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Toll optimisation on river crossings serving large cities 
G. Hyman   –  Department for Transport, London, UK1 

L. Mayhew –    Faculty of Actuarial Science and Insurance, Cass Business School, London 

 

Abstract 
There is renewed interest in the private sector financing and operation of major transportation projects, 

in which a significant financial contribution comes from toll revenues. Tolling is ideally suited to river 

crossings, where the tolls are relatively easy to administer and collect. Because of their span, bridges 

over river estuaries are particularly expensive to build and maintain and so need to be put on a firm 

financial footing. Toll revenue is therefore a key consideration if such projects are to be financially 

viable and risk is to be minimised. There may be other issues to do with who benefits from the bridge 

and whether differential tolls should apply to local residents and non-resident bridge users.  In addition, 

such bridges may be linked to wider economic objectives, such as local development and regeneration. 

This paper describes a model for estimating optimum bridge tolls, from both a financial and a welfare 

perspective and provides a case study that illustrates a range of scenarios that are of general interest. 

 

Key words: new bridges, cities, tolls, revenue, congestion 

 

Introduction 

River estuaries often make natural harbours, around which many large cities have 

developed such as Sydney, San Francisco, Lisbon and London.  Orbital accessibility 

is generally provided by a series of bridges or tunnels, mainly upstream from the 

natural harbour where the estuary is narrow. Over time, lack of downstream orbital 

access may appear to be constraining the economic development of the entire city. 

Bridges are expensive to build, requiring long spans as well as navigational clearance 

for maritime shipping. The option of tunnelling is usually even more expensive than 

building a bridge, so both the engineering and financing problems are challenging.  

 

The provision of transport infrastructure is traditionally the domain of public 

authorities. In recent years, there has been a renewed interest in the ability of the 

private sector to finance and operate major transportation projects, possibly via a 

partnership with the public authority, but with a major financial contribution coming 

from toll revenues. Further, tolling is ideally suited to estuarial crossings, where the 

                                                           
1 Views expressed in this paper are due to the authors and do not necessarily represent Government 
policy.  
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tolls are relatively easy to administer and collect.  This paper examines alternative 

tolling strategies and their impact on traffic, revenues and transport user benefits.  

 

Tolling is one form of road pricing which is common in countries like the US 

(Hoolguin-Verasa et al, 2006). Another form is area based congestion charging, 

requiring drivers to pay to enter a zone of the city during certain times of the day (see 

Larson, 1995 or Ieromonachoua et al, 2006 for Norwegian case studies).  While the 

publicised stated objectives may be to reduce traffic congestion and to improve air 

quality, the use of charging revenues, and the general financial success of the project, 

are also major factors (Livingstone, 2001; Hyman and Mayhew, 2002). Competing 

objectives and gaining of public acceptance are two of the reasons for the initially 

slow uptake of such schemes (Harrington et al, 2001; Eliasson and Mattsson, 2006). 

 

Funding arrangements for tolled bridges are often complex with a mix of public and 

private finance so that the financial risks are often appreciable. The public sector in 

turn may involve a mixture of national, city-wide and local forms of administration 

and there may be interactions with other charging schemes locally. The public sector 

is more likely to adopt a welfare perspective, but both public and private investors 

have an interest in knowing which tolling strategies yield the best value for money 

(for example see Wong et al (2005), De Palma et al (2006), or Rouwendala and 

Verhoef (2006) for discussions of the principles and issues involved).  

 

It is helpful to distinguish two contrasting situations. Without congestion or financial 

constraints, a welfare based tolling policy would typically lead to zero toll levels. 

Without congestion, but under financial constraints, a welfare based tolling would 

lead to the minimum toll levels that are sufficient to repay any loans for bridge 

construction. In the presence of congestion, welfare based policies can justify higher 

toll levels if the alternative of increasing road capacity is available (Romilly, 2004)., 

A robust public sector case, including the use to which toll revenues are put would be 

required to make a reasonable decision between these options. In order to inform such 

discussions, this paper examines bridge toll setting, from both a revenue and welfare 

perspective. 
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The lack of cross-river access may appear to be a constraint on the local economy, 

with communities either side of the river being comparatively disadvantaged. A new 

bridge could help to stimulate the local economies on both sides of the river by 

widening the market for locally produced goods and services, generating 

agglomeration economies. For example, the Standing Committee on Trunk Road 

Assessment SACTRA (1999) examined the links between transport and the wider 

economy, and Verhoef (2004) has developed a monocentric urban model to examine 

the links between road user charges, residential densities and labour supply. A broad 

review of historical and contemporary topics in urban economics is provided in Mills 

(2000). 

 

The prospect of wider economic benefits may lead to considerable public interest and 

could provide part of the rationale for constructing a new bridge. Whilst such a views 

would appear to be entirely reasonable, the explicit treatment of regeneration benefits 

is outside the scope of this paper. However, such considerations may be important  

when assessing selective tolling policies, for example, a policy of setting premium 

charges for remote traffic, when taken in conjunction with local concerns about 

congestion resulting from though traffic attracted by the new bridge.  

 

These issues, if improperly understood, may lead to undue tension between local 

economic objectives on the one hand and fears of excessive congestion from remotely 

generated traffic on the other. There is a further danger that geographically 

differentiated tolling could compromise the tolling revenue received on the new 

bridge, and thereby jeopardise the financial viability of the project. In the illustrative 

scenarios used in this paper, it will be demonstrated that such a concern appears to be 

unfounded, but this finding merits further investigation. The development of a 

rationale for spatially differentiated tolling strategies is resumed towards the end of 

the paper, under the items for discussion.   

 

Repayment Cost on a Loan for Bridge Construction 

What kind of investment and payback is required to finance a new bridge? Suppose 

that the new bridge cost £500m to construct but the project attracted a (non-repayable) 

grant of £100m, leaving an outstanding loan requirement of £400m. Over 30 years, at 
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5% interest p.a., a toll revenue of £68,000/day would be needed to repay the loan, net 

of the costs of bridge operation. 

 

Now assume that the new bridge attracted 60,000 toll paying vehicles/day. The bridge 

operator would need to charge an average toll of £1.13/vehicle, plus enough to cover 

the cost of operation and maintenance of the bridge. If the (non-repayable) grant were 

increased to £150m, with the same payback period, interest rate and traffic levels, the 

required daily toll revenue would be £59,000/day the required average toll/vehicle 

would be 99p, plus the costs of operation and maintenance. 

 

In practice not all types of vehicles would pay identical tolls. Heavy goods vehicles 

would typically be charged more than cars as they impose much greater road 

maintenance costs. Sometimes public transport operators may be exempt from 

charges, although this practice is far from universal (e.g. Golden Gate Bridge).  

