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ABSTRACT 

The Korteweg-de Vries equation (KdV) is a partial differential 
equation Which has some remarkable mathematical properties. 
FUrthermore, it also appears as a useful model in a great many 
physical situations. Thus, although it was originally obtained as 
an approximation in fluid dynamics, it was reinterpreted as a 
canonical field theory for weakly dispersive and weakly nonlinear 
systems. This reinterpretation led to the hypotheSiS that the 
properties of the XdV could be understood in terms of a balance 
between the competing effects of dispersion and nonlinearity. 
Alternatives to the KdV were proposed on the basis that their 
dispersive properties were physically and mathematicall.y 
preferable to those of the JCdV. 

The use of dispersion, Which is a linear concept, as a criterion 
for predicting the properties of these nonlinear equations was 
examined in an earlier thesis by Abbas. By introducing a general 
class of equations which includes the lCdV and all its proposed 
alternat1ves as spec1al cases, Abbas 1nvestigated 1n detail the 
predictions based on the dispersion relation and compared them 
with the actual properties of the equation, particularly in regard 
to the existence of solitary waves. He found little correlation 
and some contradictions and concluded that the idea of a balance 
between nonlinearity and dispersion is not useful way of 
understanding these equations. It is clear, therefore, that we 
must develop other criteria to obtain this understanding. 

In this thesis we continue this investigation by looking at other 
propert1es of the class of equations introduced by Abbas which are 
relevant to the KdV. The general question which we are 
considering is whether the properties of the KdV are unique in 
this class and if so how can we decide this a priori, i.e., from 
the equation and its elementary solutions. A prerequisite for 
tackling this problem is to establish whether the embedding of the 
KdV in this class is reasonable, i.e., that these equations can 
indeed be considered as homologues of the KdV. Thus, it is 
necessary to establish well-posec1ness, the existence of solitary 
wave and other elementary solut10ns and the existence of other 
properties such as, for example, conservation laws. These are the 
specific questions that we cons1der in this thesis. 

~ make the thesis self-contained we begin with a comprehensive 
review of the JCdV and its main alternative, the regularized long 
wave equation, together with the work of Abbas. This comprises 
the first part of the thesis and puts our own contribution in its 
proper perspective. 

The second part of the thesis contains our own contribution 
and begins with a completion of the analysis of sol1tary waves 
begun by Abbas. We next partition the general class into five 
equivalence classes and establish well-posedness for three of them 
and existence for a fourth. Finally, we show that all equatiOns 
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have at least two conservation laws, some of the equations have at 
most three conservation laws. These results enable us to conclude 
that this class of equations is a reasonable one in which to 
investigate the question referred to above. 

, 
The thesis ends with a resume and suggests avenues for continuing 
this investigation. 
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ctmPTER ONE 

INTRODUCTION 

1.1 General Perspective 

The last twenty five years have seen a great deal of progress in 

the theory of nonlinear partial differential equat1ons. This has 

come about for three reasons. Firstly, the use of functional 

analysis has advanced the understand1ng of well-poSedness in the 

subject. By posing the problem in a Banach space or Hllbert space 

and using weak topoloq1es on these spaces, techn1ques suCh as a 

priori inequalities toqether with fixed point theorems, 

contraction maps and sequencing can be used to establish the 

existence of weak solutions for a large variety of equations. 

Uniqueness and regularity can then be proved separately to 

establish the existence of classical solutions. The point here 

is that it is easier to prove the existence of weak solutions and 

then establish regularity rather than do it both toqether. 

secondly, the advent of high speed computers with large processing 

capability has allowed efficient numerical procedures to be 

developed to obtain detailed quantitative solutions of complicated 

equations such as the Navier-stokes and Einstein equations. It 

has also allowed numerical experimentation to become a standard 

tool of mathematical 

simulations. Thirdly, 

investigation by providing large-scale 

in the area of exact solutions and 

reduction to quadratures, i.e., integrability, there has been a 

significant advance with the discovery of a class of nonlinear 

partial differential equations which can be transformed to a 

linp.a.r integral equation via an asSOCiated linear eigenvalue 

problem. Th1s procedure is usually referred to as the inverse 
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scattering method. 

In this thesis we are concerned with this third aspect and in 

particular with the properties of the equations in this class, 

which we refer to as the integrable class. Since one of our major 

questions concerns well-posedness, we shall use functional 

analytic techniques. On the other hand we make no use Whatsoever 

of numerical methods. 

1.2 Tbe integrable class 

The class of equatiOns for Which the inverse scattering method 

applies includes equations such as the well-known korteweq-de 

Vries equation (ICdV) 

~ ... 11x ... ul1x ... Uux - 0 ( 1.1) 

and the sine-Gordon equation (SGE) 

~ - ~tt - sin ~. (1.2) 

Both of these equations arise in many applications and hence ~re 

not merely pathological examples. Typical applications include 

. shallow water wave theory, plasma. waves, ion-a.coustic, the 

anharmonic !attic, ••• , etc. Furthermore, from the construction 

of the equations it is clear that the kdV and SGE can be 

oonsidered as particular nonlinear extensions of the undirectional 

wave equation and one dimensional, wave equation respectively. 

This view point will be taken up later for the KdV. 

It turned out that these equations have a number of very 

interesting properties apart from the fact that they can be 

linearized. These are as follows. (1) They each have a family 
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of sol1tary travelling wave: solutions which move with different 

speeds. This contrasts with the linear case where all solitary 

waves have the same speed. . (2) They each have a new class of 

exact solutions called multisolitons. A multisoliton is a 

nonlinear combination of solitary waves which decomposes 

asymptotically as It I - CD into a linear combination. (3) Each 

equation has an infinite number of local conservation laws. These 

lead to an infinite set of conserved functionalSwithin a class of 

solutions which includes the multisol1tons. ( 4) Each equation has 

an auto-eacklund transformation. By definition this is a ~ of 

one solution to another. The usual form of the map is in ter:ms of 

a system of partial differential equations. 

The question now arises as to whether all these properties are 

connected. we look at this question from the following point of 

view I if an equation has soliton solutions does it follow that (1) 

it is solvable by the inverse scattering method. (2) it has an 

infinite number,: of conservation laws. (3) there exists a sacklund 

transformation. The reason for doing this is because of ·the 

following observations. Pirstly •. there is no systematic way of 

getting the associated linear eigenvalue problem for inverse 

scattering from the nonlinear partial differential equation. It 

has to be guessed. secondly. although there are systematiC ways 

of getting conservation laws and saCklund transformations. the 

methods are tedious and may not· always i work on arbitrary 

differential equations. The situation is similar in regard to 

finding soliton solutions. Clearly. if we are going to solve this 

problem then it is necessary to first establish whether an 

equation has soliton solutions or not. To put it more 

specifically. we would like to know when a sol1tary travelling 
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wave solutlon of a nonllnear partlal dlfferentlal equation is also 

a soUton. That ls, we would like to know what propertles this 

wave and the equation must have to quarantee the existence of 

multisol1ton solutions. This study was initiated by N>ba.s [1] and 

this thesls is a continuation of it. I~ order to put our 

contribution ln perspectlve we now turn to a discussion of the 

!(dV, its properties and the work of Abbas. 

1.3 The K4V as a field theory 

The XdV equation is a nonlinear partial differential equation of 

evolution type in one space and one time dimension. The equation 

(1.1) was first derived. in 1895 in the study of shallow water 

waves by ~orteweg and de Vries [10] to demonstrate that it could 

support a solitary wave. 

Inspite of this earlier derivation of the equation it was 

neglected for about 70 years until 1964 When Broer, in his study 

of the interaction of nonlinearity and dispersion in wave 

propagation [5] suggested that the equation could be approached 

from the point of ~iew of· a field theory. The properties of this 

field are thought to be obtained from nonlinear and dispersive 

effects corresponding to the terms u~ and Uux respectively. 

Since these terms appear additively in the equation their 

interaction will be observed only in the solution space. Hence 

the general· scheme proposed by Broer is to write the field 

equation as a structural perturbation 

(1.3) 

of the basic unidirectional linear nondispersive equation 
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( 1.4) 

Where N and 0 are the nonlinear and dispersive perturbations 

respectively and can be generated from physical considerations. 

Tt\is scheme has the follOWing advantages I 

(i) Since the zero order approximation implies that ~ + ~ 0, 
8x 8t 

then the equality §. - -§. 
8X 8t 

can be used to construct 

alternatives to the field equation by changing N or 0 or both. 

For example, the equality is used to change Uxxx: in the ICdV 

equation to -Uxxt to establish an altemative to the KdV 

equation [3]. 

(ii) The terms in the field equation can be considered 

independently 80 that physical and mathematical information can be 

introduced through the dispersive terms or nonlinear terms or 

both. 

Hence, this interpretation of the ICdV equation led to the belief 

that its properties could be understood in terms of a balance 

between the non linear and dispersive effects. 

1.4 properties of the K4V 

The field theoretic interpretation outlined above awakened the 

interest of the investigators to look again at the properties of 

the KdV. One of the fasCinating discoveries was made in 1965 When 

zabusky and Kruskal [16] found by numerical experiments that the 

KdV solitary wave u - ~csechz i' [x - (l+c)t] is a soliton and 

that these sol1tons are remarkably stable. This was the first use 

of the term soliton. Following this discovery attention was paid 

by many others to investigate its mathematical properties. AmOng 

these properties we present the following. 
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(1) The equation has multisoliton solutions. This behaviour was 

first observed numerically by zabusky and Krusltal [16] in the case 

of two solitons and the analytic expression for the general case 

was given by Hirota [8] and Wadati and Toda [13]. For example the 

two soliton is given by 

u _ 72 Cl ... 4 cosh (2x-9t) ... cosh (4x-64t)] 
[3 cosh (X-28t) ... cosh (3X-36t)]z 

(1.5 ) 

Asymptotically (as I t I - CI) this decomposes into the two solitary 

waves 

(2) The equation has an infinite number of independent local 

conservation laws [11] by which 1t 1s meant that the KdV can be 

expressed in a form !tTi '" !xXrO, where (Ti)~_1 and (X1)~_1 

are polynomials in x, t, u and derivatives of u. For example, 

the KdV itself can be written in the forme 

z . 
(u)t ... (u ... se ... 1lxx}x - 0 - Tl - u and 

2 

Also multiplying the K~ by u gives 

. z 
U Z .. z u3 U x .. z 
(-)t ... (z:... ... .- ... UtL __ - -) - 0 - T2 - -, 

2 23 -xx 2 x 2 
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This property was exploited by Bona and Smith [4] to derive a 

priori'estimates of the solutions in proving well-posedness. 

(3) The KdV was the prototype for developing the inverse 

scattering method. The solution u(x,t) of the MV equation can 

be represented by the potential of the linear SchrOdinger equation 

~xx + (A - \u(x,t»~ - O. (1.6) 

This fol:1DS the associated eigenvalue problem. Hence, the exact 

solution u( x, t ) of the MV equation is obtained from the usual 

inverse scattering' method in terms of the solution of the 

Gelfand-Levitan integral equation [7]. Note that (i) the method 

can only be appl1ed to certain classes of initial data and (i1) 

the multisol1tons can 'be obtained in explicit form. 

(4) There exists a ea.cklund transformation [14] for the KdV as 

follows I 

L ( L.,.) , 2 + 1 ( )2 
w~TW2 - - a~ 2 w~-w2 ' 8x 

awi where ui - - - , i - 1, 2 ax are solutions of the ICdV. 

For example starting with ul - 0 gives the Single soliton (or 

solitary waves). 

1.5 Alternatives to the KdV and the general class 

There are many, alternatives to the KdV equation generated 

according to the Broer scheme. Most of these alternatives have 

been proposed on the basis that their mathematical and physical 
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properties are preferable to those of the KdV. The mathematical 

basis used to construct these alternatives was investigated by 

Abbas [1] who concentrated his study on the solitary wave 

solutions. 

In the first· place, analysing separately the effects of 

nonlinearity and dispersion on selected initial profiles, Abba.s 

found that for the KeN equation the effect of nonlinearity is 

inSignificant, but that the sedhz solitary wave profile disperses 

more slowly than the others. Moreover, synthesising the KdV and 

comparing the properties of its solitary waves with the predict10n 

of its component parts, he found several contradict1ons. Be 

concluded that the Broer hypothes1s 1s not valid on the KeN 

equat1on. 

Next, the general belief that ex1stence of solitary waves 1s due 

to a balance between nonlinear1ty and dispers10n was tested. Por 

th1s context, Abbas cons1dered the general class of th1rd order 

equatiOns w1th quadrat1c nonl1near1ties, 1.e., 

Ut + Ux + &lUUx + a 2uut + &3~ + a4~ + a5~t + asUttt - 0 

(1.7) 

where ai E R (1 - 1, 2, ••• , 6) • This contains the KdV and some 

proposed alternat1ves such as the regular1zed long wave equat10n 

(RIM) [3] 

ut + Ux·+ ul1x - Uxxt - 0 . (1.8) 

and Joseph & Egri equation (J.E) [9] 

ut + lix ~ uux + unt - o. (1.9) 
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SOlitary wave solutions with sechz profiles are shown to exist for 

a wide variety of dispersion relations. However, Abbas also 

showed the existenCe of a formally nondispersive sUbclass of the 

general class which has stable solitary waves. This clearly 

contradicts the belief that the formation and properties of 

solitary waves can be understood in tel:1llS of a balance between 

nonlinearity and dispersion. 

consequently he concluded that dispersion is not necessary for the 

existence of solitary waves [1] and [2]. 

Since dispersion is not a useful criterion in understanding the 

properties of the KdV equation, the question arises as to Whether 

it is possible to develop other criteria for such understanding. 

In order to attack this problem it is convenient to establish a 

well-defined class Which includes the KdV and its alternatives and 

has solitary wave solutions and to investigate the extent to Which 

this class has the properties of the KdV Which were listed above. 

ThiS is the specific problem that we loOk at in this thesis and 

our strategy and contribution is described below. 

1. 6 properties of the general class 

we investigate the general class of equations (1.7) since it has 

solitary wave solutions and can be thought of as· forming a 

neighbourhood of the KdV ln the space of coefficients. OUr 

contribution ls· in two main areas.· Pirstly, we examine the 

well-posedness of the general class (1.7 )For ~rtai,. prescribed data. 

secondly, we look' at the number of conservation laws of the 

general class. The well-posedness ls examined as follows I 
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(1) we prove that the general class can be reduced, for a certain 

class of data, to a system of first order. partial differential 

equations., This reduction is then used to classify. the problem 

into two subclasses which we call the nonsingular and singular 

subclasses. 

(2) we use the method of characteristiCS on the nonsingular class 

and find that well-posedness is ensured for certain data. 

(3) For the Singular class, i.e., the class in which the method 

of characteristiCS fails, we find that this class can be reduced 

to four equivalence classes, namely, the IdV and RLW classes and 

two others which we refer to as WS4 and WS3 • (The names of these 

classes is characterized by their dispersive terms). 

( 4) Finally, we oonsider the well-posedness of these singular 

classes and provide some theorems which are necessary for their 

well-posedness. 

ThiS is the first part of our original contribution. 

The second subject is to examine the conservation law property on 

the general class (1.7). we use elementary operations to derive 

the first two conservation laws. We . then establish a necessary 

condition for the existence of a third conservation law, namely, 

a 
coupling of the coeffiCients that if il is a root of the cublic 

2 

equation a3 - a4~ +- as~z - a6~s - 0, then the corresponding 

subset has a third conservation law. This oondition is then used 

to classify the problem into four equivalence classes, which are 

the same as those in (3) above in the simple sense, i. e., no uUt 

term is present. We now turn to study the conservation laws of 

these classes separately. We find that unless the equation is in 
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the KdV class in the simple sense, then it has only three 

conservation laws. Finally, we turn . to the case in which the 

coupling coefficients condition is invalid and show that such 

equatio~s have at least two conservation laws. 

This is the second part of our original contribution. 

1.7 §ummary of contents 

The thesis is organized as follows. Together with this 

introduction it consists of eight chapters, five appendices and a 

bibliography. 

Chapters 2, 3 and 4 review the general class, the ICdV equation and 

the RIM equation, respectively. Chapters 5, 6 and 7 contain our 

own contributions. Chapter B contains our conclusions. A 8U1l'1M.ry 

of the chapters is given below. 

In chapter 2 a review of . the general class of. equationS is 

presented. c In the first section we study the existence of 

solitary wave and periodic wave solutions. The second sectio~ i8 

devoted to the study of the linear stability of these solitary 

waves. A general classification in terms of these solitary waves 

is presented in the third section. This is followed by a 

conclUSion of the work in this chapter. 

In chapter 3 a review of the mathematical properties of. the KdV 

equation is introduced. In the first section we state the 

existence theorem of the solitary and periodic wave solutiOns., In 

the second section the linear, stability theorem is stated. The 

third section is devoted to the study of the inverse scattering 

method. This method is then used to find the N-sol1ton solution 
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of the equation which is presented in the fourth section. This is 

followed by the investigation of the local conservation laws of 

the equation together with a proof of the existence of an infinite 

number of such conservation laws in the fifth section. Next a 

relationship between those conservation laws and the inverse 

scattering method is presented. Finally, the well-posedness of 

the corresponding initial value problem i.e. existence, uniqueness 

and continuous dependence of the solution on the initial data is 

discussed briefly leaving the technical proofs to appendix A. 

In chapter 4 we review the mathematical properties of the 

regularized long wave (RLW) equation. This chapter begins with 

the existence of solitary and periodic wave solutions in the first 

section. This is followed by the linear stability theorem which 

is stated in the second section. The third section is 

devoted to the investigation of the conservation laws of the 

equation. Next, the conditional stability of the solitary wave 

solution is presented together with outline proof of the theorem. 

Finally, we establish the well-posedness of the corresponding 

initial value problem in detail. 

In chapter 5 we complete the classification derived in chapter 2 

on the existence of solitary waves for the general class. Next we 

define the class W n s and study some of its properties. In the 

third section we show that the general class can be reduced to 

four equivalence classes by defining solutions to be equivalent if 

they are connected by nonsingular linear transformations. Next, 

we show how this reduction simplifies the well-posedness of the 

general class of equations. This is followed by a section devoted 

to showing that the reduction is then shown to preserve the 

-22-



existence of solitary waves as well. Finally, the existence of 

multisolitons in the KdV equivalence class is discussed. 

In chapter 6, the well-posedness of the general class of equations 

is presented. This chapter begins with the reduction to a 

semi-linear system of first order partial differential equations 

and the characteristics are established in the second section. In 

the third section the normal form of the system is obtained. This 

is followed by introducing the method of characteristics together 

with an 1llustration using the linear wave equation. The 

we 1 l-posedness classification into nonsingular and Singular 

classes is then presented in the fifth section. Next, the 

well-posedness of the nonsingular class is investigated. First, 

an integral formula for the nonsingular class is established 

followed by the proof of the uniqueness of the solutions is then 

shoWn by using the method of characteristics followed by the proof 

of the continuous dependence of the solution on the given data. 

Finally, the well-poSedness of the singular class is investigated. 

Reduction into the four equivalence classes is used to simpU.fy 

this ivestiqation. This is followed by some applications to 

illustrate the above technique. 

In chapter 7, the conservation laws of the general class are 

discussed. In the first section we use elementary operations to 

derive the first two conservation laws and establish the coupling 

coefficients condition Which is necessary for deriving the third 

one. This condi1ton 1s then used in the next section to classify 

the problem into four classes. This is followed by a section 

devoted to introducing the general formalism for the existence of 

conservation laws. This formalism is used in the next section to 
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prove that the class WS4 (in the simple sense) has only three 

conservation laws and to show that WS3 (in the simple sense) has 

also three conservation laws. Finally, we turn to the case in 

Which the coupling coefficients condition is invalid and provide 

an example to show that there exist at least two conservation 

l.aws. 

Chapter 8 contains our concluding remarks and list soma questions 

for future investigation. 
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CHAPTER 'n«) 

THE GENERAL CLASS OF EQUATIONS 

Consi~er the set of evolution equations, defined by 

Ut ~ Ux ~ a1uuX ~ a2uut ~ a 3uxxx ~ a4uxxt ~ asuxtt ~ a6ut t t - 0 

(2.1) 

where ai (i - 1,2, ••• ,6) are real numbers and u( x, t) is a real 

scalar field defined for all (x, t) 45 RZ. This class, which was 

first defined by Abbas (1], includes the KdV equation and some of 

its alternatives. 

In this chapter we shall concentrate on the study of the existence 

and properties of solitary waves Which have received considerable 

attention in the above quoted referQnce. 

2.1 Existence of solitary wave solutions 

The solitary waves are special cases of the travelling waves and 

the latter are obtained by transforming the evolution equation 

(2.1) to the frame of reference in which the waves appear 

stationary ( rest frame) • This is achieved by using the 

transformation 

x - x - (l+c)t, t - t and u(x,t) - v{x,t)~ .. ,-, (2.1.1) 

Then (2.1) reduces to 

(2.1.2) 
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Since the travelling waves appear stationary in this frame, then 

all the t - derivatives should vanish and (2.1.2) reduces to the 

ordinary differential equation 

(2.1.3) 

or, for simplicity, 

- v' ... «'lV' ... (jV'" - 0, (2.1.4) 

and the prime stands for the total x - derivat1ves. 

Integrating (2.1.4) once with respect to x gives 

- v ... g V Z ... (JV" ... Al - O. 
2 

(2.1.5) 

Multiplying (2.1.5) by v 4 
, integration again with respect to x 

is possible yielding 

i.e. 

(2.1.6 ) 

Where A1 and A2 are constants of integrations. Us1ng the 

substitutions 

x -c-/a'x and v-w-~-v, 
12/3 . 

(2.1.7) 

where a and /3 have the same sign, then (2.1.6) reduces to the 

simple form 

(2.1.8) 
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Equation ( 2 .1.8 ) has the general solution which is the 

weierstrassion elliptic function 

(2.1.9) 

where r 1 , r 2 and r3 are the roots of the cubic equation 

(2.1.10) 

'. 
and cn is the Jacobian. ell1ptic cos1ne amplitude with modulus 

If k Z f 1, cn (At,k) 1s per1odic. If k Z - 1, then the solitary 

wave occurs and (2.1.9) reduces to 

(2.1.11) 

S1nce for th1s case (2.1.10) has two 1dent1cal roots, then 1ts 

d1scrtminant should van1sh yielding the necessary cond1t1on, 

for the existence of solitary waves. From the expressions for k2 

and k 3 , (2.1.12) leads to 

Thus (2.1.12) can only be true for all a ~ 0 if Al - ~ - 0 

which imp11es that the boundary conditions of the solitary waves 

are v, dv 
dX. 

rurtherIlW)re, 

as I x. I .-, OD • 

Thus (2.1.10) red4ces to 
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"z _; and (2.1.11) becomes 

(2.1.13) 

But q«() - w - ~ -,v(x,t), thus 

Using the expression for ( and the transformation (2.1.1), then 

the solitary wave solutions of (2.1) are 

us(x,t) - 1 sech2 (..1-[X - (l.f.C)t]j. 
ex 2v'JJ (2.1.15) 

The above results are sU1l1llla.rized as follows. 

meorem 2.1 

(i) All the equations (2.1) have periodic' waves . which are 

weierstrassia.n elliptic functions with possible constraints on the 

parameters to keep the solutions real. 

(ii) The necessary condition for the e~stence of real solitary 

waves is that o(a3 , a 4 , as,~) > 0 and they all have the sach2 

profile. 

) .. 

( iii) The solitary waves have necessarily the boundary conditions 

u, ~ 
8x 

- ·0 as Ixl - CD • 

Furthermore, the work of I\bbas [1] gives the following corollary. 

corollary (2.2.1) 

The nonlinearlty is the dominant term in producing the sach2 
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profile whereas the dispersion only effects the width of this 

profile. 0 

2.2 Hinear stability 

Having obtained the existence of solitary waves, we turn our 

attention to Whether these solitary waves are stable or not. we 

shall not go into the proof of stability for the general case but 

merely illustrate this proof briefly for the non-dispersive class 

of equations [2], 

which have the solitary waves 

us(x,t) - ~ sech2 -.!. [x - (l+c)t] 
.. 2V(J 

Definition 2.1 

(2.2.1) 

(2.2.2) 

(2.2.3) 

The solitary wave solution us(x,t) of (2.2.1) is said to be 

stable if for any E. 0 there exists 8. 0 such that 

Ilv«(,O) - us«()11 < 8 - Ilv«(,t) - us«()11 < E 

for a suitable norm II~II for all t. 0, Where v«(,t) is a 

solution of (2.2.1) in the rest frame of the solitary wave, 

i.e. (- x ~ (1~)t,t. 

TO implement the above definition in its linearized form, let 

v«(,t) - us «() + Eg(C,t) (2.2.4) 

be the solution of (2.2.1) in the rest frame, i.e. 

(2.2.5) 

by working to the first order in E, 9 must satisfy 

-29-



du 
gt - cg, + ac(g,us+q des] + a2usgt + peg", + a49((t - o. 

(2.2.6) 

Hence g, being the solution of the linear equation (2.2.6) can be 

expanded in terms of the elementary solutions of (2.2.6), 1. e • 

(2.2.7) 

where the summation is over the discrete spectrum of (2.2.6) with 

Wd - 0 and wd - ~ + ind' (nd ~ 0), and the integral is over the 

continuous spectrum with Wc t! RI (wc ~ 0). Now, since the 

continuous component consists of periodic travelling waves which 

are bounded for all time t, then Wc 1s real and the waves are 

consequently stable. Thus the main concern is with the discrete 

components only. The frequencies of these components are usually 

complex, hence g( (, t ) reduces to 

(2.2.8) 

Hence the problem of determining the linear stability of (2.2.1) 

. is reduced to that of finding .. the discrete frequency spectrum of 

( 2 • 2 • 6 ), since for the non-zero frequency, either 

(1) nd > 0, the waves are stable wherever the discrete components 

die away as t· increase leaving small oscillations remaining, or 

(ii) nd < 0, the discrete components grow as t increases in an 

unbounded manner and the solitary wave is consequently unstable. 

But the zero frequency corresponds to some sort of stability, l.e. 

"neutral stability", and g, being now time independent, moves 

the solitary wave to a slightly different position in the rest 

frame, since Us modulo phase shift is the unique statiC solution 
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of (2.2.1) in the rest frame and 

(2.2.9) 

Now, to find the discrete spectrum which corresponds to the 

non-zero frequencies of (2.2.6) it is convenient to make use of 

the subst1tut1on 

q«(,t) - f«()e iwt (2.2.10) 

to reduce (2.2.6) into the ordinary differential equation 

[a4dZ~ + ~Usf + f] - O. 
d( 

(2.2.11) 

FUrther fd - 0 as I (I - GO, since v( ( , t ), beinq required 1.n the 

~ ~_A dZv 
same class as .Us ' satisfiesl v, d~ ~~ d(z - 0 as 1(1 - GO. 

Equat1.on (2.2.11) has the followinq properties, 

( i ) the asymptotiC solut1.ons of (2.2.11), be1.nq the solutions of 

constant coeffic1.ents different1.al equat1.on are unique. 

( 1.1. ) the equat1.on possesses a symmetry property. 

( 1.11.) the equat1.on can be arranged 1.n the matr1.x form 

r
1 

-~ 
1 0 

f1 r 0 0 01 f1 

l-~ ac:lwaz )u. :1 
~ f' 0 1· f' + 0 f' 
ds 1 1 1 

.1 iwa4 
f" 

-<nIg 
f" 13 13 f" 1 1 13 1 

(2.2.12 ) 

Where f 1 ' sat1.sfies (2.2.11)~ 

Since Us - 0 as ICI - GO, the last term in (2.2.12) vanishes as 

ICI - GO and at this l~it (2.2.12) reduces to 
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1 

o 

or the single equation 

o 

1 

lwa4 
{J 

~is equation has clearly the solutions 

,', 

. -"11 El a ... e ... ' -"2 IEI 
b ... e 

N 

f d( E,-wd)-

a_e "l 1EI ... b_e"2 IEI 

(2.2.13 ) 

(2.2.14) 

as 

... c ... e -"3 IE1 
as ( .. CD 

... c_e "3 1E1 as E ~ -CD 

Where A1 , A2 and A3 are the roots of the cubic equation 

peAS - lW{J"z - c" ... lw - 0 

i.e. Al - -"2 - J and A3 - ~W. Now the boundary conditions 

require that the eigenfunctions tend asymptotically to zero as 
, 

IEI - CD, but since there is no choice of the constants a*, b* 

and c'" for which this occurs simultaneously then the values 

W ~ 0 are excluded. Hence W - 0 is the only discrete 

eigenvalue. Hence the perturbed solutions (2.2.4) are 

and correspond to translations of solitary waves, Le. the 

solitary waves of (2.2.1) are neutrally stable. 
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2.3 Classification 

A general classification of the equations (2.1) by means of their 

solitary waves can be obtained by considering the properties of 

the width parameter p, where 

Which should be pos1t1ve. from Theorem (2.1). This class1f1cation 

has been done in [1] for the simple cases as follows I 

(A) ~ - 0, as ~ 0, c ~ o. 

