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Abstract 

The free vibration analysis of functionally graded beams (FGBs) and frameworks containing 

FGBs is carried out by applying the dynamic stiffness method and deriving the elements of 

the dynamic stiffness matrix in explicit algebraic form. The usually adopted rule that the 

material properties of the FGB vary continuously through the thickness according to a power 

law forms the fundamental basis of the governing differential equations of motion in free 

vibration. The differential equations are solved in closed analytical form when the free 

vibratory motion is harmonic. The dynamic stiffness matrix is then formulated by relating the 

amplitudes of forces to those of the displacements at the two ends of the beam. Next, the 

explicit algebraic expressions for the dynamic stiffness elements are derived with the help of 

symbolic computation. Finally the Wittrick-Williams algorithm is applied as solution 

technique to solve the free vibration problems of FGBs with uniform cross-section, stepped 

FGBs and frameworks consisting of FGBs. Some numerical results are validated against 

published results, but in the absence of published results for frameworks containing FGBs, 

consistency checks on the reliability of results are performed. The paper closes with discussion 

of results and conclusions.  

Keywords: Free vibration, functionally graded beams, dynamic stiffness method, frameworks, 

Wittrick-Williams algorithm. 
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1. Introduction 

  In recent years interest in functionally graded material (FGM) has grown enormously. The 

progress made in understanding this material has been phenomenal. One great advantage of 

FGM is that the properties vary gradually in a continuous manner within the material so that 

there is no abrupt change or mismatch of the properties which can cause delamination or other 

problems generally associated with fibre-reinforced composites. Thus, FGM can be designed 

in a way to have the properties of ceramic at one end and those of metal at the other so that 

the thermal resistance of ceramic and the mechanical behaviour of metal can be exploited to 

advantage to guarantee structural integrity. Consequent on this, researchers have been 

continually motivated to use various techniques and methodologies to deal with this exciting 

material in order to enhance its state-of-the-art. There are now excellent books [1-4] available 

on the subject. As potential application of FGM, beams which are extensively used in civil, 

mechanical, aeronautical and other branches of engineering as principal load carrying 

structural members can be investigated for their free vibration characteristics. Investigators 

have expended considerable efforts which have led to the insurgence of massive literature on 

the free vibration behaviour of Functionally Graded Beams (FGBs). A number of theories and 

methodologies have been proposed to study the free vibration characteristics of FGBs. 

Foremost amongst these are the applications of direct analytical procedure using the governing 

differential equations of motion [5-19], finite element [20-22], Rayleigh-Ritz [23], finite 

volume [24-26], differential quadrature [27], differential transformation [27, 28] and transfer 

function [29, 30] methods.  Recently the dynamic stiffness method (DSM) has also been 

proposed [31, 32]. The current paper stems from the previously published DSM theories. The 

entire formulation using DSM in this paper is accomplished in the real domain as opposed to 

previous formulations which used complex arithmetic when developing the element dynamic 
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stiffness matrices [31, 32].  Another important further development reported in this paper is 

the derivation of explicit algebraic expressions for the dynamic stiffness elements using 

symbolic computation [33-35]. The explicit expressions for the dynamic stiffness elements 

are particularly useful in optimisation studies and also when some, but not all of the stiffnesses 

are needed. Of particular significance of this investigation is the application of DSM to analyse 

the free vibration characteristics of stepped FGBs and frameworks containing FGBs. The 

substantial advantages of the DSM over the conventional finite element method (FEM) are 

well known [36-38]. The DSM is often called an exact method because in sharp contrast to 

chosen approximate shape function assumed in the FEM, the DSM uses exact shape function 

obtained from the analytical solution of the governing differential equation of motion of the 

structural element in free vibration. The uncompromising accuracy of the DSM in all 

frequency ranges and its independency on the number of elements used in the analysis makes 

it particularly appealing in free vibration analysis. Within this pretext, the application of the 

DSM in the free vibration analysis of FGBs and frameworks containing FGBs is considered 

to be a welcome development. The solution technique used in the DSM is robust, particularly 

when the well-established algorithm of Wittrick and Williams [39], known as Wittrick-

