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The collapse of a cavitation bubble near a rigid boundary induces a high-speed transient
jet accelerating liquid onto the boundary. The shear flow produced by this event has
many applications, examples are surface cleaning, cell membrane poration, and enhanced
cooling. Yet the magnitude and spatio-temporal distribution of the wall shear stress are
not well understood, neither experimentally nor by simulations. Here we solve the flow
in the boundary layer using an axisymmetric compressible Volume of Fluid (VOF) solver
from the OpenFOAM framework and discuss the resulting wall shear stress generated for
a non-dimensional distance, γ = 1.0 (γ = h/Rmax, where h is the distance of the initial
bubble centre to the boundary, Rmax the maximum spherical equivalent radius of the
bubble). The calculation of the wall shear stress is found reliable once the flow region with
constant shear rate in the boundary layer is determined. Very high wall shear stresses
of 100 kPa are found during the early spreading of the jet followed by complex flows
composed of annular stagnation rings and secondary vortices. Although the simulated
bubble dynamics agrees very well with experiments we obtain only qualitative agreement
with experiments due to inherent experimental challenges.

1. Introduction

Cavitation bubbles expanding and shrinking near rigid boundaries move towards the
boundary due to the action of the secondary Bjerknes force (Blake & Gibson 1987; Best &
Kucera 1992). The oscillating flow near the wall creates naturally a strong and unsteady
boundary layer flow with high shear rates. Additionally, the radial flow is accompanied
by a jetting flow accelerating liquid to impinge on and spread along the wall.

Historically, the shear stress generated from steady impinging jets on solid walls
has been solved by Glauert (1956), and confirmed through simulations (Deshpande &
Vaishnav 1982; Phares et al. 2000), and experiments (Narayanan et al. 2004; Visser et al.
2015). However, the shear stress produced by transient jets from near wall cavitation has
recently received more attention, in particular for its importance for surface cleaning (Ohl
et al. 2006a; Kim et al. 2009; Gonzalez-Avila et al. 2011) and cell membrane poration
cells (Ohl et al. 2006b; Le Gac et al. 2007). Very few experiments have tried to measure the
wall shear stress. Dijkink & Ohl (2008) combined high-speed photography with a hot film
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anemometer and found short peaks with stress amplitudes of up to 3.5 kPa occurring right
after the jet impact. Given the limited temporal bandwidth of their device the maximum
shear stress reported may only be a lower bound. Their sensor can only measure at a single
location. Thus, to map spatial stress requires many measurements with identical bubbles,
which is difficult to achieve. To fill this knowledge gap, we present here a numerical
approach to estimate the wall shear stress. It is based on the Finite Volume method
(FVM) to discretize the fluid domain and the Volume of Fluid (VOF) method to capture
the bubble-water interface. We can reliably simulate the bubble dynamics through the
first and second collapse and obtain a spatio-temporal map of the wall shear stress.

This work is organized as follows; first, we verify the numerical model with experiments
and previous shear stress measurement from Dijkink & Ohl (2008); then we study the
flow field details near the boundary to clarify the flow features that lead to the wall shear
stress. After that a spatio-temporal map of the wall shear stress distribution is presented
and discussed. A test of our numerical method against previous works and an analytic
solution is provided in the Appendix.

2. Methodology

Here we resolve the shear flow produced by a cavitation bubble collapsing near a solid
boundary in water. The flow field is obtained by solving the compressible Navier-Stokes
equations and capturing the gas-water interface with the VOF method based on the Finite
Volume framework of OpenFOAM (Weller et al. 1998). The flow is dominated mostly by
inertia of the liquid and the compressibility of the gas; the viscosity is only important
close to the surface. For simplicity we model the initial (laser created) cavitation bubble
consisting of non-condensable gas starting from a small volume at high pressure. The
sharp interface of the cavitation bubble is captured by solving the transport equation for
the volume fraction of the liquid (Miller et al. 2013; Koch et al. 2016):

∂α

∂t
+∇ · (αu) +∇ · (α(1− α)Ur) = α(1− α)