(2.3.2) 

Hence two cases should be considered 

A( 1 ) as < 0, {JC has three possible graphs 

Se 
(3e Sc 

---t'------""r---+-- c c 

A(i)l A(i)2 A( i)3 

In the two cases A(1)1 and A(1)3, there would be no solitary 

waves, whilst in the case A(i)2 the·sol1tary wave does not exist 

if the roots Cl and c2 of the quadratic (2.3.2) are negative 

i.e. Cl < c 2 < O. If.- 0 < Cl < c2 '" the solitary wave would 

exist only inside the interval (c 1 ,c2 ) and if Cl < 0 < c2 it 

exists inside the interval (0,c2), without loss of generality. 
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A(1i) as > 0, three graphs of ~ are possible. 

Bc Bc 
\ , 

\ 
\ 
\ 
\ , 

... ... 

Bc 

'-

,I---~~~------C 
__ ~--------7-_t~c--------·~------c 

A(1i)1 A( 11)2 A(i1)3 

In 'the case A(i1)1 Which corresponds to the condition 

a Z - 4a a - 0, if cl C 0 C 4S (0, CD) in which the solita.ry 
4 3 5 

wave would exist. Whenever cl • 0 

which the solitary wave exists, Where Cl is the root of the 

quadratic (2.3.2). 

In the case A(ii)2, i.e. the quadratic (2.3.2) has two distinct 

real. root, corresponding to the condition a 2 
- 4a.3Cls • 0, if c 2 ' 

4 

c
3 

denote to these roots, and c 2 <. c 3 (without loss of 

general.ity), then 0 C c 2' C c3 - c 4S (0, c 2 ) (C3 ' CD) for whi~ 

the solitary waves would exist. Whilst if c2 C c3 C 0, then the 

solitary wave exists everywhere and the speed is unbounded. But 

if c2 C 0 C c3' then this case reduces to A(ii)1. 
" 

In the case A( ii)3, there is no real roots of the quadratic 

(2.3.2), corresponding to the condition 4a.3a.s < O. The 

solitary wave which corresponds to this case exists everywhere and 

the speed is unbounded. 

The results for c < 0 follow from the above by reversing the 

direction of the c-axis and interchanging the interpretation of 

the figures. 
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(B) a6 - 0 - as' c > 0 • 

For this case pc reduces to 

(2.3.3) 

The following cases arise. 

B( i) a 3 > 0 ;. a4 (the KdV case), the solitary wave exists where. 

the speeds are unbounded above. 

B(li) a3 • a4 • 0, the solitary wave would exist lf pc) 0, 

i.e. ~-c < a 1, 
4 

C ~ &'2 - 1 ~ the solitary wave exists if , a: ' 0 

Le. bounded from below. 

B(iv) a 3 - 0, i.e. ' pc - - a4(1+c),' then if a4 • 0, there would 

be no solitary waves. Whilst if a4 < 0, the solitary waYe 

exists and the speed is unbounded. 

Thus the results from this classification show that for quadratic 

nonlinearities and third order dispersive terms, solitary waves, 

where they exist, have the sech2 form. Also these results 

indicate that there is a variety of equations which have solitary 

wave solutions where all the equations have the same nonlinearity 

but different dispersion terms. 

COrollary (2.3.1) 

The linear equation is an unreliable indicator of the properties 

of the full nonlinear equation. 
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The proof has been carried out by Abbas [1] by analysing the 

linear part of (2.1) in terms of the dispersion relation w(k). 

(2.3.4) 

where u( x, t) - A( k )exp[ ( ilac-w( k )t ) ] , k;. 0, is the fundamental 

solution of the linear part of (2.1). Then by ordering these 

dispersion relations from being single-valued and real to 

many-valued and complex and compa.rinq with the results from the 

classification above, the solitary wave solutions of the 

corresponding nonlinear equations exist in all cases. 

2.4 9>OC1uslon 

In this chapter we have stUdied the existence of solitary wave 

solutiOns and their stabi11ty under linear perturbations. It was 

demonstrated that the solitary wave solutions exist for a wide 

variety of dispersion relations. Furthexmore it was shown tha.t 

stable solitary wave solutions exist for formally non-dispersive 

equations. Thus the main conclusion is tha.t dispersion is not 

necessary for the existence of unique and stable solitary wave 

solutions of the KdV alternatives. 

'!'hiS uselessness of the dispersion to predict the properties of 

the KdV alternatives leads us to discuss whether other criteria 

can be found for such predictions. For this concept it is 

convenient to present a comparative study for the alternatives of 

the KdV in terms. of the properties which comes from the KdV 

theory, such as I 

(1) well-posedness (2) 

( 4) conservation laws (5 ) 

solitary waves (3) so 11ton 

linearization by inverse method. 
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The theory of an evolution equation is said to be complete if all 

the information about the above properties are confirmed either 

positively or negatively. 

In the next chapter the theory of the KdV equation shall be 

presented in detail. 
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cm\PTER THREE 

REVIEW OF THE KORTEWEG-DE VRIES EQUATION 

This chapter is devoted' to a review· of some mathematical 

properties of the KdV equation. The results of chapter 2 are used 

to prove that the equations has a solitary wave Which is linearly 

stable. we, then, turn to the linearization of the equation by 

the inverse scattering method and obtain the N-soliton solution. 

we go on to show that the equation has an infinite number of 

conservation laws, and, finally that it is well-posed. 

3.1 Existence of solitary and periodic wave solut10ns 

consider the Korteweg-de Vries equation (KdV) in the form 

(3.1.1) 

Then both the solitary wave and periodic wave (cnoida.l wave) 

solu.tions are obtained by choosing ~ - as - a 4 - a 2 - 0 and 

a1 - a 3 - 1 1n the proof of theorem 2.1. Hence the proof of 

the following theorem 1s clearly obtained. 

nworem 3.1 

The ~V equation has two different types of travelling wave 

solut10ns, namely 

(1) Periodic waves (cnoidal waves), given by 

(3.1.2) 

equation 

r3 - 3crz - 6Al r - 6~ - 0, At, ~ are constants of integra.tions 
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and cn ls the Jacoblan elllptlc cosine amplitude with modulus K 

(ii) SOlitary waves, given by 

us(x,t) - 3c sechz' . (c [x - (l+c)t], C) O. 0 
2 

3.2 . stability of tht solitary wave solutj,Qn 

(3.1.3) 

In a sense simllar to that used in the proof of the linear 

stability of the solitary wave solutions of the general class 2.1, 

the following theorem is proved 

Theorem 3.2 

The solitary wave solution of the KdV equation is stable under 

linear perturbations. a 

3.3 Inverse scattering method 

This method, which was first discovered by Gardner, Green, Kruslcal 

and Miura [10], provides a procedure for solving the initial value 

problem of the lC<1V equation and is applicable to initial data that 

vanishes rapidly as I xl - (I). 

The initial value problem, considered in this section and in the 

next one, is 

Ut - 6U~ + Uxxx - 0 -(I) < X < (I), t) 0, (3.3.1) 

u(x,O) - g(x) (3.3.2) 

where, 9(X) satisfies the two conditions 

G) 

(i) ( ii) f (1 + Ixl )g(x) dx < (I) 

-G) 

(3.3.3 ) 
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Where the first condition guarantees the existence of a classical 

solution of the KdV equation [7], Whilst the second condition 

guarantees the existence of a solution of the eigenvalue problem, 

stated below, [9]. 

Lemma 3.3.1 

If v is a solution of the modified KdV equation in the fo~ 

(3.3.4) 

then 

(3.3.5) 

ls a solution of the KdV equation (3.3.1). 0 

If we take u to be known then (3.3.5) is a RicC4ti equation in 

v and can be linearized by making use of the transformation, 

(3.3.6) 

Hence (3.3.5) reduces to 

Which, without loss of generality, can be replaced by 

41xx - (u-A)41 - O. (3.3.7) 

EqUation (3.3.7) is time independent SchrOdinger equation with 

potential u, energy level A and wave function 41. 

The inverse scattering problem is to determine u from a 

knowledge of its scattering data, i.e. discrete· eigenvalues, the 

normalizing coefficients of the corresponding eigenfunctions, and 
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the reflection coefficients (reflection and transmission 

coefficients occur when a wave sent in from (XI interacts with a 

potential and some is reflected back and the rest transmitted 

through). 

For the continuous spectrum, since u - 0 as Ixl· - (XI, the 

asymptotic behaviour of the eigenfunctions that corresponds to 

the set of a.ll positive eigenva.lues ). - k Z may be written as 

exp(-1kx) ... b(k,t)exp(1kx} x - "'(XI 

a( k, t )exp( -1kx) x - -(XI ," 

where b is the reflection coefficient and a is the 

transmission coefficient. The conservation of energy is expressed 

by lal z "" Ibl z - 1. Assum,inq these scatterinq data are known, 

the problem has been studied by many people [13], [15], [30], ••• 

and it has been solved by writing 

~(X) - -2 ~K(X,x) 
dx 

(3.3.9) 

where K satisfies the Gel'fand-Levltan inteqral equation 

K(X,y) .... B(x""Y) .... ~B(Y""Z)K(XIZ)dZ - 0 
x 

and the Kernel B is given" by 

B( 0 - ~ ci exp(-~n+ 1. j b(k)exp{1kUdk. 
m=1 211_(XI 

(3.3.10 ) 

(3.3.11) 

In the above calculations t entered as a parameter. But if we 

take into account the dependence of "U on" t " and consequently 

the dependence of the" elgenvalues, reflection and transmission 
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coefficients and the wave function on t, then, to determine 

u(x,t), the KdV solution, we have to Know the quantities ~,cm 

and b(k,t). These are given by the following theorem, 

~eorem 3,3 (10). (20} 

If u(x,t) evolves according to the KdV equation (3.3.1) and 

u(x,o) - ° as Ixl - 00, the follOWing relations are satisfied 

( i) each discrete eigenvalue Aut of (3.3.7) is constant 

(ii) b(k,t) - b(k,O) exp (81k5 t) 

(iv) a(k,t) - a(k,O) 

where ,.(0), b(k,O) and a(k,O) are determined from the initial 

data of the KdV equation u(x,O) - g(x). 0 

Hence the solution of the ICdV equation is qiven by (3.3.9), 

and theorem 3 .3. , . having the form I 

u(x,t) - -2 ~K(X,xlt) 
dx 

(3.3.12 ) 

where K Sat1sfies the 1nteqral equation ( 3.3.10) such that 

N 
B(f,t) - £ c~ exp (8~t - ~() 

n-~ 

... .1 
2fT 

ro b(k,O) exp (1(8k3 t - k()}dk • 
-00 

3.4 N-soliton soJ~ 

(3.3.13) 

Having discussed the solitary wave solution and the inverse 

scattering method in the above sections we turn to the study of 

the N-soliton solution. The solitary wave of any nonlinear 
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evolution equation is called a soliton if there exist solutions 

for this equation which approach a linear superposition of its 

solitary waves as It I - 0). Zabusky [33] claimed that if the 

initial condition u(x,O) of the KdV equation 

Ut - 6UUx -+ Ux:xx - ° (3.4.1) 

satisfies the condition ~U(x,O» 0, then at least one soliton 
-0) 

emerges from this initia.l disturbance. On the other hand Segur 

[25) extended the inequality of Bargmann [2] and found an upper 

bound for N, namely 

u(x,O ), u(x,O) ) 0 

N __ 1 -+ ~IXI9(X)dX' where 9(X)-
-0) 

o , u(x,O) < 0 

The interaction between solitary waves for the KdV equation 

(3.4.1) was first observed, numerically, by zabusky and Kruskal 

[34] • They showed that if two solitary waves placed on the real 

line, the taller to the left of the shorter at t - 0, are 

travelling, then after a sufficient time passed away, they 

overlap, interact and the taller overtakes the shorter and they 

both regain this original shapes and velocities. The only change 

is that a phase shift occurs. Lax [18] discussed the same 

phenomena analytically and confirmed zabusky and Kruskal's 

observations. 

The exact solution for the case of multiple collision of N 

solitons with different amplitudes was first found by Hirota [13]. 

The proof of such solutions is found in many references [10], 

[13], [20]. 
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This proof depends on the fact that the N-soliton solutions have 

zero reflection coefficients. With this fact the Gelfand-Lev1tan 

integral equation (3.3.10) reduces to 

. N N ~ 
K(X,y) + 1: ~ exp (-kut{x+y)} + 1: ~lexp (-~(z+Y)K(x,Z)dZ 

. m-1 m-1 X 

(3.4.2) 

In order to remove y-dependence from (3.4.2) we must take 

(3.4.3) 

Where cm have been introduced so that the ~ turn out to be 

normalized eiqenfunctions of the schrOdinqer equation 

.xx - (~+u). - 0 (3.4.4) 

we now substitute (3.4.3) in (3.4.2) and separately equate the 

coefficients of exp{ -kuty} to zero. we qet the followinq N 

linear equations in • 

m - 1, 2, ••• , N (3.4.5) 

which can be re-wrltten in the form 

(I ... C)~ - E (3.4.6) 

where I is the unit matrix of order N, 

(3.4.7) 
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is a NxN matrix and 

..,- and E-

are column matrices. 

Cl exp (-klx) 

c2 exp (-k2x) 

(3.4.9) 

A sufficient condition under Which (3.4.6) has a unique 8olution 

i8 that C is po8itive definite. This is true 8ince the 

quadratic form corresponding to C i8 

which i8 positive. Now we note that: 

N N 
o ( det C - ( IT ~) exp (-2( r ~)x) det 1 

m-l m-l kut + kn 
(3.4.9) 

so that det 1 ) O. 
kua+~ 

FrOm ( 3 .4.9 ) it is clear that C can be written as 

det C - ex exp {-I3X}, ex and (J are positive. Then by expanding 

along the nth column we have 

A - det (I+C) - ~ (8mn ... cmcn exp(-(kut + kn)lC})O (3 4 10) 
. m-l kut ... ~ mn· • 

where Omn 1s the co-factor of the coefficient matrix I+C. 

Using Cramer's rule to solve (3.4.6), then 
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Replacing y by x in the expression of K(X,y) in (3.4.3) and 

using (3.4.11), we have 

SUbstituting (3.4.12) in (3.3.12) 

u(x,t) - -2 ~ K(x,x) - -2 ~ In A 
dX dXz 

- -2 ~ In (det (I+C)) 
dxz 

(3.4.12 ) 

(3.4.13) 

which is' a solution of' the KdV equation· corresponding to a 

reflectionless potential where this reflectionless initial 

condition remains reflectionless from theorem 3.3. 

The asymptotic analysis carried out by Gardner, Green, Kruskal and 

Miura [10] for the solution of the KdV equation showed that it 

represents some finite number of ( interacting) solitons with 

nothing else present. This is summarized by the following theorem' 

Theorem 3. 4 [10] 

If u is a reflectionless solution of the KdV equation, then as 

I t I - CID each eigenvalue Ap - -~ has associated with it 

a solution which app~ches the solitary wave form 
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where C - x - ~zt , p - 1, 2, ••• , J Nand, 

N r log 
m-p+1 

t-oo 

(3.4.14) 

t - -110 

] 

(3.4.15 ) 

i.e. (3.4.15) implies that the total phase shift is the sum of the 

phase shifts in isolated pairwise interaction with every other 

soliton. a 

3.5 Local conservation laws 

A local conservation law associated with a given equation is 

expressed by an equation of the form ~ T + ~ X - 0, Where X 
at 8x 

and T are functions of x and t and the various derivatives 

of u. 

In this section, the conservation laws for the cOO-SOlutions of 

the KdV equation 

Ut - 6U~ + llxxx - 0 , (3.5.1) 

where u together with all its x-derivatives vanish as Ixl - 110, 

are established. 

In fact it is historically known that Korteweg and de-Vries [17] 

themselves derived their model in a conserved form. The first 

conservation law of (3.5.1) is obtained by re-writing the equation 



in the form, 

(3.5.2) 

The second conservation law is obtained by multiplyinq (3.5.1) by 

u and arranqinq the resultinq equation in the form 

~
z 

!L I1Z A :s 
[.:D-] + 1C- [- 2u + uu ___ - 2 ] - O. 

8t 2 8x -xx 
(3.5.3) 

Multiplyinq (3.5.1) by U Z - 1 Uxx:, then the third conservation 
3 

law can be established in the form 

(3.5.4) 

In fact, the existence of an infinite number of such conservation 

1aws has been found by ~ura et al [21]. These conservatlon laws 

are used to derive a priori estimates of the solution of the KdV 

equation as shall be seen in section 3.7. 

~rem 3.5 

There exist an infinite number of polynomial conservation laws for 

the ctJO-solution of the MV equation (3.5.1). 0 

The proof of this theorem is outlined as follows! 

COnsider the Miura transformations, 

(3.5.5) 

Which couples the modified KdV equation 

(3.5.6) 
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with the KdV equation (3.5.1) as in lemma 3.3.1. By making use of 

the transformation 

x' - x + L t, 
2Ez t' - t, u(x,t) - u'(x',t') + _1 __ and 

4EZ 

V(x,t) - ew(x',t') + 1--
2E 

(3.5.7) 

Where the specific dependence on the arbitrary parameter E has 

been chosen to get the desired results below, (3.5.1) gives 

o - llt - 6UUx + uxxx 

(by using (3.5.5» 

(3.5.8) 

(by dropping all primes and using (3.5.7)]. 

Now, inserting (3.5.7) into (3.5.5) and dropping all primes, then 

u - w + EWx + EZw2. (3.5.9) 

By solving (3.5.9), recursively, w can be determined in the form of 

a formal power series in E with coefficients which are functions 

of u and x-derivatives of u, i.e., 

(3.5 .10) 

Using (3.5.10) and (3.5.8), then the expression in the square 

brackets of (3.5.8) must vanish to all orders in E since we are 

dealing only with formal series, i.e. 

(3.5.11) 

(to all orders in E). 

-49-



Equation (3.5.11) can be re-written, to all powers in E, in the 

form 

(3.5.12 ) 

Thus, the coefficient of each power of E is a conservation law 

for the IMV equation (:3.5.1). This leads to the existence of an 

infinite number of conservation laws of the ICdV equation since 

(3.5. 11) does not depend on E and it can be shown that the 

coefficients of the even power of gives nontrivial 

conservation laws Whereas the coefficients of the odd powers of E 

are trivial conservation laws [21]. 

The above theorem shows that the Kc1V equation has an infinite 

number of local conservation law'. The constants of motion are 

derived by integrating each conservation laws with respect to x 

between x - - CD to x - CD and using the assumption that u 

vanishes rapidly together with all its x-derivatives as Ixl - CD 

e.g. 

p~ - r udx, 
-CD 

3.6. Relationship between the inverse method and conservation laws 

In the last section, the eigenvalue problem played a distinguished 

part to prove the existence of an infinite number of conservation 

laws. This proof was via the use of the Miura transformation. 

ThiS result provides a clue to the relationship between inverse 

method and the conservation laws for a broad class of nonlinear 

evolution equations which was systematically discussed by Ablowitz 

et al [1] and contains the KdV, the s ine-Goroon and other 
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equations. A general method for deriving conservation laws from 

the inverse method was provided by Konno et al [16] and Wadati et 

al [29] as in the followinqs 

Theorem 3.6 

The conservation laws of the KdV equation (3.5.1) can be obtained 

from the inverse method. 0 

The proof of this theorem is in [16]. 

3.7 well-posedness 

The theory of existence and uniqueness of the solution of the KdV 

equation began with Sjoberg [26]. He showed that for periodic 

data with three L2 derivatives, the initial value problem of the 

KdV equation with this data has a solution, but he did not 

consider the continuous dependence of the solution on the data. 

Temam [27] has used the method of regularization by adding the 

term Ellxxxx to the KdV equation to qet some properties. Then, 

by letting E 0, a weak solution to the KdV equation 

corresponding to periodic initial data has been shown to exist. 

However no claim was made to extend the initial value problem to 

the inifite interval by this method. FUrthermore there was no 

consideration of the continuous dependence of the solution on the 

initial data. Up to the present the problem has been studied by 

many others [8], [28], Among those people Bona and Smith 

[7] used the method of regularization to prove that the initial 

value problem, 

-00 < x < 00, t ) 0 

(3.7.1) 

u(x,O) ... g(x) 
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is well-posed. Since the uniqueness is easier to prove and it had 

been done by, for example Sjoberg [26], we begin the theory of 

well-posedeness by the uniqueness of the the solution of (3.7.1). 

Theorem 3. 7 (uniqueness) 

If the initial value problem (3.7.1) has a solution, then this 

solution is unique. 0 

. ~ .... 

Let u and v be two solutions of the initial value problem 

(3.7.1) and W - u - v. Then w satisfies the initial value 

problem, 

Wt + A [(u + v)w]x + Wxxx - 0 
2 

W(x,O) .. o. 

Multiplyinq the first equation in (3.7.2) by w, we have 

WWt + ; W [ (u + V)w]x + WWxxx - o. 

(3.7.2) 

(3.7.3) 

Integrat1nq (3.7.3) from x - -m to X - m, then if w, Wx and 

Wxx van1.sh as I x I - m (th1.s w1.11 be confirmed in the existence 

proof), (3.7.3) reduces to 

!L 
dt 

rm wZ(x,t) - - ~ rm(Ux ~ Vx)Wzd.x 
-m -m 

If c - sup lux ~ vx" then 
xER 

~ F(W) < 1 C pew) 
dt 2 
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(3.7.5) 



Where F(w) , ~ wZdx. Hence (3.7.5) gives 
-(I) 

F(W) - F(O) exp ! ct 
2 

- 0 (since F(O) - 0) 

i.e. w - 0 almost everywhere, 

i.e. U!!i v and the solution of (3.7.1) is unique. 

we turn now to prove the existence. The proof is very long and 

complicated. Before outlining this proof, we define the function 

spaces Which are used in this proof. 

Definition 3.7.1 

( 1) LZ(R) - (uCx). rCU)ZdX ( CD), 
-(I) 

(i1) HSCR) [Sobolev space of order S] - (uCx), UELz(R) and 

(i11) is !! e(o, TI as) - (u, u, R x T - R, for each t: E [O,T], 
T 

u(.,t) E as and the mapping u, [O,T] - as is continuous 

and bounded}, 

Ilull - sup 
~tJs 
.7t o<t~ 

T 

I I u( ., t >I I s 
H 
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( iv)~s,k _ (UEX,t) E~S I ~ E as, o .;; i .;; k}, 
T T ati T 

"u"lls,k - SUp SUp 
11 

~~,~,..u 
Ilus • at1 

T o~t.;;or O~iQ 

Now, leaving the technical proofs to Appendix (A) the proof for 

the existence of the solution of (3.7.1) is summarized as follow I 

( a) Regularization of the ISeW 

The ~ equat10n in (3.7.1) is regularized by adding the term 

- 6llxxt; so that (3.7. 1) becomes 

(3.7.6) 

u(x,O) - g(x) -~ < x < ~ and E E(0,1]. 

By making use of the transformation, 

• .l 
x - ( - E2(X-t), t - T - E2t and u - V«(,T) - EU(X,t), 

6 E (0,1] (3.7.7) 

equation (3.7.6) transforms to 

(3.7.8) 
J. 

v( (, 0) ... h( () ... E g( EZX) • 

The initial value problem (3.7.8) was proposed by Benjamin et al 

(4] as an alternative to the KdV equation. The exact theory for 

( 3 .7.8) has been provided by [ 4 ] and shall be discussed 1n the 

next chapter. Hence for a fixed E both u( x, ° ) and v( (, ° ) 
are in the same function class and the following lemma. can be 

clearly introduced. 
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Lemma 3.7.1 (7] 

( 1 ) If 9 415 Eft, k.. 2, then there exists a unique so lut ion 

u(X,t) to the reqularized KdV equation (RKdV) (3.7.6), 

for any finite T ) 0 and 415 it. k-p 
T 

(2) If 9 415 ~, then there exists a unique solution u(x,t) to 

(3.7.6) which together with all its derivat1ves lies in 1l - Ko 
T T 

for all finite T. 

our purpose is to let 0, but at this limit the 

transformation (3.7.7) is singular and the bounds of u cannot be 

obtained in terms of the bounds of v. Hence the bounds of u 

should be obtained by its own and this is done in the next part 

(b) A priori bounds for 891utlonB of RMV 

~ 3.7.2 (see appendix (A)] 

Let 9 45 r::f», then the solution u of (3.7.6) sa.tisfies 

(1) 

(2) 

(3) 

independently of 415, o < 415 < 1, 

where (1.+".+ is continuous monotone increasing function 

with (0)" 0 

For T) 0, there exists EO - Eo(T,1 1911 s) such that 
H 

Ilull Dz < (l( 11911 Ds ) independently of t 415 (O,T], where 

Cl' R+ - R+ is a continuous monotone increasing function, 
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(4) For any T > 0 and K ~ 3 and ~o as in (3), u(x,t) is 

bounded in Jl ~ with bounds dependi.ng only on T, ~o' 

1: 
Ilgllak and ~z 11911

H
k+l 

(5) u(x,t) 
AI k,l 

is bounded in lL T independently of ~ < ~o for 

all k,ll T > 0 

( c ) Regularization of the initial daM 

The data g(x) - u(x,O) is now regularized by convolution with a 

smooth function ~ to obtain the regularized data 

.. 
where f is the Pourier transformation of f, ~ is an even 

cfD-funtion satisfies 0 < 41 c 1 such that 41( 0) - 1 and 

\II( x) .. 1 - 4I( x) has a zero of infinite order and ~ - 0, 

exponentially, as I x I - III 

Then gE E 1fD. 

[e.g. 

Using this regularization of the data and the result of part (a), 

then the initial value prOblem 

(3.7.9) 

has a unique clll-solution u E ' which lies together with all its 

derivatives in 1lT for all finite T) O. 

(d) ~ll ~ QOnsideratiQD 

Since to each E, 0 < E .; 1 there is a unique solution of 
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(3.7.9), then the behaviour of this solution as 15 - 0 must be 

considered. This is summarized in the following 

Lemma 3.7.3 [see the Appendix (A)] 

Let 9 15 ak, k .. 3 and gE as in (c), then as 15 - 0 

(1) 119J 1Hk+j - O( 15 -~ :I), j - 1, 2, ••• • Uniformly on bounded 

subset: of Hk 

(2) 
_J.j 

"'E s ) I I 9 - gE I ~ k-j - V\ 

on compact: subset: of Hk 

for j - 1, 2, ••• • Uniformly 

( 3 ) I I g - gE I I Hk - o{ 1). Uniformly on compact: subset: of Hk 

(4) 

(5) 

is bounded in ~~ independently of sufficiently small 

for each finite T) O. is bounded 

in i~+m independently of sufficiently small 15 for each 

finite T) 0 and m.. 1 

Lu 
at: IS 

and is bounded 

in ~T independently of sufficiently small 15, fo~ all 

finite T) 0 and m - 1, 2, ••• , 5, (where 

( e ) §eqUencing to a weak solution of the KdV 

Using the results in (d), then the final part in this procedures 

is summarized in the following lemma whose proof is in [7] 

Lemma 3.7.4 

Let uE be the solution of (3.7.9) where 9 15 Hk, k fa 3, then 
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(1) is cauchy sequence in It k as E - 0 
T 

(2) is Cauchy sequence in I{k-3 
T 

as E - o. 0 

The above procedures can effectively used to prove the following, 

Theorem 3.8 (Existence) 

Let 9 E ak, k > 3. Then there ex1sts a unique solution u(x,t) 

of the initial value problem (3.7.1) Which lies in K~ for all 

finite T > O. Cl 

The uniqueness of the solution is quaranteed by theorem 3.7. To 

prove the existence let 9 E be the regularization of 9 as in 

(c) and u
E 

be the solution of the regularized KdV equation 

(3.7.9), i.e. to each E, 0 < E ~ 1 there exists a solution of 

(3.7.9). Using lemma 3.7.4 (1) these solutions form a Cauchy 

sequence inl:, . k > 3 for any finite 

is a Banach space, then as E - 0, uE 

using lemma 3.7.4 (2 ), 8t UE v 

in 1!.~-1 and 

T > O. Since Il~ is a 

- u in 1l~' 
1tk - 3 This E • 

T 

in I{k-3 
T 

S1m11az;ly, 

leads to 

E - o. 

purthermore,~ uE is bounded in Jt~-5 , so that, 

E ~u - 0 as E - 0 (at least in the sense of distribution). 
8xZ8t E 

Since uE - u in ~: ' then uE - u as E - 0 (in the sense of 

distributions). Thus 
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2. uE' - 2. u'" v (in the sense of distributions) as E' - 0, 
at at 
Where u is the solution of the KdV equation. 

