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In previous work, we have commenced the task of unpacking the 473 800 776 reflexive polyhedra by
Kreuzer and Skarke into a database of Calabi-Yau threefolds [R. Altman et al. J. High Energy Phys. 02
(2015) 158.] (see www.rossealtman.com). In this paper, following a pedagogical introduction, we present a
new algorithm to isolate Swiss cheese solutions characterized by “holes,” or small 4-cycles, descending
from the toric divisors inherent to the original four dimensional reflexive polyhedra. Implementing these
methods, we find 2268 explicit Swiss cheese manifolds, over half of which have h1;1 ¼ 6. Many of our
solutions have multiple large cycles. Such Swiss cheese geometries facilitate moduli stabilization in string
compactifications and provide flat directions for cosmological inflation.

DOI: 10.1103/PhysRevD.97.046003

I. INTRODUCTION

Kreuzer and Skarke have exhaustively classified the 473
800 776 reflexive polyhedra in four dimensions [1]. Each of
these reflexive polyhedra gives rise to a four dimensional
toric variety in which the anticanonical hypersurface is a
singular Calabi-Yau threefold [2]. Moreover, each of these
singular hypersurfaces admits at least one, but potentially
many maximal projective crepant partial (MPCP) desin-
gularizations, some of which represent adjacent regions in
the moduli space of the same manifold, and some of which
are entirely independent. This leaves us with an indeter-
minate, but undeniably large class of Calabi-Yau threefolds,
well in excess of the half billion reflexive polytopes. In a
previous work [3], we have started to compile a catalog of
Calabi-Yau threefolds extracted from the Kreuzer-Skarke
dataset [4] into a new database indexed by the topological
and geometric properties of the threefolds (see www
.rossealtman.com [5]). As important features of geometries
for compactification are readily available in a format that
can be queried or scanned in batch, our database provides

an efficient and useful resource for the string phenomenol-
ogy and string cosmology communities.
With the enormous number of candidate Calabi-Yau

compactifications in hand, model builders are confronted
with the challenge of isolating the set of constructions which
might potentially replicate physics in the real world. In type
IIB string theory, the particularly difficult problemofmoduli
stabilization can be avoided via flux considerations in one of
two prevailing Calabi-Yau threefold compactification para-
digms: KKLT [6] or the large volume scenario [7–9].
A particularly interesting subset of the latter are the so-
called “Swiss cheese” compactifications. The name derives
from the fact that a subset of the Kähler moduli are large and
control the overall volume of the manifold, while the rest of
the Kähler moduli remain small and control the volumes of
the “holes” at which nonperturbative contributions to the
superpotential, such as E3-instantons, are localized. In this
paper, we consider a special subclass of Swiss cheese
compactifications characterized by large and small cycles
that descend directly from the toric divisors of the Calabi-
Yau threefold and are therefore directly encoded in the four-
dimensional reflexive polyhedra of Kreuzer and Skarke. We
detail an algorithm for identifying such geometries. It should
be emphasized, however, that while there are 473 800 776
reflexive polyhedra, the number of inequivalent Calabi-Yau
threefolds obtained therefrom is so far unknown. This is due
to the fact that extracting the Calabi-Yau information
requires a choice of triangulating the reflexive polyhedron,
and there may be many such choices. This indeterminate
number of corresponding Calabi-Yau threefolds remains an
interesting problem in and of itself.
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Implementing this algorithm, we have conducted a first
scan of the current database of Calabi-Yau threefolds
(h1;1 ≤ 6) for the existence of the special class of Swiss
cheese geometries, which we refer to as the toric Swiss
cheese solutions. When we find a solution of this type,
we compute the rotation matrices from the given basis of
2-cycle and 4-cycle volumes (represented by ti and τi,
respectively) into the bases where the large and small cycles
are manifest. Our main result is to report the data for 2268
of these toric Swiss cheese Calabi-Yau geometries, over
half of which have h1;1 ¼ 6. Of these, 70 have two or more
large cycles. The full details are available in the database of
toric Calabi-Yau threefolds located at www.rossealtman
.com. The number of large cycles in these geometries range
from 1 to h1;1ðXÞ − 1.
The organization of the paper is as follows. In Sec. II, we

outline the conditions for the possible existence of a large
volume solution in the language of toric geometry. This
allows us to set our notation and conventions. The con-
ditions in the general Swiss cheese case are summarized in
Sec. II D, while the particular case of toric Swiss cheese is
presented in Sec. II E. Section III contains a schematic of
the algorithm used in Sage to detect and compute toric Swiss
cheese solutions for the various Calabi-Yau threefold
vacua. In preparation for presenting our results, we estab-
lish in Sec. IV some terminology on classifying large
volume solutions on the basis of the form of the Calabi-Yau
volume. As terminology is used by various groups in
slightly different contexts, we hope that this classification
helps disambiguate language often used in the literature. In
Sec. V, we show an explicit example of a Swiss cheese
manifold with Hodge numbers ðh1;1; h2;1Þ ¼ ð4; 94Þ and
two large cycles, and perform a minimization of the
potential. We then present our results and discuss some
implications in Sec. VI. Finally, Appendices A and B
provide a self-contained pedagogical review on the back-
ground of the large volume scenario (LVS).

II. METHODS: DETECTING TORIC
SWISS CHEESE SOLUTIONS

Consider a Calabi-Yau threefold hypersurface X in an
ambient 4-dimensional toric variety A with k toric coor-
dinates x1;…; xk, each corresponding to a divisor Di ¼
fxi ¼ 0g on X. The Kähler moduli space is given by
H1;1ðXÞ∩H2ðX;ZÞ with dimension h1;1ðXÞ¼dimH1;1ðXÞ;
we shall be largely concerned with the so-called favorable
manifolds [3,10] where all divisor classes on X descend
from that of the ambient A, so that

h ≔ h1;1ðXÞ ¼ h1;1ðAÞ: ð2:1Þ

Due to the Lefschetz theorem on (1,1)-classes,
a Z-basis of (1,1)-form classes corresponding to 4-cycles
in homology via Poincaré duality can be chosen as

fJ1;…; Jhg ∈ H1;1ðXÞ ∩ H2ðX;ZÞ spanning the lattice.
Because a Calabi-Yau manifold is Kähler, it is naturally
equipped with a characteristic Kähler (1,1)-form class
J ∈ H1;1ðXÞ ∩ H2ðX;ZÞ, which must also lie within a
convex Kähler cone KðAÞ ⊂ H2ðA;RÞ. Expanding the
Kähler form in a basis, we find

J ¼ tiJi; ð2:2Þ

with Kähler parameters ti ∈ R. However, the Kähler form
itself is basis independent, and we can therefore choose any
basis.1 fJA1 ;…; JAhg ∈ H1;1ðXÞ ∩ H2ðX;QÞ, where, for the
sake of computational efficiency, we have relaxed the
requirement of the Z-basis to the more general case of a
Q-basis. We can then expand the Kähler form in this new
A-basis as follows

J ¼ tAiJAi : ð2:3Þ

Note that because J is basis-independent, we can
easily do this as many times as we want with new bases
B, C, etc. The cohomology or Chow ring structure on X,
however, is basis-dependent. In this chapter, we wish to
identify a “Swiss cheese” basis in which the large, volume-
modulating 4-cycles are manifestly separated from the
small, blowup 4-cycles, which are phenomenologically
useful in achieving moduli stabilization. But since we have
no natural choice of basis to work with, finding one which
satisfies the Swiss cheese condition [11] must involve an
arbitrary basis change with many unconstrained degrees of
freedom. It is therefore an extremely computationally
expensive undertaking, especially when faced with higher
dimensional moduli spaces. Therefore, in order to work
around this bottleneck, the only options remaining are to
narrow the scope of the search to a special case or to find a
particularly natural basis towork with. Later, wewill outline
a technique that is a combination of these two approaches.
We now consider only the class of smooth toric Calabi-

Yau threefolds [1], i.e., those obtained as the anticanonical
hypersurface in a 4-dimensional toric variety with no worse
than terminal singularities. A database [3] of these Calabi-
Yau threefolds is available through a robust search engine at
www.rossealtman.com. The topological and geometric
information for these manifolds is presented in an arbitrary
Z-basis fJ1;…; Jhg.
We can define the A-basis of the Kähler class as a linear

transformation of the original basis Ji. This transformation
should be invertible, so we define the transformation matrix
TA ∈ GLhðQÞ by

JAi ¼ ðTAÞijJj: ð2:4Þ

1Note: the superscript Latin characters A; B; C;… are labels
rather than indices, and will not obey the Einstein summation
convention.
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In the samemanner, we may introduce matricesTB,TC, etc.
for the B-, C-, etc. basis representations of the Kähler class.

A. Volume, large cycle, and small cycle conditions

The complex subvarieties of X can be written in terms of
2-cycle curves Ci, 4-cycle divisors Ji, and the compact
Calabi-Yau 6-cycle X. Curves are dual to divisors, and can
be expressed as linear combinations of an irreducible set
C1;…; Cr ∈ MðAÞ of linear functionals on the space of
divisors, Ci∶ H1;1ðAÞ → Q, where

MðAÞ ¼
�Xr

i¼1

aiCijai ∈ R≥0

�
: ð2:5Þ

is called the Mori cone, or cone of curves. The Kähler class
J acts as a calibration 2-form on these 2n-cycles on X,
fixing their volumes according to2

volðCiÞ ¼ 1

1!

Z
Ci

J ¼ 1

1!

Z
Ci

tjJj ¼ tj
Z
Ci

Jj ¼ Ki
jtj; ð2:6Þ

volðJiÞ¼
1

2!

Z
Ji

J∧J¼ 1

2!

Z
X

Ji∧ tjJj∧ tkJk¼
1

2
tjtkκijk≔ τi;

ð2:7Þ

volðXÞ ¼ 1

3!

Z
X

J ∧ J ∧ J ¼ 1

3!

Z
X

tiJi ∧ tjJj ∧ tkJk

¼ 1

6
titjtkκijk ≔ V; ð2:8Þ

where κijk ¼
R
X Ji ∧ Jj ∧ Jk is the triple intersection

tensor corresponding to the Chow ring structure of the
Calabi-Yau threefold X and Ki

j ¼
R
Ci Jj is the Kähler cone

matrix, which will be elaborated on later. We can expand
the volume V in complete generality by assuming that each
of the three copies of J in the integral is written in a
different basis

V ¼ 1

3!

