
              

City, University of London Institutional Repository

Citation: Mattheus, W. & Bruecker, C. (2018). Characteristics of the pulsating jet flow 

through a dynamic glottal model with a lens-like constriction. Biomedical Engineering 
Letters, 8(3), pp. 309-320. doi: 10.1007/s13534-018-0075-2 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/20028/

Link to published version: https://doi.org/10.1007/s13534-018-0075-2

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Noname manuscript No.
(will be inserted by the editor)

Characteristics of the pulsating jet flow through a
dynamic glottal model with a lens-like constriction

Willy Mattheus · Christoph Brücker

Received: date / Accepted: date

Abstract A computational study of the pulsating jet

in a squared channel with a dynamic glottal-shaped

constriction is presented. It follows the model experi-

ments of Triep and Brücker (2010) with the cam-driven

model that replicates the dynamic glottal motion in the

process of human phonation. The boundary conditions

are mapped from the model experiment onto the com-

putational model and the three dimensional time re-

solved velocity and pressure fields are numerically cal-

culated. This study aims to provide more details of flow

separation and pressure distribution in the glottal gap

and in the supraglottal flow field. Within the glottal

gap a ”vena contracta” effect is generated in the mid-

sagittal plane. The flow separation in the mid-coronal

plane is therefore delayed to larger diffuser angles which

leads to an ”axis switching” effect from mid-sagittal to

mid-coronal plane. The location of flow separation in

mid-sagittal cross section moves up- and downwards

along the vocal folds surface in streamwise direction.

The generated jet shear layer forms a chain of coher-

ent vortex structures within each glottal cycle. These

vortices cause characteristic velocity and pressure fluc-

tuations in the supraglottal region, that are in the range

of 10 to 30 times of the fundamental frequency.
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1 Introduction

The process of human phonation is characterized by a

pulsating jet flow including fluid-structure-interaction

with the vocal folds. Brief puffs of air driven by a trans-

glottal pressure difference are transmitted periodically

from the vibrating glottal gap into the vocal tract. The

flow modulation by the vibratory motion of the vocal

folds surface leads to compression and rarefaction waves

within the glottal source region that are propagating

to the lungs and throughout the upper vocal tract that

acts as a filter by which formants are produced for vo-

calization.

The main sound source is generated by the pulsating

jet flow. It causes a dipole sound source that is induced

by the net force exerted by the vocal folds surface on the
fluid in streamwise direction [1]. Vortex-induced sound,

which is of quadrupole character, usually plays a mi-

nor role in healthy phonation because this quadrupole

source is expected to be at least one order of magni-

tude, i.e. 20dB, lower than the dipole source. Never-

theless, the quadrupole source is always inherent in the

process of phonation and even becomes essential when

one is using voiceless sounds, e.g. in whispering [2], or

when it comes to the question of voice quality. Past

studies by [3,2,4,1,5] and recent studies by [6,7,8] re-

veal the importance of considering also the quadrupole

sound source type. A review about the progress of fluid

dynamic and aeroacoustic computation of voice gener-

ation is given by [9,10,11].

Numerical simulations of the unsteady glottal flow

may help to clarify the different nature of sound sources

in the glottal area, while experiments are difficult to

conduct in this region. However, most of the aeroacous-

tic simulations are based on a 2D representation of the

flow and acoustic fields, due to the computational costs
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by higher order numerical schemes. On the other hand,

the 3D effects of glottal contours and motion may yield

a different flow structure in a space and time, and as

a consequence also a different acoustic source distribu-

tion. This has been demonstrated by comparing the re-

sults of 3D flow simulations for a 2D rectangular and a

3D lens-like type of glottal constriction, see [12]. It has

been further shown that 2D simulations of glottal flow

in principle are unable to describe the vortex dynamics

in a realistic way because the underlaying 2D equations

exclude any effect of vortex stretching and tilting.

Further simulations of the three dimensional flow

field in the laryngeal region were carried out by [13]

including the ventricular folds. They obtained the pres-

sure distribution along the vocal fold surfaces and could

show the effect of the false vocal folds on the pres-

sure distribution. [14] investigated a hemilarynx con-

figuration of a static divergent glottal model. The flow

rate was kept constant and they observed intraglot-

tal vortex shedding at non-dimensional frequencies of

St=0.013 and 0.022 and vortex shedding frequencies

further downstream of St=0.143 (frequency ratio of 10).