 

If the franchise for the new bridge was put out to competitive tender, and the 

successful operator had to finance the bridge entirely out of toll revenues, under a 

tendering process that recognised any adverse social impacts of high toll levels, there 

may be only a small margin between the operators’ costs and the toll revenues 

received. If a tolling strategy other than revenue maximisation was then implemented 

the private operator may need to be subsidised in order to continue operation. The 

need for such subsidies depends on just how much revenue is foregone by the 

alternative tolling strategy and the narrowness of the profit margin faced by the 

private operator. The methodology contained in this paper can provide a basis for 

examining questions of this kind. 

 

An example of a proposed new toll bridge 

While the methodology presented here is expected to be of general application, when 

illustrating the methods, it is helpful to have a specific example in mind. The 

examples given are based, very roughly, on the current geography and road network 

for the London area. However this example is only mentioned to provide an 

illustrative focus and is not in any way intended to be a specific subject for 

investigation in this paper. 
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In 2003 London introduced central area weekday road charges, covering a three-

kilometre radius of the centre of the city. The charging area spans the river Thames 

with a further westward extension being implemented from February 2007. There is a 

plan to build a new bridge in East London, in the downstream direction from the 

central charging zone where there are currently only four existing road crossings. The 

farthest down the estuary is Dartford, a tolled crossing on the alignment of the M25 

outer orbital road. This crossing is 25kms east of the city centre, and consists of a 

relatively new 6-lane bridge devoted to traffic going north and an older four-lane 

tunnel for traffic going south. Other Thames downstream un-tolled crossing points 

include Tower Bridge, adjacent to the central charging zone, and Blackwall, an often 

congested tunnel. There is also a free ferry with extremely limited capacity, close to 

the site of the proposed new bridge. 

 

Clearly, the pattern and level of utilisation of the new bridge will depend on the 

tolling strategy, as well as any associated subsidy policies, or premium charges, for 

specific classes of user, including charges differentiated by location of residence. For 

an illustration of discussions of the range of analytical issues that arise, the reader 

may wish to refer to published documents from the Thames Gateway Board (2004). 

  

Plan of the paper 

Our approach entails building a simplified model of traffic flows, showing how 

demand varies according to the toll levels and how they depend on other factors 

including prevailing traffic speeds and to the perceived value of travel time savings. 

Through the inclusion of a demand function and consideration of congestion effects 

we are able to identify toll levels that would yield the maximum revenue, as well as 

the revenue implications of alternative tolling strategies in which welfare is an explicit 

component.  

 

The first part of the paper describes the basic model and spatial metrics used to 

estimate traffic levels on each river crossing at a sufficient level of detail to be able to 

be able to estimate the size of route catchments and the market shares at different toll 

levels, speed and value of time assumptions. The extended theory then deals with the 

issues of revenue and welfare maximisation. Welfare here represents the sum of 
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transport user benefits (consumer surplus) and transport provider benefits (toll 

revenue).  

 

To evaluate the toll that maximises welfare requires the calculation of an equilibrium 

level of bridge traffic, which recognises the feedback between bridge traffic levels 

and congestion, at any exogenous level for the bridge toll. The scenarios used to 

illustrate our results are designed to give a measure of the sensitivity of the model to 

different assumptions about traffic speeds, the value of time, and congestion effects, 

all of which may be useful in setting toll levels under operational conditions. Such 

flexibility is necessary since once the new bridge is built it cannot be guaranteed that 

the assumptions on which the bridge was planned will still be entirely accurate.  

 

The baseline parameters in scenario A are chosen to broadly correspond with the 

situation currently pertaining to London. However, any correspondence thereafter is 

hypothetical. In scenario B we test the robustness of the revenue maximising tolls to 

changes in the assumed value of travel time savings; in scenario C, the toll at the old 

Bridge is raised substantially higher; whereas in scenario D, we assume that all traffic 

passing through the central area of the city would also face a charge.  

 

However, whilst A-D deal with the aggregate effect of bridge usage, they do not 

discriminate between local users (i.e. locally generated trips) and remote users (i.e. 

trips generated a long distance from the new bridge). This is the issue of ‘spatially 

differentiated tolling’ and concerns the impact of premium charges for remote users of 

the new bridge and, conversely, the case for toll subsidies to local users.  

 

We deal with this issue by dividing the city into sub-areas, defined in terms of either 

annuli or radial sectors, and then evaluate the revenue maximising toll for traffic that 

is generated in each of these sub-areas. Contrary to expectation we find that tolls in 

the vicinity of the bridge need to be higher but the differences in toll level are small 

and probably not worth the extra administrative costs of applying differential tolls on 

traffic using the new bridge. 

 

Finally we reconsider scenario A under congested conditions and estimate what the 

toll should be under revenue and welfare maximising assumptions, and compare this 
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with the congestion-free revenue maximising toll. The implications of our findings are 

then discussed in a concluding section. 
 

Basic concepts and assumptions 

Our simplified model is based on a circular representation of a city with two major 

orbital ring roads and a river flowing from west to east, where it widens substantially 

at it approaches the river estuary. Crossing the river to the west of the centre is 

assumed to be toll free, whereas on the eastern side, where the river is much wider, a 

toll is levied at two bridges, an old bridge and a new bridge.  Routeing in this 

idealised city is either along radial arcs through the city centre or by means a 

combination of orbital or radial routes on either of the two orbital ring roads, which 

cross the estuary at the two tolled bridges.  The outer orbital crosses the estuary at the 

old tolled bridge and the inner orbital crosses the estuary at the new tolled bridge.  

 

If the model were applied to London the old bridge could be taken to correspond to 

Dartford, and the new bridge could be taken to correspond to Thames Gateway. 

London’s central charging zone is small enough for through trips to avoid it by using 

toll-free bridges near the centre, and this will be assumed in three of the scenarios. 

With slightly different input assumptions, the model could just as well be applied to 

other major cities. 

 

There are effectively five routes defined altogether: radial routes via the centre, two 

orbital routes east (downstream) of the centre and two orbital routes west (upstream) 

of the centre. The upstream western orbital routes will not incur a toll and the radial 

routes will normally also be toll-free. This would alter however if there were a central 

area toll that was unavoidable by traffic using routes passing through the centre. This 

possibility is considered in the last scenario. 

 

For any origin and destination there will be a preferred or least cost route. We define 

the area in which it is quicker to reach a given destination by a particular route than 

via any other route, as the catchment area for that route (Hyman and Mayhew, 2000 

and 2001b).  In this way the city may be divided up geographically into up to five 

different route catchments, depending on the location of the fixed destination, the 
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average speeds achievable on each route, the level of the tolls and congestion charge, 

and on the monetary of travel time.  

 

The five routes that are potentially available are defined as: 

- Ring 1 outer orbital route (average radius 25kms) 

o Downstream (tolled) 

o Upstream (un-tolled) 

- Ring 2 inner orbital route (average radius 12.5kms) 

o Downstream (tolled) 

o Upstream (un-tolled) 

- Double radial (through the city centre): typically un-tolled, except in one 

scenario where the central charge is applied. 

