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Abstract

Hand pose is emerging as an important interface for human-computer interaction. The
problem of hand pose estimation from passive stereo inputs has received less attention
in the literature compared to active depth sensors. This thesis seeks to address this
gap by presenting a data-driven method to estimate a hand pose from a stereoscopic
camera input, with experimental results comparable to more expensive active depth
sensors. The frameworks presented in this thesis are based on a two camera stereo rig
capture as it yields a simpler and cheaper set-up and calibration. Three frameworks
are presented, describing the sequential steps taken to solve the problem of depth and
pose estimation of hands.

The rst is a data-driven method to estimate a high quality depth map of a hand
from a stereoscopic camera input by introducing a novel regression framework. The
method rst computes disparity using a robust stereo matching technique. Then, it
applies a machine learning technique based on Random Forest to learn the mapping
between the estimated disparity and depth given ground truth data. We introduce
Eigen Leaf Node Features (ELNFs) that perform feature selection at the leaf nodes in
each tree to identify features that are most discriminative for depth regression. The
system provides a robust method for generating a depth image with an inexpensive
stereo camera.

The second framework improves on the task of hand depth estimation from stereo
capture by introducing a novel superpixel-based regression framework that takes
advantage of the smoothness of the depth surface of the hand. To this end, it introduces

Conditional Regressive Random Forest (CRRF), a method that combines a Conditional



Random Field (CRF) and a Regressive Random Forest (RRF) to model the mapping
from a stereo RGB image pair to a depth image. The RRF provides a unary term
that adaptively selects di erent stereo-matching measures as it implicitly determines
matching pixels in a coarse-to- ne manner. While the RRF makes depth prediction for
each super-pixel independently, the CRF uni es the prediction of depth by modeling
pair-wise interactions between adjacent superpixels.

The nal framework introduces a stochastic approach to propose potential depth
solutions to the observed stereo capture and evaluate these proposals using two con-
volutional neural networks (CNNs). The rst CNN, con gured in a Siamese network
architecture, evaluates how consistent the proposed depth solution is to the observed
stereo capture. The second CNN estimates a hand pose given the proposed depth.
Unlike sequential approaches that reconstruct pose from a known depth, this method
jointly optimizes the hand pose and depth estimation through Markov-chain Monte
Carlo (MCMC) sampling. This way, pose estimation can correct for errors in depth
estimation, and vice versa.

Experimental results using an inexpensive stereo camera show that the proposed
system measures pose more accurately than competing methods. More importantly, it
presents the possibility of pose recovery from stereo capture that is on par with depth

based pose recovery.



Notation

For ease of presentation, vectors and matrices are denoted with a boldface lower-case
(x) and upper-case (X ) respectively. Vector/matrix transpose are denoted with an
upper script T as in fg™ whilst the column-order and row-order concatenation are
represented as [X ;Y ] and [X ;Y ] respectively. Unless explicitly speci ed, all vectors
are assumed to be column vectors e.g. p = [px; py;P]". A vector where all its elements
are one is denoted with i, whilst I denotes the identity matrix.

I[] denotes an indicator function that returns 1 if the argument is true and returns
0 otherwise. Matrix/vector multiplication is denoted as in XY , whilst  between two
scalars is used to indicate dimension as in a b describes a a-by-b dimensional space or
matrix. The equal notation = is used to assign value to variable whilst the indicates
the sampling from a probability distribution.

The probability of a variable x is represented as in Pr(x) with Pr(x;y) and P r(Xjy)
denoting joint and conditional probability. An unnormalized probability is presented

as Pr(x).






Chapter 1

Introduction

The aim of this research is to achieve robust hand pose estimation from stereoscopic
images, such as those produced by egocentric video cameras. Hand pose estimation
has several practical uses, such as human-computer interaction and virtual reality
applications [1 4]. This work naturally rests in the eld of computer vision, speci cally
research in articulated object tracking, which has recently attracted increasing attention
in the literature [5 9]. This increase in research interest is largely due to recently
available commercial depth cameras [10]. Although there are many ways to image
the hand and its articulations, two primary approaches that have been employed
include conventional RGB cameras and more recently, depth imaging, popularised by
commercially available depth sensors like the Microsoft Kinect and ASUS Xtion Pro as
well as hand articulation detection products such as the HoloLens and Leap Motion.

Conventional monocular (single RGB) cameras have inherent limitations to their
robustness as input to hand pose estimation tasks. These include: a lack of shape
information (used to generate signi cant features and cues for articulation); poor
robustness against background clutter; and variance in the output data as a result of
changes in ambient condition (brightness/dimness of scene). These shortcomings have
led to the advent of active depth cameras. These cameras actively emit electromagnetic
(EM) waves towards the scene, probing how far each point in the scene is away from

the imaging device. Whilst depth imaging provides good shape information and hence
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robustness to clutter and changes in ambient conditions, depth sensors present several
limitations, including: poor form factor *; large energy consumption; poor near distance
coverage; and poor outdoor usage. For instance, the stereo camera used in the thesis,
Minoru 3D Webcam, has a power consumption of 1.5 Watts [11] whilst the Xbox One
Kinect RGBD sensor (used for data collection) has a power rating of approximately 15
Watts. The latter exceeds the power of a standard USB 3 port.

Motivation: The success of the HoloLens is evidence of the continual urge for
technology to become an extension of human capability. Hence devices should conform
to means of interaction that are natural to humans such as gestures, speech etc. A
typical example of these is egocentric based devices. A device is described to be
egocentric if it encourages rst-person experience and engages with the human from
the user’s perspective. These devices are a promising approach to improving human-
computer interaction and this is evident in that currently, prominent products of major
technology companies such as Snap Inc., Google Inc., Facebook Inc. and Microsoft
Corporation are rst-person interactive devices, e.g. Spectacles, Google Glass 2.0,

Oculus Rift and HoloLens respectively. This motivates the need for devices that require

Figure 1.1 The recti ed stereo image pair of a hand pose. The purple and red lines
indicate respective horizontal line in the left and right stereo captures that share
corresponding points.

1The form factor of a device explains how large in shape and size the device is. A poor form factor
indicates a device too large to the detriment of its portability.
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lower energy consumption; better form factor; better indoor coverage; and better near

distance coverage.

1.1 Research Goal

The above issues motivate the use of an input system that addresses the disadvantages
of the two approaches described above, namely stereo imaging. With stereoscopic input,
one is able to achieve close range acquisition, good form factor, and outdoor usage
whilst still being able to acquire shape information and maintain robustness to clutter.
Hence, this research is based on hand gesture recognition from stereo-optically acquired
depth data from egocentric viewpoints, with emphasis on applications such as sign
language recognition, virtual/natural interaction, and gaming inputs amongst others.
The application of stereo camera to hand pose estimation is based on the concept
of Stereopsis, which relies on establishing correspondences between two cameras in

a stereo capture. This is a challenging task as there is often a lack of consistency
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Figure 1.2 Intensity plot of the stereo image pair in Figure 1.1. The red plot indicates
the intensity along the red line whilst the blue plot indicates the intensity along the
blue line.
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between the two stereo cameras as illustrated in Figure 1.1 and 4. Figure 4 shows an
intensity plot of the stereo image pair in Figure 1.1. The orange plot indicates the
intensity along the red line (in the right stereo image), whilst the blue plot indicates
the intensity along the purple line (in the left stereo image). It is apparent that whilst
there is consistency in some major variation in intensity, there is a lack of consistency
in more subtle intensity variation in both cameras. This makes this research a di cult
task, particularly when applied to hand (that tend to have textureless regions). This
thesis focusses solely on the problem of single hand depth and pose estimation, which is
a real challenge given di erences between individuals. Due to time constraints during
the PhD and the execution time of the proposed framework, it was not possible to
implement the proposed methods in an egocentric view and test outdoors. Also, due to
computational complexity, the methods presented in this thesis are not yet capable of
real-time performance. Therefore, egocentric and real-time extensions of the work are
left for future research. Nonetheless, the solution presented in the succeeding chapters
of these thesis, serves as a proof of concept for stereoscopically-based robust hand

pose/articulation recovery with performance on-par with RGBD-based systems.

1.1.1 Research Questions

This research aims to answer four questions:

1. How can highly robust depth information be recovered from stereoscopic imaging

of hands?

2. How can the problems of texture-less hand regions and radiometric di erences

be addressed?
3. How can hand pose/articulation be estimated from stereoscopic inputs?

4. How do the results compare to those estimated from depth image inputs?
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1.1.2 Research Objectives

Addressing these research questions yields four research objectives, which include:
1. To propose, develop, implement and evaluate hand depth estimation frameworks.

2. To propose, develop and implement a framework for hand pose/articulation

estimation from recovered hand depth.

3. To propose a new approach for joint stereo reconstruction and pose estimation of

a hand from stereo inputs.

4. To compare the performance of the stereo-based pose estimation approach to

RGBD input-based approach

1.2 Research Contributions

The following are the key contributions of this thesis:

1. A new regressive feature selection technique called Eigen Leaf Node Features
is presented. In the leaf node of each tree in a Random Forest, this technique
factorizes for the posterior probability and regresses the depth using highly
discriminant features. Eigen Leaf Node Features is applied to stereoscopic images
of hands to learn the mapping between a lower quality disparity estimation and

a high-quality groundtruth depth measurement.

2. A machine learning approach to establishing stereo correspondences, by solving
a superpixel-based regression problem rather than explicitly minimising a stereo-
matching cost function is introduced. Rather than rely on a single cost function or
single window size, the proposed method fuses multiple cost functions computed
over di erent window sizes as input to the regressors. Expert trees that learn
from di erent subsets of the data, based on holistic hand features, like skin tone,

are proposed.
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3. A closed-form non-iterative solution to a Conditional Random Fields-based

consolidation of Random Forest Trees predictions is derived.

4. Unlike several approaches to pose estimation from stereo capture that explicitly
recover disparity before regressing for the pose in a sequential manner, a joint op-
timization approach that is robust against potential error in the depth estimation
is presented. Thus, this reduces the burden on the pose estimation framework
to be robust against erroneous depth recovery. A semi-generative approach that
is experimentally proven to work on di erent sizes and tones of hand without

pre-calibration is proposed and implemented.

1.3 Publications

The following peer-reviewed papers have been published:

1. Basaru, R., Child, C., Alonso, E., & Slabaugh, G. (2014). Quantized Census
for Stereoscopic Image Matching. In Proc. of the 3DV Conference: Workshop,
Dynamic Shape Measurement and Analysis, Dec 2014, Tokyo, Japan.

2. Asad, M., Gentet E., Basaru R., & Slabaugh G. (2015). Generating a 3D Hand
Model from Frontal Color and Range Scans. In Proc. of the IEEE International

Conference on Image Processing, Sept 2015, Quebec, Canada.

3. Basaru, R., Child, C., Alonso, E., & Slabaugh, G. (2016). HandyDepth: Example-
based Stereoscopic Hand Depth Estimation using Eigen Leaf Node Features. In
Proc. of the International Conference on Systems, Signals and Image Processing,

May 2016, Bratislava, Slovakia.

4. Basaru, R., Child, C., Alonso, E., & Slabaugh, G., (2017). Conditional Regressive
Random Forest Stereo-based Hand Depth Recovery. In Proc. of International

Conference on Computer Vision: HANDS Workshop, Oct 2017, Venice Italy.
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5. Basaru, R., Child, C., Alonso, E., & Slabaugh, G., (2017). Hand Pose Estimation
Using Deep Stereovision and Markov-chain Monte Carlo. In Proc. of International

Conference on Computer Vision: HANDS Workshop, Oct 2017, Venice Italy.

6. Basaru, R., Child, C., Alonso, E., & Slabaugh, G., (2018). Data-driven Recovery
of Hand Depth using Conditional Regressive Random Forest on Stereo Images.

IET Computer Vision Journal.

1.3.1 Academic Activities

The student participated in the following activities during the course of the research

1. 3DV 2014 Conference: Workshop, Dynamic Shape Measurement and Analysis
(11 December, 2014) - Talk.

2. British Computer Society (BCS) Doctoral Consortium invited talk (22 April,
2015) - Talk.

3. IWISSIP 2016 International Conference (24 May 2016) - Talk.

4. BMVA Technical Meeting: Dynamic Scene Reconstruction 2017 (21 June 2017) -
Talk.

1.3.2 Framework and Tools Produced

The following frameworks and tools were produced during the course of the research

1. An OpenGL based tool for hand pose articulation and rendering. This is a C++
implemented rigged hand model that can be used to generate synthetic hand
capture of di erent poses, from di erent perspectives under di erent lighting

conditions.

2. A MATLAB based testbed for Stereo-matching cost functions against various

radiometric di erence.



8 Introduction

3. C++ code for capturing from RGB-D Sensor, Minoru Stereo camera and Leap-

Motion Sensor simultaneously.

4. Calibration and registration framework for simultaneous Minoru and Kinect
Sensor capture. This is used to register the depth channel of the RGB-D sensor

to the reference stereo camera.

1.4 Thesis Outline

The remaining chapters of this thesis are structured as follows: Chapter 2 presents a
brief review of literature that are related to the research topic. Chapter 3 introduces and
expatiates on key concepts of stereoscopy, machine learning, and hand pose estimation
while Chapter 4 introduces our Eigen-leaf Node Random Forest approach to hand
depth recovery from stereo capture. In Chapter 5, we improve upon this by presenting
an approach that combines a Conditional Random Field with a Regressive Random
Forest. Chapter 6 presents a joint optimization approach to the problem of pose
recovery from stereo. We evaluate the three approaches presented in Chapters 4, 5 and
6. A comparison of these approaches is presented in Chapter 7. The work concludes

with future work discussed in Chapter 8.



Chapter 2

Literature Review

Over the last decade, hand articulation estimation and tracking, as well as multi-
view reconstruction have been popular topics in computer vision and have received
considerable attention [12 21]. This chapter gives a review of methods related to those
in this research. The literature is categorized into depth recovery from stereo views,

general hand articulation recovery, and stereo-based hand pose recovery.

2.1 Stereo Approaches

As discussed in the previous chapter, the recent success in hand pose estimation from
active depth sensors has established the signi cance of shape information as being
paramount to hand pose estimation. This, in turn, has motivated the approach of
hand depth estimation from stereo capture as disparity recovered from stereo can be
used as a precursor for hand pose estimation (see Chapter 3 where the fundamentals
of stereo vision are introduced).

Depth estimation from two views has a long and rich history in computer vision and
fundamentally relates to establishing correct correspondences between images. There
have been several literature surveys pertaining to stereo algorithms [22 25]. Following

[23] stereo-matching algorithms are categorized based on four steps:

1. Computing the matching cost.
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2. Cost Aggregation.
3. Disparity selection.
4. Disparity re nement. [24]

Each of these four points will discussed in the following subsections.

2.1.1 Matching-cost based Classi cation

As discussed, correspondence matching is integral to disparity/depth recovery. Hence
a quintessential way of categorizing stereo algorithms is the metric used to measure
the a nity of two potentially matching pixels. The a nity of pixels is based on their
pixel values which are a manifestation of how both cameras in the stereo rig react to
light. Their responses to light are often not consistent, i.e. the pixel value of an object
in one camera might be slightly di erent to that in the other. Hence, a more robust
a nity test between two pixels (in separate cameras) will also consider the pixel values
in their respective neighborhood. Given two image regions, a matching cost determines
a real number that characterizes the degree to which the regions match. Generally,
region-based matching cost functions are of three categories, namely: parametric,
non-parametric and Mutual Information (MI) [25], parametric cost function being the
most popular due to its computational e ciency.

Common parametric matching cost functions include: Sum of Absolute Di erences
(SAD), and Sum of Squared Di erences (SSD) each with locally-scaled and zero-mean
versions, Locally-scaled Sum of Absolute Di erences (LSAD), Zero-mean Sum of
Absolute Di erences (ZSAD), Locally-scaled Sum of Squared Di erences (LSSD) and
Zero-mean Sum of Squared Di erences (ZSSD). Another type of parametric matching-
cost is Normalized-Cross Correlation (NCC), (with a zero-mean version - ZNCC) [25].
Each of the cost functions assumes an already recti ed image pair with corresponding
matching pixel only horizontally displaced in the other image. SAD is arguably the
simplest of the region-based cost functions. SAD is calculated by taking the sum of the

absolute di erence of all intensity levels between the pixels within a neighborhood in
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the rst image and those in a potentially matching neighborhood in the second image.

The cost function can be mathematically described as follows:

" #
Coo@d= L@ In@ O 1)
a2Np 0
where a corresponding search is made for pixel p with a vector position p on the left
image plane - I ; d denotes the number of pixel-shifts away from p in the horizontal
line; and g denotes a pixel (with vector position g on the right image plane - Ir) within
a neighborhood around p, called Np. Note g [d;0]" denotes the resulting vector
position as a result of a horizontal shift of the vector g by [d;0]". SSD is similar to
SAD except that the di erences are squared before summation within the region. This

additional step means that it requires slightly more computation than SAD. Formally,

X ) d#
Cssp(p;d) = flo(a) Ir(qg 0 )G (2.2)

a2Np

The locally-scaled variants of SAD and SSD attempt to compensate for gain bias by
multiplying each pixel value in one of the two neighborhoods to be compared by the

ratios of the mean intensity value of both regions. The equations are as follows.

" #

X . INp;R d .
Cisap (p;d) = jhe(a) i Ir(q )] (2.3)
a2Np Np;L 0
and
X ( = d# ) 2
Cissp (p;d) = ) i (e ) (2.4)
a2Np NpiL 0

where the overbar denotes the mean.
NCC [26] is the most computationally expensive of the parametric cost functions

considered in this thesis. The NCC matching cost is derived from cross-correlation
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which is e ectively the integration of the product of two signals. These signals would
have an amplitude distribution about the zero level. The NCC employs normalization
rst to ensure that the image intensity values (which are always positive) are distributed

about the zero level. Formally,

( " )
5 d
en, L(@)Ir(g 0 )
Cnec(psd) = ¥ i o (2.5)
U p P d
Fooen,flu(@?g en, Ir(Q 0 )?

The zero mean variants, ZSAD, ZSSD and ZNCC, also attempt to account for a constant
gain bias radiometric di erence. They achieve this by subtracting the intensity value

of each pixel within the region of interest by its mean. Hence the transformation is as

follows:
I+(p) = 1(p) 1(p); (2.6)
where
=27 1) @.7)
JNDJ g2Np - .

This transformation is applied before the respective correspondence cost is carried out.
There are other variants of parametric matching cost functions, for example, Maximum
Normalized Cross-Correlation (MNCC) which is an approximation of the NCC with
faster computation [27].

Non-parametric matching-costs are invariant to monotonic grey value changes.
They rely solely on the relative intensity levels of pixels within the region. This allows
them to tolerate a large class of local and global radiometric changes [28]. The Rank
matching cost and Census cost [29] are two major types of non-parametric techniques.
The Rank matching cost transforms the intensity level of each pixel to its intensity
ranking within the neighborhood. This transformation is used as a correspondence

match by computing the absolute di erence. This is known to be sensitive to noise in
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textureless regions [25]. Formally, the Rank transform is formulated as:

) n do

X n
CRank (p, d) = jTRank I L:Q TRank I r:Q j; (2-8)
g2Np 0
where the rank transform, Trank IS de ned as:
X
Trank f1; 09 = I (r) > 1 (a)l: (2.9)

r2Ng

[[:] is an indicator function that returns 1 when the argument is true and 0 otherwise,
and r are pixels around pixel g. The work of [30] uses the Rank matching cost to
achieve improved disparity accuracy. Rank matching cost is particularly robust against
brightness di erences and image distortion [24], however, a consequence of the function
is the tendency for ambiguity between sets of potentially matching costs. [31] presents
the use of a Bayesian model to reduce the ambiguity that could exist. The Census
cost also applies a comparison between the center pixel of the window region with the
other pixels, however, provides a more granular comparison by translating it into a bit
string. This is normally used in conjunction with the Hamming distance to compute
the distance between the two bit strings describing the two regions whose a nity is to

be evaluated as in:

n (0]
Teensusf 15 g = Bitstring ang H[1(r) > 1 (q)] : (2.10)

The actual distance is acquired as in

" #
X ] d
CCensus(p; d) = Hammmg f TCensus(I L q), TCensus(I rR: 0 )9, (2-11)
g2Np 0
where Hamming f :g is the bit-wise distance between two bit strings. A major downfall
to the Census cost is that it often yields incorrect matches when there are repeated

patterns in a region [32].
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The nal category of matching cost function is MI. Whilst parametric cost functions
are solely sensitive to the magnitude of pixel intensity and non-parametric costs are
sensitive to the local ordering of this pixel intensity within a neighborhood, Mutual
information costs, model a more complex relationship between the images in question
[33]. Statistically, Ml measures the strength of association between two random
variables. It conveys the number of instances in which two events are observed together
in comparison to when they are not observed together. In terms of stereo image
correspondence, the random variables are the pair of potentially matching pixels.
Conventionally, computing MI for a stereo image pair requires an initial disparity. This
disparity is used to warp one of the stereo pair so that corresponding pixels exists in
the same spatial location in both images. Hence, disparity estimation using Ml entails
of proposing a disparity map that yields a minimal mutual information cost. Egnal [34]
proposed the method for using mutual information for local stereo correspondence. At
each pair of matching neighborhoods, the probability distribution over pixel values is
computed individually and jointly by using a binned histogram. For instance, consider
two potentially matching regions, N, and Ng, in the left and right image, 1. and Ig.
First, a histogram of pixel values is established for each region. Using this histogram,
the probability of a pixel (x. 2 N_ or xg 2 Nr) having a pixel value can be estimated,
Pr i (x)=X andPr Ir(xg) =Y . Inasimilar manner, the joint probability of a
pair of corresponding pixels, X, , and xg, in having a unique pair of pixel values can
also be estimated. Then the mutual information of two potentially matching regions,

M1 (N_;NRg), can be computed as in

MIOGY )= PROGY )log — F8Y)

" PrOX\)PI(Y)’ (2.12)

where X and Y are the possible pixel values that the pixels in N_. and Nr can have
respectively.
Another common variant of Ml is Hierarchical Mutual Information (HMI) [35].

This uses a coarse-to- ne technique, by scaling down the images and then gradually
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scaling up. Starting with a randomly allocated disparity map, the images are displaced
and the cost is computed. As previously discussed, an initial disparity image is needed
to warp one of the stereo image pair so as to potentially register with the other. In a
hierarchical approach, rst, the stereo images f I ; | rg are down-sampled by 2' (e.g. 16)
factors, f1 [; I ég. The e ect of this is a small disparity range, whereby a random sample
of potential disparity solution will su ce to establish a match. This recovered disparity
g
This process is repeated until the original scale is reached. The signi cance of this

map solution, D{ is up-scaled to initiate the random disparity search for f1{ *; 1% *
is that it reduces the computation time in comparison to the iterative computation

involved in MI under full resolution. Experiments presented in [35] show that HMI

produces matching qualities that are equal to M.

2.1.2 Classi cation based on Cost Aggregation

Cost aggregation is applied to avoid basing a nity solely on a single pixel by including
neighboring pixels. Consequently, the cost can be evaluated across a region of pixels
(typically square window de ned regions centered on the pixel of interest - Figure
2.2a). Cost aggregation approaches can be classi ed as either mask based or non-mask
based. Non-masked based approaches solely aggregate based on the position of the
contributing neighboring pixel without any weighted masking involved. A typical

example of this is shifting window aggregation, where aggregation is selected from

Figure 2.1 Multiple Window Cost Aggregation. This illustrates how multiple supporting
windows regions can be established around a single target pixel.
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a subset of the supporting window regions, see Figure 2.1. The selected subset is
determined by the cost at each of the supporting windows, as implemented by [36]. A
signi cant drawback is that the relative positioning of pixels is often not preserved,
speci cally in high gradient regions. Adaptive Window is another non-masked technique
which was developed to address this [37]. This is a slightly di erent approach, where
pseudo-supporting windows are used as in Figure 2.2b. Here, a subset of distinct
neighboring windows is considered as opposed to overlapping windows in the case of the
shifting window aggregation approach. Figure 2.2d illustrates the di erent potential
shapes of aggregation region.

Similar to the shifting window approach, the support window with the best cost
is selected. The adaptive supporting window method, implemented in [37], has been
shown to provide superior results, particularly in high gradient regions. A common
variant of the adaptive support window is one where the weighting is based on the
similarity of the neighboring pixel to the target pixel. For instance in [38] a real-time
GPU based approach assigns higher weightings to costs at pixels whose intensity values
are closer to that of the target pixel.

Mask based aggregation methods are accompanied with a mask which determines
the emphasis placed on the cost, resolved at a neighboring pixel. One of the more
common approaches is weight contribution based on the proximity to the target pixel
as in Figure 2.2c. A more complex masked based approach applies a form of low
pass Iter on the actual region and uses the response to weight the contribution from

neighboring windows.

2.1.3 Classi cation based on Disparity Computation

Here the di erent disparities are categorized based on how the resulting cost is used in
determining the corresponding point. These are of two kinds, either locally based or
globally based. Most stereo-matching algorithms are locally based. Here prediction
of correspondence is solely calculated using the a nity of potentially matching corre-

sponding pair points. This is often referred to as the winner takes all approach, as
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the point with the highest a nity is simply chosen as the corresponding point and no
other global cues (like smoothness) are considered [24]. This is in contrast to global
optimization, that uses a global prior in conjunction with a locally applied matching
cost to determine the best correspondence. This is often formulated in the form of
energy minimization [39 41]. To reduce the complexity and to regularize the minimiza-
tion task, the smoothness constraint is often applied, whilst special consideration is
made for highly discontinuous regions. A prominent member of this class of disparity
optimization is belief propagation [42]. Here the stereo-matching problem is formulated
as three coupled Markov random elds namely: the smooth disparity eld; absence (or
presence) of depth discontinuity and indicator of occluded regions. The Loopy Belief
propagation inference algorithm [43] is used to approximate the posterior probability
for stereo matching. An attractive feature of these approaches is that they provide

holistic solutions to the pixel-based disparity. However, this is only e cient and able

Figure 2.2 Cost Aggregation adapted from [24]. (a) Cost aggregation is typically
evaluated across a square window de ned region, centered on the pixel of interest.
(b) Subsets of distinct neighboring windows are considered in the case of the shifting
window aggregation approach. (c) A weight contribution based on the proximity to
the target pixel. (d) lllustrates the di erent potential shapes of aggregation region.
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to produce real-time solutions with low-resolution images where the potential levels of

disparity are relatively small.

2.1.4 Classi cation based on Re nement

The re nement stage is a post-processing step to reduce the level of noise and artifacts
in resolved disparity, typically involving the resolution of inconsistencies and closing of
holes in the recovered disparity. These are achieved often by detecting pixels whose
computed disparity di er from that at neighboring pixels. Occluded pixels detected
by testing the consistency in both directions (left to right, and right to left) are often

replaced with the maximum disparity [44].

2.1.5 Comment

Based on the above literature, stereo matching is a signi cant sub- eld in computer
vision and a wide variety of approaches have been proposed over the years to improve it.
A major drawback in all of these approaches is that they often require experimenting
with the approach to establish which one works best for di erent scenarios, and this is
often done by hand. A more e cient approach will be to present a machine learning
based method where the optimal a nity criteria can be achieved based on the dataset
that su ciently describes the context of intent. For instance, if the context of interest
is hand depth estimation (as is the case in this thesis), a dataset of hand based images
should be used to establish the a nity criteria. This thesis argues for the use of machine

learning to learn depth estimation in the speci ¢ context of hand stereo imaging.

2.2 Hand Pose Estimation

As discussed in the Chapter 1, there are two main types of inputs used in hand pose
estimation namely: RGB monocular cameras [12, 45 48] and active RGBD sensors
[5, 9, 14, 49 52]. There are fewer methods in the literature that attempt to resolve for

pose from stereo capture. This section discusses literature on hand pose estimation,
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speci cally focusing on monocular RGB and RGBD based approaches. Stereo-based
hand pose estimation will be discussed in the following section.

Hand pose estimation has been widely studied and the eld has vastly developed
over the years. This is particularly evident from the body of work described in the
review papers of Pavlovic et al. and Supancic et al., [53] and [54] respectively, which
were published only 18 years apart (1997 and 2015, respectively). The works presented
by Pavlovic et al. in [53] overwhelmingly approach the problem from the perspective
of RGB monocular cameras and are largely focused on extracting robust features that
help discriminates an observed hand pose instance from a pool of potential poses.
There is also a trend of establishing analytical prior over possible hand pose/gesture
chase (e.g establishing optimal constraints on joint angle movements [55]). The more
recent works presented by Supancic et al. in [54] are more RGBD based and more
data-driven. Less emphasis is placed on the robustness of extracted to focus on more
robust inference model and a larger quantity of data.