[15] investigated the supraglottal jet flow concerning the

possible existence of the so-called Coanda effect. They

found no clear Coanda effect which agrees with our re-

sults in the comprehensive study of [12] when the glottal

channel is modeled as a 3D-flow. Further investigations

by [16] showed the three dimensional character of the

glottal jet in a fully coupled fluid-structure interaction

model and demonstrate good qualitative similarity of

spatio-temporal structures to the model of [17] and [12].

However, no quantitative data of numerical studies

with the cam-model has been shown yet, since the fo-

cus of the study by [12] was on demonstrating the differ-

ences of 2D and 3D simulations of the transglottal flow.

The present paper aims to fill this gap and contributes

to a further understanding of the 3D jet formation and

temporal evolution of pressure distribution in the glot-

tal gap in the dynamic cam-model. Section 2 describes

the used numerical version of the cam-model and the

dynamic boundary conditions applied to it. The pulsat-

ing flow-rate through the lens-like contoured constric-

tion corresponds to the flow conditions described in the

model experiments by [18,17]. Results of the computed

flow fields compared to the model experiments are pre-

sented in section 3. 3D flow visualizations, velocity pro-

files, a transglottal pressure waveform, the location of

flow separation within the glottal gap, supraglottal hy-

drodynamic pressure fields and their frequency content

are presented.

2 Computational Model

2.1 Geometry

The geometry of the numerical model of the glottal con-

striction is based on the physical model presented by

[17] and [19], henceforth referred to as ”cam-driven”

model. As depicted in figure 1, the model vocal folds

are placed in a horizontal section of an U-shaped wa-

ter filled duct with a water column at both ends by

which a pressure head is imposed. The model vocal

folds are rotating membrane covered cams. Their rota-

tion periodically opens the glottal gap and thus gen-

erates the pulsating jet flow. They perform a time-

varying prescribed movement that leads to a lens-like

opening in the transversal cross-section and a conver-

gent to divergent nozzle shaped constriction in the coro-

nal cross section. Figures 2,3 and 4 depict the tempo-

ral pattern of the convergent to divergent change and

in coronal cross-section and the lens-shaped contour

in transversal cross section,respectively. This configu-

ration was mapped from the model experiment onto

the computational domain, so that the spatio-temporal

behavior of the glottal constriction matches. The ap-

proach of a cam-driven model was chosen because it

ensures a reproducible behavior of the supraglottal flow

field that is focused on in this study. The supraglottal

flow field periodically develops under defined boundary

conditions.

The dimensions of the glottal model are given in

figure 2 based on the width D of the channel which is

related to the diameter of the human trachea with D ≈
0.02m. The glottal gap with its lens-shaped transversal

cross-section has a much smaller area than the trachea.
It’s reduced by a factor of about 18. In the coronal

cross-section, the constriction is contoured like a nozzle

with a smooth convergent entry and a divergent exit.

2.2 CFD model

The pressure driven pulsating air flow through the os-

cillating glottal constriction is characterized by the fol-

lowing fluid dynamic dimensionless quantities:

– Mach-number Ma = u/a

– Reynolds number Re = (uglottis · d) /ν

– Strouhal number Sr = (f0d) /uglottis

– Euler number Eu = ∆p/
(
ρu2

glottis

)
The characteristic parameters are the glottal gap width

d, the velocity uglottis in the glottal gap, the fundamen-

tal frequency f0 of the pulsating jet flow through the

glottal gap, the driving trans-glottal pressure head ∆p

as depicted in figure 1, the density ρ and the viscosity ν
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Fig. 1 Sketch of the experimental setup that was used for the
measurements of flowrate and pressure difference, the setup is
used by [20] and [17] wherein the flow is driven by a pressure
difference ∆p of two connected water columns, the flowrate
was measured by the displacement of a neutrally buoyant
disc and the transglottal pressure difference is measured by
pressure sensors located at pup and pdown
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Fig. 2 Geometrical shape of the computational domain with
dimensions based on the channel width D (derived from the
tracheal diameter of about 0.02m), the glottal cross section
is depicted in fully opened configuration with the maximum
glottal gap d, P0 to P2 are defined for the evaluation of flow
quantities

of air. The maximum value of the velocity uglottis in the

glottal gap is given by [21] with approximately 30 m/s.