Since the choice of T was arbitrary, i.e. if T becomes large 

enough, E' can be chosen small enough such that the results in 

part (b) hold. Then the solution can be extended over any T and 

the solution exists globally which completes the proof. 

we consider now the continuity of the solution with respect to the 

initial data. For this , 

~ _ AI s AI s-3 11IS-6(\ 
~s.T ~T(1.l(.T fl A.T 

let ~ 
~s,T be the space defined by 

••• , and let FI It' .... ~,T' be the 

mapping which assigns to each 9 E' It' the unique solution of 

(3.7.1), then with this notation the following theorem is 

introduced, 

TheOrem 3.8 [7] 

Let T > 0 be given and let F be the restriction to the time 

interval [O,T] of the map asSigning to 9 t! Ilk, k;.. 3 the unique 

global. solution of (3.7.1). The F is continuous. 0 

3.8 9;2nclusion 

In this chapter we have presented a review of the mathemat ical 

properties of the KdV. we have shown that the equation has the 

following propertiesl 

(a) is well-posed (b) has solitary wave and N-soliton solutions 

( c ) can be linearized by the inverse scattering method and 

(d) has infinite number of conservation laws. 

Hence the thoery of the KdV equation is complete in the sense 

given in the last chapter. 
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CH.APTER FOUR 

THE REGULARIZED LONG WAVE EQUATION 

The regularized long wave ( RLW) equation was first obtained by 

peregrine [17] to describe the development of an undu1ar bore, 

i.e., a smooth solitary wave that is observed to propagate in 

shallow water channels, and later by Benjamin et al [5] to 

describe approximately the unidirectional propagation of long 

waves in certain dispersive systems. Under the same 

approximations Which lead to the KdV equation the RLW equation is 

derived in the form [5]1 

(4.1 ) 

In this chapter a review of the mathematical properties of the 

mode 1 (4. 1) is presented. 

4.1 Existence of solitary and periodic wave solytions 

Like the KdV, the RLW has bounded travelling wave solutions Which 

are either solitary waves or periodic waves. 

Hence if we choose ~ - as - a3 - a2 - 0 and a1 - - a 4 - 1 in 

theorem (2.1) the following theorem can be proved. 

Theottm 44 

The RLW equation has two classes of solutions namely. 

(i) periodic solutions 

(4.1.1) 

where en is the Jacobian elliptic cosine amp1itued with modulus 

k, AZ - r 1 - r 3, kZ 
- (r2-r3 )/(r1-r3 ), and r 1, r 2 , r3 are the 
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roots of the cubic equation 

(ii) solitary wave solutions 

us(x,t) - 3c sechzi ~+c [x - (l+c)t], c) o. Cl (4.1.2) 

4.2 Linear stability of the solitary wave solutions 

Having proved the existence of solitary wave solutions, the 

question about the stability of these solutions arises and in this 

section we consider linear stability. If the solution u(x,t) of 

( 4.1) is approximated by 

u - us(t) + Eg(t,t), t - x - (l+c)t (4.2.1) 

then by us ing the asymptot ic analys is method as in section 2.2, 

we can prove the following! 

Theorem 4.2 

The solitary wave solution of the RLW equation is linearly 

stable. 0 

There is another type of stability (conditional stability) which 

makes use of the conservation laws of the equation. 

4.3 ,Conservation laws 

In this section we consider another important property of the RIM, 

the existence of a number of independent conservation laws. 

Replacing u by -l-u, the RLW equation reduces to 

(4.3.1) 
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which can be re-written in a conserved form: 

a a U Z 
-- (u] ... - [- -- Uxt] .- 0 
at 8x 2 

(4.3.2) 

This is the first conservation law. 

Multiplying ( 4.3.1) by u, the resulting equation can be 

re-written in the form ~ 

Z U
Z 

5 
L (le ... .::x] ... L [- _u_ uun] - 0 
8t 2 2 8x l 

(4.3.3) 

which is a second conservation law. 

The third conservation law is obtained by multiplying (4.3.1) by 

U Z • Hence the resulting equation has the form: 

L :5 _L ~ ... UZUxt] - 2UUxUxt: [Y.:. ] [4 8t 3 8x 

.L 4-
uZun] - 2Uxt [Ut - llxxt] [!ol:. ... 

8x 4 

.L 4- L (ut - ~] [Y..:. ... uZun] , i.e. 
ax 4 8x 

L :5 ... L [ut - UZ Z • [!L] - u Uxt -~- 0 (4.3.4) 
8t 3 8x xt 4 

which is the third conservation law. 

Hence ( 4.3.2), ( 4.3.3 ) and ( 4.3 .4) are three independent 

conservation laws for the RLW ( 4.3.1) • The corresponding 

functionals (constants of motion) are obtained by integrating the 

above equations and using the assumption u, Ux and Uxt - 0 as 

Ixl - m, then the three functionals are respectlvelYI 
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P~(u} - jUdx, 
-CD 

and P3(u} - ju3 dX 
-CD 

Olver [16] showed that the RUN has no other conserved densities 

depending on x, u,ux ' uxx' than those stated above. This is 

summarised in the following theorem, 

Theorem 4.3 

The only nontrivial independent conservation laws of (4.3.1) are 

(4.3.2), (4.3.3) and (4.3.4). 0 

The method of the proof is based on a comprehensive algebraic 

machinery for use in the investigation of conservation laws of 

partial differential equations, and a nlce presentatlon of the 

Olver's proof was glven by I'bbas [1]. 

In splte of the fact that the RLW has only three conservation 

laws, there might exist other consnrvnd dnnn1t:1c!fl dupend on t 

and the t-derivatives of u and ~. Duzhin & Tsujishita {lO] 

have discussed this possibility by using the method Which is based 

on the calculation of a certain part of the vinogradov spectral 

sequence (19] and the universal operator ep - -D~t + Dx - Dt , 

where 0 is the total differential operat:o~ defined on the 

algebra of x, t, u and the various derivatives of u. They have 

proved that the conjugate e; of the operator e F has a finite 

dtmensional kernel generated by three elements 1, u, 1(Uz + Uxt )' 

t,1t z 
The conjugate is given by p - DXOt - Ox + Dt , and by using the 

relationship between Ke~ e; and the space of conservation laws, 

the following theorem can be proved, 
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Theorem 4.4 

The dimension of the space of conservation laws of the RLW (4.1) 

is not greater than three. Cl 

4.4 Conditional stability 

In section 4.2, the stability of solitary wave solution of the RLW 

equation, under linear perturbation, was considered. In this 

section the linearity assumption is not specifically included. 

Morever, the stability of solitary waves is discriminated in 

respect of shape. This is achieved by a device entailing the 

definition of certain quotient space, as shall be seen in 

definition 4.4.1 below. 

To study this type of stability, consider the initial value 

problem for the RLW equation 

-m < X < m, t) 0 

u( x, 0) - 9( x) 

which has the solitary wave solution 

J. 
us(x,t) - 3c sechz• [~]z [x - (l+c)t] - ~(x-ct), z 1+0 

where c - l+c. 

(4.4.1) 

(4.4.2) 

NOW, the stability of ~ means that if u is made close to ~ 

at t - 0 then u will remain close for all t. For this 

purpose, some precise measure of distance between u and ~ must 

be specified. This metric is a functional depending on pairs of 

functions defined on the whole real axis and evaluated on the two 

solutions u and ~ of (4.4.1). This metric is generally a 
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function of t and not constant. 

Thus to establish the stability of (4.4.2), the following 

assumptions, made by Benjamin [4], are necessary I 

( 1 ) The solutions of ( 4.4.1) are cID-functions all of Whose 

derivatives vanish rapidly as Ixl - ID. 

( 2 ) The initial value g( x) and the solitary wave 4'( x) are 

close to each other. 

( 3 ) The solution u( x, t) exists for the considered class of 

g(x) and has the required smoothness properties (this is 

guaranteed by the well-poSedness theory of (4.4.1) Which is given 

in the next section). 

( 4) The two functionals J 

E(U) - r(UZ+~)dX - constant and 
-ID 

M(U) - JID(UZ~ uS)dx - constant 
_ID 3 

(4.4.3) 

for solutions of (4.4.1) with required restrictions on asymptotic 

values are used. 

( 5 ) A device . can be found to concentrate the proof on the 

stability of the shape of the wave. This is clear from the 

following definition of the metric used to measure closeness. 
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Definition 4.4.1 

Let f a1. , g E and B1./G be the quotient space, where G is the 

translation group in R, Le., Gyf(X) - f(x+y), Y E R. Now, 

define 

d(f,g) .. inf 
yeR 

Ilf(x+y) - g(x)11 1 • a (R) 
(4.4.4) 

Then d is a pseudo-metric on a1 and a proper metriC on the 

quotient space al/G. 

Using the above points, (1) to (5), Benjamin was able to prove a 

stability theorem. However his proof contained some restrictions 

and unjustified assumptions. These were improved and corrected 

later by Bona [6]. 

The final theorem, whose proof is provided by Bona [6] is as 

follows: 

1heorem 4.5 

Let E) 0 be given. Then there exists 8) 0, such that if 

9 E HZ, u is the solution of (4.4.1) and 

< 8, then 

d(u,ctI) , E. 0 

4.5 well-posedness 

consider the initial value problem 

-00 < x < 00, t) 0 

(4.5.1) 

u(X,O) s: g(x). 
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Re-writing the differential equation in (4.5.1) in the form 

~z a 1 z (1 - _v_ )Ut - - -- [u(x,t) + - u (x,t)] 
8xz 8x 2 

(4.5.2) 

1t can be regarded as an ordinary differential equation in Ut. 

If we cons1der the boundary conditions u(x,t) - 0 as Ixl - (I), 

the Green's function of the differential operator, i.e •• 

x < ( 

G(x,o = 

x " t 

is reduced, by using the boundary condition, to 

x < t 

G(x.o -

x " ( • 

Since G(x.O - G( (.x). 

Ae(x-() • x < ( 

G(x.o .. 

x " ( . 

using the continuity properties of the Green's function 

GI .. G/ and 8G/ _ aGI 
x -= (+0 x - (-0 ax x - (+0 ax x _ (-0 - -1 

one can obtain 

G(X,o ... - ! e-Ix-(I 
2 

Hence 

(4.5.3) 
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Which is the Green's function of the differential operator 

Then (4.5.2) can be inverted to 

I 

\ 

c ~ ~ e-1X-(){U«(,t) + • uZ«(,t)}d( • 
2 -CD 2 

Integrating the last equation once with respect to t and using 

the initial condition u(x,O) - g(x) we have 

u - g(x) + " t ~ )c(x-(){U«(,T) + • uZ«(,T)}d(dT 
o -CD 2 

Where )c(x-() - ~ sqn(x-()e-(x-(l • 
2 

(4.5.4&) 

Hence the original initial value problem (4.5.1) is formally 

equivalent to an integral equation and we can now re-write this in 

the form; 

u - Au - Bu + g(x) (4.5.4b) 

Where Bu-

Raving obtained the integral form of the general solution of 

(4.5.1) in the form (4.5.4) we turn to study the well-posedness of 

the problem. 

4.5.1 Existence 

The existence proof is done in two steps. The existence of the 

solution is first obtained locally and then extended globally. 
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The treatment, given below, closely follows that of Benjamin et al 

(5]. 

Local existence 

The proof of existence of a so lut ion to (4.5. 1) is reduced to 

existence of a solution to (4.5.4). For this purpose let e to be 

the space of all continuous and bounded functions defined on 

R x [O,tol with norm defined by 11.11 - sup 1.1 • One can show 
xfSR 
o<t<to 

that e to is complete normed linear space ( Banach space) • 

Consider now the integra.l equat ion ( 4.5.4) where the integra.l 

operator A acts on .e ~ , i.e., AI eto - t'to . Then for any 

v~, v 2 E tt: and any x fS R, t fS [0, tol, 
o 

Jt r 
o -00 

IVl - v21(l + 1 sup 
2 xER 

tE[O,tol 

Ik(x-()d(dT} 

'" IIv1 - V211Rto(l + ~ IIVllleto + ~ II v2 1 ~to}t 

(Since r IIk(x-() 11 dE-I). 
(4.5.5) 
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Taking the supremum of both sides for x,t E R x [O,tol and using 

the definition of the norm in the space et, we have 
o 

(4.5.6) 

which implies that A is continuous mapping of .e t into itself. 
o 

FUrthermore, it satisfies a Lipschitz condition on the ball 

Ilvll < R with Lipschitz constant A such that 

Since, using the condition (4.5.7) in (4.5.6), 

Choosing v2 - 0 and v1 - v in (4.5.8), then 

1.e., A is Lipschitz. Hence A is a contractive mapping for 

values of to' where t o(l+R) ( A ( 1. 

Similarly 

(4.5.9) 

But using (4.5.4) and (4.5.9), 

IIAVIIe, < Sup Ig(x)l + IIBvII..? 
to XER ~to 

< Sup Ig{x)l + A Ilvlln . 
xER ~to 

-70-



Now for the mapping A to be contractive over the ball I Ivl I - R 

for any to' we must have 

Sup Ig{x)I ~ {l-~)R. 

XER 
(4. 5 .10) 

It can be easily checked. that (4.5.7) and (4.5.10) can be 

satisfied simultaneously by choosing ~ - .! z R - 2M and 

sup Ig{x)J < M. Firstly (4.5.10) is satisfied, and (4.5.7) is 
xER 

satisfied for any value to such that t .. 1 • 
o 2+4M 

Hence A is contractive over the ball "v"ft .. R. Thus 
o 

according to the fixed. point theorems for Banach spaces, the 

integral equation (4.5.4) has a unique solution which is 

continuous and bounded for all t such that 0.. t .. to' This 

proves the following lemma I 

Lemma 4.5.1 

Let g{x) be a continuous function such that Sup Ig(x) I .. M < (I). 
xER 

Then there exists a to{M) ) 0 such that the integral equation 

(4.5.4) has a solution satisfying u(x,O) - g(x) which is bounded 

and continuous for x E R and 0 .. t ~ to' Cl 

Next we show that the solution guaranteed by lemma (4.5.1) has 

sufficient regularity to be a classical solution of (4.5.1). 

Lemma 4.5.2 

If g E cZ(R). Then any solution of (4.5.4) which is an element 

/J fiT ). /)z,(I) of .e; T ( or a g ven ) 0 1S also an element of t::" T • 0 
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Let u be a solution of (4.5.4) guaranteed by lemma 4.5.1, i.e., 

u - Au - g(x) .f. ([ r k(X-(){U.f.~u2}d(]d"'. 
o -CD 

Since u E~t ' then u is bounded and uniformly continuous on 
o 

Hence u - Au is continuously differentiable 

function i.e., ut exists and is given by 

Ut - (AU)t - r K(X-(){U+~Uz}d(. 
-Cl] 

FUrthermore ut is continuous and bounded on both x and t on 

R x [O,to ]. Hence Utt exists and is given by 

Utt(x,t) - rX(X-(){ut«(,t) +u«(,t) Ut«(,t)}d(. 
-CD 

Hence, by induction, the k th derivatives with respect to t 

exists and is given by 

~ obtain the x-derivative, the range of integration is divided at 

( - x, 1.e. 

u - q(x) .f. ~ Jt JXe(-x{U.f.~UZ}d(dT - ~ Jt reX-({U.f.~UZ}d(d"', 
o -Cl] 0 X 

(4.5.11) 

Since u(x,t) is a solution of (4.5.4) in eT then u(x,O) - q(x) 

is continuous and bounded, then Ux eXists, being given by 
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t t x 
ux(X,t) - g'(x) + J {u+-:uz}dr - ~ J J (u+-:uZ)eC-Xd€dr 

o 0 -Cl) 

-~ t J eX-C{u+~UZ}d€dr 
o X 

t r 1 elx-CI (U+1 Uz }dCdr. 
o -Cl) 

This shoWS that Ux is continuous and bounded, then the first 

integral is a continuously differentiable function of x. Since 

9 415 c z( R) we can d1fferent1ate again and obtain 

t t X 
Uxx(X,t) - g"(x) + I {ux+uUx}dr + ~ I I eC-X{u+iUZ}dCdT 

o 0 -CID 

- g" + It (Ux+UUx)dr + It JK(X-c){u+1 uZ }d(dT 
o 0 -CID 

t 
- g"(x) - g(x) + u(x,t) + I (ux + UUx}dr • 

o 

(using (4.5.4) 

Thus Uxx exists and is continuous and bounded. Clearly U has 

_ DZ'CID 
the regularity of g in its x-derivatives and so U ~T • 

jJ i, j 
(For the definition of the space 1;. T ' see appendix D). 

Combining lemma 4.5.1 and lemma 4.5.2, the proof of the following 

theorem is obtained. 
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Theorem 4.6 

Let g( x) E C Z ( R) and 00 hounded, then there exists a to) 0 

such that the lnltlal value problem (4.5.1) has a local classical 

solution for any t, 0 ~ t ~ to • (] 

Global existence 

Having obtained the local existence of solution of the regularized 

long wave equation (4.5.1) we turn to extend this solution for 

larger t. For this purpose the interval (O,to ] is replaced by 

theorem 4.6 can provlde the same set of properties that when 

assumed for u( x, 0) enabled the existence of solution of (4.5.1) 

to be proved for 0 ~ t .; to' I f this is the case then the 

solution of (4.5.1) exists ln the interval (to ,t1 ] and this 

argument can be repeated any number of times which leads to the 

existence of the solution globally. For doing this we introduce 

the following lenma. which proof is provided by Benjamin et al (5]. 

(i) is a sequence of functions in .e to and if 

wn(X,t) ls asymptotlcally null for all n, then so is 

(il) If w(x,t) is continuous and asymptotically null, then so 

are 
and lim ~ K(x-C)wn(C)dC • 

n-oo -00 

(iii) If u(x,t) is a solution of the integral equation (4.5.4) 

guaranteed by lemma ( 4.5.1) and if g, g' , ... , g(K) are 

continuous and asymptotically then 8~ 8~ u is aysmptotlcally 

null for all m > 0, 0 < P ~ K. 0 
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Prom now on the arguments depend on the assumption that we are 

dealing with solutions which satisfy u, ~, U xt - ° as Ixl - ~ 

(i.e. asymptotically null). For such solutions, the above lemma 

leads to the following theorem which assures the global existence. 

Theorem 4.7 

Let g(x) satisfy 

r (gz+q' z)dx - Eo < ~ and 9 cS C Z ( R) , then the part lal 
-~ 

differential equation (4.5.1) has a solution u cSe:'f:I.) which 

satisfies u(x,O) - g(x). Cl 

Let u(x,t) be a solution of (4.5.4) assured by lemma (4.5.1), 

then u is a classical solution of (4.5.1) [by theorem 4.6], 

i.e., u satisfies 

point:wise on R x (0, to]' Multiplying the last equation by u 

and integrating with respect to x between x - -L and x - +L, 

we have 

~ 
dt 

L J ~(Uz+~)dX + 
-L 

Integrating with respect to t and using u(x,O) - g(x), we have 

L 
J i(uz+~)dX 
-I" 

I" 

L 
i r (gz+g,z)dx 

~I" 

Since I (gz+q' Z )dx 
-I" 

remains bounded as 
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integrand in the right hand side is uniformly bounded as L - OD, 

L 
then as L - OD, I (UZ+~)dx must be bounded. 

-L 

using lemma (4.5.3) (i11), the integrand in the right hand side 

vanishes as L - OD. Hence 

E(U) - (4.5.12 ) 

through the interval (0, to] • 

Thus u( x, to ) provides the same set of properties that when 

assumed for g(x) enabled the existence of solution to be proved 

for 0'; t .; to' Hence the theorem is proved. El 

4.5.2 Unigueltess 

Theorem 4.8 

The solution of the initial value problem 

Ut + Ux + uUX - ~ - 0, -OD ( x (OD, t) 0 

(4.5 ... 1) 

u( x, 0) - g( x) 

quaranteed by theorem (4.7) ls unlque. 0 

Let u and v be two solutions of the initial value problem 

(4.5.1) and w - v-u, then w satisfies the initial value 

problem 

w(x,O) - o. (4.5.13 ) 

Multiplying (4.5.13) by w, i.e., 
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WWt + WWx + iw[W(u+V)]x - WWxxt ... o. ( 4.5.14) 

Integrating (4.5.14) with respect to x between x - - R, x - R 

R 
+ ~ J W[W(u+V)]Xdx 

-R 

R 

J ( v+u )WWx«1X • 
-R 

Since u, ux ' un' v, Vx and Vxt vanish as Ixl - CID, then so 

are w, Wx and wxt • Hence as R - CID 

.! a:. 
Z dt - .! Z 

j wwx ( u+V )dx 
-CID 

__ ~ Sup lu+vl 
xER 

- t c(t) JCID t(wz+W~)dx 

where c(t) - Sup lu"'vl. 
xER 

-CID 

Integrating with respect to t between 0 and t, we have 

j [w2 (x,0) ... W~(X,O)]dx 
-CD 

- 0 (since w(x,O) - 0) 

1.e., j (w2+W~:>dx =- 0 - W 5 O. 
~ 
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Hence u 5 v for all t > o. 

Thus the solution of (4.5.1) is unique. 11 

The choice of q E c z( R) in the above analysis was replaced by 

Bona & smith [9] by the assumption 9 E HZ(R) (see the appendix D 

for the definition of sk) and was considered in the last chapter. 

Hence theorems 4.7 and 4.8 can be slight ly changed to the 

followings 

Theorem 4.9 

Let 9 E ~, m > 2, then there exists a unique solution to the 

init1al value problem (4.5.1) 11es in 1t~ for all f1nite 

T > o. 0 

4.5.3 The dependence of solution on the initial data 

Let u and v be two solutions of (4.5.1) such that 

v(x,O) - gl(x) and u(x,O) - g2(x). Then w - u-v satisfies the 

initial value problem 

( 4.5.16) 

Using similar calculatiDrtSas in theorem 4.8, we have 

(4.5.17) 

where c(t) - Sup Iv(x,t) + u(x,t)t. 
XER 

Let, now, I I~gl IHl < 8, then 
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c(t) ~ sup Iv(x,t) + u(x,t) I 
XER 

Thus, 

mal( c(t).;; 119l11Bl + 11921181 
o.;;t..-r 

[by the properties of H1] 

[by (4.5.12]. 

- 2119111Bl + (11921181-11911181) - 211911181 + 8. 

(4.5.18) 

The relations (4.5.17) and (4.5 .18) are combinin9 together and 

give 

sup ;00 (wz+W~)dx .;; S exp {I 19111Hl + ~}T, i.e. 
o.;;t..-r -(I) 

(see appendix D, for the definition of the space £ ~). 

Hence u and v are close to each other provided that 91 and 

g2 are. Thus the followin9 theorem is proved 

Theorem 4. 10 

The solutions of (4.5.1) depend continuously on the initial 

data. 0 

The analysiS in the above three subsections imply that (4.5.1) is 

well- posed. 
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4.6 Conclusion 

In this chapter we reviewed the mathematical properties of the RLW 

equation. we found that the equation has a stable solitary wave 

solution, perhaps the only exact asymptotically null solution 

which is known for this equation. Thll(.s, unlike the KdV, there is 

no information whether the N-soliton solution exists or not. It 

1s believed that the RUN does not have N-80liton solutions because 

the equation has only three conserved functionals and hence cannot 

be linearized by the inver8e method. Although the numerical 

results carried out by Abdullov et al and Bona et al show that 

there 18 inelastic interaction between the solitary waves of the 

RIM, as far as we know no analytiC proof for the non existence of 

N-soliton solutions is yet known. 

The analysis above 8hows that the RLW theory 1s not complete. 
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CHAPTER FIVE 

CLASSIFICATION AND REDUCTION OF THE GENERAL CLASS OF EQUATIONS 

In this chapter we complete the classification derived in chapter 

2 on the existence of solitary waves of the general class of 

equations. By defining solutions to be equivalent if they are 

connected by a nonsingular linear transformation we show that the 

, general class can be reduced to four equivalence classes, 

considerably simplifying the problem of proving the well-posedness 

of the equations. we also show that the equivalence 

transformatiOns preserve solitary waves and conservation laws. 

Finally, we consider the question of the existence of multisoliton 

solutions in the KdV equivalence class. 

5. 1 General Classification 

The existence of solitary wave solutions of the general class of 

equatiOns, 

(5.1.1) 

was established in chapter 2, and a general classification in 

terms of the speed of the solitary waves was initiated for the 

cases a6 - O. This section is devoted to completing this 

classification. 

For this context let as ~ o. Hence from section 2.1, the 

solitary wave solution has the form 

us(X,t) • ~ SeChz {-A--(X-(l+c)t]} 
ca: 2v{J (5.1.2) 

where, 
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(5.1.3) 

The necessary condition for the existence of the solitary wave 

solutions is ~ should be positive. The cubic equation (5.1.3) 

for ~ has three roots. The types of these roots are obtained 

according to the properties of the discriminant determinant b., 

where, 

(5.1.4) 

If b. - 0, a Z _ 3a a and 2as - 9a a a - 27a a Z , then {Jc has 
546 545 6 3 6 

three real and equal roots. If b. < 0, then (Jc has two complex 

conjugate roots and one real root. If A ~ 0, then {Jc has three 

real and distinct roots. And if A - 0, then (Jc has two real 

and equal roots and one simple real root. 

ThUS four cases arise in the classification below. This 

classification is presented for c) o. The results for c < 0 

follow from this by reversing the direction of the c-axis and 

interchanging the interpretation of its corresponding figures. 

(1) A-O, a Z _ 3a a and 2as - 9a a a 
546 545 6 

: 
In this case (Jc has two possible graphs 

Bc 

--------~---=--c I 
\ 
I 

Fig. (1.a) 
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The cubic for figure (1. a) has real root Co of order three • 

This figure corresponds to the condition <ls ,. O. Hence, 1f 

Co ,. 0, the solitary wave would exist inside the interval (0, Co) 

and the speed is bounded above, whilst if Co < 0, the solitary 

wave does not exist. 

The cubic for figure (1. b) has a real root Co of order three, 

subject to the condition <ls < o. Thus 

Co " 0 - C E (Co' (11) for which the solitary wave would exist and 

Co < 0 - C E (0, (11) for which the solitary wave would exist. 

(2) A < 0 

In this case (3C has two possible graphs 

~c 

--~~~=------c 

Fig.( 2.a) Fig.( 2 .b) 

The cubic for figures (2. a) and (2. b) have one real root and two 

complex conjugate roots. This case reduces to the cases (1. a) and 

(l.b), discussed above,. 

(3) A,. 0 

In this case (3C has two possible graphs, having three real 

distinct roots 
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Se 

c 

Pig.(3.a) Pig.(3.b) 

For this case, let cl' c2 and c 3 be the roots of the cubic {3c 

and without loss of generality let cl < c 2 < c3 • Between any two 

consecutive roots the qraph attains its maximum or minimum values 

( 1. e • ( I3C )ma.x or respectively) at the values 

a '" vliz - 3a a 
5 546 

3a 
6 

The cubic for figure (3.a) corresponds to the condition 

Catin > cmax ' where J3Cm.n - ( I3C )m1n and I3Cma.x - (13C )ma.x 

Hence the following sUbcases arise. 

otherwise the solitary wave exists 

The solitary wave exists and the Speed is unbounded above, 

i.e., c cS (0, (I) 
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This case implies that c E (c3,m) for which the solitary wave 

would exist 

The solitary wave would exist only, for those values c, 

c E (O,c2)U(c3,m). 

The cubic {3C for fiqure (a.b) corresponds to the condition 

Cmax ) cmin and the following subcases arise 

For this case there would be no solitary waves 

The solitary wave would exist only for the values c, c E (O,Ca ) 

(4) A - 0 

In this case, the cubic {3C has only one multiple real root Cl 

and one simple root c2 • This multiple root is a turning point 

for the graph of {3C. Hence four possible graphs. 
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Bc c 

Se 

____ ~~_+~-----c --:r--~~--C ___ ~.L...---=::"'-_--~+--'::_~_C 

Piq.( 4.a) Piq. (4.b) Piq.( 4.c) Piq.(4.d) 

The cubic I3c for the qraph (4. a) correspond to the condition, 

cl < c 2 and Cmax < Cain Hence, if cl < 0 < c 2 or 

o < cl < c2' the solitary wave would exist only for the values of 

c, c E (C2 ' m). If cl < c 2 < 0, then the solitary wave exists 

for the values of c, c E (0 , m). 

The cubic I3c for fiqure (4.b) corresponds to the conditions 

c 2 < cl and Cmax < ~in' Hence, if c 2 < 0 <cl' the solitary 

waves would exist for the values c, c E (0, C 1 )U (cl' m). If 

o < c2 <cl' the solitary wave exists for c, C E (c2 ' c~) U (Cl' m). 