Z
X

J ∧ J ∧ J ¼ 1

3!
tAitBjtCk

Z
X

JAi ∧ JBj ∧ JCk

¼ 1

3!
tAitBjtCk

Z
X

ððTAÞirJrÞ ∧ ððTBÞjsJsÞ ∧ ððTCÞktJtÞ

¼ 1

3!
tAitBjtCkðTAÞirðTBÞjsðTCÞkt

Z
X

Jr ∧ Js ∧ Jt

¼ 1

3!
tAitBjtCkðTAÞirðTBÞjsðTCÞktκrst: ð2:9Þ

The volume of each of the 4-cycles τi can then be written as
the derivative of the total volume with respect to each of the
2-cycle volumes ti

τAi ¼ dV
dtAi

¼ d
dtAi

�
1

3!
tA

0i0 tB
0j0tC

0k0
Z
X

JA
0

i0 ∧ JB
0

j0 ∧ JC
0

k0

�

¼ 1

2
tBjtCk

Z
X

JAi ∧ JBj ∧ JCk

¼ 1

2
tBjtCkðTAÞirðTBÞjsðTCÞkt

Z
X

Jr ∧ Js ∧ Jt

¼ 1

2
tBjtCkðTAÞirðTBÞjsðTCÞktκrst: ð2:10Þ

In a generic basis JAi , the Kähler moduli may be arbitrarily
large or small. When looking at phenomenological models
in the LVS, however, we wish to choose a basis in which
some set of cycles can shrink to zero size (i.e., small), while
the remaining cycles must be left nonzero (i.e., large).
Thus, in the following formulation, the number of large and
small cycles will be labeled NL and NS, respectively, such
that h ¼ NL þ NS. For compactness of notation and in
analogy to computational pseudocode, we define the
following index intervals

IToric ¼ ½1; k� ðToric divisorsÞ ð2:11Þ

I ¼ ½1; h� ðOriginal basisÞ ð2:12Þ

IA ¼ ½1; h�; IAL ¼ ½1; NL�; and

IAS ¼ ½NL þ 1; h� ðA-basisÞ ð2:13Þ

IB ¼ ½1; h�; IBL ¼ ½1; NL�; and

IBS ¼ ½NL þ 1; h� ðB-basisÞ ð2:14Þ

where k is the total number of toric divisors on the resolved
Calabi-Yau threefold3 X. We will assume that there is a
specific basis fJAi g such that

2We have slightly abused notation by writing Ji for both the
divisor cohomology class and its Poincaré dual in homology.

3An n-dimensional toric variety A constructed from an n-
dimensional reflexive lattice polytope M obeys the short exact
sequence

0 → M → ⨁
k

i¼1

ZDi → PicðAÞ ≅ H1;1ðAÞ ∩ H2ðA;ZÞ → 0

where the Di are toric divisor classes. Therefore, k ¼
h1;1ðAÞ þ dimðMÞ ¼ h1;1ðAÞ þ dimCðAÞ. So, when the codi-
mension 1 hypersurface X ⊂ A is favorable, we have k ¼
h1;1ðXÞ þ dimCðXÞ þ 1. In the case of a Calabi-Yau threefold,
k ¼ h1;1ðXÞ þ 4 specifically.
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tAi ¼
�
Large; i ∈ IAL
Small; i ∈ IAS

ð2:15Þ

and a specific basis fJBi g such that

τBi ¼
�
Large; i ∈ IBL
Small; i ∈ IBS ;

ð2:16Þ

and we will work only in these two bases for the remainder
of this work.
We then see that from Eqs. (2.9) and (2.13)–(2.15) that if

we want the total volume V to be large, then

∃ði; j; kÞ ∈ IAL × IA × IA∶ðTAÞirðTAÞjsðTAÞktκrst ≠ 0:

ð2:17Þ

We also see from Eqs. (2.10) and (2.13)–(2.16) that

∃ðj; kÞ ∈ IAL × IA∶ðTBÞirðTAÞjsðTAÞktκrst ≠ 0; ∀ i ∈ IBL

ð2:18Þ

ðTBÞirðTAÞjsðTAÞktκrst ¼ 0; ∀ ði; j; kÞ ∈ IBS × IAL × IA:

ð2:19Þ

But, if fJAi g is a basis, then TA must be full rank. This
implies that we can write Eq. (2.19) as

ðTBÞirðTAÞjsκrst ¼ 0; ∀ ði; j; tÞ ∈ IBS × IAL × I: ð2:20Þ

B. Kähler cone condition

1. The Mori and Kähler cones

A Kähler manifold is defined as a symplectic manifold
with a closed symplectic 2-form J, which is simultaneously
consistent with an almost complex and Riemannian struc-
ture. The former imposes the constraint that J is in fact a
(1,1)-form, while the latter requires J to be locally positive
definite. This is directly related to the fact that the volume
of an effective curve volðCÞ ¼ R

C J > 0. By expanding
J ¼ tiJi in a basis fJig ∈ H1;1ðXÞ, we ensure that it is
indeed a closed (1,1)-form, however we must also constrain
it to be positive definite. To make this explicit, we check
that J has positive intersection with every subvariety of
complementary codimension, i.e., effective curves C in the
Mori cone

KðAÞ ¼
�
J ∈H1;1ðXÞ

����volðCÞ ¼
Z
C

J > 0; ∀ C ∈MðAÞ
�
:

ð2:21Þ
Thus, the allowed values of J form their own convex cone
in the Kähler moduli space. The extremal rays, C1;…; Cr,

of the Mori cone can be regarded as linear functionals on
the divisors, and can therefore easily be computed in terms
of the toric divisors from symplectic moment polytope
information provided in the Kreuzer-Skarke database,
given an appropriate triangulation. Then, given our original
basis of divisor classes fJigi∈I of H1;1ðXÞ ≅ H1;1ðAÞ for
favorable geometries, we can define the r × h Kähler cone
matrix of intersection numbers between the generating
curves Ci and the basis divisor classes

Ki
j ¼

Z
Ci

Jj; ð2:22Þ

whose rows and columns represent the generating rays of
the Mori and Kähler cones, respectively. Using this Kähler
cone matrix, and referring to Eqs. (2.3) and (2.4), we see
that

volðCiÞ ¼
Z
Ci

J ¼
Z
Ci

tjJj ¼ tj
Z
Ci

Jj ¼ Ki
jtj

¼ Ki
jððTAÞTÞjktAk ¼ ðKAÞiktAk; ð2:23Þ

whereKA ¼ KðTAÞT . If we want J ∈ KðAÞ, then we must
satisfy volðCÞ > 0; ∀ C ∈ MðAÞ. This is equivalent to

0 < volðCÞ ¼
Z
C

J ¼
Z

P
i
aiCi

J ¼
X
i

ai

Z
Ci

J; with

ai ∈ R>0; ∀ i ∈ ½1; r�: ð2:24Þ

Since this must be true for arbitrary ai, then each term of the
sum must satisfy the inequality independently

volðCiÞ ¼ ðKAÞiktAk > 0; ∀ i ∈ ½1; r�: ð2:25Þ

This, then, is the set of conditions which must be satisfied
in order for the Kähler form J to lie within the Kähler cone.
Unfortunately, this procedure only tells us the Kähler cone
of the ambient toric variety A, while that of the Calabi-Yau
hypersurface may be larger. It is still, however, a sufficient
condition.
In order to approximate better the full Kähler cone of the

hypersurface, we have implemented the procedure, as
described in our previous work [3], of gluing together
the Kähler cones of all resolutions of A that are related by
flops, and between which the hypersurface X continues
smoothly. It has been shown [12] that in some cases, this
procedure still results in a subcone of the full hypersurface
Kähler cone. With some knowledge of the divisor structure,
it can be further refined [13], however, we will leave this to
future work.
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2. Large and small cycle Kähler cone conditions

Without loss of generality, we can always rearrange the rows ofKA ¼ KðTAÞT to put as many zero entries as possible in
the lower left quadrant

ð2:26Þ

Then, in the large volume limit where ðtAÞ1;…; ðtAÞNL →
�∞, the Kähler cone condition of Eq. (2.25) becomes

XNL

i¼1

lim
tAi→�∞

pA
i t

Ai > 0 ð2:27Þ

qA
j ·

2
664
ðtAÞNLþ1

..

.

ðtAÞh

3
775 > 0; ∀ j ∈ ½1; m�: ð2:28Þ

For the first expression to be well-defined, each term must
either be satisfied independently or be identically zero, so
that

lim
tAi→�∞

pA
i t

Ai ≥ 0; ∀ i ∈ IAL

⇒ pA
i ≥ 0 or pA

i ≤ 0; ∀ i ∈ IAL

⇒ � pA
i ≥ 0; ∀ i ∈ IAL: ð2:29Þ

where we mean that each component of the vector pA
i

is ≥ 0.
In order to satisfy Eq. (2.28), we first recognize that the

rows of KA are just the generating rays of the Mori cone
MðAÞ ⊂ Qh, as expressed in the A-basis ofH1;1ðXÞ. Then,
we see that coneðqA

1 ;…;qA
mÞ must be a convex subcone of

at most dimension h − NL. Then, defining the dual σ∨ to a
d-dimensional convex cone σ by

σ∨ ¼ fn ∈ Qdjhm;ni ≥ 0; ∀ m ∈ σ ⊂ Qdg; ð2:30Þ

we see that the solution space of Eq. (2.28) is just the
relative interior of the dual cone, where the inequality is
strict

2
664
ðtAÞNLþ1

..

.

