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Abstract

Although flutter analysis is a relatively old problem in aviation, it is still chal-
lenging, particularly with the advent of composite materials and requirements
for high-speed light airframes. The main challenge for this problem is at the
transonic flow region. The transonic flow, being non-linear, poses a great chal-
lenge over traditional linear theories which fail to predict the aerodynamic
properties accurately. Aerospace has been one of the primary areas of appli-
cations to take advantage of composite materials with the aim to reduce the
total mass and improve control effectiveness.

This work takes advantage of CFD methods advancement as the main flow
solver for non-linear governing equations. In order to investigate the dynamic
behaviour of composite aircraft wings, the dynamic stiffness method (DSM) for
bending-torsion composite beam is used to compute the free vibration natural
modes. The main objective of this work is coupling the dynamic stiffness
method (DSM) with high fidelity computational fluid dynamics models in order
to predict the transonic flutter of composite aircraft wings accurately and
efficiently. In addressing the main aim of this study, Euler fluid flow solvers
of an open source CFD code called OpenFOAM has been coupled with elastic
composite wing, represented by the free vibration modes computed by DSM.

The first part of this study is devoted to investigating the free vibration
characteristics of two types of aircraft, namely sailplane type and transport
airliner type. Two models of each type have been analysed and contrasted,
which revealed the significance of the natural modes of aircraft wings and
how these modes inherently capture the essential characteristics of the system.
Then to validate the CFD code, two pitching and self-sustained two degrees
of freedom airfoils under different flow condition have been modelled. The
results have been compared against experimental measurements and numerical
data from the literature which showed good agreement for the predicted force
coefficients. Finally, the model has been extended to study a complete aircraft
wing. Both metallic and composite Goland wings have been investigated under
a wide range of flow conditions. The composite wing has been investigated
using different material coupling values to show their effect on its aeroelastic
behaviour. The results showed the significant influence of the material coupling
on the aeroelastic characteristics of composite wings.
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Chapter 1

Introduction

1.1 Motivation

Composites are made of wide range of materials which have different proper-

ties. For laminated composites, these are one main continuous phase (matrix)

and one discrete phase (filments, fibers) [6] . Composites in general can be

traced back to prehistoric days, and they have been available in nature as well,

for example wood. The first man-made composites appear to be recorded on

the walls of the ancient Egyptian’s templates as a corner stone of the building

procedure. A mixture of straw and mud is still used in some parts of the world

as buliding material which is a clear example of composites. Even the con-

cept of present day laminated composites were known to the ancient Egyptians

particularly in the form of plywood [7, 8].

The usage of composites paved the way to human controlled materials.

These materials are distinguished from the metal alloys in many aspects. The

main difference is in anisotropy which means that the material properties for
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composites change with direction, specifically the strength and the stiffness.

The advent of composites opened new horizons in many engineering applica-

tions. Aerospace has been one of the primary areas of applications to take

advantage of composite materials.

The main benefits of using composites particularly in the aviation industry

are the high specific strength and directional properties of composites. The

low density of composites is translated directly into weight reduction which is

a major consideration in aircraft design. In essence, the first step towards a

conceptual design after specifying the mission profile is to estimate the initial

weight [9]. The reduced weight means increased range, less fuel consumption

and higher pay load. Additionally, composites can improve the aerodynamic

performance due to their smooth finish over the wing and the airframe.

Despite the superior flexibility in optimizing the characteristics of compos-

ite materials compared to metallic alloys of Aluminium (which are widely used

in aerospace applications) the usage of composites did not grow as much as

anticipated [10]. Some of the reasons behind this were the cost of production,

adapting new manufacturing techniques and obtaining the required certifica-

tions for the new component. Also, the low strength through the thickness of

laminates and the low resistance to mechanical failure are some of the con-

tributing factors which prevented the expansion in the usage of composites.

An important fact should be mentioned and stressed upon is that the usage of

composite is nevertheless increasing and the above disadvantages of composites

are only the reasons behind not rapid expansion of usage and not meeting the

expectations as anticipated. The Boeing 787 development of dreamliner and

2



Airbus A350 are very good examples, which overcame the problem showing

extensive usage of composites.

Many of the concerns of using composite materials have been tackled in

the past decade, which made advanced composite material a very important

candidate in many of the applications today. It is expected that the trend of

growth in using composites will continue not only because of the advantages

of composites or because of overcoming many of the disadvantages but also

because of the decrease in the cost of production. It is anticipated that the

concerns about the climate change and the expected new rules will encourage

the usage of composites further more in future. Today, a glimpse of this future

can be seen from the historical development of the solar impulse aircraft [11,

12]. Composite materials are the main materials used in this type of aircraft

and there is no doubt that any metallic alloy aircraft cannot compete in this

category. The attachment of the solar panels over the aircraft wing could

indeed be considered as a composite structure.

In addition to the engineering and manufacturing challenges faced by the

usage of composites, theoretical questions and challenges also arose very con-

siderably. The first and the foremost fundamental question was how to predict

the properties of such new materials theoretically and experimentally. More-

over, an important question was how to optimise the material properties for

specific application by taking advantage of the anisotropic nature of fibrous

composites. Obviously, this added new dimensions and complexity to the de-

sign process. One of the main areas of interest in the aerospace applications

is the aeroelastic behaviour of composite structures.
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It was not surprising that aeroelasticity captured the main attention be-

cause of its essential role in aircraft design. Inaccurate predication of the

aeroelastic characteristics of aircraft during the design process can lead to

catastrophic incidents. One of the most dangerous aeroelastic instabilities is

of course, flutter. It is a self-excited oscillation of elastic body in fluid stream.

Flutter speed defines the speed beyond which the aircraft becomes unstable

[13–15]. It means that if the aircraft flies at this speed it will have steady har-

monic oscillation of constant amplitude. This point is the most critical point

which gives flutter speed because if for any reason, the free stream velocity ex-

ceeds this speed, the system will have divergent oscillation and will eventually

vibrate in a violent manner which could lead to the destruction of the aircraft.

The complexity of flutter analysis arises from the fact that flutter involves

very strong coupling between fluid mechanics and structural dynamics. There-

fore, an accurate description of the flow field as well as structural dynamic

behaviour together with a mechanism of coupling them is essential for flutter

analysis. Avoiding flutter is a mandatory requirement in any aircraft design

process. Although flutter analysis is a relatively old problem in aviation, but

it is still challenging, particularly with the advent of composite materials and

the requirements of high speeds and light airframes. The structural dynam-

ics is an essential part of this problem which could be tackled using different

theories and methods. In this work, the dynamic stiffness method (DSM) for

bending-torsion coupled beam elements is used to compute the free vibration

natural modes of high aspect ratio aircraft wings.

The dynamic stiffness method is an analytical method which solves in an

4



exact sense the governing equations of a structural system. In some respects,

it is comparable with the finite element method (FEM). However, the FEM

is an approximate numerical method in which the accuracy of the solution

depends on the number of the elements used in the analysis and the assumed

shape function. On the other hand, the DSM is independent of the number of

elements used in the analysis. For instance in the case of a uniform aircraft

wing, the free vibration problem can be solved by using only one element

without compromising the accuracy [16].

The main challenge in this thesis is to solve the aeroelastic problem in the

transonic flow region. The transonic flutter limit appears to be low in any

flight range. Therefore, for an aircraft the most critical flutter point generally

arises when the flow is transonic. The phenomenon is called transonic dip

which has been featured in the literature many times [17–19]. The transonic

flow field is a transition between subsonic flow and supersonic flow exhibiting

shock waves and highly non-linear behaviour.

The transonic flow being highly non-linear poses a formidable challenge over

traditional linear theories [19] which fail to predict the aerodynamic properties

accurately. Therefore, solving the non-linear governing equations of fluid flow

using numerical techniques has become essential [15, 20–22], particularly when

solving aeroelastic problems. Despite the computational cost of using compu-

tational fluid dynamics (CFD), it is necessarily being used in the aeroelasticity

field for greater accuracy and better flutter prediction. This has given birth to

a relatively new field in aeroelasticity called computational aeroelasticity [23,

24] which couples CFD with CSD (computational structural dynamics).

5



1.2 Problem Statement

This research is aimed to predict accurately the transonic flutter by using the

finite volume method when solving the flow field non-linear governing equations

in a closely coupled way together with the dynamic stiffness method (DSM)

as the structural model. Then an integrated methodology is used to predict

the transonic flutter of composite wings. In order to achieve this objective the

following systematic research steps are followed:

• To develop and make the best use of OpenFOAM (Open source CFD

code) as the main CFD solver.

• To model two-dimensional unsteady flow over forced pitching and heav-

ing aerofoils and validate the current solvers and to implement additional

tools in OpenFOAM when required.

• To implement new boundary conditions in OpenFOAM in order to com-

pute the aerofoil displacement based on free vibration natural modes.

• To extend the work to three-dimensional aircraft wings and validate the

results for metallic wings.

• To couple the CFD solver with the free vibration natural modes from

the dynamic stiffness method for composite wings.

• To carry out parametric study by changing the significant parameters of

composite wings.

6



1.3 Thesis Map

This introduction chapter is followed by Chapter 2 which is basically a litera-

ture review chapter on transonic flutter analysis. Then Chapter 3 describes the

mathematical formulation and modelling techniques used in this study. The

next three chapters present the results and discussion for different cases. In

particular Chapter 4 highlight the free vibration characteristics of sailplanes

and transport airliners wings. In Chapter 5, the aerodynamic model is consid-

ered in detail and extensively validated. Moreover, the fluid-structure interac-

tion is incorporated in this chapter to model the elastic behaviour of the struc-

ture. Chapter 5 also focuses on typical wing sections (aerofoils). By contrast

Chapter 6 focuses on a complete cantilever wings. In particular, Goland wing

which is extensively reported in the literature is considered. Two versions are

investigated, namely metallic and composite versions. Finally, general conclu-

sions and future recommendations are discussed in Chapter 7. The appendices

give brief description of the newly developed code for this work.