Whilst, if c 2 < c~ ( 0, the solitary wave exists for the val~es 

of c, C E (0, m). 

The cubic I3c for fiqure (4.c) corresponds to the conditions 

cl < c2 and Cain < Cmax' Hence, if 0 < cl < c2 ' the solitary 

wave exist for c, c E (0,C1 )U (c1 ,c2 ). If cl < 0 < c 2 ' then the 

so litary wave would exist for c, C E ( 0, c 2 ) . otherwise the 

solitary wave does not exist. 

por fiqure (4.d), i.e. c 2 < Cl and ~in < Cmax ' the solitary 

wave would exist only for the values c, CE (0,C2 ) if 0 < c 2 < Cl' 

otherwise the solitary wave does not exist. 
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5.2 The class WO S 

In the parameter space, let W - {( a l , a 2 , ••• , a 6 ) E Re}, i. e • W 

represents the general class of equations 

Then W n s is defined to be the class of all elements of W 

which possess a solitary wave solution 

u - ~ sechz ~(X-(l+c)t], 
s <X 2vl3 

<xc - a1 - ~(1-k:) and (JC - a 3 - a 4(1+c) + a s(1-k:)z - ~(1+c)3. 

The analysis, introduced in chapter 2 together with section S.1 

incl1cates that inside the class W n S all the equations are 

restricted to those which keep the solutions real. Furthermore 

from the definition of the solitary wave solutions, us' the 

following points are noted, 

(1) If c is kept fixed, the amplitude (~) is a function of a 1 

and a 2 • Hence positive or negative amplitudes are possible by 

varying a 1 or ~ or both. Furthermore, these coefficients a.re 

the dominant terms in produCing the sech2 profile. 

(2) The width of the solitary wave (4rrVt3) is a function of the 

dispersion terms only, i.e. of the parameters a 3 , 8.4 ,' as and ~. 

(3) The width and the amplitude of the solitary wave are coupled 

in terms of c. 

( 4 ) In the parameter space w, w n s can be regarded as a 

subspace of the topological space Re. 

It follows from (4) that it makes sense to discuss any of the 
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topological properties for W n S in the parameter space. 

pefinition (5.2.1) 

(1) A topological space E 1s connected 1f it cannot be 

represented as a union of two disjoint open sets. otherwise 1t 1s 

disconnected. 

(11) A maximal connected subset of a topological space, 1.e. a 

connected subset which is not properly contained in any larger 

connected subSet, is called a component of the space. 

7heorem 5.1 

( 1) W n S is disconnected, i. e. not connected. 

(2) wn S has four possible components. Cl 

Let WR and Wc be two subsets of W (\ S, where 

WR - {e E W (\ SI /3C has only real roots and 

Wc - {e E W fl SI /3C contains complex roots}. 

Then WR and Wc satisfies 

Hence W n S has a proper separated partition wh1ch proves (1). 

( 2 ) In the proof of (1) WR can be separated 1nto W
R1

, W~ and 

WR ' where, /3C has three real. equal. roots 1n WR ' has two equal 
3 1 

roots and one simple 1n wR2 ' and has three distinct real roots in 

Each one of the four classes is clearly connected and cannot be 

contained in any larger connected set. Thus each one is a 

component of W 1\ s. • 
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Definition 5.2.2 

If e1' e 2 E wllS and e 1 - (a1 , a 2 , ••• , a 6 ), e 2 - (b1 , b 2 , ••. , 

b
6

) in the parameter space then the segment e 1e 2 is the set of 

points (a1 + s(b1-a1 ), a 2 + s(b2-~)' ••• , a 6 + S(b6-~» and 

s E [O,l.]. 

ExamPle 5.2.l. 

a 1 - a 3 - 1, ~ - a 4 - as - ~ - 0 (Kc2V) and b i - -b4 - 1, 

b5 - b3 - b6 - 0 (RLW). 

Then e 1e 2 - (1, 0, (l-S), -s, 0, 0) which represents the 

equation 

Ut + Ux + uUx + (l-S)llxxx - sllxxt - 0 (Regularized KdV). 

Since inside w Il 5, a SOlitary wave solution exists a.long any 

segment, joining any two elements of wlls, then a subset N of a.ll 

segments, joining the KdV with all other elements of WIl 5 ls now 

connected. Hence, constructlng sequences (Si) 1 E [0, 1] such that 

a solitary wave solution exists for each value sl is now 

possible. 

5.3 Reduction to equivalence classes 

The general class (5.l..l.) splits, with respect to Cauchy problem, 

into three distinctive subclasses. 

(i) The class W6( ~ ~ 0) for which (5.l..l.) is third oJ:der in t 

and three bits of data, u, ut and utt' are glven at t - O. 

(ii) The class W5(~ - 0 and as ~ 0), then (5.1.1) is second 

order in t and both u and ut have to be speclfied. 
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(111) The class W43(as - 0 - as), then (5.1.1) ls flrst order ln 

t and only u must be given at t - o. 

To discuss the well-posedness of the general class, Which is done 

in the next section, it is convenient to reduce this class to a 

number of dlsjoint subclasses such that the properties of the 

general class are characterized by these subclasses. The proof of 

this reduction will be established separately for the classes, 

5.'3.1 The reduction theorem of W§ 

The equation of this class is 

Ut -+ llx -+ a 1u llx -+ ~u~ -+ a 31lxxx -+ a4~ -+ asUXtt + ~Uttt - o. 

(5.3.1) 
Consider the nonsingular linear transformation 

x - x' - -L - -'Lt, t - t' - -1L - ..JIl--t:, u(x' ,t) - v(x,t'), 
1-n 1-n 1-m l-m 

(5.3.2) 

and nl m ;i 1. Under the transformation (5.3,2), (5.3.1) reduces 

to 

where, 

3a) - (m -+ 2n)a4 -+ n(n -+ 2m)a, - 3mnz~ , 
b 4 - z (1 n)(l-m) 

3a) - (2m -+ n)a4 -+ m(2n -+ m)aS - 3nmZa 6 
(1 - n)(l - m)z 
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Define a relation l' on W6 such that, 1f el' e 2 cs W6 , then 

e
1
1e 2 if and only if they have the same type of roots of the 

cubic equation 

(5.3.4) 

Now, I is clearly an equivalence relation. Thus it partitions 
" 

W6 into equivalence classes. Since (5.3.4) has only four types 

conjugate, 

Then W6 is part1tioned into four equ1valence classes, each of 

them bP. ing characterized by one type of the roots of (5 • 3 .4) • 

f'UrtheJ:D)re, this partition depends only on the dispersive 

coefficients a3' a 4o , as and ~. 

T.b§Orem 5 t 2 

The class W6 can be reduced to the following equivalence classes 

(i) The sUbclass (Cl' c2 , c3 , 0, 0, 0), i.e. 

(KdV class) 

(ii) The sUbclass (d1 , d 2 , 0, d4 , 0, 0), i.e. 

(RLW class) 
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(iii) The subclass (Y1' Y2' 0, Y4' Ys' 0), i.e. 

(W54 class) 

To prove this theorem, the following lell1l.M. is introduced 

Lemma. 5.3.1 

If the cubic equation (5.3.4) for a 9iven equation 

has a unit root A (i.e. A - 1), then there exists a nonsingular 

linear transformation which transforms this equation to another 

equation 

for which the cubic (5.3.4) for ci does not possess the unit 

root. 0 

Thus from now on we suppose that I A ~ 1, a root of (5. 3 • 4 ) • 

Eroof of theorem 5.2 

The abOve analysis proves that W6 splits into four equivalence 

classes, characterized by the different kinds of the roots of 

(5.3.4). 

(i) A1 - A2 - A3 are all real. Choose m and n in (5.3.2) 

as follows: m - A1 and n - O. Rence m ~ n such tha.t the 

transformation (5.3.2) is nonsingular. Since m is a multiple 

root of order three of (5. 3 • 4 ), then 
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(5.3.5) 

Hence combining the two conditions (5.3.5) yields 

(5.3.6) 

using this result we calculate the coefficients b 1 in (5.3.3), 

then 

-= 

is clear since m is a root of (5.3.4) 

3a3 - (2m + n)a4 + m(2n + m)a5 - 3nm2~ 

(1 - n)(l - m)2 

- 0 [since A1 is a root of order three]. 

similarly b 4 - 0, 

i.e. (5.3.1) reduces to 

i - 1, 2 and 3 which proves (1) 

(5.3.7) 

Choose m - Al and n - A3 in (5.:3.2). The transformation 

remains nonsingular. and since m 1s a root of order two of 

(5.3.4), then similar to the above case b6 - b5 - o. Furthermore 

since n ls a root of order one, then b3 - 0 but b4 ~ 0 and 

(5.3.1) reduces to the class 
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(RLW class) (5.3.8) 

Where d 1 , d 2 and d 3 are in terms of al (1 - 1, 2, ••• , 6) 

(111) ~1 ~ ~2 ~ ~3 are all real. 

Choose m - ~1 and n - Aj , (1 ~ j). Both m and n a.re 

simple roots of (5.3.4), then b 3 - b6 - 0 but b 4 ~ 0 and b5 ~ 0 

1n (5.3.3b). Thus W6 reduces to 

(5.3.9) 

Choose m - ~3 and n such that b 4 - 0 1n (5.3.3b). Hence 

(5.3.10) 

where 81 are 1n terms of a1 , 1 - 1, 2, ••• , 6 •• 

g,rol1arv (5.3 t J..) 

a 
If a! Is a root of (5.3.4), then the class W6 reduces to the 

simPler classes 

Where cl' di' Yl and 81 are In terms of al.' a 2 ' •.• , as. a 

-94-



The only nonlinear term in the reduced classes, is vvx • 

In the above theorem if is a root of (5. 3 • 4) we choose m 

equal to this root, then from (5.3. 3b) b 2 - o. This completes 

the reduction of W6 • • 

5.3.2 The reduction theorem of W5 

The equation of this class is 

Ut + Ux + a1uUx + a2uut + a3Uxxx + a.Uxxt + asUxtt - O. 

(5.3.11) 

COnsider the nonsingular linear transformation 

x - x' 
_ -1L _ it, 

l-k l-k 
t - t' - .JL - --P-.t;, 

l-p l-p 
u(x,t) - V(X',t') 

(5.3.12 ) 

under the transformation (5.3.12), (5.3.11) transforms to 

where 

3a) - (p + 2k)a4 + (kz + 2kp)as 
b 4 - Z (l-k)(l-p) 

3a) - (2p + k)a4 + (2kp + pZ)as 
b s - Z (1 - k)(l - p) 

(S.3.13a) 

(S.:3 .Ub) 

a - a.D + aspz b _ --'l<.3_---"....-'-_::-'_~_ 
6 (1 _ p)' , 

and P can be chosen such that b6 ~ 0 and the transformation 

( 5 • 3 .12) remains nonsingluar. Hence equation (S • :3 .13) forms an 
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element of W6 and the reduction to the equivalence classes can 

be done by following the analysis in the above section. Since the 

equivalence relation can be defined in terms of the roots of the 

cubic equation 

(S.3.14) 

i.e. using (S.3.13b) in the cubic (S.3.14), one can find the roots 

of (S.3.14) in the form 

). __ J..::2 , 
1 l-k 

and 

). __ U::e.l 
3 2(1-k) 

Then 

(i) 

(S.3.15) 

[2a3 - (i*k )a4 ... 2kpaS] - (p-k )"'; - 4a3~ 
a3 - a~ + aspz 

and 1f 1n addit10n ~ p - , then 
2as 

).1 - ).2 -).3 and the class Ws reduces to the KdV class 

the RIM class 

reduces to the class WS4 

class WS3 • 

ThiS proves the reduction theorem of the class WS. 
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5.3.3 The reduction of the class W43 

This class has the form 

This class contains individually the I<c2V and the RIM classes as 

follows 

(1) 

(ii) 

If a 4 - 0, then W43 reduces to 

Ut + l1x + a 1uUx + ~uUt; + a 3'lxxx - 0 

If a 3 - 0, then W43 reduces to 

Ut + l1x + a 1uUx + a 2uUt; + a4~ 

(I<c2V class) 

(RLW class) 

The analysis in the sections 5.3.1, 5.3.2 and 5.3.3 completes 

the reduction theorem of the general class. 

5.4 We 1 l-posedness 

consider the in1tial value problem which corresponds to the 

general class 

where u, Ut; and Ut;t are given on an arbitrary space curve 

x - x(s), t - t(s) and s is a parameter. Then this initial 

value problem is said to be well-posed if it has a un1que solution 

which depends continuously on the initial data. 

As shall be proved in the next chapter, the initial value problem 

corresponding to the general class can be reduced to a semi linear 

system of first order partial differential equations 

(5.4.1) 

where A, B are matrices, U is a column matrix and A does not 
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depend on U. Then the method of characteristics is the natural 

procedure to assure the well-posedness. This procedure comes to a 

stop if A is a singular or if the initial curve Which supports 

the data is a characteristic curve of the system (5.4.1). 

To avoid these obstacles the reduction, introduced in section 5.l, 

is used to advantaqe. In this reduction we have concentrated on 

the equivalence of solutions. However this implies also an 

equivalence of the initial data. For example, for the class W6 , 

u, Ut and Utt are qiven on any initial. curve (t - 0 say). 

Usinq the reduction theorem of 

and Vtt on the skew curve. 

W6 , these data reduce to v, vt 

Since the reductions in all cases 

reduce the number of t-derivatives by at least one, this means 

that at least one bit of data becomes redundant and raises the 

question about the specification of the data. This will be 

discussed in detail in the next: chapter When we consider the 

question of well-posedness for the reduced equation. 

Thus, usinq this reduction, the oriqinal initial value problem 

reduces to four disjoint initial value problems corresponding to 

the classes XdV, RLW, W54 and WSl • Here diSjoint means that the 

solution for one does not imply the solution of other. Under this 

reduction the solution does not in fact lose any reqularity since 

the reduction is via a transformation Which is nonsinqular. Thus 

the theory of well-posedness of the KdV and RIM, introduced in 

chapters 2 and 3 are used to advantaqe. 

In the next chapter the well-posedness of the general class shall 

be studied in detail via the above analysis. 
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5.5 Conservation laws 

In chapter 7 a number of conservation laws for the general class 

will be established together with a detailed discussion of how 

many conservation laws exist for the general class. The idea of 

conservation laws was initiated in chapter 3 where the proof for 

the existence of an infinite number of conservation laws of the 

KdV equation is found. Thia idea was revived in chapter 4 and it 

was shown that the ~ equation has only three conservation laws. 

Since the KeN and the RIM lie in two disjoint classes (KdV and R.LW 

classes respectively), then the question Which naturally arise is 

whether the reduction introduced in section 5.3 preservea the 

existence of such conservation laws or not. The answer is clearly 

positive by the c2efinition of the conservation law anc2 shall be 

illustrated by the first conservation law. 

~le 5.5.1 (the first conservation law) 

By resolving the general class (5.1.1) in x anc2 t derivatives, 

the first conservation law of the general class has the form 

consider the transformation (5.3.2), i.e. 

x' - --X-- - ~t, t' _ x 
l-n l-n l-m 

u(X,t) - vex' ,t'). Hence 

ID! .. --L- i!.Y. + ---L- i!.Y. and, 
Bx 1 - n dx' 1 - m dt' 

£y ... -=!LBV_ m Bv 
Bt 1 - n Bx' 1 - m Bt' 
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(5.5.2) 



Thus (5.5.1) reduces to 

( 1 J- + 1 -L) {v + ~VZ + a. [_.1 __ _ 
1 - n 8x' 1 - m 8t' 2 3 (1 _ n t v x' x' 

~ 2 Vx't' ~ 1 z Vt't'] + a.A[(l-~ n)z 
(1 - n)( 1 - m) (1 - m) ,. 

(n ~ m) m 
(1 - n)(l - m) Vx't' - (1 - m) Yt't']} 

_ (--'1- ..L ~ --Al....- -L) {v ~ ~ yZ ~ a [ -0 
1 - n 8x' 1 - m 8t' 2 5 (1 n)z vx'x' 

(n + m) v _ m v , ,] 
x't' t t (1 - n)(l - m) (1 - m)z 

[ nZ 2mn mZ 
+ ~ (0 _ n)z vx'x' + Yx't' + - Vt't']) 

.&. (1 - n)(l - m) (1 - m)z 

.. 0, i.e. 

~ [2a] - a 4(n + m) + asm(n + m) - 2asmZn] 
(1 - n)(l _ m)z Vx't' 

~ [2a] - a 4{n + m) + asn(n + m) - 2~0~] 
(1 - n)z(l - m) Vx't' 

(5.5.3) 

( 5 • 5 • 3) can be re-wri tten in the form 
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( aJ. - a~m)vZ + (a3 - a 4m + a 2mz S 
..L {v + .1. - a§m ] 
Bt· 2 l. - m (l. - m)s v t • t.) 

!L 
a - a~n + (a3 - a!n + a n Z - a§nS) 

+ {v +! J. VZ 5 

Bx 2 l. - n (l. _ n)s vx ' x ' 

+ (3a3- a 4(2n + m) + as(n + 2m) - 3a§mnZ] 
(1 - n)z(l _ m) vx •t • 

o 

(5.5.4a) 

1.e. , 

Where, 

c
3 

• a) - a!n + aSnZ - a6ns 

( 1 - n)s 

_ 3a) - a~2n + m) + aSn(n + 2m) - lasmnZ 
c 4 (1 - n)z(l - m) 

(5.5.4b) 

comparing (5.5.4) and (5.3.3) proves that the reduct ion preserves 

the existence of conservation laws. 

This result produces a convenient prOCedure to study the 

conservation laws of the general class by shifting this study to 

the four disjoint classes instead.. This shall be done in chapter 

7. 
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5.6 Preservation of the solitary waves 

In this section we prove that the reduction, introduced in section 

(5.3) preserves the existence of solitary wave solutions. 

2,beorem 5.3 

If _ 1 sechz 
Us a _l_(X - (1 ... c)t] 

21/(3 
is a solitary wave solution 

of the equation 

(5.6.1) 

then 

Vs - L sechz --L[X' - (1 ... c' )t'] is a solitary wave solution 
a' 21/(3' 

of the equation 

(5.6.2) 

where b
l

, b
2

, ••• , b 6 are defined by (5.3.3b), 

and (1 + c), (1 + c') are the speeds of the solitary waves in 

the respective coordinate systems. [] 

The definition of the rest frame, introduced in chapter 2, 

imPlies, ~ = 1 + c 
dt 

dx' and - 1 + c', 
dt' 

x _ (1 + c)t and x' - (1 + c'). 
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From section 5.3, the equation (5.6.1) reduces to (5.6.2) via the 

nonsingular transformation 

x' ... -.K- - _n_ t , 
1-n 1-n 

u(x,t) ... v(x' ,t'). 

Then, using (5.6.3) 

t' .. _x_ 
l - m 

~m~_t and 
1 - m 

-1L- _-IL- t - (1 ~ c')(----X- - m t). 
1 - n 1 - n 1 - m 1 - m 

(5.6.4) 

Substi tuting the first relation of (5.6.3) in (5.6.4), then 

(J...±..J2 - --11-] t - (1 + c' ) (1....±....S2 - --L-J t . 
1-n 1-n 1-m 1-m 

Hence (1 + c') has the form 

(l ~ c') _ (J......::.....m) [< 1 + e) - nJ. 
1 - n (1 ~ c) - m 

Thus 

,.. a 1 - na2 _ a1 - ma.2 (.l.....::.....m)( 1 ~ c - 0) 
1-0 I-m I-n l~c-m 

= 
(al - na2 )(l + c - m) - (a1 - ma2 ){1 ~ e - 0) 

(1-n)(l+c-m) 

_ (n - m)a1 - (n - m)a2(1 ~ c) 

- (1 - n)(l + c - m) 

(n - m)[a1 - a 2( 1 + c)J .. Cn - m) .. 
(1 - n){l ~ e - m) (1 - 0)(1 ~ C - rn) 

But (5.6.5) imPlies c' _ (0 - mle 
(1 - n)(l + c - m) 
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Then (5.6.6) yields a - a' 

i.e. the amplitude is invariant under the reduction. 

stmilarly, it can be shown, after tedious calculations, that 

P'c' - r n - m ]~ • 
~(1 - n)( 1 + c - m) 

(5.6.9) 

Hence 

1
z 

~' ... n - m P 
(l-n)(l+c-m)J 

(5.6.9) 

i.e., if P > 0, then P' > 0 

which provelJ the theorem. 11 

Example 5.6.1 

(5.6.10 ) 

consider the transformation 

x' - x, t' - 2t - x, u(x,t) - v(x',t'). (5.6.11) 

'l'hen (5.6. 10) reduces under this t rans format ion to 

Bc ... 9 - 12(1 + c) + 6(1 + C)z - (1 + C)s - (1 -a)s and 

GC ~ 1 - 0 (5.6.13) 

Le., the solitary wave solution of (5.6.10) has form 

30 2 {1 0 
Us - 1 _ 0 sech 2' .Jr-"(=1=====C=-)~3-(X - (1 + c)t: lJ· (5.6.14) 
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SUnilarly, for the equation (5.6.12) 

P'c' = 8 and a'c' - 2, ( 5.6.15 ) 

Hence (5.615) implies 

(by substituting n - 0, m - 2 in theorem 5.3 J, and cx' - a. 

Hence the solitary wave solution of (5.6.12) has the form 

Vs - 3c' sech2 ~ £: (x' - (1 + c')t'J. 
2 2 V 8 

(5.6.16 ) 

5.7 preservation of the N soliton solution 

we have seen that the above reduction to the four classes 

preserves solitary waves. However, we know that the solitary wave 

of the KdV is also a soliton, i.e. that there are exact N-soliton 

solutions for any N 4! Z. The question therefore arise as to 

Whether the N-soliton solutions are preserved under the reduction. 

The definition of the N-soliton solution for a given equation 

imPlies that the solution decomposes asymptotically to N solitary 

waves of the equation. Since the reduction preserves a solitary 

wave, then under the reduction, the N-soliton solution transforms 

to a solution for the reduced equation and the solitary waves 

transform to soliatry waves for the reduced equation. Hence the 

reduced solution is N-soliton solution for the new equation. we 

look first to the following example of an equation from the simple 

KdV class, defined in corollary 5.3.1, to show that the N-soliton 

solutions can be obtained by a technique, comes from the KdV 

equation. 
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~le 5.7.1 

consider the transformation 

(5.7.2) 

Substituting (5.7.2) in (5.7.1) leatls to the fact that if v 

evolves according to the equation 

(5.7.3) 

then u evolves according to (5.7.1). If u is known, (5.7.2) 

can be linearized by chOOSing 

V" J. (L - ~ '" • 
'" ax at 

Hence, (5.7. 2) has the fonn 

(5.7.4) 

(5.7.5) 

which is parabolic equation in '" and without .loss of generality u 

can be shifted by a constant A. Hence (5.7.5.) reduces to the 

fomi 

Cl 2 
2-

8x8t 
(5.7.6) 

TO solve (5.7.6) it is convenient to use the nonsinqular linear 

transformation 

x - x' - x, t - t' - !: + ~ 
2 2 

, w(x,t) - ~(x',t') and 

u(x,t) - w(x',t') (5.7.7) 
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to transform (5.1.6) to the equation 

[~ - p .. - W)]4I = 0 
axZ (5.7.8) 

Where the substitution (5.1.7) in(5.7.1) implies that w evolves 

accoraing to the KdV equation 

(5.7.9) 

Hence (5.7.8) is a sChrOdinger equation with potential w, enerqy 

level A and wave function ~. Then by using the inverse 

scattering method, introduced in.chapter 3, the N soliton solution 

of (5.7. 9) has the form 

,.Z 
w(x' ,t·) - -2 loo!.-..;-- 1n f, dx· ... 

CZ 2k x' ~ (lel +le2 )x' Sr.:.H 
1 +.:::1 e 1 e ••• 

2kl k.! +le2 le1 +kN 

" 
, 

• 

f -
, 

<?I c .! 
(k+k1 )x' 

~ (k1+k2 )x' 
-e e 1 + 
1)tkl Jc,tk2 

e 
(lel+k)X' 

CN e2kN+1 
2kN 

Hence by using the inverse of the transformation ( 5.7.7), the 

N-soliton solution of (5.7.1) has the form 

( 
aZ 

u(x,t) - -2 axz -
aZ 

2--
axat + a:] In F, at (5.7.10 ) 

F - T-1f, Where T-1 is the inverse of the transformation (5.1.7). 

In fact (5.1.10) is N soliton solution of (5.7.1), this fact can 
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be shown by studying the behaviour of the solut ion as I t I - CD, 

where one can show that the solution splits into a nlJll100r of 

solitary waves of (5.7.1) in a similar sense as for the KdV 

equation (see Wadati and Toda [4]). 

The above example shows that the reduction preserves the N-soliton 

solution [in the simple ICdV class]. Furthermore the procedure, 

introduced for obtaining the N-soliton solution of the KdV 

equation can be extended to obtain the N-soliton solution of all 

the elements of the simple ICdV class. 

outside the simple ICdV class, we shall see that the above 

technique comes to a stop and the transformation which couples any 

element with its modified f01:1ll only exists in the simple KdV 

class. 

~eorem 5.4-

If v evolves according to the modified general class 

(5.7.11) 

then 

u .. V Z + <xvx + J3Vt (5.7.12 ) 

evolves according to the general class 

(5.7 .13) 

1f and only if the cubic equation 

(5.7.14) 
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has three equal real roots. 0 [see appendix (8) for the proof]. 

The condition of the theorem together with the reduction analysis 

in section (5.3) implies that the equation (5.7.11) must be inside 

the simple KdV class. If this is the case, then (5.7.12) can be 

linearized by making use of the transformation 

(5.7.15 ) 

Then the exact solution is obtained in a sense stm1lar to that as 

in example (5.7.1). 
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CHAPTER SIX 

THE WELL-POSEDNESS or TUE GEN[RAL CLASS or EQUATIONS 

In this chapter the well-posedness of the general class 

Ut + Ux + a1uuX + a 2uut + aluxxx + a 4uxxt + aSuxtt + a6uttt - 0 

(6.1) 

is studied. we prove, first of a.1l, that the genera.! c.1ass can be 

reduced for certain data to a semi-linear system of first order 

partial differentia.! equations. We find the characteristics of 

this sytem and show that it is equivalent to a system of ordinary 

differentia.! equations in which differentiation is along 

characteristic direction. These equations can be intergrated to 

give the solution of the system provided that the data is not 

specified on a characteristic. This method of solution is called 

the method of characteristics. Thus, its availability for the 

general class (6.1) depends upon the data not being specified on a 

characteristic. This leads us to divide the genera.! class into 

two subclasses according as to whether the method of 

characteristics can :be used. we call the subclass in which the 

method of characteristics is applicable the nonsingular class and 

the remaining the singular class. 

we establish well-posedness for the nonsingular class by applying 

the well-known theorems on uniqueness, existence and continuous 

dependence on the initial conditions for Semi-linear systems. As 

regards the singular class, we divide it further according to the 

mu.1tiplicityof the (essential) characteristic roots. In the case 

of a triple root we show that it corresponds to the general KdV, 

for a double root to the RLW, for a distinct roots to WS4 and for 
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a pair of conjugate roots to WS3 • (These classQS were defined in 

chapter 5). Thus the KdV represents one of the subsets of 

equations in the general class for which the method of 

characteristics fails. 

NOW, clearly, well-posedness of some parts of Singular class 

follows from the results established for the KdV and RLW in 

chapters 3 and 4 respectively. However, these do not deal with 

the inclusion of a u~ term, but are confined to the so-called 

"simPle" KdV and RIM classes. AS part of our own contr1but ion we 

extend these results to certain equations in the sinqular class 

which include the UUt term. Finally, some applications are 

provided to show that the KdV and the RIM equations are well-posed 

for any skew data. 

6.1 Reduction to a semi-linear system of first order 
partial differential equations 

consider the initial value problem which corresponds to the 

general class of equations (6.l.). Let the initial curve which 

supports the data be non-characteristlc, as shall be defined in 

the next section, and without loss of generality let this curve be 

the usual one t - 0, i.e., 

Ut + Ux + a 1uUx + a2u~ + a 3Yxxx + a 4uxxt + asYxtt + ~Uttt - 0 

(6.1.1a) 

u{X,O) - f(x) Utt{x,O) - hex). (6.l..l.b) 

~ introduce now the following I 

The initial value problem for the general class of equations 
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(6.1. 1) with non-characteristic initial data may be reduced to a 

non-characteristic initial value problam for a first order system 

of partial differential equations. CJ 

Re-writing (6.1.1a) in the form I 

(6.1.2) 

where, 

p - ut' q - l!x, T - llxx' s - Uxt' r - Utt' 'V - uxxx' 

'" - ';act, w - Uxtt' and v - Uttt· (6.1.3) 

Subject to the initial conditions (6.1.1b), and differentiating 

( 6 • 1. 2 ) with respect to t yie lds 

(6.1.4) 

and, 

(6.1.5) 
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Inserting (6.1.5) into (6.1.4) we have 

(a1q + a 2P)p + (1 + a 2u)r + (1 + a 1u)s + a 6v t + asvx + a 4wX 

+ a3 J.Lx .. o. ( 6 • 1 .6 ) 

Thus (6.1. S) and (6.1. 6) can be combined to form the following 

systems 

Pt - r , 

(6.1.7) 

Which is a system of first order partial differential equations in 

the dependent variables u, P, q, r, s, T, V, W, JJ. and v. 