The recent surge in hand pose estimation interest is largely owing to the development
of commercially available RGBD active depth sensors [56]. Estimating hand articulation
with vision-based methods typically involves three components, including: the model
used to mathematically represent the relationship between visual data and articulation
state; the learning algorithm; and the inference algorithm that makes a prediction
based on new visual data [57]. Most pose recovery frameworks can be di erentiated
based on the model type, which is either discriminative or generative. Generative
techniques model the probability of the observed image, x, given the state of the hand
articulation, w,

Pr(xjw; ) (2.13)

where represents the model parameters. In contrast, discriminative techniques
model the probability of the state of the hand articulation given the observed depth

data.
Pr(wjx; ) (2.14)
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again represents the model parameters. The learning and its complementary inference
algorithm are generally categorized into purely regression-based or classi cation-based.
Robust and accurate hand pose estimation requires discerning the 3D spatial joint
locations (a continuous quantity) of the di erent consisting joints. This inherently
makes it a regression problem, however, recent techniques have employed a combination
of classi cation and regression learning algorithms, as in [58 60]. In [58], Tang et al.
present a semi-supervised transductive model to enrich the expensive and limited real
depth data with synthetic data using a Semi-supervised Transductive Regression (STR)
variant of random forest. The approach involves viewpoint classi cation at top levels
of the STR trees, followed by classi cation (clustering) of pixels into hand joints at
the mid levels before nally regressing for high con dence voting of spatial hand joint
location at the lower levels. It combines these three tasks in a single quality function
(replacing the Information Gain) by embedding a switch into the quality function.
The switch determines which task (classi cation, clustering or regression) the quality
function is biased toward at di erent depth of the trees. In [59], Shotton et al. applied
conventional Random forest to classify pixel in human body pose scene into di erent
joints, before applying local mode- nding mean-shift algorithm to regress for the 3D
location of joints. Keskin et al. apply a similar approach to hand estimation from
depth in [60].

2.2.1 Generative Models

In a generative model-based technique, a hypothesis of visual data of the hand is
generated using computer graphics, often using an articulated rendered 3D hand model.
The main challenges with generative approaches are to establish the cost function
that best represents the similarity of the hypothesized visual data to the perceived
visual data and to implement e ective optimisation techniques. Hence, the aim of
the algorithm reduces to optimising for the articulation parameters that generate the

synthetic scene to match the observed data. A positive consequence of using a 3D
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hand model is that potential ambiguity within hand poses observed from 2D captures
can be resolved [45, 48].

Prior to the advent of RGBD sensors, monocular RGB images were the prominent
input to hand pose estimation. These techniques faced several challenges which largely
stems from the ambiguity in a 2D render of a 3D object that is inherent to monocular
cameras [12, 45, 48, 61, 62]. More speci cally, multiple 3D hand poses could yield the
same 2D image when projected on an image plane. This highlights how ill-posed the
problem is, as it does not have a unique solution. An obvious example of this is in
the context of self-occlusion which is particularly prominent in hand poses [63]. This
technique also su ers from a lack of generalization across hands of di erent types of
subjects (i.e. skin tone, hand shape etc.) [64]. A common trend in the approach to
addressing these problems is by modeling hand poses. The works presented by Stenger
et al. [61] and Wu et al. [62] are two of the earlier proposals to address modeling
human hand poses. They established the di erent degrees of freedom that each joint
of the ngers exhibits and incorporating inverse kinematics to the optimization phase.
Later work like [12, 48] present generative models of hand poses and the potential
background in 2D. [12] presented the optimization of articulation as well as texture
and scale of the hand to track the pose of the hand in the scene. In this work, de la
Gorce et al. establish a synthetic hand scene comprising of a hand pose, texture and
illuminant parameters and dynamically optimize these parameters by minimizing an
energy function. This energy function describes the a nity between the synthesized
scene and an RGB observed scene. A quasi-newton based optimizer is used to minimize
the objective function in an e cient manner. In their earlier work, [48], de la Gorce et
al. de ne the hand as an articulated model with pre-established kinematic constraints.
To evaluate a nity, the corresponding hand silhouette projection with the observed
hand is used. Similarly to [12], the hand pose is iteratively re ned to minimize the
a nity between projected silhouette of synthesized hand model hand and that in the

observed RGB scene. The work in [45] introduces the use of hand pose capture gloves
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to collect a robust dataset of hand poses which allows it to establish a hand pose prior
that is used in a Monte Carlo framework for local and global hand motion optimization.

The introduction of commercially available and reasonably cheap depth sensor
cameras has caused a paradigm shift in the type of proposed techniques to address
hand pose estimation. This is largely due to the fact that issues such as lighting
variance, lack of shape information, 3D to 2D ambiguity, background clutter etc. were
inherently improved with the depth input data [65]. This allowed researchers to focus
on addressing pose estimation in a robust manner. Hence, a large proportion of recent
literature in hand pose estimation has been proposed in the context of depth based
inputs [51, 52, 66, 67]. A very prominent framework used in generative models is
Particle Swarm Optimization (PSO) as in [14, 15, 63]. In these approaches, hand pose
estimation and tracking are demonstrated in hand-object and hand-hand interacting
scenarios by optimising for the parameters that yield the rendered depth that best
matches the observed depth. Consequently, the performance relies on the availability
of a powerful GPU to render potential pose solutions in real time. Oikonomidis et
al. [51] were able to improve on their previous work, [63], by reducing optimization
time of their framework by over a factor of four for each hand. It achieves this by
proposing a quasi-sampling variant of the PSO framework. The work in [66] proposes
the use of gradient as well as stochastic based optimization to achieve optimizations
that are initialized by ngertip detections. [52] reverts back to the use of hand motion
mechanics to establish constraints over hand pose inference.

Even with the introduction of depth sensors, a prominent issue with generative
models is the struggle to generalize across multiple hand sizes and shapes. The key
challenge of ensuring that the generated hand render (based on a given pose) still has
a strong a nity with the observed hand (of the same pose) still remains, whether in
a depth-based or RGB based input context. In the case of humans, the shape and
size of hands vary, hence the task is split into either developing a more robust cost
that is invariant to change in hand sizes or developing a more generalizable model

(or modeling framework). The majority of the work in the literature appears to take
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the later approach [12, 48, 52, 68, 69]. One trend in approaches to having a more
generalizable model is applying scale calibration to the subject’s hand before testing,
this allows for adjusting for the appropriate size 3D model [12, 45, 46, 48]. The work
of [14, 15, 51] take a similar approach albeit manually achieved. The challenge of
establishing generalizable hand models has prompted the research into a standardized
framework for calibrating a model for di erent subjects. The work presented in [70 72]
are a prominent few. In [71], Taylor et al. present an approach of approximating
"dense non-rigid shape and deformation” from depth acquired from depth sensors. The
task here is to recover a rigged mesh model that is speci c to a particular user. A
cost measure was proposed that quanti es the a nity between the deformable hand
template and 15 frames depth capture from the subject’s hand. The approach de nes
an initial 3D hand model mesh (a collection of 3D vertex points), denoted as Viemplate
and a subject-speci ¢ mesh as V.ore. The proposed technique iteratively resolves for a

that is most consistent with the surface of

mesh (a each frame, i), denoted Vi .oco »

the depth image of each captured frame instance whilst maintaining two constraints.
First, that a skinned instance of P;(Vcore) has a matching morphology to each Vi . ce
and secondly, that Vo has a matching morphology to Viempiae - Here, Pi() represents
skinning function applied to V.o at each frame, i. The consequence of this is that the
morphology of V.qre Will maintain a general structure of a conventional hand (based on
Viemplate ), Whilst still matching closely with the shape of the subject’s hand that is in
the depth captures. Khamis et al. improved on their prior work, [71], by eliminating
the need for the long sequence of hand captures in [70]. Here a parametric approach
was proposed that uses established bases from datasets of captured sequences from
di erent subjects with a varying range of hand shapes and sizes. In [72], Asad et al.
recovered hand joints from RGB and depth frontal capture of the subject’s hands using
a Naive Bayes model. The extracting of these hand joints were based on visual cues
(such as creases). A pre-designed hand model can then be warped such that the joint
location from this model registers with the detected joint position from the frontal

scan under rigid and non-rigid registration. The non-rigid registration is achieved by
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minimally skinning the pre-designed hand model whilst thin-plate-spline deformation
(proposed in [73]) is applied to achieve rigid registration.

Generative model-based techniques are very exible in that they can potentially
resolve any pose without the need of establishing a dataset that covers all possible
hand poses. However, the very high dimensionality of the search space poses a critical
challenge, and as a result, methods often exploit predicted pose and measured visual
data from a previous frame in initializing the optimization. Hence rapid and abrupt
pose changes can lead to errors. A more severe consequence of this is that errors can
accumulate (also known as drift) as demonstrated in [58]. However, it can be argued
that increased frame rates for capture will reduce this issue. Still, an increase in frame
rate will require an e cient approach (and powerful computing systems) to process

these frames in sync with the data capture.

2.2.2 Discriminative Models

The success of [59] with the Microsoft Kinect has made discriminative techniques a
prevalent model. The model learned constitutes the probability distribution of the
pose of the hand whose parameters are dependent on the observed depth image data.
A typical example of this is in the work of Keskin et al. and Fanello et al.([60] and
[74] respectively) where the framework described in the work of Shotton et al, [59],
is reapplied to hand pose estimation. These techniques aim to rst establish the
spatial position of each joint of the hand by classifying each pixel before computing
the general pose of the hand. Discriminative techniques tend to use independent
frame based prediction, i.e. prediction of hand articulation can solely be based on
observations in the current frame. This is an attractive feature as cumulative errors
from previous frames do not occur, inherently avoiding the drifting problem attributed
to generative approach. However, this, of course, means not exploiting prior knowledge
of the previous state of the hand articulation. A major drawback to these techniques is
that they often require a very large labeled data set to capture the range of variation

of hand poses and orientations relative to the camera. This is an expensive procedure
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and hence other means of addressing this have been recently explored, for instance,
semi-supervised transductive learning as in [58].

A large body of recent discriminative model-based techniques for hand pose recovery
is based on Random Forest [8, 20, 58, 60, 75]. This trend is largely inspired by the
similar use of Random Forest to estimate human body pose using RGBD sensors
[59, 65]. The work presented in [46] is one of the earlier examples of a discriminative
model in hand pose recovery. Here a colored hand glove is worn and observed with a
monocular RGB camera then pixels of observed 2D images are classi ed based on their
color to yield a tiny image (see Figure 2.3). A tiny image is a low-resolution image

whose pixels can only have a limited number of possible intensity values.

Figure 2.3 Colored glove approach proposed in [46]. Given an observed colored glove,
pixels are classi ed based on color to acquire the "tiny image"”. A search is made from
a large database of synthetic tiny images for the optimal pose.

A metric of a nity between di erent tiny images is established and used to search
from a database of synthetically generated tiny images for the closest match. This
was also one of the earlier use of synthetically generated images in real hand pose
detection. The work in [60] also uses synthetic data. Speci cally, it uses a dataset
of synthetic hand depth images to train a Random Forest for real depth based pose
recovery. [20] takes a similar approach to estimating hand pose and shape classi cation.
It addresses the problem of hand shape classi cation with Random Forest and then
proposes an expert multi-layered Random Forest framework to resolve for hand pose

for a determined shape of the hand. As well as the Random Forest learner, [20, 60] also



26 Literature Review

adopted the vector-based feature in [59]. This is a weak feature generally computed as

f (d;x)=d x d x (2.15)

;Y4 +
di (x) di(x)

where x represents the 2D location of the pixel of interest, u and v are randomly
oriented vectors representing a direction (as illustrated in Figure 2.4) and d, is the

depth image acquired by the RGBD sensor.

Figure 2.4 lllustration of the vector feature as a weak joint classi er. Feature »
will discriminate between middle nger and the little (pinky) nger. Feature ; will
discriminate between a nger and the palm.

The idea here is that the feature ; is described by two arbitrary o set vectors
(u; and v;). Computing the feature valuef at a given pixel location, x requires
evaluating the di erence in depth values at two locations (on the depth image of the
scene) determined by the o set of u; and v; away from x. This consequence of this is
illustrated in Figure 2.4 above, where the o set vectors are represented by the yellow
arrows whilst the red dot represents unique pixel locations. Observe the gure and
notice how the depth feature computed at the thumb will be large in comparison to
that taken at the palm/wrist region. This allows it to weakly discern ngers from
the palm or wrist. With similar logic, feature , is able to disambiguate the middle

nger and the little nger. This vector feature, which was originally adapted from the
work presented in [76], has become very prominent in the discriminative pose recovery
literature. This is because of its computational e ciency. The work in [7, 8] are a few

examples. More recent work like [75] have extended upon this to make it invariant to
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a 2D plane rotation. This manifests as

R*u R*v

f (di;x)=d x+m d x+m;

(2.16)

where R is a matrix that rotates its coe cient vector by an angle of about the 2D
point x on the image plane. Note s initially regressed in a pre-step.

In the work presented in [8], instead of building a Random Forest based on the
entropy of hand pixels as was the case in prior literature, a latent regression forest
was proposed, that rather attempts to partition an image into di erent joints in a
coarse-to- ne hierarchical manner. The vector-based features still remain the splitting
feature at decision trees’ nodes. [75] on the other hand, rst estimates hand orientation
before resolving for the pose. More recent approaches like [7, 77] have focused on
improving upon [20, 60]. In [7], a cascade pose regression framework (introduced in
[78]) is used to iteratively improve the proposed pose solution to an observed depth
image. This is presented in the form of an update function, that computes an improved
pose solution given the observed depth image and a currently proposed pose. Similar
to [8], [7] also exploits the hierarchical structure of the hand, noting that parent joints
(such as the palm) are more stable in comparison to child joints (like the ngertips)
hence it proposes to sequentially regress for the spatial position of hand joints. For
instance, the regression of the palm’s spatial position will inform the position of the
proximal joints and so on. [77] presents a more nuanced approach to pixel-based
classi cation in a four stage pipeline approach. From pixel classi cation using Random
Forest, hand part pixel region is segmented into super-pixels (to reduce the complexity
of the Markov Random Field (MRF) that follows). The MRF is applied to re-infer
pixel classi cation under the consideration of depth pixel smoothness etc. Finally,
hand joint estimates are determined based on the centroid of labeled pixels.

The reinvigoration of neural networks in recent literature (due to the recent ca-
pability of processing and storing larger datasets) has brought Convolutional Neural

Networks (CNN) to the forefront of hand pose estimation. Similar to the Random
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Forest pixel classi cation approach, CNN based hand pose recovery was inspired by
initial work done on human pose estimation, for instance, [79 81]. Speci cally, [80, 81]
present the advantage of using heat maps (that indicates the likelihood of a body joint
being at a spatial location) as the target space for CNNs rather than using the raw
spatial joint location. Here a mean squared error distance between forward-pass output
heat map and the groundtruth heat map is minimized. This has inspired their other
work [9], where a similar approach has been applied to the hand. The work of [82]
identi ed that the 2D heat map used by Thompsom et al. only utilizes 2D information
of joints and that the depth dimension was not fully exploited. More speci cally, the
argument presented was that prior approaches focused on solely solving 2D inference
and once the 2D position of a joint is identi ed in the 2D image plane, the input depth
image is used to get the depth component. This was identi ed as an issue in scenarios
where minor errors in the regressed 2D plane can result in allocating the wrong depth
to a joint, for instance at nger edges in a depth map. Instead, [82] proposes a 3D
point cloud projection of the hand into three orthogonal planes and simultaneously
feeds this into a three separate CNNs whose outputs are recombined and regressed for
the 3D spatial position of hand joints. Note, a heat map is still used as a target in this
implementation. The work in [83] experimented with a di erent CNN architecture for
direct regressive mapping from the depth image to a 1D vector that consisted of the

3D spatial location of all joints of the hand.

2.2.3 Hybrid Generative-Discriminative Models

The pros and cons of using either generative or discriminative approach to modeling
the hand pose recovery problem have prompted methods that attempt to leverage
the advantages of both approaches. The work in [5, 9, 49, 50, 84] are a few examples
of this. These approaches address the problem of cumulative error during tracking,
inherent to generative methods, by re-initializing generative tracking based framework

with a discriminatingly resolved pose solution.
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The previously discussed work in [75] also exhibits traits of a hybrid approach.
Here, a three-step framework was proposed that initially estimates the hand plane
orientation and location in 3D. Resolved orientation is used to reorientate the hand
to a frontal planar pose. The second step involves using vector-based features to
propose 3D hand pose candidates using the Hough forest model. The nal step veri es
the predicted pose by rendering a synthetic hand pose based on this proposal and
comparing with observed depth in a generative model-based approach. Consequently,
a discriminative model is used to initialize di erent iterations of the generative model.
The work of Toby et al. [50] takes a more corrective approach in that tracking failure
added by the generative facet of their approach is corrected for by a discriminative
model. This allows their method to achieve robust and exible pose recovery. A
two-layer re-initialization Random Forest is used, where the rst layer is trained to
predict the general rotation of the hand quantized into 128 rotation bins. In the second
layer, three predictors are trained per bin, each trained to regress for a ner global
rotation of the hand pose, o set of the hand, and a rough estimate of the hand pose.
To regress for the ner pose, a generative model based on Particle Swarm Optimization
(PSO) and Genetic Algorithms (GA) is used to regress for the pose that yields a similar
rendered image to the observed image. This regressor uses information from the coarse
pose prediction from the two-layered Random Forest as well as resolved pose from the
previous frame. The work in [84] presents a very similar approach, where a regressor
is trained to propose initial potential solutions to pose. These proposals are used to
initiate kinematic parameters of a hand model and evaluate them for a nity with
observed data.

Hybrid model-based methods are more recent and generally entail of the use
of a discriminative approach for initializing or correcting generative model based
regressors. In the latter part of this thesis, a di erent approach is presented that uses

a discriminative framework to evaluate for pose proposals from a generative model.
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2.3 Stereo based Hand Pose Estimation

This section focusses on the limited literature of stereo based approaches to hand pose
estimation. The recovery of hand depth provides unique challenges that di erentiate
the problem from depth recovery of arbitrary scenes. Unlike generic scene depth
estimation there is signi cantly less texture, which makes stereo-matching substantially
more challenging. There is also a high tendency of self-occlusion which manifests in
changes in depth that might not re ect in a change in texture. For example, the
occlusion of a nger on the palm will yield a change in depth but the color and the
texture of the region of occlusion might remain largely unchanged as the color of the
skin might be consistent (whether on the nger or on the palm region).

Unlike active depth camera based input, less work has been performed on stereo-
based passive camera input for hand pose/gesture recognition. Techniques that are
proposed to address stereo based hand pose estimation are largely grouped into two

main categories, namely: depth map and non-depth map based.

2.3.1 Depth based Stereo Hand Pose Recovery

Depth map based techniques assume that the mapping between the stereo input and
hand pose is strongly based on disparity information, which is a hidden variable. This
is largely in uenced by the recent success in robust hand tracking and pose estimation
from depth images. These techniques attempt to recover a dense or at least a semi-
dense, depth image before applying state-of-the-art depth based pose estimation. An
example of this is [64], where a robust technique that focuses on depth recovery of hand
pose scene is presented with the aim of later using it for hand pose estimation. The
method utilizes an Adaptive Gaussian Mixture Model GMM segmentation to localize
the hand skin region before recovering disparity based on stereo matches. Using the
estimated hand skin region, it re nes the disparity image recovered by constraining
the disparity from proposed stereo matches. Finally, hand segmentation is further

applied to the nal disparity and uses [7] to track hand poses based on the recovered
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disparity image. A key drawback of this approach is that it assumes that the stereo
algorithm will recover disparity/depth with the same consistency and accuracy. This
is not always the case particularly with a low-quality stereo camera like the one used

in this thesis. An erroneous disparity recovery will yield a wrong pose.

2.3.2 Non-Depth based Stereo Hand Pose Recovery

Non-depth based approaches, while still exploiting parallax information, do not attempt
to explicitly extract a depth map of the scene. This is typi ed by the approach presented
in [85]. Here a generative hand model approach is used to optimize the appropriate hand
pose that yields stereo color consistency between the two cameras. Like most model-
driven approaches in hand pose recovery, it does not require the tedious procedure of
establishing a robust dataset. However, the approach does require an explicit de nition
of the anatomical size and hand pose constraint for the skinned model. Also, because
of the method’s temporal dependency, it is sensitive to the initialization of the pose.
Another example is [86], where the pose estimation was preceded by rst extracting
the hand contour in both images in the stereo pair before matching points along the
contour in one image to those in the other using dynamic time warping. This allows
for the reconstruction of a 3-D contour of the hand, used to establish the hand contour
tracking for subsequent nger tracking. Again, this approach is sensitive to the starting
point selection to determine which pair of points on the contours serve as a seed to
subsequent correspondence matching. Nonetheless, this only results in an aggregative
tracking of the nger and pose, not providing a dense estimation of the spatial position

of the other joints of the hand for a complete hand gesture/pose estimation.

2.4 Summary

A comprehensive review of literature relating to the task of hand pose recovery from
stereo capture has been discussed. This included general stereo-matching literature;

general hand pose estimation and then stereo based hand pose estimation. Stereo
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algorithms were classi ed and discussed in the context of the four main stages of
stereo-matching, namely: Computing the matching cost; Cost Aggregation; Disparity
selection and Disparity re nement. Hand pose estimation techniques, on the other
hand, tend to di erentiate based on the model (i.e. generative, discriminative or
either). Generative model-based approach look to update 3D hand models in the
search for the optimum a nity with observation, whilst discriminative approaches rely
on large datasets and search for a member of the dataset that suits the observation.
Stereo-based approaches are mainly classi ed based on how reliant the approach is on
the depth hidden variable (i.e. whether it explicitly attempts to recover depth before
pose estimation or not). A comprehensive comparison of recent related literature is
presented in Table 2.1.

Nonetheless, a prominent point that cannot be ignored in this review is the gap in
quantity and quality of research done on the task of hand pose recovery in the context
of stereo-based input in comparison to the other two input types (monocular RGB
and active depth sensor). This is the task this thesis aims to address: to explore the
possibility of extracting robust pose estimation from a stereo input. The next three

chapters present di erent stages to approaches this problem.






Chapter 3

Background

This chapter will introduce some preliminary concepts that provide the foundation to
the concepts proposed in the later chapters of this thesis. Central to this dissertation
is the concept of camera models, speci cally multi-view camera models. The basis of
camera models and multi-view geometry that pertains to this thesis is rst introduced.
These include the pinhole camera model, epipolar geometry, the concept of fundamental
matrices and multi-camera registering. The second part of this chapter largely examines
the machine learning aspect of the thesis. Basic concepts of inference and learning are
introduced including regression vs classi cation, stochastic vs discriminative approaches,
probability modeling, marginalization, and factorization, before exploring some of the
machine learning frameworks that feature in the later chapters of the thesis. These
includes Random Forests, Convolutional Neural Networks (CNN), Conditional Random
Fields (CRF) and Markov Chain Monte Carlo (MCMC) samplers. The chapter

concludes with a summary of the concepts that were introduced.

3.1 Camera Model and Multi-View Geometry

This section will introduce the pinhole camera model and multi-view geometry theory

that forms the basis of the work presented in the later chapters of this thesis.
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3.1.1 Pinhole Camera Model

The pinhole camera model is a mathematical model that describes the projection of a
point in 3D coordinate space onto a 2D image plane of an ideal pinhole camera with

an in nitely small aperture.

Figure 3.1 Pinhole Camera Model. X -Y -Z represents the 3D camera coordinate system
whilst u-v represents the 2D image plane coordinate system. Given the center of the
camera coordinate system (optical center) o, the principle point p, and the focal length
f, a 3D point w is projected onto the image plane at the 2D point x.

Consider Figure 3.1, with a 3D orthogonal coordinate system with a center point,
0, that coincides with the camera aperture also referred to as the optical center. The
the line that coincides with the Z-axis referred to as the principal axis, intersects with
the image plane at the principal point p. A real world 3D point, w, is then projected
onto the 2D point, X = [uy, V,]", on the image plane. A key factor that a ects the
resulting projected point, X, is the separation between the principle point and the
optical center of the camera system, referred to as the focal length, f. Now, to explore
how the relationship between w and x is a ected by the parameters of the camera

system, consider the X-Z plane view of the model as in Figure 3.2.
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Figure 3.2 X-Z plane view of the pinhole camera model illustrated in Figure 3.1. In
both gures the green line indicates the projection line of 3D point w onto the image
plane. Observe how the ratio x,, : z,, is equal to uy : f.

From the gure, it can be deduced that,

Uy = —: 3.1)

Vy = M: 3.2)

To represent uy and vy in image pixel coordinates, the positioning of the photoreceptors
on the image plane that capture light from the scene of interest is considered. To this
end, is introduced. This is in e ect the ratio between inter-pixel distance and a unit

distance in the 3D world in question. Hence Eq. 3.1 and Eqg. 3.2 can be represented as

U Xw uf
X

sz (3.3)
vz M

Zu

where  and  are separate scaling factors in each dimension of the image plane.
Lastly to account for the convention that the top-left corner of the image is considered

the center of the image pixel plane system, u, and v, are o set with , and
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respectively. Finally the transformation can be fully represented as,

X f
Uy = R u

y Zw . (3.4)
Vg = WZWV +

u vs us v, and f are referred to as the intrinsic parameters of a camera. In an
ideal scenario like the one proposed in Figure 3.1, , and  can be interpreted as half
of the width and height, respectively, of the image plane, assuming that the principal
point is perfectly centered on the image plane. However, this is not the case in real
systems due to imperfectly produced cameras.

Nonetheless, to mathematically model the projection of a camera, the challenge is
reduced to solving for the camera’s intrinsic parameters from a pair of known 3D points,
{w;}_, and their corresponding locations of projection on the image plane, {x}; .

This yields a set of non-linearly related equations without a closed-form solution.

Homogeneous Coordinates

To address the non-linear problem above homogeneous coordinates are introduced.
The non-linear 2D to 3D system of relationship can be represented in homogenous
coordinate so that it becomes linear. This will allow for a closed-form solution to be
formulated. To convert between the Cartesian to homogeneous coordinates simply
requires of appending a 1 to the end of the coordinate vector as in from X ¢ = [uy, V] (in
Cartesian coordinates) to Xy = [uy, Vy, 1]7 (in homogeneous coordinates). Conversion
from homogeneous to Cartesian coordinates (a process called dehomogenization) is
achieved by dividing each element of the homogeneous coordinate vector with its last

element, as in Xy = [Uy, Vx, Wx]" 10 X = [Ux/Wy, Vi /Wy]".
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The consequence of this is that the mathematical relationship presented in Eq. 3.4

can be represented as,

2 3
2 3 Xy 2
Uf 0 u XW Uf + UZW
y
g 0 Vf \ 0 " = g yW Vf + VZWE (3'5)
Zy
0 0 10 Zy
1 H

in the homogeneous coordinate system. The right hand size of Eq. 3.5 can be converted
to Cartesian coordinate to resolve for u, and vy as in
2 3 2 3 2 3
Xw of + uZw Xw of=Zw + wZw=2y Uy
g Yo vf + vzvé = g Yo vf=zZw + \,zW=zé = gvé ; (3.6)
Zw y Zw=Zy . 1

Note that whilst the mapping from the 4D space to 3D is a linear one, the transformation
from the homogeneous to the Cartesian coordinate system (dividing by the last element)
that comes after is a non-linear one. Hence solutions derived from this system are not
guaranteed to be a solution to Eq. 3.4, however, they can be a strong initializer for
optimization techniques like Levenberg-Marquardt [94].

Just like points in space, lines posses homogeneous representations as well. A 2D
line, | can be represented by the equation, ax + by+ ¢ =0, where di erent values of a,
b and c will yield di erent lines. The coe cients a, band c will su ce to represent a
line in the homogeneous domain as in, Iy =[a;b;d". Observe that for any 2D point,
Xc =[; ] toexiston the line, I, then a( )+ b( )+ c¢=0. Similarly, in homogeneous
representation,

XHT|H =0; (37)

if and only if the point, x lies on the line I.
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3.1.2 Stereo Camera Model and Epipolar Geometry

Stereovision is based on the physical concept of stereopsis. This speci es that given
the view of a scene from two perspectives, the shift undergone by corresponding pixels
in both images varies such that it is inversely proportional to the distance from the
camera. Hence the problem of depth recovery given a pair of imaging devices is reduced
to establishing a correspondence between both sets of pixels. The resulting image,
whereby each pixel values indicate the separation between the pixel’s location and the
location of its correspondence, is referred to as disparity. To improve the speed and
integrity of the correspondence search, the epipolar geometry of the stereo rig can be
exploited. Consider Figure 1.1, where a stereo rig with two camera optical centers
at o_ (left camera) and ogr (right camera), capture a 3D point w in an arbitrary
world coordinate system. The plane on which o_, ogr and w exist is referred to the
epipolar plane. If w is projected onto the left image plane at x, then geometrically,
the projection of w on to the right image plane, xr is constrained to lie on the line eg.
This line is referred to as the epipolar line.