7



Chapter 2

Literature Review

2.1 Computational Aeroelasticity

In 1998, Guruswamy [25] investigated the influence of high performance paral-

lel computing on aeroelasticity field. He showed how the multidisciplinary field

of computational aeroelasticity emerged and enhanced due to the availability

of this new computational power, which allowed tackling the coupled problem

using high fidelity models. He predicted that CFD/CSD models will play a

larger rule in the future which has become a reality today.

By contrast, Bennett et al. [20] argued that computational aeroelasticity

overall was too expensive to solve stability problems such as flutter. The au-

thors argued that, it would be computationally more efficient to use such high

fidelity models in cases where linear theories were well known for their limita-

tion. Also, they stated that computational aeroelasticity would be impractical

without innovative solution techniques and implementation methods.

Without doubt, the multi-physics computational problems in general are

8



more affordable today than before, but some problems such as flutter are

still computationally expensive in this respect. Specially, in the early stages

of design it is nevertheless needed for certain cases such as establishing the

transonic flutter. Therefore, it is expected that both high fidelity and low

fidelity models will stay as an efficient comparable solution. It is up to the

design engineer to select the tools which are most efficient and suitable for

the job in hand. In this work, the dynamic stiffness method (DSM) is used

to compute the free vibration modes which are subsequently used as input for

the CFD Euler model. The structure model using DSM is exact but because

only the mode shapes represented a limited number of degrees of freedom,

it is considered to be a low fidelity model. The aerodynamic model on the

other hand is reduced from Navier-Stokes to Euler system (inviscid flow) as

described in Chapter 3 which is still considered to be a high fidelity model.

2.2 Aerodynamics

The study of the aeroelastic behaviour poses many aerodynamical challenges.

The first major problem is to deal with the flow unsteadiness which is essen-

tial to predict an aeroelastic phenomenon like flutter. Therefore, unsteady

aerodynamics has been a major area of interest in the aeroelastic commu-

nity. An important breakthrough which made aeroelastic analysis possible

was Theodorsen’s theory for oscillatory aerofoils [26]. Theodorsen’s theory is

valid only for unsteady incompressible flow which can be considered to be the

first practical solution for this type of flow, as descried by Blair [27].

9



In addition to the flow unsteadiness that are prevalent in many aeroelastic

studies, another major challenge faced by researchers is the problem arising

from flow non-linearity. As mentioned in Chapter 1, when the aircraft speed

becomes faster and the normal cruise speed becomes near the sonic-speed (tran-

sonic speed), it is essential to predict the non-linear flow accurately. Bendiksen

discussed the importance of predicting this non-linear behaviour and the un-

derling reasons for this in his review article [19].

Transonic flow is essentially a mixture of subsonic and supersonic flow with

some complicated interactions. The flow usually get accelerated around the

wing which converts the free stream subsonic flow into supersonic flow. This

supersonic flow creates normal shock waves which sharply reduces the flow

speed to subsonic. This gives rise to some kind of supersonic pockets over the

wing and because the wing is an elastic structure, its deformation oscillates the

flow around it. As a consequence this leads to oscillating shock waves and oscil-

lating flow in general. Therefore„ this combination of oscillating flow regions

are indeed spatially and temporally non-linear. Moreover, the discontinuity

due to the presence of shock waves increases the flow non-linearity.

Another source of non-linearity is due to the wing shape which leads to

complex flow behaviour such as wakes, turbulence and flow separation. Thus,

in order to accurately predict the transonic flutter, non-linear unsteady aero-

dynamic theories are essential. These theories should be able to predict the

shock waves and their location. Also, it should be able to predict the different

flow regions as a part of the solution.

For the above mentioned reasons computational fluid dynamics (CFD) be-
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came a major player in the area of computational aeroelasticity over the last

three decades. This trend is expected to grow in the future and CFD will be

the main aerodynamic tool specially when dealing with transonic flow [28].

2.2.1 Linear Potential Flow

Under the assumptions that the flow is incompressible, inviscid (no viscosity)

and irrotational, flow velocity field can be described by means of scalar field

velocity potential [29]. Incompressibility assumes that the change in the flow

density ρ is small or more precisely relatively small. Therefore, the density

changes can be ignored which can be represented mathematically as divergence

free velocity field.

It is intuitive to understand the implications of the inviscid assumption

which means ignoring the viscous forces entirely. This means there is no shear

between the flow layers and indeed there is no appreciable turbulence. How-

ever, the consequences of the irrotational assumption may not be so clear at

first sight. Imagine a very small flow element moving along a certain path. If

this element is translating without rotation and maintains its original shape,

this flow is called irrotational flow.

Under the above assumption that the velocity field can be represented by

the gradient of a scalar field U = ∇φ, where (φ) is the velocity potential is

represented by a second order linear partial differential equation (Laplace’s

equation). This linear behaviour indicates that the sum of any number of

particular solutions φ is also a solution [30].
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2.2.2 Transonic Small Disturbance Theory

The main assumptions for transonic small disturbance theory as pointed out

by Cole [31] are that the flow is inviscid and the fluid is a perfect gas. Indeed

such assumptions are valid for certain transonic flow situations. However, in

many ways these restrictions are the same as those of Euler equations. The

difference is that the theory assumes a small disturbance in flow field compared

to a uniform state which means it is valid only for thin bodies. Although the

theory originally considered steady flow only and thus problems such as flutter

were not considered, nevertheless, it introduced a key feature, namely non-

linearity to many engineering tools [19, 31–33]. The theory is able to predict

mixed regions of subsonic and supersonic regions.

Later, the transonic small disturbance has been extended to include the

unsteady flow and one of the early formulation was introduced by Ballhaus et

al. [34]. The authors validated the theory for flow over swept wing and com-

pared the results for subcritical and supercritical Mach numbers. The results

generally showed good agreement with experiment and results using panel tech-

niques. However, the investigation showed a larger difference in the subcritical

region, which could be attributed to the treatment of the compressibility and

because of not considering the viscous effect.

The viscosity was included afterwards by other researchers [35, 36]. This

method was implemented in one of NASA well-known codes CAP-TSD [37] for

inviscid aeroelastic applications. Another version of this code (CAP-TSDV)

for viscous flow was released afterwards. In this version the flow is solved

for two regions, one is viscous (boundary layer) and the other one is inviscid
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[38–40]. However, this method did not predict the very low supersonic Mach

number accurately.

2.2.3 Euler Equations

In many cases where there is no flow separation and the viscous effect does not

dominate the flow field, Euler model is very effective and can be an accurate

model. For high speed transonic and supersonic flow (high Reynolds number

cases), the inertia force is much larger than the viscous force and dominates

the flow physics. Ignoring the viscosity reduces the momentum equation to

Euler equation which could be solved with continuity and energy conservation

equations to predict the flow field. Additionally, the equation of state is solved

to relate the pressure to density and temperature.

Hence, the only assumption here is that the flow is frictionless. As a con-

sequence, it makes Euler model a very good candidate for aeroelastic analysis.

But, it is more expensive than the small-disturbance model which somehow

made the Euler code computationally expensive for flutter analysis in early

seventies. Magnus and Yoshihara [41] introduced the steady model for flow

over aerofoils using Euler code. They showed some promising result despite

some discrepancies around the shock waves. Later the same authors developed

an unsteady finite difference solver for flow over aerofoils [42]. A decade later,

Jameson et al. [43] modelled inviscid transonic flow over an entire aircraft. The

authors showed promising preliminary results, using a novel meshing technique

and multi-grid acceleration method.

In the late 1980’s NASA developed ENS3DAE code for Euler/Navier-Stokes
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for aeroelastic applications [44]. This code subsequently evolved and exten-

sively validated. In this respect, Smith et al. [45] were the earliest investigators

to do so. In their work they validated the code for both steady and unsteady

flow over NACA 64A-006 aerofoil and F-5 wing. Schuster et al. [46] reported

two case studies, namely Goland wing (heavy version [47]) and BACT wing

[48]. The main purpose was to validate the new deforming mesh capabilities

in ENS3DAE. Lewis and Smith extended the model to predict the shell flutter

[49], which revealed interesting results.

2.2.4 Navier-Stokes Equations

Like Euler equations model, Navier-Stokes equations model solves a system

of nonlinear equations. The main difference is that the viscous effect is not

ignored in Navier-Stokes equations which has important implications leading

to computationally expensive model for aeroelastic problems. The first point

which must be addressed is the variation in dynamic viscosity due to the

aerodynamic heating, which means extra formula is needed to calculate the

viscosity such as Sutherland’s law [50].

However, the expensive part is due to solving the boundary layer and the

turbulence. In order to solve the boundary layer a very small grid cells near

the wing surface are required. This means that more computational points and

smaller time step are required to maintain numerically stable solution. More-

over, because this is generally not possible (computationally, Ncells αRe
9/4) to

solve Navier-Stokes equations directly for high Reynolds number flows (DNS)

turbulence models are essentially needed. In principle, the system can be
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solved for averaged parameters which results a closure problem for stress ten-

sor. There are many strategies to solve this problem in CFD which require

solving extra governing equations for turbulence and put more constraints on

the meshing and time step [51–53].