Williams algorithm in the literature, is applied. The algorithm ensures that no natural 

frequency of the structure is missed, and it has featured in literally hundreds of papers.  It is 

worth noting that earlier investigations on the free vibration of FGBs were focused on 

individual FGBs except for a few isolated cases where stepped FGBs with collinear axes were 

reported [40, 41]. Accordingly, the literature on the free vibration of frameworks containing 

FGBs is virtually non-existent. One of the essential purposes of this paper is to fill this gap. 
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2. Theory 

  In a right-handed Cartesian coordinate system, Fig. 1 shows a uniform rectangular cross-

section FGB of length L, width b and thickness h. The beam material has Young’s Modulus 

E and mass density ρ which can vary through the thickness direction (Z) of the cross-section 

according to the following power law distribution [14, 17, 30, 32]: 

b

k

btb

k

bt h
zzE

h
zEEzE ρρρρ +






 +−=+
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



 +−=

2
1)()(,

2
1)()(                             (1) 

where tE  and bE  are the Young’s moduli, and tρ  and bρ are the densities at the top and 

bottom surfaces of the beam, respectively. 

  In Eq. (1), k )0( ≥k is the power law index parameter which indicates the material property 

variation through the beam thickness. The parameter k has been extensively discussed in the 

literature [14-19] and hence it is not elaborated here. However, three special cases maybe 

observed. Clearly 1=k  indicates a linear variation of the composition between the top and 

bottom surfaces of the beam,  0=k  represents the case when the beam is made of full material 

of the top surface whereas infinite k  represents the case when the beam is made of full 

material of the bottom surface. 

2.1 Governing differential equations of motion and solution  

  The classical Bernoulli-Euler theory is considered here so that the effects of shear 

deformation and rotary inertia that are relevant to the Timoshenko beam theory are assumed 

to be small and hence disregarded in the analysis. Referring to Fig. 1, the displacements 1u , 1v  

and 1w  along the X, Y and Z directions of a point on the cross-section are given by [6, 30, 

32]: 

      01 =u ,      
y

tywztyvtzyv
∂

∂
−=

),(),(),,(1 ,     ),(),,(1 tywtzyw =   (2) 
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where v  and w  are the corresponding displacements of a point on the neutral axis of the 

beam. It should be noted that due to the variation of the material properties through the 

thickness, the neutral axis would no longer be at the central line of the beam cross-section [42, 

43]. 

  Using the displacement field given by Eq. (2) and through the application of Hamilton’s 

principle, the governing differential equations of motion in free vibration of the FGB are given 

by [30, 32] 

 

00 212101010 =′′′′−′′′+′′+′−−=′′′−′′+′+− wAvAwBvBwB,wAvAwBvB                         (3) 

where 

      
)2,1,0()(,)( === ∫∫ idAzzBdAzEzA i

i
i

i ρ  (4) 

 

The natural boundary conditions from the Hamiltonian formulation [30, 32] give the following 

expressions for axial force F , shear force S  and bending moment M  as follows: 

      wAvAM,wAwBvAvBS,wAvAF ′′−′=′′′+′−′′−=′′+′−= 21221110   (5) 

 

  Clearly, due to the use of FGM, the axial ( v ) and bending motions ( w ) are coupled as evident 

from Eqs. (3) and (5). 

Assuming harmonic oscillation so that 

      
tieyVtyv ω)(),( = ,      tieyWtyw ω)(),( =     (6) 

where  is the angular or circular frequency,  and  are the amplitudes of v  and 

w , respectively.  

 

ω )(yV )(yW
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Introducing the differential operator 
ξd

dD =  and the non-dimensional length ξ  as: 

      
L
y

=ξ   (7) 

The differential equations of motion in Eqs. (3) can now be written as:  
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  By combining the above two differential equations, it is possible to obtain a sixth order 

ordinary differential equation satisfying both )(ξV  and )(ξW  to give: 

      0)DD(D 246 =−−+ Hcba   (9) 

where 

      )(or    )( ξξ WVH =   (10) 

and 
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  By assuming the solution in the form λξeH = the characteristic or auxiliary equation of the 

differential equation Eq. (9) can be expressed as 

      0246 =−−+ cba λλλ                                                 (12) 

Equation (12) can be reduced to a cubic equation to give 

      023 =−−+ cba µµµ                                                 (13) 

where 

      2λµ =                                                 (14) 

 



7 
 

 

 