The initial conditions may be obtained from equations (6. 1. lb), 

and amount to the specification of u, P, q, r, s, T, V, W, JJ. and 

'V. However, v is not known expl1c1ty, but since the initial 

conditions are assumed specified on a non-characteristic curve, 

then v may always be determined. Thus the initial conditions On 

t - 0 becomes 

u(x,O) - f(x) p(x,O) - g( x) q(x,O) - f'(x) 

r(x,O) - hex) s(x,O) - g'{x) T'( x, 0) - f" ( x ) 
(6.1.8) 

w(X,O) ... h'(x) JJ.(X,O) - g"(x) v( x, 0) .. f'" (x) 

v{x,O) - G{f{x), g(x), f'{x), hex), g'{x), f"(x), h'{x), 

g"(x), f"'(x» 
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The system (6.1.7) can be expressed in the matrix form 

Ut + AUX + e - 0, U(x,O) - HeX) (6.1.9) 

where U, A and Care 

UT - (u P q r 8 T V W ~ v], (6 .l.lOa) 

eT - [ -p -r -8 -v 0 0 j 0 0 0] (6.l.10b) 

and 

0 0 

0 0 

0(4X4) 0 0 0(4)<4) 

0 0 

-------- --------------
A- 0 0 0 -1 0 0 0 0 0 0 

, (6 .1.1Oc) 
0 0 0 0 -1 0 0 0 0 0 
-------- --------------

0 0 ~ a 4 a 3 0 a 6 a 6 a 6 

0(4x4) 0 0 -l. 0 0 0 

0 0 o -1 0 0 

0 0 0 0 -1 0 

with O( n><n) the nxn zero matrix. 

ThiS completes the proof of the lemma •• 
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Definition 6.1.1 

The system of equations (6.1.9) is called quasi-linear if A and 

C depend on x. t and U. If A is independent of U. the 

system is called ~ll!M. If C is also a linear function of 

U, the system is called linear. 

using definition 6.1.1 and lemma 6.1.1 gives the following 

theorem! 

Theorem 6,1 

The initial value problem (6.1.1) for the general class of 

equations with non-characteristic data can be reduced to a 

non-characteristic initial value problem for a first order 

semi-linear system of partial differential equations. Cl 

Rema,r):.s 

( 1) When ~ - 0 in the above reduction then A becomes 

singular. In this case, as was shown in section 5.2, one can find 

a nonsinqular linear transformation which takes the original 

equation to one with 4s ~ O. However, the non-characteristic 

curve which supports the data of the original equation may be 

transformed to a characteristic curve for the new equation, i.e., 

the new'data becomes characteristic. This gives a contradiction 

with the assumptions of theorem 6.1. The way out of this 

contradiction together with a classification of the problem in 

terms of the singularity of A will be discussed in section 6.5. 

Thus, in the present section and up to section 6.5 we assume that 

~ ~ O. 

(2) The equivalence of the solutions corresponding to the new 

system of equations and the original equation can be proved by 
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noting that if u is a solution of (6.1.2) and (6.1.1b), then the 

vector U will be a solution of the new system (6.1.7) with 

initial conditions (6.1.8). Conversely, suppose that U is a 

solution of (6.1.7) with initial conditions (6.1.8). Then, 1f 

these quantities do not simultaneously satisfy both the original 

equation and the new system, there will be defined the non-zaro 

quantities 

<Xt; - p - ut' <Xx - '1 - Ux' <Xt;t - Utt - r, «xt - un - s, 

<Xxx - llxx - .,., <Xt;tt - uttt - v, «xtt - Vxtt - w, 

«xxt - llxxt - IL, and «xxx - Ux:xx - v. 

NOW, from the second equation of (6.1.7) have 

<Xt; - ut - ut - 0, and from the definition of <X.tt 

tY.. - ap - ULt - L ut - utt - 0, so that «tt - O. 
~t at ~ at 

Using the initial condition at t - 0, we have 

CL ...... - L llx - s - ~p - s - g'(x) - g'{x) 
~ at 8x 

«xtl - o. t-o 

'1'0 establish that «xt is identically zero, we form the relation 

L CL ....... _ L \L~ 
at -~ at ~ 

8s 
at 

- L r - L Utt - - .L.att - 0 
8x 8x 8x 

axt t!! O. 

Similar arguments establish that the other differences are 

identically zero. Thus the quantities u, p, '1, r, s, T, v, w, IL 

and 'V satisfy also the differential equation (6.1. 2 ), which 

proves the equivalence between the solutions. 
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6.2 Characteristics of the system 

pefinition 6.2.1 

A characteristic of the sytem (6.1.9) is a curve along which the 

values of U, combined with the equations (6.1.9) are insufficient 

to determine the derivatives of U normal to this curve. 

The problem of determining the derivative of U normal to our 

data is easily resolved by considering the effect on system 

( 6 .1. 9) of a change of coordinates, 

t - t and x - ~x,t) - constant (6.2.1) 

[t is left unchanged since the discussion is for evolution 

equations] • 

Then the system (6.1.9) reduces under (6.2.1) to 

( .ru:l ... Ml.ru:l ) 
8t 8t 8$ 

... A.ru:l Ml ... C( U) - 0, 
8$ 8x 

1.e. , 

where 

(1 ~ 
at 

+ A~) Stl.! + 
ax 8$ 

Stl.! + C(U) - 0 
at 

is the normal derivative of U to 

derivative is determined if 

det [1 Ml + A Ml] ~ o. 
at ax 

t - o. 

combining this result with definition 6.2.1, 

(6.2.2) 

This normal 

(6.2.3) 

then the 

characteristics of the system (6.1.9) are given by the equation 

det [I ~ + A~] - o. 
8t 8x 

(6.2.4) 

putting then (6.2.4) can be written as 
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det (A - XI) - o. (6.2.5) 

Equat ion ( 6 • 2 • 5 ) is called the characterist ic equat ion of the 

system (6.1.9) where X is now an eigenvalue of the matrix A. 

The above analysis leads to the following I 

Theorem 6.2 

The characteristics of the system (6.1.9) which corresponds to the 

general class of equations (6.1.1) are given by the roots of the 

equation 

~ - ~ . 0 
dt 

(6.2.6) 

By 'using the expression of A from (6 .1.lOC) and expanding 

det(A-XI) - 0 then, obviouSly (6.2.6) follows and the theorem is 

proved •• 

we conclude this section by defining the hyperbol1city of a 

general system of which our case is a specific example. 

pefinition 6.2.2 

(1) If all the roots of equation (6.2.5) are real and distinct 

the system of equations (6.1.9) is called totally hyperbol1c. 

(2) If some of the roots of (6.2.5) are complex, the system 1s 

cctiled yltra-hyperbol.J&. 

(3) If all the roots of (6.2.5) are complex, the system (6.1.9) 

is §ll1ptic. 
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( 4) The system is hyperbolic if (6.2.5) has at least one real 

root. 

Note that the method of reduction is not unique and can introduce 

redundant eigenvalues into the characteristic equation. These can 

be disregarded since they do not lead to any inconsistency or loss 

of generality. The number of genuine eigenvalues necessary to 

solve a given equation is equal to the order of the differential 

equation. For example in the second order differential equation 

Utt + cllxx + u - 0, if u1 - Ut and u2 - 11x the equation 

reduces to the system 

[-: 
o + - o 

c 

o 

for which the genuine eigenvalues are ~ - tv-c and the redundant 

eigenvalue is 11.. - 1. Thus, if we reject 11. - 1 then the 

equation is elliptic if c) 0 and totally hyperbolic if c < O. 

We now turn to exploit the results of theorem 6.2 to reduce the 

sysem (6.1.9) into a simple form for discussion and this is done 

in the next section. 

6.3 Normal form of the first order system 

In the previous section we demonstrated that our system (6.1..9) is 

of hyperbolic type and proved that its characteristics are given 

by the eigenvalues of the eigenvalue problem 

AX - JI.X. (6.3.1.) 

It is now convenient to transform the system (6.1..9) to a simple 
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form in which the differentiation should be in one direction only, 

Le., directed along a characteristic of the system. This new 

system is called the normal (canonical) form of (6. 1.9) • 

For doing this let the eigenvectors corresponding to the 

eigenvalues At of A span E~o and let T be the matrix tn 

which each col\Dl\O is one of those eigenvectors. Then T is 

nonsinqular. Suppose that 

u - 'l"Il. (6.3.2) 

Inserting this transformation into (6.1.9), then 

- 0, 'l"Il(x,O) - H(x). (6.3.3) 

Hence, 

- 0. (6.3.4) 

Multiplying both sides of (6.3.4) by the inverse of T, i. e. , 

(6.3.5) 

(6.3.6) 

Since A is a matrix of constant coefficients, (6. 1. loe) then the 

eigenvalues of A do not depend on x, t and U consequently T 

does not depend on x, t and U and this implies that 

But since T-1AT - 0 is diagonal, (6.3.5) can be written as 

+ , 0 - diag(Al' ... , ).10)' (6.3.7a) 

with the initial condition 
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V(x,O) - T-1U(X,O) - ~(x). (6.3.7b) 

Finally, equations (6.3.7a,b) can be written in terms of 

components and the ith component, which corresponds to the ith 

characteristic, has the form I 

(6.3.8) 

From the theory of a single first order partial differential 

equation, it follows that on the characteristic traces for the 

equation, the equation reduces to an ordinary differential 

equation. aence, v~ + AiVi is a directional derivative in the 

direct ion A i, Thus, every equation in the form (6.3.7) contains 

a differentiation in one direction only which is the 

characteristic direction. The form (6.3.7) is called the normal 

form of the system (6.1.9). 

( 1) The reduct ion of the original system to its corresponding 

normal form (6.3,7) is viable even if some of the eigenvalues are 

multiple (14]. 

( 2 ) The case When some of the roots are complex is left to the 

end of this chapter. 

6.4 The method of characteristiCS 

The characteristics of the system (6 .1. 9) were obtained in the 

last section. The basic rationale underlying the use of the 

characteristics is that by an appropriate choice of coordinates 

the original system (6.1.9) can be replaced by a system expressed 

in characteristic coordinates ( normal form). The method of 

-121-



characteristics is expressible briefly as; firstly, solving the 

equation (6.2.5) to locate the characteristic curves and secondly, 

integrating the equation (6.:3.7) as ordinary differential 

equations along the characteristics. Hence the solution of the 

original system can be constructed. This is illustrated by the 

following stmple example. 

Example 6.4. 1 (the wave equation) 

-CD < x < CD, t ) 0, 

(6.4.1) 

u(x,O) - f(x), 

To find the solution of this equation by using the method of 

characteristics, we firstly reduce it to a system of first order 

quasilinear partial differential equations. Thus, ltt; 

F(U, p, q, r s, T) E ~t - ~ - T - r - 0, (6.4.2) 

where 

Ut - q, Ux - p, ~ - r, Uxt - s and Utt - T. (6.4.3) 

Differentiating (6.4.2) with respect to t and using (6.4.:3) 

gives 

(6.4.4) 

where, 

Combining (6.4.4) and (6.4.5), then the original equation (6.4.1) 

reduces to the system 
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Pt - s, 
(6.4.6) 

with the initial data 

u(x,O) .. f(x) p(x,O) - f' (x) q(x,O) - 9(x) 

r(x,O) .. f"(x) s(x,O) - q'(x), (6.4.7) 

r(x,O) - G( f(x), q(x), flex), f"(x), q'(x». 

The system (6.4.6) and (6.4.7) can be wr1 tten in the matrix form 

U( x, 0) - B( x) , (6.4.8) 

where, 

r I 0 01 ro 0 1 0 0 0 
I 
I 0 0 0 0 0 0 1 0 
I 

0(4)(4) I 0 0 0 1 
I 

A= I 1 0 , B- 0(4)(4) 0 0 
- - - - I 

0 0 0 0 I 0 1 0 0 

I 
0 0 0 0 I 1 0 0 0 

(6.4.9) 

and uT .. [u P q r s T]. 

The characteristic equation for (6. 4. 8 ) , i.e., det(A - ~I) .. 0 1s 

r-X 0 0 0 0 0 

0 -x 0 0 0 0 

0 0 -x 0 0 0 

0 0 0 -x 1 0 - ~4(~z_1) .. o. (6.4.10) 

0 0 0 0 -X 1 

~ 0 0 0 0 1 -x 
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Thus, the character1stic roots are 

~ - 0, 0, 0, 0, 1 and -1 (6.4.11) 

1ndicating that the equation is hyperbolic. (In fact it is 

totally hyperbolic since the roots ~ - 0 are redundant). The 

eigenvectors corresponding these eigenvalues (6.4.11) a.re the 

solutions of the equation 

AX-AX (6.4.12) 

and are as follows I 

~ - 0, e1 - [1 0 0 0 0 O]T, e 2 .. [0 1 0 0 0 OlT, 

e 3 - [0 0 1 0 0 O]T, e 4 .- [0 0 0 1 0 O]T 

~ ... -~, es - [0 0 0 -~ ~ _l]T and 

~ ... 1, e 6 - [0 0 0 ~ ~ l)T, 

Let T be the matrix whose columns are e1' i - 1, 2, and 6, 

i,e. , 

f1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 1 0 0 0 

T- O 0 0 1 -1 1 • (6.4,13) 

0 0 0 0 1 1 

0 0 0 0 -1 1 
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Then the inverse of this matrix exists and has the form 

1 0 0 0 0 

0 1 0 0 0 

0 0 1 0 0 

T-1 _ 
0 0 0 1 0 

0 0 0 0 ~ 
0 0 0 0 , 

Then, clearly, we have 

T-1AT - d1ag (0, 0, 0, 0, -1, 1), 

ro 

o 

o 

o 

o 

o 

o 

o 

o 

1 

o 

o 

o 

o 

o 

o 0 

o 1 

o -1 

o 

o 

o 

o 

o 

o 

o 1 

0 

0 

-1 

-~ , 

o 

1 

1 

o 

o 

o 

Let, now, U s TV, then the system (6.4.8) reduces to 

(6.4.14) 

(6.4.15a) 

(6.4.15b) 

(6.4.16 ) 

S1nce T does not depend on both x and t, then ( 6 • 4. 16 ) 

imPlies that 

(6.4.17) 

Using (6.4.15), equation (6.4.17) can be written in the form I 
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rV1 0 V3 1 

v2 0 VS+V6 

v3 0 -VS+V6 

V4 - 0 + 0 (6.4.18 ) 

Vs -vs 0 

V6 V6 0 
t x 

with the lnltlal data V(x,O) - T-1U(X,O), 1.e., 

V(x,O) - [f f' q 0 ,(q'_f") ,(q'+f")]T. (6.4.19) 

consider now the last two components of the system (6.4. 18) a.nd 

(6.4.19). The equatlons of the character1st1cs are ~ - -1 and 
dt 

and "- 1 respect 1ve ly • Then, 
dt 

NoW the thlrd ~nent glves 

aV3 
at 

R 

p 

Q 

(Flq. 6.1) 

- -1 [q'(x-t) - f"(x-t)] + 1 [g'(x+t) + f"(XH)]. 
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Thus, integrating with respect to t gives 

V3{P) = -, [-g{x-t) + f'{x-t)] + ~ [g(x+t) + f'(x+t)] + P(x). 

(6.4.20) 

computing at t - 0 gives 

9 - ~ 9 - ~ f' + i 9 + i f' + P{x} - P{x) - O. 

Thus, 

V3(P) - -i [-q{x-t) + f'{x-t)] + i [g{x+t) + f'{x+t)]. 

{6.4.21} 

Next, the first component yields 

aV1 _ V3 - , [ g(x-t) - f'{x-t)] + , [g(x+t) + f'{x+t)]. 
at 

Thus 

V1 - ~ Jtg(X-t)dt + i Jtg(X+t)dt 
o 0 

+ ,[f(X-t) + f(x+t)] + q(x). (6.4.22) 

The first integral is determined by putting x-t - (, then 

Similarly, 

x~ 

~ rtg{X+t)dt - i J g{()d€. 
o x 
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Inserting these two integrals into (6.4.22) we have 

x+t 
V 1 .. ~ f g( Od( + ~ [f( x+t) + f( x-t )] + q( X). 

x-t 

Since V1(x,O) - u(x,O) - f(X), (6.4.23) implies that 

f - 0 + ~(f+f) + q(x) - q(x) - 0, and 

X+t 
V11 - u(x,t) - ~[f(X+t) + f(x-t)] +! f g«()d(. 

p x-t 

Which 1s the D'Alembert formula. 

6.5 ~ll-posedness classification 

(6.4.23) 

(6.4.24) 

The analysis so far has concentrated on elements of the general 

class with ~;I. 0 and non-characteristic data. (The reduction 

to a first order system introduced in section 6. 1 fails for the 

case ~ - 0 or if the data are characteristic). It was pointed 

out at the end of section 6.2, that the case ~ - 0 can be 

avoided by using a nonsingular linear transformation to transform 

this equation to one with ~;I. O. Thus the reduction makes sense 

again as long as the transformed data is non-characteristic (with 

respect to the transformed equation). However, if the transformed 

data remain or become characteristic, then the underlying 

reduction fails completely without any visible avoidance. Hence 

the method of characteristics cannot be used to solve the original 

initial value problem. 

To study the well-posedness of the general class of equations we 

classify it into two subclasses in terms of the above reduction. 

In one of them, well-posedness will be investigated by using the 
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method of characteristics, whilst in the other well-posedness will 

be studied by means of the reduction to equivalence classes 

introduced in section 5.2. 

pefinition 6.5.1 (the nonsinqular class) 

The nonslngular class ls the subclass of the general class of 

equations W, Whose elements satisfy one or other of the following 

oond it ions I 

( 1 ) ~ ~ 0 and the data are non-characterist ic. 

(2) if ~ - 0 there exists a nonsinqular linear transformation 

which transforms the initial value problem to one satisfying (1). 

Note that condition (1) of this definition can be replaced by. 

(1') A ls nonsinqular, where A is the matl:'ix given by the 

expression (6.1.100), and the data are non-characterist ic • 

pefinition 6.5.2 (the sinqular class) 

The complement of the nonslnqular class ln W ls called the 

slngul.~ class, 1.e., the subclass of W whose elements satlsfy 

one or other of the following conditionsl 

(1) ~ ~ 0 and the data is on a characteristic curve, 

(2) ~ - 0 and there is no linear transformation which 

transforms ~ - to a non-zero value and leaves the data on a 

non-characteristic curve. 

Thus, any element of W clearly belongs to either the nonsingular 

or the singular class. 
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Remark I 

Since we are only interested in those elements of W which have 

solitary waves, 1.e., w n 5, then the above definitions are 

restricted to the class W n s. 

These definitions lead to the following theorem for our general 

class of equationsl 

~eorem 6.3 

Let e - (ai' a2 , ••• , ~) E W n 5. 

(1) If ~ ~ 0, then e belongs to the nonsinqular class if and 

only if the initial curve supporting the data is 

non-characterlstlc, l.e. 

(2) If ~ .. 0, then e belongs to the nons1nqular clus 1f the 

initial curve supporting the data is neither the usual curve 

(i.e., t - 0) nor the curve given by 

combining definition 6.5.1 and the characteristic equation (6.2.5) 

then A is nonsinqular and the initial curve supporting the data 

is non-characteristlc. Thus (1) follows. 

To prove (2), let ~ - 0, 1.e, e E W (\ 5 is defined by 

(6.5.1) 

with u(x,t) and ut(x,t) given on any line t - ox. 
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Subjecting (6.5.1) to the nonsinqular linear transformation 

x - -K- - ~ t, t - -K- - ~t, U(x,t) - v(x,t), (6.5.2) 
l.-k l.-k l-m l-m 

then, as in section 5.2, (6.5.1) reduces to 

(6.5.3) 

where 

(6.5.4) 

On the other hand the initial line t - <XX for (6.5.1) transforms 

to the initial line 

(6.5.5) 

and the two bits of data u, Ut for (6.5.1) reduce to two bits of 

data v and Vt for (6.5.3) on the line defined by (6.5.5). 

NOW, the characterist ic equat ion of (6.5. 3) is 

(6.5.6) 

and the roots are I 
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~ _ l::m , 
1 l-K 

Thus the characteristic lines of (6.5.3) are 

(6.5.7) 

By using the inverse of the transformation (6.5.2), these 

characteristic lines correspond to the lines 

t - 0 and t·-

respectively. Thus (2) is proved. • 

~le 6,5..aJ. (KdV with skew data) 

consider the initial value problem. 

u(x,t) - g(x) on the line t - loc (k ~ 0) 

under the nonsinqular linear transformation 

x - X, t - ~ - -Lx, 
l-k 1-k 

(6.5.8) and (6.5.9) become 

and u(x,t) - v(x,t) 

(6.5.8) 

(6.5.9) 

(6.5.10) 

Vt + Vx + VVx - .It_ vvt + v - 1lL v + ~~v 
l-k xxx l-k xxt ( 1-k)z xtt 

(6.5.11) 

-132-



v(x,O) - g(x). 

The characteristic equation of (6.5.11) is 

Thus i.e. 

characteristic curve Which is given by 

t - -.k..-x • 
k-1 

~ -~ 
dt 

(6.5.12 ) 

(6.5.13) 

(6.5.11) has only one 

(6.5.14) 

This line clearly corresponds to the line t - 0 in the original 

coordinates. Thus two cases arise 

(1) if k - 0, then (6.5.9) belongs to the Singular class. 

(2) if k ~ 0, then (6.5.9) belongs to the nonsingular class. 

we shall use this result later to prove well-posedness for the KdV 

equation not only for the usual data but also for skew data. 

Example 6.5.2 (BBM with skew data) 

(6.5.15) 

u(x,t) - g(x) on the line t - kx, (k ~ 0). (6.5.16 ) 

Under the transformation (6.5.10), equations (6.5.15) and (6.5.16) 

become 

(6.5.17) 

v( x, 0) - g( x) • 
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The characteristic equation of (6.5.17) has the roots 

Thus, (6.5.17) has two characteristic lines given by 

x - constant and 

Hence we have the following' 

x - 1s=1 t. 
le 

(1) if le - 0, i.e., the data is usual, then the BBM belongs to 

the singular class. 

(2) if le ~ 0 then, the BBM belongs to the nonsingular class. 

EXample 6.5. 3 (Joseph Egri model) 

(6.5.18 ) 

u(x,t) and ut(x,t) given on the line t - kx. 

Proceeding as in the above examples one can show that, 

(1) if le - 0, then the J.E. Model belongs to the Singular 

class. 

(2) if le ~ 0, then the J.E. Model belong to the nonsingular 

class. 

Having classified the general class of equations into the two 

subclasses, namely, the singular and the nonsingular classes, we 

now lOOK at the well-posedness of these classes. 

6.6 Well-pose4ness of the nonsingular clasS 

ThiS section is devoted to the proof of the well-posedness of the 

nonsingular class defined by Definition 6.5.1. For this purpose 
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we first establish integral formulae for the solution of. the 

nonsingular class. 

6.6.1 1he integral formulae of the nonsinqular class 

It was proved in section 6.1, that the nonsingular class can be 

reduced to the semi-linear system of first order partial 

differential equations 

Ut + AUx + C - 0, U(x,O) - H(x) 

and it was shown that the latter system reduces to the normal form 

V(x,O) - qt(x) 

.J 

where 0 - dlaq (1.1 ' 1.2 ' ••• , 1.10 ) and C is defined by (6.3.6). 

Thus the ith component is 

i - 1, 2, ••• (6.6.1) 

~ ,J 
where C - - C. Along cha.racteristics, the equations (6.6.1) 

are ordinary differential equations, since the differentiation is 

now in one direction only. This is the clue to establishing the 

integral formula. 

pefinit10n 6.6.1 (Domain of determinacy) 

Consider the linear or semi-linear system Ut of. AUx of. C - O. The 

domain of determinacy for this system is defined to be the set of 

all points p( x, t) which can be connected to the initial interval 

by characteristic trajectories. 

NOW, if p( x, t) is any point in the domain of determinacy of the 

system (6.6.1), then integrating along the characteristic PQi we 
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have 
i i p~ i 
v(p) - V(Qi) + J C(v)dn (6.6.2) 

Q1 

where Qi are those points on the initial intervals, connected to 

P by the ith characteristic, i - 1, 2, •••• Equation (6.6.2) 

gives 

(6.6.3) 

which is integral fomulae of the underlying system. 

6.6.2 2n1guene!~ 

To prove the uniqueness of the solution of the system 

U( x, 0) - H( x ) 

where A and C are given by (6.1.1OC,b) 1t 1s important to note 

that 1t can be re-wr1tten in the fonn 

U(x,O) - H(x). (6.6.4) 

Since by the expression of C it can be shown that C - eu, 

where U is 91 ven by ( 6 • 1. loa) and 

r I 0 0 I 
I I 

O( 3x3 ) I -1 0 I O( 5x3 ) 

I I 
I 0 -1 I 

-1- -1- - - - - - -
o 0 0 0 0 10 0 -1 0 0 

I 
B - 0 0 0 0 0 10 0 0 0 o. (6.6.5) 

I 
o 0 0 0 0 10 0 0 0 0 

a1q~a2p 1~a2u l~alul 
o ~- 0 -a:;- ~ 10 0 0 0 0 
- - - - - - - - - - - - _1- _________ _ 

001 
I 

0(3x3) 0 0 I O( 5X3) 

I 
001 
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Lemma 6.6.1 (3] 

If W(x,t) is a solution of the linear system 

W(x,O) - 0 (6.6.6) 

where A is symmetric, then W - O. 0 

The proof of this lemma is left to appendix C. 

Usinq the result of the above lemma, then the uniqueness of the 

solution of the oriqinal system (6.6.4) can be proved. 

1heorem 6,. 

If U is a solution of the semi-linear system (6.6 •• ) then U is 

unique. 0 

AS was demonstrated in section 6.3, the semi-linear system (6,6 •• ) 

can be reduced, by a nonsinqular linear transformation to the 

normal form 

Vt + DVx + C(V) - 0, V(x,O) - 1'(x) (6.6.7) 

where U - TV, 0 - diaq,(Al , ••• , A10 )' C - T-1BT and Ai are 

the eiqenvalues of the matrix A. Hence to prove the uniqueness 

of the system (6.6.4) it suffices, without loss of generality, to 

prove that the solution of (6,6.7) is unique. 

Let Vi and V2 be two solutions of (6.6.7) and W - Vi - V
2

, 

then W satisfies 

-
Wt + DWx + C(V1 ) - C(V2 ) - 0, W(x,O) - o. (6.6.8) 
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us1.ng the mean-value theorem, we have 

Then (6.6.8) reduces to 

W(x,O) - O. (6.6.9) 

The latter system is a linea.r system with 0 cUa.gona.l and It 

does not depend on W. Now, since W( x, 0) - 0 then by using 

lemma 6.6.1. 

W(x,t) - 0, i.e., Vl 5 V2 • 

consequently the solution of the system (6.6.4) is unique. III 

gample 6.5.4 

(6.6.10a) 

u(x,O) - f(x), ut(x,O) - g(x) and Utt(x,O) - h(x). 

(6.6.10b) 

The initial value problem (6.6.10a) and (6.6.10b) clearly belongs 

to the nonsinqular class. To prove that the solution of this 

problem is unique we reduce the problem into a system of first 

order partial differential equations. 

using the procedures, introduced in section 6.1, (6.6.10) reduces 

to the semi-linear system 

U(x,O) - G(x), (6.6.11) 

-138-



where, 

0 0 1 

0 0 

O( 4x4) 0 0 O( 4X4) 

0 0 
-------- - - - - - - - -- - - --

A- 0 0 0 -1 0 0 0 0 0 0 

0 0 0 0 -1 0 0 0 0 0 
-------- - - - - - - - --

0 0 0 -1 0 0 

O( 4X4) 0 0 -1 0 0 0 . (6.6.12a) 

0 0 0 -1 0 0 

0 0 0 0 -1 0 

UT - [u P q r s T V W ~ v], (6.6.12b) 

with u, p, q, r, s, T, V, W, ~ and v as in (6.1.3) and 

eT - [-p -r -s -v 0 0 j 0 0 0]. (6.6.12C) 

with j - qp + r + (l+u)s. 