(
ψg
ρg
− ψl
ρl

)
Dp

Dt
+ α∇ · u , (2.1)

where α is the volume fraction of the liquid phase, u the velocity field, p the pressure.
Ur is the relative velocity between two phases, which helps to ensure a sharp inter-
face (Rusche 2003). Compressibility is included on the right hand side, which contains
the compressibility of both phases (liquid and gas) with ψ = Dρ/Dp from the Equation
of State (EOS). For the gas phase a polytropic EOS is used while for the liquid phase
the Tait EOS (Macdonald 1969) is applied, similar to the cavitation bubble simulations
in Koukouvinis et al. (2016a,b) and Koch et al. (2016).

In the compressible NS equations, we use the single-field formulation and treat the
two-phases as a compressible and immiscible Newtonian fluid while neglecting the heat
and mass transfer.

∂ρ

∂t
+∇ · (ρu) = 0 (2.2)

∂ρu

∂t
+∇ · (ρuu) = −∇p+∇ · s+ fδ , (2.3)

where ρ is the density of the fluid, s the viscous stress tensor which is calculated as
s = µ(∇u+∇uT − 2

3 (∇·u)I), with the dynamic viscosity µ and the identity tensor I. fδ
is the source term due to surface tension which is modeled with the Continuous-Surface-
Force (CSF) method (Brackbill et al. 1992). Flow properties are calculated based on the
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Figure 1. (a) Sketch of the problem and parameters. The dashed circle is the bubble nucleation
and the solid circle is the bubble at maximum size; (b) Comparison of the equivalent spherical
bubble radius from simulations (lines) with the experiment (filled symbols). The dashed line
shows the result using a constant polytropic exponent of κ = 1.4; and the red solid line represents
the result using a polytropic exponent of κ = 1.4 from t = 0µs to t = 136.5µs and a higher
polytropic exponent of κ2 = 2.4 from t = 136.5µs. The error bar presents the uncertainty from
the recorded images.

volume fraction of the liquid with ζ = ζlα + ζg(1 − α), where ζl and ζg are physical
properties of the liquid and the gas.

We verify the numerical method by comparing the simulation results with experiments.
In the experiment cavitation bubbles are created with a 6-ns duration pulse from a Q-
switched laser (New Wave, λ = 532 nm), which is focused at a distance h close to a wall;
the bubble dynamics is recorded with a high-speed camera (Photron SAX-2, Japan)
operating at 200, 000 fps (293 ns exposure time). The high speed recorded images with
pixel size of 20µm are used to validate the gas phase dynamics and thus the flow field in
the numerical simulations. For the validation of the wall shear stress from the simulations,
we benchmarked the model with earlier simulations of a submerged steady wall jet
impinging on a surface Deshpande & Vaishnav (1982), see Appendix. We also compare
the simulation result with experiments Dijkink & Ohl (2008) of cavitation bubble induced
wall shear stress. To simplify the simulation an axisymmetric domain is chosen; a size of
5 mm in radial and 10 mm in axial directions. The computational mesh contains 101 grid
points in radial direction and 201 grid points in axis direction initially. These are refined
recursively four times. In the area of interest, i.e. where the bubble is located the cell
size is about 3µm wide. For the solid boundary a no-slip condition is used. In the near
boundary region, the mesh is further refined recursively down to a spacing ∆x = 0.05µm,
to resolve a linear increasing velocity within the thin boundary layer.

3. Results

3.1. Comparison with Experiments

Before we have a detailed look into the flow near to the boundary and the wall shear
stress generated we compare the overall bubble dynamics together with the snapshots
of the bubble shape. Figure 1(a) shows the sketch of the problem and introduces the
coordinates of the axisymmetric problem. Figure 1 compares the volume equivalent
spherical bubble radius between the experiment (filled symbols, Rmax = 0.6 mm, γ = 1.1)
and the simulations (lines). In the simulations and the experiments the bubble due to
the high pressure inside expands in the initially stagnant liquid. By adjusting the this
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Figure 2. Comparison of bubble shape evolution for standoff distance γ = 1.1. The left part in a
single frame is the simulation result, while the right part is the experimental result. Time of the
first frame in each row is indicated in µs, inter-frame time is 5µs, and the scale bar represents
0.5 mm. The boundary is below each frame.