Although the computational cost is high, this model is still used for flutter

predication but not as widely as the previous models. It is part of ENS3DAE

code [45] and CFL3DAE which is an extension for NASA CFL3D CFD code

[54, 55]. Lee-Rausch and Baitina [54] compared Euler and Navier-Stokes mod-

els in flow predications for ARGAD Wing 445.6 swept wing. The results were

within 2% of the experimental measurements, but both models predicted al-

most the exact flutter boundary over wide a range of Mach numbers. It is

worth mentioning here that for specific cases and conditions, the viscous effect

may have a significant impact as reviewed by Bennett and Edwards [20].

Another interesting study by Bartels and Schuster [56] compared the two

codes, ENS3DAE and CFL3DAE. Despite the many differences between the

codes in implementation of dynamic mesh treatment and turbulence models,

they showed very good agreement in predicting flutter boundary of BACT

wing. Huttsell et al. [57] evaluated and highlighted the main differences be-

tween aeroelasticity codes. Higher fidelity turbulence models such as large

eddy simulations (LES) are still unaffordable for aeroelastic applications in

general [19, 58].
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2.3 Dynamics Stiffness Method

As described very briefly in Chapter 1, the dynamic stiffness method (DSM)

is an eigenvalue solving technique to compute the free vibration frequencies

and mode shapes of structures. In sharp contrast to the finite element method

(FEM), DSM is an exact method. DSM was originally developed by Koloušek

in the 1940s [59, 60] when he introduced the concept of frequency dependent

dynamic stiffness matrix. The main advantages of the DSM compared to

FEM can be examined by understanding the fundamental key concepts of

both theories.

The core concept in FEM is to represent the system by two matrices,

namely the mass and stiffness matrices. These matrices represent the nodal

(point) equivalent mass and stiffness properties which relate the system dis-

placement and forces. The mass and stiffness matrices can then be reformu-

lated leading to linear eigen value problem from which the natural modes of

the system can be calculated. The method inherently approximates the re-

lation between nodal displacement and element deformation by using the so

called shape function [16]. This function is usually assumed as polynomial

functions in terms of some arbitrary constants. Although the method is effi-

cient, it implicitly includes a certain degree of approximation. Furthermore,

the total number of modes which can be computed are limited by the number

of elements, and thus in order to obtain a higher number of frequencies, more

elements are required. Clearly this is translated into higher computational cost

and less accuracy.
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In DSM there is no assumed shape function as such because the deformed

shape is obtained directly from the governing equations of motion under free

vibration conditions. Therefore, the resulting dynamic stiffness matrix is fre-

quency dependent. In order to compute the free vibration modes, a non-linear

eigen value problem must be solved in DSM. The main solving techniqe for this

problem is the Wittrick-Williams algorithm [61, 62]. The Wittrick-Williams

algorithm is capable of obtaining all natural frequencies up to any desired ac-

curacy, independent of the number of elements (size of the matrix) used in

the analysis. Although solving the non-linear eigen value problem in general

is more expensive than solving the linear problem, the DSM is more efficient

because less element can be used to obtain the same number of frequencies.

Even only one element can be used to obtain any number of frequencies ac-

curately. It is worth mentioning here that there are no approximations or

assumptions made to drive the dynamic stiffness matrix from the differential

governing equations of motion, which makes the method exact in this sense.

An in-depth review about DSM in general and its historical development can

be found in [16].

2.3.1 Beam Element Representation

Beam is one of the fundamental elements in many engineering applications.

One of the earliest applications of DSM using beams was demonstrated by

Williams andWittrick [63]. This work considered only pure bending of isotropic

beams (Bernoulli-Euler). Shortly after, more accurate method was developed

for axially loaded isotropic Timoshenko beams [64, 65]. At this point the
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theory gained a lot of attention and implemented in many software packages

[66, 67]. However, one software in particular has most up to date feature at

the time is BUNVIS-RG [68] which used exact matrices for Bernoulli-Euler

isotropic uniform and tapered beams [69, 70].

In the recent phase of its development the method made its way to aeroelas-

ticity research with the extensive development of the DSM for bending-torsion

coupled beams [71, 72]. By the late 1980’s and early 1990’s, the method was

generalised and implemented in a new software developed by Banerjee [73,

74]. This step was significant because in many engineering applications, there

is always a shift between the mass axis and the elastic axis such as that of

an aircraft wing. Banerjee et al. continued developing the method to include

twisted Timoshenko beam [75] , spinning beams [76]. Later, Pagani et al. [77]

used Carrera Unified Formulation to incorporate the cross-sectional deforma-

tion of the beam.

As composite materials entered many engineering applications specially

aerospace industry, the need for DSM formulation for composite beams became

clear. In 1995, Banerjee and Williams [78] introduced DSM formulation using

symbolic computing . These new explicit algebraic expressions showed signifi-

cant reduction in computational time compared to matrix inversion methods.

This work was based on bending-torsion beam theory and incorporated extra

terms to include the materiel coupling in composite materials. As for isotropic

materials, DSM has been developed for different type of beams such as axially

loaded Timoshenko beams [79] and section shear deformation theory [80]. A

very import concluding step was achieved by combining both material coupling
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and geometrical coupling to compute the free vibration modes of aircraft wings

which shows the significance of DSM in real engineering applications [81].

2.4 Coupling Fluid and Structure Models

Due to the variety of fluid and structure models, a diverse range of coupling

techniques were developed in the past [22]. Each code has its coupling strategy

based on the implemented models [82, 83]. Domain decomposition is normally

used to allow solving the structure and fluid with different suitable solvers as

opposed to solving both as one system. Both domains could be solved indepen-

dently (sequentially) by obtaining the aerodynamic forces first then applied to

the structure. In this method, there is no feedback from the structure solver

to the fluid solver. Guruswamy and Yang [84] used this approach to study the

pitch-heave response of thin NACA 64A006 aerofoil in transonic flow. This ap-

proach is limited to the cases where the structure system is much stiffer than

the flow system. Therefore, closely coupled strategies are the norm nowadays

because of their numeric efficiency and accuracy [22].

In coupled models, the aerodynamic forces are calculated first and within

the same time step they are transferred to the structure solver. Then the

displacements are computed and transferred back to the fluid solver. In this

approach an interface mesh is used to interpolate the forces and displacements

between the two solvers. The interfacing method depends mainly on the used

models on both sides. For example, in case of modal analysis the structure is

represented by a grid of nodes, for beam just one dimensional grid. The forces
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are integrated over the wing surface and interpolated into the modal grid [82].

Once the displacements of the modal grid are computed, the wing is deformed

based on that. This approach is used in this work, see Chapter 3.
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Chapter 3

Theoretical Background and

Problem Formulation

This chapter describes the problem in mathematical terms. The main aspects

of modelling the fluid-structure interaction problem are covered starting from

the aerodynamic and structural considerations with particular emphasis on the

coupling between them. Furthermore, the modelling challenges and their pos-

sible solutions are discussed and the proposed methodologies in this research

are highlighted.

3.1 Aerodynamic Model

3.1.1 Governing Equations

The governing equations of the flow used in this work are those of the complete

Euler equations [85–87]. The only assumption at this level in Euler equations

compared to Navier-Stokes equations is the assumption that the viscous forces
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are considered negligible. This assumption is considered legitimate and appli-

cable to many aerospace problems where the flow velocity is relatively high

and the influence of the boundary layer is relatively small [29]. If ρ, U, p

and E are density, velocity, pressure and total energy respectively, the Euler

equations in vector notation have the following used form:

• Conservation of mass:

∂ρ

∂t
+∇ · [Uρ] = 0 (3.1)

• Conservation of momentum:

∂(ρU)

∂t
+∇ · [U(ρU)] +∇p = 0 (3.2)

• Conservation of total energy:

∂(ρE)

∂t
+∇ · [U(ρE)] +∇ · [Up] = 0 (3.3)

where ∇ denotes the nabla vector operator given by , ∇ ≡ ∂i ≡ ∂
∂xi
≡

( ∂
∂x1
, ∂
∂x2
, ∂
∂x3

). Thus for any vector a, ∇ · a is the divergence defined by

∇ · a ≡ ∂a1
∂x1

+ ∂a2
∂x2

+ ∂a3
∂x3

where a1, a2 and a3 are the components of a in

x1, x2 and x3 direction respectively. Also for any scalar s, the gradient is

∇s ≡ ( ∂s
∂x1
, ∂s
∂x2
, ∂s
∂x3

). In equation (3.3), the total energy E = e + |u|2
2

with e

the specific internal energy.
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3.1.2 The Fluid Solver

The main purpose of this work is to predict the transonic flutter. In this

regime the flow is highly non-linear and unsteady. Moving and oscillating

shock waves are the dominant features of transonic flow field. In order to

predict such complex flow field with high fidelity model, a special technique

needs to be applied to solve the governing equations outlined in section 3.1.1.

In general there are two main approaches to solve the above equations (3.1)-

(3.3) using CFD. These are essentially either pressure based solver or density

based solver. The main difference between them is that the latter solves the

continuity equation as a function of density, directly coupled with the rest of

governing equations. This is in contrast to the pressure based solver which

solves a pressure correction equation which is derived from the momentum

and continuity equations [86]. This pressure correction works as a constraint

on the velocity field to satisfy the continuity equation.