  Equation (13) can now be solved analytically for µ using standard procedure [44]. In earlier 

investigations [30, 32], it was assumed that the square root of the three roots of the cubic in 

Eq. (13) could be either real or complex and thus the six roots jr )6,,2,1( =j  of the 

characteristic equation Eq. (12) give the solutions of the differential equation (Eq. (9)) leading 

to V and W in the following forms: 

      ( ) ξξ jr

j
jeRV ∑

=

=
6

1
,          ( ) ξξ jr

j
j eQW ∑

=

=
6

1
  (15) 

where jR  and jQ  )6,,2,1( =j  are two sets of constants which could be possibly complex.  

  Clearly a method utilising Eq. (15) as the solution to derive the dynamic stiffness matrix will 

involve numerical operations using complex arithmetic. This cumbersome and somehow 

computationally inefficient procedure is circumvented in this paper.  

 

  Using an approach similar to the one described in Refs [45, 46], it can be shown that the 

three roots of the cubic equation Eq. (13) are real and the solution for H in Eq. (9) can be 

expressed in terms of trigonometric and hyperbolic functions as opposed to complex 

exponential functions of  Eq. (15). This is advantageous when deriving the explicit expressions 

for the dynamic stiffness elements of the FGB. Explicit expressions are particularly useful 

when some, but not all of the stiffness elements are needed, e.g. sensitivity analysis in 

optimisation studies. Thus if the roots [44] of Eq. (13) are α, β and γ, the solution for H is 

given by 

   ( ) γξγξβξβξαξαξξ sincossincossinhcosh 654321 CCCCCCH +++++=            (16) 
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  𝐻𝐻(𝜉𝜉)  of Eq. (16) represents the solution for both axial displacement V(ξ) and bending 

displacement 𝑊𝑊(ξ), containing different sets of constants as follows 

 
    ( ) γξγξβξβξαξαξξ sincossincossinhcosh 654321 QQQQQQV +++++=                (20) 
    ( ) γξγξβξβξαξαξξ sincossincossinhcosh 654321 RRRRRRW +++++=                 (21) 
 
  The two different sets of constants 𝑄𝑄1 − 𝑄𝑄6 and 𝑅𝑅1 − 𝑅𝑅6  can be related with the help of any 

one of the two of Eqs. (8) to give 
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  With the help of Eqs. (5), (20) and (21), the expressions for bending rotation 𝜃𝜃(𝜉𝜉), axial force 

F(ξ), bending moment 𝑀𝑀(𝜉𝜉), and shear force 𝑆𝑆(𝜉𝜉) can be obtained after some simplification, 

as 
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2.2 Dynamic Stiffness Formulation 

  The dynamic stiffness matrix of the FGB can now be formulated by applying natural 

boundary conditions for displacements and forces at the ends of the beam. Referring to the 
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sign convention for positive axial force, shear force and bending moment shown in Fig. 2, the 

boundary conditions for displacements and forces, see Fig. 3, are: 

 

      At 1110 θθξ ==== ,WW,VV: , 111 ,, MMSSFF ===  (31) 

      At 2221 θθξ ==== ,WW,VV: , 222 ,, MMSSFF −=−=−=  (32) 

The displacement vector δ and the force vector P can be expressed as: 

      [ ]TθWVθWV 222111=δ ,       TMSFMSF ][ 222111=P  (33) 

where the upper script T denotes a transpose. 

  The relationship between the displacement δ and the constant vector R can be obtained by 

using Eqs. (20)-(24) and Eqs. (31)-(32) to give, 

      RBδ =   (34) 
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with 

      λγββαα γγββαα sin,cos,sin,cos,sinh,cosh ====== SCSCSC hh  (36) 

Similarly, the relationship between the force vector P  and the constant vector R can be 

obtained using Eqs. (25)-(27) and Eqs. (31)-(32) to give 

      RAP =   (37) 
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  By eliminating the constant vector R from Eqs. (34) and (37), P and δ can be related to give 

the dynamic stiffness matrix relationship of the FGB as 

      δKP =   (39) 

where  

      1−= BAK   (40) 

is the required dynamic stiffness matrix with elements kij (i = 1, 2, 3..6; j=1,2, 3,..6).  