 

We assume that the traffic on any route will be proportional to the size of its route 

catchment, but weighted according to the density of trip generations. A route 

catchment area may therefore be thought of as the ‘market area’ for any particular 

facility such as, in this case, a bridge and the traffic flow directed towards the bridge a 

measure of demand. By calculating the weighted size of each catchment area and 

summing over all destinations, we can determine how much traffic uses the new tolled 

bridge, the existing tolled bridge and each of the other available routes. This enables 

us to undertake an analysis of the resulting traffic flows under a range of charging 

conditions. Finally, it is important to ensure that the central area toll is modelled on an 

equivalent (one-way) basis as the bridge tolls. The equivalent one-way toll is simply 

taken to be the all-day central charge divided by the expected number of daily one-

way trips/user. 

 

Route  metrics 

We assume that travel cost in the idealised city can be represented by an orbital-radial 

route metric. Such metrics have been extensively studied and their analytical and 

numerical properties are well understood (Mayhew, 2000; Hyman and Mayhew, 

2004) with several published applications (Hyman and Mayhew, 2001a, 2001b and 

2002). Consider a single circular ring road and a large number of radial routes 

converging on the centre. When the angular separation between the origin and 
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destination exceeds the switching angle, the preferred route is through the centre of 

the city, whereas for smaller angular separations the ring road is preferred.  

Let υ be the average money value of a unit of travel-time savings. The typical travel 

cost for a trip from i to j, that crosses the river at bridge k is given by  

kijkijk tC τν +=  

tijk is the travel time from i to j using bridge k and τk is the toll or charge for bridge k.  

Let (ri,θi) denote the polar coordinates of the trip origin and (rj,θj) the polar 

coordinates of the trip destination (see Figure 1). The five river crossing points are 

numbered from the east to west, with k=1 to the existing tolled crossing, k=2 to the 

new tolled bridge, k=3 to the city centre and k=4 and k=5 to the two bridges to the 

east of the centre. The latter two bridges do not have a toll, so that τ4=τ5=0. Let V1 

denote the orbital spend on the outer ring, of radius R1, V2 the orbital speed on the 

inner ring, of radius R2 and VRadial the radial speed. 

For k=1 and 2 the route uses a downstream bridge and the travel times are: 
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When k=3 the route is a double radial through the central area and the travel time is 

given by:  
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When k=4 or 5 the route uses an upstream bridge and the travel times are:  
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Figure 1:  Schematic picture of a city illustrating the polar coordinates for an origin i 

and destination j and the five river crossing points k. Zero degrees are due west. 

 

The model was implemented as follows. The urban area was divided into cells 

representing trip origins and a representative sample of points to indicate destinations. 

Journey origins were spaced at 1-degree intervals with an incremental radius of 0.5 

kilometres such that there were 28,800 within a 40-kilometre radius of the city centre, 

18,000 such cells within the 25 km radius of the outer orbital ring; and 9,000 within 

the inner orbital ring.  

 

The destinations were spaced at intervals of 5, 10, 15, 20 and 30 kilometres and 

angles of arc at 0, 30, 60, 90, 120, 150, and 175 degrees to give 35 destinations in all. 

The co-ordinates of the new tolled bridge were assumed to be at a radius of 12.5kms 

and angle of 180 degrees and the co-ordinates of the old tolled bridge, at a radius of 

25kms and angle of 180 degrees. The average trip density in each cell was obtained 

was obtained by allocating cells to standard traffic areas in the London area and 

allocating a ‘traffic weight’ to each cell. 

 

For each destination cell, the cost of on each of travelling between every origin on the 

opposite side of the river and that destination via each of the five bridges was then 
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calculated. For each origin-destination pair the preferred bridge (giving the minimum 

cost journey) was identified. The area of each route catchment is numerically 

estimated by summing the areas of each cell assigned to each route. The results were 

then plotted in the form of a simplified route catchment map.  

 

To obtain the relative proportion of traffic at each bridge, a weighted sum of the 

number of cells was calculated, with weights proportional to a measure of the density 

of trips generated from each trip origin. These weights were based on the National 

Trip End Model, and provided by the TEMPRO software package, Department for 

Transport (2002). 
 

Illustrative route catchment maps 

To help fix ideas and show the possible range of spatial impacts of traffic on each 

route, we now consider the examples of catchment maps shown in Figure 2. Each map 

shows the size and shape of the route catchments pertaining to a fixed location. This is 

situated half way between the inner and outer ring on the north side of the river at an 

angle of 150 degrees from due west (the results for the south side of the river are a 

mirror image of those for the north side).  Figure 2 (a) corresponds to revenue 

maximising scenario A described later in the paper in which the model parameters 

broadly compare with London. Figure 2 (b) corresponds to revenue maximising 

scenario D, in which an additional charge of £2.50 is made for crossing the central 

area2. Other toll and parameter values are shown in Table 1.  

 

As is seen the route catchments have distinctive shapes and patterns. As Figure 2(a) 

shows, in the absence of any central area charge the radial catchment is second in size 

only to the catchment for the inner ring. However, in Figure 2 (b), it is seen that much 

of the traffic is diverted onto ring one as a result of the additional central area charge 

and illustrates clearly the potential of tolls to alter traffic patterns.  

 

As the changes in route catchment areas in Table 1 suggest, both tolled bridges also 

receive extra traffic. This is also apparent from the changes in the sizes and shapes of 

                                                           
2 Since this illustration was prepared the congestion charge has increased to a one-way equivalent 
charge of £4. Additionally there are plans to increase the charge at Dartford, defined in the map as the 
‘old bridge’. 
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the lightly shaded route catchments in the south east quadrant of the maps.  Note that 

the values for catchment areas generated by the model given in the Table 1 include 

only those areas that fall within the outer ring, which we define as the ‘built up area’.  

 
Figure 2: Examples of route catchment maps based on different toll values for a 

destination 150 degrees from due west between the inner and outer ring road: (a) no 

central toll; (b) central toll of £2.50. (See Table 1 for catchment area sizes.)  

 

Measuring the spatial impact of the tolled bridges 

A different route catchment map is needed for each destination (or origin); this means 

a more convenient way is needed to evaluate the overall impact of the bridge that does 

not involve drawing a great many such maps.  Using the model, all locations inside 

the built up area were investigated to find the market shares of each of the five routes. 

If the market share of any route from any given location is calculated to be say 25%, it 

means that it will be favoured on cost grounds over all other routes to that location in 

25% of journeys from locations within the built up area. 

(a) 

(b) 
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Route catchment area 

(sq kms) (a) (b) 

Double Radial 558 79 

Inner Ring West 646 935 

Outer Ring West 312 313 

New Bridge 275 385 

Old Bridge 171 252 

Total 1,963 1,963 

 

Table 1: Route catchment areas (square kilometres) with and without a central toll 

within the built up area. 