As a result, the search for a corresponding point is constrained from a 2D search to a

1D search along the corresponding epipolar line. To further simplify the correspondence

Figure 3.3 Illustrating epipolar geometry and the epipolar Line. The red line indicates
the epipolar line in the right image, that corresponds to the image point x_ in the left.
Observe how the points o, og and w exists on a plane, this plane is referred to as
the epipolar plane and the intersection of the epipolar plane with the image planes
yields the epipolar lines
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search algorithm two approaches could be taken. First, the captured stereo image could
be warped such the set of corresponding matches exist on a single horizontal line. This
is achieved mathematically through stereo recti cation. In fact, most stereo-matching
algorithms are generally preceded by a recti cation step and most proposed stereo-
matching techniques are presented assuming recti ed images. An alternative approach
will be to establish for a given point (in the rst stereo image), the corresponding
epipolar line (on the other stereo image) via the fundamental matrix and the essential

matrix. Both of these scenarios require multi-view camera calibration .

Fundamental and Essential Matrix

The epipolar geometry of a stereo rig is embodied in the fundamental matrix, F or
the essential matrix, E. The essential matrix contains information on the translation
and rotation between the image plane of the cameras in the stereo rig - referred to
as extrinsic parameters. The fundamental matrix, like the essential matrix, contains
the extrinsic information, however, it also contains information about the intrinsic
parameters of both cameras. Hence, whilst the essential matrix encapsulates the
mapping of a point from the physical camera space of one of the stereo camera to the
other, the fundamental matrix encapsulates the mapping from the image plane of one
of the stereo camera to the other.

Revisiting the stereo rig illustrated in Figure 3.3, recall that the coordinate of w is
in the arbitrary world coordinate system; and that x, and xr are the projection of w
on the left and right image planes. Let p, and pg be the 3D point coordinate of w
in the left and right camera coordinate systems respectively. Then p, = R(p, t),
where R and t are is the rotation and translation from the right camera image plane
to the left. Acknowledging that the vectors p, and t (from the origin o, ) both lie
on the epipolar plane then the epipolar plane can be mathematically represented as

(p, t)T(t p.)=0. The relationship between p. and pr can be substituted to get

(RTpr)'(t p.)=0: (3.8)
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The cross product can be represented as

2
0 t; ty
t p.=3Sp.) S=§tz 0 té: (3.9)
Consequently Eq. 3.8 can be represented as

prEp, =0:
RETE (3.10)
E = RS:

E is the essential matrix, as described above, encoding the extrinsic (rotation, transla-
tion) parameters. In contrast, the fundamental matrix, includes the intrinsic properties
of both cameras. For the rest of this discussion, equations are presented in homogeneous
coordinates. Let M | and M r represent the intrinsic matrix of the left and right
cameras respectively. Since x| and xg are 2D points on the left and right image planes
where w is observed, then p, = M | *x, and pg = M z*xg. Hence from Eq. 3.10 it
can be inferred that

xE(M g DTEM | X, =0: (3.11)

Lastly, this can be rewritten as

XgFx. =0 (3.12)

where

F=(Mg Y)'EM [ & (3.13)

Eq. 3.12 has a signi cant consequence in that two corresponding points on each stereo
image can be mathematically related, given the knowledge of the fundamental matrix
of the stereo rig. It should be noted that the rank de cient nature of the essential

and the fundamental matrix implies that given a point on one of the image planes,
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and a knowledge of the fundamental matrix, there are several potential points (on the
corresponding stereo image plane) that will conform to Eq. 3.12. Nonetheless, given
Eq. 3.7, it can be deduced that the 2D line described in homogeneous representation
as Fx . must coincide with the point, xg. By de nition, this is the epipolar line.
Consequently, given a point on the left image plane, x, its corresponding point, X g,
must exist on the epipolar line, g which can be computed from the fundamental matrix

as in

lR = Fx: (314)

Eq.3.14 is used in several instances of this dissertation to constrain the search for

potential stereo correspondences to a 1D line.

3.1.3 Registering a Stereo Camera with an RGBD Sensor

A reoccurring scenario in this thesis is application of a machine learning technique to
infer disparity information from a stereo capture with the aim of estimating a robust
depth measure of the scene. This often requires ground-truth depth. In this thesis,
the Microsoft Kinect depth sensor is used. To this end, it is required that there is
a strong registration between one of the stereo images and the RGBD sensor image
plane. To achieve this the fact that the color and the depth channel of these RGBD
sensors are inherently very well registered is exploited. Hence the task of registering
depth (captured from the RGBD sensor), with one of the stereo cameras is reduced
to registering the color channel of the RGBD sensor with the stereo camera pair.
Henceforth, the RGB channel of the RGBD sensor will be referred to as RGBD-Color.
The registration of RGBD to stereo cameras is achieved by a stereo calibration of one
of the stereo cameras to the RGBD colour camera using a checkerboard pattern. The

following subsection will introduce the basics of stereo camera calibration.
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Stereo Calibration

In a stereo setup, it is useful to know the extrinsic and the intrinsic parameters. The
intrinsic parameter (also referred to as the projection matrix) de nes the transformation
from 3D camera space to the 2D image planes of the cameras, whilst the extrinsic
parameter de nes the relative transformation and rotation between both stereo cameras
(as discussed previously). Whilst camera calibration is the process of establishing these
parameters for a single camera, stereo calibration is a processing of establishing the
geometric relation (extrinsic parameters) between the two cameras in a stereo rig.
An important pre-step in camera calibration is establishing a dataset consisting of 3D
points and corresponding 2D location on the imaging planeas inf (X 1;w1); 5 (Xk ; Wk )Q.
This can be achieved by capturing images of a 3D object with prominent visual cues
(whose 3D dimensions are known) with the camera(s) of interest and identifying the
corresponding 2D location of these visual cues on the resulting images. This 3D object
is referred to as a calibration object. A typical calibration object is a checkerboard
of known dimension as shown Figure 3.5. Before delving into a discussion on stereo

calibration, an important concept to review is homography.

Homography Planar homography is projective transform from one plane to another.
This is signi cant in camera projection particularly when one considers the projection
of a planar 3D object onto the image plane of a camera (see Figure 3.4). This
transformation can be represented mathematically:

X = Hw (3.15)

where

w=[xy;z:1]; (3.16)
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Figure 3.4 Projective Transform of a planar object, an example of a homography. The
2D point w on the book plane is projected to the point x on the camera image plane.
This transformation can be represented with a homography.

the 3D real world coordinate, and

x =[u;v;1]"; (3.17)

the image plane location in homogeneous coordinate system. The elements of H can
be established from a set f(x1;W1);:::; (Xk ; Wk )g using an iterative method such as
Random Sample Consensus (RANSAC) [95].

Recall from that alternative a conventional camera model can be represented as

X = M [Rjt]w; (3.18)

where M , R and t are the projection matrix; and the rotation matrix and translational
vector from real-world coordinate to the camera coordinate system. Assuming the
real world is de ned by the planar object, such that a corner of this object is the
origin of the real world coordinate system. Note that all points transformed from the

planar object will possess a zero third component, due to the at nature of a plane.



48 Background

Figure 3.5 Sample captures of a calibration object (checkerboard pattern).

Consequently, Eq. 3.18 above be represented as

2 3
u
év%= M [rq;ro;r3jt]

1

2 3
X

2 3
X
=M [rlirzjt]éyg (3.19)
1

R o <

where r 4, 1, and r 3, are column vectors of R. Note that a consequence of this is that

the homography, H isa3 3 matrix and

H = M [rqrojt]: (3.20)

Camera Calibration The camera calibration procedure consists of the capturing
of the calibration object, positioned at di erent orientations relative to the camera
of interest (see Figure 3.5). Each orientation yields a homography, H ' = [hi;h};h}],
which can be resolved from the establish correspondence based on the visual cues on the

calibration object. i 2 1;:::; K, where there are K orientation captures. In the case of a
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checkerboard an corner edge detection algorithm is applied to establish the landmarks
(square corners) on the checkerboard as illustrated in Figure 3.6. Consequently, from

Eqg. 3.20, it can be inferred that

M hi

hi=Mr! or ri
hi=Mr, or rb=M *h} (3.21)
hi=Mt' or t'=M hi;

where r'; and r, are the rst and second column vectors of the rotation matrix of the
i™ orientation; and t' is it’s translation vector. Note there three component in Eq.
3.21 above, including: homography (hi;h,, and h3), the intrinsic matrix, M , and
the extrinsic parameters (r 1;r,, and t). The homography is known (resolved from
using RANSAC above) and the aim to to determine the intrinsic and extrinsic. First
to solve the extrinsic parameters, the intrinsic matrix is eliminated. To do this, the

constraints that r ; and r , should be orthonormal and their magnitude should be equal

Figure 3.6 Illustration of checkerboard corner detection used to establish corresponding
pairs of 2D image point and 3D spatial point.



50

Background

are exploited, i.e. rr, =0 and jjrjj = jjr jj. Consequently, from the rst constraint,

M *h)™ *h,=0 (3.22)
(h)™(M H'™ *h,=0:

and from the second constraint,

(™M HT™ *hy=(hyTM HT™M *hy: (3.23)

This isolates the rst unknown (intrinsic), eliminating the extrinsic. From Section

3.1.1, recall that

. (3.24)

2 3

fv. 0

M =§0 fu %
0O 0 1

where f,, fy,, v and  are the v-dimension focal length, u-dimension focal length, v-

dimension pixel o set, and u-dimension pixel o set, respectively. LetB = (M

1)TM 1’
then
1 v
Bix Biz Bis ]Tz 0 f2
A\ A\
_ — 1 .
B =8B, By Bai~f O f2 fuzu ’ (3.25)
Bis By,; B v u oy Y41
13 23 33 f2 f2 £ f2

where B is a symmetric matrix. The two assumptions discussed above can be expressed
as

(h)TBh}, =0: (3.26)
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and
(h)™Bh ' =(h})"Bhi: (3.27)

Similar to the estimation of the initial homographies, the elements of the matrix B,
can be estimated from the K homographies (see [96] for more details). Given B, the

elements of the intrinsic matrix can be resolved as in

T
f= —
Y B11
s
T B11
! BB B% (3.28)
v = B13fv2

At this stage, the intrinsic matrix, B , has been established along side the homography.

The extrinsic parameters can be resolved using Eq.3.21 as in,

(3.29)

Note the computed rotation matrix, R' = [ri;rb;ri], and translation vector, t' are
still describing and determined by the orientation of the calibration object. In a stereo
set up it is useful to establish the extrinsic information in the context of both cameras’

location/orientation relative to the other, rather than relative to the calibration object.

Stereo Camera Calibration Stereo calibration builds on the concept of single
camera calibration. Determining the relative rotation and translation between the two

cameras (in a stereo rig) is simpli ed given the knowledge of the geometric relationship
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between each of the cameras and a common calibration object. Consequently, the
capturing of the calibration object using the two cameras must be such that both
cameras have a large common eld of view and the interested visual cues/landmarks
(on the calibration object) must be in this common eld of view as shown below.
More speci cally, to calibrate a stereo rig with a left camera, O, and right camera,
Og, a dataset f (x5;xR;wq); 5 (xk ;xR wk)g is required, where xk, and xR are the
2D image locations where the 3D point, wy is observed by O_ and Og respectively.
Subsequently, using the approach discussed above, the set f(x};wq); 5 (xk ;wk)g
is used to establish the intrinsic matrix of the left camera, M | as well the extrinsic
parameters, R and t , that describes the rotation and translation from the camera
object coordinate to the left camera coordinate. The set f (x%;wy); 5 (xR ;wk )g can
be used to determine M g, Rr, and tr in the case of the right camera. Then the

relative rotation, R and translation, t between both cameras can be derived as in

R = Rr(RL)T
(3.30)
t=1tr RtL:

Description of Registration

Image and depth acquisition were carried out on both the stereo camera and the
RGBD sensor, almost adjacently positioned as shown in Figure 3.7. Before capture, the
reference stereo camera, Oy, and the RGB-Color camera, Ok, were stereoscopically
calibrated to establish their respective intrinsic and extrinsic parameters . The color
channel (as opposed to the depth channel of the RGBD sensor) is used for calibration
because one can semi-automatically acquire correspondence matches between it and
the reference stereo image pair. Images captured from both cameras were undistorted

based on the distortion parameters recovered from calibration. Examining Figure 3.7,



3.1 Camera Model and Multi-View Geometry 53

Figure 3.7 Stereo camera and RGBD setup for simultaneous capture of hand pose.
The optical center of one of the stereo camera, oy, and that of the RGBD sensor,
Ok are positioned adjacently, with both observing points on the hand, w. Note how
this is set-up yields a separate epipolar geometry and hence knowledge of extrinsic
information can be exploited to register both devices.

assume that the observed 3D point w, was projected onto the reference ! stereo camera
and the RGBD-Color image plane at the points, Xy = [um, Vm]™ and Xk = [uk, vk]'.
First, the points in the RGBD-Color plane are back-projected into 3D by applying
its previously calibrated projection matrix and the accompanying depth information

(courtesy of its depth channel) as in,

2
Uk
Pk = Mk lgvézw; (3.31)

where M g is the intrinsic matrix of the RGB-Color camera and py is the coordinate
of the 3D point, w relative to Ox. The 3D projection, py is then transformed into the

reference stereo camera coordinate using the relative rotation, Ry and translation,

1The reference stereo image is one of the two images in the pair. For each pixel in the reference
image, we seek a correspondence in the other image. Hence a resulting disparity image register
perfectly with the reference stereo image.
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Figure 3.8 Transferring the depth data from an RGBD camera to establish groundtruth
depth for the stereo data. Hand poses are captured simultaneously using adjacently
positioned calibrated stereo camera and RGBD camera. First, all 2D positions on the
RGBD camera are back-projected to 3D. By applying the rotation and translation
matrix between the RGBD camera and the reference stereo camera we transform points
in the RGBD camera to the camera coordinates of the reference stereo camera. Lastly,
we forward project these points onto the reference stereo camera image plane by using
its projection matrix. In e ect, depth values of the RGBD image are transferred to the
reference stereo image, forming groundtruth for training the unary term.

tkm information between Ok and Oy,

2 3 2 32 3

gprz - QR;M tKlM Z5Prg. (332)
1
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Finally, py, is forward-projected into the reference stereo camera plane as in,

3

2
Um

gwé =MwmPu; (3.33)
1

where M, is the intrinsic matrix of the reference stereo camera and is the third
component of the resulting dot product, M y py,. The consequence of Eq. 3.31, Eq.
3.32 and Eq. 3.33 is that a mapping from the RGB-Color (with accompanying depth
information) to the reference stereo camera is established. Thus, the depth information
from the depth channel of the RGBD sensor is well registered with the reference stereo
image and hence can be later used as groundtruth for learning and evaluating depth

recovery solely from stereo captures (see Figure 3.8).

3.2 Machine Learning

The goal of this thesis is to estimate hand pose (and depth, as an intermediate
representation) from stereoscopic images of hands. In the previous section, the key
concepts for lower level data capture were introduced. This section focuses on higher

level inference that will be key to depth and pose estimation later in this thesis.

3.2.1 Probabilistic Modeling

Probability is the mathematical language of describing the propensity and uncertainty
of an event. A random variable is a variable with an uncertain quantity. This
could either be continuous, where it could be of any real number value, or discrete,
where there is a pre-de ned number of values it could take. Often it is important to
examine all the possible values that a random variable could take and explore the
relative probability of each of these states, for instance, all the possible poses that
a hand could take. This information is presented in a probability distribution, or a

probability density function and a set of all the possible values of the random variable
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is referred to as the probability space. In some scenarios, it is useful to examine the
probability of multiple random variables in tandem. In this case, a joint probability
can be established where each point in the joint probability space is the likelihood
of each variable simultaneously having speci c values. Lastly, the probability of one
random variable could be of interest given the knowledge of another, in this case, a
conditional probability is de ned. Consider a random variable, x, with a probability,
Pr(x), and a second random variable, y with a probability, Pr(y), the joint probability
of both variables x and y is represented as Pr(x;y) whilst the conditional probability

of the variable x given knowledge of y is represented as Pr(xjy). For continuous
R R
y X

PP P :
i jPr(xj;yi)=1and Pr(xjy)dx=1.

R
variables, Pr(x;y)dxdy = 1 and , Pr(xjy)dx = 1 whilst in the discrete case

Marginalization and Factorization

Given the joint distribution, Pr(x;y), it is often useful to determine the probability of

the random variable, Pr(y), as in

z
Pr(y)= Pr(x;y)dx: (3.34)

This is referred to has marginalization of the joint probability, Pr(x;y). A more
common situation in this thesis, is the calculation of the joint distribution between an
observed quantity, x (e.g. a pixel intensity value) and a quantity to be determined, y (e.g.
the hand pose). This requires establishing the conditional probability, Pr(yjx = X,),
where X, is the observed value of x. This is referred to as the factorization of the joint

probability, Pr(x;y).

Expectation

Expectation, or the expected value of a variable is the frequency based weighted mean

of all the possible values the variable could have. More precisely, the expectation of

R
a variable, X, is de ned as E(x) = i xPr(x)dx, in a continuous case and E(x) =
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P : . S _
L xiPr(x = x;) in a discrete case. Expectation is signi cant because probabilities

can be represented as expectations. For instance Pr(x 2 X) = E[l(x 2 X)], where I[]

is an indicator function that returns 1 if the argument is true and returns 0 otherwise.

3.2.2 Learning and Inference

Learning in the context of machines is a concept largely transferred from humans. Like
in humans, learning involves establishing higher level connections between di erent
concepts and entities, with the aim of applying this in other previously unseen scenarios.
This requires an extrapolation of knowledge from example scenarios (of which one has
high certainty) to less certain scenarios/concepts. For instance, a baby extrapolating
for a general concept of cars from a small labelled set of images of cars. Hence, the
degree of certainty (or uncertainty) and subsequently probability, plays a signi cant
role in learning.

More formally, consider the inference task of establishing the mapping from an
input space to a target space, f : X 7! Y, using a dataset of K examples, U =
f(X1;y1); Xk ;3 ¥k )9, where x 2 X andy 2 Y. The set, U, is referred to as a
groundtruth because there is an absolute degree of con dence that the pairings in the
set are indeed correct. Now the established f can be used to predict for the target, y ,
of a previously unseen data point, x°2 X, with some degree of certainty.

Classi cation: In a scenario whereby, the variable in the target space is discrete,
the learning problem is referred to as classi cation. This is often not the case in this
thesis.

Regression: If the target variable can take a continuous range of values then the
learning is referred to as regression. This is largely the case in this thesis. For instance
the inference of the continuous 3D position of hand joints given an input depth image.

As previously introduced, probability/uncertainty are very signi cant in a learning
framework. Hence it is useful to t probability models to a dataset as a learning
process. Speci cally, the parameters of the probability model, , are learned such

that the probability model can be sampled to recreate the training dataset. Two
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main approaches to this are presented in the following discussion, namely maximum

likelihood, ML, and maximum a posteriori, MAP [57].

Maximum Likelihood

Given a training dataset, the task is to establish the model parameters, ", such that
the joint probability of all data points in the dataset based on the model is maximized.
Continuing from the previously described learning task above, the likelihood function
can be represented as Pr(yxjxx; ). The maximum likelihood estimation of model

parameters can be formulated as

¥
=argmax[  Pr(yx; )l (3:35)
k=1

where  denotes the parameters of a generic probability model.

Maximum a Posteriori

In contrast to maximum likelihood, maximum a posteriori models the probability of the
model parameters given the dataset, Pr( jf yi; Xkg), by introducing a prior distribution
over the model parameter, Pr( ). Hence the Maximum a Posterior estimation of the
model parameter can be derived as follow:
" | 4
= arg max Pr( jfyiixk9) ;
(3.36)

OF

! #
K Pr(fyxgj )Pr( ) |
Pr(yx; X«) ’

= arg max

where Bayes’ rule is applied between the rst and the second line. For the task of
maximization, it su ces to ignore the denominator as in

#

¥
= arg max Pr(fyi;x«gj )Pr( ) : (3.37)
k=1
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3.2.3 Stochastic vs Deterministic Models

In this thesis, the rst step in the machine learning approach taken to address di erent
stereo hand pose based problems is to determine a mathematical model in which the
relationship between the real-world quantities are represented. These models are often
classi ed as either deterministic, stochastic, or a hybrid of both. A model is considered
to be deterministic if the state of all its properties can be conclusively determined.
A model is considered to be stochastic if it contains elements of randomness. The
consequence of this is that under the same set of inputs, a stochastic model will yield
di erent predictions at di erent instances of being run. The opposite is the case when
deterministic models make predictions. A bene t of a stochastic model is that an
analytical solution is not required. Hence, it is useful to represent systems that are too

cumbersome to solve for analytically in a stochastic model.

3.2.4 Random Forest

Random forest is a member of a wide range of voting based ensemble models. Speci cally,
it is an ensemble of randomly trained decision trees. Each decision tree establishes a
non-linear mapping between high dimensional input and target spaces. Before delving
deeper into the intricacies of random forest, it is useful to explore a signi cant building

block - decision trees.

Decision Trees and Forest

Decision trees are an explicit and more visual modeling of decision-making process
during learning. A decision tree is a collection of condition statements (often referred
to as nodes)that are relatively related in a cascading manner - forming a tree-like
architecture. Each node will often posses multiple children nodes and so on and the
task of "making a decision" over an unknown entity with consists of evaluating the
entity based on these condition statements starting from the uppermost node. The

result of this evaluation will determine which of the children nodes is evaluated for next.
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Figure 3.9 An hypothetical decision tree for detecting images of beaches. A concatena-
tion of numerous simple features is used arrive at a strong classi er. The green boxes
indicate terminating leaf nodes whilst the blue lines indicates the branches of each
node on the tree.

Hence a decision tree can be considered as a combination of several weak descriptors
of the entities to be evaluated. Whilst these features are weak (in that they might
not on their own help describe or discriminate the type of entity), a combination of
them can be applied in a decision tree set-up to achieve strong evaluation. Consider
the task of making a decision on whether or not a presented image is that of a beach,
Figure 3.9 illustrates a hypothetical decision tree to determine this. The rst node
tests the color of the base of the image for a light brownish color, depending on the
result of this condition, one of its children not is evaluated subsequently on this the
end of the tree is reached. The terminating node of the tree is where the nal decision
on the entity is made and it is often referred to as the leaf node (in Figure 3.9 these
are indicated with the green boxes).

To improve the robustness of the model the prediction (decision) from a collection
of unique decision trees can be combined. This model is referred to as a decision forest.
Here each tree in the forest is exposed to a subspace of the dataset domain. In the case
of a random forest, its decision trees are exposed to randomly selected non-intersecting

subsets of the training dataset, the decision trees are trained independently. Then at
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test time, the prediction is based on the aggregation of the posterior distribution of each

tree. The e ect of this is a highly generalized model with robustness to over- tting.

Regressive Random Forest

As with most machine learning frameworks, random forest handles regression as well
as classi cation based problems. In this thesis, Random Forest is used predominantly
for regression. This is typi ed by the work presented in Chapter 4. The task is to
improve the disparity map recovered from stereo capture by establishing a mapping
from this disparity to robust groundtruth depth values.

Consider a learning task similar to that introduced in Section 3.2.2, except that the
input space is a multidimensional space such that there is a vector based input variable,
X, and consequently a dataset, U = f(X1;V1);:::(Xk;Yk )9. The task is to model
Xk 7! yx using a Random Forest consisting of T trees. First, a subset of the dataset,
U U is established by random sampling and assigned to each tree, t such that
f U,g, are generated with replacement hence they might have overlapping members.
A decision tree consists of a hierarchy of split nodes and each tree is grown in training
by recursively splitting training data (fed into each node) into two disjointed subsets
that are passed onto two subsequent sub-nodes. The splitting criteria is based on
the value of a randomly selected index of the input vector, x, and a threshold value.
Optimal splitting parameters, = fw; g are stored for each node of the tree, where
w is the index of the member of x to be evaluated and is the threshold value used
to split data. More formally, for an inbound set of data, S; in the i™ node, this is
evaluated on a splitting function, F(S;; i) as in

8
2 Sir = fxg:x[w]>

F(S: )=, ; (3.38)
TS = fxgix[w]<=

where S and S;r indicate the disjointed subsets of S; that is passed on the left and

right subsequent sub-node respectively. The optimal splitting criteria is determined
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based on the information gain, Qf F(S;; ;)g, de ned as

1Sip]
iSij

QfF(Si; i)g= HfSig HfSing; (3.39)

b2f LR g
where Hfg represents the entropy of a set. In a regression forest a di erential entropy
is used as in

1x ? . .
HfSg= — [ Pr(yjx)logfPr(yjx)gdy]: (3.40)
1S] x2s ¥
To simplify derivation, a Gaussian distribution could be assumed, in which case the

the posterior probability, Pr(yjx) can be represented as

Priyix) N (y; s); (3.41)

where y and ¢ are the mean and the variance of the target elements of the set S [97].

Hence Eq. 4.3 can be rewritten as

X
HfSg= i logf <0: (3.42)
JSJ x2S

The recursive splitting is continued until a level of entropy is reached or other criteria
are met. At this stage, the terminating nodes are referred to as leaf nodes. A statistical
analysis is done on the target elements of data points that reach each leaf node. A
typical analysis used in this thesis is the probability distribution of leaf node target data
points. At test time, where the task is to determine the target value of a previously
unseen input vector, x° the data point is propagated through all trees in the forest
evaluated by the splitting function at each node until a leaf node is reached. Each tree,
t, gives a posterior probability, Pr(yjx9, which can be aggregated across all trees as
in

Pr(yjx9 = _iXT Pr(yjx9: (3.43)

t=1
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The target prediction of x °can be determined by Maximum Likelihood Estimate (MLE)
as in

y =argmaxPr(yjx9: (3.44)
y

3.2.5 Convolutional Neural Network

Unlike Random Forests, convolutional neural networks require no hand-crafted features,
that are dependent on problem-speci ¢ expertise to design a feature extractor that
transforms raw data into representative feature vectors. These features are used in
learning an algorithm to infer or classify patterns within a given problem domain. The
performance of these features is limited to human knowledge about the problem. CNNs
are able to learn features that are oblivious to human intuition. This is a desirable
trait of a CNN, however, this creates a non-linear space with high learning complexity.
This makes it inherently di cult to generalize, particularly with limited training data.
CNNs are extensions of Arti cial Neural Networks (ANN)s that consist of layers of
neurons described by their weights and biases. CNNs unlike ANNs are such that some
neurons in a prior layer are not connected to neurons in the next layers. This yields a
convolving mask implementation. Figure 3.10a shows a typical structure in an ANN
in comparison to that of a CNN, presented in Figure 3.12. The ANN receives data
(from the input space) as a vector in its input layer neurons. This data is multiplied
with unique weight values and fed into an activation function before being passed
onto every neuron in the next layer (the hidden layer). This data is propagated into
the second hidden layer and then the output layer in a similar manner. Note that
there is a weighting between all possible pairs of input layer neuron and hidden layer
neurons. The values that are propagated out of the output layer are the predictions of
the ANN given the input vector. Consider the case where the input space is an image.
For instance, a 480 640 3 image will yield 921,600 K weights to connect to an
immediate hidden layer with K neurons. This is a large number of weights to learn. A
recti cation to this is to drop some of the weights as in Figure 3.10b. Consequently,

not all the neurons in a layer are connected to the neurons in the succeeding layer.
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In conjunction with dropping the weight, weight sharing could be applied to further
reduce the number of weights. Hence rather than having unique weights between each
pair of neurons, the same weight value could be applied to another pair of neurons.
Now examine the setup in Figure 3.11a, where the same structure in Figure 3.10b is
maintained, however, each distinct weight has been allocated a distinct color. The
e ect of weight sharing is illustrated in Figure 3.11b. For instance, note how in between
the input layer and hidden layer 1, only the rst two weights (indicated in green and
blue color) are used, after weight sharing. Similarly between hidden layer 1 and hidden
layer 2 three weights are used, illustrated in purple, black and brown color. This
manifests into convolving an array of neurons (or pixels in the case of images) with a
kernel. The consequence of this is a convolutional network con guration as opposed to
a fully connected con guration presented in Figure 3.10a. A more complete illustration
of a CNN is presented in Figure 3.12.