ðtAÞh1;1

3
775 ∈ relintðconeðqA

1 ;…;qA
mÞ∨Þ: ð2:31Þ

Thus, a solution exists if and only if

dim ½relintðconeðqA
1 ;…;qA

mÞ∨Þ� > 0: ð2:32Þ

C. Homogeneity condition

The effective potential in the low-energy supergravity
limit of a type IIB theory in the LVS has exponential
factors involving small cycle moduli that are proportional
to V, and can often be volatile unless the terms are
carefully balanced. More specifically, to have a finite
minimum, each term must be of the same order in V−1.
We refer to this property as homogeneity of the terms in
the effective potential. This leads to a restrictive require-
ment on the Kähler potential, and in turn on the Kähler
metric. Because the 4-cycle volumes obey the ordering
τBi ≫ τBj ; ∀ ði; jÞ ∈ IBL × IBS , all terms in the effective
potential involving τBi are exponentially suppressed for
each i ∈ IBL. The requirement on the Kähler metric can
then be expressed as

ðK−1Þii ∼ Vh1=2i ðfτBk gk∈IBS Þ; ∀ i ∈ IBS ; ð2:33Þ

where the fh1=2i gi∈IBS are h − NL functions of degree-1=2

in the small 4-cycles fτBk gk∈IBS . Now, we consider the

expansion of the Kähler metric ðK−1Þij in V−1 (see
Appendix B for details) [7,9]
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ðK−1Þij ¼ −4V
�Z

X
JBi ∧ JBj ∧ J

�
þ 4τBi τ

B
j þOðV−1Þ

¼ −4VtAk
�Z

X
JBi ∧ JBj ∧ JAk

�
þ 4τBi τ

B
j þOðV−1Þ

¼ −4VtAkðTBÞirðTBÞjsðTAÞkt
�Z

X
Jr ∧ Js ∧ Jt

�
þ 4τBi τ

B
j þOðV−1Þ

¼ −4VtAkðTBÞirðTBÞjsðTAÞktκrst þ 4τBi τ
B
j þOðV−1Þ: ð2:34Þ

The diagonal elements of ðK−1Þij have the form

ðK−1Þii
V

¼ −4tAjðTBÞirðTBÞisðTAÞjtκrst

þ 4
ðτBi Þ2
V

þOðV−1Þ: ð2:35Þ

But, by definition, τBi ≪ V; ∀ i ∈ IBS , so

ðK−1Þii
V

≈ −4tAjðTBÞirðTBÞisðTAÞjtκrst; ∀ i ∈ IBS :

ð2:36Þ

Then, because the 4-cycle volumes are quadratic in the
2-cycle volumes, we have found our degree-1=2 functions
fh1=2i gi∈IBS from Eq. (2.36)

h1=2i ðfτBj gj∈IBS Þ ¼ −4tAjðTBÞirðTBÞisðTAÞjtκrst; ∀ i ∈ IBS :

ð2:37Þ

By inspecting Eqs. (2.15) and (2.37), we find the
following

ðTBÞirðTBÞisðTAÞjtκrst ¼ 0; ∀ ði; jÞ ∈ IBS × IAL

ð2:38Þ

∃j ∈ IAS∶ðTBÞirðTBÞisðTAÞjtκrst ≠ 0; ∀ i ∈ IBS :

ð2:39Þ

Note that because κrst is a symmetric tensor, Eq. (2.38) is
implied by Eq. (2.20) and therefore redundant.
This homogeneity condition is critically important for

finding a Swiss cheese solution with NS ¼ 1. However,
when NS > 1, the exponential factors in the effective
potential have more degrees of freedom, and the necessity

of this condition is loosened. However, it remains a
sufficient condition in most circumstances, and we simply
flag these cases in our scan when we encounter them, rather
than constraining the search parameters.

D. General list of conditions

In this section, we have compiled all the conditions
necessary for X to have a Swiss cheese solution in the large
volume scenario. For ease of notation, we make the
following definitions

κAAAijk ¼ ðTAÞirðTAÞjsðTAÞktκrst
κBAAijk ¼ ðTBÞirðTAÞjsðTAÞktκrst
κBA0ijk ¼ ðTBÞirðTAÞjsκrsk
κBBAijk ¼ ðTBÞirðTBÞjsðTAÞjtκrst: ð2:40Þ

Then, in order for a Swiss cheese solution to exist with NL
large 4-cycles, there must exist invertible4 A- and B-bases
such that
(1) [Equation (2.17): Volume] ∃ði; j; kÞ ∈ IAL × IA × IA∶

κAAAijk ≠ 0

(2) [Equation (2.18): Large Cycle] ∃ðj; kÞ ∈ IAL × IA∶
κBAAijk ≠ 0; ∀ i ∈ IBL

(3) [Equation (2.20): Small Cycle] κBA0ijk ¼0;∀ ði;j;kÞ∈
IBS ×IAL×I

(4) [Equation (2.39): Homogeneity] ∃j ∈ IAS∶κBBAiij ≠ 0;
∀ i ∈ IBS

(5) [Equation (2.29): Kähler Cone (L)] �pA
i ≥ 0;

∀ i ∈ IAL
(6) [Equation (2.32): Kähler Cone (S)]

dim ½relintðconeðqA
1 ;…;qA

mÞ∨Þ� > 0

where

4TA;TB∈GLhðQÞ implies that both are invertible: DetðTAÞ≠0
and DetðTBÞ ≠ 0.
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is the Kähler cone matrix after rotation into the
A-basis.

E. Special case: Toric Swiss cheese

Each favorable toric Calabi-Yau threefold is endowed
with a set of special 2-form toric classes fDigi∈IToric
dual to the 4-cycle toric divisors, which descend
directly from the ambient space A. The Kähler moduli
space H1;1ðXÞ is always spanned by these toric
2-forms, up to some redundancy. We know, therefore,
than any basis expansion of a point in the moduli space
may be equivalently described as a linear combination
of the toric 2-forms, though it will not be unique.
Practically speaking, however, this form is advanta-
geous for a scan since the ring structure of H1;1ðXÞ has
already been computed for these directly via toric
methods and will not cost us anything. In addition,
the redundancy of the toric divisors allows us to scan
over multiple choices of basis (in particular, many will
naturally be Z-bases) simply by sampling subsets of
the toric divisors. So, while there is no natural basis for
our calculations, the toric divisor classes fDigi∈IToric
form a natural “pseudo-basis” in spite of their
redundancy.
A basis formed by a pure subset of the toric 2-forms

will not always have a Swiss cheese solution. Even if
such a solution exists, an arbitrary rotation may still be
required. However, if we limit ourselves to the case in
which some subset of the toric 2-forms is already a
Swiss cheese basis (i.e., fJAi gi∈IA ;fJBi gi∈IB ⊂ fDigi∈IToric ),
then our problem is reduced to a relatively simple
combinatorical one. In order to see this, we define
the injective maps

α∶IA ↪ IToric β∶IB ↪ IToric

JAi ↦ DαðiÞ JBi ↦ DβðiÞ: ð2:41Þ

We also define the toric triple intersection tensor and the
Mori cone matrix5

dijk ¼
Z
X

Di ∧ Dj ∧ Dk ð2:42Þ

Mi
j ¼

Z
Ci

Dj: ð2:43Þ

Then, we can rewrite

κAAAijk ¼ dαðiÞαðjÞαðkÞ

κBAAijk ¼ dβðiÞαðjÞαðkÞ

κBA0ijk ¼ dβðiÞαðjÞk

κBBAijk ¼ dβðiÞβðjÞαðkÞ

ðKAÞij ¼ Mi
αðjÞ: ð2:44Þ

It is clear, then, that the conditions in Sec. II D become
purely combinatoric in nature and take the form
(1) [Equation (2.17): Volume] ∃ði; j; kÞ ∈

αðIALÞ × αðIAÞ × αðIAÞ∶dijk ≠ 0

(2) [Equation (2.18): Large Cycle] ∃ðj; kÞ ∈
αðIALÞ × αðIAÞ∶dijk ≠ 0; ∀ i ∈ βðIBLÞ

(3) [Equation (2.20): Small Cycle]dijk ¼ 0; ∀ ði; j; kÞ ∈
βðIBS Þ × αðIALÞ × IToric

(4) [Equation (2.39): Homogeneity] ∃j ∈ αðIASÞ∶
diij ≠ 0; ∀ i ∈ βðIBS Þ

(5) [Equation (2.29): Kähler Cone (L)] �pA
i ≥ 0;

∀ i ∈ αðIALÞ

5The Mori cone matrix is essentially the same as the Kähler
cone matrix, but expanded in the toric divisors rather than a basis.
We give it this name because it is the object that is directly
computed from torus invariant curves viewed as linear functionals
relating the toric divisors.
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(6) [Equation (2.32): Kähler Cone (S)] dim ½relintðconeðqA
1 ;…;qA

mÞ∨Þ� > 0
where

Now, instead of solving a complex linear system for two
arbitrary rotation matrices TA;TB ∈ GLhðQÞ, we simply
need to choose two subsets αðIAÞ; βðIBÞ ⊂ IToric. Since
the toric triple intersection tensor dijk and the Mori cone
matrix Mi

j are basis-independent, it is a simple combi-
natoric matter to search dijk for subtensors that meet
these constraints. If one is found, then we are done and
the sets αðIAÞ and βðIBÞ determine the bases6 fJAi gi∈IA ¼
fDjgj∈αðIAÞ and fJBi gi∈IB ¼ fDjgj∈βðIBÞ for which there
exists such a Swiss cheese solution. From toric methods,
we can easily obtain the rectangular transformation
matrix R given by

Di ¼ Ri
jJj: ð2:45Þ

Then, the rotation matrices TA and TB are simply
defined by

ðTAÞij ¼ RαðiÞj and ðTBÞij ¼ RβðiÞj: ð2:46Þ

III. IMPLEMENTING TORIC SWISS
CHEESE DETECTION

Given the combinatorial conditions set forward in the
previous section, it is fairly straightforward to scan the
database of toric Calabi-Yau threefolds [5] for Swiss cheese
solutions. The procedure we use is as follows, but there are
many variations.
(1) From the database, we can readily obtain the toric

triple intersection tensor dijk, the Mori cone matrix
M, and the weight matrixW. The latter is defined by
the conditions

P
k
ρ¼1 Wr

ρnρ ¼ 0 and W ≥ 0, where

the k 4-dimensional vectors fn1;…; nkg are points
on the 2-skeleton of the dual polytope.

(2) The small cycle condition reads

dijk ¼ 0; ∀ ði; j; kÞ ∈ βðIBS Þ × αðIALÞ × IToric:

This tells us that we can search for any row of any
submatrix of dijk that contains all zeroes, and the
indices of those rows and submatrices give us all
possible combinations of αðIALÞ and βðIBS Þ.

(3) We then assemble all possible complementary sets
of indices αðIASÞ and βðIBLÞ from among the k toric
divisor indices to get the full sets αðIAÞ and βðIBÞ,
each of which contain h total indices.

(4) We construct the submatrices WαðiÞαðjÞ and WβðiÞβðjÞ
of the weight matrix and check that both are full
rank, otherwise we have chosen redundant toric
divisors.

(5) We then check the volume condition

∃ði; j; kÞ ∈ αðIALÞ × αðIAÞ × αðIAÞ∶dijk ≠ 0:

(6) Given the Mori cone matrixM and the set of indices
αðIAÞ, we construct the submatrixMi

αðjÞ and reorder
the rows until it takes the form

Mi
αðjÞ ¼

2
6666664

pA
αð1Þ…pA

αðNLÞ
. .
.

0

ðqA
1 ÞT
..
.