 

Different locations have different route market shares so that contour values at any 

given location would represent the percentage of traffic using a particular route. The 

higher the market share the busier the route is expected to be at that location and the 

greater its influence over traffic at any point; it follows that where the market share 

extends over a wide area the greater its geographical impact will be in traffic terms. 

Where market shares rise to 100%, as occurs on double radial routes originating or 

terminating near the city centre, it means all traffic will opt for this route.  

 

Based on Scenario A the market shares for the new and old bridges were estimated 

and plotted as contours in Figure 3.  The contour values shown are 15%, 20% and 

25% of all journeys inside the built up area. The dark shaded area is defined as the 

impact zone for the new bridge and the light shaded area as the impact zone for the 

old bridge.  Along the boundary between the white area and the dark grey area 15% of 

cross-river traffic uses the new bridge, and along the boundary between the white and 

light grey area 15% uses the old bridge. In the interior of the dark grey area more than 

15% of cross-river traffic uses the new bridge, and in the interior of the light grey area 

more than 15% uses the old bridge.  The other contours show the 20% and 25% 

contours for the new and old bridges.  

 

It is noteworthy that even in the vicinity of the bridges neither bridge achieves market 

share of greater than 25%. This means that the dominant routes are usually one of the 
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other three; nearer the city centre it is the double radial route, and moving outwards, it 

is either the upstream, un-tolled inner or outer rings. In the interior of the white area 

more than 70% use un-tolled routes (i.e. neither the old bridge nor the new bridge). 

Any location more than three-quarters of the way to the outer ring would typically use 

the un-tolled inner ring, with remaining traffic using the un-tolled outer ring. At 

locations a couple of kilometres inside the inner ring the double radial becomes the 

dominant route.  

 

The major influence of the other routes can also be gauged by the fact that both 

bridges have negligible market share in the western half of the city, whilst the impact 

zone for new bridge is largely confined to within the outer ring and tends to straddle 

the inner ring before tapering away either side of the estuary. On the city centre facing 

side of the new bridge the contours fall away steeply due to the influence and 

competition from double radial routes. On the western side the impact zone extends 

further but is curtailed by the old bridge a little way inside the outer ring.  

 

We conclude therefore that, at the tolls levels set under scenario A, the impact zone 

for the new bridge would be relatively compact and its market share of all journeys 

inside the built up area would not rise much above 25% except in the immediate 

vicinity of the bridge. Further, as is also apparent from Figure 3, it is unlikely that the 

new bridge would to attract long distance traffic on any scale as compared with other 

routes. This is because, as the map indicates, there are usually better alternatives, 

either the old bridge or the un-tolled alternatives.  

 

Different toll combinations yield different impact zones but generally follow the same 

pattern changing only in size or contour value.  For the impact zone of the new bridge 

to increase in area either the toll would need to be reduced or tolls on other river 

crossings would have to increase. Figure 2b, for example, shows how extending the 

tolled area on double radial routes would be one way to increase the impact zone on 

the new bridge but it is notable that the route catchments for other river crossings 

would also increase.  
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Figure 3: Contour plot showing the destinations in the northeast quadrant for which 

the new bridge will be the preferred route for the given percentage of the urban area 

(axes in kilometres)  
 

Traffic Demand 

We now describe the demand functions that are used in the analysis. The traffic level 

Q(τ) at the new tolled bridge is assumed to be a smooth function of the toll τ and is 

applied over a small range of variation in the toll level. In this region, Q(τ) can be 

approximated by a linear function of the form: 

 

ττ baQ −=)(  
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where a and b are parameters to be estimated. This functional from is applied to both 

total traffic on the new bridge, and to the components of this traffic that are generated 

from specific geographical locations.   

 

Tolls which Maximise Revenue 

The toll revenue R that is derived from this traffic is given by a quadratic function: 

 
2τττ baQR −==  

 

The maximum revenue at the new bridge is obtained when the toll level is set to 

 

b
a
2

=τ  

 

It can be noted that the resulting toll levels only depends on the ratio of the parameters 

a/b.  

 

The old bridge is assumed to have a fixed toll. The traffic on the old bridge is also 

approximated by a linear function of the toll τ on the new bridge, of the form 

 

ττ dcF +=)(  

 

Where, again τ is the toll at the new bridge. Let u denote the (fixed) toll on the old 

bridge.  The total toll revenue collected at the old bridge is given by: 

 

)( τdcuS +=  

 

The total revenue from the old and new bridges combined is given by 

 
22 )()( τττττ budaucdcubaSRZ −++=++−=+=  

 

The combined revenue from the two toll bridges is maximized when the toll at the 

new bridge is given by 
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b
uda

2
)( +

=τ  

 

This toll level will be slightly higher than the previous toll, where only new bridge 

revenues were considered. This difference is given by the term b
ud

2  and depends on 

how much traffic the new bridge diverts from the old bridge. This effect will be 

estimated in the following analysis. 

 

In order to estimate the parameters of the demand functions, we need to convert 

estimates of catchment area sizes into equivalent traffic volumes. This was 

implemented by using comparative weights for trips generated in each the three rings: 

a) r<R1, b) R1<r<R2 and c) r>R2, where r is the radius of the fixed location, R1 the 

radius of the inner ring road and R2 the radius of the outer ring road. The particular 

weights used in the examples were a) 8, b) 4 and c) 1, and were derived for London 

from TEMPRO (see above). 

 

In each set of simulations, we fixed the assumptions about traffic speeds, values of 

time, central area charging and the toll at the old bridge and varied the toll at the new 

bridge. We calculated both traffic levels and toll revenues until we were in reasonably 

close proximity to the maximum revenue. We then assumed that variations in bridge 

traffic levels were a linear function of variations in the toll: ττ baQ −=)( . To 

estimate the parameters a and b we than compared the simulated bridge traffic at two 

proximate tolls )1(τ and )2(τ , and used the two resulting traffic levels ))1((τQ  and 

))2((τQ  to deduce the slope b and intercept a, for each tolled crossing, using the 

simple formulae: 

 

)2())1((
)1()2(

))1(())2((

ττ
ττ
ττ

bQa

QQb

+=
−
−

−=
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Tolls which Maximise Welfare 

The previous section explained how tolls can be set to maximise toll revenue. This 

can be contrasted with a welfare based tolling policy. Such a policy is of particular 

interest when the traffic on the bridge approaches causes congestion, adding to 

journey times and therefore user costs. A suitably set toll could then increase total 

welfare by lowering the journey times for a reduced number of travellers. It follows 

that there is value in exploring the differences in welfare and revenue maximising 

tolls in order to show how tolls need to be fine-tuned to deal with a range of 

circumstances, ranging from low to excessive demand.  

 

Note that it is theoretically possible for welfare maximising tolls to exceed revenue-

maximising tolls. Effects of this kind merit detailed empirical investigation, but do not 

arise under the assumptions made in this paper. 