pressure while keeping the radius, R(t = 0) = 50µm, constant we can achieve good
agreement for the expansion stage to an almost spherical bubble and the later shrinkage.
Yet, after re-expansion we find a considerable deviation of the equivalent bubble radius
between the experiment and a straightforward simulation (dashed line); the bubble after
collapse expands much larger in the simulations. We attribute this difference to the
cushioning effect of the gas during the collapse: the non-condensable gas slows down the
last stage of the collapse resulting in less energy being lost from acoustic radiation and
viscous damping, hence allowing for a larger re-expansion. To deal with this discrepancy,
while not modeling the mass transfer Lee et al. (2007) implemented an experimental
correlation accounting for the energy loss during the collapse into their boundary integral
method based on data from Cole (1965). Wang (2014) also considered the energy loss
due to shock wave emission during the early expansion stage and the late bubble collapse
and uses the bubble wall Mach number as a criterion. Both methods achieved reasonable
agreement with experimental results, however they are difficult to implement consistently
in the present VOF framework. Here we provide an alternative approach by increasing the
polytropic exponent of the gas after the collapse. This effectively removes internal energy
from the bubble and the bubble expansion is reduced. The new polytropic exponent is
found by fitting the experimental second re-expansion to the simulation, see solid line
in figure 1. Here we use for the polytropic exponent during the initial expansion and
collapse κ = 1.4 and later κ = 2.4. The increase of κ at the bubble rebound indicates
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the energy loss of the bubble at the collapse, e.g. less energy of the bubble is converted
to kinetic energy of the flow after its rebound. This energy loss is γ dependent (Vogel
& Lauterborn 1988; Vogel et al. 1989). By comparing the simulations and experimental
results, we find that κ = 2.4 after the first collapse model sufficiently well the energy loss
for γ ≈ 1.

Figure 2 compares the computed bubbles dynamics (left part of each frame) with the
experiments (right part of each frame). The rigid boundary for the experiment and the
simulation is located at the bottom of each frame. At time t = 0 the bubble is nucleated,
in the simulation the bubble starts with a spherical nucleus R(t = 0) = 50µm containing
gas at a pressure of pg(t = 0) = 1300 bar while the bright spot in the experiment is due
to the plasma emission from the dielectric breakdown. Although the complex plasma and
fluid dynamics of the nucleation is ignored already at frame t = 5µs very good agreement
of the expansion dynamics is obtained. After an expansion of the bubble to a maximum
volume of an approximate sphere with radius R(t = 70µs) = 0.6 mm the bubble shrinks
and develops a jet flow towards the boundary before reaching its minimum volume at
t ≈ 135µs. During re-expansion a rather complex bubble shape is observed; the bubble
separates into a pancake shape close to the boundary and small fragments higher up
along the axis of symmetry. The simulations reveal a second splitting at t = 145µs
and re-connection of the flat bottom part when the bubble volume shrinks again, e.g.
from t = 210µs. Till the second collapse we find good agreement of the outer shape of
the bubble between simulation and experiment; please keep in mind that the simulation
shows a cut through the fluid domain while the high-speed recording are a photographic
projection of the bubble.

Next we present a comparison of the wall shear stress at one position on the boundary
with a measurement of Dijkink & Ohl (2008) for the cavitation bubble at a stand-off
γ = 1.0. For this we have to approximate the wall shear stress as:

τ = µ
dur
dy

∣∣∣∣
y=0

≈ µ ur(y)

y

∣∣∣∣
y6ε

, (3.1)

where ur is the flow velocity component parallel to the wall and y is the distance to the
boundary, and ε is the thickness of the region with constant shear rate which is located
within the boundary layer (Schlichting et al. 1955; Visser et al. 2015). To validate the
calculation by equation 3.1, we perform a simulation of the steady submerged wall jet
simulation and compare the results with Glauert (1956)’s analytical solution and the
classical simulation simulation from Deshpande & Vaishnav (1982), see Appendix. The
comparisons indicate that the calculation of the wall shear stress with the present model
is reliable once the region with constant shear rate within the boundary layer is resolved.