CNNs like ANNs, aim at establishing a non-linear mapping from an input space to
a target space. In the case of CNNSs, this input space tends to be images. For instance,
the CNN presented in the gure above illustrates a CNN that aims to establish the

relationship between an image of a hand pose and a vector of elements that describe

Figure 3.10 (a). Fully connected Arti cial Neural Network (ANN) Structure, where
each arrow indicates a weight connecting a neuron in a prior layer to another in the
succeeding layer. (b). Illustration of weight dropping on a fully connected ANN. The
faintly coloured arrow indicate dropped weights.
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Figure 3.11 (a) Illustration of an ANN after weight dropping. Observed how the
dropped weights yields a less complex network. (Note each distinct colored arrow
indicates distinct weights) (b) Illustration of an ANN after weight dropping and sharing.
Observe the color of the arrows and note how same weights are shared along di erent
neuron pairs, yielding the e ect of sliding (convolving) a mask along an array of data
points.

the pose of the hand. In this case, [jix;jiy:ji-]" represent the 3D spatial position of
the i™ joint of the hand i.e. distal little (pinky) nger joint, intermediate ring nger
joint etc. Unlike ANNs, CNNs consist of di erent unique types of layers which in
most cases are Convolution, Pooling, and Fully-connected, as illustrated above. The
convolution layer computes the outputs that are fed into its succeeding layer by taking
a dot product of the shared weights and a sub-region of its input. The Pooling layer

will spatially down-sample the input to yield a smaller sized output. Finally, the fully

Figure 3.12 A Typical structure of a Convolutional Neural Network. Here the input
image is rst convolved with pre-de ned masks before undergoing a pooling (down-
sampling) operation. This constitutes a convolution layer. After passing the inputting
image through multiple convolution layers, the resulting image is concatenated into a
vector and passed into fully-connected neuron layers to result in a prediction vector of
the desired length.
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connected layer operates as a conventional ANN as introduced above. As previously
stated the output of each layer is fed into an activation element-wise before being
propagated onto the following layer. In the case of a CNN, this is often either a sigmoid

function, (x), or a Recti ed Linear Unit (ReLU) function, g(x), where

1
()= 1557 (3.45)
and 8
2 x x>0
g(x) = ; (3.46)
~ 0 x<=0

Both functions introduce a non-linear transformation to the mapping from the input

space to the output space.

Back Propagation

With an established network structure, the next task is to establish the values of the
weights such that the mapping between the input and output space is consistent with a
groundtruth dataset. Given a training data pair set, fl1;j ,0;fl 2;j ,0:::f | « ;] « g with
an input image, | ¢, and a target vector, j ., the goal is to establish the set of weights,
W = fW;2 W25 W22 W22 g such that

arg max>t< fE(W; 1)1 G (3.47)
W k=1

where fg is a loss function between the CNN predicted output (from propagating
data from the input image through the network to the output layer) and the groundtruth
output, j .. F() describes the structure of the architecture of the network and how the
weights interact with the input image. To solve for Eq. 3.47 the error value outputted
by fg is propagated back into the network to update W this error is reduced. This
is repeated until a desirable error is achieved. This is referred to as back propagation.
The key to back propagation is to establish the partial derivative of the error with
respect to each weight, Wi :8W 2 W. In this thesis, the weights of the CNN are
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updated using gradient descent as in

E
w w — W 3.48
W 1 ( )

where is the learning rate and is the weight decay. Note that in the work implemented
in this thesis, the MatConvNet framework was used 2, which comes with gradient

descent implementation.

3.2.6 Conditional Random Field

The input-target paradigm of learning and inference is very successful, however, it
assumes that each of the data pairs is independent of each other. In some cases, this
assumption does not hold true. Knowledge of the state of some variables will often
improve the con dence in predicting the state of others. The image-based nature of
the problem being addressed in this thesis inherently lends itself to the scenario where
states of neighboring pixels are often similar. To this end, it is useful to model the
probability of the state of a pixel conditioned on the neighboring pixels. A convenient
way of modeling this is via graphical modeling, described below.

A signi cant consequence of graphical modeling is that, in e ect, the probability
distribution over the variables of a multi-variable system (with many complex inter-
variable interactions) can be derived from the product of factors of a much smaller
subset of the variables, where the factors indicate the probability of a subset of
neighbouring variables taking a particular joint assignment. The joint probability of
the set of variables in the entire network is hence the product of the joint factors of all
the sub-groupings in the graph. To maintain a probability distribution (which sums to
1), the probability is divided by the partitioning function, Z. This yields a normalized
probability distribution.

Consider a system possessing a set of observable random variables, X = fX4;::;; Xix 0,

such as pixel intensity values and a set of target variables, Y = fYy;:::; Yy;0, like the

2http://www.vifeat.org/matconvnet/
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depth at each pixel in an image of interest. The task is to establish a joint probabil-
ity distribution over all members of set Y given a knowledge of all members of set
X, assuming a set of factors, W = f 4;::;; ng@, Is established and that the vectors
X = [xq;:5Xx;]T and y = [ya; 5 yv;]" are vectors of actual allocations values to the

variables in the sets X and Y respectively. The conditional distribution, Pr(yjx), can

then be represented as

. 1 ¥
Pr(yjx) = 7 n(Xn; Yn); (3.49)
n=1

Figure 3.13 Hypothetical Factor Graph. The circles represents variables whilst the
squares represents factors. The X label represents observable variables (e.g. intensity
value of a pixel) and Y is used for variables whose state is to determined (e.g. depth
value at a pixel). Each factor represents the probability of the set of connecting variable

having di erent joint assignment.
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where X,, X and Y, Y, are unique subsets of the observable, N is the number of
factors, and target objects whose probability of joint assignment is represented by the

factor . The partitioning function, Z(x), is the normalising term:

Z
Z(x) = Y n(Xn; Yn); (3.50)

Y n=1

Figure 3.13 gives a graphical illustration of the system introduced, whereby the graph,
G =(V;F;E), the vertex set, V = X [ Y, the set of factors, F = W, and the set
of edges, E are shown, de ning the scope of each factors. For instance the scope of
factor 5 is X;; X4. Note how each factor is a local function whose scope is the subset
of variables, f X, [ Y,g whose joint assignment probability it describes. However, an
aggregation of these local compatibility functions is derived in Eq. 3.49 to provide a
joint probability distribution for all members of set Y given a knowledge of all members
of set X. The work presented in Chapter 6, relies heavily on the concept of a CRF.
Here the task of superpixel based robust depth estimation from disparity information
is addressed with a Random Forest modeling the mapping between per-superpixel
disparity information to depth in a naive manner. The predicted posterior probability
is augmented with a CRF model that merges it with pairwise neighboring superpixel

factors.

3.2.7 Markov-chain Monte Carlo

To review the concept of Markov-chain Monte Carlo, it is particularly useful to discuss
the two fundamental concepts it is based upon, namely: Monte Carlo approximation

and Markov Chains.

Monte Carlo Approximation

Monte Carlo is a method of approximating the state of a model that is too complex to
compute deterministically and with an intractable solution. Assume a model whose

state is described by the probability distribution function, f (X). The goal here is to
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Figure 3.14 (a) Sequence of events (b) A discrete example of a non-trivial Markov
chain.

approximate the expectation of the state of the model (distribution function), E[f (X)].
The Monte Carlo approximation approach is based on the law of large numbers, which
states that as the number of observations (samples) of the state of a system increases,
the average becomes closer to the expectation. Hence, the Monte Carlo estimator to
the expectation problem above is de ned as
zZ, 10

E[f (X)]) = . Xf (X)dX = hIlllrp N ~ f(XD); (3.52)
where X1;:::;; Xy are randomly sampled from an arbitrary distribution, g(X). It
is necessary for N to be substantially large to approximate the expectation. The
consequence of this is that samples based on a much simpler distribution (e.g. a
uniform distribution) can be evaluated under f (X) and used to estimate E[f (X)] by

computing an average of the evaluation output.

Markov Chains and Ergodic Theorem

A Markov Chain is a sequence of events that satis es the Markov property that each
event in the sequence is solely dependent on the preceding event. Consider the following

sequence of events in Figure 3.14a. It is considered a Markov chain if

Pr (XsjX2; X1; Xo) = Pr(XsjX2): (3.52)
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Consequently, knowledge of the prior state of a sequence of events is the most informative
one can get to predict the succeeding event. Figure 3.14(b) illustrates a less trivial
Markov chain. Here a transition can occur between all three possible states and the
likelihood of each transition is presented as probabilities assigned to each arrow. For
instance the probability of system transitioning from state x;, to X, is 0:9; from x, to

Xp is 1 etc. This information can be represented in a transition matrix as in

2
0 1 0
Tzé 0 01 09:: (3.53)
06 04 0

If . = (Xat; Xo:t; Xeit) 1S the probability distribution of the system at time, t, where

o 1S the prior probability distribution of the system, then ., = T . After several
iterations, the probability distribution converges to (0:2; 0:4;0:4), regardless of the
prior distribution, . This distribution is referred to as the stationary distribution of
the Markov chain and it is the overall probability of being in each of the states x,, Xy,
and X. over an in nite number of transitions. Based on this attribute, the Markov
chain presented in Figure 3.14 is said to be ergodic. Consequently, an ergodic Markov
chain modeled system is such that, regardless of the starting state of the system, every
possible state will eventually be transitioned to in a nite time, and more importantly,
the number of times each state is transitioned to is proportional to the probability of
such state. This is a signi cant property in the context of Markov Chain Monte Carlo
(MCMC) as will be discussed. Two conditions for a Markov chain to be ergodic are
that the Markov chain graph must of irreducible and aperiodic. Irreducible meaning
there is a non-zero probability of transitioning from any possible state to another,
whilst aperiodic implies that "there is no integer k > 1 that divides the length of every

cycle in the graph” [98].
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Markov-chain Monte Carlo

Markov-chain Monte Carlo (MCMC) is a tool for sampling from (and also computing
expectation of) very complex and high dimensional probability distributions. MCMC is
largely based on the Monte Carlo sampling intuition however instead of using randomly
sampled elements, it uses a sequence X;:::; Xy drawn from a Markov chain. Consider
the task of sampling from a complex probability distribution, . The rst step will be
to construct a Markov Chain with a stationary distribution, , and then the ergodic
theorem is applied. More speci cally, it sequentially samples points by conditioning
on the current location and Markov chain transition matrix. Given that the Markov
chain remains ergodic, the distribution of the sequence of samples converges to

Consequently, MCMC exploits the fact that in a probability distribution space, regions
of high probability are also neighboured by regions of high probability distributions
and the regions of low probability are neighboured by regions of low probability

distributions.

3.3 Datasets

The frameworks presented in the latter part of this thesis were trained and validated
on three datasets. This section introduces these datasets and how they were collected.
The rst two datasets (Dataset A and Dataset B) address the problem of hand depth
from stereo capture whilst the third dataset (Dataset C) addresses pose estimation

from stereo capture.

3.3.1 Dataset A

The rst dataset was relatively simple consisting of data pairs of stereo and depth.
Five participants were involved, a total of 1,000 (200 per participant) captures were
made, each articulating seven poses. Variation in poses consisted of simple nger

exion and extension with the relative hand to camera orientation kept the same at

the fronto-parallel view.
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Figure 3.15 The stereo camera and the RGBD sensor are positioned adjacently (a).
First correspondence between both cameras is acquired (b, ¢), which is used to estimate
the projective transformation that achieves registration (f). This transformation is then
applied to the depth image (e). The process results in a disparity image (d) acquired
from stereo-matching, and a closely registered corresponding groundtruth depth (e).

The key challenge in the dataset acquisition was mapping the disparity image data
to groundtruth depth data, so as to establish a strong correspondence between the
pairs of data. An alternative method to that presented in Section 3.1.3 was required as
the checkerboard pattern data was not available for this dataset. To achieve this, image
and depth acquisition were carried out on both the stereo camera and the active depth
sensor as shown in Figure 3.15. As discussed in Section 3.1.3, the RGBD sensor used
acquires RGB data that is well aligned with the depth channel. First, Scale Invariant
Feature Transform [99] features were extracted from the reference stereo image and

the RGBD depth channel. This, in turn, was used to establish corresponding points

Figure 3.16 The six di erent poses captured in Dataset A. Note how these posses are
solely in front-parallel view.
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and hence the geometric transformation that registers the RGBD depth channel to
the reference stereo image. The (RANSAC) [95] algorithm was used to establish the
optimum geometric transformation. The mean residue error of all inlier points was
computed as %P (PR Gpl)?, where pR, and p- are corresponding points in both
images planes; G is the resolved geometric transformation; and | is the total number
of inlier points. Under this condition, the mean residue error of Dataset A was 5:425
pixels. The established transformation is then applied to the acquired depth image,
resulting in an alignment and registration of the reference stereo image to the depth

image from the RGBD sensor.

3.3.2 Dataset B

The second dataset consists of more complex poses where the relative hand camera
orientation is not just fronto-parallel but arbitrarily orientated. Consequently, a
geometric mapping will not su ce to establish RGBD-stereo registration. Instead the
approach introduced in Section 3.1.3 was used. The stereo-RGBD calibration was

done with a re-projection error of 9:864nm. This re-projection error is based on the

Figure 3.17 The six di erent poses captured in Dataset B.
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cheeseboard calibration between the reference stereo image and the RGBD camera (see
Section 3.1.3 for more details). 12 participants partook in the data collection with a
total of 6,000 (500 per participant) captures collected, each articulating eight poses.
Like the rst dataset, the problem that was to be addressed with this dataset is hand
depth from stereo. Hence each data instance consists of a pair of stereo (left and right)

and depth capture data of the hand.

3.3.3 Dataset C

The nal dataset contains a similar variety of hand poses to Dataset B. However,
in addition to the stereo images and RGBD capture, the location of hand joints are
captured. The reader is directed to Section 3.5 for more detail on the hand pose model
used. It also consists of the same number of participants, where a total of 12,000 (1,000
per participant) captures were made. It was used to validate pose estimation from
stereo captures. Since the proposed technique to be validated uses depth as a hidden
variable, depth was also collected. Hence, each data instance consists of a triplet of

captures namely: stereo, depth and hand pose.

Figure 3.18 The six di erent poses captured in Dataset C.
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To establish a database of strong registration between the triplet of data: stereo,
depth and pose acquisition was carried out on the stereo camera, a RGBD camera, and
an o -the-shelf hand pose detector. The registration between the RGBD and stereo
remains the same as was in Dataset B. It su ces that the spatial position of the hand
pose detector relative to the stereo camera is unchanged during the capture of training
data. The result of this is a well registered stereo-depth image pairs along with a pose
vector. The stereo-RGBD calibration was done with a re-projection error of 11:564mm.
See Section 3.4 for details on the hardware used for collecting data.

An overview of all three datasets is presented in Table 3.1.

Dataset Dataset A Dataset B Dataset C
Number of
o 5 12 12
participants
Number of
1,000 6,000 12,000
samples
Number of poses 6 8 8
. Stereo, depth,
Domains Stereo and depth | Stereo and depth
and pose
Chapter used 4 5 6 and 7
Only L L
Arbitrarily Arbitrarily
View point fronto-parallel . ) _ _
_ oriented view oriented view
view

Table 3.1 A comparative overview of all three datasets used to train and validate the
work presented in the latter part of this thesis.
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3.4 Hardware Used

The datasets introduced above consisted of three main domains, namely: stereo, depth,
and pose. To capture data in each of this domains, three devices were used. These
include a stereo camera, an RGBD camera, and a hand pose estimation device.

The stereo camera that was used is the Minoru 3D Webcam®. The Kinect Sensor
for Xbox One* was used as an RGBD camera to capture depth whilst the hand pose

estimation device used was the Leap Motion Controller®.

3.5 Hand Model

The hand model used to model hand articulation in this thesis consists of 20 joints.
These included the wrist; the thumb ( ngertip, distal and intermediate); the index,
middle, ring and pinky nger (each with a ngertip, distal, intermediate and proximal
joint) as shown in Figure 3.20. Each of these 20 joints has three variables (including
its X, Y and Z coordinate), yielding 60 degrees of freedom. There is no kinematic
constraint on the model’s joint angles, however, a hand prior model was computed

based on a dataset of poses (see Chapter 6 for more detail).

Figure 3.19 (a) The Minoru 3D Webcam (b) The Kinect Sensor for Xbox One (c) The
Leap Motion Controller

3http://www.minoru3d.com/
4https://www.xbox.com/en-GB/xbox-one/accessories/kinect
Shttp://store-eur.leapmotion.com/products/leap-motion-controller
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3.6 Summary

The camera model and machine learning concepts on which this thesis is based have
been presented. The chapter begins with the introduction of the pinhole camera model
before looking at multi-view geometry which provided a basis for solving the problem of
registering RGBD camera to a stereo camera. The RGBD-stereo camera registration is
preceded with camera calibration to determining the extrinsic and intrinsic parameter
of the stereo rig. The second part of the chapter delved into the machine learning that
informs the processes of inferring higher level information from recovered and processed
information from the camera. This entails a brief introduction to probability modeling;
learning and inference; and the signi cance of uncertainty in the learning procedure.
This was used to introduce the four main machine learning frameworks that were
used in the thesis namely: Random Forest, conditional random eld, convolutional

neural network, and Markov-chain Monte Carlo. The next chapter presents the rst

Figure 3.20 An illustration of the hand model used in this thesis.
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proposed framework in the thesis. It proposes a novel Eigen-based variant of Regressive

Random Forest with the aim of establishing a mapping between low-quality disparity
to high-quality depth.






Chapter 4

Robust Hand Depth Estimation
using Eigen-based Regression

Forest

As introduced in Chapter 2, there are inherent limitations to the recovery of disparity
by correspondence mapping, such as a large search space, textureless regions, and
occluded regions. These limitations make the recovery of an accurate depth map
from a stereo image pair a very challenging task. This is especially true when the
recovered depth is to be used in the complex task of estimating hand articulation.
Clearly, there is a need for a framework that is able to use low-quality disparity to
reconstruct more robust depth information of viewed scenery. Human vision, which
is able to e ciently discern articulation and perform tracking activities, merely from
stereoscopically recovered depth, uses the brain in processing disparity recovered
combined with previous experience. In this chapter, the aim is to use a machine
learning regressive-based mapping framework to improve a low-quality disparity image.
The rst task is to retrieve the disparity image from a stereo image of a scene with a
hand pose. This is then used to extract a high-quality depth image using a Regressive
Random Forest. More precisely, given a stereo recovered disparity image the aim is

to map this to a high-quality depth image that can later be used for estimating hand
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articulation. The proposed technique relies on a robust hand segmentation procedure.
However, given the long history of this topic in computer vision, it is not addressed.
There is a large body of work on the topic (see [100 102]). This chapter does not
elaborate much on the conventional concept of Random Forests; rather interested
readers are referred to Section 3.2.4 for more information.

Contributions: This chapter proposes the application of a novel, data-driven Re-
gressive Random Forest framework that learns the mapping between a lower quality
disparity estimation and high-quality groundtruth depth measurement.

It presents a novel variant to regression forests and the concept of Eigen Leaf
Node Features (ELNF) is proposed. ELNF factorizes for the posterior probability and
regresses the depth using highly discriminative features. It should be noted that ELNF
has much wider application, and it can be used in other regression problems outside
the context of depth recovery. The ability of ELNF to more accurately estimate the

depth of hands compared to conventional Random Forest regression is also explored.

4.1 Disparity Estimation

The rst stage in the pipeline involves the recovery of the disparity from the stereo
image pair, where the key challenge is to identify correspondences between the views. In
the context of this application (stereo depth recovery of a hand), three main issues arose:
(1) the search space is large; (ii) there is inconsistency in the cameras used to image the
scene; and (iii) some image regions are textureless. In order to address the issues of
search space size and textureless regions, the stereo rig is calibrated using stereo camera
calibration [103]. The epipolar geometry of the stereo rig is computed in the form of
the fundamental matrix. This is in turn used in estimating the epipolar line. So, given
a pixel (of a hand region) in the rst stereo image, the search for the corresponding
point on the other image is carried out on this epipolar line (see Section 3.1 for more
detail). Note that alternatively, recti cation could be applied to maintain parallel

epipolar lines, allowing for strictly horizontal shift in the search for correspondence.
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Recti cation was not used as it yielded slightly misaligned epipolar lines as a result of
warping the image. Although this misalignment was minor, it was not negligible to the
stereo matching process of the skin-based scene. A further constraint is imposed, prior
to the stereo-matching procedure, by applying skin region segmentation which restricts
the search space of correspondences. The lack of consistency between the cameras
remains an issue here. Hence, a previously proposed cost function, Quantized Census,
which has been experimentally proven to be able to compensate for various types of
radiometric di erence in the stereo image pair, is used. Interested reader is referred to
Appendix 1 for more details on Quantized Census. Typical disparity images recovered
from stereo captures using Quantized Census are presented in the top row of Figure 4.1,
along with their corresponding groundtruth depth in the bottom row. The disparity
images are measured in pixel shifts, the brighter the color the larger the pixel shift at
a given pixel. On the other hand, the depth images are measured in millimeters (mm),
the hotter the color the closer the pixel is to the camera. Observe that some depth
cues are discernible (e.g. the ngers sticking out) from the disparity, however, there are
still lots of artifacts (e.g. the wrist region). The purpose of regression framework that
is presented in the following section is to improve the quality of the depth information

contained in the disparity images.

4.2 Mapping Disparity to Depth

The task here is to establish the mapping, lgisp(X) ! laepin(X), at a pixel position
X, between the disparity image and the groundtruth depth image from the RGBD
sensor. This mapping is modeled with a Regressive Random Forest based on Kernel
Density Estimation. The learning procedure attempts to simplify the mapping by

rst classifying it into subspaces, where each subspace is a quantized range of depth
values. This is inherently embodied in the conventional classi cation Random Forest

framework. This will then allow for an e cient and ner regression at leaf nodes.
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Figure 4.1 A comparison of disparity image and groundtruth depth. The top rows show
some recovered disparity images from stereo captures of hands. The corresponding
groundtruth depth images are displayed in the second row. Observe that some depth
cues are discernible (e.g. the ngers sticking out) from the disparity, however, there
are still lots of artifacts (e.g. the wrist region).

The prediction of the depth at a given pixel position is made based on a feature
generated from two vectors as introduced in Section 2.2.2. Here the majority disparity
position in the hand region dy , is used as the normalizing factor in place of the depth,

as in

\'

f (laisps X) = laisp X + g
M

u
Clv
Recall from Section 2.2.2 that u and v are a pair of random o set vectors applied to
the pixel location, x. Henceforth the pair of vectors, u and v, will be referred to as
feature vectors, = u;v. Note here that the feature vector in this case is applied to

disparity image as opposed to the depth image (as introduced in Section 2.2.2).
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4.2.1 Random Forest

As previously stated, the Random Forest learner presented in Section 3.2.4 was used.
N decision trees are grown by recursively splitting and passing training data, S, into
two sub-nodes S;. To increase the variation in the di erent feature levels that can be
generated, a Gaussian lIter is applied to the highly discrete valued disparity image due
to pixel shift based values. As in the work of Criminisi and Shotton, randomness is
maintained in the bagging, [104], feature selection and threshold selection; and the tree

aims to decrease the entropy of the training dataset by maximizing the information

gain.
6() = E(S) SO ): (42)
i fLLRg 19
Entropy is de ned as
E(S) = log( s); (4.3)

where 4, is the standard deviation of the depth values of the pixel points within
the subset, S. Statistical analysis is carried out on the pixels that land at each leaf
node. The distribution of the features computed against the actual depth is established
(Figures 4.2a and 4.2d). Recall that for a single pixel position, an in nite amount
of vector features could be generated, by randomly selecting any amount of o set
vectors. It would be impractical and redundant to use all these features. Hence a
subset of these features is used to establish the relationship between features and
groundtruth depth. ELNF is proposed to determine this subset of features, and this is
described in Section 4.2.2. With the subset of features in place, multivariate Kernel
Density Estimation is applied by convolving the features-actual depth distribution with
a Gaussian kernel [105]. For a subset of N features, this yields a continuous (N + 1)
dimensional distribution of the feature(s) against the actual depth. Figures 4.2b and
4.2e show the resulting distribution when N = 1, i.e. the number of features used
is one. Here the frequency of this distribution is represented in the third dimension

of the plot. The resulting continuous distribution is stored at the leaf node to be
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evaluated during testing (Figures 4.2c and 4.2f). Determining the features to use will
be elaborated upon in the following section.

Forest predictions: Each pixel point, x, whose depth is to be predicted, is passed
through each of the trees in the forest ensemble. At each node the pre-established
splitting function, f(; )fLn,;Rng is evaluated based on the feature and the pre-
established threshold, . Determining whether to send the pixel to the left, L, or to
the right node, R,,. This is repeated recursively until the leaf node is reached. At this
point, the feature (computed using pre-speci ed vector pair discussed in Section 4.2) is

used in factorizing for the posterior probability, Pr(dj ), of depth, d, given that the

Figure 4.2 At a leaf node, a depth-feature distribution is established (a). Images (a, b
& c) illustrate a bad feature-depth distribution (vertically orientated). In contrast, (d,
e & f) illustrate a better feature-depth distribution (obliquely orientated) as factorizing
yields a con dent posterior (f). ELNF is biased towards the obliquely orientated
distribution.
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pixel point has a feature, , as in (Figure 4.2c and 4.2f). This probability is aggregated

across the ensemble of trees, t.

. 1X ,
Pr(djx) = N Pre(dj ) (4.4)

Note again that in the Figures 4.2b and 4.2e, the number of features is just one,
computed from a single learned vector pair. However, improved results are achieved
from using two features (i.e. N = 2), see Section 4.3. Due to computational limitations,
experiments with more than two features were not tested due to the fact that the
computational cost of the multi-dimensional Kernel Density Estimation and the size of

its resulting distribution increases exponentially with increasing dimension.

4.2.2 Determining Eigen Leaf Node Features (ELNF)

The problem with factorizing for the posterior probability, Pr(dj ), is that the dis-
tribution might not have a strong correlation between the feature and the depth to
be estimated. Consider the Figures 4.2d and 4.2e. They convey a strong negative
correlation, hence factorizing for the posterior probability of the depth yields a small
standard deviation and subsequently more con dence in predictions is made by max-
imum likelihood (Figure 4.2f). In contrast, the distribution in gures 4.2a and 4.2b
exhibits a weak correlation. Here the factorized posterior yields less con dence (Figure
4.2¢). As each pixel position at the leaf node has potentially in nite features, it would
be e cient to select those that are most discriminative for regression.

The task, then, is to ensure that feature(s) selected at the leaf node will yield a
strong positive or negative correlation. To establish this, the principal eigenvector
and the ratio of the two eigenvalues of the covariance matrix of the distribution are
exploited, using what is coined as Eigen Leaf Node Features (ELNF). In this case,
it is useful to establish an obliquely orientated distribution (Figure 4.2a) as opposed
to a vertically orientated principal distribution (Figure 4.2b). The ratio of the two

eigenvalues represents how compact the distribution is in the principal direction relative
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to the perpendicular direction. Hence at the leaf node, the feature, that minimizes

the following cost function is selected:

E(laepn(X);f )= (G (V)i 1P+ )—j (4.5)

where ( vj), is the slope of the principal eigenvector, v;, of the covariance matrix of
the distribution of the actual depth, I4epm(X), and the feature, f , for a pixel point,
X, in the leaf node. ; and , are the two eigenvalues, the former being the principal
eigenvalue. 2 [0; 1] is a weighting providing a convex combination of the terms. The

rst component of equation,(j ( v1)j 1)? quanti es how close the magnitude of the
slope is to 1 whilst the second component, -2, quanti es the spread in the direction
orthogonal to the principal eigenvector. Consequently, maximizing E (I gepin (X); f ) will
encourage a more obliquely oriented principal component of distribution and increase
compactness. The more compact the posterior prediction, the stronger the accuracy
of the recovered depth, which in turn improves the performance of potential pose
estimation that could follow.

When the number of features selected at the leaf node is more than one (i.e. the
number of dimensions of the resulting groundtruth depth-features distribution becomes
more than two), the aim becomes to maximize the dependency between all possible
pairs of these dimensions. Subsequently, Eq. 4.5 is applied to the distribution of all
pairs of either features or groundtruth depth across all pixels arriving at a particular

leaf node. Hence,

E(lgepn(x);f ) = X C(n;p);8n;p=1;:;N+1jn6 p (4.6)
n;p
where
Cmp = (( Vvinp)i 12+@ )22 (4.7)

Lnp
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( Vinp) is the slope of the principal eigenvector, vi..,, that corresponds to the

distribution of the n'" and p" columns of a data matrix, D .

D =[dyjf L f % unfN] (4.8)

Here, D is the resulting matrix when the groundtruth depth vector, d, (consisting of the
depth of all pixels at the leaf node), is concatenated with the features matrix (consisting
of the feature values computed at these pixel locations). During implementation,

was set to 0:7 based on experimental performance. Distributions that minimize the
cost function, E, in Eq. 4.6 and 4.5 are those for which the principal orientation has a

slope of closer to 1 or -1 and greater compactness along the principal orientation.

