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ABSTRACT 

A novel multi-sensor power spectrum blind sampling (PSBS) approach is proposed supporting 

low-power wireless sensor networks (WSN) for Operational Modal Analysis (OMA) applications. The 

developed approach relies on arrays of wireless sensors, employing deterministic non-uniform in 

time multi-coset sampling to acquire structural response acceleration signals at sub-Nyquist 

sampling rates, treated as realizations of stationary random processes without making any 

assumption about the average signal frequency content and spectral support. The acquired 

compressed measurements are transmitted to a central server and collectively processed via a PSBS 

technique, herein extended to the multi-sensor case, to estimate the power spectral density matrix 

of an underlying spatially correlated stationary response acceleration random process directly from 

the compressed measurements. Structural modal properties are then extracted through standard 

frequency domain decomposition (FDD). The efficacy of the proposed approach to resolve closely-

spaced modes is numerically tested for various data compression levels using noisy response 

acceleration signals of a white-noise excited finite element model of a space truss as well as field-

recorded acceleration time-histories of an instrumented bridge under operational loading. It is 

shown that accurate mode shapes based on the modal assurance criterion can be obtained from as 

low as 89% less measurements compared to conventional non-compressive FDD at Nyquist sampling 

rate. Further, significant gains in energy consumption and battery lifetime prolongation of the order 

of years are estimated, assuming wireless sensors operating on multi-coset sampling at different 

data compression levels. It is, therefore, concluded that the proposed PSBS approach could provide 

long-term structural health monitoring systems with low-maintenance cost once wireless sensors 

with multi-coset sampling capabilities become commercially available.  

Keywords: power spectral estimation; multi-coset sampling; sub-Nyquist sampling; operational 

modal analysis; wireless sensors; modal properties. 
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1. Introduction 

Operational modal analysis (OMA) is a widely-used vibration-based approach for condition 

assessment, design verification, and health monitoring of civil engineering structures ([1],[2]). It 

derives dynamic structural properties (e.g. natural frequencies, mode shapes, and modal damping 

ratios) by acquiring and processing response acceleration signals from structures vibrating under 

low-amplitude ambient loads (e.g., due to wind or traffic). Excitation loads are not measured but 

assumed to attain a sufficiently flat spectrum within a relatively wide frequency range such that they 

are modelled as band-limited white noise capable of exciting the first few dominant modes of 

vibration.  

The consideration of wireless sensor networks (WSNs) attracted the attention of the research 

community in the past 15 years to facilitate long-term OMA applications ([3]-[6]). Compared to 

arrays of wired sensors, WSNs allow for less obtrusive, more economical and rapid implementation 

of OMA, especially in monitoring large scale and geometrically complex civil engineering structures. 

In a typical WSN deployment for OMA (top panel in Fig. 1), sensors are equipped with analog-to-

digital converters (ADCs) sampling uniformly in time structural response signals at rates higher than 

an assumed (target) Nyquist rate/frequency followed by appropriate low-pass filtering to eliminate 

aliasing and to increase resolution. The acquired measurements are stored at the sensor and locally 

processed by on-board micro-processors that typically perform off-line lossy or lossless data 

compression [7]-[9]. The main goal of this operation is the reduction of the data transmission 

payload within WSNs, which are constrained by the limited available wireless transmission 

bandwidth. It also aims to minimize the energy consumption at sensors and, therefore, the 

requirements for local energy harvesting and/or battery replacement, since wireless data 

transmission is by far the most power consuming operation in WSNs [3]. The encoded 

measurements (i.e., compressed data) are then wirelessly transmitted to a base station (server) 

where they are de-compressed to retrieve the originally acquired signals, or an estimate of them in 

case of lossy compression schemes. The latter can be further processed by standard OMA algorithms 

to derive structural dynamic properties. Despite these efforts, the power resources of current 

wireless sensors are limited by various factors such as the sampling frequency, the duration of each 

monitoring interval, the computational complexity of the on-board algorithms to be executed, the 

achieved data compression level, etc. [3],[4].  
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Fig. 1. Typical operations undertaken in a typical (top), a CS-based (middle), and a PSBS-based 
(bottom) WSN 

To this end, it has been recently recognized that the compressive sensing (CS) paradigm 

involving simultaneous signal acquisition and compression at the sensor front-end can reduce 

energy consumption in wireless sensors [7] by minimizing the dimensions of the acquired 

measurements and, therefore, requirements for on-sensor data storage and local on-board data 

processing before wireless transmission (middle panel of Fig. 1). Specifically, in typical CS-based 

signal acquisition and processing approaches, signals are assumed to attain some level of “sparsity” 

on some basis (e.g. the Fourier basis), that is, to have a relatively small number of coefficients with 

non-negligible values once projected on a given basis which renders them “compressible” [10],[11]. 

Depending on the signal compressibility/sparsity level a sufficient number of measurements is 

acquired randomly in time at average sampling rates below Nyquist (i.e., sub-Nyquist rates). The 

compressed measurements are transmitted to the base station and post-processed by sparse signal 

recovery algorithms, involving the solution of an underdetermined system of linear equations [12], 

to obtain estimates of the significant signal coefficients on the assumed sparsifying basis.  

O’Connor et al. [13],[14] successfully implemented the above standard CS-based approach in a 

long-term OMA field application in Michigan and reported appreciable gains in sensor energy 

consumption due to reduced data transmission rates compared to conventional Nyquist sampling. 

Mode shapes and natural frequencies of the monitored bridge were extracted using the standard 

peak-picking frequency domain decomposition (FDD) algorithm for OMA [2]. The latter step involved 

taking the singular value decomposition (SVD) of the power spectral density (PSD) matrix estimated 

from CS-based acquired and recovered response acceleration signals. Yang and Nagarajaiah [15] 

proposed an alternative CS-based approach for OMA in which mode shapes are extracted from 

modal structural responses obtained by application of blind source separation directly to randomly 

acquired CS measurements of structural response signals. Sparse signal recovery in the time-domain 
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was next applied to each compressed modal response vector to retrieve structural natural 

frequencies and modal damping ratios. Further, Yang et al. [16] demonstrated that blind source 

separation analysis may also be used in conjunction with uniform in time sampled measurements at 

sub-Nyquist rates (i.e., with possible aliasing) to extract modal properties of free vibrating structures 

from response acceleration signals as well as from video signals. Moreover, Park et al [17] derived 

analytically bounds on the required number of randomly acquired CS measurements to achieve 

accurate mode shape estimation from free vibration response of undamped multi-degree-of-

freedom structures with known number of degrees of freedom; that is from multi-tone signals with 

known number of harmonics. In the latter work mode shapes are obtained by application of the SVD 

directly to CS measurements without taking any signal sparse recovery step.  

Recognizing that the key for quality OMA in the context of the standard CS paradigm is the 

faithfulness of the recovered response acceleration signals from random measurements, Klis and 

Chatzi [18],[19] adopted a reweighted basis pursuit denoising problem formulation enabling 

enhanced accuracy in sparse signal recovery by relying on a priori knowledge of signal support in the 

frequency domain (i.e., spectral support) and noise level. In [18] such knowledge is gained by 

considering a small network of judicially located wired sensors sampling in the conventional manner 

(i.e., uniformly-in-time at the Nyquist rate or above) and operating concurrently with an extensive 

CS-based WSN. The anticipated spectral support and noise level of signals acquired by the WSN is 

estimated by Fourier transforming the conventionally sampled signals at the server. This information 

is wirelessly communicated to the CS-based sensors to inform the rate of the random sampling and 

stored at the server for sparse recovery of enhanced accuracy. In [19], signal spectral support and 

noise level information is gained and updated in real-time by the wireless sensors which sample at 

uniform (Nyquist or above) rate and locally post-process Nyquist measurements. This information is 

communicated to the server which sends back to the sensors “optimal” specifications for random 

CS-based sampling. Finally, sensors transmit compressed measurements to the server where signal 

recovery in time-domain is accomplished as well as OMA using standard approaches. This so-called 

spectral-temporal compressive sensing (STCS) approach is shown to be more accurate for mode 

shape estimation compared to conventional CS-based approaches at the expense of an involved 

two-way data communication protocol between the WSN and the server.   

