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Exploration Strategies for Discovery of
Interactivity in Visualizations

Tanja Blascheck, Lindsay MacDonald Vermeulen, Jo Vermeulen, Charles Perin, Wesley Willett,
Thomas Ertl and Sheelagh Carpendale

Abstract—We investigate how people discover the functionality of an interactive visualization that was designed for the general public.
While interactive visualizations are increasingly available for public use, we still know little about how the general public discovers what
they can do with these visualizations and what interactions are available. Developing a better understanding of this discovery process
can help inform the design of visualizations for the general public, which in turn can help make data more accessible. To unpack this
problem, we conducted a lab study in which participants were free to use their own methods to discover the functionality of a
connected set of interactive visualizations of public energy data. We collected eye movement data and interaction logs as well as video
and audio recordings. By analyzing this combined data, we extract exploration strategies that the participants employed to discover the
functionality in these interactive visualizations. These exploration strategies illuminate possible design directions for improving the
discoverability of a visualization’s functionality.

Index Terms—Discovery; Visualization; Open Data; Evaluation; Eye Tracking; Interaction Logs; Think-Aloud;
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1 INTRODUCTION

Many governments worldwide strive to make their data
available online in open formats. This open data movement
has been pursued as a political priority in countries such as
Canada [1], the United Kingdom [2], Germany [3], and the
European Union as a whole [4]. This data is typically only
available in raw formats like spreadsheets and CSV files [5],
making it hard for the general public to access and explore.
Moreover, citizens often lack the means or skills to process,
visualize, and understand the data [6].

A popular way of making open data more accessible
is via web-based interactive visualizations. Some examples
include the OECD Better Life Index [7], the NCDRisc Height
Map [8], the Crime Maps of UK cities [9], or the Live London
Underground Map [10]. However, it remains unclear how
the general public makes use of these visualizations, and
whether citizens are able to discover how to interact with
them. In particular, recent work by Boy et al. [6] suggests
that viewers often not notice the functionality in interactive
visualizations. To date, visualization research has not deeply
explored how viewers discover interactive functionality.
This knowledge gap makes it difficult to develop data
visualizations that are accessible for the general public.
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We contribute a detailed mixed-methods study from
which we identify a variety of exploration strategies that
people use when discovering how to interact with a visu-
alization. We report the results from our observations of 24
participants as they used their own methods to discover the
functionality of an open data visualization on a government
website dedicated to providing information on energy data.

We collected and integrated eye movement data and
interaction logs as well as video and audio recordings to
extract exploration strategies that participants employed to
discover the visualizations’ functionality. These exploration
strategies are: eyes only, reading text, opportunistic inter-
actions, entry points, structural interactions, permutation
interactions, and leveraging the familiar. Some of these
exploration strategies have been documented previously,
including eyes only [11], reading text, opportunistic inter-
actions [12], permutation interactions [13], and choosing
personally relevant entry points [14]. However, additional
exploration strategies we observed shed new light on how
people explore interactive visualizations. These include us-
ing the structure of available controls for sequential search
and leveraging the familiar by comparing a familiar view
and a new view to discover functionality.

Interactivity can be a powerful tool to enable visual
exploration and insight generation [15]. Despite the ubiquity
of interactive visualizations, it remains a challenge for peo-
ple who create visualizations to determine when interaction
is appropriate, and how people discover functionality when
it exists. We investigate strategies people use to discover
the functionality of a specific set of visualizations of en-
ergy data. While these are only a subset of the broad and
diverse space of interactive visualization techniques, our
study presents a first step towards a better understanding
of how people discover a visualization’s functionality. Based
on our exploration strategies, we contribute suggestions on
how to design for discovery by inviting interaction, pro-
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viding entry points, using spatial organization, combating
oscillation, supporting transitions, and scaffolding complex
interactions.

2 RELATED WORK

Our work is related to existing research in two main areas:
proliferation of open data visualization and research exam-
ining the discovery of functionality in visual interfaces.

2.1 Proliferation of Open Data Visualizations
Many countries and institutions are increasingly interested
in making government data open and accessible to citizens.
However, for most non-experts, making sense of huge and
often technical public datasets can be difficult. For example,
most institutions only make open data available to the
general public as raw tabular data files [5], for which few
citizens have the tools or expertise to examine. Creating
interactive visualizations that enable analysis by the general
public poses an important challenge [16]. Research systems
such as ManyEyes [17] and commercial tools like Tableau
Public [18] have provided generic mechanisms for visu-
alizing public data online. While these represent a great
step forward as general purpose tools, they offer little
specific help for introducing novices to either the data, the
visualizations, or their interactive functionality. An increas-
ingly popular alternative is to produce tailored interactive
visualizations that present specific types of public data in
ways that require less expertise. Interactive visualizations
like Wattenberg’s NameVoyager and BookVoyager [19] and
Heer et al.’s sense.us [20], along with more recent exam-
ples like the OECD Better Life Index [7] feature tailored
interactive visualizations of individual datasets intended
for consumption by non-experts. However, the visualization
community still knows little about how to craft these kinds
of interactive visualizations for the general public in ways
that can reliably enable novices to discover the functionality.

2.2 Discovery of Functionality in Visual Interfaces
Interactive visualizations face concerns about discovery and
accessibility of functionality, especially when intended for
novices. Although prior work has investigated graphical
literacy and comprehension [21] for static charts, little is
known about how novices approach more complex inter-
active visualizations. As a result, interactive open data visu-
alizations, like Slingsby et al.’s Place Survey [22], have put
considerable emphasis on designing for public accessibility.
However, the results of these efforts have been mixed.
In their own analyses, Slingsby et al. found that novices
often failed to understand and use the more advanced
functionality, even when they were explicitly introduced to
it via tutorials. Perin et al.’s interactive ranking tables for
soccer [23] — also designed with novices in mind — suffered
from similar issues. While an introduction to the soccer
visualizations explained the novel interaction techniques,
novices often still failed to discover their functionality or
use them when examining the data.