4.2.3 Training

Each tree in the ensemble is trained individually, using random samples of subsets of
the training dataset, S. The recursive splitting procedure described in Section 4.2.1
is executed. The partitioning of the dataset stops when the maximum level of depth;
minimum entropy in the dataset; or a minimum number of data samples in the dataset
is reached. Note that all vector features are extracted from the disparity images, | gisp,
while the associated output depth is retrieved from the groundtruth depth image,
l 4epth (acquired from the RGBD sensor). At a leaf node, random feature vectors are

generated, and the one that minimizes the energy of Eq. 4.6 is selected as in:

= argminE (I gepin(X); f ): (4.9

Dataset

To demonstrate the proposed technique, training was carried out on both real and

synthetically generated data.
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Figure 4.3 Rendered RGB images of the synthetically articulated hand from two
perspectives (a & b) and the resulting disparity (c). The lighter the colour the larger
the pixel shift. The corresponding groundtruth depth (d) is extracted from the depth
bu er. The bluer the colour the closer the pixel is from the synthetic camera.

Real Data: Dataset A presented in Section 3.3.1 was used. The consisted of hand
captures from ve participants, a total of 1,000 (200 per participant) captures were
made, each articulating seven poses. Variation in poses consisted of simple nger
exion and extension with the relative hand to camera orientation kept the same at
the fronto-parallel view.
Synthetic Data: The synthetic dataset was produced using computer-generated
hand poses. A rigged hand model from [106] was skinned and rendered using an
OpenGL implementation and produced images from two perspectives by horizontally
displacing position and the distorting orientation of the synthetic camera (simulating
a non-parallel stereo camera pair as in Figure 4.3a and 4.3b). The image pair was
passed into a stereo-matching framework as was the case with real data using the
known rotation and translation information as well as the perspective projection of
the camera to compute a fundamental matrix. The disparity estimation procedure
explained in Section 4.1 is applied (Figure 4.3c). The depth bu er was also read at
the same camera position as the reference stereo image pair (Figure 4.3d), establishing
direct registration. A dataset consisting of 10,000 instances of di erent articulations
was generated. This was achieved by adjusting the di erent joint angles of a skeleton

which moved the skinned mesh. See Figure 4.4 for some sample captures.



4.3 Experiments 91

Figure 4.4 Some examples illustrating the variety of articulations in the synthetically
generated dataset.

Implementation details: The random forest was implemented, trained and tested on
a Quad core i7 processor CPU. At test time, based on the MATLAB implementation,
the stereo matching algorithm that preceded runs in 0.43 seconds on average to recover
the disparity map. Each test-time forward pass through a forest of 80 trees takes
typically 0.019 seconds at a maximum depth level of 12. Considering that a typical
hand region consists of 21,000 pixels, a typical forward test typically took 440 seconds.
It should be noted each forward pass through a tree is a simple set of operation and
hence real-time implementation can be achieved by GPU implementation (similar to

the work of Shotton et al. in [65]).

4.3 Experiments

To demonstrate the technique, training was carried out on both real and synthetically

generated data. The approach was experimentally validated, presenting both qualitative
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Figure 4.5 Qualitative results using synthetic captured data on four instances of poses.
The 1%t row are reference RGB synthetic hand poses. The 2" and 3" row presents the
ground truth and predicted depth as a result of using the proposed method. Observe
how almost a perfect recovery was achieved in the synthetic scene.

(Figure 4.6) and quantitative (Figures 4.8, 4.9 and 4.7) results. The synthetic dataset
yielded a highly accurate result as shown qualitatively in Figure 4.5.

Experiments were carried out with the aim of exploring: (i) the signi cance of
ELNF, (ii) the signi cance of the disparity information, and (iii) the e ect of using
multiple leaf node features. The experiments will be discussed in greater depth in the
following sub-sections. The results were quantitatively appraised by taking the average
absolute di erence between the actual depth, dst and the predicted depth, d, across

all hand region pixels, JdGTNid“’ where N is the number of pixels in the hand region.

4.3.1 Evaluating for the Signi cance of ELNF

In this section, the signi cance of ELNF is investigated experimentally. The dataset
was trained and tested with the conventional regression forest and then on an imple-

mentation of Random Forest that is augmented with ELNF. A qualitative comparison
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Figure 4.6 Qualitative Results using real captured data on three instances of poses. The
15t and 4" columns are input to the Distance Transform-based prediction and to the
Disparity based prediction respectively. The 24 and 3 columns are predicted depth
from the proposed framework with and without using ELNF respectively, while the 51
and 6" columns show predicted depth using ELNF on distance transformed images
and eroded disparity images respectively. The nal column shows the groundtruth
depth from the RGBD Sensor.

is presented in the 2" and 3 columns of Figure 4.6, and more quantitative results in
Figure 4.8.

Qualitative analysis: Examining the 2" and 3" columns of Figure 4.6, a substantial
improvement in the predicted depth and overall shape of the hand can be seen when
ELNF is used. In all cases, it is clear that ELNF predicts a stronger holistic hand
shape compared to RF; the digits are more discernible for instance. This is due to
the stronger correlation enforced between the feature and the output depth at the leaf

node distribution, owing to these specialized features.
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Figure 4.7 Quantitative results showing error in depth prediction at di erent depth
of trees and number of trees. Here the results of a conventional Random Forest are
compared to one augmented with ELNF. The lower the position of the surface plot the
better the performance. The 2ELNF is in the legend of the plot indicates that two
features were evaluated at the leaf node.

Quantitative Analysis: The omission of ELNF had an interesting result. At low
tree depth and small number of trees, the signi cance of ELNF is more apparent. This
is due to the fact that at low tree depth and small number of trees, the entropy at the
leaf nodes is high, and ELNF implicitly introduces less entropy when the distribution
is factorized based on the pixel feature. The superiority in performance provided by
ELNF is reduced as the tree depth is increased. This is due to the fact that the entropy
of the data reaching the leaf node decreased due to the lack of a strong correlation
between the feature and the depth.
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4.3.2 Comparison with disparity input to distance transform
input

An early concern was that the successful prediction of depth was mainly dependent on
the contour of the hand (that is acquired from the initial hand region segmentation) and
not on the disparity image. This would render the stereo-matching step insigni cant
and hence a single camera setup with hand region segmentation would be su cient.
Two experiments were carried out to address this issue. First, the proposed framework
was trained and tested with an image generated solely from hand region segmentation
of a single view image instead of a disparity image. A distance transform of the
hand region segmented image was used, because the vector feature used relies on a
continuously varying intensity image (4" column of Figure 4.6). Secondly, to further
investigate to what extent the proposed framework depends on the segmentation pre-
step, a test was carried out by applying the proposed framework on instances of eroded
segmentation of the disparity images. The consequence of this is the lack of shape
information, hence depth prediction will be solely based on disparity information.
Qualitative Analysis: Figure 4.6 (in the 5" column) clearly illustrates qualitatively
the signi cance of the initial depth information provided by disparity input. The
distance transformed input only contains the contour of the segmented hand region.
This signi cance is highlighted particularly in regions where the entire shape of each
nger is not discernible from the contour, for instance in the distal end of the index
nger in the second row. On the other hand, the result from the eroded disparity looks
more promising (6" column). Whilst this is less visually correct in comparison to the
properly shaped hand, one can still discern part of the bent nger, for instance.
Quantitative Analysis: The quantitative results in Figure 4.8 re ect the previously
described qualitative result, in that the average error in using disparity is 21:76mm in
comparison to 71:76mm when a distance transform is used. This clearly illustrates the
signi cance of depth information from the disparity image. The distance transformed

input and disparity input are a ected similarly as the depth of the tree increases. The



96 Robust Hand Depth Estimation using Eigen-based Regression Forest

tree depth signi es how specialized the tree is to the dataset. The randomness in
and the ensemble nature of random forest increases the prediction variance. Whilst
the increase in the number of trees does not increase generalization error (i.e. the
error when the random forest is tested on unseen data), the depth of each tree can.
This is because the random forest is still susceptible to the potential di erence in the
distribution of data points in the feature space of the training dataset to that of the
testing dataset. As well as this, the e ect of outlier points in the training dataset is
magni ed in the deeper trees. As discussed earlier, a decision tree can be thought of
as the partitioning of a prediction problem into simpler subspaces (in the leaf node)
that can then be modeled with simple models like a Gaussian. Deeper split levels yield
more partitions and subsequently fewer data points per subspace (at each leaf node).
Consequently, the negative in uence of outlier points at leaf nodes is magni ed as due

to the small population of non-outlier points. As a result of these two factors, the

Figure 4.8 Quantitative results showing error in depth prediction at di erent depths
of trees and number of trees. The signi cance of disparity information is investigated
by predicting depth from a distance transform input and from a disparity where the
edges of its segmentation eroded.
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forest fails at predicting unseen data when it becomes too specialized (due to deeper

trees).

4.3.3 Single leaf node features vs two leaf node features

Figure 4.9 Quantitative result showing error in depth prediction at di erent depth of
trees and number of trees. The signi cance of using multiple features is evaluated by
comparing single feature ELNF to two feature ELNF.

To investigate the e ect of multiple leaf node features, predictions from trees built with
a single leaf node feature are compared to those built with two (Figure 4.9). Note the
signi cant decrease in error along di erent tree depth and number of trees as a result
of using two features. This improvement is more apparent at lower number of trees
and depth. This is due to the fact that the extra features helps to further discriminate

between di erent depth levels.
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4.4 Summary

In this chapter, an innovative application of the regression forest technique for upgrading
disparity to depth was proposed and developed. The disparity image was rst retrieved
using greedy search stereo-matching. A Regressive Random Forest was then applied to
learn the mapping from the disparity information (and hand shape context) to hand
depth. The regression forest used in this case is unique due to the use of Eigen-based
feature selection. In doing this, a cost function was proposed that estimates for ELNF
that is more suitable for regression at training. The consequence of this work chapter
is a proof of concept that the low-quality disparity can be improved upon to generate a
more robust high-quality depth estimate using a machine learning approach. This novel
approach is a variant of the Regressive Random Forest framework and is applicable
beyond the context of the core aim of this research.

Although some promising results were achieved, the dataset set used is limited in
terms of the fact that it only entailed fronto-parallel view poses. Also, the performance
of the proposed approach in this chapter is still dependent on the stereo-matching
results that precedes it. Lastly, the mean depth error of 21:76mm is limiting, as, within
such margin of error, the ngers (typically 16 20mm) close to each other might not
discernible. Seeing as this is an objective of the thesis to use the estimated depth to
resolve hand pose, clearly, there is a need for improvement. The following chapter
introduces a more robust solution, that incorporates the a nity costing into the machine
learning framework. Instead of pre-computing disparity (which can be erroneous) as
proposed in this chapter, the matching pixel decision is implicitly determined in the

machine learning framework.



Chapter 5

Stereo-based Hand Depth Recovery
using CRRF

In the previous chapter, a novel approach to hand depth estimation from stereoscopic
images was presented. In this chapter, the work on high accuracy depth recovery is
continued. Speci cally, a more robust and advanced method to that introduced in the
previous chapter is proposed. Similar to the previous technique, the proposed approach
remains a data-driven one, however here a superpixel-based ! regression framework
is presented that takes advantage of the smoothness of the hand’s depth surface. To
this end, a novel method that combines a closed-form Conditional Random Field with
learned weights and a Regressive Random Forest (RRF) with adaptively selected expert
trees is introduced to model the mapping from a stereo RGB image pair directly to a
depth image. Note the removal of the stereo-matching pre-step. The intuition behind
the proposed RRF is that it adaptively selects di erent stereo-matching measures as it
implicitly determines matching pixels in a coarse-to- ne manner. While the RRF makes
depth prediction for each superpixel independently, the CRF uni es the prediction of
depth by modeling pair-wise interactions between adjacent superpixels. As a result,

the proposed system provides a robust method for generating a depth image with an

LA superpixel is de ned as a contiguous cluster of pixels. The cluster is based on the relative
proximity and intensity values of the pixels within the cluster.
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inexpensive stereo camera. The latter part of the chapter presents both qualitative
and quantitative results, that demonstrate the superiority of this approach to that in
the previous chapter.

The goal remains to extract robust hand depth from the stereo RGB inputs as a
precursor to hand pose estimation. Whilst recovery of hand depth provides challenges,
as previously expressed in prior chapters, the constraint that the depth recovery task will
only apply to a particular class of object (hand) means that stereo-matching constraints
can be learned using a machine learning approach and tested on similar surfaces. This
is particularly useful as one can better establish the matching criteria that can achieve
the best stereo matches (and hence disparity) since the typical structure of the scene
of interest is known. Conventional approaches to stereo-matching (like the one used in
the previous chapter) rely on universal conditions for nding correspondences. Speci ¢
to the problem of hand-based stereo-matching, a more robust approach is proposed that
adaptively establishes matching conditions based on unique properties of the hand (e.g.,
skin tone, texture, etc.). Underlying this approach are four main conjectures. The rst
is that the depth surface of a scene with hand poses consists of a set of homogeneous
regions that yield a smooth surface and continuous texture. Second, for establishing
correspondences, particularly in the presence of ambiguities like textureless regions,
a diverse set of matching costs and window sizes improves the chances of nding a
correct match. Using di erent matching criteria to assess potential matches e ectively
increases the dimension of the feature space that is used to determine similarity. This
is particularly the case with attempting to establish correspondence on an inherently
untextured hand region. Third, that the di erence in skin tone and hand size for
di erent individuals makes establishing universal matching criteria for determining
stereo correspondence a di cult task. Conventional approaches to stereo-matching
adopt this universal approach when attempting to establish a single cost function for
appraising the similarity of potentially matching correspondences. In this chapter,
it is proposed that a more robust approach will be to adaptively establish matching

conditions based on speci ¢ properties of the hand (e.g. skin tone etc.). Last, that the
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most e ective approach to stereo correspondence search is a coarse-to- ne one, which
can implicitly manifest in a machine learning context.

Contributions: This chapter proposes a novel, data-driven Regressive Random Forest
framework that learns the direct mapping between a stereo image pair and high-quality
groundtruth depth measurement.

In so doing, it presents Conditional Regressive Random Forest (CRRF), an inno-
vative combination of Regressive Random Forest and Conditional Random Fields to
model this mapping. A major contribution of this research is the use of a machine
learning framework to combine various stereo matching criteria (multiple cost functions
and window sizes) with the aim of implicitly determining stereo correspondences.

Unlike conventional CRF methods that require iterative solutions, a closed form
solution to CRRF inference is derived. Similar to the framework previously presented,
the CRRF framework has much wider application, particularly to problems that can

be posed using graph theory.

5.1 Overview of Conditional Regressive Random

Forest (CRRF)

The method proposed in this chapter recovers a high-quality depth image from two
stereoscopically acquired images of the hand. Figure 5.2 shows an overview of the
approach. First, the reference stereo image is segmented into superpixels using Simple
Linear Iterative Clustering (SLIC) [107]. For every superpixel that lies within the hand
region, its stereo-matching cost with all potentially matching pixels along the epipolar
line in the corresponding image is computed. Five di erent matching cost functions
were applied simultaneously (these include: Sum of Absolute Di erence (SAD), Sum of
Squared Di erences (SSD), Normalized Cross Correlation (NCC), Quantized Census
(QC), and Zero-mean Sum of Absolute Di erences (ZSAD)). The reader is referred to
Section 2.1.1 and [108] for details on these cost functions. Each of these stereo-matching

cost functions is applied under varying window sizes that are centered on the centroid of
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Figure 5.1 An illustration of the proposed approach. First, the reference stereo image
is segmented into superpixels. Using di erent window sizes and cost functions, the
disparity cost along the epipolar line in the corresponding image is computed. This cost
is concatenated to generate a feature signal that is fed into a Regressive Random Forest.
Posterior probability distributions from the trees are combined using the matrix, A to
bias against the Holistic hand features of the hand. This yields the unary term of the
CRRF model). The similarity measure between neighboring superpixels is multiplied
with  to yield the pairwise term. The CRRF is solved in a closed form solution, y ,
that maximises Eq. 5.9.

the superpixel, and on the potentially matching pixels in the corresponding stereo pair.
The matching cost values that are computed across all combinations of cost functions,
window size and potentially matching pixel are concatenated to a single feature vector.
Henceforth, this vector of features will be referred to as the matching-cost feature
vector. Note that the proposed approach does not attempt to identify matching pixels
explicitly; it simply computes the matching-cost feature vector (for each superpixel). In
addition, features that relate to the hand in the scene are also extracted. These features

primarily represent how far away the entire hand is from the camera, texture, and the
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color of the skin and will be referred as the holistic hand feature vector. The holistic
hand feature consists of three main factors. These include the average intensity value
of all hand region pixels; the aggregative shift of all hand pixels in the reference stereo
camera compared to the other stereo camera; and lastly the ratio between the number
of hand and non-hand region pixels is computed. This results in a six-dimensional
holistic hand feature vector (3 color channels values, 2 vector shift values, and 1 ratio
of pixels in the hand vs. non-hand regions). More detail is presented in Section 5.2.1.

A Regressive Random Forest (RRF) is trained to regress for the depth of a superpixel
based solely on its matching-cost feature, however, each tree in the RRF is exposed to a
subset of the training data based on its holistic hand feature. Finally, a CRF framework
is used to combine the predictions from each tree in the RRF whilst constraining for
smooth depth surface prediction. This combined framework is referred to as Conditional
Regressive Random Forest (CRRF). The following sections delve into greater detail of

approach.

5.1.1 Notation

For a given reference image, z, and its corresponding stereo image, z% a hand superpixel
in z is denoted as X; 2 f xy;:::;X;9 and the centroid pixel of the superpixel as v;.
For each v;, there exists a search space of W potentially matching pixels, v, 2

fv?,; v g located in z° The vector

Ciig(V)) = [Freg(Vii V] 1) Freg (Vi VD ): 1t Freg (Vi s viw I; (5.1)

where fy.q is the resulting cost from using the k™ matching cost function, and g"
window size. Cy.g(Vv;) is concatenated for all combinations of k and g to get a single
matching-cost feature vector. Hence for each superpixel, x;, given that k 2 f 1,::K g
and g 2 f 1;::Gg, the corresponding matching-cost feature will be ¢; 2 RN where
N =W G K. Note that W, G and K are the number of pixels in the search space,

the number of window sizes, and the number of matching cost functions respectively.
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The groundtruth depth at the centroid pixel,v;, is d;, the regression dataset is then
de ned as f (di; c)?; 5 (dy; cy)@g for all Z stereo image pairs collected over di erent
hand poses and subjects. The extracted feature is fed into the Random Forest based

framework. The Random Forest framework is described in the next subsection.

5.1.2 Expert Random Forest

Decision trees are grown by recursively splitting and passing training data as described
in Section 4.2.1. Here the matching-cost feature is used to determine the split. The
intuition is that the trees implicitly learn how to adaptively select the size of window
and type of cost function based on di erent tree split levels. This is analogous to
adaptively determining the size of the window and type of cost function to use at
di erent stages of a coarse-to- ne approach to search for pixel correspondence. The
entropy decreases moving through each tree from the root node to the leaf nodes.
Experimental results will show that the entropy is related to the coarse-to- ne selection
of features.

Expert Trees: As previously stated, holistic hand features (features that describe
the entire hand), are additionally computed. This step is motivated by the signi cant
e ect that features like skin color and the overall distance of the hand have on the
matching-cost features. Consequently, establishing a stereo-matching criterion (i.e.,
matching cost, window size, etc.) that works e ectively across di erent skin tones and
hand depth levels is a di cult task. To this end, all the stereo image pairs are clustered
into classes based on their holistic hand features. Each tree in the RRF is trained by
bagging from only one of the classes, making it an expert at regressing the depth for
that class. Thus, a particular tree may be expert at predicting the depth of superpixels
in a darker-toned hand that is closer to the camera, whilst another may specialize in
lighter-toned hands that are further away. See Section 5.2.1 for more detail on holistic
hand features. When predicting the depth of an unseen stereo pair with a holistic
hand feature, the CRF framework, discussed in the next subsection, ensures that more

emphasis is placed on prediction from expert trees with similar holistic hand features
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than to others. Now the Random Forest framework is established, the next subsection
discusses how the CRRF framework selectively introduces a bias for each class of tree

using the holistic hand features whilst accounting for continuous depth estimate.

5.1.3 CRRF Framework

Consider a new stereo image pair, with a holistic hand feature vector, h, whose
superpixels’ depths are to be predicted using the trained RRF. For a single superpixel,
X;j, each RRF tree, t, produces a posterior probability distribution, p:(djjc;). This
distribution is discretized by quantizing the depth values into D nite values. This

yields a probability vector, p;; 2 RP that is then consolidated across all the T trees

Figure 5.2 An illustration of expert trees and their training clustered data. First, the
dataset is clustered based on their holistic hand features (that describes the skin tone,
distance of hand from camera etc.). Each group of expert trees is trained only on a
single cluster making them expert that that class of hand (e.g. a light-toned hand that
is afar).
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into Py =[py;Py; P12 RP T. The probability of d;, given the reference stereo
image and trained RRF, Pr(d;jP;h), is modelled as a CRF. Conventionally a CRF
formulates conditional probability as a product of potentials, that is

1 #

Pran = S ()= e (1) 52)

where Z (b) is the partitioning function, and ; are potentials. See Section 3.2.6 for
more detail. Inspired by the work of Liu et al. in [109], the potentials in the proposed
framework take the form of a unary Ey and a pairwise term Ep.

[109] presents a deep convolutional neural eld model for estimating depths from
a single image by integrating the capacity of deep CNN with a continuous CRF.
Speci cally, it proposes a framework which learns the unary and pairwise potentials
of a continuous CRF in a uni ed deep CNN framework. The proposed method is
applied to depth recovery of monocular capture of generic scenes. Here the integral of
the partition function was analytically calculated, thus providing a solution for the
log-likelihood optimization. In the framework presented in this chapter, conditional
probability is approximated because of the intractable nature of Z(b) (as it requires an
integral over all combination of all possible states that the target and input variable
could have)in the proposed framework,

#
X
Pr(dijPish)=exp ~ (o) =exp[Ey + Epl; (53)

c
where Pr denotes an unnormalized probability distribution. This approximation will
su ce because the objective is to estimate the depth level with the maximum probability.
Hence, the probability of the depth distribution function for all superpixels given P
and the image’s holistic hand feature, h, is represented as the exponent of sums of both
potentials. While the unary term aims in yielding a conditional probability distribution
that maximizes the probability of the true depth level, the pairwise term encourages

neighboring superpixels to have a similar posterior probability distribution.
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Figure 5.3 An illustration of the unary potential when the number of trees, T = 240,
the number of depth levels, D = 500 and the number of holistic hand features, H = 6.
This illustrates how A weights the posterior probability, P ;, from the trees using h to
give a probability distribution of a single superpixel. This becomes the unary term in
the CRRF.

Unary Potential: The unary term predicts the depth level of a superpixel based on
its posterior distribution from the RRF trees and the holistic hand feature. To this end
a unary weighting matrix, A 2 R"T " is introduced, which weights the posterior from
each tree based on h 2 R". This is important because expert trees are trained, as
opposed to randomly bagged trees. The A matrix provides weights to trees depending
on the holistic hand feature. Hence it places varied emphasis on the predictions from
di erent trees.

Taking inspiration of the Bhattacharyya metric [110], Ey is formulated as an a nity
measure between true depth probability, pjT, and the predicted probability, P; Ah , as
in, " #

Ey = 1% M ; (5.4)

Ji iTAh
This is accumulated across all superpixels in the reference stereo image. The
denominator in Eq. 5.4 ensures that P ;Ah remains normalized. The surface plot in
Figure 5.4 shows how the di erent entries of A vary relatively. Figures 5.3 and 5.4 give
an illustration of the weighting ability of A. The peaks indicate a strong relationship

between entries of h and the tree index. Studying both gures, consider a hypothetical



108 Stereo-based Hand Depth Recovery using CRRF

example where h =[0;0;0; 1; 1; 1]". In this case, the holistic hand feature vector will
weight the prediction from the 240trees based on the last three columns of A, thereby
giving less weighting to trees 40 to 80 and trees 160to 200

Let ¥ = [p1;p3;:5012 R® P be a vector resulting from the concatenation
of the actual probability distribution of all hand region superpixels and let Y =
[P1;Po; P 3]" 2 R(P ) T pe the matrix whose row vectors are the concatenation
of the predicted probability distribution from each tree. Then the unary potential in
Eq. 5.4 can be rewritten for all superpixels in a single stereo image, z, in matrix form

as follows:

1
JiTAh

Ey= $ AN : (5.5)

The larger Ey becomes, the more similar the consolidated predicted probability, P ; Ah ,
is to the true depth probability, p .

Pairwise Potential: The pairwise potential enforces the constraint that adjacent
superpixels often possess similar depth and hence similar probability distributions.

This is based on the smooth nature of the depth of the hand surface. Similar to [109], a

Figure 5.4 A surface plot of the matrix A (see Figure 5.3), used to weigh the expert
trees based on the holistic hand feature. A higher value indicates more weight. Consider
a hypothetical holistic hand feature vector, [0; 0; 0; 1; 1; 1], which, when post-multiplied
with A will give less weighting to trees 40 to 80 and 160to 200 based on their lower
values (bluer colours), highlighted with red boxes.
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visual similarity measure between neighborhood superpixels is established to apply an
adaptive depth similarity constraint. Speci cally, neighboring superpixels that appear
dissimilar in terms of color, texture, and size will have a weaker pairwise potential
encouraging similar predicted depth. This is particularly intuitive in a self-occluded
scenario. The discontinuity in texture resulting from a nger occluding the palm, for
example, will indicate that a lower smoothness constraint is placed on neighboring
superpixels that exist on the edge of the nger and the palm. _

To achieve this behaviour, a similarity vector, sj = hsjl;k i sj?k I, and a pairwise
weighting, 2 RQ, are introduced. For a pair of neighbouring superpixels, x; and Xy,
Q superpixel similarity measures are computed between them (more details on the
superpixel similarity measures are presented in Section 5.2.1). Pairwise potential is

speci ed as:

Ep= TS by b, (5.6)

where U is a set of all possible pairs of neighbouring hand superpixels. Subsequently,
the pairwise potential is a measure of the a nity of the probability of all pairs of
neighbouring superpixels, and Tsj;k determines the contribution of each pair of
superpixels to this measure.

Let B 2 R? 7 be a matrix such that, its elements are given by

B ik = TSj;k l; (5.7

and zeros everywhere else. | isa D D identity matrix. With this matrix, the

pairwise potential in Eq. 5.6 can be represented in matrix form as:

1

Epzjvj

p'BY: (5.8)

A resulting depth image with high level of smoothness will yield a large pairwise
potential, Ep.

Complete CRRF: At this stage, both potentials, unary and pairwise, have been
established and the higher they are, the smoother and the more likely the predicted
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depth becomes (based on its probability). Egs. 5.3, 5.4 and 5.6 are combined to result
in

2 3

1¥ pTPART 1 X
L+ Tsibrb% (5.9

Pr(dijP;;h)=exp 4=~ -+ —
o Jjo iTAh Vi 4)2u

for a single stereo image pair. In this uni ed framework, the aim is to maximize Eq.

5.9 based on A and . For all stereo images in the training set, z, the framework

.. P .
attempts to maximize , log®Pr(y@jP @) . Formally,

% .
max logPriy@iPp@)+ @ T ) (5.10)

Toz=l

where is the decay weight on the constraint with  maintaining a unit length and

! #
1% p/PjAh 1 X

Ji, iTAh Y )20

log®Pr(d;jP;;h) = Tsibib; (5.11)

The monotonic nature of log functions implies that Eq. 5.11 increases as PjAh
and p; becomes more similar and the resulting depth becomes more smooth. During
optimization, it is ensured that all the entries of A are positive, so that P ; Ah represents
a probability. With the aim of solving for Eq. 5.10, stochastic gradient ascent is applied
using the partial derivative of Eq. 5.11 with respect to A and

@logPr(yjP;h)g _ 1¥ P/p;h"(i"Ah) (p/P;Ah)ih T
@ S [iTAh 2

(5.12)

and
@logPr(yjP;h)g _ 1
@ Y 120

ST (5.13)

A and are randomly initialized, and iteratively updated accordingly. See Section
5.2.3 for details.

Prediction: Having established A and , predicting the posterior probability for
new stereo pairs involves solving the Maximum a Posteriori inference on Eq. 5.9. To

achieve this, the matrix representations of Ep and Ey are used in Eq. 5.5 and Eq. 5.8
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resulting in " "
Pr(d;jP;;h) =exp lejijBy + I\llyTY Ah ; (5.14)

The aim is to determine y that maximizes Pr(yjx) for a pre-computed A and pair.

y =argmaxPr(yjP;;h)=argmax inBy + inY Ah (5.15)
y y Y] N

This is easily derived in closed form by solving for the zeros of the second derivative.
Formally,
jYj

y = WB Y Ah: (5.16)

y represents the concatenated predicted depth probability for all superpixels in an
image. The predicted depth level for a superpixel is the depth level with the maximum

depth probability.