Before we compare the wall shear stress reproduced by this model to the measurement
of Dijkink & Ohl (2008) for the cavitation bubble at a distance of γ = 1.0, we look for the
boundary layer formed by the spreading of the liquid jet induced by collapsing bubble
to determine the minimum ε. Figure 3(a) shows the vertical distribution of the radial
velocity Ux at t = 133µs and x = 70µm, where the largest shear occurs (see figure 6).
The crosses indicate the positions of the resolved cells close to the boundary. We obtain
a constant slope over 5 and more cells demonstrating sufficient resolution to resolve the
constant shear near the boundary with a thickness of about 1.5µm. For y < 0.4µm, Ux
is linear with y with a shear rate of 108 s−1, i.e. the minimum ε ≈ 0.4µm. As a proof that
this holds for all the calculations we plot in figure 3(b) the wall shear stress distribution
as a function of x using equation 3.1 with ε = 0.1µm and ε = 0.2µm . The agreement
demonstrates that the stresses are fully resolved even for at locations of highest shear.
In the remaining calculations we use ε = 0.1µm.
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Figure 3. Flow and wall shear stress at t = 133µs for the bubble of γ = 1.0. (a) the radial
velocity distribution along vertical direction within the boundary layer at x=70µm. Ux is
linear with a slope of 108 when y < 0.4µm; the crosses represent the grid points within the
boundary layer. (b) the wall shear stress distribution along boundary calculated at y = 0.1µm
and y = 0.2µm
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Figure 4. Comparison of measured and simulated wall shear stress at a non-dimensional
distance of η = 0.33 from the boundary for the bubble at a distance of γ = 1.0. The horizontal
axis is the dimensionless time normalized by the collapse time Tc, the vertical axis is the wall
shear stress in kPa. The dashed lines in each plot represent the instances of jet impact, first
collapse, and the second collapse, respectively. The jet impact occurs before the bubble reaches
its minimum volume. Also note in experiment Rmax ≈ 750µm, Tc ≈ 80µs; in simulation
Rmax ≈ 600µm, Tc ≈ 69µs. Top: the experimental result from Dijkink & Ohl (2008); Bottom:
calculation from current study.

Figures 4 compares the measured and simulated wall shear stresses recorded at η = 0.33
(η = s/Rmax, where s is the distance to the axis of symmetry) at a stand-off parameter
of γ = 1.0. The horizontal axis is the time normalized by the collapse time Tc, while the
vertical axis is the measured and calculated wall shear stresses in kPa. In the simulations
we have accounted for the imperfections of the stress sensor, i.e. its finite size and non-
directivity by taking the average of the absolute of the wall shear stress over the radial
distance of 100µm. Overall the simulations predict much higher peak wall shear stress
than the measurements. We explain this discrepancy with the limited bandwidth of the
experimental sensor from Dijkink & Ohl (2008) and the limits of the calibration method
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(see below). Let us compare the features qualitatively: the highest value in experiment
and simulation is found right after the liquid jet impinges and spreads along the boundary.
During the decay of the stress a second peak forms caused by the liquid accelerated by
the re-expanding bubble. Moreover the decay of this peak is slow because the flow is
stabilized by a vortex ring forming close to the surface. A third peak is also captured in
the simulations and found in the measurement. This is due to the re-expansion of the
bubble after its second collapse. The features of a prominent peak, a second maximum,
slow decay of shear stress during the re-expansion till 2nd collapse, and second peak
during 2nd re-expansion are consistently found in experiment and simulation.

