathered by several authors such 

as Reisman and Zohar (2004) and Fabozzi et al. (2005) who have drawn stability conclusions 
for the level factor of discount bond yields and swap rates respectively. 

In order to gauge which interest rate maturities have contributed to the structural insta- 

bility in the level factor, we evaluated the weighted test statistics for Wvjv (1, T) . According 

to all the three weighted measures (Sup, Avg, and Exp) we can conclude that the structural 
instability was common and evident in all the 21 interest rate maturities governing the level 

factor. This means that the structural change in the level factor has been caused by economic 



2.5 Empirical results 57 

shocks that eminently influenced the whole yield curve (short end as well as the long end 

maturities). 

Investigating stability in eigensystem of the slope factor 

In the case of the slope factor, we find that the eigenvalues or volatility governing the 

factor have incurred structural changes. Using all the three weighted statistics for WII (2, T) , 

we reject the null in favor of the alternative of A0A. However, by evaluating Wir! (2, T) 

and WV (2, T) we find that the eigenvectors and the factor loadings governing the slope factor 

have remained stable over time. By evaluating the weighted test statistic of WIV (2,, r) for the 

slope factor, we can find that the short term interest rates (3 months - 10 months) governing 

the factor were unstable whereas the medium - long term interest rates (2 years - 12 years) 

governing the factor were tested to be stable over time. The test results for the slope factor 

do not concur with Reisman and Zohar (2004) that document stability of the slope factor. 

In light of the results, we can infer that the instability of the slope factor lie in the volatility 

governing the factor structure and since the eigenvalues and eigenvectors have a one to one 

correspondence with each other, we can infer that the instability in the volatility of the slope 

factor is caused due to economic shocks causing structural changes within the short term 

interest rates. 

Investigating stability in eigensystem of the curvature factor 

In the case of testing for instability in the eigenspace variables of the curvature fac- 

tor, we find similar results to that of the slope factor. Using the Sup, Avg, and Exp for 

W11(3,7), WII1(3, i-), and WV (3, T) we find that the curvature factor eigenvalue (volatility) 

has been subject to statistically significant structural changes but the corresponding eigen- 

vectors and factor loadings have remained stable through time. By evaluating stability in the 

interest rates governing the curvature factor (using W1 (3, r)), we find that the medium and 
long term rates (2 years - 12 years) have contributed to the structural change in the volatility 
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of the curvature factor. Unlike the slope factor, we find that the short and the medium term 

(3 months -1 year) interest rates were stable through time. In literature, Reisman and Zohar 

(2004) document marginal stability of the curvature factors using graphical tools. Again 

using visual aid, Fabozzi et al. (2005) find that the curvature factors were unstable for the 

swap rates. 

Thus we can conclude that, as in the case of the slope factor structure, the volatility 

governing the curvature factor has incurred statistically significant structural changes. Eval- 

uating the interest rates governing the eigenvectors, we find instability present in the medium 

and long end of the yield curves, unlike the case of the slope factor. Since the instability in 

the slope and curvature factors have been caused due to economic shocks influencing differ- 

ent ends of the yield curve, we can say that the slope factors are sensitive to movements and 

shocks affecting in the short rates and the curvature factors are sensitive to movements and 

shocks affecting in the long rates. 

Investigating common instability in factor loadings 

Since we have found that the eigenspace variables for the level, slope, and curvature 

factors have incurred instability and since the three factors are correlated with each other, 

the economic shocks affecting one factor could also have affected the other. Therefore we 

investigated the presence of common structural changes due to common shocks in factors. By 

evaluating the weighted test statistics of WWI (1,2,, r) we do not reject the null of presence of 

common structural changes in level and slope factor loadings. Thus we can conclude that there 

exist statistically significant change points common to the level and slope factors. Combining 

this result with the instability conclusions found for the level and slope eigenvectors, we can 
identify the common sources of instability within the level and slope factors as the economic 

shocks that have caused structural changes in the short term interest rates (3 months - 
10 months). For testing the common instabilities in level and curvature factor loadings, 

we cannot infer the presence of common structural changes since the Sup, Avg, and Exp 
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for WTI (1,3,, r) provide variant conclusions. In the case of evaluating common instabilities 

present in the slope and curvature factor loadings, we reject the null of the test statistics 

WvI (2,3, T) in favor of the alternative of no common structural changes between the slope 

and curvature factor loadings. Thus we can conclude that the slope and curvature factors 

behave dissimilarly to economic shocks that may cause structural instabilities in them. This 

result corroborates with the above findings that the slope and curvature factors are sensitive 

to economic shocks influencing different ends of the yield curve. 

2.6 Conclusion 

This chapter explores the important question of whether the yield curve factor structure is 

stable through time. Several authors have either assumed stability or relied upon graphical 

analysis to make inferences. We propose a formal testing procedure and evaluate its as- 

ymptotic properties. We formulate six hypotheses for statistically evaluating the stability in 

the eigenspace variables (eigenvalues, eigenvectors, and factor loadings) governing the level, 

slope, and curvature factors of the yield curves. We then formally test for stability of the US 

zero coupon bond yield factor structures between January 1999 and May 2006. 

We find that the overall variance process governing the first three factors of the yield 

curves were unstable over time. Previous literature documents the time-varying volatility of 

yield factors; see for example, Perignon and Villa (2006). Our results corroborate that but 

further, we also find abrupt fluctuations (instabilities) present in the factors, captured by the 

Wald-type testing procedure. We find that even if the volatility (eigenvalues) of factors were 

unstable, the linear relationship (factor loadings) of slope and curvature were stable. 

To summarize the results; for the level factor, we find structural instability in all the 

eigenspace variables. Structural changes affecting all the interest rate maturities in the term 

structure panel fostered instability in the factor structure as well as the volatility explained 
by the factor. In the case of the slope and curvature factors, we find that the variances 
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accounted by the factors incur structural instabilities. However, we find the eigenvectors 

and loadings have remained stable through time. Therefore we can conclude that the slope 

and curvature factor structures have remained stable; though the volatility associated with 

the factors are unstable over time. The instability in the volatility of the slope factor is 

caused by instability affecting only the short term maturities (3 months -1 year) whereas 

in the case of the curvature factor, the instability in the volatility of the factor is caused by 

instability affecting only the medium and long term rates (2 years - 12 years). In investigating 

the presence of common structural changes in factors, we find statistically significant breaks 

common to level and slope factors and no statistically significant common breaks in the slope 

and curvature factors. 

In concluding instability in factor structure, we allude to the limitations of the imple- 

mented test procedure, which is that the test is non-constructive. The implemented test 

procedure tests the null hypothesis of no change point against the alternative hypothesis of 

more than one change points. In this, the conclusion of instability would provide us with 
little information about the date of the break, and the number of breaks. However, in con- 

structing several hypotheses on stability in interest rate maturities governing the factors, we 
have gathered inference on the source of the instability. Though the graphical techniques 

motivate towards structural changes, the statistical test introduced in this chapter provide 
inference on the statistical significance of those changes observed. For further work, one can 

conduct several break tests on the factors using multiple break techniques proposed by ßai 

and Perron (1998). 

While this chapter evaluated the stability of PCA factors - level, slope, and curvature, 
for future work, one can also study the stability issues in factors estimated using the popular 
function-based Nelson-Siegel factor model as parameterized by Diebold and Li (2006). 
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2.7 Appendix 

2.7.1 Proof to Theorem 

The results mentioned in this theorem have been proved almost simultaneously by Girshick 

(1939), Hsu (1939), Fisher (1939), Roy (1939), Mood (1951), Anderson (1963) and widely 

presented in advanced multivariate statistics books. For the proof, we refer the reader to any 

of the above papers or book by Anderson (2003, pp. 546). Here we would sketch the proof to 

equation (2.12) and (2.14) alone. 

To prove equation (2.12) and equation (2.14): 

Consider the covariance matrix t such that (T - 1)E - WN (E, T- 1) where 

T111t 1 zizt and zt N NN(O, E). Multiplying by ß, ß; where ßß=I, we define 

(T -1)ü = (T -1) f3 ß1 N Wi (Ai, T- 1) for i=1,2,..., r 

Define V*_ (T - 1) V so that V* " Ai " x2 (T -1) . Therefore the moments E (Y) 
=A 

and Var (i; ) 
= 2a;. 

Since zrs are iid, we can represent 

T 

V" where Vi N TV, (a;, 1) 
t=i 

As T -º oo, using the multivariate central limit theorem, 

( 1) (ýi 
- 7, 

T 
1 
A. 

) a%N ý0,2A2ý 

" 
ITT 1) 

(V -TT lat) -dºN(0,2A ) 
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Since T1 --+ 1 for T -º oo, we can get Op(T'1/2) order of convergence 

VTT (V 
- a; ) a-º N (0,2As 

Here V= ßiEßi is the eigenvalue estimated from the sample covariance matrix E. This 

proves equation (2.12) and (2.14). 

2.7.2 Proof to Corollary 

We know from the theorem that as T -+ oo, 

(A; 
- A1) d-, N (0,2Ai2) 

and 

where 

Q3- 
, pc) a) N(0, ©sti) 

\0`-a'/ 
(k1-ß2)) -N(O, O3) 

N 

'\i L, (a- 
ßkßk for i-j 

©ij k=i kOi 
for i ,ýj 

We define the error in estimation of the eigenvalues 
('i 

- a; ) as cai and the error in 

estimation of the eigenvectors 
(, Q; 

- ii; ) as sß;. Note that E (sa; eß; ) 0. 

X4/2 = (A +ýý; )1/2 = Ai/2 (1 + A) 
1/2 

. Using Taylor expansion up to the first order, 
ä; /2 

= A"2 (1 +2)+ op (1). 
`Therefore 

we can write A; /2 
-- Aý/2 =1 Since we know 
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the limiting distribution of the ea;, we have 

fl (51/2 
- aq /2) d 

-, N 
(0,2 

A) (2.35) 

la;. Therefore we can write We define äi2 
- A; /z - 

ýi 
/2Qi 

= 
(ýi /2 + gai) (ß, + Cßi ) 

= a4 /2, ßi + \! /26 
Qi + ,O jai + ! A; epi (2.36) 

Therefore 
V2ß, 

- Ai /2#f 
= Ai /2COi + ß{e%i + Ei1tiCYi 

1f2 
We know, sp, = Op(T'lfz), gai = Op(T-lfg) and Op(T-1). Therefore ä; ß; - 

0,, (T-1/2) 
. This proves equation (2.17). 

From the above, vlT- 
(Ah/2e) ý-º N(o,, \s®as) and VT d+ N (0,2Aß: ß; ) 

Define X= A21 and Yl = ß; e),;. From the above, we know that X+Y have a 

limiting distribution that is Normal. The first moment of the distribution is E(X + Y) = 0. 

The second moment (variance) can be calculated as follows: 

E((X+Y)(X+Y)') =E[X'X]+E[Y'Y]+E[X'Y]+E[Y'X] 

We know E [X'X] = as®;;, E [Y'Y] = 2A; Q; Q;, E [X'Y] =E [Y'X] =E 
1\I/Icoýeý,, pýý _ 

Aq'2E [ýQ; ex ]ß=0. Therefore, E 
[((i/2es) 

+ (p`ýA )) ((xh/2eßi) + (ß A1)l Aie" + 

A1ßß; 

Therefore 

i 
Ai /2ß) DN 

(o, 
Aieii +2 A1ß{ß) +Q+ 0"(1) 
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where * (Z>; cp, ) -a ºQ where Q is a distribution of the product of two mean zero indepen- 

dent normal variates. As T --º oo, the effect of Q is Op(T-1/2) is negligible and therefore 

VrT- 
(ýil2Qi 

` \i/2ßi) -_ 
d iv 

(0, 
)i®ii + 2Ai#ißi/ 

This proves equation (2.18). 

The asymptotic covariance matrix for (ji - 7j) (rye - yj) ,ij: 

Cov ((7i 
- 7'i) I 

(yj 
` l'9)) 

- E[ %-yi)-71(7. 
i-71) 

=E[. ýä ý2Qt (A1121 
- . 11 Q2ß) ]-E [Ai /2ß (A112 ßj - )1/2ß)] 

= I-II 

1/2 
Substituting for the estimators of ýi for l=i, j, we solve the two parts below: 

I: 

1/2 l E {A"2, (A"2 Qý 

=E 
[a, /2Q: ++ßA; + ea: EQ: 

ýýý/2Q, + A, /26ß. 

E [1/2A1/2] 

II : 

E 
[1/2ß 51 /2Nj 

- Aý'2 

=E 
[a; /2ß (%j/2ßj +%j/2Epj ý-, OjEXj -I-EaI eßf - i1ý/Zßj 

=0 
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Therefore 

Coy (7j - -yj)) =E 
{/2Ay2ßß] 

ýqý2A"2p1j 
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TABLE 2.1. Bootstrapped Critical values. The table 
the bootstrapped distributions of Sup, Avg, and Exp c 
(WI (T), W77 (i, T), W111(i, 7), Wjv (i, r), Wv (i, r), Wv1 (i, r)) a 

ses formulated in equations 2.23 - 2.28. The critical values 
hypotheses of stability in the eigenspace variables against 
of atleast one point of instability in the eigenspace variabl( 
significance level, a=0.05. 

reports the critical values of 
)f the test statistics W (T) = 
ssociated with the six hypothe- 
correspond to testing the null 

the alternative of the presence 
as for parameters e=0.15 and 

Testing overall system Testing the IRs governing the level factor 

wr (*) 
Sup Avg Exp 

0.10647 0.016155 -0.6376 

Testing the level factor 

Sup Avg Exp 
W11(1, r) 0.027513 0.004888 -0.6485 

W111(1, r) 0.17855 0.041762 -0.61261 
Wy(1, r) 0.16094 0.039824 -0.61471 

Testing the slope factor 

Sup Avg Exp 
W11(2, r) 0.044315 0.006072 -0.64735 

Wj11(2, r) 69573 1494.9 628.23 
WV(2, r) 1.999 0.85389 0.1815 

Testing the curvature factor 

Sup Avg Exp 
Wit(3, r) 0.067158 0.008053 -0.64545 

WIII(3, r) 38165 1341.9 660.17 
Wv(3, r) 1.9993 0.79494 0.1429 

Testing the common factors 

W, (1,1, r) 
WIv(1,2, r) 
Wiv (1,3, r) 
Wiv (1,4,, r) 
Wlv (1,5, r) 
W, v(1,6, r) 
WIV(1,7 r) 
Wiv (1,8,, r) 
WIV (1,9, r) 

WIv(1,10, r) 
WIV (1,11, r) 
Wlv (1,12, r) 
Wiv (1,13, r) 
Wiv (1,14, r) 
Wlv (1,15, r) 
WIV(1,16, r) 
Wlv(1,17, r) 
Wlv (1,18, r) 
Wiv (1,19, r) 
Wlv (1,20,, r) 
Wlv (1,21, r) 

Sup 
0.036288 
0.029168 
0.027792 
0.04486 

0.057391 
0.065338 
0.063509 
0.056745 

0.05125 
0.047699 

0.07329 
0.062959 

0.0588 
0.054342 
0.052668 
0.049518 
0.046074 
0.044357 
0.040922 
0.040231 
0.039394 

Avg Exp 
0.00635 -0.64709 

0,005343 -0.64805 
0.005012 -0.64838 
0.008422 -0.64509 
0.010442 -0.64315 
0.011304 -0.64231 
0.010929 -0.64268 
0.009598 -0.64395 
0.008461 -0.64505 

0.00756 -0.64592 
0.011633 -0.642 
0.010263 -0.64332 
0.009607 -0.64396 
0.009161 -0.64437 
0.008919 -0.64462 
0.008384 -0,64513 
0.007915 -0.64558 
0.007526 -0.64596 
0.007315 -0.64615 
0.00722 -0.64625 

0.007005 -0.64646 

Sup Avg Exp 
WTI (1,2, r) 2.2677 0.92023 0.24683 
Wvj (1,3, r) 2.0918 0.81725 0,16398 
WTI (2,3, r) 5.5412 1.6858 1.2748 
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Testing the IRs governing the slope factor 
zoup Avg r xp 

Wlv(2,1,7) 0.051577 0.006352 -0.64708 
W, v (2,2, r) 0.12512 0.02597 -0.62804 
W, v(2,3, r) 0.077594 0.013121 -0.64057 
Wlv(2,4, r) 0.32226 0.083682 -0.57185 
Wlv (2,5,, r) 0.61571 0.17536 -0.48234 
Wiv (2,6, r) 0.85115 0.25188 -0.40749 
Wtv(2,7, r) 0.87334 0.27685 -0.38139 
Wlv (2,8, r) 0.82397 0.26617 -0.3939 
Wfv (2,9, r) 0.72726 0.2428 -0.41755 

WIv (2,10, r) 0.63881 0.21369 -0.44538 
Wtv(2,11, r) 1.9012 0.66653 0.008678 
Wiv (2,12, r) 3.6191 1.2345 0.64373 
WJV(2,13, r) 6.5092 2.0605 1.6257 
Wiv (2,14, r) 7.6617 2.3896 2.0536 
Wiv(2,15, r) 8.122 2.5765 2.2694 
Wiv (2,16, r) 7.2262 2.4504 2.0487 
Wjv(2,17, r) 5.9639 2.0917 1.6156 
Wlv (2,18, r) 4.9678 1.7805 1.2349 
Wiv (2,19, r) 4.0719 1.4843 0.88861 
W1v (2,20, r) 3.7643 1.3731 0.77263 
Wiv (2,21, r) 3.427 1.249 0.63609 

Testing the IRs governing the curvature factor 
oup Avg G'xp 

Wiv (3,1, r) 4.2162 1.3185 0.77694 
Wiv (3,2, r) 6.636 2.0783 1.7184 
Wiv(3,3, r) 5.3056 1.6169 1.1638 
Wl v (3,4, r) 2.8565 0.89162 0.28807 
W1 v(3,5, r) 1.1404 0.34882 -0.30065 
Wrv (3,6, r) 0.1145 0.028903 -0.6253 Wiv(3,7, r) 0.29948 0.085398 -0.56978 
W1v (3,8, r) 1.6242 0.47963 -0.16645 Wt v (3,9, r) 2.2641 0.74217 0.1056 

Wjv (3,10, r) 2.1419 0.70569 0.06553 
Wi v (3,11, r) 0.064511 0.016448 -0.63737 Wjv(3,12, r) 0,026064 0.005589 -0.64782 Wiv (3,13, r) 0.016456 0.003439 -0.64989 W1 v(3,14, r) 0.056857 0.014074 -0.63962 Wiv(3,15, r) 0.091825 0.023438 -0.63058 WJv(3,16, r) 0.10196 0.02641 -0.62765 WJv(3,17, r) 0.09857 0.025447 -0.62864 WJv (3,18, r) 0.094809 0.024353 -0.62966 WIV (3,19, r) 0.090232 0.022286 -0.63162 W! v (3,20, r) 0.09193 0.02293 -0.63106 Wiv (3,21, 'r) 0.091584 0.023557 -0.63049 
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TABLE 2.3. Testing results for US zero coupon bond yields. The table reports the Sup, 
Avg, and Exp values for the test statistics WI(T), Wjj(i, T), WIII(i, T), Wj (i, T), WW(i, r), 
and WTI (i, T) associated with the six hypotheses formulated in equations 2.23 - 2.28. The 
p-values are reported in italics. 

Testing overall system 
Sup Avg Exp 

Wi(r) 0.96701 0.26218 -0.38973 
0,000 0.000 0.000 

Testing the level factor 
hup . vvg rxp 

W1 1 (1, r) 0.24475 0.062922 -0.59174 
0.000 0.000 0.000 

WIII(1,7) 0.87365 0.22575 -0.43265 
0.000 0.000 0.000 

Wv(1, r) 0.70327 0.24609 -0.41435 
0.000 0.000 0.000 

Testing the slope factor 
pup fivg rxp 

W11(2, r) 0.34214 0.090797 -0.5643 
0.000 0.000 0.000 

Wjjl (2, r) 249.64 10.664 118.11 
0.817 0.793 0.817 

Wv(2, r) 1,9815 0.77043 0.11505 
0.466 0.156 0.180 

Testing the curvature factor 
zup Avg Gxp 

Wjf(3, r) 0.38012 0.10846 -0.54758 
0.000 0,000 0.000 

Wjjl(3, r) 335.49 5.6174 160.9 
0.948 0.963 0.948 

Wv(3, r) 1.9899 0.44182 -0.20286 
0.541 0.478 0.572 

Testing the common factors 
Jup Avg axp 

Wvl (1,2, r) 3.4721 1.2964 0.62638 
0.000 0.000 0.000 

Wvr (1,3, r) 2.393 0.70712 0.063935 
0.000 0.150 0.185 

Wyl (2,3, r) 5.4103 1.4711 0.83286 
0.119 0.149 0.293 

Testing the IRa governing the level factor 
-0 up . vvg r; xp 

Wiv (1,1, r) 0.084479 0.008332 -0.64515 
0.001 0.028 0.028 

Wiv (1,2, r) 0.13845 0.019008 -0.63475 
0.000 0.000 0.000 

Wiv (1,3,, r) 0.087745 0.011164 -0.64241 
0.000 0.002 0.002 

Wiv (1,4,, r) 0.1796 0.031018 -0.62314 
0.000 0.000 0.000 

Wiv (1,5, r) 0.23842 0.058936 -0.59595 
0.000 0.000 0.000 

WIv (1,6, r) 0.39888 0.087758 -0.56738 
0.000 0.000 0.000 

Wiv (1,7, r) 0.52171 0.105 -0.54994 
0.000 0.000 0.000 

Wiv (1,8,, r) 0.53798 0.11548 -0.53989 
0.000 0.000 0.000 

Wiv (1,9, r) 0.48691 0.1161 -0.53983 
0.000 0.000 0.000 

Wjv(1,10, r) 0.42221 0.11239 -0.54391 
0.000 0,000 0.000 

W, v (1,11, r) 0.5422 0.078327 -0.57431 
0.000 0.000 0.000 

Wjv(1,12,7-) 0.5252 0.090457 -0.56329 
0.000 0.000 0.000 

Wrv (1,13, r) 0.49403 0.09326 -0.56105 
0.000 0.000 0.000 

Wiv (1,14, r) 0.41073 0.08511 -0.56987 
0.000 0.000 0.000 

WIV(1,15, r) 0.3606 0.08916 -0.5662 
0.000 0.000 0.000 

WJv (1,16, r) 0.3292 0.086432 -0.56912 
0.000 0.000 0.000 

W1v (1,1?, r) 0.30412 0.080209 -0.57535 
0.000 0.000 0.000 

Wj (1,18, r) 0.27069 0.074814 -0.5807 
0.000 0.000 0.000 

Wfv (1,19, r) 0.24245 0.06894 -0.58645 
0.000 0.000 0.000 

WIv (1,20, T) 0.2327 0.064932 -0.59037 
0.000 0.000 0.000 

WIV (1,21,, r) 0.22566 0.060909 -0.5943 
0.000 0.000 0.000 
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Testing the IRs governing the slope factor 

,5 up Avg mxp 

Wiv(2,1, r) 0.18589 0.033578 -0.62067 
0.000 0.000 0.000 

Wiv(2,2, r) 0.33459 0.060201 -0.59436 
0.000 0.000 0.000 

W1 v(2,3, r) 0.27183 0.059894 -0.59495 
0.000 0.000 0.000 

Wrv(2,4, r) 0.79596 0.17493 -0.47831 
0.000 0.000 0.000 

Wlv (2,5, r) 1.3499 0.27752 -0.36647 
0.000 0.000 0.000 

Wiv(2,6, r) 1.6302 0.32541 -0.31064 
0.000 0.002 0.001 

Wjv (2,7, r) 1.5131 0.29581 -0.34281 
0.000 0.033 0.013 

Wrv (2,8, r) 1.5473 0.27801 -0.36074 
0.000 0.036 0.021 

Wiv (2,9,, r) 1.3915 0.23797 -0.40494 
0.000 0.053 0.032 

Wiv (2,10, r) 1.1574 0.19343 -0.45422 
0.000 0.077 0.060 

W1 v(2,11, r) 1.5084 0.27769 -0.37404 
0.278 0.465 0.490 

W1v(2,12, r) 2.5622 0.48654 -0.12241 
0.394 0.478 0.514 

Wfv(2,13, r) 4.7042 0.87814 0.46817 
0.283 0.443 0.471 

W1v (2,14, r) 5.4103 1.0661 0.79033 
0.285 0.431 0.426 

Wiv (2,15, r) 5.7059 1.2922 1.0658 
0.304 0.384 0.375 

Wrv (2,16, r) 5.9104 1.265 0.99521 
0.201 0.379 0.370 

Wlv (2,17, r) 5.421 1.1148 0.7536 
0.128 0.384 0.379 

Wl v (2,18, r) 4.7358 0.95788 0.51804 
0.087 0.397 0.389 

Wfv (2,19, r) 4.0563 0.81108 0.30857 
0.053 0.402 0.397 

WJv (2,20, r) 3.6786 0.75652 0.23197 
0.070 0.400 0.402 

Wlv (2,21, r) 3.2564 0.69068 0.14226 
0.107 0.402 0.406 

Testing the IRs governing the curvature factor 
up vg xp 

Wrv (3,1, r) 3.2792 0.092784 -0.50577 
0.952 0.938 0.940 

Wiv (3,2, r) 4.8078 0.1234 -0.36822 
0.595 0,942 0.940 

Wtv (3,3, r) 3.8986 0.13472 -0.44289 
0.468 0.930 0.937 

W, v (3,4, r) 2.5426 0.10303 -0.52279 
0.177 0.922 0.920 

Wiv (3,5, r) 1.0262 0.067277 -0.58338 
0.141 0.858 0.863 

Wiv (3,6, r) 0.15693 0.019444 -0.63427 
0.004 0.165 0.163 

WIv (3,7, r) 0.31938 0.009214 -0.64412 
0,029 0.933 0.933 

W1v (3,8, r) 1.3524 0.025804 -0.62289 
0.185 0.949 0.948 

Wiv (3,9,, r) 2.0552 0.044823 -0.59434 
0.155 0.946 0.945 

Wrv(3,10, r) 2.0115 0.053352 -0.5844 
0.124 0.940 0.999 

W1 v (3,11, r) 0.23199 0.06061 -0.59451 
0.000 0.000 0.000 

Wiv (3,12, r) 0.50206 0.058314 -0.59496 
0.000 0.000 0.000 

Wtv (3,13, r) 0.53585 0.046009 -0.60558 
0.000 0.000 0.000 

W1v(3,14, r) 0.077917 0.011581 -0.64201 
0.004 0.102 0.102 

Wtv(3,15, r) 0.20318 0.038946 -0.61529 
0.000 0.004 0.004 

W1v(3,16, r) 0.39983 0.069968 -0.58369 
0.000 0.000 0.000 

Wiv (3,17, r) 0.52036 0.089416 -0.56384 
0.000 0.000 0.000 

Wrv (3,18, r) 0.56755 0.097685 -0.55579 
0.000 0.000 0.000 

Wiv(3,19, r) 0.58345 0.10417 -0.54988 
0.000 0.000 0.000 

Wiv (3,20, r) 0.55312 0.10467 -0.54966 
0.000 0.000 0.000 

Wtv (3,21, r) 0.51483 0.10014 -0.55433 0.000 0.000 0.000 
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FIGURE 2.1. Evolution of the three principal factors across three subsamples. The line 

charts plot the first three principal components and the column charts show the percentage 
variations explained by those factors for the three subsample periods: Jan 1999 - Jun 2001, 
Jul 2001 - Dec 2003, and Jan 2004 - May 2006. 
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FIGURE 2.2. Short term rates and principal axes for the whole sample period and the three 
subsample periods. The dashed line depicts the first principal axis and the continuous line 
depicts the second principal axis of the short rates considered for the whole sample period 
and the three subsample periods: Jan 1999 - Jun 2001, Jul 2001 - Dec 2003, and Jan 2004 - 
May 2006.. The two orthogonal axes are fitted onto the scatter plot of the three month and 
six month yield changes data that proxies the short end of the yield curve. 
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FIGURE 2.3. Medium term rates and principal axes for the whole sample period and the 
three subsample periods. The dashed line depicts the first principal axis and the continuous 
line depicts the second principal axis of the short rates considered for the whole sample period 
and the three subsample periods: Jan 1999 - Jun 2001, Jul 2001 - Dec 2003, and Jan 2004 - 
May 2006.. The two orthogonal axes are fitted onto the scatter plot of the three month and 
six month yield changes data that proxies the short end of the yield curve. 
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FIGURE 2.4. Long term rates and principal axes for the whole sample period and the three 

subsample periods. The dashed line depicts the first principal axis and the continuous line 
depicts the second principal axis of the short rates considered for the whole sample period 
and the three subsample periods: Jan 1999 - Jun 2001, Jul 2001 - Dec 2003, and Jan 2004 - 
May 2006.. The two orthogonal axes are fitted onto the scatter plot of the three month and 
six month yield changes data that proxies the short end of the yield curve. 
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Forward Recursive Scheme (FRS) Plot for the Eigenvalues 
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Forward Recursive Scheme (FRS) Plot for the Eigenvectors 
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Forward Recursive Scheme (FRS) Plot for the Factor Loadings 
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OLS Estimation 

FIGURE 2.8. Illustration diagram that shows the difference between the Principal Component 
Analysis (PCA) and Ordinary Least Squares (OLS) estimation methods 
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Chapter 3 

BOND YIELD FACTOR STABILITY TEST VALIDATION 

ABSTRACT 

Factor structure stability in the case of US zero coupon bond yields have been evaluated 

in chapter two. Several hypotheses were formulated and bootstrapped critical values were 

used in order draw inferences on stability in the eigenspace variables governing the factors of 

the zero coupon yield curves. The goal of this chapter is two-fold. First, we evaluate the size 

and power properties of the tests and provide the validity in the use of bootstrapped critical 

values for testing the eigensystem. Second, we conduct stability tests on widely used Fama- 

Bliss and Federal Reserve zero coupon bond yield term structures with daily and monthly 
frequencies and compare the results from chapter two. Further, we also consider evaluating 

stability in the short and long maturity clusters of the yield curve. 
Monte Carlo simulation results show that the bootstrap procedure well approximates the 

finite sample null distribution of the test statistics with good size and power properties. 
Conducting the stability tests on four term structures with different frequencies, we find that 

overall eigensystem of three factors are unstable, all the eigensystem variables governing the 

level factor is unstable, the long rates governing the slope factor are stable over time, and 

there is evidence of common points of instability among the three factors. In testing for 

instabilities within the short and long maturity clusters, we find unstable eigensystem for 

both clusters. 
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3.1 Introduction 

It is well known that term structure of yield curves are subject to instabilities such as struc- 

tural breaks, regime switches, and parameter inconstancies. Authors have therefore modelled 

and tested for such concerns in literature. The instabilities observed in yields can also seep 

into the factors governing these yields. There is common consensus that the three factors, 

namely level, slope, and curvature are sufficient to explain most of the variations in yields. 