Both approaches are available in OpenFOAM for high speed compressible

unsteady flow. In OpenFOAM, the pressure based solver is called sonicFoam

and the density based solver called is rhoCenteralFoam. The advantages and

disadvantages of each method are well known amongst the CFD community

[85, 86]. The main advantage for pressure based solver is that it requires

less computational resources than the density based solver due to the segre-

gation between the governing equations. The obvious advantage of density

based solver is the coupling between the governing equations which leads to

better non-oscillating solution, specially when discontinuities are involved due

to shock waves. In this work both solvers have been used and they did not
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show major differences with respect to flutter predictions. The implementa-

tion of rhoCentralFoam reveals some of the advantages of Riemann solver

[87]. A full comparison between the implementation of the two methods in

OpenFOAM showed better results of rhoCentralFoam solver over sonicFoam

in different high speed compressible flow cases [88]. The density based solver,

rhoCentralFoam uses central difference schemes based on Kurganov and Tad-

mor formulation introduced in 2000 [89]. It was implemented in OpenFOAM

by Greenshields et al. in 2009 [87]. It is a semi-discrete, non-staggered central

scheme. The sonicFoam solver is based on PIMPLE algorithm which is fully

described in [88].

3.1.3 Dynamic Mesh Modelling

Solving a particular fluid-structure interaction problem involves a moving solid

object requiring some special strategy to include the movement. In this respect,

finite volume method is generally used for solving fluid dynamics governing

equations at fixed cells in space (control volumes) around the geometry. When

the solid objects start to move there will be a relative velocity between the

boundaries and the mesh cells. There are two usual approaches to solve this

problem. The first approach relies on calculating the movement of the mesh

according to its boundary displacement but maintaining the same number of

grid cells. The second approach is to calculate the new position of each grid

cell with the possibility of removing or adding new cells as required. These

two techniques already implemented in OpenFOAM are particularly useful [90,

91].
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In this study, the first approach mentioned above is used which basically

solves Laplace equation for the grid displacement at every time step [90–92].

A diffusion coefficient for the mesh movement is essentially the only param-

eter important that should be specified by the user. Before describing the

governing equation of moving grid, it is useful to examine the main differences

between static and dynamic mesh. Basically it is the relative speed between

the boundary and the mesh which has a direct relation with the flux through

each finite volume cell. Ignoring this relative speed could lead to numerical

error in the solution. Preventing this numerical problem requires applying the

space conservation law (SCL) which states [85, 90]

d

dt

∫
V

dV −
∮
S

n · vsdS = 0 (3.4)

where V is an arbitrary moving volume, n is the unit vector normal to the

surface and vs is the surface speed. The above condition applied in OpenFOAM

solvers by a function called makeRelative. In OpenFOAM the name of the

solvers which are capable of handling dynamic meshes includes "DyM". For

example the variants of rhoCentralFoam and sonicFoam solvers which are used

in this study for dynamic mesh are rhoCentralDyMFoam and sonicDyMFoam

respectively. Now attention is turned to the Laplace displacement mesh motion

solver in OpenFOAM, which solves for independent displacement vector d

defined by

r(t+ ∆t) = r(t) + d (3.5)

where r is the point position vector. Thus, Laplace equation for mesh motions
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with k as diffusion coefficient is

∇ · (k∇d) = 0 (3.6)

Equations (3.4) and (3.6) illustrate the main difference between static mesh

solvers and dynamic mesh solvers in OpenFOAM.

3.1.4 Wing Boundary Condition

A special boundary condition for moving walls velocity associated with dy-

namic mesh solver is required to satisfy space conservation law. For viscous

flow, such boundary condition is called movingWallVelocity which makes the

normal flux to the wall equal to zero. A variant of this boundary condition was

developed for this study which ensures that the tangential velocity on the wall

is equal to the flow tangential velocity at the contact point. Lewis and Smith

[49] used a very similar boundary condition for flutter prediction using the

ENS3DAE solver [45]. In other words it is a slip wall boundary condition for

moving walls because the flow considered inviscid as described in section 3.1.1.

This boundary condition has been adapted and implemented in OpenFOAM

for this work.

3.1.5 Non-reflecting Outlet Boundary Condition

The compressible high speed flow is dominated by pressure wave which prop-

agate with the sound in the flow field. These waves are responsible of trans-

forming the information between the fluid particles, thus when the flow speed
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reaches the sonic speed, shock waves start to appear [29]. Therefore, a special

outlet boundary condition is required to eliminate any pressure wave reflec-

tion. This boundary condition allows the wave to go out of the computational

domain without reflecting back inside the domain.

In this investigation a boundary condition called waveTransmissive has

been used which serve this purpose. It could be classified as non-reflective

advective boundary condition which is applied locally according to Givoli’s

definition [93]. This boundary condition is based on solving equation (3.7) on

the boundary field Φ.

D(wΦ)

Dt
= 0 (3.7)

In equation (3.7), D/Dt is the total derivative and w is the total wave

speed at the boundary which is calculated as,

w =
φ

Sf
+

√
γ

β
(3.8)

where φ is the face flux, Sf is the face area of the boundary, γ is the specific

heats ratio which equals to 1.4 for ideal gas and β is the flow compressibility

at the boundary. The first term in equation (3.8) represents the flow normal

velocity to the boundary and the second term is basically the local speed of

sound. Using this boundary conditions corrects the pressure value at the outlet

boundary to ensure no wave reflection.
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3.2 Structure Model

3.2.1 Typical Wing Section

ea
c.g

kh

kα

h

α

U∞

Figure 3.1: Typical wing section

The typical wing section using two-dimensional model [13, 15, 94] is well es-

tablished for studying two degrees of freedom flutter. This model considers

the plunging (h) and pitching (α) motions about the elastic axis of the wing.

The governing differential equations of undamped motion are [95]:

mḧ+ Sαα̈ +Khh = −L (3.9)

Sαḧ+ Iαα̈ +Kαα = Mea (3.10)

wherem, Iα and Sα are aerofoil mass per unit length, section moment of inertia

about the elastic axis per unit length and static mass imbalance respectively.

In equations (3.9) and (3.10), Kh and Kα are bending and torsional spring

stiffness whereas L andMea are the lift force (positive up) and pitching moment

about the elastic axis (positive nose up). The plunging displacement h is

positive down and the angle of attack α is positive nose up and is in radians.

Non-dimensionalizing the linear displacement by the aerofoil semichord (b) in
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equations (3.9)-(3.10) and the time by the uncoupled natural frequency of the

torsional spring (ωα) so that the dimensionless time is τ = ωαt. The governing

equations (3.9) and (3.10) can now be rewritten in the following matrix form

[M ]{q̈}+ [K]{q} = {F} (3.11)

where

[M ] =

 1 xα

xα r2α

 {F} =
U2
∞

πµω2
αb

2


−Cl

Cm


[K] =

(ωh
ωα

)2 0

0 r2α

 {q} =


h
b

α


In equation (3.11), [M ] and [K] are the mass and stiffness matrices, and

{F} and {q} are the force and displacement vectors. The non-dimensional

aerofoil mass ratio is µ = m
πρb2

with xα and rα being the static unbalance

and the radius of gyration respectively. The uncoupled natural frequencies in

plunging and pitching motion are ωh and ωα, respectively. Cl and Cm represent

the lift and pitching moment coefficients which have the same sign convention

as the aerodynamic forces and moment L and Mea. The forces coefficients are

defined as

Cl =
L

1
2
ρU2
∞

(3.12)

CM =
Mea

1
2
ρU2
∞c

(3.13)
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3.2.2 Beam Element Idealisation

Figure 3.2: The coordinate system and notation for a bending–torsion coupled beam
[81]

The wing is idealised as an assembly of bending-torsion coupled beam ele-

ments which are governed by the following differential equations in free vibra-

tion, see Banerjee [2, 73, 74, 81]

EIh′′′′ +mḧ−mxαΨ̈ +KΨ′′′ = 0 (3.14)

GJΨ′′ +mxαḧ− IαΨ̈ +Kh′′′ = 0 (3.15)

where h and Ψ are the transverse displacement (heave) and torsional rotation

(pitch) respectively, as shown in Figure 3.2; EI, GJ and K are the bending,

torsional and bending-torsion coupling rigidities respectively. m is mass per

unit length; Iα represents the mass moment of inertia per unit length and xα

denotes the distance between the mass and elastic axes of the elements.

Note that when a non-uniform aircraft wing is idealised as a collection of

bending-torsion coupled beam elements, every element will have different mass

(m), inertia (Iα), and stiffness properties (EI,GJ,K). The distance between
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mass axis and elastic axis (xα) can also vary from element to element. In

equations (3.14) and (3.15), xα essentially represents the geometrical coupling

arising from the geometry of the cross-section. On the other hand,K represents

the material coupling which occurs due to the ply orientation of the composite

laminate. For isotropic material, clearly K is zero which reduces the governing

differential equation to

EIh′′′′ +mḧ−mxαΨ̈ = 0 (3.16)

GJΨ′′ +mxαḧ− IαΨ̈ = 0 (3.17)

3.3 Modal Analysis

The main concept of the modal analysis is to represent the system displace-

ments as a linear combination of the free vibration mode shapes, particularly

using the first few modes which are the most important through the use of

generalized coordinates. It is instructive to look at the general form of the

equations of motion which could be written in the matrix form as follows

[M ]{q̈}+ [K]{q} = {F} (3.18)

In equation (3.18), [M ] and [K] are the mass and stiffness matrices, and {F}

and {q} are the force and displacement vectors. The main objective now is

to solve equation (3.18) which represents the wing motion in two degrees of

freedom namely the heave and pitch. In order to solve the equations, the
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normal mode method is used.