The Mach number arising from this intra-glottal veloc-

ity is Ma ≈ 0.1. Therefore the computed flow fields

in the numerical simulation are considered to be in-

compressible. This approximation is approved by other

authors, e.g. [22,23,24]. All data of the physiological

transglottal airflow during phonation and the appropri-

ate values of the fluid dynamic dimensionless quantities

are summarized in table 1 and satisfied by the ”cam-

model” too.

The numerical computation works independently of

this scaling because the governing equations employed

in the computational model dimensioned by Strouhal,

Reynolds and Euler Number so that the physical medium

is not relevant as long as the fluid dynamic laws of sim-

ilarity are conserved.
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Fig. 3 Finite Volume Mesh of the computational domain in
mid-coronal, mid-sagittal and transversal cross section, the
element size is based on the channel width D, the edge length
(EL) equals 1/10th of D at the inlet boundary and is reduced
in the inner glottal and supraglottal region to values of 1/60th
of D, no movement of mesh points in the mid-sagittal plane
due to symmetry
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convergent contour

t/T=0.375
 

divergent contourfully opened glottal gap

closed glottal gap

t/T=0.25
 

t/T=0.125
 

t/T=0
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Fig. 4 Finite Volume Mesh of the computational domain
in a 3D view through the side wall onto the dynamic glottal
gap for 4 successive time-steps of the glottal motion cycle,
the open quotient (OQ) is 0.5 and the inverse fundamental
frequency T

The CFD model is based on the time-dependent,

incompressible Navier-Stokes equations for Newtonian

fluids that read

∇ · u = 0 (1)

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u . (2)

Equations (1) and (2) are numerically solved with the

finite-volume method in a cell-centered formulation on

a fully block-structured grid with the open-source CFD

code OpenFOAM published by [25].

For the interpolation of the convective flux terms

a Total-Variation-Diminishing (TVD) scheme with a

flux limiter function ψ (r) = max [0,min (2 · r, 1)] [26]

is employed. The smoothness parameter r is defined by

the ratio of successive gradients. A central differencing

scheme with non-orthogonal correction is used for the

discretization of the diffusive fluxes. Time integration of

equations (1) and (2) is performed with a scheme which

blends Crank-Nicholson and Euler implicit scheme by a

weighting factor of 0.8 and 0.2, respectively. The time

step is kept constant with ∆t/T = 2 · 10−5 in all sim-

ulations. Mass conservation is enforced with the tran-

sient PISO algorithm [27] with a collocated arrange-

ment of pressure and velocity. The formulation of the

algorithm is in line with the correction of [28] in order to

avoid non-physical oscillations in the flow variables. The

pressure equation is solved with an algebraic multi-grid

solver with Gauss-Seidel smoothing. The momentum

Table 1 Values of the transglottal air flow ([21]) and the
corresponding dimensionless quantitiy satisfied by the ”cam-
model” by [18]

dimensions

tracheal diameter D 20 mm
max. glottal gap width d 2.7 mm
physical properties

density ρ 1.2kg/m3

kinematic viscosity ν 1.5 · 10−5m2/s
dynamic viscosity η 18 · 10−6kg/ms

similitude theory

intraglottal velocity uglottis 25...35m/s ≈ 30m/s
fundamental frequency f0 135 Hz
pressure head ∆p 600Pa

Mach number Ma = u/a ≤ 0.1
not conserved by the model, assumption of incompressible flow

Reynolds number Re = (uglottis · d) /ν = 5400
conserved by the model

Strouhal number Sr = (f0d) /uglottis = 0.012
conserved by the model

Euler number Eu = ∆p/
(
ρu2glottis

)
≤ 1

conserved by the model

equations are solved with the bi-conjugate gradient al-

gorithm of [29], where incomplete LU decomposition is

used for preconditioning the system. The residual errors

per time step are of the order 10−8 for the momentum

equation and for the pressure equation.

This formulation of the CFD model has been vali-

dated in a recent study of starting jet flow by [30] for a

static model of glottal gap using the same geometry as

herein. A validation of the dynamic glottal model used

in this study is given in the results section 3 of this

paper.