5.2 Implementation Details

When mapping the matching-cost features to groundtruth depth, it was important to
establish a database of strong registration between the pairs of data. To this end the
Dataset B introduced in Section 3.3.2 was used. This allows f (dy; ¢1)@; 25 (dy; c;)Pg
to be established for all captured instance of stereo pairs, z. Dataset A was not used

to avoid bias of learner to fronto-parallel poses.

5.2.1 Extracted Features

Matching-cost Features, c;: as discussed above, the implementation used ve
matching cost functions. These cost measures were chosen because of their prominence,
computation cost, and simplicity. Of course, more complex types and combinations
of matching costs could be used. Each of the cost functions was applied under three
window sizes: [707], [11011], and [15015]. All combinations of these window sizes
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and matching costs were used to compare each centroid point in the reference stereo
image to 50 potentially matching pixels (selected based on proximity to v;) that lie on
the epipolar line in the corresponding stereo pair. This resulted in a 750-dimensional
matching-cost feature vector being used to regress for the depth at each superpixel.
Holistic Hand Features, h: For each captured instance of stereo pairs three main
factors are used to describe the scene. First, the average intensity value of all hand
region pixels across all three color channels is considered. This quanti es the skin
tone. Second, the aggregative shift of all hand pixels in the reference stereo camera
compared to the other stereo camera is computed. This quanti es how far away the
hand is from the camera, representing the di erence in the average pixel’s position for
hand region pixels in both cameras. Last, the ratio between the number of hand and
non-hand region pixels is computed. This quanti es the size of the hand (if considered
relatively to the aggregative shift). Note that the implementation of this technique is
not limited to these three factors, the only constraint is that all entries of h must be
positive values.

Superpixel Similarity Measure, s;i: To quantify similarities of two neighboring
superpixels four measures are used. The rst measure is the di erence in the average
LAB color of both superpixels. The second is the di erence in the Local Binary Pattern
[111]. The third measure is the di erence in the standard deviation of pixels’ values
in LAB color. Finally, the summed di erence in histogram is examined. In each of
these cases, the exponent of the negative Euclidean norm is applied to the resulting
di erence. E.g. the rstentry (LAB di erence) si = el 5™ S I where sH® s
the average LAB value for superpixel x;. This yields a similarity measure vector with
a length of four, or Q = 4. These features were chosen because of there success in

discriminating neighbourhood a nity has illustrated in [109].

5.2.2 Random Forest

Recall that Dataset B (from Section 3.3.2) contains 500 instances of hand poses at

di erent distances, from 12 participants (6,000 stereo pairs in total) of di erent skin



5.2 Implementation Details 113

Figure 5.5 Examples of SLIC segmentation applied to hand region. Two original hand
region images (13 and 3%) and their corresponding SLIC-based segmentations (2"
and 4M).

tone, hand size, and gender. Data from four participants were reserved for testing, and
the remaining data (from the other eight participants) was used for training. SLIC
segmentation was applied to all reference stereo images, producing approximately 3,000
superpixels per image. Note that only a fraction of these 3,000 superpixels is hand
region superpixels. The number of hand superpixels (ranging approximately from
200 to 500 per image capture) depends on the distance between the hand and the
camera. In total, roughly 2.5 million superpixels were used in training and evaluating
the algorithm. The depth value posterior distribution of the RRF was quantized into
500 bins, i.e. D =500 (see Figure 5.5). The depth bin of 500as it achieves a good
balance between the precision of depth prediction and the size of matrix boldsymbolB
The depth range of the hand poses in the entire dataset generally ranged from 500mm
to 1800nm. Hence, the RRF can predict to a resolution of (1800nm  500mm)=500
bins = 2:6mm.

With the focus on the training dataset (from the eight participants), rst, all
stereo pairs were clustered into six clusters based on the holistic hand feature (using
k-means). The training data was divided into two sets (seven participants to one
participant). The RRF was trained on the rst set (containing data from seven
participants) and then the second set (containing data from the remaining participant)
was propagated from the trained RRF to acquire the posterior probability matrix,
Y 2. This procedure was carried out iteratively for all permutations of seven training
and one testing participant(s) in a cross-validation fashion, yielding a set of posterior

probabilities fY (&) oy (Zs)g of stereo images for training participant, s. Note that
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all Y ¥ estimations result from testing stereo images of training participant s on a
RRF trained on images from all the other seven participants. All Y (¥ and h(zs) are
subsequently used in the CRRF framework to estimate A and . The RRFs were
trained in parallel on a cluster with MATLAB using two nodes, each with 20 processors.
Each training round (i.e. to train for each posterior Y () takes approximately 3 - 4
hours. Since eight rounds were needed, training took roughly one day. At test time,
based on the MATLAB implementation, the SLIC algorithm runs in 38.23 seconds on
average to segment a single reference image. The extraction of the holistic hand and
stereo-matching features takes 36.34 seconds on average for each stereo pair. Finally,
the propagation of all superpixels and combining the posteriors using  executes
typically in 185 seconds. Hence testing for the depth a frame of stereo images on the
cluster will typically take 260 seconds. Note that the runtime could be considerably

reduced in future work by recoding the method in C++ and using GPU techniques.

5.2.3 Stochastic Gradient Ascent

A and are learned separately by rst randomly initializing, with all elements of A
being positive. First A is trained for and then is learnt under a xed A. In both
cases, the learning rate was initialized at 12,000. Training was carried out on 100
epochs, reducing the learning rate by 10% every 10 epochs. The decay weight, , was
set as 0.05. For greater clarity, the entire framework is summarised, identifying and

outlining key features and how they relate in Table 5.1.

5.3 EXxperiments and Results

The approach was validated experimentally, presenting both qualitative (Figure 5.7)
and quantitative (Table 5.2) results. Three main comparisons were made, these were
prediction solely using RF (with only matching-cost features and with a combination of
matching-cost and holistic features); using RF with the unary term framework; as well as

the ELNF technique presented in the previous chapter. The results were quantitatively
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Components Implication

Matching-cost fea- | This feature vector describes how similar/dissimilar
tures (per super- | the centroid of the superpixel is to all pixels along
pixel) the epipolar line on the corresponding stereo image.
This is potentially determined by the disparity at that
centroid pixel.

Superpixel Simi-| This is a vector of metrics that conveys how similar or

larity measure dissimilar two neighboring superpixels are.

Holistic Hand fea- | This feature vector describes the general shift, tone,
tures and size of the hand.

Expert Trees RRF are conventionally built, however, each tree is

trained on a dataset of hands captures of a particular
class, based on its Holistic hand feature.

Unary Term During a superpixel depth prediction, the unary term
facilitates the bias to predictions from expert trees
that were trained from a dataset of similar Holistic
hand features.

Pairwise Term The pairwise term adds the constraint that superpix-
els depth predictions yield a continuous surface in a
neighborhood, i.e. neighboring superpixels (particu-
larly those with high Superpixel Similarity measure)
will tend to have similar depth predictions.

CRRF Formula- | The CRRF formulation yields a closed form solution to
tion superpixel depth prediction that combines the unary
and pairwise terms.

Table 5.1 A Brief outline of key components of the proposed framework. This includes
Matching-cost feature, Holistic Hand feature, Superpixel Similarity measure, Expert
trees, Unary Term, Pairwise Term, and the CRRF formulation.

appraised for accuracy by comButing the percentage of correctly predicted depth both
ST dpj<t ]
N

at superpixel and pixel levels, —22~ , Where dF?T and d, are the groundtruth

and the predicted depth at superpixel (or pixel) p; 1] is a function that returns 1 for
true input and 0 otherwise; and N is the number of hand region pixels/superpixels.

. 1 P jdST  dpj L
The average relative error, i oy g, Was computed to quantitatively evaluate
p

the performance of the test. The following subsections will review the results in Table

5.2 and Figure 5.7 in more detail.
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5.3.1 Stereo-matching Comparison

To validate the machine learning approach, depth recovery (through disparity) from
stereo pairs in Dataset B using a prominent stereo-matching technique, SGM was
performed. At the time of writing, this was the 9" best performing published stereo-
matching technique on the Middlebury stereo evaluation chart [112]. SGM was chosen
as it is the highest performing technique for which a MATLAB implementation is
readily available.

The same calibration information used in establishing the epipolar line of Dataset
B was used to rectify the stereo capture of hand poses. Then the recti ed stereo
pair was fed into the MATLAB implementation of SGM for stereo-matching. Stereo
baseline and focal length resolved from stereo calibration are combined with the SGM
generated disparity to yield the actual distance. Performance error is computed based
on hand pixel regions. This is shown in Figure 5.7 and Table 5.2 (last row). This is an
interesting comparison as SGM also applies global optimization. Nonetheless, its poor

performance is apparent from Table 5.2. It provides the least accuracy and the most

Figure 5.6 This graph compares the pixel level accuracy of CRRF to SGM as the
threshold value varies. The superiority of CRRF is most apparent at higher depth
error threshold.
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error in comparison to the rest of the machine learning techniques. The hypothesis
here is that this is due to the untextured nature of the hand as well as radiometric
di erences present in the stereo pair. The SGM technique attempts to universally
appraise pixel correspondence by applying a pre-established matching criterion. The
untextured nature of the hand and radiometric inconsistencies, in conjunction with the
varying skin colors and hand sizes, makes this task hard. This result emphasizes the
signi cance of the proposed approach in that a conventional stereo-matching approach
(even one as robust as SGM) performs poorly for skin regions. Further investigation on
the performance of the two techniques was performed using pixel level accuracy with a
varying threshold. The graphical comparison is presented in Figure 5.6. Again, the
superiority of CRRF is demonstrated. A signi cant result is that a high percentage
of depth predictions made using the proposed approach are accurate in comparison
to SGM. However, as the error threshold gets closer to 8mm the percentage drops
abruptly. To put this into context, the smallest nger on a hand is typically 10mm in
width. Hence, at least 81% of the structure of the ngers are mostly discernable. This

contrasts with 10.3% in the case of SGM.

5.3.2 Baseline Comparison

Four baseline comparisons were made. The rst was predicting depth solely from the
matching-cost feature, using conventional RRF. The results (Table 5.2) validate the
hypothesis that applying a machine learning approach to learning the stereo-matching
criteria for determining stereo correspondence is a more e ective approach. Using a
set of simple stereo-matching criteria and stochastically determining which to use at
di erent tree depths has resulted in almost a 272.7% increase (from 0.132 to 0.492) in
pixel level accuracy.

Secondly, the matching-cost feature was augmented by concatenating it with the
holistic hand features whilst still regressing with a conventional RRF model. The aim
was to speci cally investigate the impact of using expert trees . From Table 5.2 one

can see a notable improvement in the prediction resulting from adding the holistic
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Figure 5.7 Qualitative Results using real captured poses. The reference image of
the stereo pair is shown in the 1% row and the corresponding groundtruth depth is
presented in the 2" row. The results from the proposed technique are presented in the
39 row. Results from solely using the unary term with RF are in the 4" row, while
recovered depths from RF are presented in the 5" row. The quality of the recovered
depth as a result of CRRF is apparent.

feature, yielding greater accuracy (0.492 to 0.689) and less relative error (0.500 to
0.353) in both superpixel level and pixel level. However, a much greater increase in
accuracy results from using the holistic feature to learn expert trees as opposed to just
concatenating it with the stereo-matching feature. This yielded a 50.2% increase in
accuracy on average in comparison to the 29.1% increase in accuracy provided by solely
concatenating the holistic features. The last baseline comparison was to investigate the

signi cance of the pairwise term. Recall that the contribution of the pairwise term is to
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Methods Superpixel Accuracy Pixel Accuracy Ave. Relative Err.
per per
t=10mm t=20mm t=10mm t=20mm Superpixel Pixel
SGM - - 0.103 0.132 - 0.772
ELNF - - 0.455 0.515 - 0.534
RRF 0.599 0.610 0.423 0.492 0.503 0.500
RF (with
Holistic 0.686 0.757 0.610 0.689 0.358 0.353
Feature)
RF + Unary 0.835 0.885 0.684 0.788 0.229 0.231
CRRF
(Pairwise + 0.911 0.911 0.811 0.852 0.181 0.190
Unary)

Table 5.2 Quantitative comparison of the proposed technique (CRRF + Pairwise +
Unary) against the ELNF (proposed in the previous chapter), conventional RRF, and
di erent variants of the proposed technique.

add a smoothing constraint on the depth prediction. This is presented in the qualitative
results. The predicted depth is clearly smoother and hence a better representation
of the surface of the hand. The quantitative result from Table 5.2 also conveys the
superiority of the prediction made when the pairwise term is applied. Interestingly,
the pixel level accuracy is almost as strong as the superpixel level accuracy when the
pairwise term is applied. This is again due to the smoothing e ect. Although the
superiority of the proposed approach against the baseline comparison is evident, there
still exists some failure cases (see Figure 5.8). It can be observed that approach fails in
scenarios were the hand positioned in extreme distance (i.e. too far) away from the

camera.

5.3.3 Comparison with ELNF

Comparison with the ELNF framework presented in the previous chapter was made.
ELNF also applies a Regressive Random Forest to estimate image depth. However,
a single similarity measure (Quantized Census) was used to compute depth image,
and no pairwise term is modeled in the regression that maps a disparity image to a
depth image. As the results in Table 5.2 show, the proposed method, even without the

pairwise term, outperforms ELNF. This improved performance in the proposed method
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Figure 5.8 Two examples of scenarios where the CRRF produces weak results. The Left
image is the reference stereo capture whilst the middle image shows the groundtruth
depth. The predicted depth image is shown on the right.

is attributed to the features used. Unlike ELNF, which uses a single similarity measure,
the proposed method learns the features that best regress the depth using multiple
similarity measures, disparity shifts, and window sizes in a concatenated feature
vector. Also unlike ELNF, which uses disparity as an intermediate representation, the
proposed method maps directly from the stereo pair to depth. Additionally, the CRRF
framework’s regression is more sophisticated in that it conditionally learns expert
trees, which are combined using holistic hand features. Finally, the pairwise term
in the proposed model provides additional smoothing constraints that yield superior

performance.

5.3.4 Evaluating Performance vs Depth Range

The performance of the CRRF technique at di erent depth levels is investigated here.
To this end, the average error for pixels of a particular depth range was experimented
with. The results are presented in Figure 5.9. Figure 5.9a compares the performance of
the CRRF technique to SGM. It can be observed that in both cases, depth prediction for

pixels closer to the camera is relatively poor (higher error). The prediction performance
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Figure 5.9 An illustration of performance over depth levels. The rst graph (a) compares
the performance of CRRF to the ELNF approach presented in the previous chapter
whilst the second graph (b) compares CRRF to using SGM respectively, over di erent
superpixel depth levels.

increases for pixels that exist closer to the middle of the depth range. A dip in
performance appears again for the remaining pixels. This trend in performance (that is
consistent with the machine learning based approach) is not shared by the performance
of SGM depth recovery (Figure 5.9b). The variation in the performance of SGM is
less systematic. A possible reason for this is the quality of groundtruth depth in these
regions. The fact that the groundtruth (RGBD recovered depth) itself has a low-quality
depth measurement at lower and at higher depth could yield poor depth prediction

at these depth values. Since at the extreme depths (too close and too far from the
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Figure 5.10 Graphical illustration of the distribution of feature selection at di erent
depth levels of the regression forest. Speci cally, it shows the total percentage of
evaluated 7 7,11 11,and 15 15 window features at di erent tree depth levels.
This corroborates the conjecture that at shallow tree levels the trees are biased to a
particular matching criterion. In this case, the larger window sized features (15 15)
are evaluated more at shadow tree depth and vice versa.

camera), the model is learning from a lower con dence (and potentially less consistent)

dataset.

5.3.5 Evaluating the Coarse-to- ne Conjecture

As stated in the Section 5.1, the approach was motivated by aiming to implement a
coarse-to- ne framework in a machine learning context. This section investigates to
what extent the RRF exhibits this coarse-to- ne feature. To do so, during training (of
the RRF) all superpixels entering all nodes at each tree depth level were collected and
the percentage of superpixels that were evaluated at a particular feature type calculated,
keeping in mind that each superpixel that propagates through the RRF possesses a
matching-cost feature vector where each of the elements corresponds to a particular
window size and matching cost function. Hence, for a superpixel entering a node, the
feature position that was evaluated is examined (to determine the split) and tallied.

The same applies to matching cost and window size to which the feature corresponds.
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The results are presented in Table 5.13a to 5.13c. Note that the percentile is computed
across each depth level. Looking at the table, it can be noted that the RRF prefers
di erent types of features at di erent depth levels. For instance, 7 7 and 11 11
window sized SAD features are less evaluated at shallow tree depth (depth levels 4 to
10). The same applies to 15 15window sized Quantized Census features at deeper
tree levels. However, a stronger and more apparent correlation can be observed when
the percentiles across window sizes are aggregated (See Figure 5.10). An interesting
observation pertaining to the correlation between the depth of the trees and the window
size is illustrated. At shallow tree depth, the larger sized window (15 15) based
feature positions are evaluated more. While in the middle of the latter tree depth
smaller window size based feature positions are evaluated more. This is because, at
shallow tree depth, where there are higher uncertainty and more variation in the depth
of evaluated superpixels, it is advantageous to evaluate a nity based on larger window

sizes. In contrast, at deeper tree levels, smaller window sizes are preferred.

5.3.6 Evaluating Signi cance of matching costs and window

sizes

Figure 5.11 Bar chart illustrating an ordered percentile distribution of evaluated
features, aggregated based on their window size and matching cost function (SAD,
SSD, NCC, ZSAD and QC).
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Examining the results presented in Figure 5.10 and 5.13 begs the need for an investiga-
tion into the signi cance of the other features. Since it appears that some features are
more evaluated than others and hence are more discriminating. An ordered percentile
distribution of evaluated features aggregated based on their window size and matching
cost functions from Figure 5.13, is presented in Figure 5.11. It can be hypothesized that
the more evaluated a feature is, the more discriminative (and hence more signi cant)
of the target space it is. Consequently, to investigate the e ect of the number of
features used, the number of features used is progressively decreased based on the
level of signi cance (i.e. the number of times it was evaluated). The results of this
are presented in Figure 5.12. The graph illustrates the change in the percentage of
correctly predicted pixels (at a threshold of 10mm) as the number of features used is
reduced. Note that the order in which the features are dropped is based on the level of
their signi cance according to Figure 5.11, starting with the SSD (11 11) feature,
followed by the SAD (7 7) and so on.

The result indicates that there is a substantial improvement in accuracy as a
resulting of using multiple costs functions as hypothesized in the introduction of this

chapter. However, it can be argued that the rst 8 most signi cant features would have

Figure 5.12 Graph illustrating the change in the percentage of correctly predicted pixels
(at a threshold of 10mm) as the number of feature used is reduced. Note that the order
in which the features are dropped is based on the level of their signi cance according to
Figure 5.11, starting with the SSD (11 11) feature before the SAD (7 7) and so on.



5.4 Summary 125

su ced as their absence contributes to 87.28% (%217 9:064

) of the drop in the percentage
of correctly predicted pixels. This is a potential avenue to improving the e ciency of

the proposed framework.

5.4 Summary

In this chapter, an application of the regression forest technique for computing depth
from stereo images was proposed and developed. Introducing Conditional Regressive
Random Forest, a framework that uniquely combines expert trees based on the features
of the superpixel whose depth is being predicted. The framework further enforces
smoothness constraints as it predicts the depth of each superpixel away from the
camera. Thus, it demonstrates the use of a relatively cheap stereo camera rig to
generate a high-quality depth image of the hand that can be used for pose estimation.
It should again be noted that the technique is applicable to other scenarios, including
regression problems whereby each data point is not purely independent of other data
points. In this case, the regressive or classi cation Random Forest can be applied to
independently regress for each data point, whilst, the potential dependency between
data points can be modeled by the pairwise term.

An obvious limitation of the proposed technique is the need of a skin segmentation
step that precedes the stereo-matching algorithm. Whilst this does not a ect the
performance of the technique itself, it will a ect the shape of the recovered hand depth.
False hand segmentation could be an issue in scenarios where the recovered depth
is to be used as a feature for further analysis. For instance, in [75] the feature for
pose estimation from depth image is dependent on the shape of the hand. Another
potential limitation of this technique is that it quantizes the depth space, limiting the
depth sensing reach or resolution. Whilst larger depth sensing reach can be learned
by adapting the training set appropriately, this will lead to a computation cost vs.
depth reach/resolution trade-o . Since larger depth reach or resolution will require

more depth levels (and hence increase in the size of the matrices B and Y ), the
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Figure 5.13 Percentile distribution of evaluated features based on their window size and
matching cost function (SAD, SSD, NCC, ZSAD and QC) at di erent depth levels.

computational expense of the technique increases. A solution to this problem might
be to use a logarithmic scale for depth so that less resolution will be given to depth

prediction far away (which is often more signi cant) and vice versa. This chapter
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presented a state-of-the-art machine learning approach in recovering accurate depth
images from stereoscopic images of the hand, and both the qualitative and quantitative
results show very promising results. This robust depth estimation can be fed into
state-of-the-art hand pose (from depth) estimation techniques like those discussed in
Chapter 2.

In this chapter, a data-driven Regressive Random Forest framework that learns
the direct mapping between a stereo image pair and high-quality groundtruth depth
measurement is proposed. In so doing, it presents Conditional Regressive Random
Forest (CRRF), an innovative combination of Regressive Random Forest and Condi-
tional Random Fields to model this mapping. A major contribution of this chapter is
the use of a machine learning framework to combine various stereo matching criteria
(multiple cost functions and window sizes) with the aim of implicitly determining stereo
correspondences. Unlike conventional CRF methods that require iterative solutions, a
closed form solution to CRRF inference was derived.

A comment on the achieved results is that these are based on the assumption
that a perfectly correct ground truth was acquired. Of course, this is not the case
as the ground truth is based on re-projected depth measurement from the RGBD
sensor. The re-projection (based on the pre-calibration), as well as, the RGBD sensor
itself contributes to an erroneous ground truth. A more reliable approach to the data
collection (for training, as well as, validation) could involve laser-based depth sensors
that are more accurate and less susceptible to background noise like the RGBD sensor
used in this thesis. It should be noted that although a laser is an e ective way to get
high accuracy, it is really expensive.

So far in the thesis, the premise has been to rst recover depth (from a hand
scene) with the aim of later using the resolved depth to estimate hand pose. The
work presented so far will su ce in testing this premise as there is substantial work in
literature for robust pose recovery from depth. Hence the task is limited to applying
these frameworks to the recovered hand depth. This chapter concludes the investigation

into this premise. The next chapter will explore the possibility of implementing a
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uni ed framework that recovers pose directly from stereo. A comparison of these
two approaches (i.e. recovering depth explicitly for later pose estimation or directly

recovering pose from stereo) will be investigated in the latter part of the thesis.



Chapter 6

Hand Pose Estimation Using Deep
Stereovision and Markov-chain

Monte Carlo

As discussed at the end of the previous chapter, the approach taken so far in this thesis
is to recover robust hand depth with the aim of later using the recovered depth to
predict the pose. This chapter presents an alternative approach in that it proposes a
solution to estimating pose directly from stereo. The proposed framework combines
jointly optimal depth and hand pose estimation in a uni ed framework using Markov-
chain Monte Carlo sampling and deep learning. Inspired by the work of Collins and
Carr in [113], this chapter presents a joint optimization solution to depth recovery
and pose estimation from stereo capture. In [113] a hybrid stochastic/deterministic
optimization scheme that uses Reverse Jump Markov-chain Monte Carlo is used to
perform stochastic search over a space of potential object detections. This stochastic
search is interleaved with deterministic-based optimization of association of these
proposed detections in along succeeding frames. In this chapter MCMC is applied to
propose depth images that are tested against observed stereo information and prior

probability to estimate the hand pose.
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In hand pose estimation, the aim is to regress for the spatial location of the di erent
hand joints given a pair of images from a stereo capture of the hand. With this in mind,
it is important to recognize the success of depth based (compared to RGB based) hand
pose estimation, hence it is useful to exploit depth as a hidden variable between a stereo
image input and the spatial pose output. To this end, the problem is conceptualized to
jointly solving for two unknowns: the depth image and the spatial pose of hand joints.
Unlike several approaches to pose estimation from stereo capture, which explicitly
recovers disparity before regressing for the pose in a sequential manner, this chapter
presents a joint optimization approach that is robust against potential errors in the
depth estimation. Thus, this reduces the burden on the pose estimation framework
to be robust against erroneous depth recovery. The consequence of this approach is
that it iteratively revises for errors in depth proposal. This allows for simultaneous
correction of proposed depth estimation and the resulting pose estimation to jointly
optimize the likelihood of the depth and hand pose estimation given the stereo input.
Contributions: Unlike several approaches to pose estimation from stereo capture
that explicitly recover disparity before regressing for the pose in a sequential manner,
this chapter presents a joint optimization approach that is robust against potential
error in the depth estimation pre-step. Thus, there is no burden on the pose estimation
framework to be robust against erroneous depth recovery.

Another consequence of the proposed approach is that it iteratively revise for errors
in depth proposal. This allows for simultaneous correction of proposed depth estimation
and the resulting pose estimation to jointly optimize the likelihood of the depth and
hand pose estimation given the stereo input.

Lastly, unlike the work in [64], which utilizes a state-of-the-art tracking method
that is sensitive to erroneous initialization and anatomical hand size as discussed in [82],
the approach proposed is a semi-generative approach that is experimentally proven to

work on di erent sizes and tones of hand without pre-calibration.
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6.1 Methodology

As discussed in the previous section, depth is a strong hidden variable in the context
of the input domain, stereo capture; and output domain, pose estimation. This is a
consensus that most work on pose estimation from stereo has made ([64, 85, 86]), a

concept which is the foundation of this proposed work.

6.1.1 Stereo-Depth-Pose

For a given stereo image pair, S of a scene of a hand pose H , with a depth image
D, it is assumed that the hand pose induces a depth surface, that in turn induces
the detected stereo image in a Bayesian tree model. See Figure 6.1a. The goal is
then reduced to establishing the pose H and depth, D that maximize the posterior
distribution of H and D given an observed stereo image pair S.

H ;D =argmaxPr(H;DjS) (6.1)
H ;D

Following from the Bayesian tree model above, it can be assumed that H and S

are conditionally independent, given D . This implies
Pr(S;HjD)= Pr(SjD)Pr(H jD) (6.2)
and
Pr(SjH ;D)= Pr(SjD): (6.3)
From Bayes’ theorem, one can infer that

Pr(H;DjS)Pr(S).
Pr(H ;D) ’

Pr(SjH ;D) = (6.4)
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and that given Eq. 6.3 and Eq. 6.4 it can be inferred that

Pr(SjD)Pr(H ;D).

Pr(H;DjS) = Pr() (6.5)
Note Pr(H ;D)= Pr(H jD)P(D), therefore from Eq. 6.5 one can see that
~ier_ Pr(SjD)Pr(HjD)Pr(D).
Pr(H;DjS) = Prd) : (6.6)
and hence Eg. 6.1 can be represented as
H ;D =argmaxPr(SjD)Pr(HjD)Pr(D): (6.7)
H ;D

The posterior joint probability of H and D yields a very high dimensional space. An
intuitive solution to this joint probability will be to rst determine the depth image,

D that best describes the observed stereo image pair s,

D =argmaxPr(S = sjD) (6.8)
D

before using D to determine the corresponding pose,

H =argmaxPr(H D )Pr(D ): (6.9)
H

This is the approach of several papers on hand pose estimation from stereo capture,
including [64]. Recall that the aim was to rst establish a robust depth image given
a stereo image capture that can then be used to predict the hand pose. However,
this does not fully optimize the pose-depth joint probability space. This is because
it assumes that the depth that maximizes Pr(D ) coincides with the point (i.e. the
pose and depth image) that maximizes in the pose-depth joint distribution. This is
not always the case. Consider Figure 6.1b, where a hypothetical joint distribution
between H and D is presented for a given stereo image pair. The maximum probability

is indicated with the red dot. Consider a case where the joint distribution is rst
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Figure 6.1 (a) Bayesian tree model of the relationship between depth, stereo images,
and hand pose in the proposed model. (b) Illustrates a conventional approach to
estimating pose from stereo capture, where the optimum depth is rst determined
and then used to factorize the joint probability to identify the maximizing pose. (c)
The proposed stochastically evaluates potential depth solutions (along the black line)
and then a maximizing pose is established. This will guarantee identifying the joint
maximum point (illustrated with the red dot) with enough depth proposals.

marginalized along H for the depth probability, Pr(D) = P y Pr(H ;D) to identify
D (analogous to solving for a robust depth from a given a stereo image pair as in Eq.
6.8). H is then determined by maximizing Pr(H jD ), illustrated with the red dotted
line (analogous to Eqg. 6.9). Note how the optimized maximum does not coincide with
the joint maximum. Secondly, it assumes that the depth image computed from the
stereo image is fully correct or else even more robust and complex pose estimation
from depth techniques will be required to handle erroneous depth recovery. Inspired by
[113], a di erent approach is taken. Instead, in this research a search for the optimum
D along the manifold described by the optimum H for all potential depth images is
done, as in:

D =argmax[ yPr(SjD)]; (6.10)
D
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Figure 6.2 Structure of the two CNNs used. (a). A Siamese network is used as a
similarity measure between two potentially matching square patches of pixels. (b)
illustrates the structure used for discriminatively regressing for pose given a depth
image.
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where

H :mgfor(HjD)Pr(D)g; (6.11)

and in turn, H is computed using Egq. 6.9. Note the e ect of this as shown in
Figure 6.1c, where the manifold is illustrated with a black line. Consequently, the high
dimensional space of the depth and the pose is iteratively explored by proposing a

depth and evaluating for Eq. 6.6 in search of a maximum.