In general, if a combination of the first few number of modes in free vibra-

tion say N is used, then according to modal approach , i.e. the normal mode

method, the displacement vector can be represented by

{q} = [φ]{η} (3.19)

where [φ] is the modal matrix in which each column is an eigenvector of the

free vibration analysis resulting from eigen-problem and {η} is the generalized

coordinates. Premultiplying equation (3.18) by [φ]T and equation using (3.19)

and applying the eigenvectors orthogonality conditions lead to a set of second

order ordinary differential equations in terms of generalized coordinates. Each

equation is represented by its mode, say the ith mode [95–97] to give

η̈i + ω2
i ηi = Qi; i = 1, 2, . . . , N (3.20)

where

Qi = {φ}Ti {F}

ω2
i = {φ}Ti [K]{φ}i

1 = {φ}Ti [M ]{φ}i

The modes are normalized in a way such that the generalized mass matrix

became an identity or unit matrix. In this work, the structural system is

considered as an undamped system.
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It is clear from the above equations that to calculate the system displace-

ment vector from equation (3.19), modal matrix [φ] and the generalized coor-

dinates vector {η} should be obtained first. Determining the first N modes

to formulate the modal matrix [φ] can be accomplished by the dynamic stiff-

ness method as described in next Section 3.4 for beams or directly by solving

the eigen-value problem for the aerofoil case. Then to obtain the generalized

displacement vector {η}, equation (3.20) should be solved. It is a second or-

der ordinary differential equation (ODE) in time. Here, it can be solved for

example by using numerical integration in the time domain by Runge-Kutta

scheme. When seeking solution, equation (3.20) should be reduced to two first

order ordinary differential equations (ODE) say, in y1i and y2i by using the

transformation y1i = ηi and y2i = η̇i give

ẏ1i = y2i (3.21)

ẏ2i = Qi − ω2
i y1i (3.22)

The system of equations (3.21) and (3.22) can now be solved for each mode

i. It is an initial value problem and therefore, the initial conditions for y1i,

y2i, ẏ1i and ẏ2i needs to be specified from the initial values of the generalized

coordinates. The general initial conditions are:

h(0) = h0; α(0) = α0 (3.23)

ḣ(0) = ḣ0; α̇(0) = α̇0 (3.24)
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In this way,

{η0} = [φ]−1{q0} (3.25)

{η̇0} = [φ]−1{q̇0} (3.26)

3.4 DSM of Modal Analysis

The dynamic stiffness method, as mentioned before, is an analytical method to

solve the governing equations of a structural system in an exact sense. In this

section, a general approach to drive the dynamic stiffness matrix is outlined

following the work of Banerjee [98].

Rewriting equation (3.18) in symbolic form for free undamped vibration of

a structural system, one cam write

L(q) = 0 (3.27)

where L and q are the differential operator and the corresponding displacement

vector respectively. Equation (3.27) can be solved analytically by assuming

that the displacement is harmonically varying according to the expression

{q} = {qa}eiωt (3.28)

where qa is the displacement amplitude, ω is circular or angular frequency and

t is time. Substituting of equation (3.28) into (3.27) will eliminate the time
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dependent term to give

L1(qa, ω) = 0 (3.29)

where L1 is a differential operator. The general solution for equation (3.29)

can be sought in the form

{qa} = [A]{C} (3.30)

where {C} is a constant vector and [A] is a frequency dependent square matrix.

In order to get a relationship between the force and displacement, the boundary

conditions should be applied for both forces and displacements resulting from

equation (3.30). First the displacement boundary condition is applied to give

{δ} = [B]{C} (3.31)

In equation (3.31), {δ} represents the nodal displacements and [B] is a square

matrix obtained by substituting the displacement boundary conditions in [A]

of equation(3.30). Then applying the boundary conditions for forces lead to

{F} = [D]{C} (3.32)

where {F} is the force vector and [D] is a square matrix obtained from [A] of

equation(3.30). Then with the help of equations (3.31) and (3.32), the constant

vector {C} can be eliminated to give

{F} = [D][B]−1{δ} = [DS]{δ} (3.33)
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where [DS] is the frequency dependent dynamic stiffness matrix. It is a sym-

metric square matrix which is a functions of frequency and other structural

parameters. After formulating [DS] matrix, the problem leads to a non-linear

eigen-value problem to compute the natural frequencies and modes of the sys-

tem. The most accurate and efficient way to solve this problem is to use

the Wittrick-Williams algorithm [62], which is capable of converging upon the

natural frequencies of the system with certainty.

Figure 3.3: Nodal forces for a bending–torsion coupled beam [81]

For composite beams with the inclusion of both material and geometrical

coupling, the complete derivation and formulation of the dynamic stiffness

matrix can be found in [81] which is used in this work. Referring to Equation

(3.33) and Figure 3.3, the force vector {F} is formulated as,
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{F} = [S1 M1 T1 S2 M2 T2]
T (3.34)

where S, M and T are the shear, bending moment and torsion respectively at

node 1 and 2. [D] is 6× 6 matrix defined as,

[D] =

[D11] [D12]

[D21] [D22]

 (3.35)

with

[D11] =


−α2eαgαkbW3 αpαW3 −β2eβgβkbW3

−pαW2 αeαgαkbW2 pβW2

−qαW1/L αeαgαW1/L qβW1/L



[D12] =


−βpβW3 −γ2eγgγkbW3 −γ2pγW3

−βeβgβkbW2 pγW2 −γeγgγkbW2

βeβgβW1/L qγW1/L γeγgγW1/L



[D21] =


α(αeαgαkbChα − pαShα)W3 α(αeαgαkbShα − pαChα)W3 β(βeβgβkbCβ − pβSβ)W3

(pαChα − αeαgαkbShα)W2 (pαShα − αeαgαkbChα)W2 −(βeβgβkbSβ + pβCβ)W2

(qαChα − αeαgαShα)W1

L
(qαShα − αeαgαChα)W1

L
−(qβCβ + βeβgβSβ)W1

L



[D22] =


β(pβCβ + βeβgβkbSβ)W3 γ(γeγgγkbCγ − pγSγ)W3 γ(pγCγ + γeγgγkbSγ)W3

(βeβgβkbCβ − pβSβ−)W2 −(γeγgγkbSγ + pγCγ)W2 −(pγSγ − γeγgγkbCγ)W2

(βeβgβCβ − qβSβ)W1

L
−(qγCγ + γeγgγSγ)

W1

L
−(qγSγ − γeγgγCγ)W1

L



37



and

[B] =



1 0 1 0 1 0

0 α/L 0 β/L 0 γ/L

−eαgα/L eα/L eβgβ/L eβ/L eγgγ/L eγ/L

Chα Shα Cβ Sβ Cγ Sγ

Shαα/L Chαα/L −Sββ/L Cββ/L −Sγγ/L Cγγ/L

u∗α/L v∗α/L u∗β/L v∗β/L u∗γ/L v∗γ/L



(3.36)

Apart from inverting [B], calculating all the above matrices is computa-

tionally very efficient. There are many common terms between these matrices

which are functions of the material properties and geometric parameters of the

beam [81].

3.4.1 Mode Shapes

Solving the non-linear eigen-value problem in the frequency domain by using

the Wittrick-Williams algorithm to obtain the natural frequencies is essential

to compute the mode shapes of the system. These mode shapes are usually

obtained by assuming one of the degrees of freedom to be fixed and possi-

bly equal to unity, and then estimating the remaining degrees of freedom in

terms of the chosen one. However, this procedure sometimes imposes a great

challenge because the choice of arbitrary chosen displacement at a node is not

unique.

The modal matrix [φ] in section 3.3 has to be mass normalized to reduce

the system to the form given in equation (3.20). Otherwise, a constant coeffi-

38



cient will appear in each term of equation (3.20). Therefore, the mass matrix

[M ] is required in order to obtain the normalized mode shapes [φ] from the

unnormalized mode shape [ψ]. However, the DSM reduces the system to one

frequency dependent matrix [DS] instead of two matrices; namely mass ma-

trix [M ] and stiffness matrix [K] as in FEM. Thus, [M ] is not calculated by

default.

The solution for this problem is now to compute the mass matrix [M ]

numerically from the dynamic stiffness matrix [DS]. The dynamic stiffness

matrix is sought to be composed of both [K] and [M ] as proposed by Leung

[99],

[DS(ω)] = [K]− ω2[M ] (3.37)

Equation (3.37) is essentially the relation between the dynamic stiffness matrix

and the mass and stiffness matrices. By computing [DS(ω)] in equation (3.37)

for any two frequencies; ωi and ωj

[DS(ωi)] = [K]− ωi2[M ] (3.38)

[DS(ωj)] = [K]− ωj2[M ] (3.39)

Then the mass matrix could be obtained by subtracting equations (3.38) and

(3.38) as

[M ] =
1

ωj2 − ωi2
[DS(ωi)−DS(ωj)] (3.40)

For better accuracy ωi and ωj must be small numbers. Finally, the mass
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normalize modes are calculated as follows,

{ψi}T [M ]{ψi} = mi (3.41)

{φi} = {ψi}/
√
mi (3.42)

Another critical point worth mentioning here, is the coupling between

modes. In general, the sign of the mode shape has no significance, however

in the case of bending-torsion beam, it is important. The essential point here

is to keep the relative relation between the bending and torsion mode shapes

for each natural frequency. Furthermore, special care should be taken with

the sign convention of the system and to make sure that it matches the aero-

dynamic model. A new code (using Python programming language) has been

developed to compute these modes and it has been extensively validated. This

code has been implemented using Object-Oriented Programming paradigm

based on DSM, Appendix B.

3.5 Fluid Structure Coupling

As mentioned before, strongly coupled interaction is considered in this study.