Instabilities present within the factor structures would evidently mean that the dependence 

structure of these factors have incurred a structural change at some point in time. 

Instability risks present within the factor structure of yield curves have commonly been 

assumed to be nil. Since these latent factors are generally extracted using rotations such as 

the principal component analysis, authors have seemingly assumed that these rotations are 

robust to structural changes. Some authors informally test for instabilities using graphical 

analysis and conclude stability of the factors if the cumulative variations explained by the 

three factors have remained stable over time. In chapter two, we conduct a formal stability 

test on the eigenspace variables (eigenvalues, eigenvectors, and factor loadings) associated 

with the level, slope, and curvature factors. Bootstrapped critical values from the tests were 

used in order to draw test inferences. We find evidence of structural changes affecting all the 

eigenspace variables of yield curve factors. 

This chapter aims at validating the conclusions drawn in chapter two. Particularly, we 

show that the bootstrap procedure implemented by the paper well approximates the null 
distribution of the test statistics and that the bootstrap distribution converges to the as- 

ymptotic distribution of the test statistic in probability. A Monte Carlo investigation of the 

finite sample size and power performance of the tests have also been undertaken. Further, 

we validate the empirical results drawn in chapter two by considering widely used constant 

maturity zero coupon bond term structures of Fama-Bliss and Federal Reserve. In this, we 

consider term structures with daily and monthly frequencies and consider short and long 

maturity clusters governing the term structure. 
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To summarize the simulation results, we find good size and power properties for all the 

bootstrap test statistics. We find that the overall empirical size of the bootstrap tests is 

very close to the nominal size for almost all the test statistics. In examining restrictions on 

the curvature factor, the size performance of the tests shows substantial size improvements 

as the cross sectional dimensions increase. The performance in terms of power is essentially 

close to one for majority of the test statistics. In the case of test statistic Wjv (") evaluating 

the curvature factor, we find low power in capturing small structural changes for small cross 

sectional dimension N panels. However we find power gain as the magnitude of structural 

change increase. 

To summarize the empirical findings for bond yield curves, we find the overall eigensystem 

unstable for the three factors independent of the term structure analyzed. All the eigenspace 

variables governing the level factor have been unstable in all term structures considered. The 

long rates governing the slope factor has remained unstable across all term structures. In 

investigating common structural change points, we find that within the five term structures 

considered, three conclude the presence of common change points within level, slope, and 

curvature. 

The chapter is organized as follows. In section 3.2 we summarize the stability testing 

procedure implemented in chapter two. Section 3.3 presents the bootstrap algorithm used 

to approximate the null distribution of the test statistics. We provide an outline of the 

consistency for the bootstrap procedure and show that the bootstrap methodology for pivotal 

test statistics provides refinements to asymptotic approximations. In section 3.4 we carry out 
Monte Carlo simulations in order to investigate the performance of the bootstrap test statistics 
in finite samples. In section 3.5 we investigate stability in four different zero coupon bond 

yield term structures commonly used in literature and discuss the testing results. Section 3.6 

discusses stability analysis in the case of term structures with correlation clusters and conducts 

stability tests on the short and long maturity clusters separately. Section 3.7 concludes. 
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3.2 Estimation and testing framework 

Consider the optimization problem governing the principal component analysis 

max , 
ß; Eß (3.1) 

subject to , Q; ßß =1 and /3 Y' 1 QTY' for i, j=1, ..., 
N and i<j 

where E the covariance matrix of a stationary NxT panel Y. The estimated matrix 3= 

A) ß2, ., 
ß;, .., ßN) is such that each vector ß; Y' (i = 1, ..., N) is the directional vector that 

captures the maximum variability in Y and are orthogonal to each other. The solution to this 

optimization problem satisfies the eigen-decomposition system 

Epj = a; pti (3.2) 

where )i are the ith eigenvalue of the matrix E and ßj the corresponding eigenvector. Hence 

the eigenvalues A= (A1, A2) ., A;, .., AN) summarize the amount of variability captured by 

their corresponding eigenvectors. The framework pertains to the classical PCA framework, 

allowing for the cross-sectional correlation among units. Thus the framework is comparable to 

the approximate factor models originally introduced by Chamberlain and Rothschild (1983). 

We define the ith factor loading of matrix E as 

1/2 (3.3) 

The factor loadings matrix y= (yl, 72)')Y0 ..., yN) load the factors on to the variables, 

explaining the correlation between the factors and the variables. The factor loadings matrix 

y is computed as the unit length eigenvectors matrix multiplied by its singular value, which 

is the square-root of eigenvalues. Thus it characterizes the unit length eigenvectors in its true 

size and encompasses in them the information of direction as well as magnitude. 
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We formulate six hypotheses for testing the stability of the eigensystem around the un- 

known breakpoint r that splits the sample into two subsamples: subsample a and subsample 

b. The parameters A,, 3, -y are estimated for the two subsamples a and b (denoted in super- 

script of parameters) and we test for the equality of the parameters. The hypotheses pertain 

to testing the null of stability against the alternative of instability induced by one or more 

structural breaks. 1 

A Wald type statistic W (r) = (WI(r), Wrl(i, T), Will (i, r), Wry (i, T), Wy(i, T), Wv1(i, T)) 

associated with the six hypotheses are formulated (as outlined in chapter two), which for a 

given value of r are chi-squared distributed. 

In testing the hypotheses, since the break point r is unknown, we use the three commonly 

used weighted measures Sup, Avg, and Exp for the Wald test statistics W (, r) 

Ws (r) =t max1W (r) (3.4) 

e, 1 
WAv9 (r) = t2 - tl +ZW 

(r) (3.5) 

1 t' 
WE,, p (r) = In 

tz _ tl +1 exp 
(21w 

(r)(3.6) 
T=E1 

/ 

where the change point rr is unknown but lies between tl and t2 such that t1 = [Tel], t2 = [Te2), 

tl # t2,61 = [0.15,0.85], E2 =1- El, and tl is bounded away from zero and t2 is bounded 

away from boundary, T. 

When the break point T is unknown, the weighted test statistics converge to the following 

'The tests are detailed in chapter two 
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quantities: 

WS (T) d-º 
E 
max Q (e) (3.7) 

T -ý 
Ea d 

EQ(e)de 
WA�9 () (3.8) 

1 1 

WExp (r) dº In 
f Ea 

exp 
(Q()) 

deJ (3.9) 

where if we know the break point fraction e, Q(¬) will be x2 (q) with the degrees of freedom 

q corresponding to the number of restrictions being tested. 

3.3 Bootstrap procedure 

The bootstrap method has been used to approximate the null distribution of the various 

instability test statistics proposed in the section above. In order to construct the bootstrap 

distribution of the test statistics, we undertake the following steps: 

1. Randomly draw the vector of maturities from the TxN term structure data in order 

to construct the TxN bootstrapped data, for time series dimension T and number of interest 

rate maturities N. 

2. Construct the covariance matrix for the bootstrapped data and conduct the principal 

component analysis in order to estimate the eigenspace variables A, 
ýC3, j. 

3. Compute the six Wald statistics W (r) and calculate the weighted measures; Sup, Avg, 

and Exp of W (r). 

4. Repeat steps 1 through 3 for BR number of bootstrap replications. 

The procedure generates BR number of bootstrap statistics of Sup, Avg, and Exp of 
W(T); {WSup(T)m}, 

l 1WAvg(T)+nJ, 
B, 

z_1' 
IýVEp(T)ºn }, B, 

+RI 
from the bootstrapped samples. 

We calculate the bootstrap p-value for Wsup(r), ti Ivg(-r), WExp(r) as the proportion of boot- 

strap replications that yielded a statistic value greater than the test statistic values using 
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the original data. Since we are interested in considering only the upper tail of the bootstrap 

distribution, the bootstrap p-value is 

p* =1_. F*(. ) 

where F`(") is the distribution function of the bootstrap test statistics WSuP(T), WÄ�g(T), 

WE., 
P(T). 

We determine the significance level a for the tests and reject the null hypotheses 

when the bootstrap p-value does not exceed the significance level. 

3.3.1 Validity of the bootstrap 

The Wald test statistic is asymptotically pivotal and thus the asymptotic distribution of 

the test statistic does not depend on a particular data generating process under the null. 

Therefore bootstrap distribution can consistently estimate the asymptotic distribution of the 

test statistic and provide more reliable inference than asymptotically based inferences by 

removing the finite sample biases. However, in the case of the framework above, we do not 

bootstrap the Wald test statistic but the weighted test statistics; Sup, Avg, and Exp. As 

from Andrews (1993) and Andrews and Ploberger (1994) we know that these test statistics 

are functions of partial sums processes since the time of the change point is unknown and 
depends on parameter T. The functional form of the partial sums process is implicit but 

unknown in the case of the principal component analysis framework. 

Here we use the notion of weak convergence that guarantees accuracy of the bootstrap 

approximations for large number of iterations. For a known change point T, the Wald statistics 
W (T) defined above are known to be chi-squared in limit for large time dimensions. Since the 

test statistics under the null are free of nuisance parameters, for large number of replications, 
the bootstrapped statistic 

W*(T)E. W(i-) (3.10) 
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for a given value of T where + denotes weak convergence in probability. 

Consider the weighted statistics Sup, Avg, and Exp for W* (T) that are continuous trans- 

formations of the W* (-r). According to the continuous mapping theorem, 

Wsup (7) = max W* (r) 
tl <T<t2 

-- º max Q(¬) (3.11) 
E(<E<EZ 

ty 

1 (T ) WAv9 (r) 
t t+ 1LW. 2-1T: tl 

di Ey 

Q(E)d¬ (3.12) 
f1 

t2 
exp (T)1 

(w* 
(r) = In 

t2 _ tl +1 
E 

d+ In 
Il E2 

exp IQ 
(E)) 

de I (3.13) 
l\] 

If we define F*(. ) as the distribution function of the weighted statistics Sup, Avg, and 

Exp of W* (T) given the bootstrapped data, then 

F*(") -+ F(") 

and by continuous mapping theorem 

p" = 1_F*(. ) ýº 1- F(") =p 

(3.14) 

Thus, the bootstrap distributions of the weighted measures of the test statistics provide 

a good approximation of their asymptotic distributions for sufficiently large number of repli- 

cations. 
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3.3.2 Bootstrap refinements 

It is well known that, under certain conditions, bootstrap methodology provides refinements 

to the asymptotic approximations. The size distortions or the error committed in the rejection 

probability for an asymptotic test is, in general, O(T-1/2) for one-sided tests and O(T-1) for 

two-sided tests. Based on the theory of Edgeworth expansion, one can show that, for most 

asymptotically pivotal test statistics, these errors can be further refined of O(T-1/2) or more 

under bootstrap sampling (see Hall (1996) and Horowitz (1997)). 

Consider the term structure panel data {X; j :i=1, ..., T and j=1, ..., N} from a multi- 

variate distribution with CDF denoted by G. Using the bootstrap methodology we can gener- 

ate the empirical CDF, denoted by G*. Under some regulatory conditions, G*-G =0 (T-1/2) 

almost surely. 

Let the CDF of the stability test statistics 17V(7) under the null be given by F° (za, G) = 
P (W (r) < z,, ) where W (, r) is the weighted test statistic Wsp(r), WA�9(r), WEXP(T) and za is 

the critical value from the null distribution. Suppose we approximate F° (za, G) using the first 

order asymptotic CDF F°° (za, G), we can show that F°° (za, G) converge to F° (za� G) with 

an error of size 0(T-1/2). If instead we use the bootstrapped CDF F* (zu, G*) to approximate 

the empirical CDF of W(T), using the theory of Edgeworth expansion, we can show that 

bootstrap provides further refinements, where the empirical size of the test converges to the 

true one faster than asymptotic tests. We develop this notion below. 

Consider higher order approximation (Edgeworth expansion) of F°(za, G) and F*(za, G*) 

F °(z«ý G) = F°°(z«, G) + fi (z«, G) + 
Tf2 (z«, G) +0 (T'312) (3.15) 

and 

F* (z�� G*) _ F' (z, G*) + fl (z-, G*) + 
; f2 (za7 G*) +0 (T-3ý2) (3.16) 
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where fl is an even function of za, and f2 is an odd function of za. 

To evaluate the accuracy of the bootstrap approximation, we evaluate 

F*(z«ý G*) - F° (z«, G) [fl (z«, G*) - fi (z«, G)] 

+T [f2 (zn, G*) - f2 (z«, G)] +0 (T-3/2) (3.17) 

=0 (T-1/2) +0 (T-I) +0 (T-3/2) +0 (T-3/2) 

=0 (T-1/2) 

Thus we see that the bootstrap approximations provide the same accuracy (maximum 

error of size 0 (T-1/2)), as in the case of asymptotic approximations. 

For the case of asymptotically pivotal test statistics, since the asymptotic distributions 

F°° (") do not depend on G or G* [that is, F°°(za, G*) = F°°(za, G)], 

F*(zav G*) - F°(za, G) _1 [1' (za, G*) - . 
fl (za� G)] (3.18) 

1 +'7+ [f2 (Za, G*) - f2 
(za, 

G)] +0 (T-3/2) 

=0 (T'') +0 (T-3/2) +0 (T-312 

=0 (T-') 

Thus we show that in general cases, the bootstrap provides approximations as good as 

their asymptotic counterparts. However, in the case of test statistics that are asymptotically 

pivotal, we can see that the bootstrap based tests would provide faster convergence compared 

to their asymptotic approximations. 
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3.4 Monte Carlo experiments 

In this section, we perform a simulation study to examine the finite-sample size and power 

of the bootstrap test statistics developed above. 

3.4.1 Monte Carlo design 

Below we outline the simulation study undertaken in order to study the bootstrap size per- 

formance and power properties of the stability test statistics developed in chapter two. We 

estimate the eigenvalues, eigenvectors, and factor loadings via principal component analysis 

on the covariance matrix of the simulated data. We generate independent multivariate nor- 

mal random variables with an arbitrarily chosen covariance structure. Figure 3.1 presents 

the algorithm implemented for evaluating the size and power properties of the test statistics. 

Insert Figure 3.1 here] 

In evaluating the size performance, we carry out the following steps: 

1. For a given value of T, N, T, and for a given covariance structure (E), generate a panel 

of iid multivariate normal random variables 

2. Conduct the PCA, compute the six test statistics W (7-), and calculate the weighted 

measures Sup, Avg, and Exp of W (T) 

3. Generate bootstrapped data from the simulated data, compute the six test statistics 
W (r), and estimate Sup, Avg, and Exp of W (r) 

4. Repeat step 3 BR times and estimate the empirical distribution of Sup, Avg, and Exp 

of W (T) 

5. Compute the a% critical value of the bootstrapped distribution for each Monte Carlo 

run 
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6. Compare the statistic values of the weighted measures from step 2 to the critical value 

a and determine whether the critical value has exceeded the statistic values (rejection 

frequency of the tests) 

7. Repeat steps 1-6 MCR times 

8. Compute the relative rejection frequency across all the Monte Carlo runs and this 

(empirical size) should equal a, with a Monte Carlo error occurring approximately c% 

times 

We determine the power of the test statistics as the relative rejection frequencies when the 

data generating process is generated under the alternative. In order to evaluate power, we 

carry out the above procedure but perform step two on panel of multivariate normal random 

variables, imposing for a structural change in the eigensystem. We generate data under the 

alternative hypothesis of structural change in both the eigenvalues and eigenvectors. For this, 

we impose a structural break in the covariance structure of the data. Suppose the original 

data is iid N (0, E) . For a structural change happening at time -r, we define 

IE fort = 1, ..., z 

E* for t=i-+1,..., T 

where E* = UEU where U is aNxN diagonal matrix with constants u1i ..., UN generated 

once from a uniform distribution. In assessing the power of the tests, the matrix U dictates 

the magnitude of the structural change. 

3.4.2 Monte Carlo results 

We fix the time series dimension T= 2000, and vary the cross sectional dimension N=5, 

10, and 20. We trim the sample by discarding 15% of observations at the boundaries. Within 

each Monte Carlo replications, we conduct bootstrap runs in order to estimate the empirical 
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bootstrap distribution of the test statistics and evaluate the relative size and power of the 

test statistics. The number of Monte Carlo replications (MCR) is chosen to be 5000 and the 

number of bootstrap runs (BR) is chosen to be 500. In accessing the power properties under 

the alternative hypothesis of instability, we consider structural changes occurring at three 

possible change points 7= T/3, T/2, and 2T/3 into the sample. We consider three break- 

size matrices U1 uniformly generated between the intervals 1 and 3, U2 uniformly generated 

between the intervals 3 and 5, and U3 uniformly generated between the intervals 5 and 7. 

The size and power properties are evaluated at 5% level. 

[Insert Table 3.1,3.2, and 3.3 here] 

Tables 3.1,3.2, and 3.3 report the bootstrap size performance of the weighted measures 

Sup, Avg, and Exp of the six Wald type statistics respectively. Overall, we find that the em- 

pirical size of the bootstrap tests is very close to the nominal size of 5% almost for all the test 

statistics. In the case of level and slope factors, we find that the weighted measures Sup, Avg, 

and Exp do not show any significant size distortions. The size performance is around 5% and 

for N=5,10, and 20 we find the bootstrap test statistics size remained essential very similar. 

In the case of the curvature factors, we find that the empirical sizes of the weighted measures 

Sup, Avg, and Exp vary enormously (under-sizing) from the nominal size of 5%. However, 

increasing the cross sectional dimensions N from 5 to 20, we see significant improvements in 

distortions. For N= 20 we can actually find that the size distortions are minimal with empir- 

ical sizes close to 5%. These large size improvements can be mainly spotted in the weighted 

measures of Wllr (3,, r) (testing instabilities in curvature eigenvectors), WIv (3, 
., T) (testing 

instabilities in interest rate maturities governing the curvature eigenvectors), Wv (3,, r) (test- 

ing instabilities in curvature factor loadings), Wvl (1,3, r) (testing common instabilities in 

level and curvature factor loadings), and WTI (2,3, T) (testing common instabilities in slope 

and curvature factor loadings). 

Insert Table 3.4,3.5, and 3.6 here] 
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Tables 3.4,3.5, and 3.6 report the bootstrapped power of the weighted measures of the six 

test statistics. In the case of WI (") - WIfi () and WV1(), we observe that the bootstrapped 

power of the weighted measures Sup, Avg, and Exp are essentially 100% for any magnitude of 

structural change and for changes occurring at any point within the sample. For WIC (1) *J) 

testing the level factor, we find the test performs well in terms of power for N=5 and for 

structural changes occurring towards the second half of the sample. This means that the tests 

are more likely to capture changes when the time series is large. For Wjv (2, "j) testing the 

slope factor, we find highest overall power for structural changes occurring towards the last 

30% of the sample. We observe that as N increases and the change magnitude U increases, 

the power of the slope tests increase. In the case of WIC, (3, "j) , for testing the curvature 

factor, we observe very low power for lower number of cross-sections (N = 5). The power 

of the tests increase as N increase and for higher magnitude of changes (U). For N= 10, 

we observe that the bootstrapped power is very close to one for all possible change point 

magnitudes. Further, we find very similar bootstrapped performance in terms of power for 

all the three weighted measures Sup, Avg, and Exp of the six Wald type statistics. 

3.5 Empirical validation of bond yield factor stability2 

We investigate stability in several zero coupon bond yield term structures commonly used in 

literature. We obtain the term structures from Datastream, Federal Reserve, and Fama-Bliss. 

Various approaches have been proposed in the construction of bond yield term structures. 
In estimating the yield maturities, we need a pricing function and a functional form of the 

discount rate function. Suppose we consider the pricing function, where the price of a bond 

is discounted coupon and principal payments occuring at dates k=1, 
... K. The price of a 

2I thank our paper discussant Christophe Villa at the French Finance Association meeting (Paris, Mar 
17-19,2008) who suggested to also analyse Federal Reserve and Fama Bliss term structures. 
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bond is given by 
K 

P_ 
jJ 
[ý 

Ck e-r(k). k 

kl 

Various functional forms for the discount rate function have been proposed in literature 

such as cubic splines (McCullock (1975)), step functions (Ronn (1987)), piecewise linear 

functions (Fama-Bliss (1987)), and exponential forms (Nelson-Siegel (1987)). Using different 

estimation methodologies would produce different term structures. Bliss (1996) compares the 

different forms of estimation and suggest that there is minimum estimation errors in using the 

Fama-Bliss(1987) methodology of constructing yields. Several econometric techniques have 

been proposed to estimate these functions. Fama-Bliss(1987) uses the iterative method of 

forward rate extraction. McCullock (1975) use ordinary least squares to estimate the splines. 

Datastream uses the bootstrapping methodology in constructing the unobserved yields from 

neaby maturities. 

We test for stability in the eigensystem of the yield curves using the testing procedure 

outlined above and we present the results in this section. 

3.5.1 Federal Reserve constant maturity zero coupon bond yields 

The Federal Reserve constant maturity term structure dataset includes the US yields with 

maturities 3,6,12,24,36,60,84, and 120 months over the years January 4,1982 to February 

4,2008. We use the dataset with daily frequency (6806 observations) as well as the monthly 
frequency (314 observations). This is the same dataset with monthly and weekly frequencies 

are used in the paper by Reisman and Zohar (2004) that extracts the principal factors using 
PCA and graphically validates (in)stability of the factor loadings. The paper concludes that 

the factor loadings of level and slope are quite stable, but the curvature factor changes rapidly 

over time. We conduct a statistical test on the eigenspace variables and report the results 
below. 
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Insert Table 3.7 here] 

Table 3.7 provides the stability test results for the term structure with daily frequency. 

We test the six hypotheses on the eigensystem variables and calculate the weighted measures 
Sup, Avg, and Exp of tests and present the value of the test statistic with its p-value. 
Using a significance level of 5%, we gather inference on the stability of the term structure 

variables. Testing for stability in the vector of eigenvalues of level, slope and curvature, we 
find rejection of the null hypothesis. This means that the overall eigensystem explaining the 

variance process of the term structure has remained unstable over time. Investigating stability 
in the eigensystem variables of the individual factors, we find instability in the eigenvalues, 

eigenvectors and factor loading matrices of level and curvature. In the case of slope factor, 

the eigenvector is stable and the factor loading seems to be marginally stable (p-value around 
0.05). Testing for stability in the interest rates governing the three individual factors; we 
find all interest rate maturities of level factor unstable. For the slope factor, the short end 

maturities up to 12 months have been unstable, but the long end rates were stable. Testing 

for common instability points in the factors, we find that the factors have common dates of 
instability. 

Insert Table 3.8 here] 

Table 3.8 records the stability results in the case of Fed monthly term structure of yields. 
We find the results are almost the same with the overall eigensystem unstable, all three 

eigensystem variables of the level factor unstable, presence of common break points among 
the three factors, and short rates unstable for the slope factor. Unlike the daily data, we 

now find all the three eigensystem variables of the slope factor unstable. Reisman and Zohar 

(2004) found the slope factor graphically stable over time. When using lower frequency, we 
find the long rates of the level factor have become stable. 
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3.5.2 Fama-Bliss constant maturity zero coupon bond yields 

The Fama-Bliss term structure of unsmoothed US zero coupon bond yields include 21 ma- 

turities of 3,6,9,12,15,18,21,24,30,36,48,60,72,84,96,108,120,180,240,300, 

and 360 months. The dataset extends over the period January 1970 to December 2003 (408 

observations). The dataset is widely used in term structure empirical papers for the purpose 

of forecasting (see Diebold and Li (2006)). Bliss (1997) and Perignon and Villa (2006) use 

this dataset in order to study the time-varying movements of factors in yield curves. Bliss 

(1997) evaluate the stability patterns of level, slope, and curvature factors for the period Jan- 

uary 1970 to December 1995 and find that though the factors vary in detail, the cumulative 

explanatory power of the factors have remained same over the entire period. Perignon and 

Villa (2006) studied the sources of time variation in the covariance matrices of bond yields. 

The paper found the variances (eigenvalues) have significant time variations but the factor 

loadings remain same over time. Conducting a statistical test for stability in eigenvalues, 

eigenvectors, and factor loadings, we summarize the results below. 

Insert Table 3.9 here] 

Table 3.9 presents the stability results for the Fama-Bliss term structure. We find that 

the overall eigensystem, measured by the eigenvalues of level, slope, and curvature factors, 

have been unstable. Testing for stability in the individual three factors, we find all three 

factors have unstable eigenvalues, eigenvectors, and factor loadings with the exception of the 

slope factor. The slope factor has stable factor loadings, as in the case of using monthly term 

structure from the Federal Reserve database. We find that the long end maturities governing 

the slope factor have been stable over time. This result corroborates the results found using 

other datasets. Further, we find presence of common structural changes among all the three 

factors of the Fama-Bliss term structure. 
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3.5.3 Datastream US zero coupon bond yields 

Insert Table 3.10 here] 

The term structure of US zero coupon bond yields from Datastream include 21 maturities 

of 3,4,5,6,7,8,9,10,11,12,24,36,48,60,72,84,96,108,120,132, and 144 months. We use 

daily frequency of data extending from 11 January 1999 to 31 May 2006 (1927 observations). 

Table 3.10 records the stability results using the dataset. The results are very similar to 

results presented in chapter two of the dissertation that uses weekly term structure data in 

order to carry out the empirical application. We therefore do not discuss the results here. 

3.6 Stability analysis for term structure with correlation clusters3 

In applying PCA to the whole yield curve would mean estimating the principal factors ex- 

plaining the risk profile of the whole yield curve. In this case we assume one contemporaneous 

correlation structure among interest rates. However, within a term structure, one may find 

several correlation clusters linearly or non-linearly correlated in the same way. Conducting 

PCA decomposition to term structure with multiple correlation clusters might not be able to 

pick up the true systematic yield shifts of the yield curve. 