Recent work by Boy et al. [6] suggested a number
of potential exploration strategies for revealing interactive
functionality to novices. In a study of visualizations from

the OECD’s Better Life Index [7], Boy et al. tested three
different suggested interactivity techniques, including overt
animations that used feedforward [24] to highlight inter-
active functionality. Their findings indicate that strong vi-
sual emphasis can encourage novice awareness of specific
functionality in interactive visualization tools. However, the
overall process by which novices discover functionality of
new interactive visualizations still remains largely unstud-
ied. This makes it difficult for designers to know which
interaction techniques to include for a given visualization
and how to best highlight them. With this in mind, our work
explicitly examines how the general public uncovers novel
visualizations and describes exploration strategies they use
to make sense of unfamiliar interfaces.

As interactive visualizations are essentially interfaces,
related work in the field of human-computer interaction on
the discovery of functionality is relevant as well. Discovery
of functionality is one of the most important characteristics
of good interface design. Norman stresses that designers
must always be cognizant of whether it is possible for a
person “to even figure out which actions are possible and
where and how to invoke them” [25, pg. 3]. In fact, usability
guidelines often suggest that all functionality and possible
actions should be immediately visible in an interface [25].
As a result, interfaces for novices tend to be heavily re-
liant on visual search [26]. Supporting visual search often
involves removing features and suppressing more advanced
functionality, with the goal of reducing search time and
improving novice performance. However, this can lead to
tools that fail to accommodate experts, and give novices
little room to grow or to investigate more deeply. Ideally, an
interactive system should support discovery of functionality
for both novices and experts, encouraging awareness and
understanding of its functionality [27] while also facilitating
novice-to-expert transitions [26].

In contrast to prior research, which has primarily used
interaction logs to evaluate discovery of functionality in
online interactive visualizations (e.g., [6], [23], [28]), our
study combines log data with eye movement data, video
and audio recordings to produce detailed records of the
discovery process.

3 STUDY: DISCOVERING VIS INTERACTIONS

To improve our understanding of how the general public
discovers the interactions available in a visualization, we
conducted a study of an interactive open data visualization
on a government website dedicated to energy data.

We used a controlled environment and collected eye
movement data and interaction logs as well as video and
audio recordings. While eye tracking has been used to eval-
uate visualizations in general [29]–[34] and to specifically
evaluate how novices remember visualizations [35], [36],
it has not previously been used to tease out the discovery
of functionality in a novel visualization. Using eye move-
ment data makes it possible to examine which areas of
the visualization viewers attend to and how their attention
switches during a task. By contrast, usability studies tend
to rely heavily on interaction logs, often supplemented by
think-aloud protocols [37]–[39] which can provide insight
into participants’ thought processes [40], [41]. Combining
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Fig. 1. The four views available on the NEB website: (A) STACKED BAR CHART showing total energy demand by regions, (B) STACKED AREA CHART
depicting energy demand according to the energy source and sector, (C) BUBBLE CHART presenting electricity generation by region or source, and
(D) LINE CHART showing different possible energy production scenarios.

these methods and collecting a more diverse set of data
allowed us to analyze participants’ actions both in terms of
attention and more explicit actions. This rich data provides a
better understanding of the barriers participants faced and
made it possible to identify specific exploration strategies
that participants employed to discover the visualizations’
interactive functionality.

While there are trade-offs associated with conducting
a controlled lab study, triangulating data from a range of
different sources allowed us to extract strategies participants
used and examine them in detail. In Section 8, we reflect
further on the limitations of our approach.

3.1 The Interactive Visualization Website

We asked participants to explore a set of interactive vi-
sualizations: “Exploring Canada’s Energy Future” created
by Canada’s National Energy Board (NEB) [42]. Like some
of the other open data efforts mentioned previously, the
NEB created these interactive visualizations to help both
the general public and data experts examine data that was
previously published in a less accessible format. The visual-
ization website consists of a START PAGE shown in Figure 2,
as well as four interactive views shown in Figure 1, each
highlighting a different kind of energy data. The STACKED
BAR CHART (Figure 1 A) shows energy demand, electricity
generation, oil, or gas production by region. The STACKED
AREA CHART (Figure 1 B) depicts the energy demand

Fig. 2. The START PAGE of the website evaluated in the study showing
across the bottom the option to select one of four views.

according to the energy source and sector. The BUBBLE
CHART (Figure 1 C) presents electricity generation by region
or by source. The LINE CHART (Figure 1 D) supports com-
parison of possible production scenarios, for total energy
demand, electricity generation, oil, or gas production.

All four views use a similar layout with groups of
controls on the left, a chart representing the energy data
on the right, and one or two axes. Viewers can switch
between views using the menu bar at the top. The menu bar
also includes help ( ) and description ( ) buttons, which
provide more information about each view and how to use
it. Question marks ( ) next to each group provide more
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Fig. 3. The sliding rail supports reordering of elements in the views,
here represented by two-letter codes of regions from Canada. A region
is selected (A) and dragged to a new position (B), which causes other
regions on the rail to make space for the region that is being dragged.
When the region is dropped, the reordering is shown in the chart (C).

information specific to the associated interactive controls.
In addition to standard buttons and check boxes, the in-

terface also includes two unconventional interface widgets.
Both the STACKED BAR CHART (Figure 1 A) and STACKED
AREA CHART (Figure 1 B) include a sliding rail control
(Figure 3). By clicking the boxes on the sliding rail, viewers
can hide and show related information in the chart. Viewers
can also drag and drop boxes along the sliding rail to
reorder the series as shown in Figure 3. The BUBBLE CHART
(Figure 1 C) includes an interactive timeline that can be used
to play back changes in the data over time.