3.2. Details of the flow and wall shear stress

We’ll now explore the flow within and near the gap formed between the bubble and
the rigid boundary. Consecutive snapshots of 6 interesting points in time of the flow
(γ = 1.0, Rmax = 0.6 mm) are shown in Figure 5. The figure depicts the approach of
the lower bubble wall towards the rigid boundary during the early bubble expansion
(t = 10µs), the early stage of jetting (t = 130µs) and just after jet impact (t = 133µs),
then close to minimum volume (t = 140µs) and during the torus collapse (t = 215µs).
The last frame in figure 5 shows the early third re-expansion (t = 245µs). Below each
frame in figure 5 the wall shear stress is plotted as a function of radial distance in units of
103 Pa. Please note that zero crossings of the wall shear stress are stagnation points (or
rings). The magnitude of the velocity is color coded. Due to symmetry the origin x = 0
remains a stagnation point. At time t = 10µs the wall shear stress follows the expected
shape similar to a source position near an impermeable wall (Ye & Bull 2006). During
early collapse the interface closest to the wall flattens into an approximately 50µm thin
gap, see t = 130µs. In this gap the shear stress increases with radial distance x and
reaches a mild maximum because the radial incoming flow decelerates this gap flow and
reflects it upwards. There a stagnation ring is created separating the positive and negative
wall shear stresses. Up to this point in time the magnitude of the wall shear stress is
comparable with the ones during the spherical bubble expansion, i.e. around 1.0 kPa.
A rapid increase of the wall shear stress is seen once the jet pierces with approximately
80 m/s through the lower bubble wall and impacts on the boundary, t = 133µs in figure 5.
The shear stress increases from 0 at the stagnation point to the rim of the jet at x = 80µm
to τ ≈ 100 kPa. Shortly afterwards at t = 140µs the spreading jet flow dominates and
creates a nearly purely outward directed flow with positive wall shear stresses within the
field of view. The maximum τ has shifted downstream with a velocity of 19m/s. Away
from the boundary the jet flow is connected to the expanding flow forming two counter
clockwise rotating vortex rings, a large scale encompassing a smaller scale vortex ring.
The low pressure at their core stabilizes the expanding bubble fragments into an overall
toroidal shaped bubble. The last two frames in figure 5 depict the second collapse and
re-expansion at t = 215µs and t = 245µs, respectively. During collapse we have a similar
competition of the flow along the axis of symmetry (however at a much lower velocity
than the previous jet flow) with the inward flow due to the bubble acting as a sink. The
stagnation ring is now located further away at x ≈ 640µm at t = 215µs. Yet the toroidal
bubble fragments into many pieces, which leads to an even more complex flow pattern
at t = 245µs.

3.3. Spatio-temporal wall shear stress

Figure 6 provides a detailed view on the spatio-temporal dynamics of the wall shear
stress for γ = 1.0. Positive values of the wall shear stress (directed away from the axis
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Figure 5. Selected flow maps for 6 different times: (a) the early expansion (t = 10µs); (b) during
jet formation (t = 130µs); (c) on jet impact (t = 133µs); (d) early re-expansion (t = 140µs);
(e) second collapse (t = 215µs); (f) early third expansion (t = 245µs). The plot below the flow
fields is the wall shear stress distribution along the radial direction x, the units are µm in along
the horizontal and kPa on the vertical axis. Negative values of the wall shear stress depict flow
towards the axis of symmetry while positive value in positive radial direction. The velocity is
color coded with a unit of m/s.

of symmetry) are plotted in red, while the stress towards x = 0 is color-coded in blue.
Because of the large range of values the logarithm to the base 10 is taken of the wall shear
stress values before plotting. It is evident that the highest stress occurs during the time
of first minimum bubble volume t ≈ 135µs near to the axis of symmetry x ≈ 0.15 mm.
During most of the expansion (from t = 0µs to t ≈ 50µs) the stress is positive for the
full domain, i.e. when the bubble expands rapidly. However at a later stage of expansion
(t ≈ 50µs) the stress for large x becomes negative because the expansion is slowed down
and the upper bubble wall starts to move towards the boundary driving the liquid at
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Figure 6. The time-space map on the wall shear stress for a standoff distance γ = 1.0. The
first color bar represents the positive wall shear stress (away from the axis of symmetry), while
the second one represents the negative wall shear stress. Overlaid is the bubble dynamics as a
solid line and the instances shown in figure 5. The unit for τ is Pa.