ðqA
mÞT

3
7777775
;

0 ≤ m ≤ h:
6Again, even if the original basis fJigi∈I is a Z-basis, it is not

guaranteed in our analysis that fJAi gi∈IA and fJBi gi∈IB are as well.
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(7) Next, we check the large cycle Kähler cone con-
dition

�pA
i ≥ 0; ∀i ∈ αðIALÞ;

(8) Then the small cycle Kähler cone condition

dim ½relintðconeðqA
1 ;…;qA

mÞ∨Þ� > 0;

(9) The large cycle condition

∃ðj; kÞ ∈ αðIALÞ × αðIAÞ∶dijk ≠ 0; ∀ i ∈ βðIBLÞ;

(10) And finally, if we choose to, we can also check the
homogeneity condition

∃j ∈ αðIASÞ∶diij ≠ 0; ∀ i ∈ βðIBS Þ:

(11) If all the conditions in Sec. II E are satisfied, then the
sets of indices αðIAÞ and βðIBÞ are converted into
rotation matrices

ðTAÞij ¼ RαðiÞj and ðTBÞij ¼ RβðiÞj ð3:1Þ

where

Di ¼ Ri
jJj: ð3:2Þ

(12) We also check whether the A- and B-bases are Z-
bases. This is the case if and only if the remaining
redundant toric divisors all intersect each other
smoothly at a point on the desingularized ambient
toric variety A, up to an action of the fundamen-
tal group.

(13) We repeat this procedure for NL ¼ 1;…; h − 1, so
that at least one 4-cycle is always large and at least
one 4-cycle is always small. The results are recorded
in the database [5] as well.

(14) Finally, we can take multiple passes at the data set,
beginning with a randomly chosen GLkðZÞ trans-
formation on the toric divisors fD1;…; Dkg each
time. The full Swiss cheese solution set should begin
to converge after many iterations, but it is unclear
how slow that convergence should be. This is still a
significant improvement over the method of solving
the linear system for TA and TB, as each loop will
uncover a handful of solutions with purely combi-
natorial efficiency. We save this larger scan for a
later work.

IV. SWISS CHEESE CLASSIFICATION

In previous studies, the majority of Swiss cheese
geometries have been constructed explicitly using a top
down approach. Here, working from a vast database of
known candidate geometries [3,5], we attack the problem

from the bottom up with the hope of identifying as many
viable Swiss cheese vacua as possible. Toward this end, in
this section we lay out a scheme for categorizing Swiss
cheese geometries with varying degrees of generality.
The Kähler moduli ti are the natural geometrical param-

eters on the Calabi-Yau threefold X, and it is a simple
matter to write the volume form in terms of these as

V ¼ 1

3!
titjtkκijk; ð4:1Þ

where the intersection tensor κijk encodes the Chow ring
structure on X. In the low energy ten dimensional super-
gravity limit, the relevant field parameters descending from
X are the complexified7 4-cycle volumes Ti ¼ τi þ ibi.
There is a natural injective map from the 2-cycles to the
4-cycles via

ti ↦ τi ≡ ∂V
∂ti : ð4:2Þ

Depending on the Chow ring structure hidden in V, it may
be possible to choose a basis in which the map is invertible,
at least on some subset of ti. If so, then it is possible to write
V explicitly in terms of the 4-cycle volumes (at least
partially). In this case, we say that X is explicitly Swiss
cheese.
In addition, the Swiss cheese condition requires that

some set of large 4-cycles determine the scale of the overall
volume V, while the remaining small 4-cycles determine
the scale of the missing “holes.” This can be observed
directly from the form of V when each 4-cycle volume τi
contributes independently as its own term, such that

V ¼
Xh1;1
i¼1

λiτ
3=2
i : ð4:3Þ

When this is the case, we say that the volume is diagon-
alized, as there are no mixed terms. The conditions set
forward in Sec. II D guarantee that X obeys the Swiss cheese
condition, but even when X is explicit, it is not always
possible to find a basis that makes Eq. (4.3) manifest. When
it is possible, though, we say that X is diagonal.
Finally, a Swiss cheese geometry X that is both max-

imally explicit and maximally diagonal has special proper-
ties, and we refer to it as a strong Swiss cheese geometry. In
any other case, X is said to be weak.
In order to give a more thorough classification, we first

define the monomial functions
(i) fd ≡ fdðt1;…; thÞ: a degree d monomial in the

2-cycle volumes.
(ii) gd ≡ gdðτ1;…; τhÞ: a degree d monomial in the

4-cycle volumes.

7The bi are axionic partners of the τi 4-cycle volumes.
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With this notation, Table I enumerates the monomial
forms Mi that can appear in the expression for the overall
volume

V ¼
X
i

λiMi: ð4:4Þ

Note that a special case of gd occurs when the case in
question is a function of only one 4-cycle volume. In these
cases we have replaced gd with τd in Table I.
The volume is naturally expressed in terms of 2-cycles as

a sum of monomials of the form f3, as in Eq. (4.1). If none
of the maps in Eq. (4.2) are invertible, then this form of the
volume must remain implicit only. If one or more of the
maps can be inverted, then mixed terms involving mono-
mials from the various terms gd are possible. Thus, a
partially explicit case may contain terms that remain in the
form f3, but must contain terms involving gd. A completely
explicit case involves a sum of monomials from the set g3=2

only. We note that a fully explicit form for the volume may
not always display the geometrical properties of the Calabi-
Yau manifold most clearly. For example, a K3-fibration is
often evidenced by terms of the form fτ in the volume [14].
We now focus our attention on the lower-right quadrant

of Table I. These are the cases that are designated as
partially, or fully, diagonal. When restricted to these cases,
we can write the most general volume form in a new basis
C as

V ¼ f3 þ f2g1=2ðτC1 ;…; τCn Þ þ fgðτC1 ;…; τCn Þ

þ g3=2ðτC1 ;…; τCn Þ þ
Xh
i¼nþ1

λCi ðτCi Þ3=2; ð4:5Þ

with n ≤ h. Thus, a partially diagonal volume form may
contain factors from the general terms fd and gd, but must
contain at least one term of the form τ3=2. A circumstance
such as Eq. (4.3) is both fully explicit (no terms involving
2-cycle volumes) and fully diagonal.
In contrast, consider the general form of the volume in

terms of the Kähler moduli given by Eq. (2.9):

V ¼ 1

3!
tCitCjtCkðTCÞirðTCÞjsðTCÞktκrst

¼ 1

3!
tCitCjtCkκCCCijk ; ð4:6Þ

where κCCCijk ¼ ðTCÞirðTCÞjsðTCÞktκrst. Then, we can re-
cover the 4-cycle volumes

τCi ¼ ∂V
∂tCi ¼

1

2
tCjtCkκCCCijk ð4:7Þ

and rewrite the volume as

V ¼
Xh
i¼1

1

3
tCiτCi ¼

Xn
i¼1

1

3
tCiτCi þ

Xh
i¼nþ1

λCi ðτCi Þ3=2: ð4:8Þ

We can then scan the database of Calabi-Yau vacua for
cases in which the Chow ring structure allows for the
identification

τDi ¼ ðTDÞijτj ¼ ðTDðTCÞ−1ÞijτCj
¼ 1

9ðλCi Þ2
tCitCi; ∀ i ≤ n; ð4:9Þ

When this is the case, the volume takes the explicit
form

V ¼
Xn
i¼1

�λCi τ
C
i

ffiffiffiffiffi
τDi

q
þ

Xh
i¼nþ1

λCi ðτCi Þ3=2; ð4:10Þ

where the sign of each coefficient λCi in the first term can be
fixed by the non-negative volume considerations from the
Kähler cone. Furthermore, when the C- and D-bases
coincide, the volume can be written in the diagonal form

V ¼
Xh
i¼1

�λCi ðτCi Þ3=2: ð4:11Þ

In this case, the LVS vacuum takes the form of a “strong”
Swiss cheese compactification, in which terms with neg-
ative sign punch out “holes” in an overall volume.
Comparing Eqs. (4.7) and (4.9), we see that

κCCCijk ¼
8<
:

2
9ðλCi Þ2

; i ¼ j ¼ k ≤ n

0; i; j; k ≤ n

Undetermined; otherwise

ð4:12Þ

Therefore, we see that in the C-basis, κCCCijk ¼
ðTCÞri ðTCÞsjðTCÞtkκrst is a partially-diagonal, rank three

TABLE I. Classification of the allowed forms of monomial terms Mi in the volume polynomial V ¼ P
i λiMi, with at least one Mi

corresponding to a term in square brackets.

Weak

Implicit Partially Explicit Explicit

Weak
Nondiagonal ½f3� f3; ½f2g1=2; f2τ1=2; fg; fτ; g3=2� ½g3=2�
Partially Diagonal ... f3; f2g1=2; f2τ1=2; fg; fτ; g3=2; ½τ3=2� g3=2; ½τ3=2�
Diagonal ... ... ½τ3=2� (Strong)
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tensor. In fact, if n ¼ h, then κCCCijk is fully diagonal, and X
is a strong Swiss cheese geometry. This result is derived via
similar methods in [14].
It must be noted carefully, however, that the above

procedure is not exhaustive in identifying explicit Swiss
cheese cases. It is clear from Eq. (4.9) that in this case,
the maps of Eq. (4.2) can be inverted with the specific
form

τCi ↦ tCi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXh
j¼1

aijτCj

vuut : ð4:13Þ

This is, in fact, a very restrictive condition and will fail to
detect many potentially interesting solutions. In Sec. V,
we showcase a specific example that is both an explicit
and a toric Swiss cheese manifold. While the toric
methods of Sec. III allowed us to identify it as a
solution, the methods of this section were insufficient
to detect it as an explicit case. As a result, a more robust
algorithm for inverting the maps of Eq. (4.2) is currently
in development.

V. EXAMPLE MODULI STABILIZATION:
TORIC SWISS CHEESE WITH NL =NS = 2

We choose an example from our database at www
.rossealtman.com with h1;1ðXÞ ¼ 4; h2;1ðXÞ ¼ 94; χðXÞ ¼
−180 and database indexes

Polytope ID Geometry ID

1145 1

The intersection numbers and Kähler cone matrix in the
original bases are given by

I3 ¼ J21J2 − 3J1J22 − 9J32 þ 2J21J3 þ 6J1J2J3 þ 6J1J23

þ 18J2J23 þ 18J33 þ J21J4 − 3J1J24 þ 9J34; ð5:1Þ

K ¼

0
BBB@

0 1 0 1

1 0 0 −3
0 0 0 −1
0 −1 1 0

1
CCCA: ð5:2Þ

This Calabi-Yau geometry was found, as a result of our
toric Swiss cheese scan presented in Sec. III, to have a
Swiss cheese solution with NL ¼ NS ¼ 2, with original
basis, A-basis, and B-basis given by

J1 ¼ D3; J2 ¼ D6; J3 ¼ D7; J4 ¼ D8; ð5:3Þ

JA1 ¼ D5; JA2 ¼ D7; JA3 ¼ D1; JA4 ¼ D4; ð5:4Þ

JB1 ¼ D1; JB2 ¼ D5; JB3 ¼ D4; JB4 ¼ D8: ð5:5Þ

The toric divisors have independent Hodge numbers h• ¼
fh0;0; h0;1; h0;2; h1;1g given by8

h•ðD1Þ ¼ h•ðD2Þ ¼ h•ðD3Þ ¼ f1; 0; 2; 30g
h•ðD4Þ ¼ h•ðD8Þ ¼ f1; 0; 0; 1g
h•ðD5Þ ¼ f1; 0; 1; 20g
h•ðD6Þ ¼ f1; 0; 0; 19g
h•ðD7Þ ¼ f1; 0; 10; 92g: ð5:6Þ

Since the B-basis separates 4-cycles into large and small
volumes given by τBi ¼ 1

2!