3.2 Participants
In order to examine a diverse cross-section of the gen-
eral public, we recruited three different types of parti-
cipants: novice, savvy, and experts. The novice group con-
sisted of i) students who were not studying a computer
science-related discipline and ii) non-students who had
never worked in the energy sector. The group of savvy
participants consisted of computer science students. We
recruited this group of participants because their technical
background makes them experts in using interfaces despite
being novices in the field of energy data. Finally, the expert
group consisted of participants with experience in the en-
ergy sector (average 8.38 years experience; min 8 months,
max 35 years). We recruited 8 participants for each group
via posters, mailing lists, and word-of-mouth. Due to a
variety of technical issues including poor English skills and
hardware malfunctions that made the data unusable, we
dropped and replaced 6 of the initial participants to obtain
the final set of 24 participants (8 per group), which we
report in this paper. Fourteen of the 24 participants were
female and 10 were male. Fifteen participants were students.
Six participants were 18–24 years old, 13 were 25–34 years
old, 3 were 35–44 years old, and 2 were 55–64 years old.
All participants had normal or corrected-to-normal vision.
We also asked participants about their knowledge of energy
issues — 21 stated they had some knowledge. Fourteen also

noted that they were familiar with infographics — 6 on the
web, 13 in the media (multiple answers were possible).

3.3 Equipment and Set Up

To record eye movement and interaction data, we used
a Tobii X2-60 compact eye tracker (accuracy 0.4 degrees,
precision 0.34 degrees) on a Dell XPS 27 all-in-one machine
(27” screen with a resolution of 2560 × 1440 px) running
Windows 8.1. We recorded the eye movement data at 60 Hz.
We aggregated gaze points using the IV-T classifier with
a velocity threshold of 30 degrees/second, and a window
length of 20 ms. We merged adjacent fixations up to a
maximum time between fixations of 75 ms and a maximum
angle between fixations of 0.5 degrees and discarded fixa-
tions with a duration below 60 ms. We used an additional
video camera placed behind the participant to capture the
participant and the screen.

We ran our study using an Internet Explorer 11.0.33
window with a size of 1235 × 910 px positioned 520 px from
the left of the screen and 210 px from the top. The size of the
browser window was constrained to maintain a consistent
view size. We conducted the study in a room isolated from
outside distraction. To ensure constant illumination, we
closed the blinds and switched on the room light.

3.4 Study Procedure

We asked participants to investigate the Canada’s Energy
Future website and the four views associated with it. The
experimenter did not provide participants with any expla-
nation of the views. Participants could only use the informa-
tion available on the website. The experimenter instructed
the participants to freely explore the views and to talk about
their thought process as they did so. We removed the header
and footer of the website to eliminate distractions, to focus
participants’ attention on the views, to maintain consistency
in view size, and to avoid scrolling that could disrupt the
eye tracker.

At the beginning of each trial, an experimenter asked
the participants to sign a consent form and fill out a de-
mographic questionnaire. Participants then had to pass a
visual acuity test utilizing a Snellen chart and a color vision
test. We checked for color blindness and red-green blindness
using nine of the 24 Ishihara test plates [43]. Next, we used a
nine-point calibration procedure to calibrate the eye tracker.
When the study was completed, participants filled out a
NASA TLX questionnaire and a questionnaire for rating the
views. At the end of the session, participants could make
final remarks and received $20 for their participation.

3.5 Data Collection

We collected eye movement data, interaction logs, and the
time participants took to explore the interactive views. We
also recorded the screen and audio using the eye tracker’s
integrated camera, and utilized a second camera to cap-
ture audio and video of participants. In addition, we col-
lected demographic information, NASA TLX, and view-
rating questionnaires. During the study, the experimenter
also had a checklist to record each interactive function the
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Fig. 4. The AOIs for each view. Each AOI is indicated by a color overlay based on the AOI group. The controls AOIs are shown with orange
rectangles, indicating how the controls are grouped. The numbers AOIs for the axes are depicted with blue rectangles and the chart AOI is shown
with a purple rectangle.

Fig. 5. The START PAGE of the website overlaid with an attention map for
one participant showing high attention on the text snippet and some on
the STACKED BAR CHART. The thumbnail in the top right corner shows
the data mapping of the transparent to red color ramp.

participants used. We provide the complete data collected
during the study on a supplemental website1.

4 PROCESSING OUR STUDY DATA

To analyze our collected data, we first define areas of inter-
est. Then, we describe three eye tracking visualizations we
used for our analysis — attention maps, scanpaths, and AOI
timelines. Last, we summarize the numerical data collected
in the study.

1. http://innovis.cpsc.ucalgary.ca/supplemental/
Exploration-Strategies/

4.1 Defining Areas of Interest

We analyzed the eye movement data using areas of interest
(AOIs) for each view. We define AOIs based on the visual
structure of the website (i.e., the control groups, chart, axes,
and menus). Figure 4 shows the AOIs we defined for each
view. We used one AOI for the chart (chart AOI), one AOI
for each group of interactive controls including a menu AOI,
main selection AOI, scenario AOI, unit AOI, region AOI, and
source AOI. Since the controls vary according to the view
and the data, the main selection AOI is different in each
view. It contains the controls for choosing the energy type
in the STACKED BAR CHART and LINE CHART, for choosing
the sector for the STACKED AREA CHART, and for switching
between a region and source option for the BUBBLE CHART.
We used AOIs for the numerical parts of the views: the hor-
izontal (time axis AOI) and the vertical axis (value axis AOI).
We also refer to the horizontal time slider in the BUBBLE
CHART as a time axis AOI.