 

  With the help of symbolic computation [33-35], the matrix B of Eq. (35) was inverted 

algebraically and the inverted matrix was pre-multiplied by the matrix A of Eq. (38) in order 

to generate the explicit expressions for each of the elements of the dynamic stiffness matrix 

K. The stiffness expressions are simplified very considerably by means of symbolic 

computations. They are not necessarily in the shortest form, but they are surprisingly concise. 

The twelve independent terms of the dynamic stiffness matrix K are given by 
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      αγβαγβαγβαγβαγβ νννσννν hhhhh CCCCCCCSSSSCSCS 21332311 −+++−+=Φ  

      ( ) ( ) ( )αβγαγβγβααγβ λλλτ hhhh CCSCCSCCSSSS −−−−−−−=Φ 111 21332  

      αγβαγβαγβαγβαγβ ρρρσρρρ hhhhh CCCCCCCSSSSCSCS 21322313 −+++−+=Φ  

      31232314 σνννννν αβγβαγγβαγαβ ++−++−−=Φ hhhh CCCCCCSSSSSS  

      ( ) ( ) ( ){ }αβγαγβγβα γβατ hhh CCSCCSCCS −+−−−−=Φ 15  

      21232316 σρρρρρρ αβγβαγγβαγαβ ++−++−−=Φ hhhh CCCCCCSSSSSS                   (42) 

      ( )αγβαγβαγβ µµµτ hhh SSCCSSSCS 32117 +−−=Φ  

      ( ) ( ) ( )αβγαγβγβααγβ λλλτ hhhh CCSCCSCCSSSS −+−+−+=Φ 111 21328  

      ( )αγγβαβ µµµτ hh SSSSSS 32119 +−=Φ  

      ( ) ( ) ( ){ }αβγγαγββγβαατ hhh CCSkCCSkCCSk −+−−−−=Φ 110  

      αγβαγβαγβαγβαγβ ξξξσξξξ hhhhh CCCCCCSSCCSSSCS 213132111 +−−+−+−=Φ  

      112332112 σξξξξξξ αβγβαγαγγβαβ +−+−+−=Φ hhhh CCCCCCSSSSSS  

 

with 

      αβ βαµ kk −=1 , βγ γβµ kk −=2 , γα αγµ kk −=3  

      αββαε kfkf +=1 , βγγβε kfkf −=2 , γααγε kfkf +=3  

     αβζ βα ff +=1 , βγζ γβ ff −=2 , γαζ αγ ff +=3  

     βαη gg +=1 , γβη gg −=2 , αγη gg +=3  

     βα +=η ee1 , γβη ee −=2 , αγη ee +=3  

     12211 εµεµλ −= ,  23322 εµεµλ += , 31133 εµεµλ −=  

     12211 ζµζµλ −= , 23322 ζµζµλ += , 31133 ζµζµλ −=  

      1321 µµµτ γβα fff −−= , 3322112 εµεµεµτ −+= , 3322113 ζµζµζµτ −+=                   (43) 

      32231 ηµηµξ βα kk −= ,  13312 ηµηµξ γβ kk −= ,  21123 ηµηµξ αγ kk +=  

      23321 ηµηµξ βα kk += ,  31132 ηµ−ηµ=ξ γβ kk , 12213 ηµηµξ αγ kk −=  

     32231 ηβµηαµρ −= ,  13312 ηγµηβµρ −= , 21123 ηαµηγµρ +=  

     23321 ηβµηαµρ += , 31132 ηγµηβµρ −= , 12213 ηαµηγµρ −=  

     32231 ηβµηαµν −= , 13312 ηγµηβµν −= , 21123 ηαµηγµν +=  

     23321 ηβµηαµν += , 31132 ηγµηβµν −= , 12213 ηαµηγµν −=  

     1133221 ηµηµηµσ γβα kkk +−−= , 1133222 ηγµηβµηαµσ −+= , 1133223 ηγµηβµηαµσ −+=  

 

and 
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      ( ) ( ) ( ) ( )γβααβγαγβαγβ µµµµµµµµµ CCSCCSCCSSSS hhhh −+−−−−+−=∆ 121212 313221
2

3
2

2
2

1       (44) 

 