Herein, a novel approach for frequency domain OMA is put forth supporting low-complexity 

and low-energy consumption WSNs by acquiring and compressing response acceleration 

measurements at the front-end of sensors, similar to the standard CS-based approach taken in 

[13],[14], but without necessitating any prior knowledge of signal spectral support or noise level as 

required in [18],[19] (see bottom panel in Fig. 1). Specifically, the proposed approach treats 
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response acceleration signals from arrays of sensors as realizations of a spatially correlated temporal 

stationary random process. The approach estimates second-order statistics of this process (i.e., the 

PSD matrix) by application of power spectrum blind sampling (PSBS) to compressed measurements 

acquired by all sensors in the network using a particular deterministic periodic non-uniform-in-time 

sampling scheme known as multi-coset sampling [20]-[26]. To this aim, compressed samples 

acquired by each sensor are centrally transmitted to a server where PSD matrix estimation is 

undertaken. Next, structural modal properties can be extracted by taking the SVD of the PSD matrix 

estimate in the context of frequency domain-based OMA [2]. Note that PSBS was originally 

developed for cognitive radio applications aiming to sample/sense the PSD of weak sub-Nyquist 

sampled noise-corrupted telecommunication signals and to efficiently detect unoccupied bands in a 

wide spectral range [21]-[23]. To this effect, PSBS has been previously considered to estimate the 

PSD of stationary random processes/signals of different frequency content by treating multi-coset 

samples from a single sensor without any prior knowledge of signal spectral support, therefore the 

term “blind” (see e.g., [20]-[23]). In this regard, this work makes a theoretical contribution by 

extending PSBS to the multi-sensor case to estimate all elements of the full PSD matrix of an 

underlying stationary spatially-correlated random process. To this end, this paper presents the 

underpinning mathematical background of PSBS with multi-coset sampling and discusses practical 

consequences of various assumptions made in the theoretical development. Further, in the 

numerical part of the paper, the accuracy of the proposed approach is assessed against mode shapes 

and natural frequencies extracted using the peak-picking FDD in conjunction with PSD matrices 

estimated through standard spectral estimation techniques applicable to Nyquist sampled data. The 

aim is to quantify the level of data compression and consequent battery life in wireless sensor nodes 

made possible through multi-coset sampling without compromising the accuracy of the extracted 

mode shapes and natural frequencies compared to Nyquist sampled data. For comparative 

numerical assessment between multi-coset PSBS approach and the standard CS-based paradigm for 

OMA implemented by O’Connor et al. [13],[14] as well as the STCS approach pioneered by Klis and 

Chatzi [18],[19], the interested reader is directed to references [27] and [28], respectively. 

In the remainder of the paper, Section 2 reviews the details of the multi-coset sampling and 

discusses recent relevant advances in hardware implementation supporting the practical merit of 

this work since sensors with multi-coset sampling capabilities are not currently commercially 

available. Section 3 presents the theoretical background underpinning the proposed multi-sensor 

PSBS-based approach for OMA, while Section 4 discusses the design of optimal multi-coset sampling 

schemes based on a number of simplified assumptions which promote a spectral agnostic attribute 

of the proposed approach. In Sections 5 and 6 the accuracy of the herein developed approach is 
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numerically assessed against standard non-compressive FDD-based OMA by considering computer-

simulated noisy acceleration response signals pertaining to a white-noise excited space truss with 

two closely-spaced modes and field-recorded acceleration data taken from a monitored bridge 

located in Switzerland, respectively. Further, Section 7 quantifies gains in energy consumption and 

battery lifetime achieved by the PSBS-based approach by adopting specifications of a certain 

conventional wireless sensor, while Section 8 summarizes concluding remarks. 

2. Multi-coset sampling  

Let x(t) be a continuous in time t real-valued wide-sense-stationary random signal (or 

stochastic process) characterized in the frequency domain by a power spectrum band-limited to 

2π/T. Consider, further, the grid of Nyquist samples x v x vT[ ] ( ) , where v , of the random signal 

(or of a realization of the stochastic process). Multi-coset sampling involves partitioning the Nyquist 

grid in K blocks of N consecutive samples and acquiring only M (<N) samples from each block 

[22],[25]. The location of the M samples within each N-length block is defined by the sampling 

pattern sequence  

  Ms  s   s0 1 1, , , ,s  (1) 

applicable to all K blocks. The elements of the above sequence are non-negative integers sorted in 

ascending order without repetition (i.e.,   i js s i j, ). They define the difference set  

   i j i js s s s, , s , (2) 

arising naturally in the computation of correlation functions of discrete-time signals considered in 

the following section for the purpose of spectral estimation.  

 
Fig. 2. Example of multi-coset sampling applied to a 32-long Nyquist sampled discrete-time signal 

with M=3, N=8, K=4, and sampling pattern s=[0, 2, 5].  

For illustration, the left panel of Fig. 2 applies multi-coset sampling with pattern 

    0, 2, 5s to a 32-long signal x v[ ] , v {0,1,...,31} , partitioned in K=4 blocks of length N=8. The 
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adopted sampling pattern acquires M=3 samples (“cosets”) from each block whose location is 

defined by the elements si, i={0,1,2} of the pattern as shown with colored circular markers in Fig. 2. 

This particular pattern picks the first, the third, and the sixth Nyquist sample from each block. 

Evidently, multi-coset sampling is periodic with period N; non-uniform in time since any subset 

of M samples may be selected from the N Nyquist samples in the block; and deterministic since the 

position of the M samples on the Nyquist grid is a priori fixed through the sampling sequence. From 

a signal acquisition viewpoint, multi-coset sampling can be implemented by utilizing M interleaved 

channels of ADC units, operating at a sampling rate 1/(NT), (i.e., N times slower than the Nyquist 

rate 1/T) [22]. At the i-th (i= {0, 1, …, M-1}) channel, the discrete-time signal x v[ ]  is shifted by si 

samples and then uniformly sampled at 1/(NT) rate. In this respect, an overall average sampling rate 

of M/(NT) is attained accounting for all M channels. Therefore, the ratio M/N defines the signal 

compression achieved by multi-coset sampling and is hereafter termed compression ratio (CR). This 

ratio takes on values within the range 0 ≤ CR=M/N ≤ 100%: smaller CR values imply higher signal 

compression, while the limiting case of CR=100% (i.e., M=N) corresponds to conventional uniform in 

time sampling at Nyquist rate. In this context, the K compressed (sub-Nyquist) samples acquired at 

the i-th channel, yi, can be mathematically written through the filtering operation  

where the filter coefficients are given as 


 



i

i

i

n s
c n

n s

1, ,
[ ]

0, ,
 (4) 

in which n=[1-N, 2-N, …, 0] is arranged in descending order. The use of the last two equations is 

exemplified in the right panel of Fig. 2 showing a block diagram of an ideal multi-coset sampler 

implementing the previously discussed sampling example depicted in the left panel of Fig. 2. It 

comprises M=3 channels and at the i-th channel, (i={0,1,2}) the 32-long discrete-time signal x v[ ]  

written as x kN n[ ] , with N=8, K=4, k={0,1,2,K-1} and n={0,1,…N-1}, is convolved with the filter 

coefficient sequences ci[n] shown in Fig. 2 and down-sampled by N=8 to generate the 

output/compressed measurements yi. Note that overall only 12 measurements are acquired from a 

total of 32 available Nyquist samples corresponding to CR=12/32=37.5% which further coincides 

with M/N=3/8. 

Notably, recent developments in hardware architecture paved the way for the design of multi-

coset sensor prototypes using banks of time-interleaved ADC units (channels) [29]. Specifically, a 

discrete-time version of a multi-coset sampler was proposed in [22] to acquire compressed 



  

       
N

i i i
n n N

y k c n x kN n c n x kN n     k K
1 0

0 1

[ ] [ ] [ ] [ ] [ ], 0,1,..., 1 , (3) 
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measurements from a wideband non-sparse signal based on the modulated wideband converter 

prototype developed by Mishali and Eldar [30]. Further, a dual-rate hardware architecture was 

designed by Moon et al. [31], comprising a pair of time-interleaved under-sampling ADCs that 

accommodate two different sampling patterns with a small frequency offset to iteratively acquire 

delayed versions of the same input signal at sub-Nyquist sampling rates. More recently, Jingchao et 

al. [32] designed a prototype multi-coset sampler that can support up to 10 interleaved sub-Nyquist 

ADC sampling channels, being also capable to rectify any potential error due to channel diversity 

gain and/or time synchronization among the various ADC channels. In view of the above 

developments, the remainder of this paper assumes the availability of wireless sensor nodes 

incorporating ideal multi-coset samplers seven though such sensors are not commercially available 

yet.  

3. Proposed multi-sensor power spectrum blind sampling (PSBS) for OMA 

Consider a network of D identical wireless sensor nodes with multi-coset samplers of M channels 

each, operating on the same sampling pattern across their channels. The considered WSN is 

assumed to be placed along a structure, measuring D acceleration responses under ambient 

excitation. Let ax v[ ] , bx v[ ]  with a,b= 1,2,…,D be the unknown discrete-time signals, sampled at 

Nyquist rate from the band-limited continuous-time acceleration response random signals (i.e., 

stochastic processes) xa(t) and xb(t) respectively. The first step of the herein proposed multi-sensor 

PSBS approach is the recovery of the cross-correlations 

   a b

a b
xx x

r x v  x v[ ] E [ ] [ ] , , (5) 

computed among all input acceleration signals ax v[ ] , bx v[ ]  to the a,b={1,2,…,D} devices. In the last 

equation and hereafter aE ·  is the mathematical expectation operator with respect to a . As 

illustrated in Fig. 3, the above step can be achieved through the acquisition and central (collective) 

processing of M D  output/compressed sequences a
iy k[ ] , b

jy k[ ]  from all   i j M, {0,1, , 1} channels 

of the a,b={1,2,…,D} devices, using the multi-coset sampling strategy detailed in the previous sub-

section. The mathematical details involved are presented in the following sub-section.  
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Fig. 3. Workflow of the multi-sensor PSBS approach for OMA  

3.1.  Cross-correlation estimation of sub-Nyquist measurements 

Consider the cross-correlation sequences of the compressed measurements  

  a b
i j

a b
y i jy y

r y k  y k
,

[ ] E [ ] [ ] , (6) 

which are collected in the cross-correlation matrix 
a by

M D

y

2

r  written as 

T

  

 
 

a b a b a b a b a b
M M My y y y y y y y y y

r r r r
0 0 0 ( 1) 1 0 ( 1) ( 1), , , ,

[ ] [ ] [ ] [ ] [ ]r     , (7) 

where the superscript “T” denotes matrix transposition. Similarly, consider the following cross-

correlation matrix a bx
N D

xr   

T

a b a b a b a bx x x x x x x x
r N r N r N[ ] [ ] [ 1] [( 1) 1]     r   , (8) 

collecting the cross-correlation sequences of the response acceleration signals in Eq.(5). 