In the case of discount bond yield curves, the nature of uncertainties influencing the short 

rates is indeed different than the ones affecting the long rates. One reason for this is the diverse 

nature and varied preferences of market participants influencing the different ends of the yield 

curve. In associating macroeconomic variables to unobserved latent factors, various authors 
have used variables such as inflation changes, business cycles, and monetary policy surprises 

that define the state of the economy. Ang and Piazzesi (2003) finds that inflation and real 

activity were significant in explaining movements along yield curve maturities up to one year. 
31 thank our paper discussant Umberto Cherubini at the Term Structure Modelling International Confer- 

ence (Verona, Jun 25-26,2007) who suggested to analyse short term and long term interest rates seperately. 
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The paper find that the macroeconomic variables explained a great deal of variations in the 

slope factor but explained less variations of the level factor. Similar conclusions were drawn by 

Evans and Marshall (2007) in which they find that the macroeconomic variables significantly 

explained not only the short and medium term yields but also the long term yields. Since 

expectations about future short rates are influenced by changes in macroeconomic variable, 

this in turn influences the movements in the long rates. Therefore the factors influencing the 

short and long rates have a dependence structure. The magnitude of variations along the 

yield curve maturities may however vary and therefore we have non-parallel shifts such as 

slope shifts and curvature shifts. 

Suppose we consider the short end and long end of the yield curve as two separate cor- 

relation clusters. We can then adapt the PCA decomposition for the two clusters in order 

to extract the systematic yield shifts governing the short end and the long end of the yield 

curve. In grouping the interest rate maturities into short term and long term maturity clus- 

ters, we essentially aim to understand the contemporaneous relationship between the factors 

governing the short and long end of the yield curve. Consider in this case portfolios whose 

positions depend on more than one underlying factor and therefore sensitive to correlations 

between those factors. An example of such portfolio would be bonds with varying coupon 

rates. Bonds with higher coupons would be more sensitive to movements in the short end of 

the yield curve than bonds with lower coupons. 

In the presence of correlation clusters, one can estimate the factors for the individual 

clusters and study the correlations between the factors extracted from the two clusters. Below 

we elaborate this notion. Consider a (p + q) dimensional vector zt = (xi, y'')' for t=1, ..., T 

where zt is partitioned into p- dimensional subvector xt and q- dimensional subvector yt 

explaining different aspects of the yield curve. Let zt be multivariate normal with zero mean 

and a covariance structure E such that 

xt 0 EXx E 

Yt 0 Evx Evv 
(3.19) 
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For given two partitions X and Y, using principal component analysis we find orthogonal 

linear transformations of X and Y independently by minimizing the sum of squared Euclidean 

distances between principal axes obtained and the datapoints. The minimization problem can 

equivalently considered as maximization of sum of squared projections onto these principal 

axes. Therefore, the maximization for the two partitions are as follows: 

arg max (ß X) (0' X)' and arg max (ß, Y) (ß''Y) ' (3.20) 
Rz 1ßz1=1 py: IpvI=' 

The constraint optimization problem reduces to the eigen decomposition problem 

ýxxNx = Azßx (3.21) 

EYA = AYOY (3.22) 

where A is the eigenvalues and 0 is the corresponding eigenvector. The solution to this 

optimization yields the first principal component for the two partitions: Ul = 0',, X and 

Vi = ß' 
,Y and the magnitude of variation explained by the first principal component for the 

two partitions is given by their eigenvalues Al and Al . This procedure can be repeated in 

order to find the successive principal components estimated with the additional optimization 

constraint that the new principal component is orthogonal to the previous one. The decom- 

position in equation 3.21 estimates Al 
, ..., 

Ap. (the ordered eigenvalues) and pax, 
..., Op. (the 

corresponding ordered eigenvectors) of Exx. Similarly, equation 3.22 estimates aly, ..., 
Agy 

(the ordered eigenvalues) and Ply, ..., I3gy (the corresponding ordered eigenvectors) of Eyy. 

3.6.1 Stability testing results 

In this section, we implement the stability testing procedure outlined in chapter two for the 

case of long and short maturity clusters. We use the term structure of US zero coupon bond 

yields including ten maturities of 3,4,5,6,7,8,9,10,11, and 12 months as the short maturity 



3.7 Conclusion 99 

cluster and eleven maturities of 24,36,48,60,72,84,96,108,120,132 and 144 months as 

the long maturity cluster. We use daily frequency of data extending from 11 January 1999 

to 31 May 2006 (1927 observations) from Datastream. 

Insert Tables 3.11 - 3.12 here] 

Tables 3.11 - 3.12 records the stability results for the two clusters. We find that all 

the three factors (level, slope, and curvature) governing short and long rates have been 

statistically unstable. In chapter two, the stability results for term structures with short and 

long rates combined conclude instability in the level factor loadings but stable factor loadings 

for slope and curvature. The implication of this finding may be interpreted as the presence 

of "Cobreaking" between clusters, which needs to be statistically tested for in future work. 
Cobreaking was first introduced by Prof. David Hendry in 1996 as a modelling technique for 

non-stationary time series, where the non-stationary property induced by location shifts can 

be annihilated by taking linear combinations of the variables (see Hendry (1996) and Hendry 

and Massmann (2007)). 

3.7 Conclusion 

This chapter evaluates the validity of the bootstrap methodology proposed in chapter two, 

which formulates several hypotheses in order to test for instabilities present within the 

eigenspace variables (namely, eigenvalues, eigenvectors, and factor loadings) governing the 

term structure of interest rates. A set of Monte Carlo experiments are conducted in order to 

study the finite sample performance of the tests proposed. Further, several commonly used 

zero coupon bond term structures have been empirically tested for robustification of stability 

results. 

From the Monte Carlo simulations, we find that the weighted measures Sup, Avg, and Exp 

of the six Wald type test statistics show good size and power properties at 5% significance 
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level. We find that the empirical size of the bootstrap tests is very close to the nominal 

size for all the test statistics. In the case of testing the curvature factors, we find under- 

sizing for small N. However, we see substantial size improvements as N increase. In terms of 

power performance, we find that the test statistics WI () - W111() and WVvr (") show power 

essentially close to one. The test statistic Wiv (") however show low power in evaluating 

the curvature factor for small N and small structural change magnitudes. There is however 

power gain as the magnitude of structural change increase. 

In summarizing the US zero coupon yield stability test results for the various datasets, 

we find qualitatively very similar results. We find the overall eigensystem of three factors are 

unstable, all the eigensystem variables governing the level factor is unstable, the long rates 

governing the slope factor are stable over time and there is evidence of common points of 

instability among the three factors. In testing for instabilities within factors governing the 

short and long maturity clusters, we find that all the factors for the two clusters have been 

statistically unstable. The implication of this finding may be interpreted as the presence of 

"Cobreaking" between maturity clusters of yield curves, which needs to be statistically tested 

for in future work. 



101 

WI(T) 

W11(1, i-) 
WII (2, 'r) 
W11(3, T) 

WIII(1, T) 
WI71(2, i-) 
W111(3, T) 

WV (1, T) 
Wv (2, T) 
Wv(3, 'r) 

Wvl(1,2,, r) 
Wvl (1,3, r) 
Wvl (2,3, T) 

Wiv(2,1, -r) 
Wiv (2,2, T) 
Wiv (2,3, T) 
Wiv (2,4, r) 
Wiv (2,5, r) 
Wiv(2,6, T) 
Wiv (2,7, T) 
Wiv(2,8, T) 
Wiv (2,9,, r) 

WIV (2,10, r) 
WIv(2,11, T) 
WIV (2,12, T) 
Wiv(2,13, r) 
WIV(2,14, r) 
WIV(2,15, i) 
WIV(2,16, r) 
Wlv(2,17, r) 
WIv(2,18, T) 
Wiv(2,19, T) 
Wrv(2,20, T) 

TABLE 3.1. Bootstrapped Size of Sup (5% level) 

N=5 N=10 N=20 
0.0468 0.0508 0.0456 

0.0498 0.0488 0.0486 
0.0508 0.0518 0.051 
0.0498 0.0494 0.0542 

0.0572 0.0506 
0.0508 0.0536 
0.0018 0.046 

0.0538 0.0482 
0.0456 0.0484 
0.0032 0.055 

0.0488 
0.0032 
0.0032 

0.0482 
0.0472 
0.0544 

0.0576 
0.0522 
0.0504 
0.0552 
0.0522 

0.0566 
0.0566 
0.0542 
0.0524 
0.0476 
0.0542 
0.052 

0.0522 
0.0538 
0.0534 

0.0458 
0.0418 
0.0458 

0.0466 
0.0422 
0.0484 

0.0398 
0.0452 
0.0438 

0.0472 
0.0538 
0.0518 
0.0536 
0.0532 
0.0524 
0.0488 
0.0516 
0.051 

0.0472 
0.0454 
0.0512 
0.0524 
0.0532 
0.0508 
0.0512 
0.0488 
0.0504 
0.0496 
0.0486 

Wiv(1,1, r) 
Wiv(1,2, ir) 
Wiv(1,3, -r) 
Wiv(1,4, T) 
Wiv(1,5, T) 
WIv(1,6, T) 
Wiv(1,7, T) 
Wiv(1,8, T) 
Wiv (1,9, T) 

Wlv(1,10, T) 
WJv(1,11, ir) 
Wlv(1,12, r) 
WIv(1,13, r) 
Wjv(1,14, r) 
Wiv(1,15, T) 
Wiv (1,16, r) 
Wiv(1,17, ir) 
WIv(1,18, r) 
1W1v(1,19, r) 
Wiv (1,20,, r) 

Wjv(3,1, r) 
WIv (3,2, T) 
WVIv (3,3, T) 
Wiv (3,4, r) 
Wiv(3,5, r) 
Wi (3,6, r) 
Wiv(3,7, T) 
WIv(3,8, r) 
Wiv(3,9, T) 

WIv(3,10, r) 
WIv(3,11, T) 
Wiv(3,12, -r) 
Wiv(3,13, r) 
Wiv (3,14, rr) 
WIv(3,15, r) 
Wiv(3,16, ir) 
Wiv (3,17, T) 
Wiv (3,18, r) 
Wrv (3,19, z) 
WIV(3,20, r) 

N=5 N=10 N=20 
0.0524 
0.0568 
0.055 

0.0544 
0.055 

0.0568 
0.0582 
0.0562 
0.0554 
0.0574 
0.0564 
0.0552 
0.0544 
0.0524 

0.0504 
0.056 

0.0554 
0.057 

0.0564 
0.057 

0.0576 
0.0562 
0.055 

0.0556 
0.0518 
0.056 
0.058 

0.0556 
0.0544 
0,0546 
0.054 

0.0554 
0.0536 
0.0544 

0.0286 
0.0282 
0.0046 
0.004 

0.0048 

0.0486 
0.045 

0.0494 
0.0538 
0.0454 
0.047 
0.053 

0.0508 
0.0502 
0.052 

0.0532 
0.053 

0.0438 
0.0418 
0.0474 
0.0518 
0.052 
0.055 

0.0536 
0.0482 
0.0438 
0.0472 
0.053 

0.0518 
0.0472 

0.05 
0.048 
0,049 
0.049 

0.0496 
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TABLE 3.2. Bootstrapped Size of Avg (5% level) 

N=5 N=10 N=20 

T) 0.0542 0.0494 0.0502 

Wjj(1, T) 0.0498 
WIr(2, T) 0.0508 
WII(3, -r) 0.0484 

Wtrl(1, r) 0.0542 
W111(2, i-) 0.0476 
W111(3, T) 0.005 

Wv(1, r) 0.0514 
Wv (2, r) 0.049 
Wv(3, r) 0.0096 

Wvj(1,2,, r) 0.0506 
Wvi(1,3, T) 0.01 
Wvj(2,3, T) 0.01 

Wlv(2,1, r) 
Wrv(2,2, T) 
Wrv (2,3, T) 
Wrv(2,4, T) 
Wrv(2,5, T) 
Wlv(2,6, T) 
Wrv(2,7, T) 
Wrv(2,8, r) 
Wrv (2,9, T) 

Wrv(2,10, r) 
Wrv (2,11, T) 
Wrv(2,12, T) 
Wrv(2,13, T) 
Wrv(2,14, i) 
Wrv(2,15, T) 
Wrv(2,16, T) 
Wrv(2,17, T) 
Wiv(2,18, T) 
Wrv (2,19, T) 
Wlv (2,20, T) 

0.053 
0.0564 
0.0548 
0.0562 
0.0506 

0.0496 0.0502 
0.0512 0.0538 
0.0462 0.0466 

0.0544 0.0536 
0.0514 0.0472 
0.0506 0.0514 

0.0556 0.0528 
0.0546 0.0482 
0.0494 0.053 

0.0528 0.0482 
0.0556 0.0478 
0.057 0.0532 

0.0548 
0.0526 
0.056 

0.0518 
0.0518 
0.052 

0.0508 
0.054 

0.0496 
0.0476 

0.0498 
0,054 

0.0512 
0.0516 
0.0526 
0.053 

0.0522 
0.0524 
0.0504 
0.0482 
0.0476 
0.0538 
0.0508 
0.0502 
0.0476 
0.051 
0.048 

0.0482 
0.0468 
0.0484 

WIV(1,1, T) 
Wjv(1,2,, r) 
Wiv(1,3,, r) 
WIv(1,4, T) 
WIV(1,5, r) 
Wiv (1,6, T) 
WIv(1,7,, r) 
Wiv(1,8, rr) 
WIV(1,9, T) 

WIv(1,10, r) 
WIv(1,11, rr) 
WIV(1,12, r) 
WIV(1,13, i-) 
WIv(1,14, T) 
WIV(1,15, T) 
WIV(1,16,7) 
WIV(1,17, r) 
WIv(1,18, i-) 
Wiv (1,19, r) 
WIV(1,20, T) 

Wiv (3,1, r) 
Wiv(3,2, T) 
Wiv (3,3, r) 
Wiv (3,4, T) 
Wiv (3,5, T) 
Wiv(3,6, r) 
Wiv (3,7, r) 
Wiv(3,8, T) 
Wiv (3,9, T) 

Wiv(3,10, r) 
Wj (3,11, T) 
Wiv(3,12, r) 
Wiv (3,13, T) 
tiWiv (3,14, -r) 
Wiv (3,15, ir) 
Wrv(3,16, T) ti'Viv(3,17, r) 
Wtv(3,18, r) 
Wiv(3,19, rr) 
Wiv (3,20, rr) 

N=5 N=10 N=20 
0.057 

0.0552 
0.0546 
0.0586 
0.0588 

0.0576 
0.0566 
0.0554 
0.0556 
0.0566 
0.0576 
0.0574 
0.0566 
0.0592 

0.0568 
0.0572 
0.0536 
0.0556 
0.0582 
0.056 

0.0546 
0.0536 
0.0552 
0.0558 
0.0534 
0.0548 
0.0556 
0.058 

0.0602 
0.0594 
0.0582 
0.0568 
0.056 

0.0574 

0.0156 
0.0148 
0.0138 
0.013 

0.0138 

0.0514 
0.0444 
0.0494 
0.0534 
0.0474 
0.0496 
0.0548 
0.0504 
0.049 
0.053 

0.0532 
0.0518 
0.0416 
0.0434 
0.0472 
0.0556 
0.055 

0.0544 
0.0504 
0.0472 
0.0452 
0.0484 
0.0532 
0.0522 
0.0488 
0.0508 
0.0498 
0.0488 
0.0494 
0.0504 
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TABLE 3.3. Bootstrapped Size of Exp (5% level) 

N=5 N=10 N=201 N=5 N=10 N=20 
WI(T) 0.0542 0.0494 0.0502 WJv(1,1, 'r) 0.0572 0.0582 0.0568 

Wiv (1,2,7-) 0.0554 0.0576 0.0572 
WII (1, r) 0.0498 0.0496 0.0502 Wiv (1,3, -r) 0.0546 0.0566 0.0536 
WII(2, r) 0.0508 0.0512 0.0538 Wlv(1,4, 'r) 0.0586 0.0554 0.0556 
Wrt (3,7-) 0.0482 0.0462 0.0466 Wiv (1,5, -r) 0.0588 0.0556 0.0582 

Wlv(1,6,7-) 0.0566 0.0558 
Wiij(1, T) 0.0542 0.0544 0.0536 Wlv(1,7, T) 0.0576 0.0546 
Wrrr(2, r) 0.0476 0.0514 0.047 Wiv(1,8, T) 0.0574 0.0538 
WII1(3�r) 0.0016 0.0506 0.0514 Wlv(1,9, T) 0.0566 0.0552 

W, jv (i, lo, T) 0.0592 0.0558 
Wv(1,7) 0.0514 0.0556 0.0528 Wlv(1,11�r) 0.0534 
Wv (2,7) 0.049 0.0546 0.0478 Wiv (1,12, r) 0.0548 
Wv (3, T) 0.0088 0.0494 0.053 Wlv (1,13, r) 0.0556 

Wiv(1,14, T) 0.058 
Wvl(1,2, -7) 0.0506 0.0528 0.048 Wiv(1,15, T) 0.0602 
Wvl(1,3,7) 0.0086 0.0556 0.048 Wlv(1,16, r) 0.0594 
Wvj(2,3, T) 0.0086 0.0568 0.0532 Wrv(1,17,7-) 0.058 

Wiv(1,18, 'r) 0.0568 
WIV(1,19, r) 0.056 
Wiv (1,20, T) 0.0574 

Wiv (2,1, T) 0.053 0.0548 0.0498 Wiv (3,1, r) 0.016 0.0514 0.0532 
Wiv (2,2, r) 0.0564 0.0526 0.054 WJV (3,2, T) 0.0164 0.0444 0.0518 
Wiv (2,3, rr) 0.0548 0.056 0.0512 Wiv (3,3, T) 0.0138 0.0494 0.0416 
Wiv (2,4, -r) 0.0562 0.0518 0.0514 Wiv (3,4, T) 0.013 0.0534 0.0434 
WIV (2,5, T) 0.0506 0.0518 0.052 Wiv (3,5, T) 0.0138 0.0474 0.0472 
Wrv (2,6, T) 0.052 0.053 Wlv (3,6, -r) 0.0496 0.0556 
Wiv (2,7, T) 0.0508 0.0522 Wlv (3,7, T) 0.0548 0.055 
Wrv (2,8, r) 0.054 0.0522 WJV (3,8, T) 0.0504 0.0542 
Wiv (2,9, rr) 0.0496 0.0504 Wiv (3,9, rr) 0.049 0.0504 

Wjv(2,10, 'r) 0.0476 0.048 Wjv(3,10,7-) 0.053 0.0472 
Wrv (2,11, T) 0.0476 Wiv (3,11, r) 0.0452 
Wiv(2,12, T) 0.0538 WjV(3,12, T) 0.0484 
Wiv (2,13, T) 0.0508 Wrv (3,13, T) 0.0532 
Wiv (2,14, T) 0.0502 Wrv (3,14, T) 0.0522 
Wlv(2,15, r) 0.0476 Wlv(3,15, r) 0.0488 
Wiv (2,16, T) 0.051 Wlv (3,16, T) 0.0508 
Wlv(2,17, r) 0.048 Wjv(3,17, r) 0.0498 
Wiv (2,18, T) 0.0482 Wiv (3,18, T) 0.0488 
Wiv (2,19, T) 0.0468 Wlv (3,19, r) 0.0494 
Wjv (2,20, r) 0.0484 Wiv (3,20, T) 0.0504 
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TABLE 3.4. Bootstrapped Power of Sup (5% level). The table reports the power of the 
weighted measure Sup, for the various test statistics. 

N=5 N=10 N=20 
Ül Ü2 Ü3 Ul U2 U3 Ul Ü2 U3 

WI (r) T/3 1 1 1 1 1 1 1 1 1 
T/2 1 1 1 1 1 1 1 1 1 

2T/3 1 1 1 1 1 1 1 1 1 

WII(1, -r) T/3 1 1 1 1 1 1 1 1 1 
T/2 1 1 1 1 1 1 1 1 1 

2T/3 1 1 1 1 1 1 1 1 1 
WIII(1, T) T/3 1 1 1 1 1 1 1 1 1 

T/2 1 1 1 1 1 1 1 1 1 
2T/3 1 1 1 1 1 1 1 1 1 

Wv (1,7-) T/3 1 1 1 1 1 1 1 1 1 
T/2 1 1 1 1 1 1 1 1 1 

2T/3 1 1 1 1 1 1 1 1 1 

WI, (2, r) T/3 1 1 1 1 1 1 1 1 1 
T/2 1 1 1 1 1 1 1 1 1 

2T/3 1 1 1 1 1 1 1 1 1 
Wilt (2, -r) T/3 1 1 1 1 1 1 1 1 1 

T/2 1 1 1 1 1 1 1 1 1 
2T/3 1 1 1 1 1 1 1 1 1 

Wv(2, T) T/3 1 1 1 1 1 1 1 1 1 
T/2 1 1 1 1 1 1 1 1 1 

2T/3 1 1 1 1 1 1 1 1 1 
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(TABLE 3.4 CONTINUED) 
N=5 N=10 N=20 

Ui U2 U3 U1 U2 U3 U1 U2 U3 

Wr1(3, r) T/3 1 
T/2 1 

2T/3 1 
Win (3,, r) T/3 0.9996 

T/2 1 
2T/3 1 

Wv (3,, r) T/3 1 
T/2 1 

2T/3 1 

Wvj(1,2, T) T/3 1 
T/2 1 

2T/3 1 
Wvj(1,3, -r) T/3 1 

T/2 1 
2T/3 1 

Wvj(2,3, T) T/3 1 
T/2 1 

2T/3 1 

Wlv(1,1, -r) T/3 1 
Wlv(1,2, T) 0.9916 
Wiv(1,3,, r) 0.9994 
Wjv(1,4, T) 0.9992 
Wlv(1,5, -r) 0.9486 
Wjv(1,6, -r) 
Wiv(1,7,, r) 
WIv(1,8, T) 
Wlv(1,9, r) 

Wlv(1,10, r) 
Wlv (1,11"r) 
Wiv(1,12,7-) 
W, v(1,13,, r) 
Wiv (1,14, -r) 
Wjv(1,15,, r) 
Wiv(1,16, -r) 
Wiv (1,17, -r) 
WIv(1,18, r) 
Wlv(1,19, r) 
Wiv (1,20,, r) 

1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 

1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 

1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 

1 1 1 
1 0.9822 1 
1 0.1968 1 
1 0.6746 1 
1 0.9986 1 

0.999 1 
0.8068 0.9964 
0.9994 1 

1 1 
0.9312 1 

111 
111 
111 
111 
111 
111 
111 
111 
111 

111 
111 
111 
111 
111 
111 
111 
111 
111 

1 0.9696 1 
111 
1 0.9996 1 
1 0.9972 1 
111 
1 0.137 1 
111 
1 0.809 1 
111 
111 

0.9996 1 
0.3888 0.9686 
0.918 1 

0.1352 0.996 
0.999 1 

0.3936 0.9992 
0.5442 1 
0,8548 1 
0.8324 0.9998 
0.1544 0.9866 

1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
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(TABLE 3.4 CONTINUED) 
N=5 N=10 N=20 

U1 U2 U3 Ul U2 U3 U1 U2 U3 

Wiv (1,1, r) T/2 1 1 1 1 1 1 1 1 1 
Wiv (1,2, r) 1 1 1 1 1 1 1 1 1 
Wiv (1,3, -r) 1 1 1 0.9944 0.9996 1 1 1 1 
Wjv(1,4, rr) 1 1 1 1 1 1 1 1 1 
Wiv(1,5, T) 1 1 1 1 1 1 1 1 1 
Wtv (1,6, 'r) 1 1 1 0.9956 1 1 
WIv(1,7, -r) 0.999 1 1 1 1 1 W, v(1,8,, r) 1 1 1 1 1 1 
Wlv (1,9,, r) 1 1 1 1 1 1 

Wjv (1,10, r) 1 1 1 1 1 1 
Wlv (1,11, r) 1 1 1 
Wiv(1,12, -r) 0.7588 1 1 
Wjv (1,13, r) 1 1 1 
Wiv(1,14, r) 0.3892 1 1 
Wjv (1,15, r) 1 1 1 
Wiv (1,16, r) 0.7888 1 1 Wiv (1,17, r) 0.9954 1 1 Wiv (1,18, r) 0.999 1 1 
Wjv(1,19, r) 0.999 0.9996 1 Wiv(1,20, r) 0.3008 1 1 

Wjv(1,1, rr) 2T/3 1 1 1 1 1 1 1 1 1 W1 v(1,2, r) 1 1 1 1 1 1 1 1 1 
Wlv(1,3, r) 1 1 1 1 1 1 1 1 1 
Wiv(1,4, r) 1 1 1 1 1 1 1 1 1 WJv(1,5, T) 1 1 1 1 1 1 1 1 1 Wjv (1,6,, r) 1 1 1 1 1 1 
WJv(1,7,? r) 0.999 1 1 1 1 1 Wiv(1,8, r) 1 1 1 1 1 1 Wlv (1,9, r) 1 1 1 1 1 1 Wfv(1,10, 'r) 1 1 1 1 1 1 Wiv (1,11, r) 1 1 1 Wfv(1,12, r) 0.8526 1 1 Wiv (1,13, r) 1 1 1 Wjv(1,14, r) 0.828 1 1 Wjv (1,15, r) 1 1 1 Wiv (1,16, r) 0.8952 1 1 Wjv(1,17, r) 1 1 1 W, rv(1,18, r) 1 1 1 

w, v(1,19, r) 1 W, v (1,20, r) 0.4698 1 1 
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(TABLE 3.4 CONT 

-ý 

INUED) 
( N=5 N10 N=20 

t%1 U2 U3 Ül U2 (fig U1 U2 UT 

Wjv(2,1, r) T13 0.9748 1 1 0.3946 1 1 0.1226 0.9464 0.9998 
Wiv(2,2, rr) 0.9988 1 1 0.4236 1 1 0.303 0.9988 1 
Wiv (2,3, -r) 0.9922 1 1 0.9736 1 1 0.1224 0.9946 1 
Wlv (2,4, -r) 0.9714 1 1 0.7102 1 1 0.7562 1 1 
Wlv (2,5, T) 1 1 1 1 1 1 0.4896 0.9998 1 
Wiv (2,6, rr) 0.464 1 1 0.408 0.991 1 
Wiv (2,7, r) 0.9812 1 1 0.136 0.9872 1 
WIv (2,8, -r) 0.1586 1 1 0.761 1 1 
Wiv (2,9, r) 0.9036 0.993 1 0.9846 1 1 

Wlv(2,10, r) 0.439 1 1 1 1 1 
Wiv (2,11, r) 1 1 1 
Wlv(2,12, r) 1 0.9872 1 
Wlv (2,13, -r) 1 1 1 
Wjv(2,14, -r) 0.8084 1 1 
Wlv(2,15, T) 1 1 1 
Wiv (2,16, r) 1 1 1 
Wlv (2,17, r) 0.9046 1 1 
Wjv(2,18, r) 1 1 1 
Wlv(2,19, T) 1 1 1 
Wiv (2,20, T) 0.9968 1 1 

Wlv(2,1, -r) T/2 1 1 1 0.99 1 1 0.334 0.9972 0.9994 
Wiv (2,2, T) 1 1 1 0.9888 1 1 0.6784 0.9998 1 
Wjv (2,3, rr) 1 1 1 1 1 1 0.3784 1 1 
Wlv (2,4, -r) 1 1 1 1 1 1 0.9986 1 1 
Wjv (2,5, rr) 1 1 1 1 1 1 0.9886 1 1 
Wlv (2,6, r) 1 1 1 0.907 0.9998 1 
Wlv (2,7, T) 1 1 1 0.4328 0.9998 1 
Wlv (2,8, T) 0.9976 0.9998 1 0.9986 1 1 
Wlv (2,9, -r) 0.69 1 1 1 1 1 
Wiv (2,10, r) 1 1 1 1 1 1 
Wiv (2,11, T) 1 1 1 
Wlv(2,12, T) 1 1 1 
WIv(2,13, T) 1 1 1 
Wiv (2,14, r) 0.843 1 1 
Wlv(2,15, T) 1 1 1 
WIV(2,16, T) 1 1 1 
Wjv(2,17, T) 1 1 1 
WIV (2,18, r) 1 1 1 
Wiv (2,19,, r) 1 1 1 
Wiv (2,20, r) 0.997 1 1 
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(TABLE 3.4 CONTINUED) 
N=5 N=10 N=20 