Similarly, the initial data (6.6.10b) reduces to 

;pT _ [f(x) g(x) f'(x) hex) g'(x) fll(x) h'(x) g"(x) 

f" '(x) G] (6.6.13) 

with G - G(f, g, f', h, g', fll, h', g", f"'). 

The eigenvalues of A, are 

~ - 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1 and the corresponding 

eigenvectors are as follows I 
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~ - 0, ei are the usual basis vectors for Ra e.g., 

e 1 = [1, 0 0 0 0 0 0 O]T , 1 - 1, ••• , 8 

~ = 1, eg - [0 0 0 0 0 0 1 -1 1 _l]T 

~ = -1, e lO - (0 0 0 0 0 0 1 1 1 l]T. 

NOW, denote by T to the matrix whose columns a.re 

e 1 ' 1 - 1, 2, ••• , 10, 1. e • , 

1 
d1ag(1, 1, 1, 1, 1)! O( 5)(5 ) 

1 
1 

- - - - - - - - - -1- - - - - - - - -
1 1 0 0 0 0 
1 

T- I 0 1 0 1 1 . (6.6.14) 
1 

O( 5)(5) 1 0 0 1 -1 1 
1 
1 0 0 0 1 1 
1 
1 0 0 0 -1 1 

Then, 

I 
d1ag( 1, 1, 1, 1, 1) I O( 5)(5) 

1 
I 

- - - - - - - - - -1- - - - - - - -
1 1 0 0 0 0 
1 T-1 _ 
1 0 1 0 -1 0 • (6.6.15) 
1 

O( 5)(5) 1 0 0 1 0 -1 
1 
I 0 0 0 ! -! 
I 
I 0 0 0 ~ ~ 

NOW, if we subject the system (6.6.11) to the nonsinqular 

transformation U - TV where T ls given by (6.6.14), the system 
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reduces to its characteristic form, i.e., 

V( x, 0) - 4>( X), (6.6.16 ) 

where 0 - diag(O, 0, 0, 0, 0, 0, 0, 0, 1, -1) and 

,J 

C - [-p -r -s -v 0 0 (qp + r + (l+u)s) o T o 0) • (6.6.17) 

Hence, to prove the uniqueness of the original system (6.6.11) it 

suffices to prove the uniqueness of (6.6.16). Thus, let: V1 and 

V2 be two solutions of (6.6.16) and W - V1 - V2 • Then W 

satisfies the initial value problem I 

,-J ,-J 

Wt + DWx + C(V1 ) - C(V2 ) - 0, W(x,O) - O. (6.6.18) 

,., 
By using the definition of C from (6.6.17) and the relations I 

-141-



rJ ,-J 

Hence C(V1 ) - C(V2 ) - aw. where 

0 -1 0 0 0 0 0 0 0 01 

0 0 0 -1 0 0 0 0 0 0 

0 0 0 0 -1 0 0 0 0 0 

0 0 0 0 0 0 0 -1 0 0 

0 0 0 0 0 0 0 0 0 0 

8-
0 0 0 0 0 0 0 0 0 0 

81 q2 Pl 1 u2 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

i.e., the system (6.6.18) reduces to 

W(x,O) - O. 

Since this system is linear in W and the matrix 0 is symmetric 

and W(x,O) - 0, the hypotheses of lemma (6.6.1) are satisfied and 

it follows that the system (6.6.18) has at most one solution. 

consequently, the original equat 10n ( 6 .6 • 10) has at most one 

solution also. 

6.6.3 Existence 

The existence theory for hyperbolic systems of quasi-linear 

partial differential equations 

U{x,O) - H(x) 

is an old problem and has been studied by many people [4], [5], 

(11], •••• For the analytic problem, i.e. when A and Care 
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analytic in x and t and 8 is analytic in x, then the 

solution exists and depends continously on the data in 

the small (Le., for suitably narrow neighbourhood of x - 0, 

t - 0) by the cauchy-Kowalewsky theorem. This result was 

extended by Lax [13] Who considered the quas1-linear 8ystem i.e. 

the system in Which linearity and semi-linearity of the systems 

are special cases. By us1ng a pr10r1 esttmates of the solut10ns 

and an iterative scheme, Lax was able to show firstly that for 

analytic data the solution exists not only in the small but it can 

be continued analytically until it reaches the boundary of the 

domain of analyticity. secondly, by approxtmatinq a non-analyt1c 

problem by a sequence of analytiC problems and us1nq the above 

results, the solution of a non-analytic initial value problem 

Which is now a qeneralized solution is shown to ex1st. Lax proved 

that 1f all the matrices A, C and T (Where T is the matrix of 

e1gen-vectors of A) have continuous f1rst der1vat1ve8 and the 

first derivative of 8(x) i8 almost everywhere continuou8, the 

first derivatives of the generalized solution are continuous at 

all regular points of the system, 1.e., points that do not 11e on 

character1stics through points of discontinuity of the initial 

data. 

we now turn to prove existence for the semi-linear system (6.6.4) 

which has the normal form 

,J 
Vt + DVx + C - 0, V(x,O) - "(x) (6.3.7) 

Where 0 - diaq (~1' ~2' ••• ). 

To prove existence for (6.3.7) the following lemma is needed I 
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Lemma 6.6.2 

The system of differential equations (6.3.7) can be replaced 

equivalently by a system of nonlinear integral equations. Cl 

Proof 

Let C1c" L + "k L- in the kth component of (6.3.7) then n. 
8t 8x -K 

can be regarded as differentiation along the characteristic ~. 

Thus, by similar arguments as were used to derive the integral 

formulae (6.6.3), the system (6.3.7) corresponds to the nonlinear 

integral equations 

v - Lv, (6.6.19a) 

'le __ 'le IT,..", 
LV-«(, T) - V"{Xk) + c (xk' ~, v)d~ (6.6.19b) 

o 

Which proves the lemma. 11 

Before introducing the theorem Which guarantees the existence of 

the solution of ( 6.3.7) we define the region in which the 

existence proof is valid. 

Let H be a closed domain in the x, t space in which all the 

characteristics ci followed from a point p in H backwards 

in t meet a given section J of the initial data line t - 0 

in the points Pi' as in figure 6.2. 

p 

(Fig. 6.2) 
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Let S be the set of all functions v with domain H having 

continuous derivatives and equal to 'I'(x) on t - O. Finally, we 

defined the norm of the elements of S to be the largest value of 

the functions attained in the closed domain H. However, if we 

chose I 1'I'(x)l I - N and restrict admissible functions in S by 

choosing Ilvll .. 2N, then there exists a common upper bound 

JL ) 0 such that [ 3 ] I 

(6.6.20) 

where ..-I ~ is the functional gradiant of? with respect to v. 

Note that ~ -~ - 0 for the system (6.6.4). 

NOW, we introduce the following theorem. 

Theorem 6. 5 

,.I 
Let 'I'(x), C have continuous first derivatives, then the system 

V(x,O) - 'I'(x) (6.3.7) 

possesses a solution which has the same differentiability as 

'I'(x). 0 

If we choose h suffiCiently small, then (6.6.19) implies that 

The system (6.6.19) lends itself immediately to a process of 

solution by iteration and for a suitably narrow strip Rh the 

desired fixed element will be constructed as the uniform limit, 

as n - GO of vn+1 - Lvn , starting with vo(x,t) - '1'( x). For 

doing this we prove that the operator L in (6.6.19) is 
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contracting in the supremum norm. 

Let V 1 and V 2 be two elements in S, then (6.6.19) yie lds 

T"" ,., 
LVi - LV2 = J [C(X,T,V1 ) - C(X,T,V2 )dT (6.6.21) 

o 

- JT,,-J -Cv< X, T, V)( V i-V 2 )dT (using the mean value theorem) 
o 

where v is the 1ntermediate value. Thus 

(6.6.22) 

If h is small enough such that J.Lh < e < 1, then L is a 

contraction operator in the supremum norm. 

Similarly, if Zn - Vn+1 - Vn ' then 

(6.6.23) 

Le. Zn ~ 0 as n - Cl) uniformly in the strip ~. Thus the 

sequence {Vn} converges uniformly to a continuous function V 

in S and clearly has the initial value V(x). Hence, by using 

the fixed point theorem V is a solution of the integral 

equations (6.6.19). Furthermore, V solves the sytem (6.3.7) in 

the normal form since the directional differential operator on the 

integral in (6.6.19) produces the integrand. 

we must still show that the solution V(x,t) has continuous first 

derivatives with respect to x and t. To prove this it is 

enough to show that V has, at all points, continuous first 

derivatives in the characteristic direction and with respect to 

x, since the t-derivatives follows from the known directional 

(characteristic) derivatives. 
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Now, the existence and continuity of V in the characteristic 

direction follows directly from the system (6.6.19) and from the 

continuity of the solution obtained. To prove the existence and 

continuity of the derivatives av we observe, first of all, that 
ax 

rJ 
the assumed continuous differentiability of qt( x) and C implies 

that all the approximations constructed in proving the existence 

of a solution, have continuous derivative with respect to x. 

Differentiating the (n+l ) st approximation, 

wi th respect to ( • Thus 

aY T ,.., IJV ~ 

:.:n±J. - '" (x( 0, T, 0 U ... I (~ .:..:n u ... ~ ~ )dll 
a( Bx 0 BVn Bx BC ax a( 

(6.6.24) 

Similar to the assumption made about the system (6.6.19) we can 

prove the uniform converqence of the sequence { aVn} ( instead 
ax x 

of ( ) , n - 1, 2, ••• , by using the same method which we used to 

aY lim .:...:.n _ fi 
n-al ax ax 

prove the converqence of (Vn ). This give us 

which suffices to prove the existence of the solution of the 

characteristiC system (6.3.7) ~~!y. To show that the solution 

exists globally, "i.e. in a larqer region, we use the line t - h 

as new initial line and solve the problem by the same procedures, 

as above, in the strip h < t < 2h. we continue stepwise in this 

way which implies the existence of the solution in an arbitrary 

large t so long as the assumption of the continuity and 
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roundedness remains satisfied. • 

The existence of the original system 

U(x,O) - G(x) 

is, then, obtained from the above theorem since this system 

reduces equivalently to the system in the last theorem as in 

section 6.3. 

6.6.4 COntinuous dependence of the solution on the initial data 

Theorem 6.6. 

Let U(x,t) and W(x,t) be two solution of (6.3.7), such that 

U(x,O) .= "(x), W(x,O)" ",(x) and /141 - "11 < 8. Then 

I I w - u II < cs and cs - 0 as 8 - 0 (where I I • I I is the 

supremum norm defined in the previous section). 0 

proof 

Let 41(x) ''(x) - a(x), where Ila(x)!1 < 8, and 

U(x,t) - W(x,t) - Z(x,t). Then, as in theorem 6.5 Z satisfies 

the integral equation 

f
T,", 

Z(x,t) - 8(X) + Cy<x, T),V)(U-W)dT) 
o 

- 8(x) + fT~X,T)'V)Z{X,T)dT) 
o 

(where V is intermediate value). 

(6.6.25) 

Let max IZ(x,t)1 - E, then by estimates analogous to that used 
x,tES 

in the existence proof 

,.., 
cs < 8 + cs T IL, (IICII < IL). (6.6.26) 
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Replacing Z in the lntegral equation (6.6.25) by the right hand 

side of (6.6.26) and repeating the procedure, we obtaln 

~. E < 8(1 + ~T) + E 
2 

Repeating this aperatlon n times we have 

~ E < 6[1 + ~T + + 
21 

un-1~-1 ] + .. ",n~ • •••• + -=--~-- "" 
(n-1)1 nl 

NoW, as n - aD, we get 

E < 8 e~t • 

Thus lf t ls bounded, then 8 - 0 implles IS - 0 Whlch proves 

the theorem. 11 

6.7 Well-pose4ness of the slngular clasS 

The singular class was deflned in section 6.5 as the complement of 

the nonsingular class in W (\ S : in the sense of the Capability of 

the method of characteristics to ensure the well-posedness of the 

problem. That is, in the singular class, the technique used. in 

the previous section is no longer applicable. 

To study the well-posed.ness of the singular class we recall the 

reduction to equivalence classes obtained in section 5.2. This 

reduction not only reduces the Singular class to the four 

equivalence classes, KdV, RLW, W54 and w53 ' but it also reduces 

the prescribed data from being characteristic to the usual data as 

in the following theorem: 
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'11leorem 6.1 

COnsider the initial value problem corresponding to the general 

class of equations 

(6.1.1) 

where the initial data u, Ut and are given on a 

characteristic line x - mt, m ~ O. Then, this problem reduces 

to the four equivalence classes KdV, RLW, W54 , and W53 classes, 

i.e., 

(6.1.2) 

respectively, and the corresponding characteristic data u, Ut 

and Utt reduce to v, vt and Vtt on t - 0. 0 

Since x - mt is a characteristic of (6.1.1), then m satisfies 

the equation 

Now, consider the nonsingualr linear transformation 

_.nt 
1-n 

t - t .. _L - _mt and 
1-m 1-m 

u(x,t) - v{x,t) - u(x,t). 
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The reduction of equation (6.7.1) to the equations of the four 

equivalence classes KdV, RIM. W54• and W53 is ensured by the 

reduction theorem 5.2. Clearly the characteristic line x - mt 

transforms to the line t - 0 and the data on this line are 

obtained from the following • 

.. v(x,O) , 

Ut(X,~) - =n Vx (x,O) - -ID- vE(x,O), 
m 1-n l-m 

(6.7.3) 

nZ 2mm m Z 
- (1-n)z Vxx ~ (1-n){1-m) vif (i,o) ~ (1-m)z vEE (i,O). 

This completes the proof. 11 

Remarks 

(l) In the proof of the above theorem if 
a 

m - ....! , then according a 2 

to the Corollary 5.3.1 the general class reduces to the simple 

four equivalence classes, 1.e., with the disappearance of the UUt 

term. 

(2) It is seen from the result of the above theorem that the 

reduction reduces the t-derivatives by at least one so that at 

least one bit of data becomes redundant. If the transformed data 

of each of the four classes are conSistent, then well-posedness of 

the singular subset of the general class is guaranteed if we can 

prove that the set of equation (6.7.2) are well-posed for data on 

t - O. 

Thus, to investigate the well-posedness of the singular class it 

suffices to study the well-posedness of each of the four classes 

in (6.7.2). 
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6.7.1 The RLW class 

The initial value problem corresponding to the RLW equation 

v t + Vx + VVx - Vxxt - 0, v(x,O) ... g(x) (6.7.4) 

has been studied in chapter 4 where its well-posedness is ensured 

by theorems 4.7 to 4. 10. 

Now, the RIM equation generates a subset of the Singular class, 

i. e., the simple RLW class and the data v( x, 0) generates one bit 

of data for this subset. But according to the Cauchy problem two 

more are needed for this subset 'corresponding to vt(x,O) and 

If v, vt and V tt are consistent (i.e. can be 

generated from the solution of ( 6 .7.4) ) then the RLW being 

well-posed, leads to the well-posedness of this subset. 

The analysis above was restricted to the simple RLW subclass i.e., 

no uUt term. A similar analysis can be done if UUt is 

present. Thus consider the initial value problem I 

u(x,O) ... f(x). (6.7.5) 

TO study the existence of a solution of (6.7.5) it is convenient 

to establish the integral formula of the solution. 

Integral formula of solution of (6.7.5) 

Re-writing (6.7.5) in the form 

(6.7.6) 

The left hand side is an ordinary differential equation in Ut. 
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Thus, by using the Green's function of the differential operator 

aZ 
(1 -~, which was establish in chapter 4, (6.7.6) reduces to 

8x 

Integrating once with respect to t between 0 and t, then 

u - 9(X) + t r k(x-C)[u + u
2

)d(d, - E fk(X-O ~C 
O-iD 2 -(I) 2 

+ E J
OD z 

k( x-C) 9:...( C )dC 
-OD 2 

+ ~ uZ«(,,)]dCd, - E fk(X-() i~«(,t)d(, 
-iD 

- «x) + tjk(X-C)(U +! uZ]d(dT - E rk(X-() U
Z 

«(,t)d(, 
o -iD ;., 2 

(6.7.7a) 
where 

k(Z) - ~ sqn(z)e- 1ZI 

i.e., 

U .= AU - 4>(x) + BU (6.7.7b) 

which is the integral formula of (6.7.5) where 

BU - tfk(X-C)(U(C,,) ... ! UZ(C,,)]d(d, - Erk(X-O U
Z 

(C,t)d(. 
0-(1) ;., 2 
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we now turn to prove the existence of a solution of (6.7.7). 

Existence of solution of (6.7.7) 

Lemma 6.7.1 

Let g(x) be a continuous function such that 

Sup Ig(x) + gZ(X)1 < b < m 

xER 

then there exists a to(b) ) 0 and an E(b) such that the 

integral equation (6.7.7) has a solution u(x,t), satisfying 

u( x, 0) • q( x) which 1s bounded and C"..()nt: inuous for x E R, 

~{ 

Let {?T be the space of all continuous and bounded functions with 

norm defined by 

Suppose 

IIUI't, -t. 

and 

then 

Sup I u( x, t ) I • 
-m<X<m 

~t~ 

are two elements' of .e T such that 

~ sUPlU1 - u21[l + ~IU1 + U2 '1 Jt~lk(X-e)dedT 
K,t 0 -m 

+ IEI suplu1 - u2' IU1 + u21 ~lk(X-()d( 
X,t -m 
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Taking the supremwn of both sides in the strip R x [0, to] we 

have, 

(6.7.8) 

Thus, 

Which implies that A is continuous mapping of the space et 
o 

1nto 1tself. Morever, the ball sat1sfies a 

L1psch1tz cond1t10n w1th Lipschitz constant 9 < 1 if 

(1+r)to + 2rlEI < e < 1. (6.7.9) 

Also 1n the above calculation 1f u2 - 0 and u1 - u, then 

Morever, the ball is mapped into itself if 

b < (1-e)r. 

Thus A is contractive o.perator. Hence according to the fixed 

point theorem on Banach spaces, A has a fixed point u 1n the 

ball Ilull" .; r Which is a solution of (6.7.7). 11 
~to . 

Note that the inequality (6.7.9) restricts the amplitude of 

solutions for Which existence is guaranteed. Specifically we have 
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that a necessary condition is that 

r < 1 
~ E • 

Now, using the same proof as was given to prove lemma 4.5.2, the 

following theorem is proved. 

Theorem 6.9 

If g ~ CZ(R). Then any solution of (6.7.7) which is an element 

of .e T (for a given T) 0) 1.s also an element of e~'ID. 0 

Hence the result from theorem 6.9 implies that the solution of the 

integral equation (6.7.7) has sufficient regularity to be a 

classical solution of the ini tial value problem (6.7.5) in the 

infinite strip R x (O,to]' 

The above theorem means that in the subset of the Singular class 

corresponding to the RIM (with the presence of uUt term) a 

solution exists at least locally. 

6.7.2 The KdV clasS 

In the simple KdV class (i.e., no uUt term) 

v(x,O) - g(x) (6.7.10 ) 

by adding the term and using the method of 

regularization we have shown in chapter 3 that the initial value 

problem (6.7.10) is well-posed. 

NOW, this result is used to generate well-posedness of the 

corresponding subset of the general class under certain data as 

folloWSJ 

-156-



Theorem 6.9 

COnsider the general singular subclass 

Ut + ~ + a1u~ + a2u~ + a3~ + a 4uxxt + aSUxtt + ~Uttt - ° 
(6.7.11a) 

where a1/~ is a triple root of the cubic equation 

(6.7.11b) 

and u,~, ~t are prescribed on the characteristic l1ne 

if the corresponding three data v, vt ' Vtt are consistent then 

the problem is well-posed. 0 

using corollary (5.3.1) the equat 10n (6.7. 11a) reduces to the KdV 

equation and morever, the characteristic data u, Ut' Utt reduces 

to three bits of data v, vt ' Vt t on t - 0. Hence, if V(X,O),vttliO) 

'{t:( x, 0) are consistent then since the KdV is well-posed it 

follows that the theorem is proved. 11 

If the triple root of (6.7 .11b) is not 
a1 
a2 

then (6.7.11a) reduces 

to the KdV in the general sense, it includes VVt term. Hence, 

the well-posedness of this problem is needed. Unfortunately the 

method of regularization cannot be applied here and the reason is 

that there are not enough conservation laws to estimate the bounds 

of the corresponding regularized problem. 
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6.7.3 The Class WS4 

In this section we carry out an existence proof for solutions of 

this class. This proof is unfortunately not very strong since it 

does not lead to existence of global solutions in both x and t. 

We are still trying to sort out the difficulties. so, until then 

we introduce the proof belowl 

COnsider the specific initial value problem (since the general 

form is clearly treated similarly) 

u(x,O) - g{x), ut(x,O) - hex). (6.7.12 ) 

Equat ions (6.7. 12) correspond to the system 

Ut + Ux - v(x,t), u(x,O) - g{x) (6.7.13a) 

Vxt + (l+u)v(x,t) - 0, v(x,O) - hex) + g'(x). (6.7.13b) 

Equations (6.7.13a) can be solved to give an expression for u in 

terms of v. 

transformation I 

For this purpose subjecting (6.7. 13a) to the 

x - ( - x - t, t - 1') - t, u(x,t) - u«(,1') and 

v(x,t) - v«(,1') (6.7.14) 

we have 

u( (, 0) - g( 0 . (6.7.15 ) 

Since the transformation (6.7.14) is a nonsingular linear 

transformation then, to find the solution of (6.7.13a) and prove 

its existence it suffices to prove that the solution of (6.7.15) 
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exaits. To do this we integrate (6.7.15) with respect to ~ and 

obtainz 

Hence 

u{C,~) - g{C) + J~ v{C,~)dT. 
o 

lul < Igl + Sup Iv{C,~)I~, 
O<T}<T 

(6.7 .16) 

o < ~ < T. (6.7.17) 

Taking the supremum of both sides with respect to C and ~ and 

using the nonsingularity of (6.7.14), we have 

(6.7.19) 

where e T is the function space of all continuous and bounded 

functions on a < x < b, t;;a 0, defined in section 6.7.1 and 

Sup 1 g{ C)J < loft Hence, the fo llowing lemma is proved J 

C 

Lemma 6.7.2 

If g( C) is bounded and v( C , ~ ) exists and be longs to the space 

eT then u( C, ~ ) exists and is bounded. 0 

Since the transformation (6.7.14) is nonsingua.lar then, the 

solution of (6.7 .13a) now exists under the same assumptions of the 

above lemma. 

We turn now to prove tha.t v, the solution of (6.7.13b) exists. 

For doing this we shall use the relation (6.7.18) since the 

nonsingularity of the transformation (6.7.14) provides similar 

relation for u(x,t). Thus, integrating (6.7.13b) with respect to 

x and t, a < x < b, 0 < t < T, we have 
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v(x,t) ~ v(x,a) - Jt JX (l+U)V(C,T)dCdT 
a a 

= Av - g'(x) + hex) + Bv 

J
t x 

with Bv - - J (l+U}V«(,T)dCdT. 
a a 

(6.7.19a) 

(6.7.19b) 

If Sup' Ig'(x}1 .;; L . and Sup Ih(x}I';; N, there exists a T 
a<x<b a';;x<b 

depending on L and N such that (6.7.19) has a solution 

satisfying v(x,a) - g'(x) + hex). 0 

~ 

Let v 1 ' V2 6fT such that Ilvill';; R, i - 1, 2, then, 

.;; I J
t lx

{(1+u1 }V1 - (1+u2}V2}dCdTI 
aa 

.; Sup {lv1- v 2 1 11 + 'i(U1+u2 )1 (b-a)t 
x,t 

+ sup'i lu1-u2 1 iV1~V21 (b-a)t 
x,t 
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But using (6.7.18) we have 

(6.7.21a) 

(6.7.21b) 

Inserting the relations (6.7.21) into (6.7.20) we have 

Taking the supremum of both sides with respect to x and t, 

with {1 + 2 T R + M} (b-a)T < 9 < 1. (6.7.23) 

Hence, A is a continuous operator. Also in the above 

calculations if v2 s 0 and v1 - v then 

(6.7.24) 

Now, if Sup Ig'(x)1 < L and Sup h'(x) < N it is seen that 
a<~ a~x<b 

the ball IIVI~T ~ R is mapped into itself if in addition to 

(6.7.24) 

L + N ~ (l-6)R. (6.7.25) 
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Thus, (6.7.23) and (6.7.24) imply that A is contractive over the 

ball in .eT. Hence, using the fixed point theorem for Banach 

spaces v( x, t ), being the fixed point of A satisfies the 

inteqral equation (6.7.19) and the lemma is proved. El 

COmbining the two lemmas 6.7.2 and 6.7.3 implies that if the 

initial data g(x) and h(x) are continuous and bounded then the 

original equation (6.7.12) has a bounded solution over the 

rectangle [O,T] x [a,b]. This gives existence proof for solution 

of the class WS4 • 

6.8 ~~ications 

We turn now to provide some applications in order to make the 

theory of well-posedness more understandable. 

6.8.1 The KdV with skew data 

COnsider the initial value problem 

u( x,kx) - g( x). 

TWo cases arise 

(1) k - Or 

-0) < X < 0), t) 0 

(6.8.1) 

The initial value problem (6.8.1) is the same problem studied in 

chapter 3. Hence, for 9 E Hk, k la 3 there exists a unique 

solution u(x,t) of (6.8.1) depending continuously on the data. 
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(2) k~O: 

Using the transformation 

x - x, t - ~ -~, and u(x,t) - v(x,t) (6.9.2) 

then (6.8.~) reduces to 

V(x,O) - g(x). (6.9.3b) 

Now, (6.9.3) 1s an element 1n the nons1ngular class. Let vt(x,O) 

and Vtt(x,O) be given, i.e., 

(6.9. 3e) 

Vtt(X,O)- hex). (6.9. 3d) 

Applying the well-posedness theory of the nons1ngular class to the 

problem (6.9.3), then, if g(x), f(x) and hex) are continuous 

and have continuous first derivatives, (6.8.3) is well-posed. 

Now, inserting the inverse of the transformation (6.8.2) in 

( 6 • 8 • 3) we have 

(6.B.4a) 

u( x, lac) - g( x) , (6.9.4b) 

ut(x,lac) .... (l-k)f(x) , (6.9.40) 

(6.8.4d) 
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Hence, (6.9.4) is well-posed provided that the data (6.9.4b, c,d) 

are at least But since from equation (6.8.4) 

differentiability with respect to t decreases the 

differentiability with respect to x by three, then prescribing 

the data on the skew curve restricts the well-posedness of the KdV 

equation into a smaller function space than for the usual data, 

precisely, the space i;' k;;. 9 Which is a subspace of 

~~, k" 3. 

6.9.2 The B6M with skew data 

(6.9.5a) 

u(x,lac) - g(x). (6.9. 5b) 

(1) k-Ot 

The initial value problem (6.8.5) is the same problem wh1ch was 

studied in chapter 4, i.e. the well-posedness is already ensured. 

(2) k ~ Ot 

By the same nons1ngular l1near transformation (6.8.2), (6.8.5) 

reduces tOt 

(6.9.6a) 

v(x,O) - g(x) (6.8.6b) 
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whlch ls an element of the nonsingular class. Hence similar to 

the above example this initial value problem is solved for two 

more arbitrary data vt(x,O) and to ensure the 

well-posedness. Then, using the inverse of the transformation 

(6.8.2), leads to well-posedness of (6.8.5) with two more bits of 

data ut(X,kx) and utt(x,kx) which have to be in. 

6.9 Conclusion 

In this chapter, the well-poSedness of the general class was 

investigated. For this investigation it was convenient to reduce 

the general class to a system of first order partial differential 

equations. It is found that if ~ ~ ° and the data are 

noncharacteristic, then the general class being reduced to a 

semi-linear system of first order partial differential equations, 

can be transformed to a system of ordinary differential equations 

on its characteristiCS. The proof of this fact was carried out 

for the case where all the characteristics are real. This proof 

can be done if some of these characteristics are complex by 

reducing the system to two systems of real characteristics and the 

reduction to systems of ordinary differential equations ls clearly 

obtained again. This result leads to a classification of the 

problem into two main classes namely nonsingular and singular 

classes. Por the nonsinqular class the method of characteristics 

is applied to obtain well-posedness. 