As part of our analysis, we grouped these AOIs into
three high-level groups which are shown in Figure 4: the
controls group (shown in orange), the chart (shown in pur-
ple), and the numbers group (shown in blue). Although the
individual AOIs are specific to the views in our study, the
AOI groups reflect classes of elements common to most vi-
sualizations. The majority of interactive visualizations have
one or more chart elements as well as a set of interactive
controls. Furthermore, most visualizations feature numbers,
either as axes or as temporal interaction controls.

http://innovis.cpsc.ucalgary.ca/supplemental/Exploration-Strategies/
http://innovis.cpsc.ucalgary.ca/supplemental/Exploration-Strategies/
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A B C

Fig. 6. Three different scanpaths showing the participants focus: (A) largely on the chart (P16), with some attention on the lower controls; (B) largely
on the controls (P20), with some attention on the chart and on the numbers; and (C) largely on the numbers (P14), with some attention on the chart.

00:02:49 00:02:56 00:03:93 00:03:11 00:03:24 00:03:31 00:10:44 00:10:53 00:11:01 00:11:09 00:11:14 00:11:21 00:11:27

CHART
MENU

MAIN SELECTION
REGION

UNIT
SCENARIO
TIME AXIS

VALUE AXIS

P10 - LINE CHART

Fig. 7. A part of an AOI timeline for one participant for the LINE CHART. All AOIs for one view are represented by a horizontal light gray line. The
background color of each AOI encodes its AOI group. The white circles show interactions in AOIs. Black circles mean that a participant opened the
help menu. The dark gray line depicts the eye movements over time. If the eye movement line is dotted, it means that fixations are not assigned to
any AOI. A vertical gap (white) indicates that a participant switched to another view and later came back to this view again.

4.2 Eye Movement Visualizations

We used three types of eye movement visualizations: atten-
tion maps, scanpaths, and AOI timelines.

Attention maps, like the one in Figure 5, represent the
distribution of a participant’s attention on top of a stimulus.
Our attention maps use a heat map metaphor where darker
red indicates a higher amount of sustained attention while
lighter red shows less attention. Areas without attention are
not color coded. Attention maps are useful for identifying
which parts of a view received participants’ attention and
which ones did not.

Scanpaths, like those in Figure 6, depict the sequence of
fixations on top of a view. Each circle represents one fixation
and lines connect consecutive fixations. The circle radius
encodes fixation duration. Scanpaths are useful for revealing
the order in which participants focus on each element.

AOI timelines [44], like the one in Figure 7, show
fixations and saccades — rapid eye movements between
fixations — for an individual participant in a single time-
based view. We created five AOI timelines per participant:
one for the START PAGE and one for each of the four views.
In each AOI timeline, individual AOIs are indicated by
horizontal lines. The background of the AOI timeline is
colored according to AOI group: purple for the chart (at
the top), orange for the controls (in the middle), and blue
for the numbers (at the bottom). The gray path represents
the sequence of fixations of a participant. The longer the
path stays in the same AOI (horizontal segments), the longer
the fixation. Dotted segments of the path represent fixations
that are not assigned to any AOI. These are times when,
for instance, the participant may have looked away from
the screen. White circles indicate an interaction such as a
mouse click, while black circles mean that a participant
opened or closed the help menu. Vertical gaps indicate
the times at which a participant temporarily switched to

another view and later returned to work with the current
one. AOI timelines are particularly useful for examining
detailed temporal information for individual participants.

4.3 Coding Process

In our coding process, we drew upon the eye tracking
visualizations as well as the video and audio recordings
to identify exploration strategies that participants applied
when exploring the views. First, one author developed an
open coding scheme based on observations of eye move-
ment visualizations and videos from several participants. A
second author then verified this pass. Next, a group of four
authors (including the initial two) discussed, refined, and
presented the coding scheme to the rest of the research team.
The team then refined these through a series of iterations
until they reached consensus on a set of 10 exploration
strategies. Then, using poster-sized printouts of the AOI
timeline visualizations, one author coded the data from all
24 participants to identify all instances of these strategies.
The larger group then discussed the results of this process
and used axial coding to regroup, consolidate, and rename
the strategies to arrive at a final set of seven. We provide the
AOI timelines for all five views and all 24 participants on a
supplemental website1.

4.4 Times, Fixations, and Interactions

We now summarize the data we collected in our study be-
fore explaining the exploration strategies that we identified.
On average our participants took approximately 15 minutes
to finish their initial exploration of the interface (M = 920s,
SD = 478s). During this time, every participant examined
all four views. Figure 8 shows all participants’ fixations
across the four views. Although we recruited a variety of
participants from different backgrounds and assigned them
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Fig. 8. All fixations recorded for each participant, colored by view, and sorted by total completion time in seconds. The white spaces indicate no eye
movement data for that moment, for instance, when a participant looked away from the screen.
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Fig. 9. Total time (A), avg. fixation duration (B), and number of interactions (C) for the three groups — with 95% bootstrapped confidence intervals.
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Fig. 10. Total per-participant fixation times on each view with averages
and 95% confidence intervals indicated by the gray areas. The colors
refer to the different views.

to three groups (novice, savvy, and expert), we observed
no clear difference between these groups in terms of total
time, fixation duration, or total number of interactions (see
Figure 9 for details). For example, participants from the
expert group had both the longest and the shortest times.
In general, for the timings shown in Figure 8, participants
from all three groups were quite evenly spread across the
time variations. We therefore collapse the groups for the rest
of the analysis in this paper.

Overall, 19 of 24 participants started with the STACKED
BAR CHART, 4 participants (P04, P08, P09, P14) started
with the BUBBLE CHART, and P24 jumped quickly between
several views before returning to the STACKED BAR CHART.
Eleven participants (P06, P07, P08, P12, P13, P15, P16, P17,
P18, P19, P20) visited all four views in sequence, without
returning to any previous view for more than a few seconds.