U1 U2 Us U1 U2 U3 U1 U2 U3 
Wiv (2,1, rr) 2T/3 1 1 1 1 1 1 0.5826 0.9994 0.9984 
Wtv (2,2, 'r) 1 1 1 0.9998 1 1 0.923 1 1 
Wlv (2,3, rr) 1 1 1 1 1 1 0.678 1 1 
Wiv (2,4, rr) 1 1 1 1 1 1 1 1 1 
Wiv(2,5, 'r) 1 1 1 1 1 1 1 1 1 
Wjv (2,6, rr) 1 1 1 0.9982 1 0.9998 
Wjv (2,7, T) 1 1 1 0.7068 1 0.9998 
Wiv (2,8, T) 1 1 1 1 1 0.9998 
Wjv (2,9, T) 0.9676 1 1 1 1 0.9998 

Wiv(2,10, -r) 1 1 1 1 1 1 
Wry (2,11, rr) 1 1 1 
Wjv (2,12,, r) 1 1 1 
Wiv (2,13, -r) 1 1 1 
Wlv (2,14, 'r) 1 1 1 
Wiv(2,15, Tr) 1 1 1 
Wiv(2,16, T) 1 1 1 
Wiv (2,17,, r) 1 1 1 
Wiv(2,18, T) 1 1 1 
Wjv(2,19, T) 1 1 1 
Wiv (2,20, T) 0.9954 1 1 

Wlv (3,1, rr) T/3 0.0062 0.0728 0.0076 0.9996 0.9996 0.9996 1 1 1 
Wlv (3,2, T) 0.0064 0.0992 0.0058 0.2812 0.9996 0.9994 1 1 1 
WIv (3,3, r) 0.0186 0.9996 0.6626 0.9986 0.9996 0.9996 0.385 1 1 
Wjv (3,4, rr) 0.0114 0.0178 0.312 0.9994 0.9996 0.9996 0.9998 1 1 
Wjv (3,5, 'r) 0.0264 0.9996 0.6794 0.9992 0.9996 0.9996 0.3272 1 1 
Wjv (3,6, , r) 0.9996 0.9996 0.9996 0.7286 1 1 
W jv (3,7, T) 0.9996 0.9996 0.9996 1 1 1 
WJv (3,8, T) 0.7646 0.9996 0.9996 0.4116 1 1 
Wjv (3,9,, r) 0.9996 0.9996 0.9996 0.9992 1 1 

Wiv (3,10, -r) 0.9996 0.9996 0.9996 0.4306 1 1 
Wiv (3,11, rr) 0.253 0.9998 1 
Wjv(3,12, T) 0.3328 0.9686 1 
Wjv (3,13, r) 0.7602 0.9986 1 
Wiv (3,14,, r) 0.7664 0.9994 0.9998 
Wjv (3,15, T) 0.977 1 1 
Wiv (3,16, T) 0.41 0.9714 0.9944 
WJv (3,17, , r) 0.6634 1 1 
Wiv (3,18, rr) 0.2172 0.9476 0.9974 
Wiv (3,19,, r) 0.208 0.9766 0.9998 
Wiv (3,20, r) 0.3348 0.989 0.9976 
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(TABLE 3.4 CONTINUED) 
N=5 N=10 N=20 

Ul U2 U3 Ul U2 U3 Ul U2 U3 
Wiv (3,1, r) T/2 0.0202 0.0278 0.0192 0.9996 0.9996 0.9996 1 1 1 
Wiv (3,2, r) 0.0434 0.0116 0.024 0.9996 0.9966 0.9996 1 1 1 
Wlv (3,3, r) 0.9992 0.9986 0.0372 0.9996 0.9996 0.9996 0.9914 1 1 
Wiv (3,4, r) 0.96 0.017 0.0242 0.9996 0.9996 0.9996 1 1 1 
WJv (3,5, r) 0.9992 0.9986 0.0398 0.9996 0.9996 0,9996 1 1 1 
Wfv (3,6, r) 0.9996 0.9996 0.9996 1 1 1 
Wiv (3,7,, r) 0.9996 0.9996 0.9996 1 1 1 
Wiv (3,8, r) 0.8046 0.9996 0.9996 1 1 1 
Wiv (3,9, r) 0.9996 0.9996 0.9996 1 1 1 

Wjv (3,10, r) 0.9996 0.9996 0.9996 0.9556 1 1 
Wlv(3,11, T) 0.767 1 1 
Wiv (3,12, r) 0.4876 1 1 
Wiv (3,13, r) 0.9666 1 0.9998 
Wjv (3,14, r) 0.9706 1 1 
WJv(3,15, r) 0.9996 1 1 
Wjv(3,16, r) 0.834 0.989 0.9936 
Wiv (3,17, r) 0.994 1 1 
Wiv (3,18, r) 0.5656 0.9816 0.9972 
Wiv (3,19, r) 0.5478 0.9974 0.9998 
Wiv (3,20, r) 0.8438 0.9918 0.997 

Wiv (3,1, r) 2T/3 0.1882 0.0378 0.3778 0.9996 0.9996 0.9996 1 1 1 
Wiv(3,2, r) 0.335 0.008 0.5326 0.9996 0.9912 0.9996 1 1 1 
Wiv (3,3, r) 0.9988 0.9922 0.0064 0.9974 0.9988 0.9996 1 1 1 
Wjv (3,4, r) 0.996 0.8264 0.0072 0.9996 0.9996 0.9996 1 1 1 
Wjv (3,5, r) 0.9988 0.9946 0.0064 0.9996 0.9996 0.9996 1 1 1 
WIv (3,6, r) 0.9996 0.9996 0.9996 1 1 1 
Wlv (3,7, r) 0.9996 0.9996 0.9996 1 1 1 
Wlv (3,8, r) 0.9996 0.9996 0.9996 1 1 1 
Wjv (3,9, r) 0.9996 0.9996 0.9996 1 1 1 

Wiv (3,10, r) 0.9996 0.9996 0.9996 0.9986 1 0.9998 
Wrv (3,11, r) 0.9482 1 1 
Wjv (3,12, r) 0.6044 1 0.9998 
Wjv (3,13,, r) 0.9926 1 0.999 
Wjv (3,14, r) 0.9914 1 0.9984 
Wiv (3,15, r) 1 1 1 
Wrv(3,16, r) 0.9332 0.995 0.9874 
Wiv (3,17, r) 1 1 0.9994 
Wjv (3,18, r) 0.7136 0.9938 0.9946 
Wiv (3,19, r) 0.7092 0.9996 0.9956 
WJv (3,20, r) 0.9716 0.991 0.9954 
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TABLE 3.5. Bootstrapped Power of Avg (5% level). The table reports the power of the 
weighted measure Avg, for the various test statistics. 

N=5 N=10 N=20 
U1 U2 U3 U1 U2 U3 U1 U2 U3 

WI(T) T/3 1 1 1 1 1 1 1 1 1 
T/2 1 1 1 1 1 1 1 1 1 
2T/3 1 1 1 1 1 1 1 1 1 

WI j (1, T) T/3 1 1 1 1 1 1 1 1 1 
T/2 1 1 1 1 1 1 1 1 1 
2T/3 1 1 1 1 1 1 1 1 1 

WIII (1, T) T/3 1 1 1 1 1 1 1 1 1 
T/2 1 1 1 1 1 1 1 1 1 
2T/3 1 1 1 1 1 1 1 1 1 

Wv(1, T) T/3 1 1 1 1 1 1 1 1 1 
T/2 1 1 1 1 1 1 1 1 1 
2T/3 1 1 1 1 1 1 1 1 1 

WII(2, T) T/3 1 1 1 1 1 1 1 1 1 
T/2 1 1 1 1 1 1 1 1 1 
2T/3 1 1 1 1 1 1 1 1 1 

WJII (2, T) T13 1 1 1 1 1 1 1 1 1 
T/2 1 1 1 1 1 1 1 1 1 
2T/3 1 1 1 1 1 1 1 1 1 

Wy(2, T) T/3 1 1 1 1 1 1 1 1 1 
T/2 1 1 1 1 1 1 1 1 1 
2T/3 1 1 1 1 1 1 1 1 1 
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(TABLE 3.5 CONTINUED) 
N=5 N=10 N=20 

U1 U2 U3 U1 U2 U3 U1 U2 U3 

Wjj(3, T) T/3 1 1 1 1 1 1 1 1 1 
T/2 1 1 1 1 1 1 1 1 1 

2T/3 1 1 1 1 1 1 1 1 1 
WIII(3, -r) T/3 0.9994 1 1 1 1 1 1 1 1 

T/2 1 1 1 1 1 1 1 1 1 
2T/3 1 1 1 1 1 1 1 1 1 

Wv (3, r) T/3 1 1 1 1 1 1 1 1 1 
T/2 1 1 1 1 1 1 1 1 1 

2T/3 1 1 1 1 1 1 1 1 1 

Wv j (1,2,, r) T/3 1 1 1 1 1 1 1 1 1 
T/2 1 1 1 1 1 1 1 1 1 

2T/3 1 1 1 1 1 1 1 1 1 
Wvj(1,3, T) T/3 1 1 1 1 1 1 1 1 1 

T/2 1 1 1 1 1 1 1 1 1 
2T/3 1 1 1 1 1 1 1 1 1 

Wv j (2,3, r) T/3 1 1 1 1 1 1 1 1 1 
T/2 1 1 1 1 1 1 1 1 0.9956 

2T/3 1 1 1 1 1 1 1 1 0,9894 

WJv (1,1,7) T/3 0.9996 1 1 1 1 1 0.9216 1 1 
Wjv(1,2, r) 0.9756 1 1 0.9532 1 0.9998 1 1 1 
Wiv (1,3,, r) 0.997 1 1 0.112 0.9998 0.9996 0.9992 1 1 
Wiv(1,4,, r) 0.9966 1 1 0.5536 1 1 0.9896 1 1 
Wjv(1,5"r) 0.8898 1 1 0.9962 1 1 1 1 0.9998 
Wjv (1,6,, r) 0.9956 1 1 0.0598 1 1 
WIv (1,7,, r) 0.6702 0.8476 1 1 1 1 
Wjv (1,8,, r) 0.9954 1 1 0.677 1 1 
Wiv(1,9, 'r) 1 1 1 1 1 1 

Wlv (i 110, T) 0.8616 1 1 0.9994 1 1 
Wjv (11 ill T) 0.9984 1 1 
Wjv(1,12, r) 0.2534 0.6062 1 
Wjv(1,13, -r) 0.8414 1 0.9988 
Wjv (1,14, -r) 0.0596 0.876 1 
Wiv (1,15, r) 0.996 1 1 
WJv (1,16, -r) 0.261 0.9854 1 
Wjv(1,17, 'r) 0.3892 1 1 
W1 v(1,18, -r) 0.7486 1 0.9996 
Wjv (1,19, -r) 0.7146 0.999 0.8724 
Wiv(1,20, T) 0.0718 0.797 0.9998 
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(TABLE 3.5 CONTINUED) 
N=5 ( N=10 N=20 

Wiv(1,1, T) 
Wiv (1,2, T) 
Wiv(1,3, r) 
Wjv(1,4, r) 
Wrv (1,5, r) 
Wlv(1,6, T) 
Wlv(1,7, T) 
Wlv(1,8, r) 
Wiv(1,9, r) 
Wiv (1,10, r) 
Wlv (1,11, r) 
Wjv (1,12, T) 
Wlv (1,13, r) 
Wiv (1,14, r) 
Wiv (1,15, r) 
WJV(1,16,7) 
WIv(1,17, r) 
Wiv (1,18, r) 
W, v (1,19, r) 
Wiv (1,20, r) 

Wrv (1,1, r) 
Wiv (1,2,, r) 
Wlv (1,3,, r) 
Wjv(1,4, ir) 
Wiv (1,5, r) 
Wiv(1,6, T) 
Wiv (1,7, 'r) 
Wiv(1,8, T) 
Wjv (1,9, T) 
Wiv (1,10, r) 
Wjv(1,11, r) 
Wiv (1,12, r) 
Wiv (1,13, rr) 
Wiv(1,14,, r) 
Wjv(1,15, r) 
WJv(1,16,, r) 
Wjv(1,17, rr) 
Wjv (1,18, rr) 
WJv(1,19, r) 
Wiv (1,20,, r) 

31Ul U2 U3 

1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 
1 0.9882 1 0.9924 0.9864 0.9996 1 1 1 
1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 

1 0.9892 1 0.9808 1 1 
0.9968 0.9826 1 1 0.9946 1 

1 1 1 1 1 1 
1 1 1 1 1 1 
1 1 1 1 1 1 

1 1 1 
0.6602 0.991 1 

1 1 0.9964 
0.1752 0.9988 1 

1 1 1 
0.7008 0.9994 1 
0.9856 1 1 
0.9992 1 0.9886 
0.998 0.8846 0.934 

0.0938 0.9986 0.992 

2T/3 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 
1 1 1 1 0.9998 0.9982 1 1 1 
1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 0.9992 1 

1 1 1 1 1 1 
0.9968 1 0.999 1 0.9984 0.9998 

1 1 1 1 1 1 
1 1 1 1 1 1 
1 1 1 1 1 1 

1 1 1 
0.777 1 1 

1 0,9996 0.9842 
0.6704 1 1 

1 1 1 
0.842 1 1 

1 1 1 
1 1 0.9624 
1 0.7736 0.9484 

0.1492 1 0.9662 
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(TABLE 3.5 CONTI NUED) 
N=5 N=10 N=20 

U1 U2 U3 U1 U2 U3 U1 U2 U3 
Wiv (2,1,7) T13 0.9356 1 1 0.273 0.9986 0.9994 0.0512 0.5768 0.736 
Wiv (2,2, T) 0.9922 1 1 0.2808 1 0.969 0.1746 0.8066 0.9878 
Wjv (2,3, r) 0.9724 1 1 0.9484 1 1 0,0646 0.9382 0.996 
Wiv (2,4, rr) 0.9378 1 1 0.5948 1 1 0.5874 0.999 0.9998 
WJV (2,5,7) 0.9992 1 1 1 1 1 0.3926 0.9996 0.9934 
Wjv (2,6, rr) 0.3594 1 1 0.2654 0.8938 0.9814 
Wiv (2,7, T) 0.9592 1 1 0.0916 0.912 0.993 
Wjv (2,8, r) 0.097 1 1 0.6 1 1 
Wjv(2,9, 'r) 0.8132 0.9816 0.9988 0.95 1 1 
Wjv(2,10, r) 0.3154 1 1 1 1 1 
Wjv (2,11, -r) 1 1 1 
Wjv (2,12, r) 1 0.8392 1 
Wiv (2,13, r) 1 1 1 
WJV (2,14,, r) 0.6938 1 1 
Wiv (2,15, -r) 1 1 1 
Wiv (2,16, r) 1 1 1 
Wjv (2,17, r) 0.8186 1 1 
Wiv (2,18, 'r) 1 1 1 
Wiv (2,19,, r) 1 1 1 
Wjv (2,20, rr) 0.9884 1 1 

Wjv (2,1, -r) T/2 1 1 1 0.9708 0.994 1 0.1518 0.7052 0.6952 
Wlv (2,2, T) 1 1 1 0.9754 0.9948 0.9978 0.4618 0.8918 0.9976 
W IV (2,3, rr) 1 1 1 1 1 1 0.2338 0.9818 0.9994 
Wj v (2,4, T) 1 1 1 1 0.9996 1 0.9942 0.9934 0.9998 
Wrv(2,5, Tr) 1 1 1 1 1 1 0.9834 0.9894 0.9954 
WIV (2,6, rr) 1 1 1 0.8272 0.9332 0.9734 
Wfv(2,7, -r) 1 1 1 0.3666 0.9362 0.9872 
Wiv (2,8, rr) 0.997 0.994 1 0.9968 1 1 
Wjv(2,9, r) 0.514 0.9982 0.9938 1 1 0.9998 
Wiv (2,10, T) 1 1 0.999 1 1 1 

T) Wiv (2,11, 1 1 1 
Wjv(2,12, T) 1 1 1 
Wtv (2,13,, r) 1 1 1 
Wlv (2,14, r) 0.5286 1 1 
Wjv(2,15, T) 1 1 1 
Wlv(2,16, T) 1 1 1 
Wjv(2,17,, r) 1 1 1 
W, v (2,18, T) 1 1 1 
Wtv (2,19, l-) 1 1 0.9998 
Wjv (2,20, -r) 0.9904 1 1 
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(TABLE 3.5 CONTINUED) 
N=5 N=10 N=20 

U1 U2 U3 U1 U2 U3 U1 U2 u3 

WIV (2,1, r) 2T/3 1 1 1 1 0.9996 1 0.4084 0.7948 0.6598 
Wiv(2,2, r) 1 0.9998 1 0.9996 0.8624 0.9996 0.7724 0.9384 0.9972 
Wjv (2,3, r) 1 1 1 1 1 1 0.542 0.9878 0.999 
Wrv (2,4, r) 1 1 1 1 1 1 1 0.992 0.9998 
Wjv(2,5, r) 1 1 1 1 1 1 1 0.9716 0.987 
Wlv (2,6, r) 1 1 1 0.9934 0.9828 0.9548 
Wlv(2,7, r) 1 1 1 0.6504 0.9886 0.9568 
Wiv (2,8�r) 1 0.9866 1 1 1 0.9994 
Wjv (2,9, 'r) 0.9226 1 0.9982 1 1 0.9952 

Wiv (2,10, 'r) 1 1 0.9988 1 1 1 
Wjv (2,11, r) 1 1 1 
Wiv (2,12�r) 1 1 1 
Wrv (2,13, r) 1 1 0.9992 
Wrv (2,14�r) 1 1 1 
Wiv (2,15, r) 1 1 1 
Wlv (2,16, -r) 1 1 0.9998 
Wjv (2,17,7-) 1 1 1 
Wlv (2,18, T) 1 1 0.9996 
Wiv (2,19, r) 1 1 0.9992 
Wiv (2,20,7) 0.9784 1 0.9996 

Wlv (3,1, r) T/3 0.1112 0.395 0.2308 0.9998 1 1 1 1 1 
Wiv (3,2, r) 0.1624 0.4928 0.129 0.3378 0.9998 0.7814 1 1 1 
Wjv(3,3, r) 0.0746 0.8232 0.4452 0.9996 0.9994 0.7462 0.2384 1 1 
Wfv (3,4, -r) 0.0868 0.1244 0.4716 0.9992 1 0.9998 0.9974 1 1 
Wlv(3,5, 'r) 0.09 0.7278 0.5196 0.9984 1 0.9998 0.2488 1 1 
Wjv (3,6, r) 1 1 1 0.57 1 1 
Wlv (3,7, r) 0.9998 1 1 0.9994 1 1 
Wjv (3,8, r) 0.7176 1 1 0.2164 1 1 
Wrv (3,9, r) 0.9998 0.9998 0.9982 0.9904 1 1 

Wjv(3,10, r) 0.9998 0.9996 0.9998 0.2306 0.9976 1 
Wjv (3,11, r) 0.0904 0.8372 0.998 
Wlv (3,12, r) 0.2124 0.3062 0.8246 
W, v(3,13, r) 0.5562 0.9026 0.7088 
Wlv(3,14, r) 0.6592 0.9578 0.936 
Wfv(3,15, r) 0.8978 1 1 
Wiv (3,16, r) 0.2768 0.7206 0.4078 
Wjv(3,17, r) 0.517 0.998 0.9982 
Wjv(3,18, r) 0.0978 0.4948 0.5402 
Wlv(3,19, r) 0.0914 0.6642 0.9102 
Wiv (3,20, r) 0.1956 0.8766 0.585 
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(TABLE 3.5 CONTINUED) 
N=5 N=10 N=20 

UI U2 U3 U1 U2 U3 U1 U2 U3 

Wiv (3,1, -r) T/2 0.3182 0.3374 0.2282 1 1 1 1 1 1 
Wjv (3,2, r) 0.4466 0.3034 0.2214 0.9996 0.931 0.904 1 1 1 
Wiv (3,3, r) 0.866 0.8448 0.0492 0.9998 0.9804 0.9372 0.9532 1 1 
Wiv (3,4, r) 0.6514 0.119 0.055 0.9998 0.9998 0.9998 1 1 1 
Wlv(3,5, r) 0.8708 0.7976 0.0688 0.9998 0.9998 0.9998 1 1 1 
Wjv (3,6, r) 1 1 1 0.998 1 1 
Wlv (3,7, r) 1 1 1 1 1 0.9998 
Wiv (3,8, -r) 0.5572 1 1 0.9972 1 1 
W jv (3,9, r) 0.9998 0.9992 0.9992 1 1 1 

Wiv (3,10, -r) 0.9998 0.9996 0.9998 0.855 0.9998 1 
W1 v(3,11, r) 0.3888 0.9596 0.9996 
Wlv (3,12, r) 0.3292 0.547 0.8074 
Wiv (3,13, r) 0.8568 0.8874 0.5664 
Wjv (3,14, r) 0.9494 0.9762 0.7834 
Wiv (3,15, r) 0.9984 1 1 
Wiv (3,16, r) 0.7376 0.597 0.2956 
Wiv (3,17, r) 0.9794 0.9992 0.9836 
Wiv (3,18, r) 0.2882 0.5278 0.4848 
Wjv(3,19, r) 0.2708 0.8642 0.7834 
Wjv (3,20, r) 0.7112 0.7434 0.5412 

Wjv(3,1, r) 2T/3 0.4274 0.339 0.3682 1 1 1 1 1 1 
Wiv (3,2, r) 0.5632 0.1886 0.5138 0.9998 0.5396 0.955 1 1 1 
Wiv (3,3, r) 0.843 0.7786 0.0184 0.9984 0.6082 0.9948 1 1 1 
Wjv (3,4, r) 0.6236 0.7258 0.0178 1 0.9998 0.9998 1 1 1 
Wiv (3,5, r) 0.8248 0.8398 0.0178 1 0.9998 0.9998 1 1 1 
Wjv(3,6, r) 1 1 1 0.9998 1 0.9994 
Wiv (3,7, r) 1 1 1 1 1 0.9992 
WJV (3,8, r) 0.9998 1 1 1 1 1 
Wfv (3,9, r) 0.9998 0.9996 0.9996 1 1 1 

W jv (3,10, r) 0.9998 0.9998 0.9998 0.9888 0.9998 0.9992 
Wiv (3,11, r) 0.6996 0.9906 0.9982 
Wiv (3,12, r) 0.352 0.7738 0.6936 
Wjv (3,13, r) 0.9276 0.8226 0.3666 
Wjv(3,14, r) 0.9804 0.9886 0.5236 
Wjv (3,15, r) 1 1 0.9986 
WJV (3,16, r) 0.8824 0.5358 0.2322 
Wjv (3,17, r) 0.999 0.9996 0.8898 
Wtv (3,18, r) 0.4488 0.5766 0.4544 
WW1v(3,19, r) 0.43 0.96 0.5774 
Wjv (3,20, r) 0.9328 0.6002 0.5178 
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TABLE 3.6. Bootstrapped Power of Exp (5% level). The table reports the power of the 
weighted measure Exp, for the various test statistics. 

N=5 N=10 N=20 
y1 U2 U3 U1 U2 U3 U1 U2 U3 

WI(r) T/3 1 1 1 1 1 1 1 1 1 
T/2 1 1 1 1 1 1 1 1 1 
2T/3 1 1 1 1 1 1 1 1 1 

WII (1, T) T/3 1 1 1 1 1 1 1 1 1 
T/2 1 1 1 1 1 1 1 1 1 
2T/3 1 1 1 1 1 1 1 1 1 

WIIj(1, T) T/3 1 1 1 1 1 1 1 1 1 
T/2 1 1 1 1 1 1 1 1 1 
2T/3 1 1 1 1 1 1 1 1 1 

WV (1,7-) T/3 1 1 1 1 1 1 1 1 1 
T/2 1 1 1 1 1 1 1 1 1 
2T/3 1 1 1 1 1 1 1 1 1 

WII (2, T) T/3 1 1 1 1 1 1 1 1 1 
T/2 1 1 1 1 1 1 1 1 1 
2T/3 1 1 1 1 1 1 1 1 1 

WIII (2, T) T/3 1 1 1 1 1 1 1 1 1 
T/2 1 1 1 1 1 1 1 1 1 
2T/3 1 1 1 1 1 1 1 1 1 

Wy(2, T) T/3 1 1 1 1 1 1 1 1 1 
T/2 1 1 1 1 1 1 1 1 1 
2T/3 1 1 1 1 1 1 1 1 1 
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(TABLE 3.6 CONTINUED) 
N=5 N=10 N=20 

Ui U2 U3 Ul U2 U3 Ul U2 U3 

WII (3, -r) T/3 1 1 1 1 1 1 1 1 1 
T/2 1 1 1 1 1 1 1 1 1 

2T/3 1 1 1 1 1 1 1 1 1 
W111(3, r) T/3 0.9994 1 1 1 1 1 1 1 1 

T/2 1 1 1 1 1 1 1 1 1 
2T/3 1 1 1 1 1 1 1 1 1 

Wv (3, rr) T/3 1 1 1 1 1 1 1 1 1 
T/2 1 1 1 1 1 1 1 1 1 

2T/3 1 1 1 1 1 1 1 1 1 

Wvj(1,2, T) T/3 1 1 1 1 1 1 1 1 1 
T/2 1 1 1 1 1 1 1 1 1 

2T/3 1 1 1 1 1 1 1 1 1 
Wv j (1,3,, r) T13 1 1 1 1 1 1 1 1 1 

T/2 1 1 1 1 1 1 1 1 1 
2T/3 1 1 1 1 1 1 1 1 1 

Wvl(2,3, rr) T/3 1 1 1 1 1 1 1 1 1 
T/2 1 1 1 1 1 1 1 1 1 

2T/3 1 1 1 1 1 1 1 1 1 

Wlv(1,1, -r) T/3 0.9996 1 1 1 1 1 0.9218 1 1 
Wiv (1,2,, r) 0.9756 1 1 0.9532 1 0.9998 1 1 1 
Wiv(1,3, T) 0.997 1 1 0.112 0.9998 0.9996 0.9992 1 1 
Wiv (1,4,, r) 0.9966 1 1 0.5542 1 1 0.9896 1 1 
W1v(1,5,, r) 0.89 1 1 0.9962 1 1 1 1 0.9998 
Wiv (1,6,, r) 0.9956 1 1 0.0598 1 1 
Wiv (1,7,, r) 0.6702 0.848 1 1 1 1 
Wtv(1,8, 'r) 0.9954 1 1 0.6774 1 1 
Wiv(1,9"r) 1 1 1 1 1 1 

Wiv(1,10, 'r) 0.8616 1 1 0.9994 1 1 
Wiv(1,11, -r) 0.9984 1 1 
Wjv(1,12, rr) 0.2534 0.6068 1 
Wlv (1,13, r) 0.8414 1 0.9988 
Wiv (1,14, -r) 0.0598 0.8762 1 
Wiv (1,15, -r) 0.996 1 1 
Wjv(1,16, 'r) 0.2612 0.9854 1 
Wjv(1,17, T) 0.3892 1 1 
Wiv(1,18, -r) 0.7486 1 0.9996 
Wiv(1,19, T) 0.7148 0.999 0.8742 
Wiv (1,20,, r) 0.0718 0.797 0.9998 
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(TABLE 3.6 CONTINUED) 
N=5 N=10 N=20 

U1 U2 U3 U1 U2 U3 U1 U2 U3 
Wjv(l, 1, T) 
Wlv(1,2, T) 
Wiv (1,3,, r) 
Wiv(1,4, r) 
Wjv (1,5, T) 
Wrv(1,6, T) 
Wiv(1,7, r) 
Wrv (1,8, T) 
Wjv (1,9,, r) 
Wjv(1,10, T) 
Wjv(1,11, r) 
Wiv(1,12, T) 
Wlv(1,13, r) 
Wiv(1,14, T) 
Wiv (1,15, T) 
Wlv(1,16, T) 
Wiv (1,17, r) 
Wrv (1,18, T) 
Wiv (1,19, r) 
Wiv (1,20, r) 