larger distances inwards. Near the axis of symmetry (x < 0.2 mm), the stresses decrease
with time but remain positive for the whole expansion and collapse cycle. High stresses
occur after t ≈ 132µs in the small x region, this is the instant of time when the liquid
jet impacts on the boundary and forms a boundary layer while spreading along the
surface. The location of this outward spreading flow is nicely captured in figure 6 by
following the location of maximum stress as a function of time. Initially the velocity is
about 19 m/s and drops to 1 m/s at t = 200µs. Moreover negative stress is found ahead
of the spreading flow (starts from x ≈ 170µm at t ≈ 135µs, moves to x ≈ 420µm at
t ≈ 146µs,), which is due to a reversed flow driven by a high adverse pressure gradient.
This flow separation is detailed below with figure 7. The stress distribution during the
re-expansion and later second collapse of the toroidal bubble differs greatly form the first
oscillation cycle. Now a vortex ring has developed which continuously accelerates fluid
counter clockwise creating a positive shear stress for the entire second second oscillation
cycle (also see figure 5 t = 140µs). During the second bubble collapse at time ≈ 240µs
the wall shear stress distribution is more complex and the maximum of the shear stress
occurs further away from the axis of symmetry (x ≈ 0.45 mm) due to the toroidal bubble
collapse.

Figure 7 shows the boundary flow during the spreading of the impacting liquid jet,
from t = 135µs to t = 146µs. Flow separations and the reversed flow is nicely captured
by the streamline and the radial velocity contour. In figure 7, the radial velocity Ux is
color coded, the red color represents the flow directed away from the axis of symmetry
while blue color indicates the reversed flow (flow to the axis of symmetry). White lines
are the streamlines. At t = 135µs, a vortex ring is nucleated at x ≈ 180µm due to an
adverse pressure caused by the fast flow spreading over the stagnant liquid. As a result
the flow close to the boundary is opposite to the main flow resulting in a shear stress



10 Q. Zeng et al.

130 230 175 275

200 300 225 325

250 350 220 320

310 410

380 480

150 170 190 210 195 215 235 255

220 240 260 280 245 265 285 305

270 290 310 330 240 260 280 300

250 350270 290 310 330 325285 305 345 365 385

330 350 370 390 410330 350 370 390 430

410350 370 390 430 450 400 420 440 460

Ux (m/s)
0 10 20 30 40 50 60 70 80 90-10

0

25

0

25

0

25

0

25

0

25

0

25

0

25

0

25

0

25

0

25

0

25

0

25

Figure 7. Flow separations during the jet spreading and bubble re-expansion. The radial
velocity Ux is color coded, the blue color indicates the reversed flow (flow to the axis of
symmetry); white line represents the streamline; the spatial units are in µm. Please note that
the offset of the x-axis differs in the frames.

direction opposite to the driving jet flow. The vortex ring expands in size and moves
outwards with a velocity of around 25 m/s between t = 135µs to t = 138µs inducing a
maximum negative velocity at t = 138µs of 10 m/s before it slows down at t = 139µs.
The flow from the re-expanding bubble triggers two new vortex rings at t = 141µs which
coalescence into a single ring at t = 142µs and is transported with a velocity of approx.
20 m/s before it decays at t = 146µs.

4. Discussions and Conclusion

The present simulations predict a complex spatiotemporal distribution of the wall shear
stress during the non-spherical collapse of a bubble near a rigid wall. We have compared
the temporal dynamics of the amplitude on the wall and found qualitative agreement
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with measurements. In particular that a short lived stress of maximum amplitude is
generated just after impact and during the early spreading of the jet, while a vortex
ring which is formed during the re-expansion contributes for a longer duration stress
at a lower amplitude. The simulations predict stresses of the order of 50 kPa while the
experimental results are an order of magnitude lower. The difference may be explained
with the calibrations conducted for the shear stress measurements. These were conducted
over a range from 0.05 Pa to 10 Pa (Dijkink & Ohl 2008). Maisonhaute et al. (2002b)
provided a rough yet considerably higher estimate based on their earlier electrochemical
measurements of the flow velocity of around 200 m/s at the distance of 40 to 80 nm to
the boundary (Maisonhaute et al. 2002a). They predict that shear stress from oscillating
and jetting bubbles driven by ultrasound could provide 25− 50 bar. In contrast bubbles
oscillating only mildly with no or little deformation of their shape may create shear
stresses of the order of a few kPa, according to simulations from Krasovitski & Kimmel
(2004).