6.1.2 Probability of Observed Stereo Image given Proposed
Depth

To e ciently propose a depth image, rst the reference stereo image is segmented as in
the previous chapter into superpixels using Simple Linear Iterative Clustering (SLIC)
[107]. A hand depth image is represented with a vector, d, of the depth values of all
the superpixels that lie within the hand region. Henceforth, this vector will be referred
to as the depth con guration vector. For a proposed depth image,
( )y
Pr(SjD) =log Pr(Sjd) = log[Pr(Sjd;)] (6.12)
] ]
where there are J hand superpixels. The probability of a stereo image pair given
the depth of the j™ superpixel, Pr(Sjd,), is modeled as the re-projection a nity of
the proposed d;. For a proposed depth, the intrinsic and extrinsic parameters of the
stereo rig are used to reproject pixels in the reference stereo image plane onto the
corresponding image plane, before computing a nity. See Section 3.1.3 for details.
The quality of a proposed depth is evaluated based on how reprojected superpixels
match the original superpixel. Hence, forfx stefeo image pair with superpixel x; in the

XJ
left image with a centroid pixel position g ng and a proposed depth d;,
YL

Pr(Sjd)= C I .(xL;yl)ilr(Xd; V) (6.13)
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where C(;) is a window-based matching cost function that gives a measure of a nity

and
2 3
2 3 2 3 XL
X X '
§RE=F §7 4.4 =d§ yéPLl[Rjt]PR: (6.14)
Yr YL 1

Here P and P g are the projection matrices of the left and right stereo camera pair
and R and t are the relative extrinsic matrix and vector respectively established for
the stereo camera using camera calibration (see Chapter 2 and [103] for more details).
C(;) is represented as a Siamese network, as in the work of Zbontar and LeCun, [114].
Deep Siamese networks have recently become a popular method to establish similarity
in state-of-the-art stereo matching algorithms. The Siamese network architecture
presented in [114] was used as it has been proven to have very strong stereo-matching
performance (based on a very high Middlebury dataset ranking). The rst subnet
consists of a pair of layers, each composed of a convolutional layer followed by a RelL U,
as shown in Figure 6.2a. This is followed by the P-Distance layer that computes the
square distance of each feature vector in one of the pair of subnets to the other. Finally
followed by four fully connected (fc) and ReLU layers; and then a fully connected and
sigmoid layer.

The output of the sigmoid layer, which ranges from O to 1, is the similarity score
C(;). Hence the probability of the observed stereo image, S, given a proposed depth
con guration, Pr(SjD ), is modeled as the similarity of the disparity correspondence

resolved from the proposed depth.

6.1.3 Probability of Pose Conditioned on Depth

The second component is the probability of the pose H given depth D . Note that the

ultimate task is to establish . For ease of implementation  is rede ned as

4= Pr(H = h)Pr(D): (6.15)
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with

h =argmaxPr(H jD): (6.16)

Pr(H = h) is the probability of a unique pose, h, based on the hand pose prior
distribution (described in Section 6.1.4). Hence a discriminative model that determines
the optimum pose B of a given depth, D is applied here. Note that A is only the
solution to a single proposed depth at proposal iteration. The probability value, 4,
is then estimated as the probability of this pose solution, A . The assumption made
here is that the discriminatively determined pose, H , is the pose that maximizes
the posterior, argmax, Pr(H jD), and that Pr(H = A ) is the maximum posterior
probability, maxy Pr(H jD). The idea here is that after several iteration of depth
proposals the, A should tend to the optimum pose solution, H for the observed
stereo capture, S

The discriminative model used here is also a CNN. Henceforth, this second CNN
will be referred to as the pose-estimation network. The pose-estimation network takes
a [640 48(Q single channel depth image (from the proposed depth con guration)
and outputs a 3 K -dimensional vector that represents the 3D spatial coordinates
of all K joints that describe a hand pose. So, in e ect, for a given depth image, the
pose-estimation network computes a single pose. y is the product of the probability
of the estimated pose (based on the pose prior, Pr(H )) and the probability of the
given depth image (based on the depth image prior, Pr(D)). Both priors are described
in the following subsection. The structure of the pose-estimation network is illustrated
in Figure 6.2b. This consists of six convolutional layers (each followed with a ReLU).
Three of these also with a Pooling layer followed by four fully connected layers (each
followed by a ReLU layer except the last). The output of the nal fully connected
layer indicates the joint positions. This network structure is inspired by the work of
Oberweger et al. in [5], where di erent CNN architectures had been tested for hand
pose estimation from a depth image. The architecture used in this chapter was chosen

because of its performance and simplicity.
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6.1.4 Prior over Depth and Pose

Pose: Let h denote the hand pose vector in a 3 K -dimensional space V . To establish a
pose prior over the hand, a constraint that determines the joint con guration, a member
of a subspace, W  V is added. Where W is a subspace that potentially contains all
the possible hand poses or at least all the poses observed in a comprehensive dataset
of hand pose. During implementation, Dataset C presented in Section 3.3.3 was used.
To mathematically represent this dataset, a criterion for W was established, based on
the principal components that span all poses in the dataset of prior poses. Applying
principal component analysis (PCA) on the prior pose dataset, the N most signi cant
components were established, E = [es;::;;en], where N << 3 K. More formally,
consider Dataset C with J data captures, represented by f (Z&;i%;h); = (22;i3;hi)g,
where Z§ = fz;;20g is the | stereo capture pair; il, is the j™ depth image and hi,is
the j pose vector. A database of prior poses is established as in fhi,;hZ;::;h?,g.
The elements e;;:::;e5 ¢ are the ordered eigenvectors of Cov([h};;h3;:;h} 1), where
Cov) returns the covariance matrix of its argument. To maintain realistic hand pose
prediction a constraint that a newly computed pose h should be represented by a
linear combination of the established component, h° P N ae;, is applied. Where

denotes the mean pose of all joint con gurations in the prior dataset and a; is the
weighting assigned to the i eigenvector, e;. To this end, the probability of a resolved

pose h®is established as

Pr(H = h)= & * hi (6.17)

where
=E*(h® ) (6.18)
and jj:jj denotes the I2-norm and E * is the pseudo-inverse of the E . is then the

least square estimation to the coe cients of the components that yield h® under a

linear combination. Then the exponentiated Euclidean distance between this linear
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Figure 6.3 The variations captured by the rst six components of E. The mean pose
is represented in black.

combination of components and h°is used as a measure of the prior probability. In
e ect, a 3D joint con guration (pose) that is like those in the dataset will be more
accurately mapped onto W and remapped back. To illustrate the information captured
by these components, the variation from the mean based on the rst six eigenvectors
(see Figure 6.3). Note how the rst and second component capture rigid spatial
displacement in the dataset whilst the succeeding component captures more nuanced
variations in the poses.

Depth: Using the hand region segmentation, the Euclidean distance between the mean
hand pixel position in both images of the stereo pair is used to estimate the general
distance of the hand to the camera, using the baseline and focal lengths of the stereo
rig. The prior over depth at all superpixels in the scene is modeled with a Gaussian,

with a mean as the estimated general distance, R and a standard deviation, , as in

2
(4 R)

X
Pr(D = d)= joaz:eT (6.19)
]
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The discussion so far introduces the idea of a proposing depth con guration that
is consistent with the observed stereo capture and that yield poses that are realistic
(i.e. similar to those in the dataset). The part of the discussion that is yet to be
discussed is the framework for proposing this depth con guration. A Markov-chain
Monte Carlo framework is used. As introduced in Section 3.2.7, MCMC is particularly
useful in scenarios where it is required to sample from a high dimensional space with a
potentially complex probability distribution. This is clearly the case here, in that the
number of hand regions (i.e. the length of the depth con guration vector) is relatively
large (ranging from 30 to 70 in the experiment below) and the distribution along these
dimensions is not a simple one. The MCMC framework used is presented in the next

section.

6.1.5 Metropolis-Hastings Algorithm

To achieve an informed framework for proposing depth images (con guration), Markov-
chain Monte Carlo is exploited. More speci cally the Metropolis-Hastings Algorithm
(in Algorithm 1) is used to determine a set of depth proposals in an iterative manner.
To this end, a new depth con guration D °is proposed based on a distribution that is
conditioned on the previous proposal g(D % D ). This distribution is implemented
by randomly perturbing the elements of the depth vector d) that describes D ). In
this implementation, the perturbation was selected randomly within a range of O to
10mm. This was empirically chosen during implementation. Hence the probability of
the newly proposed depth vector, d°is dependent on the previous depth proposal d*”.
Subsequently, given the newly proposed depth, and an acceptance ratio, , where

(

DDy =min 1; : !
( ) Pr(D®;H Mjs)

PMD%HﬂS)); (6.20)

and
H(%:mgxpru4;D%: (6.21)
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Algorithm 1: Joint Depth and Pose Estimation using the Metropolis-Hastings
Algorithm

1 Input: S;

2 Output: H ;

3 Initialize D @;H @ =argmax, Pr(H jD ©);
s letD =DO;H =HO;

s fori=0toL 1do

6 Sample u U1 ;

7 | SampleD° qgDIYD D) ;

8 | if log(u) < log( (D YD ™)) then

9

D(i+l) — DO;
10 H (*D = argmax, Pr(H jD (*V):
11 else
12 D@ =pW;
13 H @D = O
14 end
15 | if Pr(H ;DM jS)y>Pr(H ;D jS) then
16 D =D,
17 H =H0D:
18 end
19 end

Note that the ratio of the probability of proposing a particular D° given D ¢,
q(D %D M), and the reverse is ignored, as these are equal and hence cancel out.
If the acceptance ratio is higher than u, a sample between 0 and 1, the proposed depth
con guration and the corresponding maximizing pose are considered as a potential
candidate for the solution. Hence the higher the probability of the newly proposed
depth con guration (relative to the previous proposal) the higher the likelihood that
it would be accepted as a potential solution. All potential solutions are evaluated by
maximizing for Eq. 6.5. See above for the pseudo-code of the Metropolis-Hastings
Algorithm. The e ect of this is that the depth con guration that is most consistent
with the observed stereo capture and that yields the more probable pose is evaluated

for, from within a sample set with a distribution that is consistent with the solution.
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6.1.6 Uni ed Framework

So far all the di erent components of the framework have been introduced. This
section recaps all the components presented and reiterates the description of the entire
framework and how a potential depth solution is proposed. The depth is evaluated
in two paths. First, it is used to discriminatively compute a pose, the likelihood
of this pose is evaluated based on prior pose knowledge. Secondly, the depth is
evaluated against the observed stereo capture (using the similarity network). These
two probabilities are combined as a representation of the likelihood of the proposed
depth. The Metropolis-Hastings algorithm is used to make these proposals in the
MCMC sampler. See Figure 6.4.

For greater clarity, the entire framework is summarised, identifying and outlining
key features and how they relate in Table 6.1. The next section gives some more details

on the implementation of the system described above.

Figure 6.4 An illustration of the MCMC proposal approach. A potential depth solution
is proposed by the sampler. This depth is evaluated in two paths. First, it is used to
discriminatively compute (using the pose estimation network) for a pose, the likelihood
of this resolved pose is evaluated based on prior pose knowledge. Secondly, the depth
is evaluated against the observed stereo capture (using the similarity network). These
two probabilities are combined to yield the validity of the proposed depth and also
used to inform the next depth proposal.
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Components Implication

MCMC Sampler | The MCMC sampler proposes di erent depth con gu-
rations (depth images) with a frequency distribution
that is consistent with the likelihood of the depth.
Hence more probable depth solutions are proposed
with more frequency than less probable depth solu-

tions.
Similarity  Net-| A Siamese network that evaluates the similarity of two
work image patches. Hence for a given depth solution, points

in the reference stereo image pair can be reprojected
onto the other stereo image pair plane. The a nity of
the reprojected location (in the second stereo image)
to the original location in the reference stereo image
can be evaluated with the Similarity Network.

Pose Estimation | A CNN that determines the hand pose given a pro-
Network posed depth solution.

Pose Prior A probability prior over pose whereby poses that are
similar to those in the dataset are assigned higher
probability.

Depth Prior This is the prior distribution of the depth values based
on the average shift of hand region pixels in the stereo
camera pair.

Table 6.1 A brief outline of key components of the proposed framework. This includes
MCMC Sampler, Similarity Network, Pose Estimation Network, Pose Prior and Depth
Prior.

6.2 Implementation Detalils

Both the pose-estimation and similarity networks were implemented using the VLFeat
MatConvNet [115] and trained on the NVIDIA Titan X GPU with 12GB memory.

Similarity Network: This CNN was trained with the learning rate of 0.001. 10
epochs were executed, reducing the learning rate by 10% with every epoch. The
decay, weight, and momentum were set as 0.0005 and 0.09 respectively. Like [114], the
similarity network was trained to map a pair of window regions < | _(p);1r(q) > from
the left and right stereo pair to a cost, c. Hence, the training dataset consists of a
pair of potentially matching patches and a target value t as in f(< 1 _(p,);Ir(q;) >

it): (<1 L(pk )i 1r(Qk) >;t3)g. This dataset consists of positive (i.e. a matching
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input window pair) and negative (i.e. a non-matching input window pair) data sample
pairs such that

G=p it (6.22)

where ; is the groundtruth disparity shift at the centroid pixel of superpixel j and
k 2 [minimum Disparity, maximum Disparity] is the randomly assigned shift value.
Consequently, a data sample k where =0 is considered a positive data sample and
vice versa otherwise. Hence the target ty is set to 1 in the case of a positive sample and
0 otherwise. Training is based on a hinge loss function, max(0;g+ ¢ + c.), where g
is the margin; ¢ is the output of the CNN from a non-matching input window patch
pair; and c. is the output of the CNN from a matching input window patch pair. For
each superpixel, a square window region centered on its centroid pixel is considered as
the rst patch in the reference stereo image. The groundtruth corresponding patch
is established by reprojection based on the camera parameters of the stereo cameras
and the groundtruth depth at the superpixel. The value of g was set to 0:2 and the
maximum and minimum disparity were chosen to be 5 and 48 respectively. This pixel
shift range was chosen based on the dataset used i.e. the minimum and maximum
hand pixel shift.
Pose-Estimation Network: The pose-estimation network has a signi cantly greater
number of weights due to the larger input image size. To reduce the number of
connections (weights) between layers, the max pooling (in the pooling layer) is applied.
This was not required in the similarity network due to its relatively small input image.
The pose-estimation network was trained with a learning rate of 0.00001 for 150 epochs.
Decay weight and momentum were set as 0.005 and 0.09 respectively. Training was
done under a mean squared error between the output vector and the groundtruth pose
vector. The pose vector consisted of 60 elements i.e. the hand pose was represented
with the spatial location of 20 hand joints, K = 20. These included the ngertip, distal
phalanges, intermediate phalanges, and proximal phalanges of each of the ve ngers

(see Section 3.5 for more detail).
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The prediction phase of the entire framework for a frame of stereo images under
200 MCMC proposals took 360 seconds.

6.3 EXxperimental Results

The approach was validated experimentally, producing both qualitative and quanti-
tative results. Four main comparisons were made, these included: pose estimation
predictions made from single shot depth recovery; estimation made without the pose
prior; estimation made using ELNF (Chapter 4); and estimation made using depth

acquired using active RGgD camera sensor by computing the percentage of correctly
sgT spj<G

. - - ]
predicted joint positions, —22% L N ], where ng and s, are the groundtruth and

the predicted 3D joint position of all joints, p in the testing dataset; G is the varying
threshold that determines the corrected predicted pixels and N is the total number of
joints evaluated (across all the frames). The mean distance error, Ni P 2N jng Spl IS
also computed so as to quantitatively evaluate the performance of the test. Comparison

with the work in work presented in Chapter 6 is presented in the next chapter.

6.3.1 Dataset

As previously described, the Dataset C in Section 3.3.3 was used for training and
validating the work. To train the similarity network, a binary class dataset was created
with matching pairs of image patches (from the left and right stereo image) as a positive
class or considered non-matching otherwise. In the case of the pose-estimation network,
data from 2 participants (out of 12) was reserved for testing, and the remaining data
(from the other ten participants) was used for training in a cross-validation manner.
SLIC segmentation was applied to all reference stereo images, producing approximately
300 superpixels per image. Note that only a fraction of these 300 superpixels were hand
region superpixels. The number of hand superpixels (ranging approximately from 30
to 70 per image capture) depends on the distance from the camera and the size of the

hand. All in all, about 540,000 patches were used in training the similarity network.
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Figure 6.5 Evaluating the signi cance of the window size and the number of components
used for spanning the prior pose space. The graph illustrates the percentage of joint
pose prediction with a margin of error, G for di erent window sizes.

The same demarcation of the dataset was applied in training the pose-estimation

network. Hence 10,000 pose-depth pairs are used in its training.

6.3.2 Baseline Comparison

To optimize the performance of the proposed technique two signi cant parameters
were experimented with. Those include the window size (used in stereo matching) and
the number of components used to store pose prior information. The window size
determined the size of the input stereo pair regions that were fed into the similarity
network for comparison and subsequently, the number of weights in the similarity
network. From Figure 6.5, one can identify a gradual improvement in the accuracy
as the size of the window reduces. 41 41, 31 3land 21 21 window sizes yielded
18.23%, 35.54% and 65.22% of accurately predicted joint positions within an error of
35mm, respectively. This trend stopped when a window size of 11 11 window was
applied, resulting in 13% accurate predictions (see Figure 6.5). It can be speculated
that superiority of 21 21 is due to the fact that at that window size, enough details

(and visual cues) are present but also the size is not too large such that it allows for
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Figure 6.6 Evaluating the signi cance of the window size and the number of components
used for spanning the prior pose space. The graph presents the percentage of correctly
predicted joint position as a di erent number of components are used.

spurious matches to be made. A second parameter was the number of components
used. Recall from Eq. 6.17 and 6.18 that from the 3 K components only N are used.
The signi cance of the number of components used is presented in Figure 6.6. This
illustrates the increase in the percentage of accurate joint predictions as the number
of components increases, however, this improvement in prediction performance stops
after 10 to 18 of the most signi cant components have been used.
As well as the parameter evaluation, three baseline comparisons were made. The
rst was predicting the pose using a single shot depth estimation; the second was
predicting pose without the pose prior and the third was constraining proposes hand
pOses.
Single-shot depth recovery: For a given stereo capture, all potential matching
pixels are evaluated along the epipolar line on the corresponding stereo pair under the
similarity network and a greedy search approach is applied to establish a disparity
image. Next, the pose-estimation network is applied to directly estimate for the pose.
This is often the prominent approach to depth-based pose estimation from a stereo

framework, i.e. where depth is estimated in a "single-shot" of greedy search and then
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Figure 6.7 A baseline comparison of the proposed approach. The graph illustrates the
percentage of accurately predicted joint pose prediction (within a margin of error), for
the approach in comparison to the single shot depth estimation and to GMM based
prior.

used to resolve for the pose as in [64]. Figure 6.7 validates the hypothesis presented
in Section 6.1.1. The superiority of the jointly optimal, iterative depth proposal is
apparent here, particularly at lower error thresholds. The ability to continuously
re-evaluate the depth solution whilst resolving for pose contributes to this performance.
In fact, there is a 389.8% increase incorrectly predicted joint positions (within a 35mm
error margin) when the proposed approach is taken in comparison to the single shot
approach. Although this superiority diminishes as the error threshold increases, the
proposed iterative approach produces a more accurate hand pose estimation from
stereo capture. The qualitative results in Figure 6.10 (4th row) corroborate this
result, as better pose estimation is achieved with the proposed approach in comparison,
particularly in the 15, 4" and 5" columns.

GMM prior: Another component of the framework is the pose prior. The e ectiveness
of the PCA based approach is evaluated by comparing it against a GMM (Gaussian
Mixture Model) based approach. For this, expectation maximization is applied to

establish a 3 K dimensional GMM model that represents the probability of a pose
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Figure 6.8 A baseline comparison of the proposed approach. Bar chart showing the
mean joint position error per nger for the proposed approach, the work proposed in
[2] and RGBD camera based pose estimation.

(as in [116]). Experiments were carried out to establish the optimal component. The
performance of this approach is presented in Figure 6.7. Again, results show the
superiority of the PCA based model, with the proposed approach producing a 109.6%
increase incorrectly predicted joint positions (within a 35mm error margin). This
is largely due to rst identifying the highly discriminating components in the pose
subspace before establishing a prior model. This superiority is replicated shown in
Figure 6.10 (3rd row), particularly in the 15, 3% and 6th columns. The PCA based
approach better constraints for a more realistic hand pose.

Although the superiority of the proposed approach against the baseline comparison
is evident, there still exists some failure cases (see Figure 6.11). It can be observed
that approach fails in scenarios were the hand is not properly outstretched. It also
appears to su er due to ambiguity between similar poses as illustrated in the rst
example, where it predicts that the pinky, ring and middle ngers to be outstretched

when actually, it was the index, middle and ring nger that were outstretched.
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Figure 6.9 A baseline comparison of the proposed approach. Bar chart showing the
mean joint position error per nger for the proposed approach, and using constrained
poses.

Constrained pose: Recall that the pose prior is applied to penalize unrealistic poses
(based on how a resolved pose deviates from the poses in the prior dataset). More
speci cally, using Eq. 6.17 and 6.18 the prior probability of a hand pose that was
resolved in a discriminative manner (using the pose estimation network) was used to
penalize a proposed depth. A more common application of PCA is to strictly constrain
hand pose solution to belong to the range of the matrix E i.e. that pose is strictly
a linear combination of the principal components, [es;::;;en]. This alternative was
investigated in this subsection. As a result, instead of choosing the pose solution from
the set fh%;4g (Where h9 is the resolved pose from the i™ depth proposal using the

pose estimation network), it was chosen from f hy; g such that

h =E* + (6.23)

Consequently, the potential pose solution is constrained to be a linear combination of
the principle component. This is di erent to the approach of the framework presented
above, where the optimum pose solution is chosen strictly from the resolved pose (using

the pose estimation network), however potential poses are penalized based on the
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strength of their a nity with the closest linear combination of the principle component.
The result of this baseline comparison is presented in Figure 6.9. The inferiority of
this approach is immediately apparent, yielding a 13.75% increase in the average error.
A possible conjecture for this is that the potential poses are less dependent on the
observed stereo capture than on the information in the prior dataset. As a result,
although a more realistic pose solution is produced, this conforms less to the observed

pose instance.

6.3.3 Comparison Against ELNF

For further evaluation, the performance of the presented work is validated against the
previous ELNF framework. Recall that the ELNF framework regresses for robust hand
depth estimation using an Eigen leaf node based variant of a regression forest. Chapter
4 motivates the approach with depth recovery speci cally for hand pose estimation. To
evaluate this, the pose-estimation network was applied to directly regress for pose from
the recovered depth using the approach in [2]. The performance is presented in Figure
6.7. Again, like the single-shot method, this approach performs signi cantly worse
than the newly proposed join optimization approach. On average this MCMC based
approach preforms 29.55% better than the ELNF approach in Chapter 4 (29:.80mm to
42:32mm error). This corroborates the signi cance of jointly optimizing for both pose
and depth. The single shot approach assumes a high-quality depth prediction and will

yield a poor result when the preceding depth estimation is poor.

6.3.4 Comparison Against RGBD Sensors

To evaluate the signi cance of the MCMC based approach in the general context of
gesture recognition, the accuracy of the pose estimation prediction made is compared
to pose estimations made from depth images to that acquired from the RGBD camera.
Again pose estimation is computed using the pose-estimation network. Figure 6.8

presents the evaluative comparison. Compared to the MCMC based approach, the
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RGBD based pose prediction was more accurate in predicting thumb, the index and
ring nger joints. This is due to large variance in their 3D position across the training
and testing dataset. Across all ve ngers, the mean joint position error of estimated
pose from the RGBD depth image is 21:99mm, this is only 9:304nm lower than the
mean joint position error of the proposed technique (30:802nm). Considering the
low-quality nature of the stereo camera used, the proposed approach exhibits robustness
against inconsistency and noise in stereo capture to an extent that it is on par with

pose estimation made from an active depth sensor. This is signi cant, as it shows a

Figure 6.10 Qualitative results of pose estimation using real stereo captured poses.
The reference image of the stereo pair is shown in the 15t row. The results from the
proposed method are presented in the 29 row. The 3" row shows the pose estimation
result from using the method but with a GMM pose prior while 4" row shows result
from using the single-shot CNN.
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Figure 6.11 Examples of failure cases. Observe that the approach fails in scenarios
were the hand is not properly outstretched. It also appears to su er due to ambiguity
between similar poses as illustrated in the rst example, where it predicts that the
pinky, ring and middle ngers to be outstretched when actually, it was the index,
middle and ring nger that were outstretched.

potential of overcoming the drawbacks in RGBD, discussed in the introductory chapter,

without a signi cant drop in the accuracy of pose estimation.

6.3.5 Summary

In this chapter, a novel approach to pose estimation from stereo capture is presented
which proposes an MCMC-CNN approach to joint optimization. The presented ap-
proach stochastically proposes depth images with the aim of ensuring that this proposed
depth is consistent with the observed stereo capture and that it resolves to a realistic
hand pose. The inferred pose from the optimum depth is identi ed as the pose solution
to the stereo input. It has been shown experimentally that this joint optimization
approach outperforms the conventional single shot depth estimation approach. This is
largely owing to the fact that with the sequential approach, the pose estimation (from
depth) part of this framework will need to be robust against initially regressed depth
that may be erroneous.

A negative impact of this sequential framework is the slow computation time. This
is signi cant has it precludes any real-time application. An interesting improvement
on this will be a closed-form solution to the estimation of the depth con guration
by establishing a parametric relationship between the depth con guration and the
stereo cost. The idea here is to rst establish a matching cost value for all potentially

matching pixels to a given superpixel of interest. Consider a superpixel, x;, with
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a centroid pixel, x;, and a set of potentially matching pixels P = fx}<gE:l in the
corresponding image. Note that the pixel points in set P are contiguously located
and that there exists a corresponding matching cost qk = F(x}‘), where the domain
of the function F () is discrete. Given the current framework presented in Chapter 6,
F () is modelled by the similarity network. Now, assume a scenario where the input
domain is continuous (instead of discrete pixel locations) then the function F () (i.e.
the similarity network) can be modelled with a mixture of Gaussians. This entails
initially computing the cost of all potentially matching pixels (conventionally using the
similarity network) to get f (xj\; F (x})); 1 (x [ s F () g and then applying maximum
likelihood to compute argmax Pr f(x}F(x$));:5(x[( G F(x{))gi , where is a
set of Gaussians’ parameters. Consequently, F() can be approximated to an analytical
function as a sum of Gaussians, asin F(x) G ,.,(X)+ 1+ G ., (X), where there
are N Gaussian components and G. () is the conventional Gaussian function of mean,
and standard deviation, . This will allow for parallelizing the CNN execution in
a single run for an improved runtime. Given the Gaussian-based modelling of F(),
samples of depth solutions can be generated simultaneously drawn and evaluated in
parallel, consequently overcoming the sequential bottleneck of MCMC sampling.
This chapter presents a joint optimization approach that is robust against potential
error in the depth estimation pre-step. Thus, there is not burden on the pose estimation
framework to be robust against erroneous depth recovery. A consequence of the
proposed approach is that it iteratively revise for errors in depth proposal. This
allows for simultaneous correction of proposed depth estimation and the resulting pose
estimation to jointly optimize the likelihood of the depth and hand pose estimation
given the stereo input. The approach proposed is a semi-generative approach that
is experimentally proven to work on di erent sizes and tones of hand without pre-
calibration. This is signi cant as it shows the potential of estimating hand pose
articulation based on stereo input with accuracy that is on par with using commercially

available RGBD sensors.
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This concludes the work done in the thesis. As previously outlined, the following
chapter is an experimental one, where the performance across all the frameworks

presented in the last three chapters is compared.