Two levels of coupling are evident for which the first one is essentially time

coupling carried out by integrating the aerodynamic forces over the wing at

every time step to calculate the force vector {F}. The second level of interac-

tion is coupling between the structural displacements and the fluid solver. For

the case in hand where the wing cross section is considered to be rigid (non-

deformable), the wing surface displacement will be updated at every time step
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according to the calculated values of the lift force and the pitching moment

about the elastic axis. By knowing h and α from equation (3.19) the new

location P1 for point P0 on the wing is obtained from

{P1} = [R]{P0}+ {h} (3.43)

where {h} is the displacement vector in the plunging direction and [R] is the

rotation matrix involving an angle α around the elastic axis. For a wing section

normal to the xy-plane, the rotation matrix by an angle α in radian around a

unit vector in the z direction through the elastic axis is

[R] =


cosα −sinα 0

sinα cosα 0

0 0 1

 (3.44)

There is still an essential point worth mentioning here which is the coupling

between the three dimension CFD mesh and the one dimension beam model.

This has been achieved by creating an intermediate coarse mesh. This coarse

mesh is created by dividing the wing into number of element as shown in

Figure 3.4. The CFD mesh cells lay in an element of the intermediate mesh,

their pressure values are integrated over this element area [100]. Then, the

essentially resultant force and moment about the beam node can be calculated

which are the aerodynamic forces [97]. These forces are represented by the

right-hand side {F} in equation (3.18).

Once the displacement of each beam node is calculated, the CFD mesh of
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the wing surface is updated according to equation (3.43) at each time step.

This approach allows the CFD mesh and structure mesh to be independent.

Also, this is computationally efficient because the displacement is calculated

only at the beam nodes and extrapolated for the rest of the CFD mesh cell

centres as required leading to much finer than the intermediate mesh.

Beam Nodes

Element

Figure 3.4: Intermediate mesh for coupling
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Chapter 4

Free Vibration and Flutter

Characteristics of High

Aspect-ratio Aircraft Wings

The free vibration characteristics of two types of high aspect ratio aircraft

wings of metallic construction are presented in this chapter, namely, that of

sailplane type and that of transport airliner type. In each case, the wing is

idealised as an assembly of bending-torsion coupled beams using the dynamic

stiffness method of modelling leading to a nonlinear eigenvalue problem as de-

scribed in Chapter 3. The problem is solved by applying the Wittrick-Williams

algorithm yielding natural frequencies and mode shapes. The computed natu-

ral frequencies and mode shapes are compared and contrasted for the two type

of aircraft wings. The objective of this study is to demonstrate the variation in

natural frequencies and mode shapes of different aircraft wings. Additionally,

a flutter analysis based on classical flutter theory is presented and the effect of
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modes truncation is highlighted. The results presented in this chapter follow

the earlier work of Banerjee et al. [1, 2].

4.1 Free Vibration Analysis

In an aircraft, the wings are the principal load-carrying structures which pro-

vide the necessary lift for the air vehicle [13, 15]. For sailplanes and transport

airliners, the wings are designed to have high aspect ratios to generate sufficient

lift. When compared with the fuselage, the bending and torsional stiffnesses

of the wing are much lower. Understandably, for this reason the wings are

considered to be the most vital and sensitive parts of an aircraft. In many ap-

plications, the wings are treated as cantilevered on the side wall of the fuselage.

It is worth mentioning that for an aircraft wing the bending and torsional de-

formations are generally coupled due to non-coincident mass and shear centres

as well as due to material coupling in case of composite wings.

Additionally, the engine mass and inertia mounted on a transport aircraft

wing can have significant effects on the model behaviour and hence must be

taken into account in the analysis. Thus the presence of the engine on the

wing can influence the flutter behaviour significantly. Generally, the engine is

idealised as concentrated lumped mass and inertia located at some distance

from a particular node on the wing. The off-set connection of the mass and

inertia of the engine away from the node on the wing flexural axis can also be

significant.
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4.2 Geometrical and Material Properties

As mentioned earlier, two highly contrasting categories of aircraft, namely,

sailplanes and transport airliners are analysed for their free vibration charac-

teristic. For each category, designated letters S for sailplane and T for trans-

port airliner are used. Two aircraft models S1 and S2 for sailplanes, while

T1 and T2 for transport airliners, whose main geometrical configurations and

particulars are given in Table 4.1 are modelled using the dynamic stiffness

method. It is clear that the two aircraft in the same category share quite

similar, but not identical properties. However, the properties of one category

are very different from the other. So it is expected that the free vibration and

flutter behaviour of the same category of aircraft may have similar features,

whereas that of different categories will be dissimilar.

It is to be noted that there is one engine on each wing for the transport air-

craft T1 whereas there are two engines on each wing for the transport aircraft

T2. By contrast, the sailplanes S1 and S2 have no engines (see Table 4.1).

Geometrical
parameters

Sailplane Transport airliner

S1 S2 T1 T2

Span(m) 15 22 29.24 40.4
Wing area(m2) 10.05 15.44 90.00 162.1
Aspect ratio 22.39 31.35 9.5 10.08
Wing root chord (m) 0.85 0.90 5.35 4.88
Wing tip chord (m) 0.35 0.36 1.42 2.54
Sweep angle (◦) 0 0 27.6 0
No. of engines 0 0 1 2

Table 4.1: Geometrical properties of two types of aircraft wings.
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4.3 Natural frequencies and mode shapes

The first six natural frequencies for the two categories of the aircraft were com-

puted using CALFUN-B [74]. These are shown in Table 4.2 for all the four

aircraft. The natural frequency values are labelled with B, T or C indicating

bending dominated (B), torsional dominated (T), and bending/torsional cou-

pled (C) modes, respectively. The mode shapes corresponding to the natural

frequencies of the two types of aircraft are illustrated in Figs. 4.1 and 4.2 re-

spectively. Note that the bending displacements are shown by blue solid lines,

whereas the torsional rotations are shown by red dashed lines.

Frequencies
(rad/s)

Sailplane Transport airliner

S1 S2 T1 T2

ω1 13.512(B) 10.657(B) 19.710(B) 11.524(B)
ω2 42.686(B) 42.594(B) 55.288(B) 33.085(B)
ω3 95.025(B) 109.837(B) 100.248(B) 45.420(C)
ω4 165.137(T) 111.651(T) 120.907(C) 87.857(B)
ω5 171.375(C) 201.303(B) 197.742(C) 97.761(T)
ω6 281.683(B) 261.204(T) 248.250(T) 121.521(T)

(B)– Bending dominated; (T)–Torsional dominated; (C)– Bending/torsional coupled

Table 4.2: Natural frequencies of two types of aircraft wings.

4.3.1 Sailplanes S1 and S2

It can be seen from Table 4.2 that natural frequencies for the two sailplanes

are different, but quite similar. An inspection of the two sets of mode shapes

in Figure 4.1 suggests that the first three modes of the two sailplanes are

bending dominated whereas the fourth one for each of the two sailplanes is a

pure torsional mode. It should be noted that the sailplane wings are made up
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of two parts, the inner wing and the outer wing, and they are connected by a

solid metallic rod. As a consequence, the mass and inertia distributions near

the junction between the inner and the outer wings will be discontinuous and

nonuniform. This is reflected in some of the mode shapes shown in Figure 4.1.

4.3.2 Transport Airliners T1 and T2

The results in Table 4.2 show that the natural frequencies of transport airliner

T1 are higher than those of T2. One of the reasons for this difference can be

attributed to the fact that the transport airliner T2 has a much higher aspect

ratio than T1. It is worth-noting that there are more coupled modes in this

category of aircraft than the previous one. This is mainly due to the significant

separation between the mass and elastic axes, and also due to the presence of

the engine(s) on the wing. For sailplanes S1 and S2, this separation was small

because of the short chord and long wing. The mode shapes for T1 and T2

shown in Figure 4.2 reveal some interesting features. The first three modes of

T1 are primarily bending modes, whereas the fourth, fifth and sixth modes

are coupled in bending and torsion. The coupling between the bending and

torsional motions in these three latter modes is mainly due to the outboard

engine and the elastic axis locations.

As for the transport airliner T2, the first, second and fourth modes are

bending dominated, whilst the other three are coupled modes exhibiting rela-

tively more torsional deformation than bending.
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(b) Sailplane-S2

Figure 4.1: Natural frequencies and mode shapes of sailplane wings. —— bending
displacement; – – – torsional displacement.
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Figure 4.2: Natural frequencies and mode shapes of transport airliner wings. ——
bending displacement; – – – torsional displacement.
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4.4 Flutter Analysis

After carrying out the modal analysis to establish the first six natural frequen-

cies and mode shapes of the two types of the aircraft wings in the previous

section, the next step is to use the results to predict the flutter point. In order

to achieve this, the software CALFUN-B [74] is used.

Since the flutter determinant is a highly complex function involving the air

speed V and frequency ω, it was necessary to search for the zero of the flutter

determinant both in terms of its real and imaginary parts. The search is carried

out in a two dimensional plane using air speed V and frequency ω as variables

to ensure that the real and imaginary parts of the flutter determinant and

hence the whole flutter determinant are zeros. From a computational point of

view, a range of airspeeds and frequencies are chosen. Then for a fixed airspeed

(V ), the real and imaginary parts of the flutter determinant are computed for a

range of frequencies, and next, the process is repeated for a range of airspeeds

until the whole flutter determinant is zero.

Using the above classical procedure, the flutter speed and the flutter fre-

quencies of all the four aircraft are computed and shown in Table 4.3. As

can be seen from the results in Table 4.3, the flutter speeds of S1 and S2 are

quite similar (77.02 m/s for S1 and 71.02 m/s for S2) although the flutter

frequencies are somehow different (76.51 rad/s for S1 and 53.67 rad/s for S2).

With regard to the results of the two transport airliners, T1 has a flutter

speed of 406.25 m/s whereas that of T2 is 251.10 m/s. The corresponding flut-

ter frequencies are 78.39 rad/s and 28.70 rad/s respectively. Further, checks
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to confirm the flutter point which are beyond the scope of this work have been

reported in [1, 2].