Chahine et al. (2016) have simulated the (inviscid) collapse of a bubble near a movable
dirt particle with a focus of the forces generated by the pressure drag on the particle.
Already during expansion of the bubble the particle may be pushed along the surface,
while the complex recirculating flow after the bubble collapse may attract or push away
the particle depending on the specific configuration. However to understand the particle
dynamics better, a more complex fluid-structure-interaction model should be included.

The importance of the flow following the collapse of the bubble has also been acknowl-
edged in the experimental study by Reuter & Mettin (2016). There the strongest cleaning
effect was observed for γ 6 1.1 and was explained with the interaction of the jet spreading
flow with the inward flow during the collapse. This results in a wall bound vortex creating
a long lasting exposure of the surface to shear. The present simulations confirm this
scenario and are revealing the complex interaction leading to multiple stagnation rings
and opposing directions of the shear stress.

Already during the expansion and early collapse of the bubble, the shear stresses are
of the order of 1 kPa while their increase to around 100 kPa occurs after the liquid jet
impact; a system of vortex ring is formed under the combined effect of the main shear
flow and the re-expansion of the toroidal bubble, which stabilizes the flow and thereby
slows down the decay of the shear stress.

Starting from the present results it will be interesting to conduct a detailed parameter
study to evaluate the effect of bubble size, viscosity, and density. For example, in
ultrasound cleaning baths smaller bubbles are found which may not generate strong
re-entrant jets (Kim & Kim 2014) yet they translate along the surface (Kim et al. 2009;
Zijlstra et al. 2009). Simulations with suitable measurement techniques, which may still
have to be developed, will help to understand how bubbles clean.

Appendix A. Determination of the Wall Shear Stress

To validate the calculation of wall shear stress from the code, we now reproduce the
steady wall jet impingement simulation by Deshpande & Vaishnav (1982): a cylindrical
submerged jet impacting on to a no-slip flat surface. The jet is with a radius of Rjet =
50µm and a flat velocity of Ujet, whose inlet is located d = 4Rjet = 200µm above the
boundary. The domain is axisymmetric with both width and height of 10Rjet. The mesh
is with a spacing ∆x = 2.5µm in the bulk flow while is refined to ∆x = 0.05µm in
the near boundary region. Glauert (1956) gave an analytic similarity solution of the wall
shear stress for this problem:
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Figure 8. Comparison on wall shear stress of the submerged jet impingement. (a) the normalized
stress distribution on wall for Re = 100; the blue line is the result of Deshpande & Vaishnav
(1982), the orange line and green dotted line represent the result calculated at y = 0.1µm
and y = 0.2µm from the simulation, while the cyan dash line is the Glauert solution. (b) the
maximum normalized wall shear stress of various Re Number from Deshpande & Vaishnav (1982)
and the current simulations.

τ = µ
dur
dy

∣∣∣∣
y=0

= ρ
( 125F 3ρ

216µx11

)1/4

, (A 1)

where rho is the flow density and F the momentum flux which is defined as F =
(1/8)U3

jetR
4
jet for a jet with a flat velocity profile.

Figure 8(a) shows the comparison on the wall shear stress distribution along the
boundary of our current calculation and the numerical result of Deshpande & Vaishnav
(1982) and the Glauert solution (equation A 1) for the case Re = 100, where Re =
2ρUjetRjet/µ is the defined Reynolds number. The current calculation of the wall shear
stress from equation 3.1 at y = 0.1µm and y = 0.2µm is indistinguishable, indicating
that the stress is converged in the near boundary cells and the flow field in the region
with constant shear rate is resolved. The stress distribution along the boundary from the
current simulation matches very well with Deshpande & Vaishnav (1982) as well as the
Glauert solution for x/Rjet > 3. The normalized maximum shear stress τmax/(4ρU

2
jet)

is also compared to the numerical work of Deshpande & Vaishnav (1982, 1983), good
agreement is found for a wide Re numbers. Thus the calculation of the wall shear stress
using our current model is reliable once the region with constant shear rate in the
boundary layer is determined.
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improve the manuscript.