The computational domain consists of moving bound-

aries which generate a time-varying glottal gap with the

maximum opening area Amax ≈ 20mm2 and a normal-

ized waveform as depicted in figure 5. The mesh points

of the boundaries faces are displaced during computa-

tion so that the time-varying shape of the constriction

is reproduced. The equation for the displacement of the

inner grid points of the computational mesh is then cal-

culated by the following equation

∇ · (Ddiff∇∆P ) = 0 (3)

where D is the Diffusion Coefficient and δ the displace-

ment of the mesh point P. Then the calculation is con-

tinued on the updated mesh where the initial values are

interpolated from the previous mesh.



Pulsating Glottal Jet 5

2.3 Boundary conditions

The pulsating flow is generated by applying the periodic

waveform function depicted in figure 5 as a time-varying

uniformly distributed velocity value uin(t) (plug flow)

onto the inflow boundary of the computational domain.

Synchronous to this, the motion of the vocal fold sur-

faces that leads to the opening area function depicted

in figure 5 is prescribed to the numerical model by the

displacement of the boundary points of the left and the

right model vocal fold.

The waveform of the flowrate is taken from the mea-

surements with the model of [17]. Its configuration and

the method of flow-rate measurement with the neutrally

buoyant disc are depicted in figure 1. The pressure head

∆p between reservoir 1 and 2 is set to ∆p = 600Pa and

represents a lower value in the process of human phona-

tion. The normalized waveform reproduces the one doc-

umented by [31] that was obtained by the method of in-

verse filtering. Some characteristics of the waveform are

also captured: zero flow rate for half of the cycle time so

that an open quotient of 0.5 is realized, a temporarily

slightly delayed maximum of the flow rate compared to

the opening area, and a 6dB decline in the first 5 har-

monics of the frequency spectrum, which is a typical

value for glottal source spectra as stated by [32] and

proven by [33].

The no-slip condition uwall = 0 for velocity and

zero gradient condition ∂p/∂xn = 0 for pressure are

defined in normal direction to each wall boundary. The

pressure field values of the entire domain are given with

respect to a reference value of pref = 105 Pa located

at the outlet boundary. At initial simulation time t =

0 the whole flow field is at rest. In total, a number

of 10 successive cycles are simulated in one simulation

process, where the first cycle starts from zero velocity

in the whole computational domain.

3 Results

Figure 6 shows the results of the numerically computed

flow fields compared to the ones of the model experi-

ment by means of flow visualization at certain instants

of time within one glottal cycle. We chose a very illus-

trative but qualitative method to compare the global

3D flow structures and their temporal evolution. Addi-

tionally, they give a good impression of the penetration

depth, the dimensions and the shape of the jet as well as

the shear layer roll-up and vortex structures. The flow

field is visualized by a fluorescent tracer in the model

experiment and a scalar tracer field in the numerical

simulation, respectively. Two main cross sections of the

computational domain are depicted in the left and the

model experiment
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Fig. 5 Boundary condition at the inlet of the computational
model: (a) Time varying area of the glottal gap, resulting
volume-flow rate in the model experiment from [17], compar-
ison to the measurements of [31], area function of the glottal
gap is mapped onto the model vocal folds and the flow rate
function is mapped onto the inlet boundary condition of the
numerical model, (b) and (c) frequency content of the func-
tions of subfigure (a), the spectral slope of the harmonics of
the flow rate function is about -6dB/octave as suggested by
various models of [32] and measurements of [33]

right column of this figure. The x-y cross section, also

called ’mid-coronal’ plane, contains the minor axis of

the lens-shaped orifice, that is opening and closing with

a convergent and divergent shape of this orifice. The x-z

cross-section, also called ’mid-sagittal’ plane, contains

the major axis of the lens-like orifice. Mid-coronal and

mid-sagittal plane are both symmetry planes of the ge-
ometry.

A prominent effect of the flow field is the so called

’axis switching’ of the glottal jet, as stated by [17]. This

effect is obviously recovered by the numerical results

when comparing the jet width in the different planes

in figures 6. The kinematics of the imposed geometrical

contours of the modeled glottis determine significantly

the development of the jet. The convergent shape of the

constriction during the opening phase causes a narrow

jet neither spreading in mid-coronal plane nor contract-

ing in mid-sagittal cross-section, so apparently no axis

switching effect occurs in the early phase of the glottal

cycle. In addition, flow downstream of the glottal walls

is affected by the displacement flow generated by the

glottal wall itself, too. At the state of fully opened glot-

tis the axis switching starts to emerge and is further en-

hanced by the increasingly divergent shape of the nozzle

and contribution by a lengthwise vena-contracta effect.