Figure 10 shows participants’ total fixation time for the
four views. Each vertical bar represents one participant’s
total fixation time for that view. Participants generally spent
the most total time on the BUBBLE CHART, followed by
the STACKED BAR CHART, the STACKED AREA CHART, the
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Fig. 11. Percentage of the total fixation time of AOI groups for each view
with averages and 95% confidence intervals indicated by the gray areas.
The colors refer to the different AOI groups.

LINE CHART, and the START PAGE. Figure 11 breaks down
the percentage of the total fixation time spent on the three
AOI groups. When examining the STACKED BAR CHART
and the STACKED AREA CHART participants spent the most
time focusing on the controls. For the BUBBLE CHART, par-
ticipants spent the most time on the chart. For the LINE
CHART, participants spent a similar amount of time on the
chart and on the controls. Participants spent less time looking
at the numbers than the chart or controls in all four views.
The largest difference between chart and controls occurred in
the STACKED AREA CHART, where participants spent more
time looking at the controls, and the BUBBLE CHART, where
participants spent more time looking at the chart.

Across all views, we observed a noticeable pause be-
fore participants started interacting. Figure 12 shows the
time to first interaction, the time it took participants to
start interacting with each view. This delay to interact is
interesting because during this gap the participants spent
their time scanning visually (cf. Section 5.1). The average
time to first interaction was longest for the STACKED BAR
CHART, followed by the BUBBLE CHART, then the STACKED
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Fig. 12. Time to first interaction for each view with averages and 95%
confidence intervals indicated by the gray areas. The colors refer to the
different views.

AREA CHART, and the LINE CHART. Time to first interaction
varied considerably for the BUBBLE CHART.

5 EXPLORATION STRATEGIES

We identified seven exploration strategies (ES) that partici-
pants employed to discover functionality in the views: eyes
only (ESeyes only), reading text (EStext), opportunistic interac-
tions (ESopportunitistic), entry points (ESentry), structural inter-
actions (ESstructure), permutation interactions (ESpermutations),
and leveraging the familiar (ESleverage). Our findings both
highlight the use of novel strategies and confirm the use of
relatively well-known exploration strategies. Additionally,
the presented exploration strategies, their prevalence, and
the ways in which they were combined, are contributions
in themselves and shed new light on how people discover
interactive visualizations. Icons next to each exploration
strategy indicate the combination of data sources that we
used to identify it: eye movement data ( ), interaction data
( ), and think-aloud data ( ).

5.1 ESeyes only: Eyes Only ( , )
When using ESeyes only, participants visually examined a
view, but did not interact with it. By scrutinizing a view
while preserving its current state, participants engaged in
what Spence [11, p. 141] calls passive interaction – inter-
actions that have no physical component, but constitute a
complex visual and cognitive performance during which a
viewer’s mental model changes. In our study, participants
usually employed this exploration strategy when they were
first exposed to a view or immediately after completing a
sequence of interactions that altered the view.

To extract occurrences of ESeyes only we examined the eye
movement data and interaction logs to identify all time
spans longer than five seconds that did not include any
interaction. Within each time span, we calculated the total
dwell time for each AOI group, using the AOIs defined in
Section 3.5. The dwell time is the sum of all durations of
fixations assigned to any AOI in a group. This resulted in
three sub-strategies of ESeyes only differentiated by the AOI
group the participants focused most of their attention on.
We observed 1102 total occurrences of this pattern across the
chart (691 instances), controls (385 instances), and numbers
AOI groups. All 24 participants used ESeyes only at least
once while focusing on the chart (showing scan patterns
similar to Figure 6 A) and on the controls (showing scan

00:02:27 00:02:37

CHART
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MAIN SELECTION
REGION

UNIT
SCENARIO

SOURCE
TIME AXIS

Fig. 13. This part of a participant’s AOI timeline shows ESopportunitistic on
the BUBBLE CHART. The white interaction circles show different types of
controls being selected and between each selection the chart is viewed.

patterns similar to Figure 6 B). Thirteen participants also
used ESeyes only when examining the numbers (showing scan
patterns similar to Figure 6 C).

5.2 EStext: Reading Text ( , )
Most participants also read the documentation provided by
the visualization designers to help them understand a new
view. The attention map in Figure 5 shows a participant
reading the entry text. EStext is slightly more interactive
than ESeyes only, because aside from the entry text on the
START PAGE, reading the available documentation required
the participants to select a help button.

Most participants used the help functions by accessing
the website description ( ), the main help button from the
menu bar across the top of the page ( , and the contextual
help available for each control group ( ). Nineteen partici-
pants used EStext a total of 170 times.

- In discussing opportunistic interactions (sec 5.3), the
authors write that subjects ”typically selected a random
option from any group of controls”. I’m not sure what is
meant by ”random” here. I doubt the subjects themselves
were truly deciding randomly (in a probabilistic sense),
though perhaps that is what it (colloquially) looks like to
an external observer. Perhaps instead it could be noted that
subjects appeared to lack a clear rationale for the decision of
which controls to interact with?

5.3 ESopportunitistic: Opportunistic Interactions ( , )
In our study, when participants interacted opportunistically,
they typically selected an arbitrary option from any group
of controls, examined the chart to assess what changes their
action caused, and then relatively rapidly moved on to a dif-
ferent control to repeat this process. Participants appeared
to lack a clear rationale for the decision of which controls
to interact with. Opportunistic interactions are characterized
by being free-ranging, relatively effortless, and usually not
carefully planned [12].

Figure 13 shows part of an AOI timeline for a participant
interacting opportunistically. In this example, the participant
first changed the year on the time axis, then selected a
scenario, before selecting two different sources. To assess the
frequency of opportunistic interactions we coded all instances
in which a participant interacted with controls from multi-
ple different groups in sequence. All 24 participants used
this strategy at least once, for a total of 351 occurrences.