 

Firstly, we define welfare as the sum of transport user benefits (consumer surplus) and 

transport provider benefits (toll revenues). We assume that the new bridge is already 

in operation, allowing us to confine our analysis to the benefits arising from 

alternative tolling strategies, rather than from the provision of the new bridge itself. 

 

The theory is developed for a restricted case, where the congestion associated with the 

new bridge is considered in isolation, i.e. assuming that, as tolls on the new bridge are 

varied, any user benefit arising from changes in congestion on other crossing points 

are negligible.  

 

For clarity of exposition, the theory is developed in two stages. In stage 1, we estimate 

user benefits of alternative toll levels on the new bridge, without including congestion 

effects. Here the maximum welfare occurs when the bridge toll is set to the lowest 

level that is consistent with any prevailing financial constraints. In stage 2, we include 

the effect of congestion on the new bridge and on its approach roads. Stage 2 requires 

the calculation of an equilibrium level of bridge traffic, which recognises the feedback 

between bridge traffic levels and congestion, at any exogenous level for the bridge 

toll. Now the perceived cost of travel includes both congestion, which varies 

according to traffic levels, and tolls.   
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We then examine the corresponding revenue maximising policy on comparable 

assumptions to stage 2 (congestion effects associated only with the new bridge) and 

calculate the ratio of the welfare-maximising tolls to the revenue-maximising tolls. 

From the point of view of the provider, only the toll revenues from the new bridge are 

considered. From the point of view of the users, we assume that the transport user 

benefits arising from the removal of congestion on other crossing points are 

negligible, so congestion modelling can be confined to the new bridge. We returned to 

this issue later, in the subsequent discussion. 

 

Stage 1) Welfare analysis without any congestion effects 

 

The total welfare benefit of the new bridge is given by 

 

RUBW +=  

 

In annex A, we show that this expression, the sum of user benefit and toll revenue, is 

equivalent to the difference between willingness to pay and social cost and therefore 

consistent with normally accepted approaches for evaluating transport projects 

(Verhoef  and Small, 2003; Department for Transport, 2003; Hau, 1992; Ministry of 

Transport, 1964). Since there is no congestion, the only variable user cost is the bridge 

toll itself τ and the user benefit of the new bridge is given by the consumer surplus: 

 

∫−=
τ

ττ
0

)( dQUB   

 

The provider benefit of the new bridge was given earlier by the toll revenue: 

 

)(ττQR =  

 

The traffic demand for the new bridge is given by: 

 

ττ baQ −=)(  
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Evaluating the integral and adding toll revenues, it can be verified that W is given by:  

 
2

2
1 τbW −=  

 

Hence the maximum welfare value occurs when τ=0, i.e. when the bridge toll is set to 

zero. In general, the best policy would therefore be to set the toll at the lowest 

affordable level that is consistent with the repayment conditions for the bridge loan. 

Once the loan has been paid for, the toll is normally removed. This is the usual basis 

for setting tolls on bridges and other estuarial crossings in the absence of congestion. 

 

Stage 2) Congestion associated with the new bridge 

 

2(a) Traffic Equilibrium 

When the new bridges, or its approach roads, are congested the level of the bridge toll 

will influence the journey times of bridge users. For any given toll level, the 

utilisation of the new bridge needs to be consistent with levels of congestion resulting 

from that level of utilisation. This entails the calculation of an equilibrium between 

bridge demand and bridge congestion levels. 

 

We assume that, for each bridge user, congested travel times are given by a linear 

function: 

 

)()( τβατ Qt +=  

 

where α is the free-flow travel time, β is the additional time resulting from a unit 

increase in bridge traffic and τ is the level of the bridge toll. This is the upward 

sloping solid line shown in Figure 4. The horizontal dashed line represents the un-

congested case. 

 

Recalling that ν is the value of travel time and since congestion adds a cost of 

)( αυ −t  to the cost of travel, the traffic demand for the new bridge is now given by: 

 

))(()( αυττ −+−= tbaQ  
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In Figure 4, two downward sloping demand schedules are shown, the rightmost line 

the one where the toll is zero, the leftmost line, when the toll is τ. 

  

Substituting for the congested times t gives: 

 

))(()( τυβττ QbaQ +−=  
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Figure 4: The effect of a toll on traffic, with and without congestion 

 

Solving for the equilibrium flow Q(τ) gives: 

 

ττ BQQ −= )0()(  

 

where 

 

b
aQ
νβ+

=
1

)0(  

 

is the equilibrium level of bridge traffic when the bridge toll is zero, and 
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b
bB
νβ+

=
1

 

 

is an adjusted slope parameter. The slope B modifies the demand function to take 

account of the equilibrium level of congestion. The calculation of the equilibrium 

traffic level, for both the congested and un-congested cases is illustrated in Figure 4 

by the intersection points A and B of the congestion line and the demand schedules. 

The point A is the congested equilibrium with no tolls, the point B is the congested 

equilibrium in the presence of a toll. The points ‘a’ and ‘b’ represent the 

corresponding equilibria in the absence of congestion. 

 

2(b) Welfare Analysis 

 

We now look at the welfare effects, taking account of local congestion effects. We 

assume that user benefits are given by:  

 

∫−= QdCUB   

where C is the cost of travel (including tolls), given by: 

 

τυ += tC  

 

where we have now included a term representing the varying cost of congestion. The 

incremental change in the cost of travel is therefore: 

 

τυ ddtdC +=  

 

Substituting this in the user benefit integral adding toll revenues (and allowing a slight 

abuse of notation for the toll variable in second integral) gives: 

 

)(τττν QQdQdtW +−−= ∫ ∫  

 

Now, noting that travel times are given by: 
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)()( τβατ Qt +=  

 

we can evaluate the first integral in the expression for welfare to obtain: 

 

∫ +−−= )(2
2
1 τττνβ QQdQConstW  

 

Also, noting that the equilibrium traffic using the new bridge is given by:  

 

ττ BQQ −= )0()(  

 

We can evaluate the remaining integral to obtain the simple expression: 

 

)( 22
2
1 τνβ BQConstW +−=  

 

It is now straightforward to verify that the toll that maximises welfare satisfies: 

 

B
QQWW

νβ
νβυβτ
+

==
1

)0(  

 

Where the superscript W indicates that the bridge toll and traffic level are evaluated at 

the welfare optimum. We showed earlier that the equilibrium slope parameter B is 

given by:  

b
bB
νβ+

=
1

 

 

Substituting for B gives the toll that maximises welfare in the form: 

 

b
bQQWW

νβ
νβνβνβτ

21
)1)(0(

+
+

==  

 

The resulting equilibrium traffic level on the new bridge is therefore: 
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b
bQQW

νβ
νβ

21
)1)(0(

+
+

=  

 

2(c) Revenue and welfare policies compared 

 