R
JBi
J ∧ J, this tells us immedi-

ately that the two small volume divisors JB3 and JB4 are
both dP0 blowup cycles, while JB2 is a K3 fiber. Then, JB3
and JB4 are precisely the divisors desired to host the
nonperturbative contributions to the superpotential (due
to E3-instantons or gaugino condensation on a stack of D7
branes) required to stabilize some of the Kähler moduli
using the LVS prescription.

Using Eq. (3.1) and the relations between toric divisors,
we find the rotation matrices

TA ¼

0
BBB@

−3 1 1 −1
0 0 1 0

1 0 0 0

−3 0 1 −1

1
CCCA and

TB ¼

0
BBB@

1 0 0 0

−3 1 1 −1
−3 0 1 −1
0 0 0 1

1
CCCA: ð5:7Þ

We can use these to rotate the intersection tensor into the
AAA, BAA, and BBA configurations

κAAAijk ¼ ðTAÞirðTAÞjsðTAÞjtκrst
κBAAijk ¼ ðTBÞirðTAÞjsðTAÞjtκrst
κBBAijk ¼ ðTBÞirðTBÞjsðTAÞjtκrst: ð5:8Þ

The intersection numbers in this configuration are
given by

IAAA3 ¼ 18J1AðJ2AÞ2 þ 18ðJ2AÞ3 þ 6J1AJ2AJ3A

þ 6ðJ2AÞ2J3A þ 2J1AðJ3AÞ2 þ 2J2AðJ3AÞ2
þ ðJ3AÞ2J4A − 3J3AðJ4AÞ2 þ 9ðJ4AÞ3; ð5:9Þ

8In order to determine the Hodge number of an individual
divisor on the Calabi-Yau threefold, we use the Koszul extension
to the cohomCalg package [15,16] with the HodgeDiamond module.
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IBAA3 ¼ 6J1AJ1BJ2A þ 6J1BðJ2AÞ2 þ 18ðJ2AÞ2J2B þ 2J1AJ1BJ3A þ 2J1BJ2AJ3A

þ 6J2AJ2BJ3A þ 2J2BðJ3AÞ2 þ ðJ3AÞ2J3B þ J1BJ3AJ4A − 3J3AJ3BJ4A

− 3J1BðJ4AÞ2 þ 9J3BðJ4AÞ2 þ ðJ3AÞ2J4B; ð5:10Þ

IBBA3 ¼ 2J1AðJ1BÞ2 þ 2ðJ1BÞ2J2A þ 6J1BJ2AJ2B þ 2J1BJ2BJ3A þ J1BJ3AJ3B

− 3J3AðJ3BÞ2 þ ðJ1BÞ2J4A − 3J1BJ3BJ4A þ 9ðJ3BÞ2J4A þ J1BJ3AJ4B

− 3J3AðJ4BÞ2: ð5:11Þ

We can then write out the τBi in terms of the tAi using

τBi ¼ 1

2!
tAjtAkκBAAijk ð5:12Þ

and we get

τB1 ¼ 3ðtA2Þ2 þ 2tA2tA3 þ 2tA1ð3tA2 þ tA3Þ þ tA3tA4 −
3

2
ðtA4Þ2

τB2 ¼ ð3tA2 þ tA3Þ2

τB3 ¼ 1

2
ðtA3 − 3tA4Þ2

τB4 ¼ 1

2
ðtA3Þ2: ð5:13Þ

Thus, we see that the B-basis is at least partially explicit.
We can invert the perfect squares to get

3tA2 þ tA3 ¼ �
ffiffiffiffiffi
τB2

q
1ffiffiffi
2

p ðtA3 − 3tA4Þ ¼ �
ffiffiffiffiffi
τB3

q

tA3ffiffiffi
2

p ¼ �
ffiffiffiffiffi
τB4

q
: ð5:14Þ

We can fix the signs on the right-hand side by computing
the Kähler cone in the A-basis

KA ¼ KðTAÞT ¼

0
BBB@

0 0 0 −1
0 0 1 0

1 0 0 1

0 1 0 1

1
CCCA; ð5:15Þ

with ðKAÞijtAj > 0, so that

tA4 < 0; tA3 > 0; tA1 þ tA4 > 0; tA2 þ tA4 > 0:

ð5:16Þ
This fixes the signs in Eq. (5.14) to be ðþ;þ;þÞ. Solving
the rest of Eq. (5.13), we get the rather messy result

tA1 ¼ 1

6
ffiffiffiffiffi
τB2

p ð3τB1 − τB2 þ τB3 þ τB4 Þ

tA2 ¼ 1

3
ð

ffiffiffiffiffi
τB2

q
−

ffiffiffiffiffiffiffi
2τB4

q
Þ

tA3 ¼
ffiffiffiffiffiffiffi
2τB4

q

tA4 ¼
ffiffiffi
2

p

3
ð

ffiffiffiffiffi
τB4

q
−

ffiffiffiffiffi
τB3

q
Þ: ð5:17Þ

Substituting these into the expression for volume, we get

V ¼ 1

3!
tAitAjtAkκAAAijk

¼ 1

18
½9τB1

ffiffiffiffiffi
τB2

q
þ 3

ffiffiffiffiffi
τB2

q
ðτB3 þ τB4 Þ − ðτB2 Þ3=2 − 2

ffiffiffi
2

p
ððτB3 Þ3=2 þ ðτB4 Þ3=2Þ�: ð5:18Þ

Thus, we have determined that this is an explicit and partially diagonal Swiss cheese solution. In order to stabilize the
Kähler moduli, we must write down the effective potential and find a stable AdS minimum, which can later be uplifted. To
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find the form of the potential, we need to know the inverse Kähler metric. This is, to leading order in V−1 [see9 Eqs. (A7) and
(B26)], given by

ðK−1Þij̄ ¼ −4VκBBAijk tAk

¼ 4
ffiffiffi
2

p
V

0
BBBBBB@

ð
ffiffiffiffi
τB
3

p
þ

ffiffiffiffi
τB
4

p
Þ

3
− ð3τB

1
þτB

2
þτB

3
þτB

4
Þ

3
ffiffiffiffiffi
2τB

2

p −
ffiffiffiffiffiffiffi
2τB2

p
−

ffiffiffiffiffi
τB3

p
−

ffiffiffiffiffi
τB4

p

−
ffiffiffiffiffiffiffi
2τB2

p
0 0 0

−
ffiffiffiffiffi
τB3

p
0 3

ffiffiffiffiffi
τB3

p
0

−
ffiffiffiffiffi
τB4

p
0 0 3

ffiffiffiffiffi
τB4

p

1
CCCCCCA
: ð5:19Þ

From this form of the inverse Kähler metric, the effective potential takes the form

VðV; τB3 ; τB4 Þ ¼
a23jA3j2ðK−1Þ33e−2a3τB3

2V2
þ a24jA4j2ðK−1Þ44e−2a4τB4

2V2

þ 2a3a4jA3A4jðK−1Þ34e−ða3τB3þa4τB4 Þ

2V2
−
2a3jA3WGVW jτB3 e−a3τ

B
3

V2

−
2a4jA4WGVW jτB4 e−a4τ

B
4

V2
þ 3ξjWGVW j2

8V3

¼ 6
ffiffiffi
2

p
a23jA3j2

ffiffiffiffiffi
τB3

p
e−2a3τ

B
3

V
þ 6

ffiffiffi
2

p
a24jA4j2

ffiffiffiffiffi
τB4

p
e−2a4τ

B
4

V
−
2a3jA3WGVW jτB3 e−a3τ

B
3

V2

−
2a4jA4WGVW jτB4 e−a4τ

B
4

V2
þ 3ξjWGVW j2

8V3
: ð5:20Þ

We attempt to plot lnVðτB3 ; τB4 Þ, using an estimate of hVi ∼ 1032, and reasonable values for a3 ¼ a4 ¼ 2π, A1 ¼ A2 ¼ 1,

WGVW ¼ 1, and ξ ¼ − χðXÞζð3Þ
2

, in Fig. 1. Where the logarithm gets cut off, the potential has gone negative. This gives us an
AdS minimum. We notice that the potential is symmetric in τB3 and τB4 , so we can choose the direction where they are equal,
i.e., τBs ∶τB3 ¼ τB4 . Then we can plot the potential in terms of τBs and V, as in Fig. 2. Again, we see the AdS minimum.With τB3
and τB4 identified, the potential takes the form

VðV; τsÞ ¼
12

ffiffiffi
2

p
a2s jAsj2

ffiffiffiffiffi
τBs

p
e−2asτ

B
s

V
−
4asjAsWGVW jτBs e−asτBs

V2
þ 3ξjWGVW j2

8V3
: ð5:21Þ

In fact, this is exactly the form of Eq. (B45), the potential
for NS ¼ 1 with As ↦ 2As and c ¼ 3ffiffi

2
p . Using Eqs. (B46)

and (B47) to find the minima, we arrive at

hτBs i≃ 1

4

�
3cχðXÞζð3Þ

4

�
2=3 ≃ 12.3; ð5:22Þ

hVi≃ jWGVWj
2casjAsj

ffiffiffiffiffi
τBs

q
easτ

B
s ≃ 2.12 × 1032: ð5:23Þ

Thus, we do indeed get a large volume solution. And
finally, we notice that using this minimum, we can find a

FIG. 1. Plot of lnVðτB3 ; τB4 Þ with hVi ∼ 1032 and reasonable

values for a3¼a4¼2π, A1¼A2¼1,WGVW¼1, and ξ¼−χðXÞζð3Þ
2

.

9Note that in Appendix B, the inverse Kähler metric for the
Kähler moduli is denoted ð ~K−1

T Þij̄, while here we refer to it simply
at ðK−1Þij̄.
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flat direction for the other two large 4-cycle volumes τB1
and τB2 .