The above 6×6 frequency dependent dynamic stiffness matrix K of Eq. (40) can now be used 

to compute the natural frequencies and mode shapes of either an individual FGB or an 

assembly of FGBs for different boundary conditions. A reliable and accurate method of 

solving the problem is to apply the Wittrick-Williams algorithm [39] which is well suited for 

the application of DSM. The algorithm uses the Sturm sequence property of the dynamic 

stiffness matrix to ensure that no natural frequencies of the structure analysed are missed. The 

Wittrick-Williams algorithm has featured in hundreds of papers in the literature and its details 

are not repeated here. Basically the algorithm [39] gives the number of natural frequencies of 

a structure that lie below an arbitrarily chosen trial frequency specified by the user. As 

successive trial frequencies can be chosen by the user, this simple feature of the algorithm can 

be exploited to bracket any natural frequency between its upper and lower bounds to any 

desired accuracy. The results given in the next section were computed by applying the 

Wittrick-Williams algorithm as the customary solution technique. 

3. Results and discussions 

  The first set of results was obtained for a uniform FGB with different boundary conditions 

with the letters C, F and S denoting clamped, free and simple-support at each end of the beam. 

Four classical boundary conditions are investigated, namely, clamped-free (C-F), simply-

supported (S-S), clamped-simply support (C-S) and clamped-clamped (C-C). The simple 

support (S) boundary condition is assumed to be equivalent to a pinned support which prevents 

both flexural and axial displacements. A wide range of investigations was carried out by 

varying the length to thickness ratio (L/h) and the power law index k of the FGB which 
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controls the material property distribution through thickness. However, the authors have been 

highly selective when presenting the results because existing literature already covers a huge 

amount of data for natural frequencies and mode shapes with the variations of L/h and k, see 

for example Ref.[30]. For presentational purposes, only the results for L/h =10 and k = 0.5 

have been used in this paper, but the theory has been extensively validated against published 

results.  

  In order to make the results universal and also to be consistent with the published results, the 

following non-dimensional natural frequency parameter is defined 

      
b

b
ii Eh

L ρωλ
2

=   (45) 

where  is the ith angular natural frequency in rad/s, bρ  and bE  are density and Young’s 

modulus of the bottom surface of the FGB.  

  Table. 1 shows the first five natural frequencies of the FGB with L/h = 10 and k = 0.5 for C-

F, S-S, C-S and C-C boundary conditions alongside the results reported in a recently published 

paper [30]. The close agreement between the results from the current investigation and the 

published ones is clearly evident.  The maximum discrepancy between the two sets of results 

is less than 4%. The corresponding mode shapes shown in Fig. 4, reveal that for the C-F and 

C-C boundary conditions, the first, second, fourth and fifth modes are essentially bending 

modes whereas the third one is axial. By contrast, for the S-S and C-S boundary conditions, 

the first, second, third and fifth modes are basically bending modes and the fourth one axial.  

  The next set of results was obtained for a stepped beam (see Fig. 5) made of FGM, for which 

some comparative results are available in the literature. The DSM theory developed in this 

paper can easily account for such problems with any step location, thickness variation and 

boundary conditions. However, for brevity only the results for a cantilever (C-F) stepped FGB 

iω
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with step locations L1 = 0.25L, L1 = 0.5L and L1 = 0.75L (see Fig. 5) and the power law index 

k = 0.5 are presented in Table. 2 together with the published results [41]. Note that for 

consistency, FGM type – II of Ref. [41] is used so that the results are directly comparable. 

Clearly, the results from the current investigation are in close agreement with those of [41]. 

  The final set of results was obtained for a portal frame consisting of three beam members 

AB, BC and CD as shown in Fig. 6. The natural frequencies of this frame are available in the 

literature [47] when all the three beam members of the frame are made of isotropic material 

and the supports at both points A and D are either clamped (built-in) or pinned (simply-

supported). These results are based on exact analytical theory.  Using the current theory, 

results are obtained for both the boundary conditions C-C and S-S at A and D, respectively 

and making (i) all the three members AB, BC and CD isotropic (which is achieved by 

substituting the power-law index parameter k to zero and using both the top and bottom surface 

material properties to be the same and isotropic), (ii) AB and CD isotropic, but BC made of 