We now compare welfare and revenue maximising policies, assuming local 

congestion. It is straightforward to verify that the revenue-maximising toll is: 

 

b
bQ

B
QR

2
)1)(0(

2
)0( υβτ +
==  

 

and the resulting equilibrium level of bridge traffic is: 

 

2/)0(QQR =  

 

The ratio of the welfare-maximising toll to the revenue-maximising toll is given by: 

 

b
br R

W

g νβ
νβ

τ
τ

21
2
+

==  

Note that the welfare-based toll is less than the revenue-based toll. To understand 

why this occurs, we need to return to the welfare function and look at the user benefit 

term explicitly. It can be verified that this is given by: 

 

ττνβ )0(2
2
12

2
1 QBQConstUB −+−=  

 

Differentiating UB with respect to the bridge toll gives: 

 

b
QBQQBBQUB
υβ
τυβτττνβ

τ +
−=−=−+=

∂
∂

1
)()1)(()0()(  

  

This expression is not positive at any level of the bridge toll. This derivative 

represents the difference between the welfare derivative and the revenue derivative. 

So, as tolls rise, welfare must rise at rate that is not greater than the rate at which 
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revenue rises. Hence welfare cannot reach its maximum value at a higher toll than the 

toll that maximises revenue. 

 

It should be noted at this point that this finding is a consequence of the assumptions 

made in deriving the model used here, and different assumptions can, in theory, yield 

a different conclusion. Determination of the correct set of assumptions is a question 

that requires detailed empirical investigation.  

 

The ratio of the welfare-maximising bridge traffic to revenue-maximising bridge 

traffic is given by: 

 

b
bQQW

νβ
νβ

21
)1)(0(

+
+

=  

 

)0(2
1 QQR =  

b
b

Q
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W
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21
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+
+

==  

 

Note that this fraction cannot be less than unity, so welfare based bridge traffic 

cannot be less than the revenue based bridge traffic. This is a direct consequence of 

the welfare-maximising toll being less than the revenue-maximising toll.  

 

Assume, for illustrative purposes, that the welfare policy eliminates 20% of the traffic 

that would have used the bridge if there had been no toll. Then 

 

8.0
21

1
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b

b
Q
QW

νβ
νβ  

 

Then the value of νβb would be equal to 1/3. So we obtain: 

 

4.0
5
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The welfare-maximising toll would be equal to 40% of the revenue-maximising toll.  

 

We need to ensure that tolling policies are compared on equivalent assumptions about 

congestion. In the presence of congestion associated with the new bridge, the 

equilibrium traffic level is less sensitive to the toll, by a factor b
B , where: 

b
bB
νβ+

=
1

 

 

So, with νβb=1/3, the effect of congestion is to increases the revenue-maximising toll 

by a factor of 4/3.  

 

For a more extended comparison, we recall that the welfare maximising toll is: 

 

b
bQW

νβ
νβνβτ

21
)1)(0(

+
+

=  

In the absence of congestion, the revenue maximising toll is: 

b
Q

b
a

2
)0(

2
==τ  

So the ratio of congested welfare-maximising toll to the congestion-free revenue 

maximising toll is given by: 

 

 
15
8

21
)1(2
=

+
+

b
bb

υβ
υβυβ  

 

on comparable numerical assumptions. 

 

Scenarios 

Following a large number of simulations using the model, we reduced these to four 

key scenarios, A-D. Scenario A is a baseline scenario with comparable parameters to 

London. Scenarios B is designed to test the robustness of the revenue maximising 

tolls to changes in the assumptions of the value of time by raising it from £10 per hour 

to £20 per hour. Our motivation here is that if the value of time were to differ 
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significantly once the bridge was in operation then this may affect the estimates for 

the revenue maximising toll, so this test was required 

 

Scenario C is designed to test the effect of changes in the toll on the old bridge. In this 

scenario, the toll at the old bridge was raised from £1 to £2. Scenario D is designed to 

test the effect of a central area toll. In this scenario, the central area charge is set at 

£2.50. In the case of London, such a scenario might arise if, at some time in the 

future, there were an eastward extension of the current congestion charging zone to 

incorporate existing un-tolled crossing points both at, and downstream from Tower 

Bridge. 

 

Table 2 show our main assumptions and Table 3 our main results. These are the cases 

based on maximising revenue on the new bridge, maximising revenue on the new 

bridge and old bridge together, and the toll on the new bridge maximising welfare. As 

is apparent from Table 3 revenues are maximised over a relative small range of toll 

values, and all results are in the range £1 to £2. The higher revenue maximising tolls 

only arise when either the value of time is doubled (scenario B) or if the current 

congestion-charging zone is extended eastwards (scenario D).  

 

It is noteworthy that raising the toll at the old bridge makes virtually no difference to 

the optimal toll level at the new bridge. The value of time makes only a modest 

difference to the findings, but the implications for cost recovery might prove to be 

critical in some financial scenarios. The central area charge (extension) has a more 

substantial impact. It is also seen that the resulting tolls levels on the new bridge when 

revenues on the new and old bridge are jointly maximised would be about 10% higher 

than the corresponding results for the new bridge alone.  

 

For the welfare maximising case we used the 8/15 ratio derived earlier to obtain 

welfare toll estimates from equivalent revenue based estimates. This has been done 

for each of the basic scenarios A, B, C and D. For scenario A with a congestion-free 

revenue maximising toll of £1.17 (scenario A), this would give a revenue maximising 

toll of £1.56 in the presence of congestion. The corresponding welfare maximising 

toll would be 62p.  
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Scenario 

Value 

of time 

Assumed Toll on 

Old Bridge 

Assumed Toll 

in Central 

Area 

A £10/hr £1 0 

B £20/hr £1 0 

C £10/hr £2 0 

D £10/hr £1 £2.5 

Table 2 Parameter assumptions used for scenarios A to D.  
 

Scenario 

Toll  on New 

Bridge giving 

Max Revenue on  

New Bridge 

Toll on New 

Bridge giving 

Max Revenue on 

New+Old Bridge 

Toll on New 

Bridge giving 

Max Welfare 

A £1.17 £1.30 £0.62 

B £1.36 £1.52 £0.73 

C £1.17 £1.27 £0.62 

D £1.74 £1.92 £0.93 

Table 3: Optimal toll results for scenarios A-D 

 

Figure 5 is a plot of the predicted daily revenues on both bridges as a function of the 

toll on the new bridge, using the baseline scenario A.  Tolls are in pounds 

sterling/vehicle and revenues are in pounds per day. For a toll of £1 on both new and 

old bridges, these results correspond to traffic levels of just under 60,000 vehicles/day 

on the new bridge and just over 120,000/day on the old bridge. The results indicate 

that, on these assumptions about traffic levels, the new toll bridge revenues are close 

to being sufficient to repay the illustrative loans assumed above, but that between 

20% and 30% of these revenues represent transfers from the old tolled bridge. This 

fraction represents the interest that the recipient of the revenues of the old bridge has 

in the proceeds of the new bridge. 
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Figure 5:  The revenue curves for scenario A 

In order to assess the impact of charging policies that differentiate tolls on the new 

bridge by place of residence, we estimated location-specific traffic demand functions  

The locations were specified so that one end of the trip was in a particular angular 

sector or was in a particular radial annulus. Table 4 show the results for five different 

radii, with destinations (5, 10, 15, 20 and 30 kms from the city centre. and four 

different angles, (175, 150, 120 and 30 degrees from due west). The 175-degree sector 

corresponds to the sector immediately adjacent to the new bridge. (Note that zero-

degrees points due west). 