It can be shown that the above two cross-correlation matrices are related through the expression 

a b a bcy y x x
p

p p
1

0

[ ] [ ] [ ],


 r R r  (9) 

by means of the sampling pattern cross-correlation matrix  N
c

M2

R given by 

T

  

   M M Mc c c c c c c c cp p p p p p
0 0 0 1 1 0 1 1, , , ,[ ] [ ] [ ] [ ] [ ] ,R r r r r    . (10) 

The latter matrix is populated with the pattern cross-correlation sequences in Eq. (4), expressed as 

i j
i j i jc c

n N

r p c n  c n p p s s
0

,
1

[ ] [ ] [ ] [ ( )]
 

     ,  (11) 

where     is the Dirac delta function. Notably, the elements of the pattern cross-correlation matrix 

relating the matrices in Eqs. (7) and (8) depends only on the adopted sampling pattern sequence in 

Eq. (1) through the difference set Ω defined in Eq. (2).  
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Assume further that the cross-correlation sequences a bx x
[ ]r  in Eq. (8) take on negligible values 

outside a range   L L . Then, the relationship in Eq. (9) can be cast in matrix form 

a b a by y x xc=r R r , (12) 

where the “output” correlation matrix   
a b

M D

y y

L2 2 1
r  corresponding to the compressed 

measurements is given as  



   
  

a b
a b a b a b a by y y y

y y L L
y y y y

T T T T[0] [ ] [ ] [ 1]r r r r r    , (13) 

and the “input” correlation matrix   
a b

N D

x

L

x

2 1
r  corresponding to the structural response 

acceleration signals is given as 



   
 

a b
a b a b a b a bx x x x x x x x

x x L LT T T T[0] [ ] [ ] [ 1]r r r r r    . (14) 

In this setting, the pattern matrix      
c

M L N L2 2 1 2 1
R  attains a sparse structure as in 

 
 
 
 
 
 
 
 

c c

c c

c c

c c

c

[0] [1]

[1] [0]

[1] [0]

[1] [0]

R O O R

R R O O

R O R R

O

O O R R

, (15) 

with O  being the zero matrix. Note that Eq. (12) defines an overdetermined system of linear 

equations which can be solved for a by y
r  provided that cR is full column rank. The latter condition 

requires that M2≥N which can be readily satisfied in specifying the multi-coset sampling scheme. For 

example, the illustrative sampling scheme in Fig. 2 satisfies the above requirement as M2=9>N=8. 

Importantly, the solution of Eq. (12) for a by y
r  does not necessitate making any restrictive assumption 

on the frequency content of the underlying stationary stochastic process. In this regard, the herein 

developed approach is equally applicable to narrow-band (e.g., single-tone), multi-band (e.g., multi-

tone), and wide-band (e.g., band-limited white-noise) stationary signals.  

To support practical numerical implementation, consider next the unbiased estimator of the 

output cross-correlation function a b
i jy y

r
,

[ ]  in Eq. (6) defined by 

 

  



   


a b
i j

K
a b
i jy y

k

r y k y k     L L
K

1 min 0,

,
max 0,

1
ˆ [ ] [ ] [ ], { ,...,0,..., } , (16) 

and the estimated output cross-correlation matrix  



b

M L D

y y

2 2 1r̂ constructed in the same manner as 

the matrix in Eq.(13). The following weighted least square minimization criterion is herein adopted 
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to solve (“invert”) numerically Eq.(12)   

   

a b a b a b

a bx x

a b a b

a bx x

a b a b a b a b

a bx x

x x y y y y

y y x x

y y x x y y x x

2

2

c

T

c c

ˆ ˆargmin

ˆ      argmin

ˆ ˆ      argmin  

 

 

  

r W

r W

r

r r r

r R r

r R r W r R r

, (17) 

where  T2

W
a a Wa  is the weighted version of the Euclidean norm, with      


2 22 1 2 1M L M L

W  being a 

positive-definite weighting matrix. The latter matrix can be defined independently of a bx x
r and, in 

fact, can be arbitrarily chosen. For instance, in the trivial case of adopting equal unit weights, W is 

set equal to the unitary matrix yielding a least-square minimization criterion in Eq. (17). 

Nevertheless, in Section 4, an approach for weighting matrix specification is reviewed based on a 

criterion supporting spectral estimation irrespective of the frequency content of the stationary 

signals acquired.  

In this setting, the objective function of the minimization problem in Eq. (17) is  

   a b a b a b a b a bWLS x x y y x x y y x x
f

T

c c
ˆ ˆ( )    r r R r W r R r , (18) 

which is convex, attaining a minimum at  

 a b a bc c cx x y y

1T Tˆ ˆ


r R WR R Wr , (19) 

under the condition 





a b

a b

WLS x x

x x

f ( )r
0

r
, where the superscript “−1” denotes matrix inversion. To this 

end, given a multi-coset sampling pattern and a weighting matrix W, Eq. (19) can be readily used to 

compute the cross-correlation matrix of the response acceleration signals from the cross-correlation 

estimates of the sub-Nyquist measurements acquired by the D multi-coset samplers. This can be 

achieved in a computationally economical manner even for relatively large values of L (depending on 

the desired resolution in the frequency domain as is explained in the following sub-section), since 

the sparse structure of      


M L N L2

c

2 1 2 1
R  shown in Eq.(15) facilitates efficient matrix inversion.  

Following the block diagram in Fig. 3, the remainder of this section delineates the steps of 

using the matrix a bx x
r̂ to estimate the PSD matrix of response acceleration signals and extracting 

modal structural properties. Section 4 discusses an approach for optimal design of the sampling 

pattern and the weighting matrix that minimizes the spectral estimation error in the mean sense.    
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3.2. Power Spectral Matrix Recovery 

Let  a bx x
P   be the cross-PSD of ax v[ ]  and bx v[ ]  given through the discrete-time Fourier 

transform as 

  ipe   






  a b a bx x x x
p

P r p          0] , 2[  (20) 

where  i 1.  This PSD is further discretized in the frequency domain and cast in matrix form  

a b a bL Nx x x x(2 1)G F r , (21) 

where    





N

L

N L

N

L2 1 1

2 1

2

( )F  is the standard discrete Fourier transform (DFT) matrix and   
a b

N D

x

L

x

2 1
G  

is the PSD matrix computed at the uniform discrete set of frequencies ω= [0, Δω, 2Δω,..., 

((2L+1)N−1)Δω], with step 
L N

2

(2 1)


 


. The latter is an important application-dependent quantity 

as it governs the frequency resolution of the sought PSD matrix and, ultimately, the accuracy of 

modal properties. Notably, for a fixed value of N (pre-specified by the adopted multi-coset sampling 

scheme), Δω depends only on the parameter L which is associated with the support of the 

correlation sequences in Eqs. (13) and (14). Conveniently, the value of L can be freely selected 

independently of the multi-coset sampling scheme based on practical considerations related to the 

properties of the monitored structure. For instance, the monitoring of lightly-damped structures 

characterized by response acceleration PSD functions with sharp peaks requires adopting relatively 

large L values leading to sufficiently small Δω and, therefore, to enhanced frequency domain 

resolution achieving quality estimates of the natural frequencies. Further, the closer-spaced the 

natural frequencies are, the larger the adopted L should be to allow for resolving modes of vibration 

in the context of frequency domain-based OMA [2]. 

Making use of Eqs. (19) and (21), the following estimator of response accelerations PSD matrix 

is reached 

 


  a b a b a bL N L N c c cx x x x y y

1T T
(2 1) (2 1)

ˆ ˆ ˆG F r F R WR R Wr . (22) 

The latter expression provides a convenient formula to estimate the sought PSD matrix from the 

cross-correlation estimator applied directly to the sub-Nyquist/compressed acceleration 

measurements centrally collected from the WSN of D multi-coset samplers as shown 

diagrammatically in Fig. 3. 