The failure of .this method on the Singular class is due tOI (1) 

the data. are characteristic ( 2) the singularity of A. This 

singular class consists of the four equivalence classes KdV, RUN, 

W54 , and W53 classes, introduced in the previous chapter, with 

usual data. This reduction turns the problem from being a six 
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parameter problem, with characteristic data, into one with usual 

data and one less t-derivative. Furthermore, the reduction is via 

nonsingular linea.r transformations and hence preserves 

well-posedness where it is known. COnsequently the theory of 

well-posedness of the KdV and the RLW, introduced in chapters 3 

and 4 respectively, are used to a.dvantage to establish 

well-posedness in the corresponding simple classes. Finally, our 

proof of existence for an element of WS4 can be used to imply 

existence for the corresponding subset of the singular class. we 

have also established two results on the well-posedness of the KdV 

and the RLW on skew data. 
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CffAPTER SEVEN 

CONSERVATION LAWS 

An important property of the general class 

is the possible existence of a number of independent conservation 

laws. This property plays a significant part in both mathematical 

and physical interests. The conservation law associated with a 

given equation was defined in chapter 3 wherever the conserved 

form for this equation is expressed by an equation of the form 

!. T +!. X • 0, where T, the conserved denSity, and -X, the 
at ax 

flux are polynomials of x, t, u and the various derivativ~s of 

u. This conservation law is used as an indicator of whether the 

equation has an N-soliton solution or not. Thus, it is a 

mathemat ical property. Furthermore it is a physical proparty, 

since it is used for deriving a priori estimates and to obtain 

integrals of motion. For example, if the flux X is zero as 

I x I - 00, then j Tdx - constant. 
-00 

The idea of conservation laws was first introduced in chapter 3 

where the proof of the existence of an infinite number of 

conservation laws of the KdV equation was given. In chapter 4 

this idea was revived and it was shown that the RLW equation has 

only three conservation laws. These two equations lie in two 

disjoint subclasses of the general class, as was demonstrated in 

chapter 5. This demonstration was given via a reduction which 

preserves the conservation law property. 
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Thus, the general class includes other elements which have the 

same conservation properties as the KdV and the RLW equations. 

In this chapter, a number of conservation laws of the general 

class are derived, followed by a careful examination of how many 

of such conservation laws can be found, and consequently how much 

from the general class are of the same character as the KdV 

equation. 

7.1 Derivation of Some poeeible conservation laws 

we consider the general claee of equatione 

+ asUttt - 0, ai ER, i - 1, 2, ••• , 6 (7.1.1) 

and write ite nth coneervation law in the form 

aTn + ~ 
at ax 

.. o. (7.1.2) 

The derivatione that follow are done by means of elementary 

operatione and are stated in two theorems. However, first we note 

the following lemma 

Lemma 7.1.1 [3] 

TWo conservation laws are eaid to be dependent if there exiets 

conetante Cl' c 2 such that 

+ ... (for eome P) 

where T1(is 1, 2) are the conserved denSities. Cl 

Note that if T-Px ' X .. -Pt (for some P) the conservation law is 

trivially satisfied. 
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Theorem 7.1 

The first two conservation laws of (7.1.1) have densities and 

fluxes given by, 

Equation (7.1.1) can be re-written in the form 

(7.1.3) 

Hence T 1 and X1 follow by (7. 1 • 2 ) • 

Multiplying (7.1.1) by u, we have 

(7.1.4) 

Now, using the relationsl 

~ z 
uUxxx 

.L (uuxx - -), uUxxt 
.L uUxt 

_ L Ux 
8x 2 8x 8t 2 

(7.1.5) 

!L !L UZ 
!L UZ 

UUxtt - uUxt - -i and UUttt .- (uutt - -i) 
at ax 2 at 2 
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means that (7.1. 4) can be re-written in the conserved form (7.1. 2) 

with 

Thus the theorem is proved. (I) 

In the above theorem two conservation laws of (7.1.1) were derived 

and they are clearly independent Where no one can be reduced to 

the other under possible integrations. We turn, now, to study the 

possibility of deriving the third conservation law. 

Theorem 7.2 

If the coefficients a1 satiSfy the condition 

(7 • .1.6) 

Then this subclass has a third conservation law with 

and 
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where 

o 

To prove this theorem, we assume, without loss of generality, that 

a 1, a 2 ~ 0 (since if either a 1 or ~ vanish there always 

exists a nonsingular linear transformation to put the equation in 

the form (7.1.1), 1. e., with both nonlinear terms present). 

Now, inserting the substitution 

and (7.1.7) 

into (7.1.1), we have 

- 0 . (7.1.8) 

Multiplying (7.1.9) by UZ , the resulting equation can be 

re-written in the form: 
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2~ 
- - Uututt 0 , 
,a~ 

i.e. , 

8 1 U ~ u· a 4 Z a6 Z R 1 u~ u. a ':I 
( ~ - ~ -- u Uxx ~ - u Utt] ~.¥-( ~ - ~ ~ uZu at il2 3 4 af~ a~ 8x aJ. 3 4 ai XX 

o. (7.1..9) 

using the relations I 

(7.1.10 ) 

reduces (7.1.9) to the form I 
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(7.1.11 ) 

Hence. (7.1.11) has the forma 

(7.1.12a) 

where. 

(7.1.12b) 

(7 .1.12C) 

But the condit ion (7.1. 6) of the theorem implies that 

(7.1.13 ) 

Substituting (7.1.13) in (7.1.12). we have 

(7.1.14 ) 

-173-



2a3 Now, multiplying (7.1.8) by a 5 uxx ' the resulting equation can 
1 

be re~ritten in the form I 

(7.1.15 ) 

2a6 Multiplying (7.1.8) by a 5 Utt' the resulting equation has the 
2 

form I 

(7.1.16 ) 

Multiplying, finally, (7.1.~) by -2KUxt , yields I 

(7.1.17) 
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Adding the four equations (7.1.14) to (7.1.17), we have 

L.(T· 
a 3 ... IL)uZ ... ~ 2a6 a 3a 4 aK 

- (-3- UZ ... -- Uxut ... (-- ... _3_)UZ 

at 3 a1. x ~ t 3 5 a3 xx a1.a 2 a 1 a 2 a1.a 2 1. 

a3~ a4~ aK a Z 
(2a3~ 2a3a 6 + (--- ~)~+ -2 Utt + ~)uxxUxt 

a 3a 3 a·a· a 1"-2 as a·az a l a 2 1 2 1 2 2 1 2 

2a3~ 2~K 
+ 

a 3a 3 UxxUtt - ~UxtUtt] 
1. 2 

(~+ L)ut 
2a3 a Z 

+ L(x' +-- Uxut +:::1 UZ 
ax 3 "-1"-2 ~ ;, at! xx a 1a 2 1 

(7.1.18 ) 

Thus equation (7.1.18) represents the third conservation law of 

the equation (7.1. 8). Hence to establish the third conservation 

law of the original equation (7.1.1), we use the inverse of 

(7.1.2), Le. 

(7.1.19) 

and the expression T3 and x3, i.e., (7.1.12b) and (7.1.12C) 

(respectively) • 

Then (7.1.1) has a third conservation law withl 
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Which proves the theorem ... 

Note that the condition (7.1.6') of theorem 7.2 couples all the 

coefficients of the qeneral class (7.1.1) • We call it the 

couplinq coefficients condition. In the next section we shall use 

this condition to classify the problem. 

7.2 Classification of the problem using the coupling coefficients 
conditlQ!) 

combining the definition of the characteristic equation of the 

general class (7.1.1), defined in chapter 6, with the coupling 

coefficients conditions (7.1.6) implies, clearly, that for all the 

coefficients ... , 6) of the general class, the 
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coupling coefficients condition is satisfied if and only if 

1s a root of the characteristic equation 

(7.2.1) 

This leads to a classification of the problem, in terms of the 

order of the roots of the cubic equation (7.2.1) as follows I 

(1) 
a 

If :.1: is a root of (7. 2.1) of order three, then the a2 
corollary (S. 3.1), introduced in chapter S implies that the 

corresponding subset of the general class reduces to equivalence 

class of the KdV equation (simple KdV class) and hence has an 

infinite number of conservation laws, as was proved in chapter 3. 

(2) 
a 

If :.1: is a root of (7.2.1) of order two, then the a2 

corresponding subset is reduced to the equivalence class of the 

RIM equation (simple RIM class) consequently, it has only three 

conservat ion laws, as was shown in chapter 4. 

(3) 
a 

If -1 is a simple root of (7.2.1), then corollary (S.3.1) a2 

of the reduction theorem S.2 implies that two subcases arisel 

( i ) I f all the roots of ( 7 • 2 • 1 ) are real and simple, the 

corresponding subset reduces to the simple WS4 class, i.e., 

(7.2.2) 

In the next section it will be proved that (7.2.2) has only three 

conservation laws. 

(i1) If (7.2.1) has two complex conjugate roots, then this subset 

reduces to the simple WS3 class, i.e., 
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(7.2.3) 

we shall show that this also has three conservation laws. 

a 
(4) If a! is not a root of (7.2.1) then the above analysis 

has only given us two conservation laws for this subset of 

equations. we shall discuss this case in the last section. 

Having classified the general class of equations into four 

equivalence classes where the informations about the existence of 

oonservation laws of the first two classes (simple KdV and simple 

RIM classes) are known, we turn now, to examine the other two 

classes by introducing a general formalism for proving the 

existence of conservation laws. This will be exploited later for 

solving the problem of the specific equations, simple WS4 and 

simple WS3 classes. 

7.3 General formalism for proving existence of conservation laws . 
Let N be the space of all points with coordinates Xi' J, 
i - 1, 2, ••• , n and j-1, 2, ••• ,m and M be the space of all points 

"1' i-1, 2, ••• ,n. Define the projection operator n such that 

n I N - MI i.e'., II(Xi,Uj ) .. Xi' i-l, 2, ••• ,n, j-l, 2, ... ,m. 

Let Nk be the space of all points with coordinates Xi' u j and 

the various derivatives of u j with respect to xi. Thus, if we 

denote by R to the kth order differential equation with 

independent variables Xi and dependent variables u j , then RCNk • 

NOW, using the above notions we introduce the following 

definitions: 
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pefinition (7.3.1) (infinite prolongation) 

Let RC N]t be the kth-order differential equation, Le., R can 

be defined as P1 - P2 - ••• Pr - 0 where Pi(i-1, 2, ••• ,r) are 

smooth functions on Nk • We define the infinite prolongation 

~ c: NQ) as the subspace obtained by equating F and its various 

total derivatives to zero. 

ID@mPle 7.3.1 

llxxt; - Ut; - u~ - Unt· (7.3.1) 

For this example N - R5 with coordinates (x, t, u) and M - RZ 

with coordinates (x,t). Hence equation (7.3.1) is a subspace of 

N3 and F can be taken as 

F .. Ut; - u~ - Uxxt; - Unt· (7.3.2) 

Thus to obtain the infinite prolongation I\., of (7.3.1), we 

equate F and its various total derivatives to zero, Le., by 

taking into account all the differential consequences of (7.3.1) 

we arrive to the infinite prolongation This 

prolongation admits, in fact, a glo~ coordinate system, e.g. 

(7.3.3) 

where 

~(k~) a llxx ••• x(k-t1mes x), vx(k~l) - Utt ••• t (k-t1mes t), 

-179-



Example 7.3.2 

Uxxx: = Ut - ut1x - t1xtt - o. (7.3.4) 

In this example N and M are chosen as in the above example and 

Hence the infinite prolongation of (7.3.4) are obtained as in the 

above example and it admits the global coordinate system (7. 3.3). 

pefintion 7. 3 .2 (The algebra) 

The subset A of the space ~ is called the algebra of smooth 

functions if, Whenever f, g E A and a any real number, f~g, fg, 

af E A. 

Let A denote the algebra of smooth functions on ~ and B the 

algebra of smooth functions on Nm• Then 

A w: B/I 

Where I is the ideal of functions vanishing on ~. Then in the 

coordinate system (7.3.3) the total derivatives with respect to x 

and t on the algebra A are written as 

(7.].5a) 

a L !L a 81LJc 8 a 0t ... - + 1: JLk+l + 1: vk+l + 1: ~+1 - + 1: - - + v1 -
at k~~ 8~ k~l 8vk k~2 ~ k~3 at 81Lk 8u 

(7.] .5b) 
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Remark 

From the definition of Dt , it can be clearly shown that if 

Ker Dt - COO(t) (the set of all functions of t), then the linear 

dependence of conserved densities implies linear dependence of 

corresponding conservation laws. 

Definition 7.3.3 

( 1) The universal operator IF of a given equation R C Nk ls 

defined by the matrix 

(7.3.6) 

for the multi-indices E, where Fi are the components of R, as 

in the above notions, and DC 1s the total derivative operator 

( 2 ) The conjugate operator 1* of p Ip is derived from (7.3.6) 

by the transposition and taking the conjugate of each scalar 

element of the matrix where 

and * 9 - 9 for the function 

coefficient. 

Example (7.3.3) 

The universal operator for the equation in example (7.3.1) is 

and the conjugate operator I; has the form 
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stmilarly the equation in example 7.3.2 has 

and 

Where ~ Which appears in Ip is the operator multiplication by 

~ and the conjugate of this multiplication operator vanish 1n 

In the following, and without any confusion, we denote by 1* to p 

the restriction of the conjugate operator I~ to the infinite 

prolongation ~ of R. 

using the above definition of the conjugate operator 1* the p 

relation between the space of conservation laws and I; was given 

in [1], [4] and is summarized as follows I 

The space of conservation laws can be injected into Ker I;. 0 

The above theorem implies that the dimenSion of the space of 

conservation laws is not greater than the dimension of Ker I;. 
Hence to prove the existence of conservation laws it suffices to 

* calculate the dimension of Ker Ip. This will be used in the next 

section to prove the existence of conservation laws of the simple 

WS4 class. 

7.4 Conservation laws of the simple WS4 class 

This section is devoted to the study of conservation laws of the 

simple WS4 class (7.2.2). For this context we begin by the 
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equation 

(7.4.1) 

which is an element of the class (7.2.2) and prove that the 

dimension of its space of conservation laws cannot be greater than 

three. This proof will be adapted later for the original equation 

(7.2.2). 

Using the notions in section 7.3, the infinite prolongation I\., 

of (7.4.1) was obtained in example 7.3.1. Morever it was pointed 

out that it admits the global coordinate system (7.3.3). 

If, now, A, B stands for the algebras of smooth functions on ~ 

and NCI) (respectively), corresponding to (7.4.1), then 

A ... B/I (7.4.2) 

where I is, now, differentially generated by the function 

F ... llxxt + llxtt - ut + ullx' (7.4.3) 

Thus, in the coordinate system (7.3.3) the total derivatives Ox 

and 0t are obtained from (7.3.5), 1. e., by using the equation 

(7.4.1) we have 

d"'k = 
dx 

k-2 
Vk-1 - ~+1 - 1: 

i-o 

d~k k-2 k-2 
... ~k-1 - ~k+l - 1: ( i )uiUk-i-l' 

dt i-o 

Substituting 
dWk 
dx 

and d~k 
dt 

into (7.3.5) yield 
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k-2 (k-2)V ~_ ]8 ~ 8 + 1: [Vk-1 - ~H - 1: 1 1"".K-1-1 aw... I: IlkH -
k~2 1-0 -""X k~3 Bilk 

(7.4.4) 

and 

(7.4.5) 

The above definition of the total differentlal operators on A 

leads to the following' 

~ 7.4.L.,1 

Ker Ox - CD(t) (the set of all CD functions of t). 0 

Let (7.4.6) 

where g E An, An, being the subalgebra of functions x, t, 

Uk , vk ' ~ and J.l.Jc with le.;; n which satisfies 

m 
A - U An. 

na() 

Thus coefflclent of un~l 1n (7.4.6), 1.e., (£9 ) must vanlsh, 
aUn 

1.e., 9 does not depend on un. Similarly the coefficlents of ~, 

i.e. , must vanish, yielding - o. Thus we come to 
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== o. S1m11arly jg - jg 
dSLn 8SLn_1. 

WK •••• - O. 

Since the coefficients of wn+l. ~n (7.4.6) van~sh, then 

(7.4.7) 

(7.4.8) 

Now, equation (7.4.1) can be re-written in the equivalent form 

(7.4.9) 

Then, 

• :1< _ ~-1 + (_l)k+l SLk+l - T, T does not depend on both 

Wx:-l and SLJt+l • 

Thus, the total x-derivative can be re-written equivalently in the 

forms 
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+ [W3 - u~3 - v1u2 - 2U1W2 - ~3 + uU3 + 3U1U2 + ~5]:W + 
4 

k a + ~ + [Wk-1 + (-1) ~k+1 - T] 8w. r ~k+1 
-"K k:>3 8~ 

where T does not depend on "ic.f-l • 

Then, coefficient ~n+l in (7.4.6) must vanish, i.e. 

SOlvinq (7.4.9) and (7.4.11) qives 

and .£g - 0 
8Vn 

( since .£g - 0). 
8~n 

(7.4.10 ) 

(7.4.11) 

Hence q E An-1' and by induction, we come to q - q(x, t, u) • 

.£g - 0 , 
8x 

i.e. q - q(t) E COO(t), which proves the lemma. 11 

Similar to the proof of lemma 7.4.1 one can prove the followinq 

Lemma 7.4.2 

Ker Dt - COO{ x) (the set of all COO functions of x). 0 

Lemma 7.4.3 

(7.4.12 ) 

usinq (7.4.4) and (7.4.5), then 
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(7.4.13) 

Thus, the coefficients of u n+1 ' un' v n+l and vn in (7.4.12) 

must vanish, i.e. 

.. 0 (respectively) (7.4.14) 

and coefficient ~n-l" 0, implies 

(7.4.15) 

similarly, coefficient u n- 1 " 0, implies 

(7.4.16 ) 

Hence, combining (7.4.15) and (7.4.16) implies Ig - O. By the 
8J.Ln 

same procedure, since the coefficients of vn- 1 and wn- 1 must 

vanish, then, combining the two coeffiCients, implies 

(l+u) L - 0, thus fl_ - O. COnsequently 9 6 An-1' By the 
awn awn 

induction, we come to 9 6 Al , i.e. 9 - g(x, t, u, U 1 ) and, 

(DX ... D )g - £g + ~ + (u1 + v ) ~ + (u2 + w ~ 
t 8x 8t 1 8u 2 8u 

1 

(7.4.17) 

In the equation (7.4.17) 
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coefflcient u2 = 0 coefficient 

thus £g - coefficient (UI ~ VI) - 0, i.e. 
8u 

v2 - 0 

£g ... £g - 0 - q - q(x -t) E ~(x, t) 
8x 8t 

and lemma 7. 4 • 3 ls proved. 11 

- 0, 

If 9 E A - U An 1.s l1.near over ~(x, t) 1.n ui ' 1. > 0 and 
n 

q E ImDt , then q - O. 0 

~ 

Suppose 9 - 0tf for some f E ~. Then, in a sense 

that used to prove lemma 7.4.1, f does not 

v 1 , v2 ' ... , vn ' w2 ' w3 ' ... , wn and IL3' IL4' ... , ILn' 

Dtf - af ... v af ... w2 H ~ 
at i. 8u 8Ui. 

r 
i>2 

ILi~1 H - 9 -
su1. 

similar to 

depend on 

then 

(7.4.19 ) 

NoW, equating the coeffic1.ents of IL1. ... i., w2 and VI ln both 

sides, then f does not depend on U1.(i > 0). 

Hence <Xl - 0, 1. . e . , 9 - o. ID 

The above four lemmas determine the properties of the total 

differential operators over the algebra A, which are required to 

prove the main result of this section. 

we come now to prove the existence of conservation laws of the 

equation (7.4.1). The result of theorem 7.3 and the analysis, 

introduced in section 7.3, reduce the problem of finding the 

conservation laws of (7.4.1) to that of calculating the number of 
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the elements in * Ker IF ' 

(7.4.19) 

Where Ox and 0t are given by (7.4.4) and (7.4.5) respectively. 

So we shall prove that if ~ 6 An and * IF(~) - 0, then 

Where a, Y , e are constants and n .. 2. For this purpose we 

introduce I 

Lemma 7.4.5 

* IF(~) - 0, then ~ does not depend on both u2 

and "'"3' Furthermore ~ is linear in u1 and v1 • 0 

£r.oof 

Since ~ 6 '-2, then by the definition of '-2, ~ does not depend 

on 1L3' Hence Ox and °t have the form 

° .2- ... a ... w3 2- ... (vi - uU1 - a ... w2 L-u3 - w3 ]-
x 8x 8Uz 8Vz awz 8V1 

(7.4.21) 

(7.4.2Z) 

using the relations 
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Then by equating the coefficients of u4 and v 4 in ';($) to 

zero, we have 

D (~ ) - o. 
x aV2 

Hence, using lemmas 7.4.1 and 7.4.2, then 

(7.4.23) 

(7.4.24) 

where '" E ~ and does not depend on both u 2 and v2 • 

Similarly coefficient w4 in I;(~) must vanish, yields 

(7.4.25 ) 

where B( x, t ) is in terms of A( x) and a( t ) • Hence by us ing 

lemma 7.4.3, ~ is linear in w2 , i.e. 

Then (7.4.21) and (7.4.22) reduce (respectively) into 

(7.4.27) 

(7.4.28) 

-190-



Hence, 

+ 

-191-

aZ", +uD __ 1 
1 x 8uat: 

a"'l z a\lll 
- W4 ] + v D 

8v 1 x 8u 
1 



'uD ~-'-W ~"'WDD L "'W3DXL
~ 1 t BuBt ~ 2 BuBt 2 t x BU

1 
8U

1 

Since a;{cp) - 0, then by equating the coefficients of v 3 ' u3 

and v2 in both sides to zero, then 

8~1 
D - C 0, 

x aV
1 

(7.4.29) 

Thus ~ is linear in both v1 and u1 (by the lemmas 7.4.2 and 

7.4.1). The last relation in (7.4.29) implies 
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8\111 ° (.- - <xu + C(x,t» .. 0 
x 8u 

where 0xc - Bx + Bt + Ax. Then, by lemma 7.4.1 

8\111 ,.DJ 
- <xu ~ C(x,t) E ~. (t), i.e. 

8u 

8~1 _ all ~ Y(X,t). 
8u 

z 
Thus "'1 - Cl Y-~ YU and 

2 

(7.4.30) 

~ - A(X)U2 + a(t)v2 + B(x,t)W2 + i UZ + Yu + 8(t)v1 

.... dU1 .... 9(x,t) 

where Y, 6, d and 9 E cfIJ(X,t), A 6 cOD(x) and a, 8 6 cfIJ( t). 

FUrthermore, from the definition of ep, coefficient u 1u2 in 

'*' 'p(ep) - 0 must vanish, then A - 0 i.e. ep does not depend on 

u2' Hence 

+ d(x,t)U1 + 9(x,t). 11 (7.4.31) 

Lemma 7.4.6 

Let: ep has the expression (7.4.31) and 
.. 

'p(ep) - 0, then all the 

coefficients a, /3, Y, 8, d and 9 are constants. 0 

Since ~ E A2 is in the form (7.4.31), the expression of Ox and 

0t reduces to the forms 

(7.4.32) 
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(7.4.33) 

Thus I O;;ot and o~ox take the forms I 
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Now, since 1;($) - 0, i.e., 

ThUS, equating the coefficients of and 

U Z in 1;($) to zero we have, respectively, the following 

relations. 

or - P - 0, - (d + Pt) + <X.t - 0, 8 + <X.t - 0, 

('7.4.34) 

SOlving these relations together, we have 

or - P E R, V E R. 

Then i.e. , 9 E R. Thus 

and e E R. ;a 

Now, the two lemmas 7.4.5 and 7.4.6 lead to the following. 

Theorem 7.4 

If $ E An' n "2 and 

and e E R. 0 

In the abOve we have shown that ,; has a nontrivial kernel lying 

in A:z and since this kernel is three dimensional this 

corresponds to the three conservation laws that we derived 

earlier. we now show that there are no more conservation laws by 
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proving that the kernel of I; 11es entirely in ~. For this 

purpose we introduce 

Lemma 7.4.7 

Let ~ be nontrivially in "n, n > 2, (Le. contains terms which 

are in An and not in An-l) and 

(i) ~ is linear in its highest terms, i.e., un' wn ' vn and ~ 

(ii) ~ does not depend on ""n' wn ' ""n-l and wn- 1 • 0 

By using the definitions of Ox and 0t' (7.4.4) and (7.4.5), 

respectively, and the assumption * Ip(~) - 0, then equatIng the 

coefficIents of vn+2' un+2 , wn+2 and ""n+2 in I;(~) to zero, 

the following relations are obtained 

(Ox + ° ) H = 9 2 ' 
t a""n 

(Ox + ° ) ~ t 8W 
n 

and 

(7.4.35) 

where are in terms of H 
aUn 

and H (see appendix 
aVn 

C) • 

The original equation (7.4.1) can be regarded as a coupling 

relation between ~ and wn (n ,. 2), Le., 

. .. , n+1 
""n + (-1) -wn - ~1 ' ~1 E "n-2 (7.4.36 ) 

i,e. ~1 does not depend on I!n, wn ' ""n-l and Wn- 1 ' 
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Then the last two identities of (7.4.35) imply 

(7.4.37 ) 

where e is in terms of 9 1 and 9 2 , Thus by using the lemmas 

7.4.1, 7.4.2 and 7.4.3, we obtain 

which completes the proof. 11 

Lemma 7.4.8 

Let ~ be as in the above lemma, then ~ does not depend on both 

'* Since IF(~) - 0, then using the expression of $ 

i.e., 

~ - <x(x)un + P(t)vn + "'1' "'1 E ~-1' Hence, equating the 

coefficient of vn+1 to zero yields 

8", 
D (-1: ) - P'(X,t) x 8V

n
_

l 
(7.4.39) 

where B' is in terms of <x, P and consequently ~ is linear in 

Vn-l by lemma 7.4.1. 

Similarly 

coefficient (7.4.39) 
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Thus by the definition of 0t and lemma 7.4.4, a - 0 Le. 4> 

does not depend on un and is linear in un- 1 • By using the 

coupling relation (7.4.36) and in a sense similar to that used in 

lemma. 7.4.7 

coefficient wn+1 - 0 

SIn+l - 0 

(Ox + et) ~ - l(x,t) and coefficient 
awn 

where j and 1c a.re in terms of This implies 

that 4> does not depend on ILn-l' wn- 1 ' ILn-2 and wn- 2 (as in 

the above lemma). But coefficient vn in .;(4)) must: vanish, 

then 

(7.4.40) 

coefficient wn - 0, then 

(7.4.41) 

[Where c and P are in terms of the derivatives with respect to 

Wt' lLi' Uj' Vj' i - n, n-1 and n-2 and j-n and n-l]. 

Then (7.4.40) and (7.4.41) implies 

(7.4.42) 

Thus, using the definition of 0t and lemma (7.4.4), equation 

(7.4.42) implies p s 0, i.e., 

4> does not depend on v n 4> E An-1 gives a contradiction and 

the lemma is proved. • 
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The two lemma 7.4.7 and 7.4.8 lead to the follow1ng! 

Theorem 7.5 

Let 4> E An (nontrivially) and then n.; 2. 0 

Hence the two theorems 7.4 and 7.5 demonstrate that the dimension 

* u Z 
• of ker 'F 1s three and 1s generated by 1, u and -+ Uxt + Utt. 

2 

Then the space of conservation laws of (7 .4.1) is three 

dimensional, by theorem 7.3. Thus equation (7.4.1) has only three 

conservation laws, having the form 

!L [u + un] + ~- UZ 
~] - 0 , [- -

at ax 2 

Z UZ 
L UZ 

- UUxt ... UX] ... L [ u 5 
- uUxt - ~] - 0 , [-

at 2 2 8x 3 2 

where the first is obtained by re-wri t ing (7. 4. 1) in a conserved 

form, the second 1s obtained by multiply1ng (7.4.1) by u and 

re-writing the resulting equation in a conserved form, and the 

third is given by multiplying (7.4.1) by UZ and re~riting the 

resulting equation in a conserved form. 

(respectively) for all n ~ 1 in all the above calculations we 

come to the proof of the follOWing, 

Theorem 7.6 

The equation 
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has only three independent conservation laws Which 1s the ma1n 

result of this section. 

7.5 COnservation laws of The Simple WS3 

In a sense similar as to that used in section 7.4, the equation of 

the class WS3 has only three conservation laws as in the 

following, 

Theorem 7.7. 

The equation 

(7.5.1) 

has only three conservation laws and have the forms! 

(7.S.2) 

(7.S.3) 

(7.S.4) 

where (7.5.2) is obtained by re-writing (7.5.1) in a conserved 

form, (7.5.3) is given by multiplying (7.5.1) by u and 
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re-writing the resulting equation in a conserved form, and (7.5.4) 

2b 2b 
is obtained by multiplying (7.5.1) by U

Z + :::1 Uxx + =.§. Utt b 1 b 1 

and re-writing the resulting equation in a conserved form. 