Wiv (1,1, r) 
Wiv(1,2, T) 
W1v(1,3, T) 
Wrv (1,4,, r) 
Wiv (1,5,, r) 
WIV (1,6, T) 
Wiv(1,7, T) 
WIV (1,8, T) 
Wiv(1,9, T) 
Wiv (1,10, T) 
Wlv(1,11, -r) 
Wjv(1,12, T) 
Wrv(1,13, T) 
Wtv(1,14, r) 
Wiv(1,15, T) 
Wrv (1,16, T) 
Wiv (1,17, r) 
Wrv(1,18, T) 
Wiv (1,19, rr) 
Wiv(1.20. T) 

1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 
1 0.9886 1 0.9924 0.9864 0.9996 1 1 1 
1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 

1 0.9892 1 0.9808 1 1 
0.9968 0.9826 1 1 0.9946 1 

1 1 1 1 1 1 
1 1 1 1 1 1 
1 1 1 1 1 1 

1 1 1 
0.6602 0.991 1 

1 1 0.9966 
0,1752 0.9988 1 

1 1 1 
0.7008 0.9994 1 
0.9856 1 1 
0.9992 1 0.9888 
0.998 0.8846 0.9368 

0.0938 0.9986 0.992 

2T/3 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 
1 1 1 1 0.9998 0.9982 1 1 1 
1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 0.9992 1 

1 1 1 1 1 1 
0.9968 1 0.999 1 0.9984 0.9998 

1 1 1 1 1 1 
1 1 1 1 1 1 
1 1 1 1 1 1 

1 1 1 
0.7772 1 1 

1 0.9996 0.9844 
0.6706 1 1 

1 1 1 
0.842 1 1 

1 1 1 
1 1 0.9636 
1 0.7748 0,9502 

0.1492 1 0.9672 
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(TABLE 3.6 CONTINUED) 
N=5 ! N=10 N=20 

U1 U2 U3 U1 U2 U3 Ul U2 U3 
Wiv (2,1, r) T13 0.9356 1 1 0.273 0.9986 0.9994 0.0512 0.5768 0.7376 
Wjv (2,2, r) 0.9922 1 1 0.2808 1 0.9702 0.1748 0.8068 0.9882 
Wiv (2,3, r) 0.9726 1 1 0.9484 1 1 0.0646 0.9384 0.996 
Wiv (2,4, r) 0.9378 1 1 0.595 1 1 0.5876 0.999 0.9998 
Wiv (2,5, r) 0.9992 1 1 1 1 1 0.3926 0.9996 0.994 
WIv (2,6, r) 0.3594 1 1 0.2654 0.8952 0.9818 
Wiv (2,7, r) 0.9592 1 1 0.0916 0.913 0.9934 
WJv (2,8, r) 0.097 1 1 0.6006 1 1 
WIv (2,9, r) 0.8134 0.9816 0.9988 0.95 1 1 

WIv (2,10, r) 0.3156 1 1 1 1 1 
Wjv (2,11, r) 1 1 1 
Wjv (2,12, r) 1 0.8394 1 
Wjv(2,13, T) 1 1 1 
Wjv (2,14, r) 0.6938 1 1 
Wjv (2,15, r) 1 1 1 
Wlv (2,16, r) 1 1 1 
Wiv (2,17, r) 0.8186 1 1 
Wlv (2,18, r) 1 1 1 
Wiv (2,19, r) 1 1 1 
Wiv (2,20, r) 0.9884 1 1 

Wjv(2,1, r) T/2 1 1 1 0.9708 0.994 1 0.1518 0.7056 0.6962 
Wiv (2,2, r) 1 1 1 0.9754 0.9948 0.998 0.4618 0.893 0.9976 
Wjv (2,3, r) 1 1 1 1 1 1 0.2338 0.9818 0.9994 
Wiv (2,4, r) 1 1 1 1 0.9996 1 0.9942 0.9934 0.9998 
Wjv (2,5, r) 1 1 1 1 1 1 0.9834 0.9896 0.9958 
Wiv (2,6, r) 1 1 1 0.8272 0.9348 0.975 
Wjv (2,7, r) 1 1 1 0.3668 0.9384 0.9878 
Wiv (2,8, r) 0.997 0.994 1 0.9968 1 1 
Wjv (2,9, r) 0.5142 0.9982 0.9938 1 1 0.9998 
Wjv (2,10, r) 1 1 0.999 1 1 1 
Wjv (2,11, r) 1 1 1 
Wiv (2,12, r) 1 1 1 
Wlv (2,13, r) 1 1 1 
Wtv (2,14, r) 0.529 1 1 
Wiv (2,15, r) 1 1 1 
Wjv (2,16, r) 1 1 1 
Wjv (2,17, r) 1 1 1 
Wiv (2,18, r) 1 1 1 
Wtv (2,19, r) 1 1 0.9998 
W1v (2,20, r) 0.9904 1 1 
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(TABLE 3.6 CONTINUED) 
N=5 N=10 N=20 

ý - U1 U2 U3 U1 U2 U3 U1 U2 U3 

Wjv (2,1, T) 2T/3 1 1 1 1 0.9996 1 0.4084 0.7952 0.6608 
Wjv (2,2, , r) 1 0.9998 1 0.9996 0.8638 0.9996 0.7728 0.9392 0.9972 
Wjv (2,3, r) 1 1 1 1 1 1 0.5422 0.988 0.999 
Wiv (2,4, -r) 1 1 1 1 1 1 1 0.9922 0.9998 
Wjv(2,5, rr) 1 1 1 1 1 1 1 0.9728 0.9876 
W, v (2,6, rr) 1 1 1 0.9934 0.9834 0.9568 
Wiv (2,7, -r) 1 1 1 0.6506 0.9892 0.958 
Wiv (2,8, rr) 1 0.9868 1 1 1 0.9994 
Wjv (2,9, r) 0.9226 1 0.9982 1 1 0.9952 

Wjv(2,10, r) 1 1 0.9988 1 1 1 
WJv (2,11, T) 1 1 1 
Wjv(2,12, r) 1 1 1 
Wlv (2,13, rr) 1 1 0.9992 
WJv (2,14, r) 1 1 1 
Wlv (2,15, -r) 1 1 1 
WWiv (2,16, r) 1 1 0.9998 
WJv(2,17, T) 1 1 1 
Wjv (2,18, r) 1 1 0.9996 
Wrv (2,19,, r) 1 1 0.9994 
Wjv (2,20, z) 0.9784 1 0.9996 

Wjv(3,1, T) T/3 0.096 0.3718 0.2028 0.9996 0.9998 0.9998 1 1 1 
Wiv (3,2, -r) 0.144 0.4714 0.112 0.3378 0.9996 0.7832 1 1 1 
Wjv (3,3, T) 0.0668 0.9798 0.463 0.9994 0.9992 0.7506 0.2386 1 1 
Wiv (3,4, T) 0.0788 0.1132 0.4482 0.999 0.9998 0.9998 0.9974 1 1 
Wjv (3,5, T) 0.0832 0.9238 0.5356 0.9984 0.9998 0.9996 0.2488 1 1 
Wjv (3,6, rr) 0.9998 1 0.9998 0.5702 1 1 
Wiv (3,7, Tr) 0.9996 0.9998 0.9998 0.9994 1 1 
Wlv (3,8, r) 0.7176 0.9998 0.9998 0.2164 1 1 
Wiv (3,9, T) 0.9996 0.9996 0.9982 0.9904 1 1 

Wiv (3,10, r) 0.9996 0.9996 0.9996 0.2308 0.9976 1 
Wjv (3,11,7) 0.0906 0.8376 0.9982 
Wlv (3,12, r) 0.2126 0,3068 0.8288 
Wjv (3,13, 'r) 0.5564 0.9026 0.7106 
Wjv(3,14, 'r) 0.6592 0.9578 0.9364 
Wiv (3,15, rr) 0.898 1 1 
W, v (3,16, r) 0.277 0.7206 0.4086 
Wiv (3,17, r) 0.517 0.998 0.9982 
Wtv (3,18,, r) 0.0978 0.4954 0.5416 
Wjv(3,19, 'r) 0.0914 0.6644 0.9108 
Wiv (3,20, rr) 0.1954 0.8766 0.587 
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(TABLE 3.6 CONTINUED) 
N=5 N=10 N=20 

U1 U2 U3 U1 U2 U3 U1 U2 U3 
Wrv(3,1, T) T/2 0.294 0.3106 0.2026 0.9998 0.9998 0.9998 1 1 1 
Wlv (3,2, , r) 0.4244 0.2776 0.1986 0.9994 0.931 0.9058 1 1 1 
Wjv (3,3, -r) 0.9714 0.9582 0.0458 0.9996 0.9804 0.9402 0.9532 1 1 
Wlv (3,4, T) 0.71 0.106 0.0496 0.9998 0.9998 0.9998 1 1 1 
Wjv (3,5,, r) 0.9774 0.93 0.0624 0.9998 0.9998 0.9996 1 1 1 
Wjv (3,6, T) 0.9998 0.9998 0.9998 0.998 1 1 
Wlv (3,7, z) 0.9998 0.9998 0.9998 1 1 0.9998 
Wiv (3,8, rr) 0.5572 0.9998 0.9998 0.9972 1 1 
Wlv (3,9, rr) 0.9996 0.9992 0.9992 1 1 1 

Wiv (3,10, -r) 0.9998 0.9996 0.9996 0.855 0.9998 1 
W, v (3,11, T) 0.389 0.96 0.9996 
Wjv (3,12, r) 0.3294 0.5482 0.8122 
Wjv (3,13, T) 0.8568 0.888 0.57 
Wlv (3,14, T) 0.9496 0.9762 0.7856 
Wjv (3,15, T) 0.9984 1 1 
Wiv (3,16, T) 0.7376 0.5976 0.297 
Wjv(3,17,, r) 0.9794 0.9992 0.9838 
Wjv (3,18, T) 0.2884 0.5284 0.4866 
Wiv (3,19, r) 0.2708 0.8644 0.7844 
Wlv (3,20, T) 0.7112 0.7438 0.5416 

Wjv(3,1, -r) 2T/3 0.4074 0.3144 0.354 0.9998 0.9998 0.9998 1 1 1 
Wlv (3,2,7) 0.5522 0.167 0.5106 0.9998 0.5406 0.9566 1 1 1 
Wjv(3,3, -r) 0.978 0.8838 0.0176 0.9984 0.609 0.995 1 1 1 
Wjv (3,4, T) 0.7102 0.7264 0.0168 0.9998 0.9998 0.9998 1 1 1 
Wrv (3,5, r) 0.9708 0.935 0.0174 0.9998 0.9996 0.9996 1 1 1 
Wiv(3,6, r) 0.9998 0.9998 0.9998 0.9998 1 0.9994 
Wlv (3,7, T) 0.9998 0.9998 0.9998 1 1 0.9992 
WJv (3,8, r) 0.9996 0.9998 0.9998 1 1 1 
WJv (3,9, T) 0.9998 0.9996 0.9996 1 1 1 

Wjv(3,10, r) 0.9996 0.9996 0.9996 0.9888 0,9998 0.9992 
Wjv (3,11, T) 0.6996 0.9906 0.9982 
Wjv (3,12, r) 0.3524 0.7764 0.699 
Wjv (3,13, r) 0.9276 0.8236 0.3678 
Wjv(3,14, 'r) 0.9804 0.9888 0.5258 
Wjv (3,15, T) 1 1 0.9988 
Wi (3,16, r) 0.8826 0.5366 0.2328 
Wiv (3,17, T) 0.999 0.9996 0.8904 
Wiv (3,18, 'x) 0.4488 0.5776 0.456 
WJV (3,19, r) 0.43 0.9602 0.5776 
Wiv (3,20, r) 0.9328 0.6008 0.5196 



122 

TABLE 3.7. Testing results for Federal Reserve daily bond yields. The table reports the Sup, 
Avg, and Exp values for the test statistics WI (T), W1, (i, T), W111(i, r), WW1v (i, T), Wv (i, , T), 
and Wvj(i, 'r) associated with the six hypotheses formulated in equations 2.23 - 2.28. The 
p-values are reported in italics. 

Testing overall system 
Sup Avg Exp 

WI(r) 0.21788 0.024133 -1.8342 
0.000 0.000 0.000 

Testing the level factor 
Sup Avg Exp 

W11(1, rr) 0.080904 0.009637 -1.8837 
0.000 0.000 0.000 

W1nn(1, r0 0.23128 0.026217 -1.8272 
0.000 0.000 0.000 

Wv(1, rr) 0.24585 0.029767 -1.8151 
0.000 0.000 0.000 

Testing the slope factor 
Sup Avg Exp 

W11(2, ir) 0.069336 0.006697 -1.8936 
0.000 0.000 0.000 

Wrrr(2, T) 248.12 26.206 117.61 
0.753 0.604 0.753 

WV (2, T) 1.9809 0.21744 -1.1462 
0.363 0.052 0.058 

Testing the curvature factor 
Sup Avg Exp 

WI! (3, rr) 0.073677 0.007799 -1.8899 
0.000 0.000 0.000 

WIII (3, T) 0.093286 0.007266 -1.8917 
0.000 0.000 0.000 

Wv (3, T) 0.18308 0.016498 -1.8602 
0.000 0.000 0.000 

Testing the IRs governing the level factor 
Sup Avg Exp 

Wlv(1,1, rr) 0.074561 0.006958 -1.8927 
0.000 0.000 0.000 

WWiv(1,2, rr) 0.15959 0.015836 -1.8625 
0.000 0.000 0.000 

Wrv(1,3, T) 0.096229 0.009853 -1.8829 
0.000 0.000 0.000 

Wiv(1,4, r) 0.054365 0.005447 -1.8979 
0.000 0.000 0.000 

Wlv(1,5,, r) 0.1079 0.011748 -1.8765 
0.000 0.000 0.000 

Wiv(1,6, rr) 0.12296 0.013145 -1.8717 
0.000 0.000 0.000 

Wiv(1,7, r) 0.074699 0.007382 -1.8913 
0.000 0.000 0.000 

W1v(1,8,7-) 0.046066 0.004125 -1.9024 
0.000 0.000 0.000 

Testing the common factors 
Sup Avg Exp 

WV1(1,2,, r) 2.3662 0.26583 -0.97505 
0.000 0.000 0.000 

Wv j (1,3,, r) 0.41223 0.046288 -1.7586 
0.000 0.000 0.000 

Wvj (2,3, , r) 2.182 0.2569 -1.013 
0.000 0.000 0.000 
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Testing the IRs governing the slope factor 
Sup Avg Exp 

Wjv(2,1, r) 3.4434 0.37308 -0.55909 
0.009 0.005 0.005 

WIV (2,2,7) 1.2778 0.1228 -1.4827 
0.026 0.064 0.067 

Wiy (2,3, r) 0.28623 0.026416 -1.826 
0.002 0.025 0.023 

W1v (2,4, r) 0.047793 0.00537 -1.8982 
0.698 0.225 0.227 

Wiv (2,5, r) 0.27393 0,031617 -1.8085 
0.646 0.156 0.164 

Wjv (2,6, r) 0.85967 0.098243 -1.5771 
0.604 0.120 0.143 

Wjv(2,7, r) 0.97655 0.11195 -1.529 
0.578 0.111 0.129 

Wjv (2,8, r) 0.8575 0.09659 -1.5828 
0.536 0.096 0.109 

Testing the IRs governing the curvature factor 
Sup Avg- Exp 

Wjv(3,1, T) 0.014698 0.001279 -1.9121 
0.014 0.001 0.001 

Wiv (3,2, -r) 0.075935 0.004772 -1,9002 
0.000 0.000 0.000 

Wjv (3,3, T) 0.006669 0.000508 -1.9147 
0.130 0.050 0.050 

Wiv (3,4, Tr) 0.038835 0.002895 -1.9066 
0.000 0.000 0.000 

Wiv (3,5, r) 0.03513 0.003013 -1.9062 
0.000 0.000 0.000 

Wiv (3,6, -r) 0.002986 8.39E-05 -1.9162 
0.073 0.208 0.208 

Wtv (3,7, r) 0.014231 0.001109 -1.9127 
0.001 0.001 0.001 

Wiv (3,8, , r) 0.0285 0.002491 -1.908 0.000 0.000 0.000 
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TABLE 3.8. Testing results for Federal Reserve monthly bond yields. 
The table reports the Sup, Avg, and Exp values for the test statistics 
WI(T), WIi(i, T), Wrti(i, T), Wlv(i, T), Wv(i, T), and Wv1(i, T) associated with the six 
hypotheses formulated in equations 2.23 - 2.28. The p-values are reported in italics. 

Testing overall system 
Sup Avg Exp 

Wj (r) 0.28311 0.62693 1.257 
0.006 0.000 0.000 

Testing the level factor 
Sup Avg Exp 

WI1(1,7) 0.125 0.30613 1.2065 
0.002 0.000 0.000 

W111(1, T) 0.28359 0.62246 1.2565 
0.081 0.008 0.008 

Wv(1,7) 0.34216 0.82941 1.2888 
0.003 0.000 0.000 

Testing the slope factor 
Sup Avg Exp 

WII(2, r) 0.069375 0.15996 1.1836 
0.242 0.015 0.015 

W111(2, r) 0.51744 0.8568 1.2935 
0.006 0.002 0.002 

WV (2, r) 0.29807 0.77128 1.2797 
0.068 0.001 0.001 

Testing the curvature factor 
Sup Avg Exp 

Wr! (3, rr) 0.10018 0.16084 1.1837 
0.044 0.004 0.004 

Will (3,7) 0.21639 0.48289 1.2344 
0.131 0.008 0.008 

Wv (3, T) 0.24129 0.56157 1.2467 

Testing the IRs governing the level factor 
Sup Avg Exp 

Wrv(1,1, rr) 0.084724 0.14268 1.1809 
0.300 0.120 0.121 

Wiv(1,2,, r) 0.09609 0.15852 1.1834 
0.125 0.040 0.040 

Wjv(1,3, r) 0.056443 0.078843 1.1708 
0.054 0.026 0.026 

Wiv (1,4,, r) 0.07872 0.13886 1.1803 
0.091 0.021 0.021 

WJy(1,5, T) 0.18757 0.33367 1.211 
0.006 0.001 0.001 

Wjv(1,6, r) 0.087837 0.15356 1.1826 
0.143 0.044 0.045 

Wiv (1,7,, r) 0.044407 0.064474 1.1686 
0.341 0.192 0.192 

Wtv(1,8, r) 0.021252 0.01793 1.1612 
0.737 0.695 0.696 

Testing the common factors 
Sup Avg Exp 

Wyl(1,2, T) 0.6136 1.6169 1.4127 
0.008 0.000 0.000 

VvJ(1,3,, r) 0.50214 1.3229 1.3664 
0.004 0.000 0.000 

WTI (2,3, T) 0.49117 1.3041 1.3634 
0.023 0.000 0.000 

0.036 0.001 0.001 
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Testing the IRs governin g the slope factor Testing the IRs governing the curvature factor 
Sup Avg Exp Sup Avg Exp 

Wiv(2,1, Tr) 0.059979 0.12319 1.1778 Wiv(3,1,, r) 0.013676 0.014301 1.1607 
0.073 0.008 0.008 0.700 0.514 0.515 

Wiv (2,2,7-) 0.10178 0.19236 1.1887 Wrv (3,2,, r) 0.070769 0.1332 1.1794 
0.064 0.013 0.013 0.100 0.020 0.020 

Wjv(2,3, T) 0.27441 0.5948 1.2523 Wlv(3,3, T) 0.13232 0.10164 1.1745 
0.006 0.000 0.000 0.002 0.026 0.026 

Wrv(2,4, rr) 0.073562 0.12782 1.1785 Wlv(3,4, -r) 0.049983 0.025846 1.1625 
0.135 0.036 0.036 0.133 0.375 0.374 

WIV (2,5, Tr) 0.052661 0.074805 1.1702 Wiv (3,5, -r) 0.038806 0.029134 1.163 
0.252 0.129 0.130 0.368 0.363 0.363 

Wiv (2,6,, r) 0.021918 0.028842 1.163 Wlv (3,6, T) 0.042201 0.045078 1.1655 
0.742 0.553 0.553 0.264 0.231 0.231 

Wjv (2,7,, r) 0.011033 0.004199 1.1591 Wlv(3,7, T) 0.043421 0.070141 1.1694 
0.842 0.947 0.947 0.160 0.065 0.065 

Wiv (2,8, T) 0.008558 0.002216 1.1588 WIv (3,8, -r) 0.015648 0.014422 1.1607 
0.878 0.991 0.991 0.528 0.430 0.430 
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TABLE 3.9. Testing results for Fama Bliss monthly bond yields. The table reports the Sup, 
Avg, and Exp values for the test statistics Wj(7), WII (i, r), TVIlt(i, r), WJy (i, r), WW (i, T), 
and Wvj(i, T) associated with the six hypotheses formulated in equations 2.23 - 2.28. The 

p-values are reported in italics. 

Testing overall system 
Sup Avg Exp 

WI(, r) 0,47223 0.70067 1.0435 
0.140 0.133 0.924 

Testing the level factor 
Sup Avg Exp 

Wj j (1, -r) 0.18327 0.26953 0.95232 
0.000 0.000 0.000 

Wier (1, Tr) 0.70166 1.0604 1.1158 
0.007 0.002 0.002 

Wv (1, r) 0.62397 1.0427 1.1123 
0.000 0.000 0.000 

Testing the slope factor 
Sup Avg Ezp 

WI, (2,, r) 0.115 0.15889 0.92948 
0.000 0.000 0.000 

WII j (2, T) 0.53077 0.74771 1.0503 
0.013 0.004 0.005 

Wv (2, «r) 0.41481 0.73693 1.0481 
0.005 0.000 0.000 

Testing the curvature factor 
p Avg Exp 

Wij(3, 'r) 0.19333 0.27225 0.95306 
0.000 0.000 0.000 

WI jt (3, Tr) 0.42918 0.64173 1.0282 
0.338 0.1.6 0.159 

Wv (3, r) 0.48997 0,82029 1.066 
0.064 0.003 0.004 

Testing the common factors 
Sup Avg Exp 

Wvj (1,2, T) 0.92379 1.6091 1.23 
0.003 0.000 0.000 

Wvl (1,3,, r) 1.0419 1.7968 1.2706 
0.031 0.000 0.000 

WvI (2,3, T) 1.164 2.0277 1.3225 
0.021 0.000 0.000 

Testing the IRs governing the level factor 
Sup Avg Exp 

WJV(1,1, -r) 0.28486 0.38651 0.97683 
0.000 0.000 0.000 

Wiv (1,2, T) 0.34409 0.45176 0.99064 
0.000 0.000 0.000 

WIv (1,3, 0.43058 0.43963 0.98835 
0.000 0.000 0.000 

Wlv(1,4, , r) 0.27042 0.3326 0.96543 
0.000 0.000 0.000 

Wjv(1,5, rr) 0.18172 0.20256 0.93849 
0.000 0.000 0.000 

Wrv(1,6, r) 0.11036 0.11305 0.92002 
0.025 0.016 0.015 

Wiv (1,7,, r) 0.079312 0.05133 0.90737 
0.012 0.051 0.050 

Wjv(1,8,, r) 0.027267 0.010379 0.89899 
0.289 0.529 0.529 

W, v (1,9, r) 0.015298 0.012722 0.89946 
0.732 0.537 0.537 

Wlv(1,10, rr) 0.16416 0.18611 0.93522 
0.000 0.001 0.001 

W1v(1,11, -r) 0.28215 0.37595 0.97472 
0.000 0.000 0.000 

Wjv(1,12, r) 0.39883 0.59148 1.0199 
0.000 0.000 0.000 

W jv (1,13, T) 0.34209 0.49583 0.9992 
0.000 0.000 0.000 

Wiv(1,14, rr) 0.32182 0.4332 0.98599 
0.000 0.000 0.000 

WWv(1,15, i) 0.30738 0.42135 0.98373 
0.000 0.000 0.000 

W, v (1,16, -r) 0.28336 0.33451 0.96568 
0.000 0.000 0.000 

Wiv (1,17, , r) 0.31334 0.28299 0.95532 
0.000 0.000 0.000 

Wjv(1,18, r) 0.17546 0.14729 0.92717 
0.000 0.001 0.001 

Ww(1,19, r) 0.23686 0.10196 0.9179 
0.000 0.018 0.018 

Wtv (1,20, -r) 0.19447 0.080092 0.91334 
0.000 0.036 0.033 

Wi (1,21, rr) 0.14803 0.063431 0.90988 
o. 001 0.041 0.040 
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Testing the IRs governing the slope factor 
Sup Avg Exp 

Wlv (2,1, r) 0.015325 0.019611 0.90087 
0.565 0.221 0.221 

WIV (2,2, T) 0.012791 0.007502 0.8984 
0.621 0.590 0.590 

WjV (2,3, -r) 0.083969 0.12711 0.92286 
0.014 0.001 0.001 

Wfv(2,4, rr) 0.10422 0.11245 0.9199 
0.002 0.000 0.000 

WIV (2,5, r) 0.16548 0.22846 0.94382 
0.001 0.000 0.000 

WIV (2,6, r) 0.13564 0.1945 0.93679 
0.001 0.000 0.000 

WIV (2,7, r) 0.12321 0.19624 0.93706 
0.005 0.001 0.001 

Wrv(2,8, -r) 0.18675 0.22926 0.94386 
0.000 0.000 0.000 

WIV (2,9,7-) 0.12094 0.15915 0.92936 
0.004 0.001 0.001 

Wjv(2,10, r) 0.10936 0.16118 0.92984 
0.003 0.003 0.003 

WIC (2,11, r) 0.08732 0.12848 0.92316 
0.016 0.004 0.004 

WJV (2,12, r) 0.068445 0.083145 0.91388 
0.027 0.008 0.008 

WJV (2,13, , r) 0.04162 0.039435 0.90492 
0.101 0.064 0.064 

Wlv (2,14, r) 0.058328 0.060814 0.9093 
0.049 0.036 0.036 

Wlv(2,15, r) 0.028223 0.018894 0.90073 
0.170 0.192 0.192 

Wiv(2,16,, r) 0.051298 0.037002 0.90443 
0.012 0.045 0.045 

Wlv(2,17, r) 0.008739 0.002974 0.89747 
0.770 0.894 0.894 

Wiv (2,18, rr) 0.006821 0.00286 0.89745 
0.889 0.911 0.911 

Wlv(2,19, r) 0.016391 0.008169 0.89853 
0.451 0.497 0.497 

Wrv (2,20, T) 0.011784 0.012301 0.89937 
0.629 0.324 0.324 

Wrv(2,21, r) 0.011639 0.009328 0.89877 
0.605 0.416 0.416 

Testing the IRs governing the curvature factor 
Sup Avg Exp 

Wjv(3,1, r) 0.004254 0.001733 0.89722 
0.963 0.969 0.969 

WIC (3,2, T) 0.01785 0.019643 0.90087 
0.309 0.108 0.110 

Wjv (3,3, r) 0.047549 0.051524 0.90739 
0.064 0.014 0.014 

Wlv (3,4, r) 0.029769 0.038349 0.9047 
0.305 0.084 0.084 

Wjv (3,5, -r) 0.062465 0.048166 0.90671 
0.107 0.092 0.092 

Wrv (3,6, 'r) 0.028814 0.027685 0.90251 
0.393 0.209 0.209 

Wtv (3,7,, r) 0.024056 0.02107 0.90117 
0.566 0.374 0.374 

Wiv (3,8, 'r) 0.04849 0.023871 0.90176 
0.101 0.203 0.202 

Wiv (3,9, , r) 0.011174 0.007633 0.89842 
0.716 0.602 0.603 

WJv (3,10, , r) 0.022095 0.021407 0.90123 
0.682 0.456 0.461 

Wiv(3,11, r) 0.008244 0.004866 0.89786 
0.929 0.873 0.873 

Wiv(3,12, r) 0.023356 0.008579 0.89862 
0.397 0.608 0.608 

Wiv (3,13, rr) 0.057081 0.016472 0.90024 
0.341 0.665 0.663 

W1v(3,14, r) 0.030502 0.01019 0.89895 
0.534 0.743 0.742 

Wiv (3,15, r) 0.039536 0.015681 0.90008 
0.325 0.495 0.494 

Wjv(3,16, rr) 0.046383 0.030354 0.90307 
0.235 0.226 0.226 

WJv (3,17, T) 0.030402 0.021695 0.9013 
0.330 0.258 0.258 

Wiv(3,18, r) 0.12516 0.031969 0.90344 
0.027 0.409 0.408 

Wfv(3,19, -r) 0.021461 0.020342 0.90102 
0.352 0.231 0.231 

Wjv (3,20, 'r) 0.029471 0.026966 0.90237 
0.308 0.210 0.211 

WJv(3,21, -r) 0.016953 0.008696 0.89864 
0.441 0.520 0.520 
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TABLE 3.10. Testing results for Datastream US daily discount bond yields. 
The table reports the Sup, Avg, and Exp values for the test statistics 
WIT), W71(i, T), WIII(i, T), WIv(i, T), Wv(i, T), and Wvi(i, T) associated with the six 
hypotheses formulated in equations 2.23 - 2.28. The p-values are reported in italics. 