It is noted in passing that the herein developed multi-sensor PSBS approach differs significantly 

from the co-operative WSN for input signal spectral estimation investigated in [24] in both the 

nature of the problem addressed and the assumptions invoked. Drawing an analogy between the 
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present OMA problem and solution, and the telecommunications problem treated in [24], the latter 

would be interpreted in OMA terms as an approach for PSD estimation of the ambient excitation 

force with prior knowledge on the frequency response function (FRF) matrix of the vibrating 

structural system. On the contrary, the herein developed PSBS-based framework addresses output-

only system identification within the OMA context under the assumption of linear vibrating structure 

excited by stationary excitation forces which are assumed to attain a sufficiently flat PSD. This aim is 

achieved by applying the SVD to the PSD matrix estimate in Eq.(22) following standard frequency 

domain-based OMA algorithms as briefly discussed in the following sub-section. 

3.3. Frequency Domain Decomposition (FDD) for mode shape estimation 

The above developed multi-sensor PSBS approach for PSD matrix estimation can be fused with 

any qualified algorithm for frequency domain-based OMA [2] to extract structural modal properties. 

In the numerical part of this work, the standard peak-picking frequency domain decomposition 

(FDD) algorithm for OMA [2] is employed which relies on applying the SVD to the PSD matrix 

estimate a bx x
Ĝ  in Eq. (22), i.e.,  

a bx x

Tˆ G UΣV , (23) 

where Σ is a diagonal positive semi-definite matrix comprising the singular values Σrr, and U, V are 

the unitary singular matrices collecting the left and right singular vectors, respectively. Under the 

assumption of linearly vibrating structures, the singular values Σrr correspond to the PSDs of the 

uncorrelated modal coordinates and carry information of structural resonant (natural) frequencies, 

fr,  r R1,2, , , related to the R excited modes of vibration. Further, the left singular vector U 

provides valid estimates of the mode shapes ̂r ,  r R1,2, , , related to the frequencies ˆ
rf of the 

dominant singular values [2]. In case estimation of modal damping properties is desired, extended 

frequency domain decomposition (EFDD) algorithms may be applied [33],[34]. Such algorithms 

consider transforming the local (band-limited) PSDs associated with vibration modes identified by 

the singular value data in Eq.(23) to the time domain via inverse Fourier transform. The thus derived 

time domain data approximate correlation functions of SDOF systems whose properties can be 

extracted using any time-domain system identification technique to retrieve estimates of modal 

natural frequencies, ˆ
rf , and modal damping ratios,  r

ˆ . Details on the mathematical background of 

the FDD algorithm and its extended variants allowing for modal damping estimation can be found in 

[2] and references therein. 



Gkoktsi K and Giaralis A. A multi-sensor sub-Nyquist power spectrum blind sampling approach for low-power wireless 

sensors in operational modal analysis applications. Mechanical Systems and Signal Processing, 116: 879-899.  

DOI: 10.1016/j.ymssp.2018.06.049 

14 

 

4. Design of the multi-coset sampling pattern 

Common approaches for designing multi-coset sampling schemes supporting efficient 

correlation function estimation from sub-Nyquist measurements aim to define a difference set in 

Eq.(2) such that all possible differences are generated up to sM-1 using the shortest possible sampling 

pattern sequence in Eq. (1). This is achieved by relying on the concept of (minimum) sparse ruler 

(see e.g. [35] and references therein). Herein, a significantly different approach for designing the 

multi-coset sampling pattern is adopted based on a PSD error minimization criterion as originally 

considered in [26]. This consideration is motivated by the fact that the efficacy of the proposed PSBS 

approach for quality OMA relies on the accuracy of the PSD matrix estimate.  

Specifically, the adopted optimal multi-coset sampling design approach assumes the case of a 

single sensor used to acquire a white noise random signal (process) w wx v x vT[ ] ( ) bandlimited to 

2π/T. Apart from facilitating mathematical manipulations, this scenario preserves the general 

applicability of the sampling solution to the case of networks of identical sensors considered in the 

previous section while ensures the indifference of the method to the spectral content of the 

acquired stationary signals. In fact, white noise time-histories are least structured in time domain 

and least sparse in frequency domain and, in this regard, the case considered can be viewed as a 

worst-case scenario from the sub-Nyquist/compressed signal acquisition viewpoint. Before 

embarking on formulating the optimization problem for multi-coset sampling pattern design, it is 

first necessary to specify the weighting matrix W appearing in Eq.(22). This problem is addressed in 

the following sub-section. 

4.1. Specification of the weighting matrix W 

As discussed in Section 3.2, a weighting matrix W can be employed to improve the accuracy of 

the estimated cross-correlation matrix a bx x
r̂ in Eq. (17) and, therefore, the accuracy of the PSD matrix 

in Eq.(22). To this aim the weighting matrix W is specified in [26] such that it minimizes the mean 

square error (MSE)  
2

x x x 2

ˆE G G , where 
2

2
a  is the standard Euclidean norm,   

x

N L2 1 1
G is the PSD 

of the white noise process wx  discretized in frequency domain as discussed in Section 3.2, and 

  


L

x

N 2 11
Ĝ  is the estimator of xG given by setting  a b

Wx v x v x v[ ] [ ] [ ]  in Eq.(22). That is,  

  
2

MSE x x x 2

ˆargminE
W

W G G . (24) 

Clearly, the above criterion for defining the weighting matrix enhances the accuracy of the 

estimator in Eq.(22) applicable to the multi-sensor case with identical D sensors, while the white 

noise signal assumption does not jeopardize general applicability of the PSBS approach of Section 3 
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to any stationary signal: the approach is agnostic with respect to stationary signal frequency content 

and there is no particular reason to anticipate that improved performance is achieved by assuming 

signals with alternative frequency content in solving Eq.(24), with the stipulation that no prior 

knowledge of the response acceleration signals to be acquired is available. Conveniently, under the 

white noise signal assumption, the minimization problem in Eq.(24) is solved in closed form as [26]  



 
 

 
 
 
 

    
  
 
 
   

M

M

M
x

M

M

K

K

K L

K L

K

2

2

2

2

2

MSE 4

0 0 0 0

0 ( 1) 0 0 0

1
0 0 ( ) 0 0

0 0 0 ( ) 0

0 0 0 0 ( 1)

W

I

I

I

I

I

, (25) 

where 
M2I is the unitary matrix of size M2xM2, and  2

x  is the variance of the assumed white noise 

process Wx . 

4.2. Optimal multi-coset sampling pattern  

Having established the block-diagonal weighting matrix in Eq.(25), the multi-coset pattern in 

Eq. (1) is derived such that the following objective function involving the normalized MSE 

 
2

x x x 2

ˆE G G  is minimized [26] 

   
 

     



N

n n

f K L L L
L N

2

MSE x x x4 2
1x

1 1ˆ( ) (2 1) ( 1) E .
( )(2 1)

s G G
s

 (26) 

The term n
1 1( ) s  is a scalar computed for every  n N1,2, ,  as 

M M

n i j i j
i j

n s s N n s s
1 1

0 0

( ) 1 ( ) 1 ( )  
 

 

               s , (27) 

and s is the sequence of M positive integers in Eq. (1). Therefore, the optimally designed multi-coset 

sampling pattern that minimizes the MSE  
2

x x x 2

ˆE G G  is determined by solving the problem [26] 



 
N

n n

MSE
1

1
argmin ,

( )s
s

s
 (28) 

subject to the following constraints 
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(29) 

where     is the mathematical floor operator. The solution of the above optimization problem is 

computationally demanding but needs to be solved only once as part of the design of the multi-

coset sensor. It is herein solved via standard exhaustive pattern search. Further mathematical details 

on the design criterion of the adopted multi-coset sampling pattern and the weighted matrix can be 

found in [26]. For the purposes of this work, it suffices to recognize that for a given pair of (M, N) 

values and the associated CR= M/N, an optimal multi-coset pattern is derived  by solving the 

problem in Eq.(28). This is used in the ensuing numerical work to obtain the compressed 

measurements in Eq.(3) given a Nyquist sampled discrete-time signal. By assuming, additionally, a 

value for the L parameter, the weighting matrix is computed by Eq.(25) and the PSD matrix estimate 

is obtained by means of Eq.(22). 

5. Numerical assessment on extracting closely-spaced mode shapes from noisy signals 

This section numerically assesses the potential of the multi-sensor PSBS approach proposed in 

Section 3 to discriminate closely-spaced and weakly excited vibrating modes from response 

acceleration signals corrupted by additive white noise which make up a challenging setting in OMA 

[2]. To this aim, a finite element space truss model is adopted, generating noiseless acceleration 

responses signals at Nyquist rate. Gaussian white noise of different intensity levels (i.e., signal-to-

noise ratios, SNRs) is added to these signals. The noisy signals are multi-coset sampled using 

sampling schemes of various CRs and modal properties are obtained using the proposed PSBS 

approach in conjunction with the FDD. The obtained modal estimates are compared versus standard 

FDD applied to the Nyquist-sampled signals. The presentation starts with a description of the space 

truss structure and of the simulated Nyquist-sampled test signals.  