τB1 ¼ ðτB2 Þ3=2 − 6τBs
ffiffiffiffiffi
τB2

p þ 4
ffiffiffi
2

p ðτBs Þ3=2 þ 18V

9
ffiffiffiffiffi
τB2

p : ð5:24Þ

This kind of feature will be particular interesting in the
context of fiber modulus mediated inflation. Recall that JB2
is, in fact, a K3 fiber in this case. Work on these direct
cosmological consequences is already being pursued and
will be presented in future manuscripts.

VI. RESULTS AND DISCUSSION

In this section we present the results of our search for
toric Swiss cheese manifolds within the Kreuzer-Skarke
database, for those polytopes with h1;1 ≤ 6. As indicated in
Table II, this represents 23 573 reflexive polytopes, giving
rise to 101 681 unique Calabi-Yau threefolds, of which 100
368 are favorable. The first stage of the analysis was to scan
these ∼105 favorable geometries, implementing the search
strategy outlined in Sec. III. This was performed using
resources at the Massachusetts Green High Performance
Computing Center. The computations were performed on
dual Intel E5 2650 CPUs with 128 GB of RAM per node,
and the total time consumed for this stage in the analysis
was 4930 core-hours.
It is clear from these results that there is a scarcity of

Calabi-Yau threefolds X, whose volumes can be made
explicit at higher values of h1;1ðXÞ. Recall from Sec. IV that
this does not mean that we cannot ever write the 6-cycle
volume of these manifolds in terms of 4-cycle volumes, but
merely that to do so might involve a linear combination of
arbitrary square roots, for which it is difficult to scan.
We also see from Table II that there are few toric Swiss

cheese manifolds X at higher h1;1ðXÞ with many large 4-
cycles. Unfortunately, when NS ¼ h1;1ðXÞ − NL > 2, it
becomes difficult to stabilize the axion component of the
complexified 4-cycle moduli [9]. However, we see that

FIG. 2. Plot of lnVðV; τBs Þ with τBs ≔ τB3 ¼ τB4 , and reasonable

values for a3¼a4¼2π, A1¼A2¼1,WGVW¼1, and ξ¼−χðXÞζð3Þ
2

.

TABLE II. Statistics for explicitness and toric Swiss cheese scans over favorable Calabi-Yau threefold geometries. For the Toric Swiss
Cheese Geometries, the results in parentheses denote cases that also satisfy the homogeneity condition. The numbers are slightly
different from [3] because of improved triangulation. As the scan for explicitness has not completed at the time of writing, future
versions of this preprint will have updated results.

h1;1ðXÞ 1 2 3 4 5 6

Polytope, Triangulations, and Geometries
Number of Polytopes 5 36 244 1197 4990 17 101
Number of Triangulations 5 48 526 5348 57 050 590 085
Number of Geometries 5 39 306 2014 13 635 85 682

Favorable Polytope, Triangulations, and Geometries
Number of Favorable Polytopes 5 36 243 1185 4897 16 608
Number of Favorable Triangulations 5 48 525 5330 56 714 584 281
Number of Favorable Geometries 5 39 305 2000 13 494 84 525

Toric Swiss Cheese Geometries
Percentage of Favorable Geometries
Scanned for Toric Swiss Cheese

100 100 100 100 100 100

Number of Toric Swiss
Cheese Geometries
(w/ Homogeneity Condition)

NL ¼ 1 ... 32 (22) 86 (84) 173 (171) 603 (577) 1304 (1137)
NL ¼ 2 ... ... 23 (23) 17 (17) 12 (10) 17 (13)
NL ¼ 3 ... ... ... 1 (1) 0 (0) 0 (0)
NL ¼ 4 ... ... ... ... 0 (0) 0 (0)
NL ¼ 5 ... ... ... ... ... 0 (0)

Explicit LVS Geometries
Percentage of Favorable Geometries
Scanned for Explicitness

100 100 100 99.9 91.97 82.21

Number of Explicit Geometries 5 24 80 0 0 0
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there are still 18 cases in h1;1ðXÞ ¼ 4 for which the Kähler
moduli can still be explicitly stabilized through the LVS.
We demonstrate an example of this in Sec. V. We note in
Sec. III that these results can be expanded by running this
scan iteratively, each time with an arbitrary rotation of the
toric intersection tensor.
Finally, we notice that a large number of the toric Swiss

cheese solutions satisfy the homogeneity condition of
Sec. II C. This condition ensures that the effective potential
contains terms with the correct order in V−1 for a minimum
to exist. It is not always necessary to achieve such a
minimum when NS > 1, but it greatly simplifies the
minimization procedure [9].
In total, 2268 toric Swiss cheese manifolds were iden-

tified, 2055 of which satisfied the homogeneity condition.
These solutions are distributed as shown in the penultimate
section of Table II. While these numbers represent only a
subset of all the possible Swiss cheese manifolds that may
exist in this data set, they represent an ample starting point
for phenomenological investigation with nearly 160
explicit examples of guaranteed moduli stabilization using
the techniques of [9]. A concrete example of this was
explored in Sec. V.
More general techniques that do not rely on the ability to

trivialize the unknown basis change [see Eq. (2.41)], such
as those employed in [11] are far more computationally
expensive. Nevertheless, we expect such cases to form the
majority of all manifolds which admit a large volume limit,
particularly for higher values of h1;1 and/or greater numbers
of large cycles. A full analysis, extending the results of
[11], is currently underway.
While ≥ 168 cases for h1;1 ¼ 5 have previously been

identified in [13], the Oð1300Þ cases with h1;1 > 5 are, to
our knowledge, unknown before now. Such cases were not
approachable using the PALP software [17], and required the
redesigned techniques described in [3]. These high Picard
number cases include 17 cases with two or more large cycles.
Theseareofparticular interest for thepossibilityof identifying
flat directions which may be relevant for inflationary cosmol-
ogy [18–21]. In addition, the algorithms outlined here appear,
in many cases, to produce solution sets orthogonal to those
previously obtained for any value of h1;1.
The second stage of the analysis involved studying the

100 368 favorable Calabi-Yau geometries and identifying
directly when a basis of divisor classes can be found for
which the volume can be written explicitly in terms of
4-cycle volumes. Given the difficulty of studying the
dynamics of Kähler moduli in the 4-dimensional effective
supergravity theory when the Calabi-Yau volume cannot be
put into a fully-explicit or (preferably) strong form, we also
flag those cases for which a suitable basis exists, and
provide the necessary rotation matrix TC. While this brute
force attempt was performed over the entire data set of
Calabi-Yau threefolds, the identification of the components
of the basis change matrix involves solving a large system

of polynomials using Groebner basis techniques. As such,
this stage is computationally expensive, and both the CPU
time and physical memory required to find a solution for
any given example can be hard to predict. The results of the
second stage in the analysis are found in the final section of
Table II, and we find a total of 109 usable cases in h1;1 ≤ 3.
All 2268 toric Swiss cheese manifolds can be queried

immediately via the on-line database at www.rossealtman
.com, allowing for quick access to this subset for the
purposes of model building or further phenomenological
study.10 We expect these results to be expanded signifi-
cantly in the future as the more general case is completed.
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APPENDIX A: LARGE VOLUME SCENARIO
IDENTITIES

The following two appendices provide a start-to-finish,
self-contained derivation of all of the relevant expressions
for moduli stabilization in the large volume scenario, as
well as key expressions from toric geometry which
expedite the final result. While much of this material is
present in the papers cited in the reference section of this
work, we find that many of the intermediate steps are elided
in the literature, and thus a more complete, pedagogical
treatment is warranted.
For a given Calabi-Yau threefold X, the volume form is

given by

V ¼ 1

3!
κijktitjtk: ðA1Þ

From this, we can derive the volume of the ith 4-cycle
divisor

τa ¼
∂V
∂ta ¼

1

3!
κijk

�∂ti
∂ta t

jtk þ ti
∂tj
∂ta t

k þ titj
∂tk
∂ta

�

¼ 1

3!
κijkðδiatjtk þ tiδjatk þ titjδkaÞ

¼ 1

2
κajktjtk: ðA2Þ

10For further convenience, we also flag whether or not our
solutions of the A- and B-bases are integer-valued.
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For ease of computation, we will also derive the following
two relations involving derivatives of 2-cycle divisor
volumes

δab ¼
∂τb
∂τa ¼

∂
∂τa

�
1

2
κbjktjtk

�

¼ 1

2
κbjk

�∂tj
∂τa t

k þ tj
∂tk
∂τa

�

¼ κbjktk
∂tj
∂τa ; ðA3Þ

0 ¼ ∂δab
∂τc ¼ κbjk

�∂tk
∂τc

∂tj
∂τa þ tk

∂2tj

∂τc∂τa
�

⇒ κbjktk
∂2tj

∂τc∂τa ¼ −κbjk
∂tk
∂τc

∂tj
∂τa ; : ðA4Þ

Using Eq. (A3), we now compute the first derivative of the
volume form

Va ¼ ∂V
∂τa ¼

1

3!
κijk

�∂ti
∂τa t

jtk þ ti
∂tj
∂τa t

k þ titj
∂tk
∂τa

�

¼ 1

2

∂ti
∂τa κijkt

jtk ¼ 1

2
δk

atk ¼ 1

2
ta; ðA5Þ

and using Eq. (A4), we compute the second derivative

Vab ¼ ∂Va

∂τb ¼ 1

2
κijk

� ∂2ti

∂τb∂τa t
jtk þ ∂ti

∂τa
∂tj
∂τb t

k þ ∂ti
∂τa t

j ∂tk
∂τb

�

¼ 1

2
κijk

�
−
∂tk
∂τb

∂ti
∂τa t

j þ ∂ti
∂τa

∂tj
∂τb t

k þ ∂ti
∂τa t

j ∂tk
∂τb

�

¼ 1

2
δbi

∂ti
∂τa ¼

1

2

∂tb
∂τa : ðA6Þ

Again using Eq. (A3), we can then derive the inverse of the
second derivative of the volume form

δab ¼ κbjktk
∂tj
∂τa ¼ 2κbjktkVaj

⇒ ðV−1Þjb ¼ 2κjbktk: ðA7Þ

We now derive the following three relations, which will be
useful in computing the inverse Kähler metric

VabðV−1Þbc ¼
�
1

2

∂tb
∂τa

�
ð2κbcktkÞ ¼ δac; ðA8Þ

VaðV−1Þab ¼
�
1

2
ta
�
ð2κabktkÞ ¼ 2τb; ðA9Þ

VaðV−1ÞabVb ¼
�
1

2
ta
�
ð2κabktkÞ

�
1

2
tb
�

¼ 3V: ðA10Þ

APPENDIX B: KÄHLER MODULI
STABILIZATION

The bosonic field content in the string frame is as follows
(i) R-R sector: A 0-form potential C0, a 2-form poten-

tial C2, and a 4-form potential C4.
(ii) NS-NS sector: The 0-form dilaton ϕ, the 2-form 10D

graviton gμν, and the antisymmetric Kalb-Ramond
2-form B2.