The latter is observed by the convergent jet contour at

the closing phase in the mid-sagittal plane.
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Fig. 6 Visualization of the evolution of the flow field, the
results of the numerical simulation visualized by a massless
tracer are compared to the results of the model experiments
obtained by the method of laser induced fluorescence [17] ,
time instants t/T=0...1 within one glottal cycle, see figure 2
for reference

The comparison shows a good agreement of jet char-

acteristics between experiment and CFD results. Only

the very small scale structures observable in the visual-

ization results of the model experiment are not fully re-

solved by the numerical simulation because of smearing

of the tracer field by numerical diffusion and the limi-

tation of the spatial mesh resolution to ∆x = 1/60D.

However the large coherent structures determining the

main flow features, as axis-switching, shear layer roll-

up and the flow separation of the jet that determines

the spreading and contraction in mid-coronal and mid-

sagittal plane, respectively, are well recovered by the

numerical model.

Additionally, the very symmetric behavior of the

flow in these planes supports the usefulness of char-

acterization of the 3D flow structure by means of these

two major planes, as stated by [17]. This symmetry is

redeemed even for the n-th repeating cycle of the pul-

sating jet flow of the total number of n=10 cycles. Such

a high degree of bi-planar symmetry is very charac-

teristic for such a lens-like orifice as modeled herein. In

contrast, symmetry is lost when a more rectangular ori-

fice is used or even when only a 2D computation model

is employed. Again, this demonstrates the importance

of proper numerical model and geometrical represen-

tation of actual 3D glottal orifice contours instead of

using simplified 2D geometries as discussed by [12].

As the CFD simulation runs for 10 successive cycles

we are able to determine cycle-to-cycle variations of the

jet position in the supra-glottal region. Figure 7 shows

the ensemble-phase-averaged flow field of 10 cycles for

the specified phase t/T . A systematic deflection of the

jet to one side would then be visible in this representa-

tion. Since there is no deflection present, the existence

of the coanda effect cannot be supported as also stated

by [12,15]. Furthermore, figure 8 shows the ensemble-

phase-averaged fluctuations of the velocity field. That

means regions with larger cycle-to-cycle variations are

indicated by higher values. The jet core shows repetitive

values for every glottal cycle and follows a the center

axis of the channel. No large-scale fluctuation of the

jet such as flapping or attachment to one of the lat-

eral walls is observed over the 10 cycles. Contrary the

jet shear layer inherits the large fluctuations up to 20

percent of the maximum speed in the jet core. A 3D

view onto the vortical flow structures is given in fig-

ure 9 by visualizing the Q-criterion of the velocity field

([34]) as an indicator for vortices. Though this region is

supposed to be responsible for flow and pressure fluc-

tuations in the frequency range higher than 10 times of

the fundamental frequency f0. This result is supported

by the study of [14] and confirms our earlier observa-

tions of apparently no presence of the so-called Coanda

effect in the supra-glottal region for the given model of

the lens-like glottal orifice (see [12]).

Figure 10 and 11 depict the values of the transglottal

pressure (difference between the points pup and pdown)

and the static pressure along a line on the surface of the

left model vocal fold. The course of the static pressure

along this line is plotted for certain time instants of the

glottal cycle: t/T = 0.15...0.4. The pressure difference

of the reservoirs 1 and 2 is constant during the glottal

cycle and preset to ∆p = 600Pa in this model exper-

iment. The pressure difference pup − pdown is varying

throughout the glottal cycle depending on the behavior

of the transglottal airflow. While the glottal gap opens

the pressure difference accelerates the airflow and the

difference in static pressure drops until the maximum

glottal gap width is reached at t/T = 0.25. In the fol-

lowing the transglottal pressure drop increases while

the shape of the glottal gap in the mid-sagittal plane

changes from convergent to ’parallel’ and to divergent,

finally. The motion of the vocal folds leads to a rather

smooth transition of the pressure distribution towards

the closing state. One may speculate that this motion

cycle is therefore also characteristic for relative low im-

pact forces on the folds corresponding to a closing mo-

tion similar to a double-sided zipper as also described

by [17]. This is supported by the glottal area function

shown in Fig. 2 where the slope of the curve shows a
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Fig. 7 Phase-locked velocity field averaged by 10 successive
cycles for each displayed instant of time t/T, mid-coronal
and mid-sagittal cross section are depicted and iso-contours
of the velocity field are drawn, black colour indicates umax
and white equals u = 0

continuous flattening from t/T=0.35 to full closure at

t/T=0.5.