5.1. Structural System description and computer-generated test signals  

The aluminum space truss of Fig. 4 is adopted as a benchmark structure with geometry and 

properties purposely defined such that the first two modes of vibration along its gravitational axis 

are closely spaced. This 8-bay simply supported truss is modelled in a standard finite element (FE) 

software using 100 linear one-dimensional truss elements with circular hollow cross-sections. Each 

bay is a cube with 707mm long side. The horizontal truss elements in the x-y plane have 22mm 
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diameter and 1mm wall thickness, while the vertical truss elements in the x-z planes are 30mm in 

diameter and 1.5mm wall thickness. No diagonal members exist in the y-z plane rendering the truss 

susceptible to modal coupling (i.e., the two planar trusses on the x-z plane may vibrate almost 

independently along the z direction within their plane). Mass of 0.44kg is lumped at each of the 36 

nodes of the FE model. Additional mass of 1.75kg is assigned to nodes 1,7,30, and 34, and of 2.75kg 

to nodes 20,26, and 32. 

 

Fig. 4. Considered space truss model  

The considered truss is assumed to be instrumented with an array of D=18 wireless sensors 

placed at nodes 1-18 in Fig. 4, measuring vertical (i.e., along z-axis) acceleration responses under 

ambient wide-band stationary dynamic loading. A bandlimited low-amplitude Gaussian white noise 

force of 4s duration and a time discretization step equal to Ts=0.001s is applied at the base of the 

truss along the gravitational axis. Linear response history analysis is conducted for the above 

excitation assuming damping ratio of 1% for all modes to generate D=18 vertical response 

acceleration discrete-time signals ( ax v[ ] , bx v[ ] , a b, {1,2, ,18} ), each consisting of 4000 samples 

associated with a Nyquist sampling rate at Fs= 1000Hz (= 1/0.001s). For illustration, the signal 

recorded at node #5 of the truss in Fig. 4, is plotted in Fig.5(b). The considered excitation observes 

the PSD estimate shown in Fig.5(a) which has sufficient energy in the frequency range of up to 500Hz 

and can excite the first three bending modes of the space truss along the vertical direction 

(estimates of these mode shapes are shown later in Figs.7-9). Further, Fig.5(c) provides the PSD 

estimates of the generated truss acceleration response signals recorded at sensors #5 and #14 to 

illustrate differences to the frequency content among the test signals.  

 

Fig. 5. Excitation and response data for the space truss in Fig. 4: (a) PSD estimate of white noise 
excitation; (b) Response acceleration at node #5; (c) PSD estimates of response acceleration at nodes 
#5 and #14. PSD estimates obtained by DFT-based Welch modified periodogram using 8 overlapping 
segments of the 4000-long signals with 50% overlap windowed by a Hanning function. 
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5.2. Application of multi-sensor PSBS 

The above generated (noiseless) 18 response acceleration signals are contaminated with 

additive stationary Gaussian white noise at two different SNRs: 20dB, moderate noise case, and 0dB, 

extreme noise case in which the signal energy equals the noise energy. The noiseless and noisy 

signals are then multi-coset sampled at three different CRs approximately equal to 31%, 21% and 

11% (i.e., 69%, 79% and 89% fewer samples compared to the Nyquist sampled full-length signals). 

These 3 different signal compression levels are achieved by adopting the (M,N) pairs of values 

reported in Table 1. Optimal sampling patterns are also reported in the same table along with the 

resulting compressed signal lengths. Note that the condition M2>N holds for the adopted (M,N) pairs 

ensuring that the RC matrix in Eq.(15) is full rank. Note further that the reason for not considering 

lower CR values in this study is because of practical/technological constraints as CR<11% can only be 

achieved by considering more than M=14 parallel channels per sampler due to the M2>N condition, 

which is already a large number.  

Table 1 Design parameters of three different optimal multi-coset sampling schemes applied to 
response acceleration signals of the white noise excited truss example. 

Compression Ratio/ Sub-Nyquist 
sampling rate 

CR 31% 21% 11% 

Number of channels per sensor M 5 8 14 
Down-sampling N 16 39 128 

Sampling pattern s [0,1,2,5,8] [0,1,3,7,9,14,18,19] 
[0,1,2,6,8,20,29,  

38,47,50,53,60,63,64] 

Number of blocks K 250 102 31 
Nyquist sampled signals length KN 4000 4000 4000 

Sub-Nyquist sampled signals length KM 1250 816 432 

Design parameter L L 20 8 2 
Correlation support length N(2L+1) 656 663 640 

 

For exemplification, the case of the multi-coset sampling for CR= 31% is herein discussed to 

some detail. For CR= 31%, it is assumed that each of the 18 sensors used is equipped with the same 

multi-coset sampler comprising M=5 channels, with each channel having an ADC unit operating at a 

rate N=16 times slower than the Nyquist rate of 1000Hz. It is further assumed that all 18 samplers 

use the same sampling pattern at the 5 channels, given by the sequence s = [0, 1, 2, 5, 8]T. The latter 

has been obtained by solving the constrained optimization problem in Eqs. (28) and (29) for M=5 and 

N=16. Following the details of multi-coset sampling in section 2, each Nyquist-sampled acceleration 

response signal is divided in K=250 blocks of length N=16 such that KN=4000 Nyquist samples. From 

each block, only M=5 samples are selected according to the above s sequence (see also Fig. 2), 

resulting in the acquisition of KM=1250 compressed samples per sensor. Similar calculations and 

considerations apply for the two multi-coset sampling cases with CR=21% and CR=11%. 
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Next, as shown in Fig. 3, the acquired KM compressed measurements from all 18 sensors are 

collectively processed to obtain an estimate of the output cross-correlation matrix a by yr̂  in Eq. (13), 

based on Eq. (7) and the unbiased estimator a b
i jy y

r
,

ˆ [ ]  in (16). The latter is assumed to take on 

negligible values outside a range L L    , where L is an integer user-defined parameter specified 

based on the desired resolution (or frequency domain discretization step Δω) of the sought PSD-

matrix estimate as discussed in section 3.2. In this regard, different L values reported in Table 1 are 

adopted for the three different CRs examined such that in all cases 


  
L N

2
0.01

(2 1)
rad/s. Once 

L is specified, the weighting matrix W in Eq.(25) is computed and the PSD matrix estimate a bx x
Ĝ is 

obtained in Eq. (22) using the pattern correlation matrix cR  in Eq. (15) along with the DFT matrix. For 

the particular case of CR= 31%, a by y
1025 18r̂ ,  1025 656

cR ,      


2 22 1 2 1M L M L
W , L N

656
( )

6
2 1

65 

 F , 

and a bx x

656 18Ĝ  in Eq. (22).  

5.3. PSBS-based FDD modal data estimation and assessment vis-à-vis non-compressive 
FDD 

For all three CRs in Table 1 and different levels of noise, the standard peak-picking FDD 

algorithm relying on the SVD in Eq.(23) is employed to “decompose” the estimated PSD-matrix a bx x
Ĝ  

to its singular values, Σ, and singular vectors, U, as in Eq. (23), extracting estimates of the natural 

frequencies, rf̂ , and mode shapes, ̂r of the truss in Fig. 4 corresponding to the r-th vertical vibration 

mode (PSBS-based FDD cases). Further, the FDD is also applied to the PSD matrix estimated from the 

Nyquist rate sampled signals (i.e., CR=100%) discussed in Section 5.1 with and without additive noise 

using the Welch’s periodogram (see e.g., Fig. 5). Modal properties obtained from the noiseless non-

compressed data are herein treated as the exact ones and used to assess the accuracy of the modal 

estimates rf̂  , ̂r  obtained from the PSBS-based FDD cases. 

Singular value vectors for all examined CRs for the noiseless (SNR=∞) and noisy signals with 

SNR=0 dB are plotted in Fig. 6 in the frequency range of [0,500] Hz, where the first three resonant 

frequencies of the truss lie. They are normalized to unit amplitude to facilitate a comparison. It is 

seen that lower CR values (i.e., higher levels of data compression) yields less smooth plots. Still, even 

for the extreme case of CR=11% the three prominent peaks corresponding to the three first resonant 

frequencies are discernible even for the SNR =0 dB case (most clearly seen in the non-compressive 

case in the leftmost panels of Fig. 6) while their location on the frequency axis almost coincide with 

the those of the non-compressive case (CR=100%). This is true for both the first two closely-spaced 
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natural frequencies (i.e., their values differ only by about 15% while their difference is only 3% of the 

total frequency range considered up to 500Hz), as well as for the third natural frequency whose 

amplitude is significantly smaller than the first two as the third vibrating mode is weakly excited by 

the forcing function in Fig.5(a). 

 

Fig. 6. Singular values vector of the truss in Fig. 4 for different CR values for the noiseless (upper row 
of panels) and for the noisy signals with SNR=0dB (lower row of panels).  