Testing overall system 
Sup Avg Exp 

Wi(rr) 0.84868 0.25198 -0.40539 
0.000 0.000 0.000 

Testing the level factor 
Sup Avg Exp 

Wtf(1, T) 0.23488 0.072509 -0.58508 
0.000 0.000 0.000 

Wr» (1, r) 3.9197 1.1069 0.56299 
0.006 0.001 0.006 

Wv (1,, r) 1.0012 0.4269 -0.23818 
0.004 0.000 0.000 

Testing the slope factor 
Sup Avg Exp 

WIJ(2, T) 0.36233 0.10218 -0.55553 
0.000 0.000 0.000 

Will (2,, r) 160.93 5.2745 73.258 
0.500 0.491 0.501 

Wv(2, rr) 1.9027 0.73165 0.069582 
0.296 0.050 0.058 

Testing the curvature factor 
Sup Avg Exp 

Wr1(3, rr) 0.26432 0.077286 -0.57981 
0.000 0.000 0.000 

Wj j, (3, r) 272 4.5427 128.79 
0.489 0.524 0.490 

Wv (3,, r) 1.7474 0.59921 -0.06578 
0.507 0.051 0.081 

Testing the common factors 
Sup Avg Exp 

Wyl (1,2, r) 5.9162 1.9401 1.409 
0.116 0.001 0.081 

WvI(1,3, r) 2.4814 1.0453 0.37833 
0.001 0.000 0.000 

Wv j (2,3, T) 4,1397 1.4937 0.84192 
0,290 0.009 0.032 

Testing the IRs governing the level factor 
Su Avg- - Exp P 

Wjv (1,1, r) 0.092151 0.00638 -0.64907 
0.006 0.165 0.164 

Wjv (1,2,, r) 0.23507 0.054486 -0.60199 
0.006 0.000 0.000 

Wiv (1,3,, r) 0.15922 0.037041 -0.61925 
0.009 0.001 0.001 

Wjv (1,4, r) 0.63385 0.13326 -0.52019 
0.006 0.000 0.000 

Wjv (1,5, r) 1.3623 0.27524 -0.35856 
0.006 0.000 0.001 

Wrv (1,6, r) 2.17 0.42767 -0.16188 
0.006 0.000 0.001 

Wiv (1,7, r) 2.7844 0.53535 -0.01017 
0.006 0.000 0.002 

Wjv (1,8,, r) 3.0918 0.60334 0.082748 
0.006 0.000 0.002 

Wjv (1,9"r) 3.0438 0.61671 0.086453 
0.006 0.000 0.001 

Wjv(1,10, r) 2.8236 0.59699 0.042164 
0.006 0.000 0.001 

Wjv(1,11, r) 0.59444 0.1581 -0.50021 
0.000 0.000 0.000 

Wjv(1,12, rr) 0.69106 0.17597 -0.48064 
0.000 0.000 0.000 

Wfv(1,13, r) 0.99383 0.22111 -0.42984 
0.000 0.000 0.000 

Wjv(1,14, r) 0.97272 0.20116 . 0.4492 
0.000 0.000 0.000 

Wjv (1,15, r) 1.0111 0.22775 -0.42259 
0.000 0.000 0.000 

Wjv(1,16,7) 1.0126 0.22804 -0.42248 
0.000 0.000 0.000 

Wjv(1,17, 'r) 0.9625 0.21737 -0.43405 
0.000 0.000 0.000 

W, v(1,18, r) 0.91251 0.20748 -0.44469 
0.000 0.000 0.000 

Wiv (1,19, r) 0.84541 0.19331 -0.45993 
0.000 0.000 0.000 

Wiv (1,20, r) 0.84564 0.18812 -0.46463 0.000 0.000 0.000 
W, v(1,21, r) 0.82034 0.18007 -0.47289 

0.000 0.000 0.000 
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Testing the IRs governing the slope factor 
Sup Avg Exp 

WJV (2,1,7) 0.095025 0.024061 -0.63198 
0.002 0.000 0.000 

WJV (2,2, T) 0.17489 0.053578 -0.60329 
0.005 0.000 0.000 

Wjv(2,3, 'r) 0.23434 0.066188 -0.59114 
0.000 0.000 0.000 

Wjv (2,4, r) 0.59242 0.19319 -0.46601 
0.000 0.000 0.000 

Wjv (2,5, -r) 0.8257 0.2881 -0.36919 
0.000 0.000 0.000 

Wjv (2,6, r) 1.0392 0.32381 -0.33058 
0.000 0.000 0.000 

Wiv (2,7, rr) 1.147 0.30557 -0.34885 
0.000 0.000 0.000 

Wjv (2,8, rr) 1.2904 0.323 -0.329 
0.000 0.000 0.000 

Wiv (2,9, rr) 1.1901 0,29856 -0.35484 
0.000 0.000 0.000 

Wlv (2,10, , r) 1.0135 0.25712 -0.39859 
0.000 0.000 0.000 

Wfv (2,11, rr) 0.99718 0.036843 -0.61754 
0.461 0.523 0.541 

Wjv (2,12, -r) 1.2779 0.083914 -0.57091 
0.452 0.420 0.455 

Wiv(2,13, 'r) 4.1216 0.32528 -0.30783 
0.327 0.308 0.403 

Wlv (2,14, r) 4.9877 0.33903 -0.26816 
0.304 0.324 0.421 

Wiv (2,15, , r) 5.725 0.8532 0.28911 
0.328 0.195 0.326 

Wjv (2,16, r) 6.399 1.2087 0.76746 
0.323 0.155 0.276 

Wtv (2,17,, r) 6.1186 1.1535 0.66721 
0.320 0.155 0.274 

WIv(2,18, r) 5.6919 0.92114 0.35332 
0.309 0.173 0.288 

Wfv(2,19, r) 5.2038 0.75599 0.14752 
0.289 0.183 0.295 

Wrv (2,20, r) 4.4232 0.69438 0.073502 
0.312 0.186 0.280 

Wiv (2,21, r) 3.7806 0.61647 -0.01507 
0.328 0.191 0.279 

Testing the IRs governing the curvature factor 
Sup Avg Exp 

W iv (3,1, r) 0.51604 0.051075 -0.60558 
0.516 0.396 0.422 

Wjv (3,2, r) 0.82403 0.072583 -0.58319 
0.407 0.328 0.354 

Wrv (3,3, r) 1.2715 0.11658 -0.53863 
0.337 0.291 0.329 

Wiv(3,4, r) 1.4784 0.16218 -0.48281 
0.348 0.259 0.292 

Wiv (3,5, -r) 1.1359 0.13989 -0.50373 
0.342 0.235 0.254 

Wjv (3,6,, r) 0.48934 0.035675 -0.61938 
0.300 0.370 0.373 

Wiv (3,7, r) 0.15511 0.010385 -0.64525 
0.002 0.083 0.083 

WJy(3,8,7) 1.0181 0.062826 . 0.59261 
0.009 0.272 0.283 

Wiv (3,9, r) 1.4895 0.11718 -0.53549 
0.165 0.284 0.312 

Wjv(3,10, r) 1.2432 0.12581 -0.52895 
0.247 0.257 0.284 

Wiv (3,11, r) 0.5929 0.13048 . 0,52454 
0.018 0.001 0.001 

Wiy(3,12, r) 0.34933 0.098085 -0.5585 
0.021 0.000 0.000 

Wiv (3,13, r) 0.55416 0.12692 -0.52678 
0.000 0.000 0.000 

Wjv(3,14, rr) 0.14352 0.024502 -0.63153 
0.000 0.000 0.000 

Wjy (3,15, r) 0.049134 0.005316 -0.65015 
0.000 0.028 0.028 

Wjy(3,16, r) 0.097715 0.011626 -0.64405 
0.115 0.204 0.206 

Wly (3,17, r) 0.29506 0.066789 -0.5897 
0.004 0.002 0.002 

Wiv (3,18,, r) 0.52904 0.14248 -0.51194 
0.001 0.000 0.000 

Wjv(3,19, r) 0.76198 0.20256 -0.44785 
0.000 0.000 0.000 

Wjv (3,20, r) 0.70479 0.19966 -0.45123 
0.000 0.000 0.000 

Wjv (3,21, r) 0.63873 0.18 -0.47233 0.000 0.000 0.000 
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TABLE 3.11. Stability results for US zero coupon bond yield short maturity clus- 
ter. The table reports the Sup, Avg, and Exp values for the test statistics 
W, (, r), Wrl(i, T), W111 (j, T), WjV(i, T), Wv(i, T), and Wvj(i, T) associated with the six hy- 

potheses formulated in equations 2.23 - 2.28. The p-values are reported in italics. 

Testing overall system 
Sup Avg Exp 

Wi(r) 1,1535 0.29814 -0.35658 
0.000 0.000 0.000 

Testing the level factor 
Sup Avg Exp 

Wjj(1, rr) 0.36777 0.10295 -0.55285 
0.000 0.000 0.000 

WIJI(1, T) 0.29332 0.082537 -0.57345 
0.008 0.004 0.004 

Wv(1, T) 0.78625 0.2258 -0.43127 
0.000 0.000 0.000 

Testing the slope factor 
Sup Avg Exp 

WIJ(2, r) 0.40144 0.11431 -0.54194 
0.000 0.000 0.000 

W111(2, T) 0.84423 0.14078 -0.51059 
0.000 0.000 0.000 

Wv (2, r) 1.0648 0.26789 -0.38648 
0.000 0.000 0.000 

Testing the IRs governing the level factor 
Sup vg Exp 

WJv(1,1, r) 0.16119 0.027609 -0,62634 
0.000 0.004 0.004 

Wiv(1,2, r) 0.14635 0.014668 -0.63897 
0.000 0.004 0.004 

WIC (1,3,, r) 0.16219 0.027949 -0.62613 
0.000 0.000 0.000 

Wjv (1,4, rr) 0.20911 0.032481 -0.62173 
0.000 0.000 0.000 

Wjv(1,5, r) 0.13662 0.022785 -0.63119 
0.000 0.001 0.001 

Wiv(1,6, r) 0.06753 0.005748 -0.64765 
0.020 0.233 0.232 

Wjy(1,7, r) 0.12997 0.019584 -0.63415 
0.000 0.002 0.002 

Wjv (1,8, r) 0.21198 0.031176 -0.62291 
0.000 0.000 0.000 

WIV(1,9, r) 0.22322 0.028553 -0.62549 
0.000 0.000 0.000 

Wiy(1,10, r) 0.22734 0.024714 -0.6292 
0.000 0.000 0.000 

Testing the curvature factor 
Sup Avg Exp 

WjI(3, r) 0.38429 0.080879 -0.5744 
0.000 0.000 0.000 

WIIj(3, T) 1.2638 0.11471 -0.53653 
0.049 0.029 0.034 

Wv (3, r) 0.68481 0.15715 -0.49974 
0.029 0.003 0.003 

Testing the common factors 
)Up Fvg zxp 

Wvj (1,2, r) 1.9795 0.50845 -0.13066 
0.000 0.000 0.000 

Wv j (1,3, r) 1.3586 0.3802 -0.27518 
0.002 0.001 0.001 

Wvj (2,3, r) 1.8104 0.43972 -0.20621 
0.001 0.000 0.000 
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Testing the IRs governing the slope factor 
Sup Avg Exp 

Wry (2,1,1-) 0.115 0.014545 -0.63906 
0.001 0.003 0.003 

Wry (2,2, T) 0.030452 0.003056 -0.65026 
0.004 0.059 0.059 

Wjy (2,3, rr) 0.15285 0.028869 -0.62524 
0.001 0.001 0.001 

Wi y (2,4, r) 0.15578 0.015671 -0.63801 
0.000 0.002 0.002 

Wiy (2,5,, r) 0.18094 0.01812 -0.63564 
0.000 0.000 0.000 

WI V (2,6, r) 0.19508 0.018849 -0.63493 
0.000 0.000 0.000 

WI y (2,7,, r) 0.15172 0.014427 -0.63923 
0.000 0.000 0.000 

Wj y (2,8,, r) 0.1022 0.016751 -0.63699 
0.000 0.001 0.001 

Wf y (2,9, T) 0.065471 0.008475 -0.64501 
0.006 0.009 0.009 

Wry (2,10, rr) 0.031184 0,00475 -0.64863 
0.030 0.044 0.044 

Testing the IRs governing the curvature factor 
Sup Avg Exp 

W1 v(3,1, T) 0.04877 0.011848 -0.6418 
0.031 0.005 0.005 

WIv(3,2, 'r) 0.13366 0.012844 -0.64072 
0.024 0.030 0.030 

WIv (3,3, rr) 0.098076 0.020779 -0.6331 
0.155 0.032 0.033 

Wjy(3,4, rr) 0.17229 0.014599 -0.63906 
0.078 0.049 0.049 

Wlv(3,5, T) 0.41218 0.032071 -0.62194 
0.042 0.019 0.019 

WIv(3,6, , r) 0.5223 0.038496 -0.61536 
0.026 0.015 0.017 

W1 v(3,7, r) 0.11621 0.017317 -0.63643 
0.063 0.021 0.021 

W1 v(3,8, rr) 0.045311 0.005598 . 0.6478 
0.009 0.048 0.047 

Wjv(3,9, T) 0.33049 0.021065 -0.63266 
0.055 0.039 0.039 

Wjv(3,10, r) 0.39263 0.022499 -0.63117 
0.038 0.029 0.029 
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TABLE 3.12. Stability results for US zero coupon bond yield long maturity clus- 
ter. The table reports the Sup, Avg, and Exp values for the test statistics 
WIT), Wji(i, T), Wiii(i, T), Wiv(i, T), Wv(2, T), and Wvj(i, T) associated with the six hy- 

potheses formulated in equations 2.23 - 2.28. The p-values are reported in italics. 

Testing overall system 
Sup Avg Exp 

Wj(r) 0.35834 0.10035 -0.55531 
0.000 0.000 0.000 

Testing the level factor 
Sup Avg Exp 

Wjj(1, T) 0.16774 0.041898 -0.61264 
0.000 0.000 0.000 

Will(1, r) 0.26598 0.072521 -0.58295 
0.000 0.000 0.000 

Wv (1,, r) 0.41544 0.11307 -0.54289 
0.000 0.000 0.000 

Testing the slope factor 
Sup Avg Exp 

W11(2, r) 0.19124 0.040006 -0,6143 
0.000 0.000 0.000 

WIIJ(2,1-) 1.1325 0.15493 -0.49045 
0.000 0.000 0.000 

Wy (2,, r) 0.62588 0.14121 -0.51243 
0.000 0.000 0.000 

Testing the IRs governing the level factor 
Sup Avg Exp 

Wjv(1,1, r) 0.12723 0.026686 -0.62732 
0.000 0.000 0.000 

W, v (1,2, r) 0.085575 0.02065 -0.63327 
0.000 0.000 0.000 

Wiv(1,3, r) 0.14344 0.035964 -0.6184 
0.000 0.000 0.000 

Wjv(1,4, r) 0.063585 0.01148 -0.64213 
0.000 0.000 0.000 

Wjv(1,5,, r) 0.060129 0.006262 -0.64715 
0.000 0.000 0.000 

Wjv(1,6, r) 0.18496 0.027153 -0.62679 
0.000 0.000 0.000 

Wjv (1,7, r) 0.16224 0.035759 -0.61851 
0.000 0.000 0.000 

W, v(1,8, r) 0.19816 0.038455 -0.61584 
0.000 0.000 0.000 

Wiv (1,9,, r) 0.1926 0.036836 -0,61744 
0.000 0.000 0.000 

Wjv(1,10, r) 0.1647 0.033922 -0.62033 
0.000 0.000 0.000 

Wjv (1,11, r) 0.14942 0.032236 -0.62199 
0.000 0.000 0.000 

Testing the curvature factor 
Sup Avg Exp 

WIr(3, -r) 0.13384 0.018448 -0.63518 
0.000 0.000 0.000 

WjIJ(3, rr) 7.9842 0.63988 0.7395 
0.049 0.010 0.033 

WV(3, r) 0.7587 0.15399 -0.50284 
0.097 0.004 0.005 

Testing the common factors 
ziup Avg G'xp 

Wvi (1,2, r) 0.95086 0.23044 -0.42188 
0.000 0.000 0.000 

WWvr (1,3,, r) 1.0502 0.25334 -0.4035 
0.038 0.002 0.003 

Wv j (2,3, , r) 1.2629 0.28943 -0.36415 
0.013 0.001 0.002 
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Testing the IRs governing the slope factor 
Sup Avg Exp 

Wjv(2,1, rr) 0.115 0.014545 -0.63906 
0.001 0.003 0.003 

Wjv (2,2, r) 0.030452 0.003056 -0.65026 
0.004 0.059 0.059 

Wiv (2,3, 'r) 0.15285 0.028869 -0.62524 
0.001 0.001 0.001 

Wrv (2,4, r) 0.15578 0.015671 -0.63801 
0.000 0.002 0.002 

Wrv (2,5, r) 0.18094 0.01812 -0.63564 
0.000 0.000 0.000 

Wtv (2,6, , r) 0.19508 0.018849 -0.63493 
0.000 0.000 0.000 

Wiv (2,7, r) 0.15172 0.014427 -0.63923 
0.000 0.000 0.000 

Wiv (2,8, r) 0.1022 0.016751 -0.63699 
0.000 0.001 0.001 

Wlv(2,9, r) 0.065471 0.008475 -0.64501 
0.006 0.009 0.009 

Wiv (2,10, rr) 0.031184 0.00475 -0.64863 
0.030 0.044 0.044 

Testing the IRs governing the curvature factor 
Sup Avg Exp 

Wiv (3,1,, r) 0.04877 0.011848 -0.6418 
0.031 0.005 0.005 

Wiv(3,2, -r) 0.13366 0.012844 -0.64072 
0.024 0.030 0.030 

WJv (3,3, «r) 0.098076 0.020779 -0.6331 
0.155 0.032 0.098 

Wjv (3,4, -r) 0.17229 0.014599 -0.63906 
0.078 0.049 0.049 

Wiv (3,5, -r) 0.41218 0.032071 -0.62194 0.042 0.019 0.019 
Wiv (3,6, T) 0.5223 0.038496 -0.61536 

0.026 0.015 0.017 
Wiv (3,7, -r) 0.11621 0.017317 -0.63643 

0.063 0.021 0.021 
Wiv(3,8, rr) 0.045311 0.005598 -0.6478 

0.009 0.048 0.047 
W1 v(3,9, T) 0.33049 0.021065 -0.63266 

0.055 0.039 0.039 
Wfv (3,10, rr) 0.39263 0.022499 -0.63117 

0.038 0.029 0.029 
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Chapter 4 

ESTIMATION OF FACTORS FOR TERM STRUCTURES WITH 

DEPENDENCE CLUSTERS 

ABSTRACT 

In estimating term structure factors, a common dependence structure between maturities 

is implicitly assumed. In this chapter we study interactions between factors in the presence 

of multiple dependencies (with short and long maturity clusters) within a term structure. We 

introduce the block dynamic Nelson-Siegel (1987) model for term structures with maturity 

clusters for the purpose of forecasting. This new framework generalizes the dynamic rep- 

resentation proposed by Diebold and Li (2006) for constructing yield curve forecasts of the 

Nelson-Siegel factors and relaxes the assumption of common factor dynamics among clusters 

within a term structure. 

In the case of zero coupon term structures, we identify the factors for the short and 

long maturity clusters separately. Using dependence graphs such as Chi-plots and recursive 

Kendall plots, we find that factors governing the short and long clusters show loose depen- 

dence and therefore measuring factors over separate maturity clusters would lead to significant 

information gains. Application of the block dynamic Nelson-Siegel (1987) model on the term 

structure of daily zero coupon bond yields with short and long maturity clusters show better 

out-of-sample forecasting performance than the dynamic representation proposed by Diebold 

and Li (2006). 
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4.1 Introduction 

Modelling of the zero coupon yield curve, particularly interesting to financial economists and 

central banks, have been towards capturing the dynamics of the entire yield curve. Since 

expectations about future short rates influence movements in the long rates, changes in the 

short end and the long end maturity spectrum of the yield curve show a strong dependence 

structure. However, the magnitudes of changes along the maturity spectrum vary, producing 

linear and nonlinear shifts in the yield curve. 

Since the interest rate maturities portray a strong dependence structure among them- 

selves, latent factor models have been widely used in order to extract the systematic move- 

ments in yield curves. There is common consensus that a few systematic yield shifts are 

sufficient in explaining the fluctuations in yield curves. Generally, the dependence structure 

among maturities are measured with pairwise correlations or covariances; and the common 

factors are estimated using statistical tools such as principal component analysis (PCA) and 

factor analysis. The first three principal components or factors are commonly known as level, 

slope, and curvature; cumulatively accounting for almost all the variations in the yield curve. 

Since the correlation structure among yield maturities are, though high, not equal to unity 

and decreasing with increase in difference in maturities; non-parallel movements such as slope 

shifts and curvature shifts are significant in measuring the non-parallel risks within the term 

structure. However, the parallel shift factor (level) explains most of the variations in the term 

structure. 
In describing the evolution of interest rates, multivariate models capturing the time se- 

ries properties of interest rates have been developed. The aim is to introduce tractable 

multivariate models that can capture both the inter-temporal properties and also provide a 

theoretically consistent way of explaining the cross-section of the yields. In estimation and 

forecasting of the yield curve, a popular function-based factor model is the Nelson and Siegel 

(1987) model and its extensions such as the Svensson (1994) model. Since the factor models 

are able to produce typically observed yield curve shapes in the market, these models are 
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widely used among practitioners. Fabozzi et al. (2005), using a three factor Nelson-Siegel 

model, find statistically and economically meaningful predictions in the shape of the yield 

curve. The authors implemented systematic trading strategies and find economical gains us- 

ing the model predictions. For the purpose of constructing term structure forecasts, Diebold 

and Li (2006) fit a dynamic factor model to the Nelson-Siegel factors and find accurate fore- 

cast performance than various standard benchmarks. The authors allow the factors (level, 

slope, and curvature) to follow a vector autoregressive process capturing the whole yield curve 

dynamics over time. 

In this case, the underlying dynamics of the factors are constrained to be common for 

all maturities. This is to say that the dynamics underlying the short end and the long end 

factors are identical. However, empirical evidence suggests that the nature of uncertainties 

influencing the short rates is different than the ones affecting the long rates. One reason 

for this is the diverse nature and varied preferences of market participants influencing the 

different ends of the yield curve. This is further reflected in the fact that volatility of the short 

rates are higher than the volatility of the long rates. Sarkar and Ariff (2002) investigated the 

role of maturities in the effect of volatility. The authors found a negative relationship between 

interest rate volatility and US treasury yields. The effect was seen to be much stronger in 

the case of long maturities than short maturities. Backus and Zin (1994) and Gong and 

Remolona (1997) document that the mean reversion for yields near the short end of the yield 

curve are much faster than for yields near the long end of the curve. Higher mean reversion 

is implied by the yield curve steepness at the short end and lower mean reversion is implied 

by flat volatility curve at the long end maturities. 

In this chapter, we study interactions between factors governing term structures with 

maturity clusters. This scenario commonly arise in practice where yield curve segments are 

proxied by various securities. In the case of zero coupon bond yield curves, one commonly 

use the yields from treasury bills as a proxy of the short end of the curve and discount bonds 

or swap rates as proxies to the long end of the curve. Using dependence graphs, we find 

a loose dependence structure between the principal component factors governing the short 
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and long maturity clusters. Therefore accounting for the two clusters may lead to significant 

information gains. We study this by developing a block dynamic Nelson-Siegel factor model 

for term structures with maturity clusters and investigate the forecasting performance of this 

model. We find significant improvements in forecastability of the term structure over the 

benchmark model. 

The remainder of this chapter is structured as follows. In Section 4.2 and Section 4.3 

we estimate the principal component factors governing the maturity clusters in the term 

structure of zero coupon yields and study the dependence structures between factors using 

Chi-plots and K-plots. Section 4.4 introduces a new block dynamic specification to the 

Nelson-Siegel (1987) model for modelling term structures with maturity clusters. In this, we 

estimate the Nelson-Siegel factors for the various maturity clusters and allow the dynamics 

of the factors to be common within clusters, This extension would enable us to investigate 

the information loss in estimating factors of term structures containing multiple dependence 

structures. Section 4.5 conducts an empirical application of the new block dynamic model 

and examines the forecasting performance of the model. Section 4.6 concludes. 

4.2 PCA for correlation clusters 

In estimating common factors governing term structures, presence of multiple data clusters 

within a single term structure would distort the estimation of true systematic shifts (level, 

slope, and curvature) in the yield curve. This issue is most eminent in the statistical proce- 

dures such as PCA that are implemented in order to extract the true factors. PCA assumes 

a stable contemporaneous correlation structure among the yield curve maturities. However, 

within a term structure, one may find several correlation clusters linearly or non-linearly cor- 

related in the same way. Conducting PCA decomposition to term structures with multiple 

correlation clusters would estimate factors influencing only certain maturities of the yield 

curve. 
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We use the US zero coupon yield term structure with constant maturities of 3,4, ..., 12, 

24, ..., 144 months (21 maturities) for our empirical study. Figure 4.1 is the matrix plot of 

the yield maturities. 

[Insert Figure 4.1 here] 

We can find that the term structure data obtained show the presence of two distinct 

maturity clusters, one with maturities 3 to 12 months (we call it short cluster) of treasury 

bills and the second with maturities 2 years to 12 years (we call it long cluster) of discount 

bonds. In the presence of correlation clusters, one can estimate the factors for the individual 

clusters and study the interactions between the factors extracted from the two clusters. 
Consider a (p + q) dimensional vector zt = (xt, yt)' for t=1, ..., T where zt is partitioned 

into p- dimensional subvector xt and q- dimensional subvector yt explaining different aspects 

of the yield curve. The covariance matrix of zt can be partitioned as 

Exx Exy 

EYX FJU? 
I 

For given two partitions X and Y, using principal component analysis we find orthogonal 
linear transformations of X and Y independently by minimizing the sum of squared Euclidean 

distances between principal axes obtained and the datapoints. The minimization problem can 

equivalently considered as maximization of sum of squared projections onto these principal 

axes. Therefore, the maximization for the two partitions are as follows: 

arg max (ß, X) (, ßzX )' and arg max (ß, Y) (ß&Y)' (4.2) 
ßm ýQ: I=1 /iy: l ßy I=1 

Let the sample covariance matrix txx =n (XX') and : by, =n (YY'). Therefore the con- 
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straint optimization problem is 

arg maxß. Exxß. 
� and arg maxß E�ß, 

ß.: 1ßz1=1 ß�: lßyl=1 

The Lagrangian multipliers for the two optimizations are 

Qxýxzpz-Ax(3 ßz-1) 

Differentiating the equations reduces to the eigen decomposition problem 

ý+xxßx = Axßx 

EVyßy =A ßy 

where A is the eigenvalues and ,B is the corresponding eigenvector. The solution to this 

optimization yields the first principal component for the two partitions: UI = /3 X and 
V, == ß1,, Y and the magnitude of variation explained by the first principal component for the 

two partitions is given by their eigenvalues A1x and Aly. This procedure can be repeated in 

order to find the successive principal components estimated with the additional optimization 

constraint that the new principal component is orthogonal to the previous one. 

Let Ax = A,, ) be the ordered eigenvalues of E. 
x and ßx = (ßx, 

... 'ßp, 
) be its 

corresponding eigenvectors. Similarly, let A. Au, ) be the ordered eigenvalues of 

and ßy = ýßly, 
..., ß4, ) be its corresponding eigenvectors, The principal components of 

the partitions X and Y are given by U= (U1, ..., Up) and V= (VI, 
,.., VI) respectively. 

The correlations between the principal components of the two partitions X and Y can be 
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calculated as 

cov (U, Vj) 
p`j Var (U; ) Var (V j) 

_ A; "2ß2ß. 
�V V (4.3) 

where i=1, .., p and j 1, .., q. 