7 • ~ nte complement of the simple c19/3s~ 

~, 
Th1s sect10n 1s devoted to the study of the case in Which ~ 18 a 2 

not a root of the coupling coefficients condition 

For this case it is thought that the corresponding subset has only 

two conservation laws, Which were derived earlier. We shall not 

90 through the proof of this results because of the laborious 

calculations Which arise When we attempt to calculate the 

dimension of '* leer 'F' Where is the corresponding un1versal 

operator on the algebra A, defined in section 7.3. We . merely 

illustrate this· case by the following example to provide an 

indicator to our belief. 

Example 7.6.1 

(7.6.1) 

In this example a11a2 - 1, a4 - -as - -1, thus the coupling 

coefficient condition breaks down. 

we shall show that 

1 and u, where 

ker ,'* F is two dimenSional and is generated by 

(7.6.2) 

and Ox' 0t are the total differential operators with respect 
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to x and t (respectively), defined as in section 7.l. These 

two differential operators has similar properties, as were given 

in section 7.4. 

NoW to calculate the dimension of ker let: 

(non-trivially) and 

* 'f'(~) - O. (7.6.3) 

On the algebra ~, the total differential operator Ox and 0t 

have the forms I 

(7.6.4) 

°t 
.L ~ [v1 - uU1 - uV1 ~ W]lL ~ v] L ... w3 L-

8t 8U2 8V2 8w2 

... w2 
!L ~ v2 L + v1 

~ . (7.6.5) 
BU1 8v1 au 

Now, equating the coefficients of u4 ' v 4 , w4 ' u l and v3 in 

.;( 41) to zero, we have 

(7.6.6) 

Hence, using the properties of Ox and 0t' we have 

~ ,¥(x,t,u). (7.6.7) 
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Insert1ng the expression of q, in (7.6.3) and equating the 

coefficients of u1u2 , v1 v2 and w3 in ,;(q,) to zero we have. 

3A - 0, -2(A + B + a) + 3(A + B) - 0, and 

-au + Axx + Bxx - Ax - Bx - at + S - 0 (respectively). 

(7.6.9) 

The first two identities in (7.6.9) imply, 

A - 0, B - 201 1.e. B - B( t). substituting the values of 

A and B in the third identity of (7.6.9) implies 

-a(t)u(x,t) - OIt(t) + set) - 0 

i. e • 01 ... O. Thus B'" 0 

which gives a contradiction with the choice of q,. 

If now q, E Al , i.e. q, - q,( x, t, u) and * IIp(~) - 0 then it is 

easy to show that is linear in u, by equating the 

coefficients of u2 1n .;(~) to zero, i.e. 

Thus 

~ - A(x)u + 9(x,t). 

Hence, 

and 
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Since then equating the coefficient of w2 in 

to zero impl1es Ax - 0, 1.e. A E R. 

Thus, 

i.e. * ker Ip is two dimensional and is generated by. 1, u and 

consequently, from the relation between the ker 1* P and the space 

of conservation law, equation (7.6.1) has only two conservation 

laws. 

7.7 COnclusion 

In this chapter, the conservation laws property was discussed. 

First, two such conservation laws were established via elementary 

operations. These operations were used to derive a third 

conservation law of the problem. All the equations of the general 

claSs, satisfying the coupling coefficients condition, were proved 

that have a third conservation law. This condition together with 

the reduction theorem, introduced in chapter 5, classify the 

problem into four equivalence classes, KdV, RIM, WS4 and WS3 

classes in the simple sense, i.e., with the disappearence of uUt 

term. The informations about conservation laws of the first two 

classes is already known from chapters 3 and 4, i.e., infinite 

number of conservation laws exist for the KdV, Whilst only three 

conservation laws of the RIM exists. The conservation laws of the 

simple W
S4 

class is, then, studied. we prove that this class has 

only three conservation laws. we, next, showed that the simple 

WS3 class has only three conservation laws too. 
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Finally we turned to the equations which do not satisfy the 

coupling coefficient condition. Hel"e. the two nonlinear terms are 

present. For this case it is thought that it has only two 

conservation laws. This was illustrated by one example. If this 

is the case, then we come to the main conclusion that the only 

equations which have infinite number of conservation laws lie in 

the simple ICdV class. Whilst all the equations which have the RLW 

feature satisfy the coupling coefficients condition. 
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CHAPTER EIGHT 

CONCLUDING REMARKS 

In this thesis we have studied a general class of semi-linear 

third order partial differential equations with quadratic 

nonlinearity. The original equation for this class of models is 

the Korteweg-de Vries equation which was first derived as an 

approximation of the Euler equations of hydrodynamics. However, 

its appearance in many other physical systems meant that a 

more general method of derivation was required. Broer sugge8ted 

that one could construct the equation as a structural perturbation 

of the basic linear equation Ut + ~ - 0 by adding on the third 

order dispersive term Uxxx and the quadratic nonlinearity 

(i U Z >x· The main idea behind th18 construction 18 that the 

propert 1 Pon of the KdV can be understood in terms of the 

interaction between nonlinearity and dispersion. This assumption 

was then used by other workers to construct alternative model8 to 

the KdV on the basis that these models had dispersion relations 

which use more in accord with physical behaviour. Now, as models 

for describing experimental behaviours these alternatives may have 

been adequate, but from the mathematical point of view the 

question remained as to whether the hypotheSiS that the properties 

of the equation are due to the interaction between nonl1nearity 

and disper8ion was itself a correct one. This question was 

studied in detail by Abbas for this set of equations and he found 

that the hypotheSiS was not a viable one either for the KdV or any 

of its alternatives. 

Since the hypotheSiS on dispersion is no longer valid, the 

discussion shifts to a consideration of the properties held by 
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this class of equations. All these equations share the 

mathematical property of being third order with quadratic 

nonlinearities and they all have stable solitary waves. However, 

it was found that the KdV has a number of exceptional properties 

which are not known to be shared by any of the alternatives. This 

raises questions as to whether the KdV is a unique equation of its 

type and if so, whether we can develop criteria for understanding 

this uniqueness. This is the motivation for the work in this 

thesis. Now, this study clearly requires a much more mathematical 

approach than was adopted by Abbas and in this thesis we have 

provided foundations for such an approach by establishing certain 

necessary conditions which the class should satiSfy in order for 

the questions to be meaningful. Our main effort was concentrated 

on introducing a nontrivial classification scheme, establishing 

the well-posedness of the class and proving the existence of 

conservation laws and our contribution in these areas are 

described belowl 

The general class was first reduced to a set of equations all of 

which possessed linearity stable solitary wave solutions. This 

eliminated equations which a priori are not similar to the KdV. 

This was done on the basis that the properties we wish to 

consider, e • 9 • , the existence of solitons are generally fe It to 

depend upon the equations having solitary wave solutions. We then 

completed the classification of solitary waves begun by Abbas and 

classified the equations themselves in terms of the number of time 

derivatives. This classification was based on the equivalence 

relation that two equations are equivalent if there is a 

nonsingular linear transformation which maps one to the other. 

This reduced the set of equations to three subclasses, i.e., those 
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which essentially contained three time derivatives, those which 

essentially contained two time derivatives and those which had 

just one time derivative. The subclasses containing one and two 

time derivatives were further subdivided into two classes each 

accroding to the presence of the teI1ll Ux:xx or l1xxt. In 

particular we noted that the set of equations with one time 

derivative divided naturally into a generalized KdV class and a 

generalized RUW class. The other two classes we called WS3 and 

WS4 ' 

well-posedness was then discussed in terms of the equivalence 

classes defined above. For equations with three t1lne-<2erivatives 

the method of characteristics was used to establish well-poSedness 

for non-charateristic data. This was done by first reducing the 

equatiOns to a first order system of partial differential 

equations in the standard manner. By gOing to characteristic 

coordinates this system becomes a system of ordinary differential 

equations and hence well-poSedness followed by integration. The 

proof was carried out for the case where all the characteristics 

are real but it can be easily extended to the case when some of 

the roots are complex (ultra-hyperbolic) by reducing the 

corresponding equations to pairs of hyperbolic systems of first 

order partial differential equations with real characteristics. 

For those equivalence classes which has less than three time 

derivatives the method of characteristics fails and we established 

we 1 l-posedness for certain subclasses as follows I The known 

theorems on the well-posedness of the ICdV and RLW, which were 

discussed in chapter 3 and 4, enabled us to deduce well-posedness 

for those equations which are equivalent to the KdV and RIM. 
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These are what we called the simple classes of KdV and RLW 

equations, Le., they did not contain uUt term. USing a 

modification of the method used to prove existence for the RIM 

equation, we then proved eXistence for the general RIM class. 

However, we noted that not every equation has unique solutions. 

In the case of general KdV class we have no results since the only 

method we find was a modification of that used for KdV and this 

fails' since there were not enough conserved functionals to obtain 

the necessary a priori estimates. Finally, we presented a 

restricted existence proof for those equations with two time 

derivatives and a uxxt: teDn. It is interesting to note that the 

analysiS of well-posedness discussed' above can be extended to 

corresponding modified equations where the quadratic nonlinearity 

is replaced by a cubic nonlinearity, i.e. (Us)x and (Us)t. we 

also studied how the well-posedness of the KdV and RIM could be 

extended to initial data given on lines other than t - 0, i.e., 

to skew data. 

Finally, we looked at the question of the existence of 

conservation laws. Since in conSidering local conservation laws 

we are not concerned with initial data, the ~ term was 

eliminated by a suitable transfoDnation and the equations reduced 

to the four equivalence classes KdV, RLW, WS4 and WS3 ' USing 

elementary operations we established the existence of two 

conservation laws for the whole class. we then derived a 

necessary condition for the existence of a third conservation law. 

This condition was a condition on the coefficients of the 

equation, which we called the coupling coefficient condition 

specifically, we found that if a1/a2 is a root of the cubic 

equation 
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then the corresponding equations have at least three conservation 

laws. Applying the condition eltminated the uUt term and hence 

reduced the equations to the simple versions of the four classes 

mentioned above. According to the nature of the roots of the 

cubic we then obtained the following results. If aJ./a2 is a 

triple root then we have the simple KdV class and, using the 

theorem for the KdV given 1n chapter 3, we deduced that this class 

has an infinite number of conservation laws. 

double root then we have the simple RIM class and, us1ng the 

theorem for the RIM g1ven 1n chapter 4, we deduced that this class 

has only three conservation laws. The other two cases, 1. e., WS4 

and WS3 occur when aJ./~ 1s one of three distinct roots and When 

a 1/a2 is the only real root respectively. In the case of WS4 ' we 

proved, using methods stmilar to those used in the proof of the 

RIM conservation laws theorem, that this class has only three 

conservation laws. For WS3 ' we indicated that this proof can be 

extended to show that this class also has only three conservation 

laws. Thus, if the coupling coefficient condition is satisfied, 

we have a complete classification of the numbers of conservation 

laws, i.e., the simple KdV class has an infinite number and the 

three other classes have only three. If al/~ is not a root of 

the cubic then, as we have mentioned above, all the equations in 

th1s subclass have at least two conservation laws. we conjecture 

that these are the only conservation laws, but we did not carry 

out the proof since the calculation becomes extremely laborious 

because of the appearance of the uU t term 1n the equation. 

we come now to the question of future research. This theSis has 
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laid the basis for a strict mathematical investigation as to Why 

the KdV is unique in the class considered. In this study we have 

not achieved all our objectives and the areas Which need to be 

completed are the extension of Wf!1.1-posedness to the general KdV 

and WS3 classes, and the proof of the number of conservation laws 

in the non-simple sector. We feel that these can be attained and 

hence the set of equations considered will form a well-defined 

neighbourhood of the KdV. The next stage will be to develop 

sequencing procedures to examine the behaviour of the properties 

of the ICdV as a limiting point of this neighbourhood. The most 

interesting question will be Why soliton solutions suddenly occur 

in this limit and Where they come from. we are now working on 

these aspects as well as trying to complete the objectives set out 

in this thesis. 
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apPENDIX A 

In this appendix we present the proof of lenunas 3.7.2 and 3.7.3 

which were necessary for the proof of the existence theorem 3.7 of 

the KdV equation (3.7.1). 

A.1 Proof of le.PUUCi 3.7,2 

(1) Multiplying the RKdV (3.7.9) by u, we have 

If u(x,t) vanishes together with all its x-derivat1ves a.s 

I xl - CI), then integrating (A1) with respect to x, - Cl) C X c CI), 

yields 

Thus (A2) implies 

r (Uz+E~)dX = r (gz+Eg,z)dx, 
-Cl) -Cl) 

NoW, 

which proves (1). 

(OcE~l) 

~ r (gz+g' Z )dx - I I g I I H 1 
-Cl) 
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(2) Multiplying (3.7.9) by u 2 , gives 

(A4) 

which can be arranged in the form 

... 2EUllx (Ellxt - ~) - O. (AS ) 

Using (3.7.9) and (AS), we have 

L [u 3 _ u
x
z ] ... 1L [U· ... uZu _ z 

8t 3 8x 4 xx EU uxt 

(A6 ) 

Integrating the last equation with respect to x, - 00 < x < 00, 

where and vanish together with all their 

x-derivatives as Ixl'" 00, we have 

L r (u
3 

- ~)dlC a 0 
at -00 3 

whiCh implies that 

Now, 

r (U
3 

- ~)dX - j (~ - g'Z)dx. 
-CD 3 -00 3 

I,u"al;: r (U
Z 

... U~)dX 
-CD 
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Thus 

i.e. , 

Hence, 

[since Sup lul .. Ilull 1]' 
xER B 

.. 211gll~ _1 11911
8
'l' 

81 3 

.! 
Ilull 1 .. .1 11911

H
Z
1 + 11911H1 [2+ .111911 1 + L1191121]2 

H 6 3 H 36 H 

., C (I I 9 I I H1 ) , (A9) 

C( 0) - 0 and C is clearly monotone increasing function, 

i.e. (2) is proved. 
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(3) By multiplying (3.7.9) by, 

U
3 + 3uz + 6uu + 18 u x xx 5 xxx, 

the proof of (3) is obtained in a sense similar to (2). 

( 4) This part is proved by induction. Since from (3) u is 

bounded inl.,; with bound depending only on T, Eo and 11911 8 3. 

Suppose, now, that u is bounded in ~:-1 with a bound depending 

on.ly on T, EO and 11 9 I1 Hk and independent of E E (0, EO]' 

Then to prove that u 

on.ly on T, EO' 11911~ 

by 

Let, 

u , i.e. , 
(2k) 

(where 

11 - r u utdx, 
-(XI (2k) 

is bounded in Ai k wi th a bound depending 
T 

and 
l: 

EZllgl1 k' multiply the RKdV (3.7.9) 
H 

(A10) 

r u uuxdx, 
-(11 (2k) 

13 '" r u uxxxdx and 
-(11 (2k) 

14 - ro u llxxtdx • 
-(11 (2k) 

(All ) 

Then by integrating (A10) with respect to x and using (All) we 

have 

we calculate, now,the integrals I i , (i - 1, 2, 3, and 4], using 

the assumptions on u and their derivatives. Then 
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- ~ u u dx 
-00 ( 2k-1) (1), t 

.. ju u dx (u - 0 as lxi-CD) 
~CD (2k-1) (1), t (k ) 

- (_l)z rm u u dx 
-00 (2k-2) (2),t 

(in the second integration). 

Then, after k integrations 

(_I)k ~ ~ ruuz dx. 
2 dt ~ (k) 

(A13) 

Similarly, after k integrations 

I - (_1)k ! r u U Z dx, 
2 2 (k) (k+1) 

-OD 

!L j U Z dx. 
dt -CD (k+l) 

(A14) 

Thus, after k integrations (MO) reduces to 

!L Joo [uz + EUz ]dx - - JCD U (uz ) dx. (A15) 
dt -00 (k) (k+1) -CD (k) (k+l) 

Using Leibintz' s rule to expand the term (uz )( k+I)' (M5) 

reduces to 

r ~ r-k+1 
~ [uz + EU z ]dx - -J U L k+l u u dx 
dt -CD (k) (k+l) -CD (k) r-=O r (r) (k+l-r) 
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= - r ( k+l uu u + (k+l)U UZ + uu u o (k+l) (k) \ 1 1 (k) (k+l) (k) 
-Cl) 

k-2 
+ k+l u UZ + u r lk+l) U U + UZ u }dx 

1 (1) (k) (k) r~2 \ r (r) (k+l-r) (k-l) (le) 

r k-2 
= - [b1UU U{k) + b 2UUz + U{le) 1: b U U 

-Cl) (k+l) (le) r-2 r (k+1-r) (r) 

where b 1 a.re constants 415 R and the last term only occurs when 

le = 3 and must vanish under the integration with respect to x. 

Hence 

4- r [uz + 415 U
Z Jdx 

dt -Cl) (k) (k+l) 
... -

(A16 ) 

Since U is bounded in ~ ;-1 (by the assumption) independently 

of 415, 415 415 (0, EO)' it follows that 

where c - c eT, EO' Ilqllak). Then (A16) reduces to 
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.. C [f"UZ dx + 1] .. c [j UZ + EUz 1'dxJ 
-Cl) (k) -Cl) (k) (k+l) 

i.e., dE1t .. C (~+1) 
dt 

where ~(t) .. j [uz + E U Z ]dx. 
-Cl) (k ) (k+ 1 ) 

By using Gronwall's inequality (A17) implies 

~(t) - E1t(o)ect + ect - 1 

(Al7) 

1. e • , f1t( t ) 1s bounded with bounds depending on 1191 I Hk and 

1. 1: 
E

Z //9//ak+1 (since E1c(O) - //91IWC + E
Z 119//

WC
+l). 

Hence, (4) is proved. 

( 5 ) To prove (5), re-wri te (3.7. 9) in the form 

d Z 
(1 - E - )ut .. -uUx - llxxx • 

dxz (AIS) 

Hence, the Green's funct ion subject to u( -t(o, t ) - 0 for the 

operator (1 - E ~~) is 
dxz 

_1_ 
2yE 

exp 

G(X,E) ... 

(x-£) 
yE 

_1_ exp - (x-C) 
2yE VE 
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Then (A1S) reduces to the integral equation 

ut(x,t) .. - ~ KE(X-C) [uux + uxxx]dC 
-(I) 

.. - IC6 * (u~ + llxxx) (A19) 

where K6{Z) - Sgn ~-IZlv6 and * is the convolution. 

If (u~ + llxxx) .s l~ , then by using Hausdorff-young inequal1ty 

* is bounded in It: independently of 

E, E E (0, EO)' .1.e., Ut is bounded in ~~, independently of E, 

FUrthermore u is bounded ~~' 1 for each k, independently of 

E, 6 6(0,60 ]. Thus by the induction procedure the proof of (5) 

is obtained. 11 

A2 Proof of l~ 3. 7.....a..1 

(1) By using the transformed variables 
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Hence 

Then 

Estimating separately the ranges IMI < 1 and IMI ~ 1, then 

( 1) holds uniformly for 

each bounded subset of ak, where Cl does not depend on 9 

and E. 

( 2 ) The proof of ( 2 ) is similar to the proof of ( 1). 
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(3) JIg - g6 1' ;k" fC1H,Z+ ••• +).zk)ll~ - 96 1 Id), 
-Cl) 

- r \IIZ(6~).) [l+).Z+ ••• +).zk]II~().)IIZ d)' 
-Cl) 

(A20) 

where \11 - 1 - 41 and as E - 0 the integrand term vanishes 

almost everywhere. Using the Lebesgue dominated convergence 

theorem 

I1 g - gEl 'ok - 0 as 6 - o. (A21 ) 

Since for all n 

But 

(A22 ) 
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Hence 1f qn - q 1n ak and 6 be qiven, then by choosinq N 

so larqe we choose EO so small such that I qmE - qm 11 If< C; ! 8 , 

1 C; m C; N and IlqE - 911 < ; 6, E E (0, Eo]' 
(.1'.23) 

Hence (.1'.22) leads to 

I 19nE - qn I I ak C; ; 6 + i 8 + i 8 ... 8 for all n > N 

i.e. qnE - qn uniformly. Since sequentially oompacteness 

equivalent to the compacteness, (3 ) 1s proved. 

(4) Since qE E rfD (by the definition) then by lemma. (3.7.2) ue 

has an upper bound depend1nq only on T, EO' IlqE11 k and 
fI 

.l, 

E Z 1 I qE 11 k+l but Since 
fI 

1. 1. _1. .! 
119E IIHk .. Ilql~k and EZllqEI'Hk.f.l C;EzE CSC1 191 ,Hk- CE31Iql'Hk 

Then 11 u
E 

11 k has an upper bound dependinq only on T, EO and 
B 

Ilql'Bk ' Similarly, 

independently of sufficient small E for each finite T ) 0, 

m ) , which proves ( 1- ). 

( 5 ) Re-write the RKdV equation 3.7.9 in the form 

(.1'.24) 
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.A Z 
Then usinq the Green function of the opera.tor (1 - IS X-z), then 

ax 
(A24) implies 

(A25 ) 

Then ~. U.s is bounded.1n t. :-3 independently of suffic.1ently 

small E for all finite T > o. 

Similarly 

where C does not depend on sufficiently small E ( from 4,) 

which proves (5). 11 
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APPENDIX 8 

Using 5.7.12 in (5.7.13) then 

(B.l ) 

Let v evolve~:acoording to (5.7.11), then (B.l) reduces to 
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(B.2) vanishes if and only if the relations 

and 

satify simultaneously. Hence 

then the second relation in (B.3) implies, a 1 - g a 2 • 
/3 

Hence the cubic equation (5.7.14) implies 

Thus 

Equation (8.4) clearly has three real equal roots "'0' 

(B.2) 

A - g (8.5) o fj 

which Is the necessary condition of the KdV class. 
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APPENDIX C 

Proof of lemma 6.6~! 

Without loss of generality, we assume for the proof that A is a 

symmetric matrix and recall that linear hyperbolic system can be 

transfot:med into a symmetric form (e.g. normal form as 1n section 

6.3). Let p( C, T) be an arbitrary point in the domain of 

determinacy with coordinates C, T and draw the characteristics 

and C1c backward to meet the line t - 0 at Pt' 

P2 ' ••• , PJc: • 

Using the Green's identity (5] 

(W, AW)x - (Wx ' AW) + (W, AxW) + (W, AWx )' (Cl) 

Then, since A is symmetric, then (W, AWx ) - (AW, Wx )' 

However (Cl) reduces to 

2(W, AWx ) - (W, AW)x - (W, ~W) (C2) 

[where (.,.) stands for the inner product]. 

Now, taxing the inner product of the equat10n in (6.6.6) with the 

vector W, then 

(W, Wt ) + (W, AWx ) + (W, SW) - 0. (C3) 

Inserting (C2) in (C3), we have 

~ (W, W)t + ~ (W, AW) - ~ (W, ~W) + (W, SW) - O. (C4) 
2 2 x 2 

Introducing the transformation 

w - eY'tv. (CS) 
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Then (6.6.6) reduces to 

Vt + AVX + (B + YI)V - 0, or for simplicity 

where B1 "" B + YI. 

Then, by taking the inner product of (C6) with V and in a sense 

similar to that used to derive (C4) 

Hence V can be replaced by W in (C7) and yie lds 

~ (W,W)t + ~ (W,AW)x .. (W, (-B -~ Ax)W), i.e. 
222 

where B c -B _.1 a .. -B -VI -~ a • 
2 2 --x 2 --x 

(CS) 

(Cg) 

If now Y is sufficiently large then B2 is negative definite, 

(C10) 

Thus integrating (CS) over the trapezoid r d which has the 

boundary P1PJcAJcAl' where Ak and Al are two points on the 

characteristic <1c and Cl (respectively). Then 

o ;. ! 
2 

If (W,W)t + (W,AW)x]dxdt. 

rd 

(Cll ) 

NOW, if Xn and tn be the components of the outward normal unit 

vector, then by using Green formula , (Cll) implies 
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o ~ ; II (W,W)~ ~ (W,AW)X]dxdt - ! I (W,W)tn ~ (W,AW)xn]ds 

rd rd 

(C1.2 ) 

l.I~ If E(d) - - (W,W)dx, 
2 

then (C12) gives 

Al 

t 
E(d) - E(O) - _1 I Xn(W,(A + ic!llJ)ds. (Cll) 

2 c1+<ic --0 

The right hand side of (C13) is in fact nonpositive. (For the 

proof of this fact it is refered to (3]). 

Thus E(d) ~ E(O). 

By E( 0) - 0, from the assumpt ions of the lemma, then E( d) - 0 I 

therefore W - O. III 
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'APPENDIX 0 

In this appendix, some calculations, which were necessary for 

proving theorem 7.5 are presented. 

k-2 k-2 8 8 
- I: ( i )viwk-i-l]- ... I: ILk'H -. 

i-<> ~ k>3 81LJc 
(D1) 

(02 ) 

using (01) and (D2), we have 
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Thus 

k-2 k-2 gZ 
+ r [vk - 1 - Wx+l - r ( i )viWx-i-l ]DX ~--
k~2 1-0 gWx8t 

k-l k-l 
+ r [Wx - vk - Wx+2 + r ( 1 )vlWx-1 
k~2 1-0 
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+ 2 

similarly 
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k-1 k-1 a 
- 01: ( 1. )(v1.Wk-1.+1 + v1+1Wk-1.]~ } + 1:{[~k-1 - ~+1 

-"X koa3 

k-3 k-3 k-1 k-1 
- I: { 1. )u1. ~-1.-2 - J.I:k + J.I:k+2 + I: { 1. )u1. ~-1. 

o 0 

k-2 k-2 k k 
- I: { 1. )u1. ~-1.-1 - ~k+1 + ~k+3 + 1:( 1. )u1. ~-1.+1 

o 0 

(05 ) 
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+ r ILk+2 ~. 
aIL]( 

aZ 8z aZ 
+ r ""k+l - + r vk+l + r W,-+1 '"'----

au ~ Av
k

8t ""K ~ at 
k~2 kQ~ k~l Q k~2 ---K 

+v~+w~+r\kDL+rlL fL-
1 auat 2 au at -K+l t 8u k+2 au 1 k~O k k~O k 

-234-
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using the equations (01), (02), ••• , (06) and 

Then 

coefficient un+2 - 0t ~ - 0 - $ is linear in un' 
8Un 

coefficient vn+2 - Ox!: - 0 - $ is linear in vn ' 
n 

coefficient wn+2 co -(0 + 0t) ~ + 20 ~ + Dt ~ - 0 
x 8w x 8v 8v

n n n 

[since $ is in vn and ker(Ox + Dt ) - cOO(x,t)]. 

Similarly 

(07 ) 

is linear in ~n [since $ is linear in both un and vn ]. 
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If we use now the coupling relation (7.3.36), i.e. 

n+2 
1Ln+2 .. (-1) Wn+2 + \111 (08 ) 

where \111 does not depend on wn+2 ' JLn+2 ' wn+1 and JLn+1 ' 

then replacing ILn by wn from 08, in all the above calculations, 

then 

coefficient wn+2 - 0 

(09) 

where Y(x,t) is now in terms of the derivative of ~ over 

un and· vn · 

The solution of 09 has the form f(wn + (-1)n+11Ln ). By using 08 

again, this solution reduces to f( \112 ), \112 does not depend on 

Then 

coefficient vn+1 - 0 - 0 H - j, 
x 8vn- 1 

j 

only on the derivatives of ~ over vn ' and 

is constant, depending 

coefficient un+l - 0 - 0t ~ - J3"(x,t) + a(x)u1 , where a(x) aU
n

_
1 

is the derivative of ~ over un' i.e. 41 is linear in vn- 1 

and does not depend on un [s ince by lemma 7. 3 .4, a( x ) - 0]. 

NOW, the coefficients wn ' can be calculated and equated to zero, 

in a similar sense to prove that 41 does not depend on vn • 

either. 
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apPENDIX E 

gloSlBln of spaces 

(1) LZ(R) - {f(x>J j,flzdX ( CII}, 
-GO 

(3) "k !! C(O, TI ak) - (U(X,t)1 R x [O,T] - R for each 
T 

t E [O,T], u(.,t) E ak and UI [O,T1 - ak is continuous 

and bounded}, Ilul~ - Sup 
o<t<'l' 

I I u( ., t ) I I k • 
a 

(4) A/k,m ... (u(x,t) E k 8~U E k, 0 < 1 < m}, 
}t..T T T 

I I u I I k, m - sup Sup I I 8tu( x, t)l I ak. 
O<t<'l' O<l<m 

(5) V sAlS 1\.1IS - 3 ,1 MlS -6,2 
~s,T JLT 1LT n~T n 

_ (u(x,t) E S, a~u E s-3j for j such that 
T 

S-3j .. O}. 

(6) !?T !! [C(R x [O,T])] - {v(x,t)1 v is continuous and uniformly 

bounded on R x [O,T]}, 

Sup Iv(x,t>l. 
XER 
O<t<'l' 
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