5.4 ESentry: Entry Points ( , )
When using ESentry, participants started their investigation
with a view by gravitating towards familiar factors in the
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Fig. 14. This part of a participant’s AOI timeline shows ESstructure on
the STACKED BAR CHART, where the participant sequentially selected
all options in the main selection and then switched to the options in the
scenarios controls.

controls, the charts, or the content. These familiar factors
served as entry points into the view. Several participants
noted looking at the geographic region they grew up in
or currently live in. Some examples include: “[...] I guess
but maybe that’s just because we live in Alberta [...]” (P01);
“[...] got Ontario here because that’s my home province
[...]” (P03); “[...] of course I want to look at Alberta first
cause that’s where I’m [...]” (P05); and “[...] right away I am
interested in my region, that is why I clicked this [...]” (P07).
This selection of factors of personal interest corresponds
strongly to Bates’ description of berrypicking — conducting
exploration “by a series of selections of individual references
and bits of information at each stage of the ever-modifying
search” [14]. To count the occurrences of participants using
entry points, we listened to the audio recordings for any
indication of a statement referring to personal information.
We also coded all selections of “Alberta” as an entry point,
because the study took place in Alberta, Canada. Thir-
teen participants explored views by selecting familiar entry
points, for a total of 36 occurrences.

5.5 ESstructure: Structural Interactions ( , )
When using structural interactions, participants leveraged
the structure that is visually apparent in the interface. For
example, a participant would choose one control group and
then iterate over all of the available options in that group.
Participants often followed the spatial organization of the
controls — for example, moving from top to bottom through
the control group. Although they vary from view to view,
the control panels contain groups of controls that are related
by icon style as well as by spatial proximity. Figure 14 shows
a section of an AOI timeline from a participant who used
this approach. Here, the participant iteratively tested all
options in the main selection control group, always oscillating
between the chart and the controls to observe changes.
After finishing with the main selection control group, the
participant then explored the options in the scenarios group.
All 24 participants used structural interactions at least once,
for a total of 644 occurrences.

5.6 ESpermutations: Permutation Interactions ( , )
Permutation interactions are a careful, methodical approach
that reveals some understanding of the relationship between
control groups. Similar to a comparative measure or di-
mension walk [13], participants would select one control
item in a given control group (A) and then take a different
control group (B) and iterate through all the options in B.
Then, they would return to A, select a new item, and iterate
through all the options in B again. We call this permutation
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Fig. 15. This part of a participant’s AOI timeline shows ESpermutations on
the STACKED AREA CHART. The interactions with the main selection
control are separated by a series of interactions with the scenario
control.
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Fig. 16. This part of a participant’s AOI timeline shows ESleverage. Here,
the participant moved from view A to view B (arrow 1). After quickly
inspecting B the participant briefly revisited A, (arrow 2). The participant
then returned to B and remained on that view (arrow 3).

interaction because in this manner participants could ensure
that they had seen all permutations and combinations of the
two groups. Figure 15 depicts a part of an AOI timeline for
a participant using this method. After selecting an option
in the main selection group, the participant selected all op-
tions from the scenarios. After seeing how the scenarios had
changed for the first main selection option, the participant
selected the next main selection item and again investigated
each of the scenarios.

Permutation interactions were the least used exploration
strategy: 6 participants used it at least once, for a total of 7
occurrences. Participants used the strategy the most with
the BUBBLE CHART, investigating how different options
changed over time using the interactive time axis. Parti-
cipants also used permutation interactions to try different
combinations of regions and sources.

5.7 ESleverage: Leveraging the Familiar ( , , )
When using the ESleverage, participants used their under-
standing of one view to learn about another view. We saw
two variations of ESleverage in our study. Sometimes parti-
cipants would switch to a new view, then quickly revisit
the previous view in order to understand the differences
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between the two views. In other cases, participants would
realize that something in their current view was different
from what they had seen in a prior view and would return
to that view to compare it with the current view. Figure 16
shows how a participant moved back and forth between
the STACKED BAR CHART and STACKED AREA CHART in
order to compare them. Using ESleverage, participants were
able to begin to understand the functionality of a new view
by leveraging what they knew about the views they had
already visited. Overall, 10 participants used ESleverage at
least once for a total of 60 occurrences.

6 EXPLORATION STRATEGIES IN CONTEXT

Throughout our study, we found that the exploration strate-
gies participants preferred differed from view to view.
Figure 17 shows the number of participants who used a
given exploration strategy for each view. This suggests that
the design of a view can evoke certain exploration strategies.

6.1 Exploration Strategies by Views

On three of the four views (STACKED BAR CHART, STACKED
AREA CHART, LINE CHART), participants focused more
on the controls than on the chart (see also Section 4 and
Figure 11). Although the chart takes up most of the space
in each view and communicates the most information, the
controls serve as interactive legends and participants fre-
quently returned to them to verify the current selection and
compare color encodings. The sole exception to this was
the BUBBLE CHART, in which more participants focused on
the chart than on the controls. This is almost certainly due
to the fact that the BUBBLE CHART was the only view in
which the chart itself was interactive. In this view, it was
possible to access data values for different regions or sources
by mousing over the corresponding bubbles in the chart.
Participants also focused more on numbers when using the
BUBBLE CHART than they did on the other three views.
This may be due to the fact that the timeline for this view
was interactive and participants often focused on it when
triggering those interactions. Overall, however, focusing on
the numbers remained the least-used of the three ESeyes only
sub-strategies.