The above observations are quantitatively verified in Table 2 which collects the natural 

frequencies obtained from singular values vectors and reports the difference percentage error, 

( ˆ
r rf f )/ rf  (r=1,2,3), between the PSBS-based FDD estimates, ˆ

rf , and the non-compressive FDD 

estimates, rf  for noiseless and noisy signals. Interestingly, it is seen that this error is independent of 

CR and SNR values: larger compression and more severe additive noise does not necessarily lead to 

less accurate natural frequency estimates. Importantly, in most cases considered, error differences 

in the natural frequencies is of the order of 1% demonstrating the potential of the proposed multi-

sensor PSBS method to detect closely-spaced natural frequencies as well as weakly excited modes at 

CRs as low as 11% and with SNRs as low as 0 decibel (i.e., extreme high noise level). 
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Table 2. Natural frequency estimates and error differences ( ˆ
r rf f )/ rf  (r=1,2,3) in parentheses for 

the truss structure in Fig. 4. 
Modal 

frequency 
SNR Non-compressive FDD PSBS-based FDD 

[dB] CR=100% CR=31% CR=21% CR=11% 

1st natural 
frequency 

∞ 
(noiseless) 

f1= 62.012 Hz 
(exact) 

1f̂ = 62.691 Hz 1f̂ = 62.121 Hz 1f̂ = 62.696 Hz 

(1.10%) (0.18%) (1.10%) 

20 
f1= 63.965 Hz 1f̂ = 63.965 Hz 1f̂ = 63.965 Hz 1f̂ = 63.965 Hz 

(3.15%) (3.15%) (3.15%) (3.15%) 

0 
f1=61.035 Hz 1f̂ = 62.691 Hz 1f̂ = 62.121 Hz 1f̂ = 62.696 Hz 

(-1.57%) (1.10%) (0.18%) (1.10%) 

2nd natural 
frequency 

∞ 
(noiseless) 

f2= 74.219 Hz 
(exact) 

2f̂ =74.924 Hz 2f̂ =74.242 Hz 2f̂ =73.668 Hz 

(0.95%) (0.03%) (-0.74%) 

20 
f2= 74.219 Hz 2f̂ = 74.219 Hz 2f̂ = 74.219 Hz 2f̂ = 74.219 Hz 

(0%) (0%) (0%) (0%) 

0 
f2= 74.219 Hz 2f̂ = 74.924 Hz 2f̂ = 74.242 Hz 2f̂ = 75.235 Hz 

(0%) (0.95%) (0.03%) (1.37%) 

3rd natural 
frequency 

∞ 
(noiseless) 

f3=295.898 Hz 
(exact) 

3f̂ =296.636 Hz 3f̂ =296.970 Hz 3f̂ =293.103 Hz 

(0.25%) (0.36%) (-0.94%) 

20 
f3= 291.99 Hz 3f̂ =291.99 Hz 3f̂ = 291.992 Hz 3f̂ = 291.992 Hz 

(-1.32%) (-1.32%) (-1.32%) (-1.32%) 

0 
f3= 291.99 Hz 3f̂ =296.636 Hz 3f̂ =296.970 Hz 3f̂ = 296.238 Hz 

(-1.32%) (0.25%) (0.36%) (0.11%) 

 

Furthermore, modal deflected shapes of the truss in Fig. 4 are shown in Fig. 7-Fig. 9 extracted 

from the FDD method using Nyquist-sampled data (i.e., left figure panels case CR=100%, non-

compressive FDD) and compressed data at the highest compression level considered (i.e., CR=11%) 

for both noiseless (SNR=∞) and noisy signals at SNR={20,0}dB. With the exception of the first two 

closely-spaced modes at SNR=0dB, the remaining cases observe PSBS-based mode shape estimates 

that closely approximates those derived from noiseless Nyquist-sampled data which are treated 

hereafter as “exact”. Moreover, the accuracy of the proposed PSBS-based FDD approach in 

extracting quality estimates is quantitatively assessed with the Modal Assurance Criterion (MAC) [2], 

i.e.,  

 
 

 


2
T

22

2 2

ˆ
ˆ( , )

ˆ
MAC  (30) 

which is a global measure of similarity between the exact   mode shape vectors (non-compressive 

FDD) and the estimated ̂  vectors (PSBS-based FDD). Perfect matching (similarity) is inferred for 

MAC=1, while MAC=0 implies no matching. The criterion MAC > 0.9 is commonly adopted as a good 

quality mode shape estimation indicator. The computed MAC values for SNR={∞, 20, 0} dB are 
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plotted in Fig. 10 as a function of the signal compression level. As intuitively expected, MAC values 

increase with CR, suggesting higher accuracy in the extracted mode shapes as more data samples are 

acquired. It is further seen that the quality of the modal estimates is not significantly affected by 

additive noise for SNR values above 20dB, yielding approximately the same high MAC values (>0.9) 

as in the noiseless setting even for CR=11% (i.e., 89% fewer measurements compared to the Nyquist 

rate). On the contrary, the combination of extreme noise level at SNR=0dB and high signal 

compression at CR=11% adversely affects the detection of the underlying mode shapes of the truss, 

especially in the first two closely-spaced modes that attain MAC values well below the threshold of 

0.9.Overall, the herein reported data illustrate the efficacy of the proposed method to address the 

modal coupling effect and identify weakly excited modes of vibration using noisy compressed signals 

at CR as low as 11% provided that the signal-to-noise ratio  is not below 20dB.  

 

Fig. 7. Estimation of the 1st bending mode shape of the space truss for non-compressive FDD at 
CR=100% and PSBS-based FDD at CR=11% for SNR={∞,20,0} dB. 

 

 

Fig. 8. Estimation of the 2nd bending mode shape of the space truss for non-compressive FDD at 
CR=100% and PSBS-based FDD at CR=11% for SNR={∞,20,0} dB. 
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Fig. 9. Estimation of the 3rd bending mode shape of the space truss for non-compressive FDD at 
CR=100% and PSBS-based FDD at CR=11% for SNR={∞,20,0} dB. 

 

Fig. 10. MAC values of mode shapes as function of CR for SNR={∞, 20,0} dB. 

6. Numerical assessment on mode shape estimation from field recorded data    

In this section, the effectiveness of the multi-sensor PSBS method is further assessed against 

field recorded response acceleration data obtained from the Bärenbohlstrasse overpass in Zurich, 

Switzerland [36],[37] under operational conditions. The presentation begins by a short description of 

the structure and of the considered data and pre-processing before showcasing numerical results of 

the proposed method and comparisons with standard (non-compressive) FDD. 

6.1. Structural system description and field recorded signals  

The considered bridge is 30.90m long, having a deck of variable width, while it is almost 

symmetric along the longitudinal direction. It consists of a solid prestressed-slab with two equal-

length spans of 14.75m each. The deck is supported, via steel bearings, in all directions at mid-span 

and in one of the abutments. The second abutment supports the deck only in the vertical and 

transverse directions. The bottom face of the deck was permanently instrumented with a network of 
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D=18 tethered sensors (i.e., Gantner Q-series DAQ devices equipped with anti-aliasing filter at a cut-

off frequency of 50Hz [37]), measuring vertical acceleration response signals under operational 

conditions (e.g., wind, traffic, etc.) within a period of 12 months (from 12/7/2013 to 26/7/2014). In 

this respect, datasets of 18 vertical acceleration responses were acquired for approximately 10 

minutes every hour with a sampling frequency of Fs=200Hz (Ts=0.005s), using a conventional uniform 

sampling scheme. A sketch of the sensors layout is shown in Fig. 11, including the relative distances 

of the sensors in both horizontal dimensions. Further details regarding the bridge, the sensors 

installation, and data acquisition can be found in [36],[37].  

 

Fig. 11. Layout of the 18 sensors recording vertical acceleration responses under ambient excitation 
on the Bärenbohlstrasse bridge, Zurich, Switzerland [36],[37] 

Herein, a dataset recorded on the 19/06/2014 at 15:08pm is considered comprising 18 vertical 

discrete-time acceleration response signals with duration equal to 2minutes. Signal pre-processing 

operations are applied to the raw dataset, which is down-sampled to the Nyquist sampling 

frequency at FNYQ=100Hz (Ts=0.01s), i.e., twice the upper cut-off frequency of the anti-aliasing filter 

[38]. The derived full-length/Nyquist-sampled signals (of 12000 samples each) are then processed 

with a 4th-order Butterworth band-pass filter in the frequency range [0.15, 50] in Hz to remove any 

potential low-frequency trend (below 0.15 Hz) from each acceleration response signal. For 

illustration, Fig. 12 presents the band-pass filtered acceleration responses signal recorded at sensor 

#13, together with its PSD estimate obtained from application of the Welch’s periodogram. 