FGM, (iii) BC isotropic and AB and CD made of FGM and (iv) AB, BC and CD are all made 

of FGM. When computing numerical results, all three members of the portal frame are 

assumed to have the same rectangular cross-section and length. The width and depth (height) 

of the cross-section are taken to be 0.04m and 0.02m, respectively and length of each member 

is set to 1m. When any of the beam members is isotropic, it is considered to be made of steel 

with Young’s modulus 200 GPa and density 7500 kg/m3 whereas if it is made of FGM, the 

bottom surface is considered to be steel with the above properties and the top surface ceramic 

with Young’s modulus 380 GPa and density 3960 kg/m3. The computed natural frequencies 

are non-dimensionalised with respect to the metallic properties to give 

      
EI
AL

ii
4ρωλ =                                                                                         (46) 
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 The results of the investigation when all members of the portal frame (see Fig. 6) are metallic, 

are given in Table. 3 showing the first three non-dimensional natural frequencies of the frame 

when the points A and D are clamped (C-C) or simply-supported (S-S), together with the 

results reported in Ref. [47]. The agreement between the sets of results in Table. 3 is excellent.  

Table. 4 shows the three non-dimensional natural frequencies when the vertical members AB 

and CD and the horizontal member BC of the frame are made of either isotropic metal or FGM 

in turn, as indicated, and the points A and D are clamped (C-C). Similar results are obtained 

for the case when the points A and D of Fig. 6 are simply-supported (S-S). The results for the 

S-S case are shown in Table. 5. Clearly the results shown in Tables. 4 and 5 when compared 

to Table. 3 indicate that significant changes in natural frequencies can occur as a result of 

using functionally graded beams. This can have profound influence in the design of fire-

resistant multi-storey and multi-bay building structures.   

  For illustrative purposes, representative mode shapes for the portal frame of Fig. 6 are 

presented in Figs 7 and 8 when the points A and D of the frame are built-in (clamped) and 

simply-supported, respectively. The power law index parameter k is set to 0.5 when computing 

the mode shapes. Figs 7(a) and 8(a) represent the mode shapes when all three members of the 

portal frame are metallic whereas Figs. 7(b) and 8(b) shows the mode shapes when the 

columns AB and CD are metallic, but the beam BC is made of FGM. By contrast Figs. 7(c) 

and 8(c) show the mode shapes for the case when the beam BC of the portal frame is metallic, 

but its columns AB and CD are made of FGM. Finally, Figs. 7(d) and 8(d) show the mode 

shapes when all three members of the portal frame are made of FGM. Although the basic 

nature of the mode shapes for the portal frame remains the same depending on the order of 

the natural frequency on a case to case basis, significant changes in the natural frequencies are 

found to occur when using FGM as evident from Figs. 7 and 8. As expected the first mode of 
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the portal frame in each case is a sway mode with the frame oscillating between left and right 

with virtually no elastic displacement of the central beam. The second mode shows elastic 

deformations of all three members with no nodal point or any point of inflection within any 

member. By contrast, the third mode reveals somehow a different picture in that a node with 

zero displacement appears towards the top end of each columns whereas a node for the beam 

appears near its centre. The mode shapes shown in Figs. 7 and 8 are typical, as expected from 

the modal analysis of a portal frame and they are in accord with similar mode shapes reported 

by other investigators [47-49]. 

4. Conclusions  

  The dynamic stiffness matrix of a functionally graded beam is developed by deriving explicit 

expressions for the individual stiffness elements in explicit algebraic form. This is achieved 

through the application of symbolic computation.  The dynamic stiffness theory is applied by 

using the Wittrick-Williams algorithm as solution technique to compute the natural 

frequencies and mode shapes of some representative problems of uniform functionally 

gradient beams, for which the material properties are considered to vary continuously in the 

thickness direction according to a power law distribution. A stepped beam made of 

functionally graded material is also investigated for its free vibration characteristics. The 

results show good agreement with published results. Importantly, the theory has been applied 

to study the free vibration behaviour of a portal frame with its constituent members made of 

both isotropic and functionally graded material (FGM). The investigation has shown that 

significant changes in the free vibration behaviour are possible when using FGM. The 

developed theory can be applied to analyse high-rise building structures made of FGM which 

has advantageous mechanical properties of metal and virtuous fire-resistant characteristics of 

ceramic and it is in this context, the investigation carried out is expected to be most useful. 
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