EStext was also used frequently, with 20 of our parti-
cipants employing it at some point. Participants used this
strategy across all views, with the most use on the BUBBLE
CHART. Heavy use of the help may be a sign that some
functionality was not easily discoverable. However, parti-
cipants seemed to benefit from the localized help available
for each control group, as it allowed them to quickly obtain
explanations and information about those particular con-
trols. Participants also used EStext extensively on the START
PAGE. While we expected participants to only briefly look
at this page and quickly select a view, 22 participants read
the entire introductory paragraph before proceeding. The
attention map in Figure 5 highlights this common behavior
pattern, in which participants focused more on the text than
on the images on the START PAGE. However, this may be an
effect of the social pressure implicit in a controlled lab study.

Participants used ESopportunitistic and ESstructure frequently
across all views, as Figure 17 shows. ESopportunitistic is the
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Fig. 17. Number of participants who used each exploration strategy, per
view and overall. The all counts reflect the number of unique participants
who applied the given strategy at least once regardless of which view.

simplest exploration strategy and helps participants start to
assess what an option or a group of options does. ESstructure
is more organized and suggests that participants are trying
to understand what the different options in one control
group represent and how they compare to each other. The
ESpermutations strategy is more advanced and participants
who apply it are most likely trying to understand the
relationships and dependencies between multiple groups
of controls. Participants in our study used this advanced
interaction approach the least.

6.2 Oscillating Behavior
From our eye movement data and from comments partici-
pants made directly, we could observe that they spent much
of their time oscillating between the controls and the chart
to understand what the effect of their interaction with the
controls had on the chart. For example, one participant (P05)
observed that “[...] having to go back and forth between the
icons and the circles would kind of drive you nuts after
a while [...]”. The oscillating behavior can also be seen in
the scanpath visualizations (Figure 6) and is shown in the
AOI timelines (Figure 7), where it is characterized by near-
vertical lines connecting small horizontal fixation points.

6.3 Discovering Unusual Functionality
Even though both the STACKED BAR CHART and STACKED
AREA CHART included a sliding rail control (Figure 3), only
4 participants (P01, P09, P10, P21) successfully discovered
how to use these sliding rails. From the video and audio
recordings, we observed that all four of these participants
discovered this functionality by using ESopportunitistic. For
example, P10 exclaimed “[...] just looking at Alberta. I can
reorder these, oh thats cool, that’s really cool [...]”. It is likely
that the presence of a rail between the items in the control
group did not clearly suggest that the sliding interaction
was possible, and neither simple visual scanning nor most of
the common exploration strategies supported its discovery.

7 DESIGNING FOR DISCOVERY

Based on our observations and the exploration strategies we
identified, we now review how our exploration strategies
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reveal design opportunities that may lead to the creation of
more discoverable interactive visualizations. In this discus-
sion, we connect our empirical findings to previous work in
visualization and human-computer interaction.

7.1 Inviting Interaction

Participants all took their time before starting to interact
with any of the views (see also Section 4 and Figure 12).
This initial pause might reflect a lack of obvious available
interactions. One approach for increasing the discoverability
of possible interactions is to hint at their existence using
feedforward. Feedforward [24] can suggest potential interac-
tions by using animation or emphasis to preview the change
that would happen if those interactions were carried out.
Recent work by Boy et al. [6] suggests that feedforward can
be used to suggest possible interactions in a manner that
entices people to interact more with a visualization.

Another possible explanation for the delay before parti-
cipants’ initial interactions may be that they were passively
interacting [11] with the view. This behaviour remains diffi-
cult to confirm based on the eye movement and interaction
data alone and would require retrospectively asking partici-
pants what they were doing or thinking, which would have
interrupted their exploration process.

7.2 Providing Entry Points

There are several examples of visualizations where the use
of entry points (ESentry) has successfully been applied to
engage people and encourage them to interact. For ex-
ample, the NameVoyager [19] visualization has a direct
personal entry point — a person’s own name. In the NC-
DRisc Height Map [8], people typically start investigating
the visualization by selecting their home country or the
country they live in. The Bohemian Bookshelf offers mul-
tiple entry points to the same system in order to encourage
playful exploration and serendipitous discovery [45].

7.3 Using Spatial Organization

In addition to known exploration methods like oppor-
tunistic interaction [12] and entry points [14], our partici-
pants also used two exploration approaches, ESstructure and
ESpermutations, that each made use of the spatial organiza-
tion of the controls. ESstructure used the spatial organiza-
tion to step through grouped sets of interactive controls.
ESpermutations used the spatial organization of at least two
sets of grouped controls to explore the possible permuta-
tions. This suggests that designers need to think deeply
about the organization of controls. For instance, graphic de-
sign guidelines such as Kidd’s [46] are simple but effective:
1) left to right; 2) top to bottom; 3) front to back; and 4) dark
to light. The attention that participants paid to the spatial
organization of controls also suggests that careful placement
can be used to guide a person through a specific sequence.

7.4 Combating Oscillation

We observed that participants spent much of their time
oscillating back and forth between controls and the chart.
They also explicitly told us that they found this irritating

(see Section 6.2). This is evidence for the importance of
embedded interactions. Research in both InfoVis [47]–[50] and
human-computer interaction [51]–[53] has called for greater
use of direct interaction. Interaction can be direct in terms
of temporal immediacy, when there is no lag between an
interaction and the data update. An interaction can also be
direct in terms of spatial immediacy, when the interaction
is co-located with the data. Temporal immediacy is now
common and the visualizations we studied did not exhibit
time lag between interactions and data updates. However,
spatial immediacy remains challenging. The tendency in the
visualization community is to place the controls adjacent
to a visualization to minimize possible visual interference
caused by having the controls too near or on-top of a visu-
alization. Our study provides additional evidence that this
spatial separation is problematic and can cause oscillation
which participants found irritating. Integrating interactions
into the data representation could limit attention switching,
but may make them more difficult to discover.