Given that the PSBS-based spectral estimation approach anticipates signal stationarity which 

may not be the case for the considered signals since the bridge was open to the traffic during 

monitoring, it was deemed essential to undertake a data qualification test to appraise the 

stationarity of the recorded signals. To this end, the standard non-parametric Reverse Arrangement 

method (RAM) [39] is used to statistically test the stationarity hypothesis. The outcome of 

application of RAM to the signal is plotted in the right panel of Fig. 12. demonstrating that the 

stationarity hypothesis holds well within a 95% confidence interval. Similar outcomes have been 

obtained for the rest of the signals in the considered dataset and, therefore, the PSBS approach is 

applicable. 
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Fig. 12. Filtered acceleration response signal at sensor #13 (left), Welch modified periodogram of 
signal with 50% overlapping segments windowed by a Hanning function (right), reverse arrangement 
method results for signal windowed to 1min of duration (right). 

6.2. Multi-sensor PSBS-based FDD and modal results  

The above filtered dataset of field recorded signals are first multi-coset sampled using the same 

three sampling schemes as in Section 5.2. Table 3 reports all pertinent sampling parameters and 

achieved signal lengths. In this case, the values of the parameter L are chosen for each sampling 

scheme to achieve 


  


2
0.005

(2 1)L N
rad/s.  

Table 3 Design parameters of three different optimal multi-coset sampling schemes applied to 
recorded acceleration signals of the Bärenbohlstrasse bridge example. 
 

Compression Ratio/ Sub-Nyquist 
sampling rate 

CR 31% 21% 11% 

Number of channels per sensor M 5 8 14 
Down-sampling N 16 39 128 

Sampling pattern s [0,1,2,5,8] [0,1,3,7,9,14,18,19] 
[0,1,2,6,8,20,29,  

38,47,50,53,60,63,64] 

Number of blocks K 750 307 93 
Full-length/ Nyquist-sampled signals 

(Fs=100 Hz) 
KN 12000 12000 12000 

Sub-Nyquist sampled signals length KM 3750 2456 1302 

Design parameter L L 40 16 4 
Correlation support length N(2L+1) 1296 1287 1152 

 

Next, the FDD algorithm is applied to PSD matrix estimates obtained from the sub-Nyquist 

multi-coset sampled signals at the three considered CRs in Table 3 as well as to the PSD matrix 

obtained from the filtered Nyquist-sampled signals using Welch’s periodogram. The derived singular 

values vector in Eq. (23) are shown in Fig. 13 normalized to their maximum value. It is seen that 4 

prominent peaks (i.e., natural frequencies) exist corresponding to the lowest four flexural vibration 

modes along the vertical axis of the bridge (plotted later in Figs. 13-16). The highest singular value 

amplitudes are observed at the first and third vibrating modes which are mostly excited (see also 

middle panel of Fig. 12) and accurately captured by the PSBS-based FDD approach even for CR= 11%. 
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The second and fourth modes are weakly excited rendering their detection as a more challenging 

task. In fact, the quality estimate of the least excited vibration mode (i.e., the 4th resonance) is 

adversely affected at the highest signal compression level considered (i.e., CR=11%), but this issue is 

significantly rectified for CR≥21%.  

Regarding the natural frequency estimation problem, the above observations are qualitatively 

assessed in Fig. 13 and quantified in Table 4 using the error differences between the “exact” natural 

frequency values extracted from the non-compressed signals (CR=100%) and the natural frequency 

estimates of the compressive PSBS-based FDD approach. A maximum error of 2.32% occurs for 

CR=21% in estimating the 2nd resonance while the remaining errors are lower than 1%. 

 

Fig. 13. First singular values vector of the bridge response spectrum matrix in Eq. (22) for CR=31% 
(left), CR=21% (middle), and CR=11% (right) 

Table 4. Natural frequency estimates and error differences ( ˆ
r rf f )/ rf  (r=1,2,3,4) in parentheses for 

Bärenbohlstrasse bridge. 
 

Non-compressive FDD PSBS-based FDD 

CR=100% CR=31% CR=21% CR=11% 

f1= 7.617 Hz 1f̂ = 7.573 Hz 1f̂ =7.632 Hz 1f̂ =7.565 Hz 

(-0.57%) (0.20%) (-0.68%) 

f2= 10.352 Hz 2f̂ =10.355 Hz 2f̂ =10.592 Hz 2f̂ =10.348 Hz 

(0.04%) (2.32%) (-0.04%) 

f3=11.719 Hz 3f̂ =11.747 Hz 3f̂ =11.760 Hz 3f̂ =11.652 Hz 

(0.24%) (0.35%) (-0.57%) 

f4=12.500 Hz 4f̂ =12.519 Hz 4f̂ =12.539 Hz 4f̂ =12.522 Hz 

(0.15%) (0.31%) (0.17%) 

 

The extracted modal deflected shapes of the four vibrating modes are illustrated in Fig. 14-Fig. 

17. The left panels in these figures present the “exact” mode shapes pertaining to non-compressive 

FDD while the middle panels depict the modal shapes estimated from the proposed PSBS-based FDD 

at CR=11%. Their accuracy is assessed with the MAC in Eq. (30), which is plotted in the right panels of 

Fig. 14-Fig. 17 as a function of the three adopted CRs.  

It is seen that accurate mode shapes with MAC values equal or above 0.9 are obtained for the 
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first three modes even for the lowest CR, which reflects a slower sampling at 89% below Nyquist that 

collects only 1302 data samples from each sensor within 2 minutes out of the 12000 samples in the 

full-length signals. Regarding the fourth and least excited vibration mode, fairly accurate estimates 

are retrieved for CR≥21%, but this mode is not accurately resolved at higher signal compression 

levels (i.e., CR=11%), yielding very low MAC values. Overall, the herein reported results demonstrate 

the effectiveness of the multi-sensor PSBS-based approach to identify mode shapes and natural 

frequencies of the monitored bridge from recorded data without being significantly affected from 

signal compression as long as modes are sufficiently excited. 

 

 

Fig. 14. Estimation of the 1st mode shape (bending) of the Bärenbohlstrasse bridge; non-compressive 
FDD (left); PSBS-based FDD at CR=11% (middle); and MAC values versus CR (right)  

 

 

Fig. 15. Estimation of the 2nd mode shape (bending) of the Bärenbohlstrasse bridge; non-
compressive FDD (left); PSBS-based FDD at CR=11% (middle); and MAC values versus CR 
(right). 
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Fig. 16. Estimation of the 3rd mode shape (rotational) of the Bärenbohlstrasse bridge; non-
compressive FDD (left); PSBS-based FDD at CR=11% (middle); and MAC values versus CR 
(right). 

 

 

Fig. 17. Estimation of the 4th mode shape (rotational) of the Bärenbohlstrasse bridge; non-
compressive FDD (left); PSBS-based FDD at CR=11% (middle); and MAC values versus CR 
(right). 

 

7. Estimation of battery life gain in wireless sensors employing multi-coset samplers 

for PSBS-based OMA 

In this section, daily energy consumption and battery lifetime are estimated for a wireless 

sensor assumed to be part of an array of sensors monitoring the bridge considered in Section 6.1. 

The aim is to quantify savings in energy consumption and battery lifetime achieved by the reduced 

sampling and wireless data transmission rates enabled by the proposed multi-sensor PSBS approach 

with multi-coset sampling (Fig. 1-bottom chart) vis-à-vis conventional sampling with and without off-

line compression (Fig. 1-top chart). To this aim, a star network topology of equidistant wireless 
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sensors is assumed, measuring 2minutes long vertical bridge response acceleration signals under 

operational conditions every hour (i.e., a dataset of Q=24 acceleration signals are collected daily per 

wireless sensor). Energy consumption estimates are computed for the three different multi-coset 

sampling schemes in Table 3, considering samplers with M ADC units operating at the sub-Nyquist 

sampling rates. In active mode, it is assumed that all M ADC units sample concurrently followed by 

wireless data transmission. Power requirements of the considered wireless sensor in idle and active 

operating modes are listed in Table 5 as well as the current drawn in each mode assuming a supply 

voltage of 3V. These figures have been adopted from the specifications of a typical conventional 

wireless sensor, namely WiseNode v4, developed by Novakovic et al. [40].    

 

Table 5 Wireless Sensor WiseNode v4 specifications [40] 
Mode Current Drawn Power Consumption 

Idle 27 μA PI= 81 μW 
Sampling Variable Ps= Es/Ts (Es=55.3 μJ) 
ADC 0.72 mA PADC= 2.16 mW 
Transmit 34.6 mA PT= 103.8 mW 

 

Daily energy demands for a single sensor, Etot, are calculated separately for each operating 

mode (i.e., sampling and ADC, wireless transmission, and idle), taking that multi-coset-based 

sampling is undertaken for the three sampling schemes in Table 3 (i.e., CR= 31%, 21% and 11%). 