Further information on the jet dynamics is gained

from the location of the separation along the glottal

walls during the motion cycle. Figure 12 demonstrates

the sectional streamline pattern in the mid-coronal cross

section in a close-up view of the region in the glottal

gap. Additionally the flow pattern in the supra-glottal

region is shown by streamlines and the distribution of

the static pressure field (see figure 12). The contours

are color-coded with red and blue but the range of the

colormap varies between the pictures of the successive

time instants. This was done to enhance the contrast for

visualization of the position of the pressure fluctuations.

The value of the pressure is given relative to reference

pressure pref = 105Pa. The location of flow separation
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Fig. 8 Phase-locked field of the averaged cycle-to-cycle fluc-
tuations of the velocity field, averaged by 10 successive cycles
for each displayed instant of time t/T, mid-coronal and mid-
sagittal cross section are depicted and iso-contours of the ve-
locity field are drawn, black colour indicates umax and white
equals u = 0

isosurface of threshold of Q-criterion

0.15
0.25

0.35 0.5

t/T

Fig. 9 3D flow structures developing during the first half of
the glottal cycles 0 < t/T < 0.5, visualized by the Q-criterion
([34]), see also [12]
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numerical simulation
model experiment

cycle time t/T[-]

pr
es

su
re

 d
if

fe
re

nc
e 

[P
a]

0

250

500

750

1000

0 0.2 0.4 0.6 0.8 1

Fig. 10 Temporal evolution of the trans-glottal pressure dif-
ference between the points pup and pdown sketched in figure
1, compared for experimental and numerical model
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Fig. 11 Hydrodynamic pressure computed with the numer-
ical simulation and plotted along a line in the mid-coronal
plane on the surface of the left model vocal fold for succes-
sive time instants within the glottal cycle

Table 2 Location of the separation points depicted in figure
12

t/T position x/D mid-sagittal shape
0.05 0.037

convergent
0.10 0.058
0.15 0.075
0.20 0.083
0.25 0.083 fully opened
0.3 0.050

divergent
0.35 0.000
0.40 -0.033
0.45 -0.017

is indicated in the streamline pictures, computed by the

condition of vanishing velocity gradient normal to the

wall ∇uwall = 0 and summarized in table 2.

During convergent opening phase the strongest cur-

vature of the boundary has moved to the trailing edge.

The jet detaches already at the position of the small-

est cross-section from the wall and remains therefore

straight and compact, not divergent. When the vocal

folds have passed the fully opened configuration, the

location of strongest curvature moves upstream during

the divergent phase of the glottal cycle and the veloc-

ity field is spread in the mid-coronal cross-section (x-

y). The flow is attached to the wall up to the position

x/D = 0.1 and finally detaches. It is obvious that flow

separation in the glottal gap is delayed to lager diver-

gence angles than the typical angle of 8 degrees known

for the flow in a 2D diffuser. This also clarifies the large

divergent expansion of the jet in the mid-coronal plane

which is related to the 3D flow in the glottal gap.

Figure 13 shows the spanwise flow in the transver-

sal cross-section (x-z) at position x/D=0.15. The flow is
presented by the projection of the in-plane velocity vec-

tors and areas of high and low relative pressure coded

by color. The results display the generation of strong

spanwise flow towards the center of the gap in the clos-

ing phase while spanwise flow is weak at the beginning

of the cycle. Pressure contours demonstrate the axis-

switching effect by means of re-orientation of the axis

between both anti-symmetric local pressure minimum

away from the mid-sagittal plane to the mid-coronal

plane. Meanwhile, pressure in the center of the jet axis

has reached locally a relative maximum which supports

the divergent expansion of the jet. Again, these results

prove the length-wise vena contracta which is generated

by the lens-like shape of the glottal orifice. As seen from

the pressure distribution in the mid-coronal plane in

Figure 12, the low pressure regions on both lateral sides

of the jet are formed like a tongue along the divergent

walls (t/T=0.35). Therefore, the divergent expansion of

the jet is important for the redistribution of the forces

along the gottal walls in the glottal cycle.
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0 10.5 0 10.5 0.10 0.2