 

The results shown in Table 4 indicate that the revenue maximising toll would need to 

be highest in the two sectors closest to the bridge and lowest in the sector farthest 

from the bridge. The charges range from 75 pence to £1.28 pence to maximise 

revenues from the new bridge and from 80 pence to £1.42 to maximise revenues from 

both new and old bridges It is of interest to note that the spatially differentiated tolls 

are largest in sector 175, which is the closest one to the new bridge. 
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Sector 

(degrees from 

due west) 

Toll  on New Bridge 

giving Max Revenue 

on  New Bridge 

Toll on New Bridge 

giving Max Revenue 

on New+Old Bridge 

175 1.23 1.42 

150 1.28 1.41 

120 1.11 1.22 

90 0.75 0.80 

Table 4: Results for different sectors under scenario A 
 

Annulus 

(km from 

city centre) 

Toll  on New Bridge 

giving Max Revenue 

on  New Bridge 

Toll on New Bridge giving 

Max Revenue on New+Old 

Bridge 

5 0.73 0.73 

10 1.28 1.34 

15 1.23 1.37 

20 1.19 1.33 

30 0.92 1.09 

Table 5: Results for different annuli under scenario A 

 

When the same procedure is carried out for different annuli we found that the revenue 

maximising toll is lowest in the 5km annulus nearest the city centre rising to £1.28 at 

10kms before falling to 92 pence at 30 kms, which covers an area outside the R2 (see 

Table 5). The results are similar whether the new bridge is considered singly or jointly 

with the old bridge. Note that the new bridge is positioned 12.5kms form the centre in 

the model, close to the largest spatially differentiated tolls.  The largest spatially 

differentiated tolls are obtained for the locations closest to the new bridge. 

 

Combining the sector results with the annuli results, we conclude that revenues would 

tend to be greatest by charging lower tolls to remote distance traffic and higher tolls to 

local traffic. It is somewhat paradoxical that this is the exact reverse of the pattern that 

might be desired on the basis of local economic development policies i.e. that such 

policies might have a price-tag in terms of toll revenues. The plot of toll revenues 

given earlier suggests that this price tag would be small as long as toll variations are 
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less than 30%. Further any additional administrative costs of implementing spatially 

differentiated toll, of any from, would need to be offset against the increased, or 

reduced, revenues. 

 

Discussion 

The impact of tolls on the new bridge on the congestion levels of other crossing points 

has not, so far been discussed, but it may also influence welfare based tolling policies 

that distinguish between local and remote users. To the extent that other crossing 

points lie on alternative, (parallel) routes to the new bridge, taking account of wider 

congestion impacts would tend to result in lower welfare based tolls on the new 

bridge. When the crossing points are some distance apart, as in an estuary, these 

benefits would tend to be particularly perceived by the more remote prospective users. 

This suggests that, like revenue based tolling, welfare based tolling would also tend to 

be lower for remote users than for local users.  

 

Where congestion on remote links that are en route (in series with) the new tolled 

bridge is larger than congestion on alternative crossing points, a modification to this 

conclusion becomes a possibility.  In such cases, the welfare- based tolls for remote 

users could, in theory, turn out to be higher than for local users. However, as we 

demonstrated above, the contribution that remote users make to traffic on the new 

bridge appears to be fairly small, so this issue may prove to be quite difficult to 

resolve. To assess its likelihood, accurate empirical measurements would be required 

of the sensitivity of congestion levels at remote locations to bridge toll levels.  

 

Some local districts close to the core of the bridge impact zone might decide that a 

welfare-based tolling policy is a good means of promoting local economic 

development but for various reasons it is operationally difficult to implement 

differential tolls. These districts may then seek to implement a policy of 

reimbursement to local residents and/or local businesses. The method of 

reimbursement may take the form of a combination of bulk discounts on advance 

purchases of toll ‘tickets’, credit for discounted fares on local public transport and 

discounted access to local attractions. Measures of this kind, if administered well, 

may help to promote local use of the tolled bridge and to stimulate the local economy.   
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In contrast, districts outside, or on the periphery of the impact zone are much less 

likely to perceive benefits from promotions of this kind. The net result of such 

decentralised arrangements would be that some local residents, and some local 

business would end up paying less to use the toll bridge than remote users. It is quite 

possible that the resulting ‘spatially differentiated tolls’ represent good value for 

money for the local districts concerned but a business case would need to be 

established. At the time of writing, there are some particularly encouraging prospects 

for UK local authorities to establish business cases for transport funding innovations. 

 

Summary and conclusions  

River crossings are major public investments and normally require the payment of a 

toll to be financially viable. Bridges can take years to plan and be costly to construct 

and so it is important that the tolling assumptions are robust. This paper has described 

a model for assessing tolling strategies for evaluating the revenues and traffic flows 

associated with a new river crossing in a large urban area. To facilitate the exposition 

and motivate the illustrative scenarios used in the paper, the model parameters and 

urban dimensions adopted broadly corresponded to the London area, which itself is 

currently contemplating the construction of a major new crossing point to the east of 

the city centre.  

 

Routing in the model was based on a radial-orbital metric with tolls applicable on 

each route as required. Five river crossing points were assumed, two upstream stream 

of the centre, the centre itself and two downstream. Although parameterised for 

London, the model is general in its application if necessary using other metrics 

(Hyman and Mayhew, 2004). Because there may be a range of planning objectives, 

revenue maximisation and welfare maximisation are extreme cases of a spectrum of 

possibilities. These depend on the level of public sector involvement, on the need for 

private finance, and on the importance of wider local economic and social objectives. 

 

Mathematical expressions for determining tolls that maximised revenue and welfare 

were derived. Subsequent scenarios showed that revenue maximising tolls are fairly 

robust to changes in tolls at downstream crossing points and to changes in the value of 

time. In contrast, these toll levels were significantly more dependent on central area 

congestion charging policies. Before drawing any policy conclusions from this 
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observation, there are wider factors to be considered, including the implications on 

local government and private finance, on local economic development etc. 

 

Detailed investigation of the geographical pattern of congestion is required to 

determine the applicability of such findings to welfare based tolling policies, or to 

hybrid policies that give a greater or lesser weight to financial and welfare objectives. 