Numerical results of the pertinent calculations are reported in the three rightmost columns of Table 

6. For illustration, the case of CR=11% is discussed in detail. The considered multi-coset sampler 

comprises M=14 channels, each operating at a sampling rate of Ts,CR=1.28s, that is N=128 times 

slower than the original conventionally sampled data at Ts=0.01s (i.e., Fs=100Hz). Power 

consumption due to sampling is determined as   s CR s s CRP M E T  , ,( / ) 0.60 mW , using the Es value 

given in Table 5. Therefore, the daily acquisition of Q=24 compressed acceleration responses of 

NL,CR=1302 samples each, requires that the sensor operates in sampling mode for ts=Q∙(NL,CR/M)∙Ts,CR≈ 

2860s (or 0.8h), consuming    s ADC s CR ADC sE P P t J& , 7.96  of energy per day for combined sampling 

and ADC. Assuming next that each ADC unit has a resolution of 16 bits (i.e., 2 bytes), then IFWD≈2625 

bytes of data package information are generated per compressed acceleration sequence, which are 

wirelessly transmitted to the server within a time frame of tFWD=  FWD T T( I sI t1 1/ 7.61) , where IT1=7 

bytes is the information carried within one data package and tT1= 0.02s is the time required for its 

wireless transmission [40]. Thus, tτ= Q tFWD = 182.6s (or 0.05h) are required for the daily transmission 

of the Q=24 sequences of compressed acceleration response data, consuming  T T T JE P t 18.95  of 

energy per day. The adopted wireless sensor is assumed to be in the idle mode for the remaining tI= 
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24 - tτ - ts=23.15h (or tI= 83340s) of the day using   I I IE P t 6.75J  of energy. Therefore, overall, the 

daily sensor energy consumption for the CR=11% case is Etot= Es&ADC + ET + EI= 33.67J as reported in 

Table 6. Similar calculations have been performed to estimate Etot for CR=21% and 31% and results 

are shown in Table 6. Moreover, for the sake of comparison, the same table includes pertinent 

results obtained for two additional cases in which sensors sample uniformly in time the Q=24 

response acceleration signals per day at the original rate of Ts=0.01s and, then, one performs off-line 

lossless signal compression using Huffman coding at CR=77.6% [8], while the second transmits full-

length signals (i.e., CR=100%). Note that the latter case, whilst practically not realistic, is the one 

most widely considered in the literature in comparative studies on energy savings quantification in 

wireless sensors (e.g., [13],[14],[18]). Note also that CR=77.6% is a typical value that Huffman coding, 

as well as other lossless off-line data compression techniques, may achieve. 

 

Table 6 Daily energy consumption and battery life estimates for various CR values  
 Conventional sampling Compressed multi-coset sampling 

Mode 

CR=100% 
(No compression 

before 
transmission) 

CR=77.6% 
(Off-line lossless 

compression before 
transmission) 

CR=31% CR=21% CR=11% 

 Time Energy Time Energy Time Energy Time Energy Time Energy 
 [h] [J] [h] [J] [h] [J] [h] [J] [h] [J] 

Idle 22.74 6.63 22.84 6.66 23.06 6.72 23.10 6.74 23.15 6.75 
Sampling & 

ADC 
0.80 22.15 0.80 22.15 0.80 11.20 0.80 9.49 0.80 7.96 

Transmit 0.46 173.29 0.36 134.48 0.14 54.15 0.10 35.55 0.05 18.95 
Etot [J] - 202.07 - 163.28 - 72.08 - 51.77 - 33.67 

Tb [years] - 0.87 - 1.08 - 2.40 - 3.31 - 5.0 

 

 

Fig. 18. Estimates of the total energy requirements (left) and the battery life (right) for different CR 
values for a single wireless sensor monitoring the Bärenbohlstrasse bridge of Section 6.1. 

Focusing on the numerical values shown in Table 6, it is seen that significant estimated total 

energy savings, Etot, are found as CR reduces, following an overall linear relationship as can be 

appreciated by the Etot versus CR plot in the left panel of Fig. 18. The practical importance of the 
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above savings in energy consumption achieved by the proposed approach can be appreciated by 

quantifying their influence to battery lifetime. To this aim, it is assumed that the sensor energy 

supply of 3V comes from two Energizer L91 AA-size lithium batteries with a nominal voltage of 

Vn=1.5V and a capacity of Cn=3000 mAh, providing a total energy of Eb= (2Cn)∙(2Vn)= 64800J. A 

continuous discharge current is further assumed to occur across the lifetime of the battery, 

pertaining to an annual battery energy loss due to leakage expressed in the percentage ratio of 

ξ=1%. In this respect, the following expression can be used  




 

b
b

tot b

E
T

E E
,  (31) 

to estimate sensor battery life Tb.  The latter quantity is computed for all 5 different wireless sensors 

considered before in the last row of Table 6 and is further plotted against CR in the right panel of Fig. 

18. Clearly, the battery life expectancy increases exponentially with lower CRs. Specifically, battery 

life triples for CR=21% compared to Nyquist sampling, while CR=11% prolongs battery lifetime up to 

5 times. In this respect, the proposed PSBS approach for OMA can support an overall sustainable 

bridge monitoring system with reduced maintenance costs associated with labor expenses and/or 

interruption of the normal operation of the monitored bridge since battery replacement can be 

scheduled at longer intervals.   

8. Concluding remarks 

A novel centralized multi-sensor approach for OMA of engineering structures has been 

proposed supporting the use of low-power wireless sensor networks acquiring response acceleration 

measurements at sub-Nyquist rates. The proposed approach relies on deterministic non-uniform in 

time multi-coset sampling along with a PSBS technique, herein extended to the multi-sensor regime, 

to estimate the response acceleration PSD matrix of linear structures vibrating under broadband 

stationary random excitation. The estimated PSD matrix is decomposed to its singular values and 

vectors to retrieve mode shapes and natural frequencies using the standard peak-picking FDD 

algorithm. 

The assumption of having identical multi-coset samplers in all sensors of the WSN functioning 

under the same multi-coset sampling sequences has been made in the problem formulation to 

facilitate practicality in implementation. Further, the multi-coset sampling sequences have been 

optimally designed for sampling constant (white noise) PSD function corresponding to least sparse 

stationary random processes acquired at a single sensor. The latter consideration reinforces the 

spectral agnostic attribute of the proposed PSBS-based OMA approach. This attribute has allowed 

for treating stationary signals of arbitrary frequency content without requiring prior knowledge of 
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their spectral support. 

The efficacy of the proposed method has been numerically demonstrated by considering two 

different sets of Nyquist sampled discrete-time signals compressed at various compression levels 

using different multi-coset sampling sequences. The first set of signals were computer-simulated 

acceleration responses, noiseless and with additive Gaussian white noise, pertaining to a white-noise 

excited FE space truss with two closely-spaced modes of vibration. The second set of signals were 

two-minute long field-recorded acceleration response time-histories recorded during a monitoring 

campaign of a particular overpass subject to operational dynamic loading. Based on the MAC 

criterion, it was shown that accurate mode shape identification can be achieved for up to almost 

90% slower than Nyquist sampling rates for sufficiently excited modes and/or as long as noise does 

not exceed SNR=20dB. For more severely noise corrupted signals with SNR=0dB and/or for the least 

excited modes of the bridge, good quality mode shape estimates were achieved for up to about 80% 

below Nyquist sampling rate. Lastly, longer battery lifetime by about 3 and 5 times compared to 

conventional Nyquist sampling has been estimated for multi-coset sampling at rates 80% and 90% 

below Nyquist, respectively, based on power requirement specifications of a typical commercially 

available wireless sensor assumed to have multi-coset signal acquisition capabilities.  

Collectively, the above quantitative findings derived from the herein furnished numerical data 

suggest that the proposed approach may significantly reduce maintenance costs in WSNs leading to 

cost-effective and sustainable OMA deployments once wireless sensors equipped with multi-coset 

samplers become commercially available. Moreover, the proposed approach supports simultaneous 

data acquisition and compression at the sensor front-end, eliminating the need for local on-sensor 

data interrogation/processing which further minimizes sensor complexity and memory 

requirements. Still, the proposed approach involves two practically important prerequisites which 

may limit its applicability in certain monitoring scenarios: (i) it anticipates stationary signals and, 

therefore, treatment of non-stationary response acceleration signals either due to non-stationary 

excitation and/or nonlinear or time-varying structural behavior need to be carefully considered (e.g., 

through consideration of windowing in time to satisfy stationarity statistical tests with high 

probability); (ii) it does not return time-histories of response acceleration signals and, therefore, it is 

only relevant to structural health monitoring approaches relying on second-order response statistics 

as in the case of extracting modal information via frequency domain SVD-based OMA approaches. In 

this respect, further research is warranted to assess the effectiveness and applicability of the herein 

proposed approach vis-à-vis various sub-Nyquist CS-based approaches for OMA not limited by the 

above prerequisites in different practical structural health monitoring applications. Some pertinent 

results along these lines are reported in [27],[28]. Moreover, experimental verification of the 
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proposed approach in actual field deployments is left for future work as it requires the availability of 

currently non-existent acceleration wireless sensors equipped with multi-coset sampling capabilities. 

The development of such sensors is foreseeable in the near future based on recent advances in 

multi-coset sampling hardware addressing problems such as channel diversity gain, time-

synchronization, and time-jittering arising in interleaved ADC architectures [33]-[35]. To this end, it is 

envisioned that the developed approach will motivate further research on sensors technology 

tailored for large-scale structural health monitoring applications.   
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