REFERENCES

Best, JP & Kucera, A 1992 A numerical investigation of non-spherical rebounding bubbles.
Journal of fluid mechanics 245, 137–154.

Blake, John R & Gibson, DC 1987 Cavitation bubbles near boundaries. Annual review of
fluid mechanics 19 (1), 99–123.

Brackbill, JU, Kothe, Douglas B & Zemach, Charles 1992 A continuum method for
modeling surface tension. Journal of computational physics 100 (2), 335–354.

Chahine, Georges L, Kapahi, Anil, Choi, Jin-Keun & Hsiao, Chao-Tsung 2016 Modeling
of surface cleaning by cavitation bubble dynamics and collapse. Ultrasonics sonochemistry
29, 528–549.



Cavitation Induced Wall Shear Stress 13

Cole, Robert Hugh 1965 Underwater explosions. Dover Publications.

Deshpande, Mohan D & Vaishnav, Ramesh N 1982 Submerged laminar jet impingement on
a plane. Journal of Fluid Mechanics 114, 213–236.

Deshpande, Mohan D & Vaishnav, Ramesh N 1983 Wall stress distribution due to jet
impingement. Journal of Engineering Mechanics 109 (2), 479–493.

Dijkink, Rory & Ohl, Claus-Dieter 2008 Measurement of cavitation induced wall shear
stress. Applied Physics Letters 93 (25), 254107.

Glauert, MB 1956 The wall jet. Journal of Fluid Mechanics 1 (6), 625–643.

Gonzalez-Avila, S Roberto, Huang, Xiaohu, Quinto-Su, Pedro A, Wu, Tom & Ohl,
Claus-Dieter 2011 Motion of micrometer sized spherical particles exposed to a transient
radial flow: attraction, repulsion, and rotation. Physical review letters 107 (7), 074503.

Kim, Tae-Hong & Kim, Ho-Young 2014 Disruptive bubble behaviour leading to
microstructure damage in an ultrasonic field. Journal of Fluid Mechanics 750, 355–371.

Kim, Wonjung, Kim, Tae-Hong, Choi, Jaehyuck & Kim, Ho-Young 2009 Mechanism of
particle removal by megasonic waves. Applied Physics Letters 94 (8), 081908.

Koch, Max, Lechner, Christiane, Reuter, Fabian, Köhler, Karsten, Mettin, Robert
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Detlef & Sun, Chao 2015 Quantifying cell adhesion through impingement of a
controlled microjet. Biophysical journal 108 (1), 23–31.

Vogel, A & Lauterborn, W 1988 Acoustic transient generation by laser-produced cavitation
bubbles near solid boundaries. The Journal of the Acoustical Society of America 84 (2),
719–731.

Vogel, A, Lauterborn, W & Timm, R 1989 Optical and acoustic investigations of the
dynamics of laser-produced cavitation bubbles near a solid boundary. Journal of Fluid
Mechanics 206, 299–338.

Wang, Qianxi 2014 Multi-oscillations of a bubble in a compressible liquid near a rigid boundary.
Journal of Fluid Mechanics 745, 509–536.

Weller, Henry G, Tabor, G, Jasak, Hrvoje & Fureby, C 1998 A tensorial approach
to computational continuum mechanics using object-oriented techniques. Computers in
physics 12 (6), 620–631.

Ye, Tao & Bull, Joseph L 2006 Microbubble expansion in a flexible tube. Journal of
biomechanical engineering 128 (4), 554–563.

Zijlstra, Aaldert, Janssens, Tom, Wostyn, Kurt, Versluis, Michel, Mertens, Paul W
& Lohse, Detlef 2009 High speed imaging of 1 mhz driven microbubbles in contact with
a rigid wall. In Solid State Phenomena, , vol. 145, pp. 7–10. Trans Tech Publ.