Critical values for flutter Sailplane Transport airliner

S1 S2 T1 T2

Flutter speed Vf (m/s) 77.02 71.02 406.25 251.10
Flutter frequencies ωf (rad/s) 76.51 53.67 78.39 28.70

Table 4.3: The flutter speeds and frequencies of the two types of aircraft wings by
using CALFUN-B

4.4.1 The Effect of Mode Number Truncation

The above flutter analysis for the four different aeroplanes are based on the

first six natural modes. These first six modes are a combination of bending

dominated, torsional dominated and coupled modes. They have been used

in the previous analysis to ensure accurate predication of the flutter speed

and frequency. Hence, the classical flutter analysis is computationally less

expensive compared to using CFD, using six or even modes for flutter analysis

is computationally affordable. In this section, a flutter analysis of T1 based

on the first three and four modes is presented. The results will be compared

and contrasted against the previous study which carried out using the first six

modes.

The transport airliner T1 was chosen for this study because it has a dis-

tinctive mode shape characteristics. As show in Figure 4.2a, the first three

modes are pure bending and the torsional effect appears starting from the

forth mode. Table 4.4 lists the flutter speed and frequency based on the first

three, four and six natural modes. The results show that, using only the first
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three modes is not enough to predicted the flutter point at all. This can be

attributed to the fact that the first three modes are bending dominated modes.

In order to pinpoint the flutter point, the first torsional dominated mode must

be included in the analysis. Also, the results based on four modes are quite

different compared to using the first six modes. This could be due to coupled

nature of the fifth modes.

Critical values for flutter Number of Modes

3 4 6

Flutter speed Vf (m/s) —– 595.63 406.25
Flutter frequencies ωf (rad/s) —– 88.04 78.39

Table 4.4: The flutter speeds and frequencies of the transport airliner T1 using
CALFUN-B

4.5 Summary

The fundamental characteristics of free vibration natural modes of two types of

aircraft have been investigated, namely sailplanes and transport airliner. Two

different models of each type have been studied and contrasted. This study

reveals the significance of the natural modes of aircraft wings and how these

modes inherently capture the essential characteristics of the system. Moreover,

a classical flutter analysis has been carried out for the four aircraft with a deep

focus on the transport airliner T1 which showed a sensitivity to the selected

mode shapes. This confirms that the importance of including at least one

torsional mode in order to predict the flutter boundary.
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Chapter 5

Typical Two-dimensional

Aerofoil-section Model

In this chapter a number of different cases for two-dimensional aerofoil-section

models will be investigated to test the source code developed using OpenFOAM

[101]. A wide range of operating conditions is considered to ascertain the

potential of the method presented in this study. Some results from this chapter

have been published by Kassem et al. [3, 5].

5.1 Case A: Pitching NACA 0012 Aerofoil

The subsonic flow over pitching NACA 0012 airfoil was first examined. The

aerofoil was forced to oscillate about its quarter chord when the angle of attack

oscillates with time according to equation (5.1) below. In this equation, α and

αm are the instantaneous angle of attack (as a function in time t) and the

mean angle of attack, respectively. This pitching oscillation has amplitude αA
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and frequency ω. The fluid flow is considered to be inviscid and therefore,

the governing equations of flow are reduced to Euler equations, see chapter 3.

The flow conditions are selected in conformity with the research carried out

by Yang [102]. Important parameters are summarized in Table 5.1. Although

the free stream Mach number is chosen to be 0.301, the flow is considered to

be compressible. It is reported [102, 103] that the flow will accelerate near

the transonic speed region due to the aerofoil shape and movement. In the

present case, the flow was first modelled at fixed angle of attack equal to αm

(static mesh). Then these static flow field results were used as initial conditions

for the forced pitching oscillation case (dynamic mesh). The snappyHexMesh

utility of OpenFOAM was used to generate the mesh. A very large domain

was created for this case to test the snappyHexMesh 30c × 10c with 118, 379

grid cell where c is the chord of the aerofoil. Figure 5.1 shows part of the

mesh around the aerofoil showing different levels of grid refinement around it.

Furthermore, Figure 5.2 shows the mesh cells around the aerofoil trailing edge

which has a small finite thickness. The instantaneous angle of attack α(t) can

be written as

α(t) = αm + αAsin(ωt) (5.1)

where αm, αA and ω have been defined before.

Figure 5.3 shows the coefficient of lift versus the angle of attack. The

predicted results by OpenFOAM are in good agreement with the experimental

measurements [103] as well as with the Euler code used by Yang et al. [102].
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Description Variable Value

Aerofoil NACA 0012
Mean angle of attack αm 4.93◦

Angle of attack amplitude αA ±4.99◦

Free stream Mach number M∞ 0.301
Reynolds number Re 3.91× 106

Reduced frequency k 0.198
Pitch axis from leading edge xp 25% of chord

Table 5.1: Characteristics of test case A.

Figure 5.1: Part of the mesh around NACA 0012.
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Figure 5.2: Mesh around NACA 0012 tail.
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Figure 5.3: Instantaneous lift Coefficient
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Figure 5.4: Pressure distribution at instance of (cp)min

Furthermore, the pressure coefficient is also compared in Figure 5.4 against the

same references. Although Figure 5.4 shows good agreement along the aerofoil,

the pressure distribution at the leading edge shows some differences. This was

also observed and reported by McCroskey et al. [103]. The boundary layer is

generally fully attached under this conditions. However, a separation bubble

appears near the leading edge which leads to flow transition. This could be

the possible reason for the disagreement in results with experiment around the

leading edge.

5.2 Case B: Pitching NACA 64A010 Aerofoil

The second test case (case B) is a pitching aerofoil about the quarter chord

in transonic flow free stream. The aerofoil section is NACA 64A010. This

particular case is one of the widely used cases in the literature to validate

transonic CFD codes. The experimental work was carried out by Davis [104],
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Alonso et al. [95] as well as by Chen et al. [105] in order to validate their

CFD codes. Table 5.2 gives the operating conditions for this case. Such

parameters lead to free stream velocity 270m/s at standard sea level conditions

(ρ = 1.225kg/m3).

Description Variable Value

Aerofoil NACA 64A010
Mean angle of attack αm 0◦

Angle of attack amplitude αA ±1.01◦

Free stream Mach number M∞ 0.8
Reynolds number Re 1.256× 107

Reduced frequency k 0.202
Pitch axis from leading edge xp 25% of chord

Table 5.2: Characteristics of test case B.

In this case GMSH has been used [106] instead of using one of OpenFOAM

meshing utilities. GMSH has a graphical user interface which gives more con-

trol, and thus accelerates the mesh generation process. Figures 5.5 and 5.6

show the complete mesh and the mesh around the sharp trailing edge respec-

tively. The computational domain is 15c× 10c with 39, 006 grid cells.

Figure 5.7 shows the lift coefficient versus the angle of attack. The results

from this work are in good agreement with the experimental results [104].

Although this figure shows an excellent agreement along the pitching cycle, it

also shows that the model did not predict very well the peak points. In general,

these results are comparable with the results reported in literature [95, 105].

McMullen et al. [107] modelled this case with a grid independent study and

also reported under and over predictions for the lift coefficients. Obviously,

increasing the grid quality will increase the accuracy, but it is not the main
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reason for these differences. The differences are probably due to ignoring

the viscous effect for a streamed-line objects like aerofoils. In such cases the

forces arising from shear stress may have a noticeable contribution. More

investigations using different grids and turbulence models might be needed to

clarify and pin-point the exact reason. Figure 5.8 shows the Mach contours at

the maximum angle of attack.

Figure 5.5: C-mesh type around NACA 64A010

5.3 Case C: Self-Sustained NACA 64A010 Aerofoil

In this case, the modal analysis was used to calculate the aerofoil displace-

ment. Again the NACA 64A010 was used as in case B. However, three differ-

ent operating conditions are modelled for this case [95]. The newly developed

elasticDisplacement library in OpenFOAM was used, see Appendix A. Ta-

ble 5.3 shows the selected operating conditions. The structural model follows

the one which was introduced by Isogai [17, 18]. The modelling for each con-
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Figure 5.6: Mesh around NACA 64A010 tail
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Figure 5.7: Instantaneous lift Coefficient
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Figure 5.8: Mach Contours at α = 1.01◦

dition was done using three stages, namely, fixed aerofoil, pitching aerofoil

around the elastic axis and finally self-sustained aerofoil. The same mesh from

case B was used to save computational time. A fifth-order Runge-Kutta with

adaptive time step developed by Cash and Karp [108] was selected. It is basi-

cally one of the OpenFOAM ODE solvers for non-stiff systems.