A recent paper Yamamoto et al. (2007) provide the limiting distribution for the correla- 
tion coefficient pj for two sets of variables that are bivariate normal. Suppose zl,..., zT are 

observations from N(p, E), then 

(Psi - p) d 
-' NCO, (2:; ) 

where the form of is shown using the asymptotic expansion of p; j in the paper. 

(Insert Table 4.1 here] 

Insert Figure 4.2 here] 

Table 4.1 reports the principal component results for the short and long maturity clusters. 
We find that the principal three factors cumulative explain 99 percent of the variations in 

both clusters. Plotting the three factor loadings for the two clusters in Figure 4.2, we find 

that they retain the economic interpretations of being level, slope, and curvature. From the 

table we see that the level factor explains almost all of the variations in the short maturity 

segment of the yield curve. In the case of the long maturity cluster, we see that the level factor 

alone explains 95 percent of the variance and cumulatively the three factors are sufficient in 

capturing most of the variations in the long maturity segment. 
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4.3 Dependencies between term structure factors 

In this section we explore the dependence structure between the factors driving the short 

and long clusters of the yield curve. We use two graphical diagnostics, namely Chi-plots 

and K-plots, for assessing the degree of association between the level, slope, and curvature 

factors governing the two clusters of the yield curve. In this, we aim to graphically study the 

significance of the dependence structure between factors. 

The use of scatter plots are usually employed in understanding the dependence between 

variables. However, these kinds of graphs are limited in accessing the nature of dependence 

between variables. Fisher and Switzer (1985,2001) proposed the use of Chi-plots as an im- 

portant tool towards revealing complex dependence structures between two variables. These 

plots are based on the ranks of the observations and able to explain independence, monotonic 

dependence, asymmetries, tail dependencies, etc, In finance literature, authors have used Chi- 

plots in order to assess tail properties of securities and choose suitable copulas in modelling 

the underlying dependencies between variables (see Abberger (2002)). Another measure for 

studying dependencies is the Kendall Plot (known as K-plots) proposed by Genest and Doies 

(2003). As in the case of Chi-plots, K-plots are also based on probability integral transforms 

of observations but easier to interpret that Chi-plots. 

Below we briefly describe the two graphical measures of dependence and present the 

results from implementation of these measures on factors governing the long and short term 

structure clusters. 

Chi-plots 

Consider a random sample (X1, Y1) , ..., 
(XT, YT) from a bivariate continuous distribution 

H. Let F and G be the marginal distributions of X and Y respectively. For a given pair 
(Xi, Y) with 1<i<T, we define 

H; =-H (X� Y; =7, 
I 

1>I 
(XX < X,, yf < yi) (4.4) 

994i 
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1IX"<X; ) (4.5) 
7Ti 

1I (y j: 5 Y) (4.6) 
jai 

where I (A) is the indicator function of the event A. 

If X and Y are independent, then for a given pair (X;, Y) we have H; = F; G;, In evaluating 

independence between (Xi, Y) for i=1, ..., T, Fisher and Switzer (1985) construct a test 

statistic 

where 

Xs= (H; -F; G; ) - 'N(0, U; ) (4.7) 

v=Fi(1-F; )G; (1-G; ) (4.8) 

Therefore for a given pair (Xi, Y) , the X; - transform defined as 

H; -F; G; (4.9) 
F (1- F; ) G; (1 - G; ) 

is a measure of departure from bivariate independence, x lie in the interval [-1,11 and acts 

as a correlation coefficient between (X;, Y; ). 

Further, Fisher and Switzer (1985) propose the data transform A j, a real valued function 

of marginal frequencies. The authors use 

1\2 (Gi 1\2 
Ai 4. Si - max 

(Fs 
- 2J ,-2J (4.10) 

where Si = sign (F; - 2) x (Gi - 2) . 
The value of ); is a measure of distance of the pairs 

(Xs, Y, ") from the bivariate median of the distribution and a; E (-1,11. 

A scatter plot of the T transformed pairs (Xi, Ai) defines the Chi-plot and provides a 

meaningful rank based indication of dependence between X and Y. 

The authors recommend avoiding the boundaries of the distribution since asymptotic 
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normality no longer holds then. They propose plotting only pairs (x;, A) for which IA < 

4 ýT1 
l 

1)2 in order to avoid outliers. 

K-plots 

K-plots or Kendall plots are based on the notion of standard QQ-plots used in order to 

access the deviations from normality of random variables. Genest and Boies (2003) pro- 

posed this graphical tool that assesses the degree of dependence in bivariate random samples. 

Consider a random sample (X1, Y1) , ..., 
(XT, YT) generated from a bivariate continuous dis- 

tribution H. In this case, the K-plot can be constructed as under: 

1. Order Hi such that H1 < ... < HT 

2. Plot the pairs (Wj: T, H) for 1 !5i<T where Wi: T is the expected value of the 0 order 

statistic from a random sample of size T drawn from the distribution Ko, which is the 

joint distribution under the null of independence between X and Y. From the density 

of the ith order statistic, we can calculate Wir as 

Ii W`: T = 
T! 

(i -1)! (T - i)1 w Wo (w)}`-' {1- ICo (w)}z " dKo (w) (4.11) 

where Ko (w) =P (UV < w) =w-w log (w) where 0<w51 and U and V are 

independent standard uniform random variables. 

Implementing the dependence graphs for the factors governing the maturity clusters, we 

provide the results below. We first estimate the three prinicipal factors (ßl, ß2, ß3) using 

PCA for the two maturity clusters (denoted by a and b) and graphically analyse the factor 

dependence structures across the two clusters. Figures 4.4 - 4.7 plot the scatter plots and 

the dependence graphs for the bond yield factors. 

[Insert Figures 4.4 - 4.7 here] 
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From the Chi-plots in Figures 4.4 - 4.6, we find that the first factor of the two clusters, 
(3i and ßi have a positive dependence structure with the deviations above the horizontal line 

at X=0. The factors 02 and ß3 governing the two data clusters seen to lie horizontally 

depicting loose dependence across factors governing the short and long clusters. This means 

that estimating factors over multiple maturity clusters together would lead to significant 

information loss. In this case, the estimated factors would not be explaining the whole term 

structure but be influenced by individual clusters. In Figure 4.7 we plot the non-overlapping 

recursive K-plot with an estimation window of 100 observations. Points lying on the straight 

line correspond to the case of independence between the two observations and the data points 

lying of the smooth curve is associated with perfect positive dependence between observations. 

We find that in the case of graph (a), the first factor 01 from the two clusters always lie above 

the independence line showing significant positive dependence. In the case of graph (b), we 

find the ßi and Q2 show greater negative dependence. We see that the dependence structure 
between the factors have changed over the subsamples considered. There seem to be a positive 

and negative dependence evolving over time. 

4.4 Block dynamic factor model 

In this section, we propose a new dynamic framework that extends the Dynamic Nelson- 

Siegel model proposed by Diebold and Li (2006) for the case of modelling term structures 

with dependence clusters. 

4.4.1 Dynamic Nelson-Siegel factor model 

In modelling the term structure of interest rates, a class of function-based curve fitting tech- 

niques have become most popular in recent years. These techniques specify bond prices as a 
function of time to maturity and other parameters. A premier to this class of models is the 
Nelson-Siegel (1987) model that uses exponential polynomial functions for the instantaneous 
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forward rates and proposes a parametric model for the yield curves. The model produces 

reasonable yield curve shapes observed in the market and thus captures the cross-sectional 

dependence among rates. 

Given Y(r) is the yield of a zero coupon bond at a point in time with time to maturity 

r, Y(r) can be written as 
rT 

Y(T) __Jf (s) ds 
0 

(4.12) 

where f (T) is the instantaneous forward rate with maturity -r. Nelson and Siegel (1987) 

considered the instantaneous forward rate to be 

f (T) = ß1 +ß2 (e-/Ä) + ß3 (e_hiA) (4.13) 

where 13o�ß1,02 are the coefficients and A is a constant decay parameter. Solving for the 

integral, the Nelson-Siegel (1987) model, as parameterized by Diebold and Li (2006), is given 

by 
_ _ 

T, T/ý 1 

(r) 
- F' 1t + ß2t 

(1 

T/A 

)+ 
p3t 

11 
T/, \ -eT 

ýý Y)4.14) 

Fabozzi et al. (2005) and Diebold and Li (2006) show that the three factors can be 

economically interpreted as the level, slope, and curvature. ß1t is the factor loading associated 

with the first component which is interpreted as the level factor, , ß2t is the factor loading for 

the second component which captures the slope factor mostly influencing the short term 

factors, and ß3t is the factor loading for the third component associated with the medium 

rates, interpreted as the curvature factor loadings. 

The model has been extensively used by central banks for the purpose of modelling and 
forecasting interest rates. In order to model the time series dynamics of the yield curves, 
Diebold and Li (2006) dynamized the Nelson-Siegel (1987) model by proposing a VAIt(1) 

process for the factors 

Pt =p+ AAt-, + Ze et "' N (0, Eý) (4.15) 
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where Qt is a3x1 vector of level, slope, and curvature factors. The dynamic model is shown 

to be well suited for generating forecasts and predominantly beats other benchmark models. 

The estimation of the above model can be done with a two-step procedure outlined by 

Diebold and Li (2006). First, estimate ßit coefficients i=1,2,3 by cross sectional least squares 

for each t. The coefficients can be estimated well as long as sufficient number of maturities are 

available at a given point in time. Second, the time series estimates of Pit obtained from the 

first step is modelled as an autoregressive process and forecasts for O it, and therefore Y(T), 

are generated using the specification in equation 4.14. An alternative estimation approach 

is a one-step procedure outlined by Diebold, Rudebusch, and Aruoba (2006) in which the 

equations 4.14 and 4.15 are formulated in a state-space system and estimated iteratively using 

a Kalman filter. Diebold, Rudebusch, and Aruoba (2006) argue that the two-step approach 

in the second stage fails to account for the parameter estimation uncertainity associated with 

the first step and therefore the one-step Kalman filter approach is preferable to the two-step 

approach. Further, the one-step Kalman filter approach is superior in the fact that various 

extensions such as allowance of heteroskedasticity, estimation of unbalanced term structures, 

and allowance for estimation of the decay parameter (A) can be accommodated in the above 

framework. Yu and Zivot (2008) compare the forecast performance of the two estimation 

methods and conclude that there were no considerable forecast improvements in using one 

approach over the other. 

4.4.2 Block dynamic factor representation 

In this section, we develop the block dynamic factor representation for estimating the Nelson- 

Siegel factors of the yield curve. Suppose that the yield term structure Y is identified to 

contain two sets of data clusters, say a short cluster with maturities up to rk and a long 

cluster with maturities beyond Tk. Then 

0 
Y(r) =7Jrda (s) ds - r(r<rk) +TJrfb (s) ds ' I(r>rk) (4.16) 

0 
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Solving the integral, the Nelson and Siegel (1987) representation for the yield curve maturity 

clusters can be written as 

T 
TP' 

Y(T) 
[M1 I(T-, 

k) 
+r 

1(T>Tk)J 
{ß 

+ýTGTk) 
ý' 

lýrýTk)J 

17 

/ý 
(4.17) 

abT1 + [Q3 ' I(r<rk) ß-Q3 1(T>Tk)J 
l Tý, ý - eý (4.18) 

where for i=1,2,3; are the latent factors governing the short cluster and f3 " I(,;, rk) 

are the latent factors governing the long cluster within the yield curve. 

We allow for a time-varying dynamic structure of the factors as under: 

1_ Týa 

Yt \T / 
[Olt 

' `(r<Tk) 
+ 

NSt ' 
I(r>Tk)] + [02Z 

' I(r<rk) + At ' 
I(T>Tk)) 

1- e-r/A + [p3t 
' I(r<rk) +ß I(r>rk)] 

7/A 
- e-T/a (4.19) 

and the demeaned factors ßI'6�ß2'6, ß3'b follow a VAR(1) process as 

it all a12 .". a16 ß1 
-1 SiE 

ýlt a21 a22 a26 Xt-1 
Sit 

a Q2t a Q2t-1 a V2t 

4t Q2t-1 
+ 

ý2E 
(4.20) 

a Q3t a Q3t-1 ta 
S3t 

4t a61 a62 ".. a66 4-1 ý3t 

where 7 (i = 1,2,3; m=a, b) are the disturbances of the factors, uncorrelated across factors 

and clusters: 

mn1 
fori= j, m=n, s=0 E (eßt (4.21) 

0 otherwise 

In order to estimate the model, one can use the cross sectional regression approach suggested 
by Diebold and Li (2006). Alternatively, the block dynamic representation above can be 
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formulated in a state space framework and a Kalman filter is adopted in order to estimate the 

specification. The term structure of yields as functions of the factors act as the measurement 

equations and the process for the factors act as the state equations. 

4.4.3 Model estimation 

The block dynamic model can be estimated using a two step approach as suggested by Diebold 

and Li (2006). We first estimate the measurement equations using cross-sectional regressions 

and then estimate the factor dynamics in the second step. More precisely, in the first step 

we regress: 
s1 

21X6 6x1+6ti 
(4.22) 

and estimate Qt. Then we estimate the state equation as a VAR(1) model using least squares 

t=A- Qa-i + ea 
sxi sxs 6x1 6X1 

(4.23) 

Alternatively, one can consider a state space formulation for the block dynamic factor 

model 
Ot =A" Qc-i + ýa (4.24) 

Yt=C"Qt+vc (4.25) 

where the mean zero state vector of factors Qt follow a VAR(1) representation as in equation 

(4�20). The measurement equation (4.25) for the vector of yields with N maturities can be 
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written as 

lit (T1) 10 1-e-T1'ý1 
71x1 

0 

Yt (Tk) 10 1-ýkäi ý1 0 

qýt 
/ 
`Tk+1) ,y 

01 1-e-'k+l as 0 
Tk+l%ý9 

/ 
Vt 

(TN) 01 
ra 

0 1-TNa; ' 
#a it vt (T I) 

Pit 
pa 2t Vt (Tk) 

+ 
At Vt (Tk+1) 

Q3t 

At vt (TN) 

i-E Tla1 
ý e_Tl%ý1 0 

T1Al 

1-e *kA1 
_e 

Tka1 0 
TkA1 

O 1-E-Tk+la9 
. e-7k+1, 

\9 

'rk+1Aa 

Q 1-e-*Na1 
_ e_TNA2 

TNA7 

(4.26) 

for a given k. We allow for two different decay parameters Al and A2 for the two maturity 

clusters. The disturbances of the measurement equation and the state equation are assumed 

to be uncorrelated, zero mean white noise with covariances 

E () =Q 

E (vv') =R 

We assume both Q and R to be diagonal, an assumption we impose for tractability of the 

model. Diagonality of Q would mean that the errors in estimation of factors within blocks and 

across blocks are independent and the diagonality of R would mean that the idiosyncrasies 

of the yield curve maturities are uncorrelated. 

The state space formulation above is estimated via Kalman filtering. Assuming normality 

of the error terms, maximum likelihood estimates of the unknown parameters, say 0, can be 
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obtained by minimizing the negative log likelihood function 

-l (Y, 0) =Z [log IFet (0) 1+ ei (B) F�-, ' (0) et (9)] (4.27) 
t=l 

where et (0) is the prediction error vector and Fet (0) is the covariance matrix of the prediction 

error obtained from the Kalman filter. In estimating the parameter vector 0 via Kalman 

filtering, we do the following: 

" The parameters to be estimated are namely A, Q, and R. 

" The matrix C is known and given by the Nelson-Siegel framework. In constructing 

the observation matrix C, we allow the decay parameter A to vary for the short and 

long maturity clusters. For the short maturity cluster, the value of Al maximizes the 

loadings of #3 at six month maturity. 

1- e'sal -6AI f (Ai) = 6a1 -e 

ý1 = arg max f (al) = 0.29888 

Similarly, we compute for the long maturity cluster, the value of A2 maximizing the 

loadings of 03 at sixty month maturity and equal to 0.0299. 

9 We initialize the unconditional mean vector of the state prediction equation with zero 

and its initial unconditional covariance matrix as given by Harvey (1989) 

vec (Palo) = (1 -A0 A)-' vec (Q) (4.28) 

" We assume that Q and R diagonal. We initialize the covariance matrices Q and R as 
identity matrices. In order to impose positive definiteness of the estimated Q and R, we 

maximize the likelihood over the square root of these matrices. Diebold and Li (2006) 
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propose estimating log variances and then convert the log variances by exponentiating 

them. 

" The likelihood is maximized using the Marquardt and BHHH algorithms, with a con- 

vergence criteria of 10-6 for the value of the norm of difference between parameter 

estimates obtained at consecutive iterations. The step size at each iteration is deter- 

mined by the backtracking algorithm with parameters p=0.25 and q=0.5. The details 

of the numerical optimization are provided in the appendix. 

4.5 Modelling and forecasting performance of block dynamic fac- 

tor model 

In this section, we present the goodness of fit results for the Nelson-Siegel block dynamic 

factor model in terms of modelling and forecasting performance. 

4.5.1 Data 

The data of US zero coupon bond term structure is collected from Datastream. The sample 

period consists of daily frequency extending from 11 Jan 1999 to 31 July 2007 (2232 observa- 

tions) for constant term structure maturities of 3,4,..., 12,24,..., 144 months (21 maturities). 

Table 4.2 provides the descriptive statistics for yields at various maturities. We find that the 

rnean value of yields remain around a constant up to 12 month maturity and then increases 

with maturity. The standard deviation of the yields, in contrast, remains almost flat up to 

12 month maturity and then decreases with maturity. The sample autocorrelations are lags 

1,60 and 200 show evidence of high persistence in yields. 

The matrix plot of the term structure (Figure 4.1) show presence of two correlation clusters 

of treasury bills (3-12 month maturities) and zero coupon bonds (24-144 month maturities). 
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Therefore we consider extraction of factors from the two clusters separately. In evaluating 

the goodness of fit of the block dynamic model introduced in Section 4.4, we conduct an 

in-sample estimation until 08 May 2007 (2172 observations) and out-of-sample forecasting of 

the last 60 observations. 

Insert Table 4.2 here] 

4.5.2 Estimation results 

In estimating the block dynamic model, we employ both the two-step cross sectional regres- 
sions and the one-step state space approach. 

[Insert Table 4.3 here] 

Table 4.3 records the estimates of the vector autoregression employed in the two step 

cross sectional regressions. We find that the estimated factors load significantly on their own 

lags, with the exception of the level factor governing the short rates that interact with the 

lags of the slope factor governing short rates and the level factor governing the long rates. In 

the case of the long rates slope factor and the short rates curvature factor, we find significant 

interactions with the other factors. 

In using the one step approach to estimate the parameters of the block dynamic model, 

we use a state space framework and employ Kalman filtering to maximize the prediction 

error decomposition form of the likelihood formulated. The number of parameters estimated 

are 36 in the transition matrix A, 6 diagonal parameters of the covariance matrix Q, and 21 

diagonal parameters of covariance matrix R (totalling 63 parameters). 

[Insert Table 4.4 here] 
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Table 4.4 provides the in-sample estimation results of the Nelson-Siegel block dynamic 

model. The factors appear to be highly persistent to its own lags, apart from the level factor 

of the short maturity cluster. We find that the level factor from the long maturity cluster 

depends mainly on its past lag with coefficient close to one. This shows that the level factor of 

the curve behaves close to a random walk. In the case of the level factor of the short maturity 

curve, we find that it loads heavily on past lag of the level factor from the short maturity 

curve. This seems to indicate that the level factor of the two clusters share a common random 

walk component in them. 

Factors estimated from the short cluster seem to have significant cross-factor dynamics 

unlike the factors from the long cluster that appear not to be influenced by cross-factor 

dynamics. The estimated covariance matrix of the state equation (Q) is all significant with 

very small standard errors. 

4.5.3 Forecasting performance of models 

We compare the out-of-sample performance of the Nelson-Siegel block dynamic model (NS- 

block) with the Nelson-Siegel dynamic model proposed by Diebold and Li (2006). 

In constructing forecasts for the yields, we use the predictions of the state vector into the 

predictions of the measurement equations. For n period ahead forecasts, we use the forward 

substitution 
YT+nlT = CßT+nlT (4.29) 

13T+nIT = AnßT (4.30) 

We consider five different forecast horizons of n=1,5,10, and 30. In order to evaluate 

the out-of-sample forecast ability of the model, we use the Mean Square Error (MSE), Mean 

Absolute Error (MAE) and the averages (AVG) of the two measures across the whole yield 

curve maturities, The latter combines the forecast errors from all the maturities for evaluating 

the overall performance of the models. 
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[Insert Tables 4.5 - 4.8 here] 

Tables 4.5 - 4.8 reports the out-of-sample performance for the various forecast horizons 

considered. The MSE and MAE measures provide similar forecast evaluation inferences. We 

find that there is considerable average gain in forecasts in using the NS-block model. The AVG 

estimator for MSE and MAE show that on average there is a combined forecast improvement 

over horizons n=1,5,10 and 30. For five-period ahead forecasts, we find forecast gains for 3 

months to 2 year maturities and very long maturities of 9 to 12 years. The longer maturities 

of 2 years and above show higher degree of predictability in the case of NS-block for ten-period 

and thirty-period ahead forecasts. 

4.5.4 Testing difference in performance 

We use the Diebold and Mariano (1995) statistic in order to formally test whether differences 

in the out-of-sample performance, outlined above, are statistically significant. In particular, 

we test the significance of difference in forecasting performance measures MSE and MAE of 

the Nelson-Siegel block dynamic model (NS-block) against the Nelson-Siegel dynamic model 

proposed by Diebold and Li (2006). The Diebold and Mariano test aims at testing the null 

of equal predictive accuracy of the of the two models against the alternative of different 

forecastability across models. If dt is the loss differential defined as 

dt =9 (E +hlt) -9 (ýB 
n, lt) 

where g () is the loss function measuring the accuracy of the forecasts (MSE and MIAE), 

and ýt+hlt refers to the forecasting error of model i when performing ah period ahead fore- 

casts assumed to be computed for t= to,..., T for a total of k forecasts. The null of equal 

predictability is 

Ho E[dt]=0 
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The test uses autocorrelation corrected sample mean d in order to construct the test statistic 

S=V 
(d)2 

(4.31) 

where d=kE to dt and V (d-) =k 
[-Y0 +2 Eh-1 yj] for yj = cov (dt, dt_; ). Diebold and 

Mariano (1995) show that under the null of equal predictive accuracy, S is asymptotically 

standard normal. 

Insert Tables 4.9 - 4.10 here] 

Tables 4.9 - 4.10 present the Diebold and Mariano test statistic values and the correspond- 

ing p-values for the MSE and MAE for 1,5,10, and 30 period ahead forecast horizons. In 

most of the cases, we find the p-values close to zero suggesting significant forecast differences 

in performance of the two models in favor of the Nelson-Siegel block dynamic model. 

4.5.5 Forecast Benchmarking 

In order to understand the improvement in forecast performance using the block dynamic 

factor representation, we compare the forecasts of the two models (NS and NS-block) with 

a naive model forecasts where the forecasts at YT+nlT YT for all T where n is the forecast 

horizon and equal to 1,5,10, and 30. Here current yield curve used as a predictor of the 

future yield curve. We use the relative measures for MSE and MAE calculated as 

ReIMSE = MSE/MSE_b (4,32) 

ReIMAE = MAE/MAE_b (4.33) 

where MSE_b and MAE_b are the errors from the benchmark model. 
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Insert Tables 4.11 - 4.14 here] 

Tables 4.11 - 4.14 reports the out-of-sample performance for the various forecast horizons 

relative to the benchmark model. The Re1MSE and Re1MAE measures the improvement 

possible from the proposed forecast method relative to the benchmark forecast method. We 

find that the Nelson-Siegel block dynamic model performs relatively better than the Nelson- 

Siegel model. The forecast accuracy is greater for one-period ahead forecasts but the accuracy 

of forecasting the long rates diminishes as we increase the forecast horizon. 

4.6 Conclusion 

This chapter introduces a block dynamic representation for the Nelson-Siegel factors esti- 

mated from various maturity clusters within the term structure. The short and long interest 

rate maturity clusters can be clearly identified using Chi-plots and K-plots. The dependence 

structure across short and long maturity clusters have been estimated separately, where the 

factor loadings pertaining to the clusters are allowed to have their own dynamics. The new 

block dynamic Nelson-Siegel model has been estimated recursively (and via Kalman filter) 

where the dynamics of the factors are assumed to be a VAR(1) process. The VAR(1) coef. 

ficients show that the factors load significantly on the lags of other factors across clusters. 

This shows that the factors do interact across clusters. We find that the factors governing 

the clusters are loosely dependent and measuring the factors for the two clusters increase the 

forecastability of the Nelson-Siegel (1987) model for bond yields. 

In the case of US zero coupon bond yield term structures with short maturity cluster 

including ten maturities of 3,4,5,6,7,8,9,10,11,12 months and eleven maturities of 24, 

36,48,60,72,84,96,108,120,132 and 144 months as the long maturity cluster, the chapter 

estimates factors of each cluster in a Nelson-Siegel framework and allow for a block dynamic 

structure for the evolution of the factors. The out-of-sample forecast evaluation using the 
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Diebold and Mariano (1995) tests show considerable gains in forecasting performance of the 

model over the dynamic model of Diebold and Li (2006). 

4.7 Appendix 

4.7.1 Estimation using Kalman filter 

Consider the Kalman filter measurement equation, describing the relation between yields and 

unobserved factors 

Y =C"Qc+vt vt s N(O, Rt) (4.34) 

and the state transition equation, describing the dynamics of the factors 

Q: =A" ßc-i + ea et -N (0, Qt) (4.35) 

E(vt ; )=0 for all tand s (t, s=1,... T) 

The initial state distribution is assumed given by 

00 ̂ 'N(00, Po) 

The system matrices A, R, and Q are unknown parameters and we estimate the parameters 

using maximum likelihood estimation based on the prediction error decomposition obtained 

via filtering. 

For the iteration at time t, the state prediction equation and its variance equation is given 

by 

psi: -I = AtOt-I (4.36) 

PtIt-, = AtPt-, At + Qt (4.37) 
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The measurement prediction equation and its variance equation is given by 

yet-i = cAclc-i (4.38) 

Ft = CPtit-iC' + Rt (4.39) 

From the above, the prediction error is et = yt - ytIt_1 and the Kalman gain is given by 

Kt = Ptýt_1C'Ft 1. 

The updating equation for the state estimate and its estimated variance equation is given 

by 

, da = Otit-i + Kcea (4.40) 

Pt = Ptit_1 - KtCPtjt_1 (4.41) 

Let 0 denote the vector of unknown parameters. When the observations are normally 

distributed, the log likelihood function can be obtained as 

TT 

l (B) =-T log 27r -2 log IFtl -2Ee; Ft lec (4.42) 

with et being the prediction error and Ft being its variance obtained from the Kalman filter. 

At each time t, equations 4.36 - 4.41 provides a filtered estimate of the state vector 0t 

incorporating past and present information in the measurements Z. The filtered estimates 

are smoothed recursively backwards from time T to time 1 in order to estimate the state 

variables given the entire sample Y using the smoothing equations 

QtIT =ßt+ Ptjt (ßt+, IT - Aßt, a) (4,43) 

PuT = PtIt + Ptit (Pe+1JT - Pc+ilc) Wilt (4.44) 

where Pt*l = PtItA'P-1 and t=T-1, T-2, ..., 1. 
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4.7.2 Computational issues 

Using numerical optimization techniques, outlined below, we maximize the likelihood in order 

to find the unknown parameters. 
In order to estimate 6 given some starting value 90, we formulate the maximization as 

minimization of the negative log likelihood function and find the solution using the Marquardt 

and Berndt-Hall-Hall-Hausman (BHHH) algorithm. Consider the iterations 

0k+1 = Ok - AkHkCk (4.45) 

where Gk is the gradient of the log likelihood function evaluated at 9k (e (0k)), Hk is the 

direction and Ak is the step length at iteration k. The matrix Hk is estimated using the 

BHHH algorithm where 

1T L91 191 
T1 

xk = 1,570- (X" 0k) äe (x4, Ok)' (4.46) 
e=l 

as discussed in Berndt et al. (1974). We modify the matrix Hk approximation by incorpo- 

rating a ridge factor b 

[Hk + bII (4.47) 

where I is the identity matrix and b is a positive constant, as recommended by Levenberg 

and Marquardt method. Figure 4.3 that presents the algorithm for the Marquardt method. 
The correction matrix would enable us to reduce the number of iterations by pushing the 

estimates in the direction of the steepest descent. 