Our results show that a simple welfare based tolling strategy would yield lower toll 

revenues than a strategy based on financial objectives. If the bridge were only just 

breaking even when tolls are set to maximise revenue, the revenue shortfall would 

need to be made up from other sources, such as a public subsidy. If a primary reason 

for subsidies were to increase economic development in the areas either side of the 

bridge, it would then be appropriate to establish robust evidence that this aim would 

be achieved. Alternative methods of achieving welfare objectives, via local user 

subsidies have been discussed. 

 

To summarise our findings are of a qualitative nature, but suggest that:  

 

A (i) Under un-congested conditions, welfare maximising toll levels on the new 

bridge would typically be appreciably lower than revenue maximising toll levels  

 

A (ii) Under congested conditions, welfare maximising toll levels on the new bridge 

would still be substantially lower than revenue maximising toll levels  

 

B (i) Raising the toll at the old bridge makes virtually no difference to the revenue-

maximising toll level at the new bridge. 

 

B (ii) Raising the toll at the old bridge also makes virtually no difference to the 

welfare-maximising toll level at the new bridge. 

 

C (i) If local users were directly subsidised, the cost of the subsidy may fall on local 

districts that are least able to afford it, compromising their expenditure on other local 

economic development projects. These issues may require new funding innovations. 
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C (ii) If higher tolls than those yielding optimum revenues were levied on remote 

users this is likely to increase the revenue shortfall for the new bridge. As remote 

users tend to be in the minority, the magnitude of this impact appears to be 

comparatively small. 

 

D (i) It has been demonstrated that the optimum bridge toll and bridge traffic levels 

are particularly sensitive to the level of a wide area central congestion charge. This is 

because the central area provides the principle alternative crossing point to the new 

bridge. The policy issues arising from changes and extensions of central area charging 

are particularly complex matters that merit a much wider investigation.  

 

There are also several further details would require analysis and refinement. For 

example, we have only considered tolls for a single type of vehicle and for a single 

time period. We have not examined the effects of differential tolls for commercial 

vehicles, or different toll for peak period, night time or weekend use. The effect of 

tolls on commercial vehicle travel behaviour particularly merits detailed empirical 

study. Public transport and public service vehicles also compete for road space, and so 

would need to be included in a more substantive in-depth analysis.  Related to these 

issues are the implications of diversity in the ability to pay toll charges on the 

distributional effects of tolling policies. 

 

Notwithstanding these detailed issues, the general methodology presented in this 

paper is likely to be applicable to many cities built around major rivers. The 

geometrical representation of the network has some analytical advantages over more 

traditional network approaches: clarity of exposition of the issues and low 

requirements on network and traffic information. One of the innovative features 

introduced in this paper is the handling of competition between alternative tolled 

crossings, including the definition of an ‘impact zone’ for the new bridge. This has 

considerably improved our understanding of the geographical sensitivity of travel 

demand to bridge toll levels. Such insights would not have been available from the 

one-dimensional geometry that are often adopted in urban economic models, although 

even such very simple geometric models can also have useful applications. 
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Finally, we have discussed some of the implications of our findings for transport 

appraisal, particularly in terms of reconciling financial and welfare objectives.  It is 

hoped that these will help to stimulate further examination of the implications of 

innovative approaches to the funding of major transport projects. 
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Annex A: Equivalence of Two Welfare Measures 
 
This annex demonstrates the equivalence of two measure of welfare: a) the difference 

between willingness to pay and social cost and b) the sum of user benefit and toll 

revenue. Let q denote the flow on an isolated new river crossing, c the average 

variable cost of using the crossing, t the average travel time (subject to congestion) 

and τ the toll on the crossing. The tolling literature (e.g. Verhoef and Small, 2003) 

adopts a welfare measure of the form: 

 

SCWTPW −=        (1) 

 

WTP represents the total users’ willingness to pay for using the crossing point and SC 

the total social cost that they impose on each other through network congestion. It is 

assumed that all users of the crossing have identical subjective values of travel time. 

The social cost is given by: 

 

))q(t(SC ττυτ =)(        (2) 

 

where υ is the value of travel time savings. Both flows and travel times depend on the 

toll level. The dependency of travel times on the toll arises indirectly because the toll 

influences traffic flows, and therefore congestion on the crossing. The total 

willingness to pay to use the new river crossing (sometimes call its ‘worth’) is: 

 

∫=
)(

0

)(
τ

τ
q

cdqWTP        (3) 

For historical interest, WTP was described as the ‘gross benefit to all road users’ 

(Ministry of Transport, 1964). The ‘theoretically most efficient’ use of the network is 

obtained when the toll is selected to maximize W, subject to any problem-specific 

constraints.   

 

Note: in this annex all integrals are specified as definite integrals, and correspond to 

boundary conditions for which demand on the bridge vanishes. This contrasts with the 

main text where both welfare and revenue integrals are specified in indefinite form 
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and therefore contain constants of integration. The indefinite forms are used 

exclusively for calculating optimum tolls. In such applications the value of the 

constants of integration are expressed in terms of the toll-free bridge traffic levels. 

The choice of boundary conditions has no influence on the optimum toll values.  

 

The average variable price of the crossing is given by: 

 

ττυτ += )()( tc        (4) 

 

(Note: we have omitted any other terms apart from travel time and tolls, such as 

vehicle operating costs).  

 

UK Transport appraisal practice (Department for Transport, 2003) recognizes benefits 

to both transport users and also to the providers of transport services. Hua (1992) 

describes this practice as the ‘Change in Total Benefit and Total Cost Approach’ or 

the ‘British’ approach. The user benefit of the new crossing is the consumer surplus: 

 

∫=
*

)(

)(
c

c

qdcUB
τ

τ        (5) 

 

where c* is the extinction price i.e. the price at which demand for the crossing would 

just vanish. Integration by parts of WTP yields the identity: 

 

)()( ττττ UB))q(c(WTP +=       (6) 

 

Equation (6) simply states that users of the new crossing receive a benefit equal to the 

difference between what they are willing to pay and what they actually pay to use it. 

Using (2) and (4) in (6) yields: 

 

)()()()( τττττ qUBSCWTP ++=      (8) 

 

The last term in (8) is the toll revenue collected at the crossing. Equation (8) is 

equivalent to the identity: 
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)q(UBSCWTPW ττττττ +=−= )()()()(    (9) 

 

This is the required result. 
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Figure A.1: Decomposition of WTP into user benefits, social costs and toll revenues. 

 

Equation (8) is illustrated in Figure A.1. The point A denotes the equilibrium traffic 

on the crossing when the toll is zero. The point B is the equilibrium when the toll on 

the crossing is τ. The trapezium 0C*Bq is the total willingness to pay for using the 

crossing at this value for the toll. The identity (8) can be verified visually. 
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