Consequently, there is a trade-off between interaction
familiarity and spatial immediacy. Despite the fact that more
direct interaction is a recognized design goal [51], most in-
teractive visualizations, including those we studied, are still
commonly implemented using the WIMP paradigm [50],
[51]. Similarly, The visualizations we studied exhibited a
clear separation between control panels and the visualiza-
tion. This preference for familiar layouts may be due in
part to the fact that the general public lacks visualization
literacy [54] and that people have difficulty discovering
embedded interactions, because these interactions lack es-
tablished metaphors and clear signifiers [55]. For example,
in comparison to familiar controls like buttons and sliders,
the bars or marks in a chart provide little information to
suggest that they might be interactive [6].

7.5 Supporting Transitions
During our study, we observed that participants often
compared different views in order to find out what had
changed or see how the data was represented differently
in another view (ESleverage). These comparisons happened
mostly at the interface level, with participants compar-
ing differences between interface elements (visualization-to-
visualization [13]) rather than changes in the data. To allow
people to compare views at both the interface and data
level, interactive visualizations could provide support for
smoother transitions between views and between datasets,
for example, through seamless transitions. Seamless transi-
tions between views, paired with techniques for emphasiz-
ing changes, could make the process of switching views
less disorienting. Transitions between pairs of interactive
visualizations could be designed to help mitigate change
blindness [56] and preserve participants’ mental map of
both views [57], [58]. Using consistent layouts for multi-
ple views may make this process easier by reducing the
number of changes that need to be included in a transition,
thereby reducing the transition cost [13]. Supporting cross-
filtering between views [59] or adding phosphor traces and
afterglow effects to transitions [60] may also help limit
cumbersome transitions between views.

Another way to address this problem is to use multiple-
coordinated views [61], in which changes in one view can
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cause updates in others. Such views are common in visual
analytics and many systems use techniques like brushing
and linking [62] or graphical overlay methods [63] to con-
nect many different interactive visualizations together.

7.6 Scaffolding Complex Interactions
When using the STACKED BAR CHART and the LINE CHART,
only four participants discovered the sliding rail function-
ality and used it to reorder regions or sources. Given that
the use of more advanced interactions can lead to more
efficient investigation, helping people learn how to use more
complex interactions is important. Here, task-based tutorials
and information scent cues may be useful tools to help people
transition to more complex interactions. This important
challenge has been discussed both in the InfoVis [64] and
human-computer interaction [26], [27] literature.

One possible approach is to highlight new functionality
directly when a viewer first visits a visualization, using
techniques such as stencil-based tutorials [65]. Human-
computer interaction researchers have also explored more
game-like approaches, including using integrated and en-
gaging tacit tutorials [66]–[69].

The use of information scent cues — providing embed-
ded navigation hints that encourage people to navigate to
nearby views that may contain relevant content — were first
introduced by Pirolli and Card [70] as part of a broader
model of information foraging. This principle has since
been applied to a variety of visual search and browsing
tasks [71]–[74]. Related techniques like scented widgets [75]
embed social and data-driven scent cues directly into ex-
isting interface controls. These kinds of embedded visual
hints could be used to encourage novices to investigate
new views or examine areas of an interface they have
previously ignored, explicitly encouraging them to discover
new functionality.

8 LIMITATIONS AND SCOPE

While providing less realism and potentially lower eco-
logical validity, a controlled lab study has the benefit of
providing more precision [76]. In a lab setting we were able
to collect data from a range of sources, triangulating eye
movement data, interactions, and observations from video
and audio to isolate and pinpoint specific strategies that
participants applied. Although our methodology allowed
us to utilize a variety of data sources, we still cannot
infer whether participants applied the exploration strategies
purposefully or unintentionally. Given our initial set of
strategies, future studies could use Freeman’s [77] triggered
think-aloud method (in which moderators can intervene in
participants’ exploration to ask for clarification) to try to
assess participants’ intent. We did not use this process for
this initial study because such interruptions would disrupt
participants’ process of discovery and risk corrupting the
eye movement data and interaction logs.

Our study does not intend to provide an exhaustive list
of strategies people use when interacting with visualiza-
tions in general. We focused specifically on visualizations
designed for public use and public engagement with open
data, therefore guidelines such as scaffolding complex in-
teractions and providing entry points may not apply to

visualizations used in professional data analysis contexts,
where explicit training is more common. We studied discov-
ery in the context of one set of web-based visualizations of
open energy data. While the set of exploration strategies we
identified is broad, other strategies likely remain. We hope
that the research community will build on this work by fur-
ther exploring how people interact with new visualizations,
thereby helping to build a more holistic understanding of
the discovery of interactivity in visualizations.

9 CONCLUSIONS

In this paper, we investigated how people discover func-
tionality of an interactive visualization designed for public
consumption. Unlike prior studies of interactive visual-
ization use, our analysis incorporates not only interaction
logs and audio/video recordings, but also includes detailed
analyses of eye movement data. Combining these data
streams allowed us to enumerate several exploration strate-
gies — ESeyes only, EStext, ESopportunitistic, ESentry, ESstructure,
ESpermutations, and ESleverage— that our participants used
when trying to understand a new interactive visualiza-
tion. While ESeyes only, EStext, ESopportunitistic, ESentry and,
ESpermutations are known exploration strategies, ESstructure,
and ESleverage are interesting as they offer possible design
directions for improving the discoverability of interactive
visualizations.

Understanding these exploration strategies led to several
promising suggestions that may make functionality more
discoverable in interactive visualizations. These include:

• Inviting Interaction
• Providing Entry Points
• Leveraging Spatial Organization
• Combating Oscillation
• Supporting Transitions
• Scaffolding Complex Interactions

Ultimately, we hope that by understanding how people
approach interactive visualizations, we can empower an
even broader range of people to experience, interact with,
and gain insight from open data.
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