t/T=0.15

t/T=0.2

t/T=0.25

t/T=0.3

t/T=0.35

t/T=0.4

locations of flow separation

x/D=0.075

x/D=0.083

x/D=0.083

x/D=0.05

x/D=0.0

x/D=-0.033

mid-coronal cross section (y-z)
x/D x/D x/D

-0.1

Fig. 12 left: Sectional streamlines plot in the mid-coronal
cross-section showing the vortical structures generated in the
jet shear layer, distribution of hydrodynamic pressure in the
mid-coronal cross-section confirming the presence of a signif-
icant pressure distribution due to these vortical structures,
the color range showing the hydrodynamic pressure is scaled
to the minimum and maximum value occurring at each time
instant, right: location of the point of flow separation the in
mid-coronal cross-section, the point is indicated by separat-
ing stream lines from the boundary wall and summarized in
table 2

Another aspect of the pressure distribution is doc-

umented by the supra-glottal pressure field in Figure

13. The locations of concentrated pressure minimum

correspond to the location of vortices generated by the

shear-layer roll-up. The pair-wise vortices above and be-

low the centerline in the mid-coronal cross-sections rep-

resent the cut through a 3D vortex structure which has

the shape of a deformed elliptic vortex-ring like struc-

ture. Figure 12 and 9 demonstrate that these 3D vortex

structures appear as successive rows of low-pressure re-

gion over the glottal cycle. In each cycle a total number

of 4 larger vortices are being shed, arranged in stream-

wise direction like a train of vortices. They move whith

a convective velocity of approximately half the mean ve-

locity of the jet and therefore generate a quasi-harmonic

pressure variation at a fixed point in the supraglottal

flow field. Figure 14(a) depicts the time course for the

points P0, P1, and P2 defined in figure 2. Especially

t/T=0.25
 

t/T=0.35
 

t/T=0.15
 

 
 

axial cross section (y-z)
 

uz/u0=0.15
 

uz/u0=0.25
 

uz/u0=0.05
 

0
 

-0.5
 

0.5
 

Fig. 13 Flow field in the transversal cross section (x-z) at
position x/D=0.15, vector plots indicate the direction of the
flow, maximum velocity uz occurring in this plane is given
relative to the jet velocity u0, the color range showing the
hydrodynamic pressure is scaled to the minimum and maxi-
mum value occurring at each time instant

in P1 there are coherent structures observable every

subsequent glottal cycle. These strutures cause the in-

crease of the power spectrum in the range around 20f0.

Figure 14(b) shows the resulting frequency spectra of

the velocity field at the points P0, P1 and P2 along

the medial axis downstream of the glottal orifice. In

the low-frequency range of f/f0 < 12 the spectrum

decreases with approximately -7dB per octave. In the

range of 12 < f/f0 < 30, the spectrum shows a distinct

rise of about 10dB above this decreasing trend which

is due to the presence of the vortices in the flow field.

The shedding frequency is within this range of spectral

enhancement. Therefore it is concluded that the vor-

tices contribute to flow and pressure fluctuations which

might effect the acoustic spectrum of the glottal source.

4 Conclusion

A numerical model to compute the time dependent three-

dimensional flow field of the low Mach number flow in a

model of the laryngeal channel through the vocal folds

is presented. An important feature of the simulations is

the prescribed motion of the vocal folds contours during
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Fig. 14 (a) time course at the observation points P0, P1,
P2 (see fig 2) for 3 successive glottal cycles and (b) the corre-
sponding power spectrum of the velocity for all 10 numerically
simulated glottal cycles, discrete points indicate the harmon-
ics of the spectrum with fundamental f0

the glottal cycle with a synchronous imprinted variation

of the flow rate. Both are taken from a model experi-

ment of [18] which allows precise and accurate valida-

tion of the numerical results. The numerical study aims

at providing more detail of the flow separation process

and the pressure distribution in the glottal gap, which is

hard to obtain from experimental studies, especially un-

der the condition of moving glottal walls. Comparison

of the characteristic features of the jet between experi-

ment and CFD results shows good agreement in spatio-

temporal development of the jet. An illustrative way

of comparison was documented herein by the method

of streak-surface visualization. This rather natural and

intuitive way of illustration of the flow features is gen-

erated by adding dye to the flow region upstream of the

glottal gap in a mixed and homogeneous distribution.