(iii) Scalar moduli: Kähler moduli (τi) and complex
structure moduli (Ui).

A constant variation in the dilaton can be shown to
produce a corresponding variation in the string coupling
according to δgs

gs
¼ δϕ, so that we may express the

coupling as gs ∼ eϕ. Furthermore, in the Einstein frame,
the 10D string-frame graviton is rescaled by

gðsÞμν → gðEÞμν ¼ g−1=2s gðsÞμν . This results in the rescaling of
each 2-cycle volume as ti → t̂i ¼ g−1=2s ti, and therefore
τi → τ̂i ¼ g−1s τi and V → V̂ ¼ g−3=2s V. It is convenient to
make the following field redefinitions

(i) The axion-dilaton S ¼ g−1s þ iC0, which corre-
sponds to the complex structure of the elliptic fiber
in the F-theory generalization.

(ii) The complexified Kähler moduli Ti ¼
R
Ji
ðJ ∧ J þ

iC4Þ ¼ τ̂i þ ibi.
In this section, we will show that at tree level, the scalar
potential of the 4D effective supergravity theory exhibits
a “no-scale” structure, at which only the axion-dilaton
and complex structure moduli are stabilized. We further
show that in order to break the “no-scale” structure and
stabilize the volume modulus, we must include the
leading α0 correction to the volume in the Kähler
potential. And finally, we show that to stabilize the
remaining Kähler blowup modes, we must consider
nonperturbative corrections to the superpotential resulting
from the structure on the blowup cycles. In the end, we
will write down the corrected scalar potential

V ¼ V tree þ Vα0 þ Vnonperturbative ðB1Þ

which can be minimized to stabilize the Kähler blowup
moduli, as well as the volume modulus, which gets fixed
exponentially large with respect to the blowup moduli.
The presence of a flat direction in the moduli space at
this minimum leaves the door open for Kähler blowup
moduli-mediated inflation. We will discuss this in the
next section.
In the absence of flat directions, the blowup moduli are

all stabilized at small values. However, this still leaves any
non-blowup Kähler moduli (which correspond instead to
fibration modes and typically have large values) unstabi-
lized. This “extended no-scale” structure can only be
broken by adding subleading string loop corrections.
The fibration moduli can then be stabilized by minimizing
the further corrected potential.
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1. Vtree

At tree level in α0, the Kähler potential for X can be
expressed in the separated form11

K ¼ KS þKT þKU

¼ − ln ðSþ S̄Þ þ −2 lnðV̂Þ þ − ln

�
−i
Z
X

Ω ∧ Ω̄
�
;

ðB2Þ

where Ω is the unique, holomorphic (3,0)-form on X which
contains the dependence on the complex structure moduli
Ui, i ¼ 1;…; h2;1. If we turn on the nontrivial RR and NS-
NS gauge fluxes F3 ¼ dC2 and H3 ¼ dB2, and construct
the complexified flux G3 ¼ F3 þ iSH3, then the super-
potential can be written as

W ¼ WGukov-Vafa-Witten ¼
Z
X

Ω ∧ G3: ðB3Þ

In order to obtain a warped 10D background, the Bianchi
identity constrains G3 to be imaginary self-dual (i.e.,
�6G3 ¼ iG3). It can be shown that this is equivalent to
the constraints on the GVW superpotential

DAW ¼ 0; ΦA ∈ fS;Uig: ðB4Þ

The full scalar potential in the 4D effective supergravity
theory then has the form

V ¼ eK½ðK−1Þab̄DaWDb̄W − 3jWj2�;
Φa;Φb ∈ fS; T1;…; Th1;1 ; U1;…; Uh2;1g ðB5Þ

where the inverse Kähler metric is defined as

ðK−1Þab̄ ≡
� ∂K
∂Φa∂Φ̄b

�
−1

and the gauge connection for the covariant derivative is
given by ∂aK≡ ∂K

∂Φa
so that

DaW ¼ ∂aW þW∂aK:

Because K is separated into KS, KT , and KU, the inverse
Kähler metric has a block diagonal form

ðK−1Þab̄ ¼

0
B@

ðK−1
S Þ 0 0

0 ðK−1
T Þij̄ 0

0 0 ðK−1
U ÞAB̄

1
CA ðB6Þ

where Φi;Φj∈fT1;…;Th1;1g and ΦA;ΦB ∈ fU1;…;Uh2;1g.
Then, the scalar potential separates

V ¼ VS þ VT þ VU þ −3eKjWj2
¼ 0þ VT þ 0þ −3eKjWj2: ðB7Þ

where the second equality follows from the constraints in
Eq. (B4). Then, focusing on VT , we have

VT ¼ eK½ðK−1
T Þij̄DiWDj̄W� ðB8Þ

The first derivative of KT is given by

Ki
T ¼ ∂iKT ¼ ∂

∂Ti
KT ¼ −2V̂−1 ∂V̂

∂Ti

¼ −2V̂−1 1

2

�∂V̂
∂ τ̂i − i

∂V̂
∂bi

�

¼ −V̂−1V̂i: ðB9Þ

Then, the second derivative is given by

Kij̄
T ¼ ∂i∂ j̄KT ¼ −

� ∂
∂Ti

V̂−1
�
V̂j − V̂−1

� ∂
∂Ti

V̂j

�

¼ V̂−2 1

2

�∂V̂
∂ τ̂i − i

∂V̂
∂bi

�
V̂j − V̂−1 1

2

�∂V̂j

∂τ̂i − i
∂V̂j

∂bi
�

¼ 1

2V̂

�
1

V̂
V̂iV̂j − V̂ij

�
: ðB10Þ

Now, we assume that ðK−1
T Þij̄ is of the form

ðK−1
T Þij̄ ¼ uV̂ðV̂−1Þij þ vV̂kðV̂−1ÞkiV̂lðV̂−1Þlj

þOðhigher order in V̂−1Þ: ðB11Þ

Then, we have

11Technically, the Einstein frame volume V̂ ¼ g−3=2s V depends
on the axion-dilaton S through gs ∼ SþS̄

2
. However, we can

disregard this, since we will be differentiating with respect to
the Einstein frame Kähler moduli τ̂, which have a complementary
dependence on S.
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Kij̄
T ðK−1

T Þj̄k ¼
1

2V̂

�
1

V̂
V̂iV̂j − V̂ij

�
½uV̂ðV̂−1Þjk þ vV̂lðV̂−1ÞljV̂mðV̂−1Þmk�

¼ 1

2V̂

�
uV̂iV̂jðV̂−1Þjk þ

v

V̂
V̂iV̂lðV̂−1ÞljV̂jV̂mðV̂−1Þmk − uV̂V̂ijðV̂−1Þjk−vV̂ijðV̂−1ÞjlV̂lV̂mðV̂−1Þmk

�

¼ 1

2V̂

�
uV̂iV̂jðV̂−1Þjk þ

v

V̂
V̂ið3V̂ÞV̂mðV̂−1Þmk − uV̂δik − vδilV̂

lV̂mðV̂−1Þmk

�

¼ 1

2V̂
½uV̂iV̂jðV̂−1Þjk þ 3vV̂iV̂jðV̂−1Þjk − uV̂δik − vV̂iV̂jðV̂−1Þjk�

¼ 1

2V̂
½ðuþ 2vÞV̂iV̂jðV̂−1Þjk − uV̂δik�

¼
�
u
2
þ v

�
1

V̂

�
1

2
t̂i
�
ð2τ̂kÞ −

u
2
δik

¼
�
u
2
þ v

�
t̂iτ̂k
V̂

−
u
2
δik: ðB12Þ

In order for this result to be consistent and general, we must
have

u ¼ −2 and v ¼ 1 ðB13Þ

so that

ðK−1
T Þij̄ ¼ −2V̂ðV̂−1Þij þ V̂kðV̂−1ÞkiV̂lðV̂−1Þlj

þOðhigher order inV̂−1Þ: ðB14Þ

We also know that since W ¼ WGVW is independent of the
Kähler moduli, we can write

DiW ¼ W∂iKT ¼ −WV̂−1V̂i: ðB15Þ

Then, expanding Eq. (B8), we have

VT ¼ eK½ðK−1
T Þij̄DiWDj̄W�

¼ eKjWj2½−2V̂ðV̂−1Þij þ V̂kðV̂−1ÞkiV̂lðV̂−1Þlj�V̂−2V̂iV̂j

¼ eKjWj2V̂−2½−2V̂V̂iðV̂−1ÞijV̂j

þ V̂kðV̂−1ÞkiV̂iV̂lðV̂−1ÞljV̂j�
¼ eKjWj2V̂−2½−2V̂ð3V̂Þ þ ð3V̂Þð3V̂Þ�
¼ 3eKjWj2; ðB16Þ

and the scalar potential in Eq. (B7) reduces to the “no-
scale” form with

V tree ¼ 0: ðB17Þ

Thus, at tree level, this potential cannot be minimized, and
so both the volume and the individual Kähler moduli are
left unstabilized.