The step length A at every iteration k is chosen using the backtracking line search algo- 

rithm where we find A by minimizing the objective function l along the ray {9 + AO}. The 

algorithm initializes with A=1 and then reduces the value of A by a fraction q until the 

stopping condition 

1 (0 + AL 0) < 1(0) + pAG'oe (4.48) 
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is satisfied. The line search algorithm depends on the parameterization of p and q with 

pE (0,0.5), qE (0,1) 
. 
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TABLE 4.1. Principal component analysis results of short and long maturity cluster factors 
Short Maturity Curve Factors Long Maturity Curve Factors 
Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 

Eigenvalues 39.33335 0.099677 0.002592 10.54249 0.449597 0.007042 
Variance Proportion 0.997345 0.002527 0.000066 0.958408 0.040872 0.00064 

Cum. Proportion 0.997345 0.999872 0.999938 0.958408 0.999281 0.999921 

Eigenvectors 0.319487 -0.51702 0.663782 -0.28547 0.555138 0.556906 
0.318352 -0.40849 0.017558 -0.29659 0.400101 0.216212 
0.318102 -0.27535 -0.30274 -0.30226 0.282841 -0.31761 
0.31926 -0.14007 -0.33694 -0.30605 0.16008 -0.37169 

0.318212 -0.0262 -0.28227 -0.30768 0.050525 -0.34057 
0.317162 0.087528 -0,22379 -0.30775 -0.04842 -0.24997 
0.316117 0.201224 -0.15509 -0.30671 -0.13432 -0.13899 
0.31394 0.285486 0.026811 -0.3049 -0.2103 -0.01659 

0.311814 0.368708 0.210768 -0.30247 -0.28028 0.117838 
0.309673 0.451782 0.393644 -0.29981 -0.34005 0.238233 

-0.29619 -0.40591 0.367938 



163 

TABLE 4.2. Descriptive statistics of daily yields at various maturities. p(x) is the sample 
autocorrelations at lag x. The sample period extends from Jan 11,1999 to Jul 07,2007. 

Maturity Mean Std. Dev. Maximum Minimum P(1) A(GO) p(200) 
(months) 

3 3.839296 2.011128 7.1476 0.9666 0.99963 0.9524 0.69096 
4 3.860258 2.001347 7.2198 0.9561 0.99961 0.95344 0.69209 
5 3.893181 1.997638 7.3311 0.9353 0.99958 0.95441 0.69713 
6 3.919562 2.003349 7.4412 0.9349 0.99954 0.95412 0.69742 
7 3.94864 1.996261 7.49 0.9411 0.99944 0.95423 0.70005 
8 3.976855 1.989825 7.5553 0.9375 0.99927 0.95415 0.70224 
9 4.005398 1.98407 7.6244 0.9339 0.99907 0.9538 0.70392 
10 4.035635 1.971424 7.6565 0.937 0.99888 0.95334 0.70559 
11 4.065145 1.959516 7.6886 0.9399 0.99866 0.95282 0.70699 
12 4.095075 1.947958 7.7227 0.9429 0.9984 0.95201 0.70804 
24 4.44159 1.700652 7.8741 1.2639 0.99928 0.94153 0.70693 
36 4.720375 1.505919 7.9565 1.6399 0.99898 0.92972 0.70192 
48 4.910276 1.32032 7.9052 2.0187 0.99877 0.91549 0.69305 
60 5.088792 1.211116 7.9526 2.3815 0.99847 0.9042 0.68362 
72 5.234764 1.127338 7.9637 2.697 0.99829 0.89501 0.67469 
84 5.358339 1.063532 8.0011 2.9716 0.99813 0.88789 0.66775 
96 5.461591 1.011491 8.0124 3.2009 0.99796 0.88119 0.66039 
108 5.551528 0.970776 8.0245 3.4055 0.99782 0.87584 0.65434 
120 5.634235 0.938075 8.0667 3.5913 0.99767 0.87154 0.65051 
132 5.704309 0.910581 8.0639 3.7505 0.99756 0.86905 0.6476 
144 5.777376 0.884148 8.0713 3.9148 0.9974 0.86625 0.64424 
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TABLE 4.3. Vector autoregression estimates from two step regression (with standard errors 
in () and t-statistics in [ ]) 

P1, 
t-1 

#2, 
t-1 

_ 
Q3, 

t-1 
Pi 

t-1 2, t-1 l '3 t-1 

, 
81, t -0.01028 1.012364 -0.118905 0.804234 -0.090574 0.166072 

(-0.03256) (-0.03246) (-0.00835) (-0.02647) (-0.00727) (-0.00618) 
[-0.31576] [ 31.18391 [-14.2463] f 30.3817] [-12.4559] [ 26.8764] 

ß2, t -0.00033 1.000932 0.002852 0.001057 -0.000111 0.002038 
(-0.01172) (-0.01169) (-0.003) (-0.00953) (-0.00262) (-0.00222) 
[-0.02804] [ 85.6369] [ 0.94912] [ 0.11086] [-0.04259] [ 0.91588] 

ß3, t 0.644825 -0.6464 1.045664 -0.517171 0.078587 -0.103557 (-0.02585) (-0.02578) (-0.00663) (-0.02102) (-0.00577) (-0.00491) 
[ 24.9409] [-25,0748] [ 157.773] [-24.6040] [ 13.61021 [-21.1054] 

Qi, t 0.03684 -0.03792 -0.003877 0.969039 0.005611 -0.007273 (-0.01415) (-0.01411) (-0.00363) (-0.0115) (-0.00316) (-0.00269) 
[ 2.60368] [-2.68773] [-1.06904] [ 84.2390] [ 1.77578] [-2.70837] 

a2, t 2.154818 -2.16169 0.278709 -1,707826 1.154208 -0.366463 (-0.07521) (-0.07499) (-0.01928) (-0.06115) (-0.0168) (-0.01427) 
(28.6499] [-28.8251] (14.4556] [-27.9291] [ 68.7131] [-25.6736] 

, ß3, t -0.05249 0.049556 -0.003713 0.040931 -0.014264 0.990219 
(-0.03446) (-0.03436) (-0.00883) (-0.02802) (-0.0077) (-0.00654) 
[-1.52333] [ 1.44231] [-0.42033] [ 1.46099] [-1.85342] [ 151.417] 

TABLE 4.4. Parameter estimates of the state vector (with standard errors in parentheses) 
aaabbb Ql, 

t-1 
Q2, 

t-1 
Q3. 

t-1 
Ql, 

t-1 
Q2, 

t-l- N3 t-1 
Qii 

-0.017639 -0.13611 -0.12519 0.96884 0.66629 0.18162 0.083993 
(0.06) (0.02) (0.02) (0.06) (0.05) (0.01) (0.00) 

ß2, t 0.70186 0.80631 0.11571 -0.73198 -0.58664 -0.13296 0.014297 
(0.11) (0.03) (0.03) (0.11) (0.08) (0.03) (0.00) 

, Q3, t 2.0783 0.25409 1.0789 -2.1212 -1.6436 -0.53099 0.14573 
(0.12) (0.05) (0.04) (0.12) (0.10) (0.03) (0.00) 

QI t -0.070614 -0.0081006 -0.0080661 1.0808 0.085199 0.0195 0.023604 
(0.02) (0.01) (0.01) (0.02) (0.02) (0.01) (0.00) 

, 
b, 
t 0.023972 0.031228 0.10905 -0.024109 0.89761 0.016883 0.37013 

(0.03) (0.01) (0.01) (0.03) (0.02) (0.01) (0.00) 
ß3, t -0.02241 0.07531 0.028457 0,034876 0.010916 1.0009 0,039738 

(0.06) (0.02) (0.01) (0.06) (0.05) (0.01) (0.00) 
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TABLE 4.5. Out of sample goodness of fit results from one-period ahead forecasts using the 
Nelson-Seigel block dynamic model (NS-block) introduced in the text and the Nelson-Seigel 
dynamic model (NS) introduced by Diebold et al (2006) 

Maturity MSE MAE 
(in months) NS NS-block NS NS-block 

3 6.60E-05 0.00054451 0.0081245 0.023335 
4 0.0009199 0.0014425 0.03033 0.037981 
5 0.0016591 0.0015179 0.040732 0.03896 
6 0.0019552 0.001735 0.044217 0.041654 
7 0.0037712 0.0039629 0.06141 0.062952 
8 0.0033094 0.0043149 0.057527 0.065688 
9 0.0023985 0.0041973 0.048975 0.064787 
10 0.0027095 0.0057237 0.052053 0.075655 
11 0.0016124 0.0050661 0.040154 0.071176 
12 0.0013006 0.0054573 0.036064 0.073873 
24 0.0081156 0.00050909 0.090087 0.022563 
36 0.012185 0.0024357 0.11039 0.049353 
48 0.0086878 0.0022499 0.093208 0.047433 
60 0.00372 0.0016469 0.060992 0.040582 
72 0.00048939 0.0011786 0.022122 0.034331 
84 0.00022484 0.0011431 0.014995 0.033809 
96 0.0029125 0.0010755 0.053967 0.032795 
108 0.0090988 0.00083486 0.095388 0.02889.4 
120 0.01814 0.00065286 0.13469 0.025551 
132 0.029749 0.00046329 0.17248 0.021524 
144 0.044576 0.00020053 0.21113 0.014161 

AVG 7.483096 0.002207259 0.070430262 0.04319319 
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TABLE 4.6. Out of sample goodness of fit results from five-period ahead forecasts using the 
Nelson-Seigel block dynamic model (NS-block) introduced in the text and the Nelson-Seigel 
dynamic model (NS) introduced by Diebold et al (2006) 

Maturity 
(in months) 

MSt1 
NS NS-block 

MAC: 
NS NS-block 

3 0.0127 0.0042571 0.050399 0.029179 
4 0.015793 0.0079638 0.056202 0.039909 
5 0.014356 0.0082906 0.053583 0.04072 
6 0.013162 0.0083246 0.051308 0.040804 
7 0.013993 0.0096755 0.052902 0.04399 
8 0.01199 0.0084466 0.048969 0.041101 
9 0.010303 0.0072878 0.045395 0.038178 
10 0,010117 0.0072718 0.044982 0.038136 
11 0.0081669 0.0056918 0.040415 0.03374 
12 0.0073642 0.0050341 0.038378 0.03173 
24 0.00013882 8.89E-05 0.0052691 0.0042163 
36 0.00010463 0.0013681 0.0045744 0.016541 
48 2.40E-05 0.0019832 0.002189 0.019916 
60 7.09E-05 0.0023464 0.0037647 0.021663 
72 0.00061751 0.0026355 0.011113 0.022959 
84 0.0016266 0.0031109 0.018037 0.024944 
96 0.0032896 0.0033988 0.02565 0.026072 
108 0.0053676 0.0037204 0.032765 0.027278 
120 0.0081977 0.0037308 0.040491 0.027316 
132 0.011409 0.0036969 0.047769 0.027192 
144 0.015219 0.0034653 0.05517 0.026326 

AVG 0.007810018 0.00484709 0.034729771 0.029614776 
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TABLE 4.7. Out of sample goodness of fit results from ten-period ahead forecasts using the 
Nelson-Seigel block dynamic model (NS-block) introduced in the text and the Nelson-Seigel 
dynamic model (NS) introduced by Diebold et al (2006) 

in months) NS 
3 0.022499 
4 0.024432 
5 0.022235 
6 0.020497 

MAE 
NS-block NS 
0.012255 
0.017525 
0.018407 
0.018731 

0.047433 
0.049428 
0.047154 
0.045274 

NS-block 
0.035008 
0.041863 
0.042903 
0.04328 

7 0.020634 0.020216 0.045425 0.044963 
8 0.018355 0.018851 0.042842 0.043418 
9 0.016486 0.01754 0.040603 0.04188 
10 0.015962 0.017392 0.039953 0.041704 
11 0.013875 0.01546 0.03725 0.039319 
12 0.012795 0.014481 0.03577 0.038054 
24 0.0031909 0.0018229 0.017863 0.013501 
36 0.0016469 4.28E-05 0.012833 0.0020G87 
48 0.0018943 0.00020414 0.013763 0.0045182 
60 0.0027275 0.0008906 0.016515 0.0094372 
72 0.0039191 0.001829 0.019797 0.013524 
84 0.0054989 0.0027991 0.02345 0.016731 
96 0.0073072 0.0037714 0.027032 0.01942 
108 0.0093166 0.0046663 0.030523 0.021602 
120 0.011524 0.0054177 0.033947 0.023276 
132 0.013858 0.0060327 0.037226 0.024562 
144 0.016463 0.0063981 0.040575 0.025294 

AVG 0.01262459 0.009749178 0.033555048 0.02792029 
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TABLE 4.8. Out of sample goodness of fit results from thirty-period ahead forecasts using the 
Nelson-Seigel block dynamic model (NS-block) introduced in the text and the Nelson-Seigel 
dynamic model (NS) introduced by Diebold et al (2006) 

Maturity MSE MAE 
(in months) NS NS-block NS NS-block 

3 0.030648 0.029997 0.031963 0.031621 
4 0.02903 0.030878 0.031107 0,032082 
5 0.027839 0.030479 0.030462 0.031874 
6 0.026873 0.029287 0.029929 0.031245 
7 0.025523 0.027149 0.029168 0.030083 
8 0.024451 0.025065 0.028549 0.028905 
9 0.023544 0.023093 0.028014 0,027745 
10 0.022316 0.020862 0.027274 0.026371 
11 0.021301 0.018951 0.026647 0.025133 
12 0.020641 0.017496 0.02623 0.02415 
24 0.013818 0.0014873 0.021461 0.007041 
36 0.012649 8.44E-07 0.020534 0.00016774 
48 0.013034 0.00098297 0.020844 0.0057241 
60 0.013968 0.003136 0.021577 0.010224 
72 0.015458 0.0056131 0.0227 0.013679 
84 0.017031 0.0081872 0.023827 0.01652 
96 0.018629 0.01067 0.024919 0.018859 
108 0.020297 0.0129 0.026011 0.020736 
120 0.021867 0.01495 0.026998 0.022323 
132 0.023142 0.016975 0.027774 0.023788 
144 0.024539 0.018627 0.0286 0.024918 

AVG 0.021266571 0.016513639 0.026408952 0.021580421 
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TABLE 4.9. Diebold and Mariano (1995) test results evaluating significant out of sample 
forecast performance for MSE (with p values in italics) 

3 -1.0621 -29.172 -10.258 -7.2947 
0.288 0.000 0.000 0.000 

4 -1.8447 -15.467 -6.2079 -3.1287 
0.065 0.000 0.000 0.002 

5 -2.3856 -8.9057 -3.6783 -1.4878 
0.017 0.000 0.000 0.137 

6 -2.8651 -5.564 -2.107 -2.0315 
0.004 0.000 0.035 0.042 

7 -2.0269 -3.7015 -1.1463 -3.6556 
0.043 0.000 0.252 0.000 

8 2.3576 -2.5609 -0.52679 -5.3214 
0.018 0.010 0.598 0.000 

9 6.4482 -1.6411 -0.074617 -6.4602 
0.000 0.101 0.941 0.000 

10 9.5245 -1.0345 0.25637 -6.9814 
0.000 0.301 0.798 0.000 

11 11.194 -0.52658 0.51502 -7.2233 
0.000 0.598 0.607 0.000 

12 12.177 -0.16732 0.69896 -7.1245 
0.000 0.867 0.485 0.000 

24 -2.6461 2.8103 -0.46626 -1.0516 
0.008 0.005 0.641 0.293 

36 -9.9705 4.0051 1.9415 1.0595 
0.000 0.000 0.052 0.289 

48 -10.836 5.1546 3.0007 2.0908 
0.000 0.000 0.003 0.037 

60 -5.6482 5.5742 3.4981 2.7306 
0.000 0.000 0.000 0.006 

72 7.5467 5.418 3.7235 3.1578 
0.000 0.000 0.000 0.002 

84 6.5546 5.0125 3.8222 3.4672 
0.000 0.000 0.000 0.001 

96 2.3762 4.4102 3.7814 3.6888 
0.017 0.000 0.000 0.000 

108 -2.0385 3.7743 3.6986 3.8518 
0.042 0.000 0.000 0.000 

120 -6.5911 3.0006 3.5111 3.9534 
0.000 0.003 0.000 0.000 

132 -10.362 2.2283 3.2828 4.0059 
0.000 0.026 0.001 0.000 

144 -14.087 1.3236 2.9527 4.0053 
0.000 0.186 0.003 0.000 

AVG -10.305 1.2593 2.3243 2.0275 
0.000 0.208 0.020 0.003 
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TABLE 4.10. Diebold and Mariano (1995) test results evaluating significant out of sample 
forecast performance for MAE (with p values in italics) 

Maturities (in months) 1 period 5 period 10 period 30 period 
3 -1.4751 -19.322 -9.2082 -9.6879 

0.140 0.000 0.000 0.000 
4 -6.3061 -13.528 -5.8887 -3.5663 

0.000 0.000 0.000 0.000 
5 -10.171 -9.6375 -3.7956 -1.6013 

0.000 0.000 0.000 0.109 
6 -10.426 -7.0344 -2.4631 -2.1323 

0.000 0.000 0.014 0.033 
7 -5.8083 -5.2854 -1.6032 -4.174 

0.000 0.000 0.109 0.000 
8 0.098736 -4.2148 -1.038 -7.1133 

0.921 0.000 0.299 0.000 
9 5.0573 -3.2398 -0.65709 -10.56 

0.000 0.001 0.511 0.000 
10 9.3414 -2.6225 -0.39134 -14.268 

0.000 0.009 0.696 0.000 
11 12.981 -2.1281 -0.19671 -18.083 

0.000 0.033 0.844 0.000 
12 15.067 -1.761 -0.033755 -21.912 

0.000 0.078 0.973 0.000 
24 -6.0949 2.5783 -0.59288 -0.92809 

0.000 0.010 0.553 0.353 
36 -13.242 4.0234 1.7719 1.0303 

0.000 0.000 0.076 0.303 
48 -13.102 5.2831 2.8063 2.1672 

0.000 0.000 0.005 0.030 
60 -6.6872 5.8428 3.5514 2.9573 

0.000 0.000 0.000 0.003 
72 8.4386 5.8176 3.8803 3.4594 

0.000 0.000 0.000 0.001 
84 6.4154 5.3523 4.0246 3.7838 

0.000 0.000 0.000 0.000 
96 2.3108 4.6166 3.9539 3.9966 

0.021 0.000 0.000 0.000 
108 -2.0514 3.8764 3.8258 4.1464 

0.040 0.000 0.000 0.000 
120 -6.3744 3.0333 3.5978 4.2297 

0.000 0.002 0.000 0.000 
132 -10.16 2.2191 3.3403 4.2633 

0.000 0.026 0.001 0.000 
144 -14.52 1.2915 2.9872 4.2443 

0.000 0.197 0.003 0.000 
AVG -9.7257 1.4284 2.5555 2.8906 

0.000 0.153 0.011 0.004 
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TABLE 4.11. Relative forecast performance from one-period ahead forecasts using the Nelson- 
Seigel block dynamic model (NS-block) introduced in the text and the Nelson-Seigel dynamic 
model (NS) introduced by Diebold et al (2006) 

Maturity ReIMSE ReIMAE 
(in months) NS NS-block NS NS-block 

3 2.58901 0.263443 3.930766 11.28985 
4 26.91261 42.20181 9.152358 11.46112 
5 21.6144 19.77488 8.457817 8.089869 
6 13.6689 12.12947 5.752853 5.419393 
7 19.3385 20.32152 6.502266 6.665537 
8 1.78703 2.329985 3.625347 4.139652 
9 6.949354 12.16115 3.719809 4.920781 
10 6.781209 14.32501 3.562102 5.177239 
11 3.355113 10.54164 2.432396 4.311606 
12 2.208562 9.267096 1.955748 4.006128 
24 5.727311 0.359273 3.056179 0.765444 
36 7.486023 1.496406 3.471602 1.552079 
48 5.187675 1.343465 2.864765 1.457862 
60 2.225812 0.985401 1.865484 1.24123 
72 0.301888 0.727037 0.690924 1.072241 
84 0.143594 0.730042 0.47415 1.069059 
96 1.916875 0.707845 1.752062 1,064704 
108 6.063845 0.556388 3.100032 0.939032 
120 12.41615 0.446858 4.456245 0.84536 
132 20.69064 0.322221 5.773969 0.720541 
144 31.29897 0.140802 7.143389 0.479124 

AVG 7.48E+00 2.200877 3.306585 2.027849 
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TABLE 4.12. Relative forecast performance from five-period ahead forecasts using the Nelson. 
Seigel block dynamic model (NS-block) introduced in the text and the Nelson-Seigel dynamic 
model (NS) introduced by Diebold et al (2006) 

Maturity ReIMSE ReIMAE 
(in months) NS NS-block NS NS-block 

3 215.6526 72.28779 11.13569 6.447115 
4 103.3844 52.13276 6.808155 4.834466 
5 40.72162 23.51676 4.401791 3.345108 
6 20.21005 12.7823 3.104496 2.46893 
7 14.21793 9.831027 2.515669 2.091873 
8 4.190696 2.952221 1.640448 1.376872 
9 5.704873 4.035327 1.511756 1.271413 
10 4.539825 3.263092 1.315186 1.115023 
11 3.026908 2.109559 1.054259 0.880136 
12 2.321993 1.587293 0.907003 0.749888 
24 0.019636 0.012573 0.076372 0.061112 
36 0.012236 0.159989 0.059688 0.21583 
48 0.0026519 0.219517 0.027952 0.254316 
60 0.0076677 0.253884 0.047926 0.275776 
72 0.066129 0.282234 0.14193 0.293222 
84 0.175727 0.336081 0.233928 0.323507 
96 0.356759 0.368601 0.336477 0.342013 
108 0.591425 0.40993 0.435086 0.362224 
120 0.921628 0.419436 0.547457 0.369325 
132 1.28613 0.416749 0.64704 0.368321 
144 1.714933 0.390483 0.747804 0.356837 

AVG 1.459271 0.90566 0.68273 0.582177 
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TABLE 4.13. Relative forecast performance from ten-period ahead forecasts using the Nelson- 
Seigel block dynamic model (NS-block) introduced in the text and the Nelson-Seigel dynamic 

model (NS) introduced by Diebold et al (2006) 
Maturity ReIMSE ReIMAE 

(in months) NS NS-block NS NS-block 
3 251.0125 136.7242 7.621963 5.625402 
4 91.78062 65.83396 3.90797 3.309851 
5 37.6335 31.15448 2.656863 2.417343 
6 19.13104 17.48273 1.933134 1.847993 
7 12.09638 11.85133 1.478582 1.463544 
8 4.679056 4.805496 1.039173 1.053145 
9 5.019945 5.340885 0.935014 0.964421 
10 3.773166 4.111195 0.792765 0.82751 
11 2.616444 2.915331 0.655879 0.692309 
12 1.998844 2.262232 0.568066 0.604339 
24 0.204597 0.116883 0.175179 0.132402 
36 0.0845 0.0021958 0.112927 0.018204 
48 0.091147 0.009822 0.117632 0.038617 
60 0.129003 0.042123 0.140889 0.080508 
72 0.186066 0.086835 0.169815 0.116006 
84 0.265917 0.13536 0.204357 0.145804 
96 0.357285 0.184403 0.237623 0.17071 
108 0.466927 0.233865 0.272697 0.192996 
120 0.589553 0.277163 0.30616 0.209921 
132 0.723996 0.315172 0.338572 0.223392 
144 0.877044 0.34085 0.371736 0.231736 

AVG 1.08889 0.840881 0.445311 0.370532 
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TABLE 4.14. Relative forecast performance from thirty-period ahead forecasts using the 
Nelson-Seigel block dynamic model (NS-block) introduced in the text and the Nelson-Seigel 
dynamic model (NS) introduced by Diebold et al (2006) 

Maturity ReIMSE Re1MAE 
(in months) NS NS-block NS NS-block 

3 151.956 148.7282 2.632216 2.604052 
4 34.46925 36.6635 1.228166 1.266661 
5 17.12221 18.74593 0.923147 0.965937 
6 9.032334 9.843708 0.64936 0.677913 
7 4.979126 5.296332 0.475762 0.490686 
8 3.326667 3.410204 0.385287 0.390092 
9 2.391856 2.346039 0.323536 0.320429 
10 1.751511 1.637391 0.277768 0.268571 
11 1.370721 1.219498 0.246321 0.232326 
12 1.079607 0.915111 0.219186 0.201805 
24 0.24209 0.026057 0.106253 0.03486 
36 0.170778 1.14E-05 0.090742 0.000741 
48 0.162827 0.01228 0.089521 0.024584 
60 0.169045 0.037953 0.091934 0.043562 
72 0.186358 0.06767 0.0973 0.058633 
84 0.207713 0.099852 0.103375 0.071673 
96 0.2298 0.131621 0.109659 0.082992 
108 0.256745 0.163178 0.116328 0.092T37 
120 0.283483 0.193811 0.122523 0.101307 
132 0.309149 0.226766 0.127808 0.100466 
144 0.337496 0.256186 0.133054 0.115925 

AVG 0.485982 0.377368 0.177313 0.144893 
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CONCLUSIONS AND IMPLICATIONS FOR FURTHER RESEARCH 

Panel factor models have been widely applied to modelling yield curves since they capture the 

cross sectional and time series properties of the term structure. Several parametric and non- 

parametric factor structures have been proposed in literature. The latent factors governing 

the term structures have been established to capture shifts in yield curves and commonly 

referred to as level, slope, and curvature. 

Primarily authors employ graphical means to draw inferences on the stability of theso 

factors (level, slope, and curvature). No formal tests for structural changes have been used 

to study yield curve factors. As a first examination for the presence of instabilities in fac- 

tors, we use graphical techniques such as recursive schemes and split sample analysis and 

find significant variations in the eigenvalues, eigenvectors, and factor loadings governing the 

three factors. In chapter two, we propose a formal test that evaluates the stability in the 

eigenspace variables of level, slope, and curvature. Monte Carlo simulations show great size 

and power properties for the tests conducted for different cross sectional dimension panels, 

with different possible change points, and with different possible break sizes generated from 

different intervals of the uniform distribution. 

We apply the testing procedure to zero coupon bond yield term structures obtained from 

Datastream, yields (monthly and daily) obtained from Federal Reserve, and the Farna. Z3tiss 

monthly yields. We find statistically significant structural changes in the factor structure, 

governing all zero coupon bond yield term structures considered (see clip. 2 and 3). The 

variance process governing the factors has been found to be unstable in all cases. The findings 

advocate the use of common principal component analysis which relaxes the assumption 

of constant eigenvalues governing factors. As further research, we investigate whether tlao 

stability results inferred could be translated to the recently raised problem of unstable forecast 

performance of the three factor Nelson-Siegel model generating level, slope, and curvature 

factors. In this vein, we plan to investigate the forecast density breaks in the Nelson-Siegel 
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model governing yield curves. 

In chapter three, we investigate structural stability of the factors governing the separate 

correlation clusters, namely short maturity and long maturity clusters, found within the 

zero coupon term structure. In this case, we find that all the three factors governing short 

and long rates are statistically unstable. This result contrasts with the case of testing for 

structural changes in factors for the whole term structure where we find statistically stable 

slope and curvature factor loadings. The implication to this finding is a possible presence of 
"Cobreaking" between the short and long maturity clusters, which need to be statistically 

tested for in future work. 

In chapter four, we account for the presence of factors governing short and long maturity 

clusters, potentially capturing different market information. We model the factors governing 

the two clusters of rates separately in a dynamic framework proposed by Diebold and Li 

(2006). In this, we extend and propose a block dynamic Nelson-Siegel model for yield curves 

with correlation clusters. The proposed new framework seems to forecast well the short 

end of the curve as compared to the benchmark model, which is the dynamic Nelson-Siegel 

(1985) model proposed by Diebold and Li (2006). This formulation can allow us to model the 

instabilities in the short and long rates separately and well suits the empirical objective to pick 

up interactions between the short and long factors. For further research, we plan to extend 

the framework and incorporate regime switching to the block dynamic model proposed. 
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