The same is done with the numerical results, where a

massless tracer is continuously added on all grid cells

upstream of the glottal gap and follows the fluid vector

further downstream into the supra-glottal area with no

slip.

The flow results show that the glottal motion in each

opening- and closure cycle generates a pulsed 3D jet,

which penetrates into the supra-glottal space about a

distance of 1D. Within the phase of closed glottis, which

is 50% of the total cycle time, the jet decays into small-

scale vortices and dissipates to a degree, which does not

disturb the successive cycle much. The results reveal a

high degree of symmetry of the jet-flow in the supra-

glottal space with respect to the mid-coronal and mid-

saggital plane. Even after 10 cycles, the symmetry is of

the same level. There is no sign of large-scale cycle-to-

cycle variations. As a conclusion, the Coanda effect does

not play a role in this type of flow with a model, which

represents a 3D contour of the glottal orifice with a lens-

like shape. A possible explanation of the confusion in

literature is given in a former publication by our group

which pinpoints the importance of glottal shape and

numerical model in the interpretation of the obtained

results ([12]).

Cyclic variations of the flow fields are found espe-

cially in the jet shear layer, where the generation of

vortex structures induces quasi-harmonic pressure fluc-

tuations in the range of 10-20 times the fundamental

frequency, which may contribute to the acoustic spec-

trum of the source signal in the region of voice produc-

tion. The cycle-to-cylce variations do not influence the

spectral content of the pressure fluctuations much. In

each cycle, a train of 4-5 vortices is generated which are

convected downstream with approximately half of the

local jet core velocity. The streamwise row of vortices

looks relatively regular in terms of distance and con-
vection velocity, which might be due to the interplay of

temporal modulation of the jet velocity in combination

with the divergent expansion of the jet. It is therefore

expected that the flow and pressure fluctuations are in-

deed quasi-periodic and coherent within a larger area

of supra-glottal space.

Flow separation from the walls of the model vocal

folds determines the jet spreading and contraction in

the two main cross sections of the geometry, respec-

tively, and is responsible for the so called axis switch-

ing effect. The region of flow separation in the nozzle

created in the glottal gap is moving during one glot-

tal cycle from upstream to downstream about a dis-

tance of 0.14D. In the upstream position in the opening

phase, the jet separates at the location of smallest cross-

section at x/D=0.07, thus forming a rather straight

jet. Later in the beginning of the closing phase, the

location of smallest cross-section has moved upstream

to the position x/D=-0.07. However, flow separation is

largely delayed about a distance of 0.1D downstream,
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thus flow separates at a position x/D=0.03. The loca-

tion of separation within the diffuser appears at much

larger opening angles compared to a 2D diffuser, where

the literature reports a critical angle of 8. The reason

for this separation delay is found in the spanwise flow

in the transversal plane, which is related to a span-

wise vena-contracta. At this stage of the gottal flow,

strong spanwise flow is induced in the glottal gap to-

wards the center, where maximum spanwise velocities

reach 25% of the maximum axial velocity on the jet

axis. Thus energy is brought into the boundary layer

and flow therefore separates later in the diffuser. As a

consequence, the jet experiences a strong divergent ex-

pansion in the mid-coronal plane while the jet is still

converging in the mid-sagittal plane as a result of the

length-wise vena-contracta.

The pressure drop across the glottal gap is varying

in time with the motion cycle. Profiles of the wall pres-

sure along the vocal fold walls of the model show that

the pressure drop during the closing phase of the glottis

is increasing smoothly rather than in an abrupt man-

ner. It is already at the state of t/T=0.4 in the cycle

that 90% of the total pressure head is recovered. This

goes together with a rather smooth approach of the

area function A(t) towards the closure of the orifice at

t/T=0.5 since the slope of the curve starts decreasing

early at t/T=0.35. Therefore, the pinch-off of the jet is

not as abrupt as expected in a two-dimensional glottal

model. This is a results of the special type of glottal

closure in the lens-like constriction, where the closure

process resembles a double-sided zipper which is closing

from both sides in a 3D-type of motion of the contact

line. From the pressure distribution it is also seen that

tongue-like extensions of low pressure regions are form-

ing at the downstream facing walls of the glottal gap.

These regions originating from the complex flow of the

jet and glottal motion in the late state of the cycle sup-

port the interpretation of aerodynamic pressure distri-

bution enforcing the glottal closure in combination with

a vertical upward motion of the glottal plane.
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