2. Vα0

In order to stabilize the volume V̂, we must break
the “no-scale” structure. We do this by considering the
leading ðα0Þ3 correction to V, given by ξ

2
, where12

ξ ¼ − χðXÞζð3Þ
2

. With this correction, the Einstein frame
volume becomes

V̂ ¼ g−3=2s V

→ g−3=2s

�
V þ ξ

2

�
¼ V̂ þ ξ

2

�
Sþ S̄
2

�
3=2

: ðB18Þ

Then, the Kähler potential for X can be expressed in a
partially separated form as

K ¼ KS=T þKU

¼ − ln ðSþ S̄Þ − 2 ln

�
V̂ þ ξ

2

�
Sþ S̄
2

�
3=2�

þ − ln

�
−i
Z
X

Ω ∧ Ω̄
�
: ðB19Þ

For ease of notation, we also define

KT ¼ −2 ln
�
V̂ þ ξ

2

�
Sþ S̄
2

�
3=2

�
¼ −2 ln

�
V̂ þ ξ̂

2

�
:

ðB20Þ

This allows us to write Kij̄ ¼ ∂i∂ j̄K in block diagonal
form

12χðXÞ is the Euler characteristic of X, and ζð3Þ ≈ 1.202 06 is
the Riemann zeta function, evaluated at 3.
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Kāb ¼

0
BBB@

ðKS=TÞ00 ðKT
S=TÞ0j 0

ðKS=TÞī0 ðKTÞīj 0

0 0 ðKUÞĀB

1
CCCA

¼
� a bT

b C

�
; ðB21Þ

where Φi;Φj∈fT1;…;Th1;1g and ΦA;ΦB ∈ fU1;…;Uh2;1g.
The inverse is given by

ðK−1Þab̄ ¼
1

d

�
1 −bTC−1

−C−1b dC−1þC−1bbTC−1

�
; ðB22Þ

where d ¼ a − bTC−1b. In addition, our matrix C is
diagonal, so

C−1 ¼
� ðK−1

T Þij̄ 0

0 ðK−1
U ÞAB̄

�
ðB23Þ

and Eq. (B22) reduces to

ðK−1Þab̄ ¼
1

d
×

0
BBB@

1 −ðKT
S=TÞ0kðK−1

T Þkj̄ 0

−ðK−1
T Þik̄ðKS=TÞk̄0 dðK−1

T Þij̄ þ ðK−1
T Þik̄ðKT

S=TÞk̄0ðKS=TÞ0lðK−1
T Þlj̄ 0

0 0 dðK−1
U ÞAB̄

1
CCCA; ðB24Þ

where d ¼ ðKS=TÞ00 − ðKT
S=TÞ0iðK−1

T Þij̄ðKS=TÞj̄0.
The full scalar potential in the 4D effective supergravity

theory again has the form

V ¼ eK½ðK−1Þab̄DaWDb̄W − 3jWj2�;
Φa;Φb ∈ fS; T1;…; Th1;1 ; U1;…; Uh2;1g: ðB25Þ

Due to the superpotential constraints [see Eq. (B4)] that
stabilize the axion-dilaton and complex structure moduli at
tree level, any terms proportional to DSW or DUiW vanish,
and we need only consider the center block of the
Eq. (B24). This gives us the corrected inverse Kähler
metric [7,22]

ð ~K−1
T Þij̄ ¼ ðK−1

T Þij̄ þ
1

d
ðK−1

T Þik̄ðKT
S=TÞk̄0ðKS=TÞ0lðK−1

T Þlj̄
ðB26Þ

where, from Eqs. (B19) and (B11) with V̂ → V̂ þ ξ̂
2
and

ξ̂ ¼ g−3=2s ξ, we find that

ðK−1
T Þij̄ ¼ −ð2V̂ þ ξ̂ÞðV̂−1Þij

þ 2

�
2V̂ þ ξ̂

4V̂ − ξ̂

�
V̂kðV̂−1ÞkiV̂lðV̂−1Þlj; ðB27Þ

ðKS=TÞ0i ¼
3ξ̂gs

4ð2V̂ þ ξ̂Þ2 V̂
i; ðB28Þ

ðKS=TÞi ¼ −
2

2V̂ þ ξ̂
V̂i; ðB29Þ

and d ¼ g2sðV̂ − ξ̂Þ
4ð4V̂ − ξ̂Þ : ðB30Þ

The scalar potential then takes the form

V ¼ eK½ð ~K−1
T Þij̄DiWDj̄W − 3jWj2�: ðB31Þ

Recall that the superpotential is independent of the Kähler
moduli, so that DiW ¼ W∂iK ¼ WðKS=TÞi. Then, the
scalar potential reduces to

V ¼ V tree þ Vα0

¼ 0þ 3eKjWj2ξ̂ ðξ̂2 þ 7ξ̂ V̂þV̂2Þ
ðV̂ − ξ̂Þð2V̂ þ ξ̂Þ2 : ðB32Þ

We can now find a stable minimum for the volume
modulus.

3. Vnonperturbative

In the previous subsection, we were able to use the
leading α0 correction to the volume in order to break
the “no-scale” structure of the potential and stabilize the
volume modulus, but this still did not give us a mechanism
for stabilizing the remaining Kähler moduli. In order to find
such a mechanism, we must further consider the effect of
nonperturbative features on the superpotential. The super-
potential then takes the form

W ¼ WGVW þWnonperturbative

¼
Z
X

Ω ∧ G3 þ Aie−âiTi ðB33Þ

where the scalar constants âi depend on nonperturbative
effects such as D brane instantons (âi ¼ 2π

gs
) or gaugino

condensation (âi ¼ 2π
gsN

) on the corresponding 4-cycle
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Ji ∈ H4ðX;ZÞ, and the complex constants Ai encode
threshold effects depending implicitly on the complex
structure and D3 brane positions.
The scalar potential still takes the form in Eq. (B31),

except that

DiW ¼ ∂iW þW∂iK ¼ −âiAie−âiTi þWðKad=KÞi:
ðB34Þ

Plugging this in, we find that

V ¼ eK½ð ~K−1
T Þij̄âiâjAiĀje−ðâiTiþâjT̄jÞ

− ð ~K−1
T Þij̄ðâiAiW̄e−âiTiðKS=TÞj̄ þ ðKS=TÞiâjĀjWe−âjT̄jÞ

þ ð ~K−1
T Þij̄jWj2ðKS=TÞiðKS=TÞj̄ − 3jWj2�; ðB35Þ

where the last line is just Vα0 . This then reduces to

V ¼ V tree þ Vnp1 þ Vnp2 þ Vα0 ðB36Þ

with

Vnp1 ¼ eKð ~K−1
T Þij̄âiâjAiĀje−ðâiTiþâjT̄jÞ

¼ eKâiâjAiĀje−ðâiTiþâjT̄jÞð2V̂ þ ξ̂Þ
�
−ðV̂−1Þij þ

�
2

4V̂ − ξ̂

�
V̂kðV̂−1ÞkiV̂lðV̂−1Þlj

�

¼ 2eKâiâjjAiAjje−ðâi τ̂iþâj τ̂jÞeiðθi−θj−âibiþâjbjÞð2V̂ þ ξ̂Þ
�
−κijkt̂k þ

�
4

4V̂ − ξ̂

�
τ̂iτ̂j

�
ðB37Þ

and

Vnp2 ¼ −eKð ~K−1
T Þij̄ðâiAiW̄e−âiTiðKS=TÞj̄ þ ðKS=TÞiâjĀjWe−âjT̄jÞ

¼ eKâi
4ξ̂2 þ ξ̂ V̂þ4V̂2

ðV̂ − ξ̂Þðξ̂þ 2V̂Þ ðAiτ̂iW̄e−âiTi þ Āiτ̂iWe−âiT̄iÞ

¼ 2eKâijAiWjτ̂ie−âi τ̂i
4ξ̂2 þ ξ̂ V̂þ4V̂2

ðV̂ − ξ̂Þð2V̂ þ ξ̂Þ cos ðθi − ϕ − âibiÞ; ðB38Þ

where Ai ¼ jAijeiθi and W ¼ jWjeiϕ.
The axionic part bi of the complexified Kähler moduli

can be decoupled and stabilized independently. The result,
however, depends heavily on the topology of X as encoded
in the triple intersection tensor κijk, and therefore its
complexity also scales rapidly with increasing numbers
of blowup moduli. In their appendix, the authors of [9] did
an excellent job of classifying the resulting axion-stabilized
scalar potential for various forms of κijk in the large volume
limit for up to two blowup moduli, and the reader is
encouraged to refer there for more detail.
In this appendix, we consider only the “Swiss cheese”

case in which the small 4-cycle blowup moduli can be
explicitly separated from the large moduli which control
the volume and flbration structure. In addition, for the
sake of simplicity, we turn our attention only to cases with
one small blowup modulus τ̂s, while the rest are sent large.
In this case, it is a relatively simple matter to stabilize
the single axion bs, as its contribution cancels in Vnp1. We
find that

Vnp1 ¼ 2eKâ2s jAsj2e−2âs τ̂sð2V̂ þ ξ̂Þ

×

�
−κssit̂i þ

�
4

4V̂ − ξ̂

�
τ̂sτ̂s

�
ðB39Þ

Vnp2 ¼ −2eKâsjAsWje−âs τ̂s τ̂s
4ξ̂2 þ ξ̂ V̂þ4V̂2

ðV̂ − ξ̂Þðξ̂þ 2V̂Þ
¼ −2eKâsjAsje−âs τ̂sðjWGVWj − jAsje−âs τ̂sÞτ̂s

×
4ξ̂2 þ ξ̂Vþ4V̂2

ðV̂ − ξ̂Þð2V̂ þ ξ̂Þ : ðB40Þ

Furthermore, [9] shows that in the case of a single small
blowup modulus, there will only be a large volume AdS
minimum when an additional so-called “homogeneity
condition”

κssit̂i ≃ −c
ffiffiffiffi
τ̂s

p
; c > 0 ðB41Þ

is satisfied13 Then, in the large volume limit we have

eK ¼
V̂→∞

gseKcs

2V̂2 , and to leading order in each term

Vnp1 ¼
V̂→∞

gseKcs
2câ2s jAsj2e−2âs τ̂s

ffiffiffiffi
τ̂s

p

V̂
; ðB42Þ

13The minus sign in Eq. (B41) originates from the fact that
inside the Kähler cone

R
Ci J > 0, the Kähler metric must be

positive definite.
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Vnp2 ¼
V̂→∞

− gseKcs
2âsjAsWGVWje−âs τ̂s τ̂s

V̂2
; ðB43Þ

Vα0 ¼
V̂→∞

gseKcs
3jWGVWj2ξ̂

8V̂3
; ðB44Þ

and we obtain the full potential

Vðτ̂s; V̂Þ ¼ V tree þ Vnp1 þ Vnp2 þ Vα0

¼ gseKcs

�
2câ2s jAsj2e−2âs τ̂s

ffiffiffiffi
τ̂s

p

V̂
−
2âsjAsWGVWje−âs τ̂s τ̂s

V̂2
þ 3jWGVWj2ξ̂

8V̂3

�
: ðB45Þ

We can now stabilize both the blowup modulus and the volume by finding a local minimum of the potential where
∂V
∂τ̂s ¼ ∂V

∂V̂ ¼ 0. Following the work of [8] and taking âsτ̂s ∼ ln V̂ ≫ 1 in order to cut off higher instanton corrections, one
obtains the simple result

hτ̂si≃
�
3cξ̂
16

�2=3

and hV̂i≃ jWGVWj
2câsjAsj

ffiffiffiffi
τ̂s

p
eâs τ̂s : ðB46Þ

Finally, we convert back to the string frame using the transformations V̂ ¼ g−3=2s V, τ̂i ¼ g−1s τi, âi ¼ gsai, and
ξ̂ ¼ g−3=2s ξ ¼ − χðXÞζð3Þ

2g3=2s
. We find that14

hτsi≃ 1

4

�
3cχðXÞζð3Þ

4

�
2=3

; ðB47Þ

hVi≃ jWGVWj
2casjAsj

ffiffiffiffi
τs

p
easτs : ðB48Þ
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