Chapter 7

Sequential vs Joint Optimization

This chapter compares the two approaches to stereo based pose recovery proposed
in the thesis. Recall that the initial approach in the rst two frameworks introduced
(Chapters 4 and 5) was to rst solve for depth and then recover pose from the estimated
depth. The second approach (presented in Chapter 6) jointly optimizes for depth and
pose. The results in Chapter 6 show the superiority of the pose recovery via joint
optimization compared to sequential (depth is rst solved before pose) optimization.
However, it is not clear that the improvement in performance is solely or at least
mainly due to multiple depth proposals rather the matching criteria used (i.e. the
similarity network). To this end, this chapter presents additional experiments to assess
the e ect of the generative depth proposal of Chapter 6 compared to discriminative

depth estimation.

7.1 Signi cance of multiple depth proposal

To investigate the signi cance of the multiple depth proposals, modi cations were made
to the rst two proposed frameworks: (ELNF and CRRF). The aim here is to rst
investigate if these depth estimation frameworks could be used in a generative manner
(like the approach presented in Chapter 6). Secondly to nd out how it compares to
the CNN based matching cost. To achieve this, rather than use the regressed depth
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recovered via using ELNF or CRRF, the probabilistic output from both were used.
Dataset C was used in the following experiments.

To address the rst question, recall that in the ELNF framework, the optimal
depth value is identi ed as arg max; Pr(djf ) and then used for pose estimation. An
alternative to this would be to propose di erent depth maps based on the probability
Pr(djf ). The same can be applied in the case of CRRF, again the output posterior
over depth levels are used to propose di erent depth solutions. These proposed depth
solutions can, in turn, be used to regress for pose using the pose-estimation network
(Chapter 6), before applying the pose prior based on the linear constraint (see Section
6.1.4).

Figure 7.1 An illustration of performance of ELNF, CRRF and MCMC-CNN based
on the Mean Error Distance. Note the superiority in the performance of the CRRF
and MCMC-based techniques in comparison to the ELNF-based approach. Also, the
impact of the multi-shot approaches (in comparison to the single-shot approaches)can
also be observed.

This is the approach taken to investigate the signi cance of depth proposal. Two sets
of baseline comparisons were made: a single-shot approach and a multi-shot approach.
Here single-shot indicates the recovery of a single depth map and then regressing for

depth whilst multi-shot entails joint optimization for depth and pose using multiple
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Figure 7.2 Qualitative results of pose estimation using real stereo captured poses.
The reference image of the stereo pair is shown in the 15 row. The results from the
MCMC-CNN (Chapter 6) approach are presented in the 2" row. The 3@ and 5" rows
present pose estimation results from using single-shot CRRF and ELNF approaches
respectively. The 4" and 6™ rows present pose estimation results from using multi-shot
CRRF and ELNF approaches respectively. The nal row shows result from using the
single-shot CNN.

generated depth maps. These results are presented in Figures 7.1 (quantitatively) and

7.2 (qualitatively).
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Single-shot approach: The rst comparison that was made was across single-shot
baselines. These included three approaches, namely: single-shot ELNF, single-shot
CRRF and single-shot CNN. Single-shot ELNF entails using the optimal depth predic-
tion from the ELNF framework to regress for pose. Similarly, single-shot CRRF and
single-shot CNN baselines use depth recovered using the CRRF framework and the
similarity network (introduced in Section 6.2) respectively, to regress for hand pose.
Note that all pose estimation from depth was carried out using the pose estimation
network (Section 6.2). Observe from Figure 7.1 that of all the three single shot based
approaches, the CRRF depth based pose estimation produces the best pose accuracy,
reducing the mean error of ELNF based baseline by 35.17% and CNN (similarity
network) based baseline by 9.53%. This clearly shows the superiority of the depth
resolved by the CRRF framework against both the similarity network and the ELNF
approach. Relative performances are also re ected in the qualitative results presented
in Figure 7.2.

Multi-shot approach: The second set of baseline comparisons made was the use
of multiple proposals using the depth posteriors from both ELNF and CRRF; and
comparing against the MCMC-CNN approach. The aim here is to investigate to what
extent the multiple-depth-proposal aspect of the MCMC-CNN approach improves
its performance. An immediate observation is that all the multi-shot approaches
improve on the single shot counterpart both on average and individually. Mean error
of CRRF, ELNF and CNN based pose estimation is reduced by 8.57%, 10.9%, and
25.65% respectively. From the qualitative perspective, a more stable quality in the
pose estimations are also observed when comparing the multi-shot approaches (29, 4™
and 6™ rows) against the single-shot ones (3, 5" and 7" rows). A more interesting
observation is that, even though the CRRF based pose estimation performed better than
the CNN (similarity network) approach under a single shot approach, the opposite is
observed when under a multi-shot approach. Qualitatively, whilst there exist instances
where the single-shot approach produces more realistic and accurate pose estimation

than the multi-shot approach (e.g. 6th column of the 3rd and 4th row in Figure 7.2),
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on aggregate the multi-shot produced better poses. It was hypothesised that this has
to do with the fact that MCMC sampler in the MCMC-CNN framework samples from
the joint distribution of the depth and joints (see Eq. 6.20 from Section 6.1.5) whilst
the multi-shot CRRF approach samples solely based on depth probability distribution.

Another key observation is the e ect of the PCA-based pose prior. It is noticeable
that some of the predicted hand poses are often not realistic. This is because the pose
prior cost of the resolved pose (from a proposed depth con guration) is one of the costs
for evaluating the proposed depth and the corresponding pose. Hence the inclusion
of the pose prior does not restrict the possible pose predictions to realistic poses but
instead penalizes pose prediction that does not conform to realistic poses. This is
an important distinction and hence explains the possibility of some of the baseline

comparisons above predicting non-realistic hand poses (as seen in Figure 7.2).

7.2 Summary

This chapter concludes the work and experiments conducted for this thesis. The chapter
investigates the signi cance of the di erent features proposed. More speci cally it
investigates the comparative performance of six approaches to hand pose estimation
from stereo capture. These approaches are mainly grouped into single-shot approaches
and multi-shot approaches.

Experimental results indicate the superiority of joint optimization, as the multi-shot
approaches perform better than the single-shot approaches. This is due to the fact
that it allows for optimization to be done jointly in the depth domain, as well as, on
the pose domain. However, under a single-shot framework, CRRF out-performs the
deep learning approach (Siamese network) as a hand depth estimation approach for
pose recovery. To investigate the possibility of performing joint optimization using
CRREF (as opposed to Siamese network), the probability based depth prediction of
the CRRF technique (see Eq. 5.16), is used to propose depth solutions (similar to
MCMC in the MCMC-CNN framework) by sampling from the posterior distribution, y .
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These proposed depth solutions are used to resolve for pose (using the pose-estimation
network) before being evaluated, using the pose prior model (Section 6.1.4) and the
initial depth probability. Although this yielded a slightly improved result on the
single-shot CRRF approach, it does not perform as well as the MCMC-CNN approach.
A possible reason for this is that the MCMC sampler in the MCMC-CNN framework
samples from the joint distribution of the depth and joints whilst the multi-shot CRRF
approach samples solely based on depth probability distribution.



Chapter 8

Conclusion

This thesis has explored the use of passive vision for the estimation of hand pose
using a Stereovision system composed of adjacent RGB cameras. Such a camera rig
does not project light into the scene and therefore has complementary advantages to
depth imaging, including less energy consumption. However, hand pose estimation
in this context is a more challenging computer vision problem, one that has received
less attention in the literature. The thesis has addressed this gap by proposing a
number of novel frameworks that contribute to the solution of pose recovery from stereo
capture. This includes an innovative application of the regression forest technique for
upgrading disparity to depth, proposing a cost function that estimates using ELNF that
is more suitable for regression. Improving upon this by using a CRF-Random Forest
framework for predicting superpixel based depth whilst simultaneously constraining for
smoother depth prediction. Finally, a framework that combines jointly optimal depth
and hand pose estimation in a uni ed framework using Markov-chain Monte Carlo
(MCMC) sampling and deep learning. This research is motivated by the possibility of
estimating articulation with the input of stereo cameras from an egocentric, stereoscopic
perspective. The work is inspired by the human vision, which can e ciently discern
articulations and perform tracking activities with passive, binocular input.

The thesis was motivated with four primary objectives. The rst was "to pro-

pose, develop, implement and evaluate hand depth estimation framework". The work
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presented in Chapter 4 and 5 meet this objective. Speci cally, the CRRF approach
(Chapter 5) presents a robust implementation of this objective by introducing a highly
accurate hand depth estimation framework. This second objective was "to propose,
develop and implement a framework for hand pose/articulation estimation from re-
covered hand depth". This was addressed to a lesser extent by the thesis. This is
largely due to the fact that there exist several robust techniques that readily addresses
hand pose recovery from depth in literature. Nonetheless, the thesis presents the
implementation of the pose estimation framework in Chapter 6. Here a deep learning
model (based on the work of Oberweger et al. in [5])was implemented for recovering
hand pose from depth. Consequently, a novel solution was not proposed here, instead,
the implemented approach was based on prior literature. The third objective was "to
propose a new approach for joint stereo reconstruction and pose estimation of a hand
from stereo inputs”. This objective was met in Chapter 6 with the development of the
MCMC-CNN framework, which estimates hand pose articulation from stereo capture
using MCMC-based proposal on two deep network model. Again, this was met to a
great degree with pose estimation on per results from a depth-based input. Lastly, the
fourth objective was "to evaluate the performance of the stereo-based pose estimation
approach to RGBD input-based approach”. This was achieved to some extent. The
experiments presented in Chapter 6 made a comparison between hand pose estimation
based on RGBD input and stereo input. However, this is quite limited. This is owed to
the fact that the ground truths used in this thesis are based on RGBD depth sensors,
hence it will be ill-posed to compare the prediction from stereo input-based approach
(that was trained with RGBD-based ground truth) to RGBD-based approach. A more
thorough comparison will be to train the stereo-based approach on a third-party ground

truth such as laser-based depth measurements.
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8.1 Summary of the work presented

The rst chapter introduces the problem of pose estimation from stereo capture.
Speci cally, this chapter highlights the key challenges that make the problem unique.
These include the fact that disparity estimation is a useful step to inferring shape
information for robust pose estimation. However, disparity recovery from the hand
is a slightly more challenging task in contrast to a scene containing arbitrary objects.
Largely due to the large texture-less region but also the fact that the relatively cheap
stereo camera used in this thesis means there are lots of inconsistencies between both
stereo images.

In Chapter 2, a brief introduction to the key concepts in the thesis is presented.
This includes the pinhole model, multi-view geometry, camera calibration, homogeneous
coordinates, machine learning frameworks (such as Random Forest, CNN, CRF etc.)
as well as an introduction to the datasets used in the thesis. In Chapter 3, a more
comprehensive outline of the current literature concerning the related work was given.
This was largely categorized into three topics, namely: stereo algorithms; hand pose
estimation; and hand pose recovery from stereo capture. The limited volume of work
done speci cally on stereo based hand pose recovery was made apparent.

The next three chapters examined the main work completed. In Chapter 4, a
novel variant of the Regressive Random Forest framework is presented, and it is noted
that the technique is applicable beyond the context of this research. The signi cance
of this approach has been conveyed experimentally. The qualitative and qualitative
experiments show the capacity of ELNF and how it allows for higher accuracy, even at
low tree depth, owing to the implicit reduction of entropy as a result of marginalizing
based on pixel features. In the fth chapter, an alternative data-driven method to
estimate an accurate depth map of a hand from a stereoscopic camera input is proposed
by introducing a superpixel-based regression framework that takes advantage of the
smoothness of the hand’s depth surface. To this end, a novel method that combines a
closed-form Conditional Random Field with learned weights and a Regressive Random

Forest (RRF) with adaptively selected expert trees is presented. This is to model the
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mapping from a stereo RGB image pair to a depth image. The intuition behind the
RRF is that it adaptively selects di erent stereo-matching measures as it implicitly
determines matching pixels in a coarse-to- ne manner. While the RRF makes depth
prediction for each superpixel independently, the CRF (Conditional Random Field)
uni es the prediction of depth by modelling pair-wise interactions between adjacent
superpixels. This was the work done on hand depth estimation for pose recovery.
The work in these two chapters addresses the rst research questions: "How can
high-quality depth information be recovered from stereo capture?”; and "How should
texture-less hand regions and radiometric di erences in cameras be addressed?”. A
high con dence depth estimation was achieved my using a machine learning based
approach to establishing the matching criteria. Experiments showed that rather than
having a single matching criterion, the quality depth images can be computed by
having multiple matching criteria and then applying the machine learning tool to learn
how to combine these di erent matching criteria. This is particularly the case with the
proposed CRRF model. Also, matching costs that have been experimentally tested to
be robust against radiometric di erences in stereo camera pairs were used.

The last two research questions were addressed in the sixth chapter. These were:
"How can hand pose be estimated from stereo image capture?”; and "How does this
compare to depth based estimation?". In this chapter, a di erent approach to the
problem of pose estimation from stereo capture was taken. Here, rather than solve for
depth and then for pose in a sequential manner, an alternative approach is presented.
Potential depth solutions are stochastically proposed and then evaluated in two paths.
First by evaluating how consistent such depth is with the observed stereo capture and
secondly using the proposed depth to resolve for pose and evaluating how realistic
the resolved pose is. Experiments show that the performance of pose estimation from
stereo capture is still on par with depth-based pose estimation.

In Chapter 7, an evaluation of the signi cance of the depth proposal is evaluated.
Speci cally, the depth estimation frameworks proposed in Chapter 4 and 5 are used to

propose depth in a similar way to the approach in Chapter 6.
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8.2 Limitations of the Work

The ELNF framework (Chapter 4) works well on a constrained set of poses (i.e. only
frontal planar poses) however when a more arbitrary hand orientation is present in
the dataset (see Section 5.3), this approach performs signi cantly less well. Another,
limitation in the work is that the techniques still require a disparity estimation and
hence the performance of the framework relies on the consistency in stereo-matching
pre-step.

As discussed above, the CRRF framework presented in Chapter 5 yields a robust
depth estimation of hand pose, however there some signi cant limitations. The most
obvious of these is the need for a skin segmentation step that precedes the stereo-
matching algorithm. Whilst this does not a ect the performance of the technique itself
it will a ect the shape of the recovered hand depth. False hand segmentation could be
an issue in scenarios where the recovered depth is to be used as a feature for further
analysis. For instance, in [20, 59, 60] the feature for pose estimation from a depth
image is dependent on the shape of the hand. Hence, the trivial foreground estimation
that can be done on RGBD input (by ignoring pixels with depth values larger than
a threshold) cannot be exploited here. However, egocentric based approach to hand
region segmentation, like [117], could be a potential solution to this. This could be used
as a pre-step to the approach presented in this thesis. Another potential limitation of
this technique is that it quantizes the depth space, limiting the depth sensing reach or
resolution. Whilst larger depth sensing reach can be learned by adapting the training
set appropriately, this will lead to a computation cost vs. depth reach/resolution
trade-o . Since larger depth reach or resolution will require more depth levels (and
hence increase in the size of the matrix B and Y ), the computational expenses of the
technique increases (see Figure 8.1). A solution to this problem might be to use a
logarithmic scale for depth so that less resolution will be given to depth prediction far
away (which is often more signi cant) and vice versa.

The MCMC based approach in Chapter 6 also has some limitations. As well as

the hand region segmentation limitation (similar to the case in CRRF model), another
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Figure 8.1 Graph showing the e ect of the number of depth bins on the execution time
of the CRRF technique.

drawback is the fact that it requires an iterative approach in order to generate/propose
a depth solution. This is a limitation because it hinders depth proposals to be evaluated
in a parallel manner. Since the proposal of a new potential depth solution is dependent
on the evaluation score of the prior proposals. Also, the methods in the thesis only
work on a single hand. Whilst a trivial solution could be to introduce a hand detection
framework, that initializes di erent execution instances of the frameworks (presented
in the thesis) to run on each hand detected, this does not address the problem of
self-occlusion of the hands. The occlusion that can occur from the interaction of
multiple hands in the scene or even interaction with other arbitrary objects is not
accounted for in the frameworks presented.

Another limitation of the work is the broadness of the poses, the number of
participants and the general size of the dataset used. In order to cover a large variety
of hand poses more data instances will be needed, particularly in the context of deep

learning based approach. A more robust output would have been achieved by using
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substantially larger dataset (in the order of 100 000) that consists of a larger number of
hand poses and participants. Lastly, the approaches presented do not run in real-time,
with is essential to human-computer interaction. The complexity of the framework

causes a larger execution time.

8.3 Practical Application

Although the objective of this thesis is to explore the possibility of implementing hand
pose estimation based on stereo input and not to necessarily to produce a real-time
algorithm, it is useful to discuss the computaional performance of the work in this
thesis for completeness. The need for much greater computational e ciency is clear if
anything approaching real-time tracking is to be achieved. Some potential avenues to
improving the proposed technique have been discussed in the previous chapters. For
instance, in the ELNF framework, the use of superpixels as opposed to predicting depth

for each pixel was discussed, this combined with a GPU based parallel prediction of

Figure 8.2 Graph showing the e ect of the number of depth bins on the execution time
of the CRRF technique before and after GPU optimization.
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depth at each pixel (similar to the work of Shotton et al. in [65]) can yield a real-time
implementation.

As discussed previously, a signi cant bottleneck in the run-time of the CRRF
model is the inversion of B . It was suggested that an improvement on the execution
time of this framework is parallel computation. An example of this is demonstrated
here. Using the CUDA! parallel computing platform, a dense matrix inversion routine
(cublasSgetrfBatched) from the CULA? high-level linear algebra library was used to
optimize the matrix inversion on an NVIDIA Titan X GPU with 12GB memory. The
result of this experiment is presented in Figure 8.2. This resulted in a 52.45% decrease
in computation time. It is worth noting, that future developments of both hardware
and software may mean even faster performance, and by sacri cing depth bins there is
hope that real-time performance may be possible in the future.

Lastly, with the MCMC-CNN approach, it was discussed that the sequential nature
of the framework could be improved by the parallel proposal and hence evaluation
of depth solution. The idea here is to pre-compute the matching cost value for all
potentially matching pixels to a given superpixel of interest. Then solving analytically
for the optimum set of matching pixels with the lowest re-projection error that yields

hand poses that best conform to the prior dataset.

8.4 Future Work

This section outlines potential directions for future work.

Generalizing CRRF and MCMC-CNN framework: A stance that has been
maintained throughout this work is that the frameworks proposed in this thesis are
applicable to other machine learning problems. Hence a plausible research direction for
the future will be to explore the performance of these frameworks on other problems.
For instance the application of the CRRF framework to predicting the behaviours of

spatially related entities. A typical example of this could be in predicting the product

Lhttps://developer.nvidia.com/cuda-zone
2The CUBLAS library contains routines for batched matrix factorization and inversion.
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consumption of a population based on their geographical relationship. Similar to the
neighbouring superpixels of hands having similar depth, it can be assumed that people
living in adjacent neighbourhoods will have similar needs etc. The same applies to
the MCMC-CNN approach. An interesting application that can be explored is human
action detection. Here a joint optimization of detecting humans in the scene as well as
determining what action the person is doing can be addressed with a variant of the
MCMC-CNN approach.

Addressing egocentric perspective: Another potential research direction is the
consideration of the pose estimation problem from an egocentric perspective. This
will introduce some inherent problems, like the rapid movement of the camera etc.
However, the poses are more constrained, which could be exploited, for instance in the
context of the pose prior.

Temporal tracking: The work presented in this thesis largely explores static hand
poses. Though this is a common approach in the literature [65], it does not explore
the possibility of utilizing the temporal information in the data. The fact that a
pose was observed (predicted) in the prior frame can inform the pose that can be
expected in the next frame. Of course this in itself is not a novel concept, in fact, this
is the basis of the generative model based pose estimation. However, an interesting
avenue to explore would be how to embed this temporal knowledge into the existing
framework. A possible approach could be to augment the hand pose prior, Pr(H ), in
the MCMC-CNN framework to include a conditional prior i.e. Pr(H {jH ¢ 1), where t
is the index of the frames.

Hybrid tracking: Another potential avenue in future research is to explore the
possibility of a hybrid system that combines stereo and RGBD-based inputs to resolve
and track hand poses. This will be a useful application of the work in this thesis, by
supplementing the non real-time performance of the stereo-based frameworks presented
in this thesis with RGBD inputs. Conversely, information from stereo-based input can
be used to supplement the diminished performance of RGBD-based inputs in scenarios

such as outdoor usage, close range etc. The idea here is that stereo-based approach
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(such as MCMC-CNN) that makes predictions in non real-time intervals can be used
to re-initialized both measure depth image and resolved posed of a real-time RGBD

system to yield a far more robust approach.
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Appendix A

A.1l Quantized Census

Stereo-matching for disparity recovery has been used in a wide range of applications,
including object recognition, object tracking, robotic navigation and even recovery of
landscape topography from aerial photography [118]. This broadness of scope implies
that a good correspondence matching system has an inherent need to be adaptive
to di erent illumination conditions. Basic stereo-matching systems utilise a simple
matching cost function to identify corresponding points in images taken from multiple
perspectives (often two) with the assumption of identical intensity level at points of
corresponding image locations. This is will be referred to as the consistency assumption.
As a result of di erent illumination conditions, amongst other factors, the consistency
assumption rarely holds and more complex cost functions are required to account for
radiometric di erences.

As mentioned above, several conditions breach the consistency assumption. The
illuminating conditions are a major issue as they can seldom be controlled. This is
as a result of non-Lambertian surfaces and specular re ection [119]. The di erence in
illumination to the light sensor component of the cameras will result in the same point
in 3D space being perceived at di erent intensity levels. Another cause of radiometric
di erences is the inconsistency of the image capturing devices themselves. Properties
such a salt and pepper noise, Gaussian noise, vignetting, gain setting (linear and
non-linear) etc. will generally be inconsistent in multiple devices hence resulting in

radiometric di erences.
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The above discussion, establishes that the requirement for robustness against
radiometric di erences is essential for a stereo-matching system to be used in real
application like hand pose estimation from stereo capture. To this end an improved

variant of the Census cost [29] function is proposed.

A.1.1 Census-Hamming Distance

The Census cost function is implemented as a non-parametric local transformation to
the window of interest whilst the Hamming Distance is the similarity measure that
utilizes the result of this transformation. Consider a local neighborhood N, with a
center pixel p and intensity | (p). Assuming a recti ed stereo pair, with a pixel, p in
the left image, the corresponding pixel in the right image is p  d. For a single image
(left or right) the intensity level of the center pixel is compared to that of surrounding
pixels (denoted with @) within the considered neighborhood to generate a bit string
representing the set of neighboring pixels whose intensity is less than or greater than
I (p) [29]. Formally,

le(p) = 11 () > 1 (P)]: (A.1)

The binary result from Eq. A.1 is concatenated across all the pixels in the neighborhood.
The Hamming distance between the transformed neighborhoods in both corresponding
images is then computed. This is the number of bit-positions that are di erent in
two bit strings. The larger this value the more dissimilar the two neighborhoods in
question. Whilst the Census-Hamming combination is a strong cost function against
some radiometric changes, it has one major aw in that it is not invariant to non-
monotonic radiometric distortions. Consider a 1D, image region with 5 pixels shown

in Figure 3a.

53 99 100 102 | 135 53 101 100 99 135

@) (b)
Figure 3 Intensity levels of 1D Image region before (a) and after (b) non-monotonic
distortion
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Here the Census transform for this region would be: [0011] If the image is distorted
non-monotonically, the relative ordering of intensity level is lost, for example, as shown
in Figure 3b. This would result in a di erent Census transform of [0; 1;0; 1]. Even

though the distortion was slight, this results in a 50% error.

A.1.2 Quantized Census (QC)

Quantized Census is proposed in an attempt to compensate for the de ciency in
the Census matching cost. QC applies a less rigid system that accommodates for
non-monotonic distortions to the ordered level of intensity. Just like in the Census case,
QC utilizes the comparative intensity of the middle pixel and the neighboring pixels,
but is also sensitive to intensity gradient. It transforms the intensity level at each
pixel within the neighborhood of interest to a quantized equivalent of the di erence in
the intensity value of the middle pixel to that of the surrounding ones. This does not
only provide information on the order of relative intensity but also, to some extent the

magnitude. Continuing with our previous notation, the transformation is as follows:

D(a) = Qnfl(a) I(pg: (A.2)

where Qy fg denotes N bins of quantization. It is important to note that the subtraction
operation that precedes the quantization could yield values that range from negative
to positive. Hence quantization is applied in the range of -255 and +255 (intensity
color range). For example if 16 bins were used, then the quantized value would range
from -7 to O in the negative range and 0 to 7 in the positive domain. The e ect of this
equation is that subtle non-monotonic distortions, that do not preserve the order of
pixel intensity, will not be detected by the cost function. This is signi cant as imaging
devices would not perfectly capture subtle intensity changes in a scene.

Looking at the plot one can partially identify where some of the pairs of corre-
sponding points are. However, it is also notable that the relative ordering of intensity

is not consistent especially in the low textured region. This will also be the case in the
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Figure 4 1D intensity row plot of the pair of the Tsukuba stereo image from the
Middlebury dataset [112]. The red plot indicates the intensity along a horizontal line
on the right image whilst the blue plot indicates the intensity along the left image. The
yellow marker indicates regions of inconsistency in the relative ordering of intensity
between the left and right image.

presence of distortions like Gaussian noise. Subtle intensity distortion due to Gaussian
noise with low signal to noise ratio would be ignored as a result of quantization. For
example, looking back at Figure 3, if a quantized di erence (with 16 bins) is applied
then the resulting transform for both region A and B will be [ 1;0;0; 1]. Hence, it
permits for the subtle non-monotonic distortion.

Whilst the modi cation in Eg. A.2 has improved robustness, it immediately poses a
problem. A key strength of the Census cost function is that it is robust to distortions like
salt and pepper noise. It achieves this by not using an aggregative costing technique (in
terms of intensity levels) like in SAD or NCC. Each erroneous pixel contributes equally
to the cost, making it insensitive to outliers. With our modi cation, the intuitive cost
would have been to acquire the sum of absolute or square di erences. Of course this

would be to the detriment of how well the cost function performs against outliers. This



A.1 Quantized Census 187

is because outliers that instigate huge quantized di erence would in uence the sum of
absolute di erence. Taking inspiration from the work of Fischler and Bolles, RANSAC
algorithm [95], the number of outliers were used as opposed to summing the cost at
each pixel. This has made the cost function invariant to radiometric changes that do
not preserve the relative ordering of pixel values. Formally, the Quantized Census

stereo-matching cost is de ned as

Coc(pid)=  1[DL(@) Da(g d)j<T] (A3)
a2Np

where T is a threshold value. This cost is applied to the transformed neighborhood
pair that is tested for correspondence. Here D_ and Dy refers to the quantized
pixel di erences acquired by Eg. A.3. To illustrate how Eqg. A.3 tolerates salt and
pepper noise, consider a 3-by-3 region in a rst image (region A in Figure 5), and two
potentially matching 3-by-3 regions in a second image (regions B and C in Figure 5.
These regions have been chosen to illustrate a linear gain scenario where the ground

truth matching region is in fact region B with a bias of 30.

Figure 5 Intensity value of neighborhood.

The resulting transformation (with 32 bins of quantization) for regions A, B and C

will be.
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Figure 6 Transformed values of neighborhood using Eq. A.2.

First, note the invariance of the cost function to radiometric di erences, while the
relative pixel values are preserved. Next, assume that the shaded pixel in region A is a
randomly altered pixel value as a result of noise. Figure 7 illustrates the e ect of the
intensity level on the cost function had the sum of been used instead of a threshold (as
in Eq. A.3). A signi cant degree of distortion in a single pixel is enough to a ect the
result of the cost function. If the intensity was distorted to less than 185, region C
would wrongly be chosen as the best match. Instead, by considering the number of
pixels pairs with absolute di erences less than a particular threshold, this is recti ed.
In the above scenario, regardless of the intensity of pixel X, the number of outliers will
be the same.

More generally, for a region in the rst image and another potentially matching

region in the second, the di erence between the intensity of the middle pixel and that

Figure 7 Resulting Cost when sum of the absolute di erence of the transformed regions
is used to compare Region A to Region B and C.



A.1 Quantized Census 189

of neighborhood pixels are acquired respectively. These di erences are then quantized
into an experimentally determined number of bins. The absolute di erence of the
both transformed region is taking and the result is compare to a threshold (that is
also experimentally determined) to generate a binary region. The sum of the binary
region is to be maximized across all potentially matching regions. Further details on

experiments as well as results can be seen in [108].
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