Description Variable Value

Aerofoil NACA 64A010
Mean angle of attack αm 0◦

Angle of attack amplitude αA ±1.01◦

Free stream Mach number M∞ 0.85, 0.825, 0.875
Speed Index V ∗ = U∞

ωαb
√
µ

0.439, 0.612, 1.420

Free stream velocity U∞ 170, 237, 545m/s
Aerofoil mass ratio µ 60
Reynolds number Re 1.256× 107

Static unbalance xα 1.8
Squared radius of gyration r2α 3.48
uncoupled natural freq. in plunge ωh 100 rad/s
uncoupled natural freq. in pitch ωα 100 rad/s
Pitch axis from leading edge xp −50% of chord

Table 5.3: Characteristics of test case C.
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Figures 5.9, 5.10 and 5.11 show the responses and the forces for the three

operating conditions. It is clear that Figure 5.9 represents a damped response,

whereas Figure 5.11 shows a divergent response. Both are in very good agree-

ment with [95, 105]. It was expected that Figure 5.10 would predict the flutter

point as reported by Alonso et al. [95], but as it turned out, the flutter point

was missed only by a small margin. Nevertheless, the trend to predict the

flutter speed is sufficiently clear.
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Figure 5.9: Damped Response. M∞ = 0.85, V ∗ = 0.439
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Figure 5.10: Damped Response. M∞ = 0.825, V ∗ = 0.612

5.4 Summary

In this chapter three case studies for two different aerofoils have been carried

out in order to validate the core functionality of OpenFOAM and its suitability
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Figure 5.11: Divergent Response. M∞ = 0.875, V ∗ = 1.420

for aeroelastic analysis. The first case study is for subsonic flow over pitching

NACA0012. The meshing capabilities, fluid solver and more importantly the

dynamic mesh solver were tested thoroughly which proved to be fit for this

study. The second case is for transonic flow over oscillating NACA64A010

which showed good agreement with experimental data. The final case is for

self-sustained NACA64A010 in different flow conditions. The aerofoil elastic

model was used in this case and the CFD results were contrasted against

other numerical results from the literature. All the case studies showed good

agreement, which paved the way for further investigation by implementing the

complete wing model.
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Chapter 6

Aircraft Wing Model

The main case study in this chapter is the analysis of the well-known Goland

wing (without store), incorporating its "Heavy" version which has been fea-

tured in the literature several times [109–113]. It is a rectangular wing, but

has a parabolic aerofoil cross-section as assumed by earlier investigators. In

this thesis, this wing is considered to be made of both metallic and composite

materials independently. For the composite wing different values for the mate-

rial coupling coefficient K are considered in the analysis. Some of the results

presented in this chapter have been published earlier by Kassem et al. [4].

6.1 Metallic Goland Plus Wing

In this section two cases will be investigated to confirm the correctness of the

newly developed source code. Both cases are for metallic Goland wing. The

first case is focussed on forced pitching oscillation and the second case is about

the elastic response to predict the transonic flutter. A wide range of operating
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conditions is modelled to demonstrate the potential of the method. It is worth

noting that the Goland wing considered here is a much heavier version of the

original Goland wing [114]. This version of Goland wing was introduced by

Eastep and Olsen [109] as a suitable model for transonic flutter case study.

The properties of this wing are given in Table 6.1.

Property Value

Chord, c 1.829 m
Semispan, s 6.096 m
Thickness to chord ratio, 0.04
Mass, M 534.7 kg/m
Bending stiffness, EI 9.789× 106 Nm2

Torsional stiffness, GJ 0.989× 106 Nm2

Mass moment of inertia, Iα 129.5 kgm

Table 6.1: Goland Wing Properties

6.1.1 Case A: Goland Wing in Pitching Motion

The first test case (case A) is a pitching rigid Goland wing in transonic flow

with free stream Mach no 0.92, amplitude 0.5◦ and frequency 3.0 Hz. These

values were selected based on the operating conditions reported in Refs. [110–

112] which are subsequently used to compare results of the current investiga-

tion.

The mesh was generated using GMSH software [106] instead of using one

of the OpenFOAM meshing utilities. Figures 6.1 shows the mesh around the

wing cross-section and Figure 6.2 shows the rectangular wing surface mesh

with dimensions. The computational domain is taken as 30c× 10c× 10c with

169, 380 grid cells (c being the chord of the wing). Despite the fact that the

65



mesh used here is coarse compared to previous studies for this case [110–112],

the predicted results are found to be in excellent agreement with published

results in the literature as illustrated in Figure 6.3, which shows results for

the moment coefficient (Cm) versus the lift coefficient (Cl). In order to obtain

mesh independent solution and more stable simulations, a finer mesh (242, 400)

cells has later been used to carry out the flutter analysis. Moreover, a number

of cases have been compared with the results from a much finer grid (454, 800

cells) to make sure that the results are mesh independent which means that

the results are reliable and sufficiently accurate. In this comparison, it should

be noted that CAPTSD is a three-dimensional, transonic, small-disturbance

solver based on potential-flow equations and ENS3DAE gives an inviscid Euler

solution [111]. OpenFOAM results in Figure 6.3 represent the present study

and those coming from the Fluent commercial software. Fluent results are

for inviscid Euler solution using unstructured mesh which was reported in

[110]. Figure 6.4 shows the Mach number field around the wing which is a

good indication of the presence of the shock waves. The wide range of Mach

numbers chosen from subsonic to supersonic is one of the main features of

transonic flow which is captured by the model.

6.1.2 Case B: Flutter Analysis

In this case, the modal analysis was used to calculate the wing displacement

as described in section 3.3. In order to apply the modal analysis and run the

developed code, the free vibration modes were computed using the wing mass

and stiffness properties. CALFUN-B code [74] was used to obtain the natural
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Figure 6.1: Mesh around Goland wing cross-section

Figure 6.2: Goland Wing Surface Mesh
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modes which are based on the dynamic stiffness method descried in section 3.2.

Figure 6.5 shows the normalized natural modes of the Goland wing (metallic)

idealised as a cantilever beam. It is clear that the first mode is predominantly

bending and the second mode is predominantly torsional mode, whereas the

third and forth modes are heavily coupled in bending and torsion. This is

consistent with results from Chapter 4. The computed natural frequencies are

compared with those from previous studies as shown in Table 6.2.

0

ω1 = 12.6 rad/s

ω2 = 23.4 rad/s

0

0 0.25 0.5 0.75 1

ω3 = 65.1 rad/s

0 0.25 0.5 0.75 1

ω4 = 85.0 rad/s

Normalized Spanwise Distance Normalized Spanwise Distance

Figure 6.5: Free Vibration Modes for Metallic Goland Wing.—— bending displace-
ment; – – – torsional displacement.

Mode
Natural Frequencies (Hz)

CALFUN-B Beran NASTRAN Chung
[111] (1D Beam)[115] [115]

1st Mode 2.01 1.97 1.95 1.93
2ndMode 3.73 4.05 4.08 3.92
3rd Mode 10.36 9.65 - -
4th Mode 13.53 13.4 - -

Table 6.2: Natural Frequencies of Metallic Goland Wing (Hz)

The next step is to model the dynamic response based on the computed
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modes in order to compute the flutter velocity for a range of Mach numbers.

For each test case, non-matched-point flow conditions were used. This means

that the Mach number and velocity boundary conditions are selected indepen-

dently. Then, based on fixed density (1.225 kg/m3), temperature (288.15 K)

and specific heat ratio (1.4) values at standard-day, sea-level condition, other

operating conditions such as the pressure, specific heat capacity and the spe-

cific gas constant were calculated [110–112]. In other words, the speed of sound

in the model is adjusted for each simulation according to Mach number and

the free stream velocity.

Each case was modelled for fixed rigid wing first, until convergence is

achieved and then the results were used as initial condition for the flow field.

Finally, the structure was perturbed with initial velocity at the wing tip.

Figure 6.6 shows the predicted flutter boundary with comparative results from

the literature [109, 112, 113]. Therefore, the close proximity of results confirms

the predictable accuracy and correctness of the present analyses. The four

points in Figure 6.6 predicted by the current OpenFOAM analysis were based

on around 15 different simulation at the indicated four Mach numbers and a

wide range of free stream velocities. It worth mentioning here that the clas-

sical flutter theory using CALFUN-B could not find the flutter point of this

case. This could be due to the fact that this case is parametrised for transonic

region which beyond the scope of CALFUN-B.

A selective few responses at M∞ = 0.8 are highlighted in Figures 6.7, 6.8

and 6.9. Figure 6.7 shows the generalized displacement of sub-critical response

which is dominated by the first mode. After increasing the velocity gradually
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and keeping the Mach number fixed, a self-sustained oscillating response was

obtained around V∞ = 110 m/s, see Figure 6.8. It is clear from Figure 6.8

that the first mode is dominating the response. Finally, Figure 6.9 shows

the heave response near the wing tip at different free stream velocities which

clearly demonstrate the changes in both phase and amplitude of the dynamic

response.
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Figure 6.6: Flutter boundary for Goland Wing
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6.2 Composite Goland Plus Wing

This section investigates the effect of using composites on the dynamic char-

acteristics of the wing. In particular, the effect of material coupling due to

the ply orientation of the composite laminate on the flutter speed are given

precedence in the investigation.

6.2.1 Natural Frequencies

Using the same geometrical and material properties of Goland wing from Table

6.1, but by considering the material coupling stiffness K within the range of

−2.5MN.m2 to 2.5MN.m2. It is the same range reported by Banerjee et al.

[81] to study the light version of Goland wing. The material coupling stiffness

K is due to the ply orientation of the composite laminates, therefore K value

could be adjusted by choosing the ply orientation sequence of the composite.

Figure 6.10 shows the variation of the first four natural frequencies against

the material coupling stiffness parameter K. The zero value of K represents

the isotropic wing conditions from Section 6.1.2. It is clear from these results

that the material coupling has larger effect on the higher modes that the lower

ones. These results have been computed using a newly developed code using

Python, see Appendix B.

Table 6.3 shows the computed natural frequencies over a wide range of

material coupling stiffness parameter K. Also, the geometrical coupling is

considered but was kept fixed for all cases. The metallic wing natural frequen-

cies in Table 6.3 are in an excellent agreement with the results of CALFUN-B
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in Table 6.2. This comparison validates the accuracy of the newly developed

code. Moreover, it demonstrates the consistency of the governing equations

and the robustness of the dynamic stiffness method. Once the selected value

for K equals to zero, the computed frequencies are equal to those computed by

the isotropic version of Goland wing. Essentially the formulation is reduced to

metallic material without any extra numerical treatment. This demonstrates

the generality of the method and its capability of handling both isotropic and

non-isotropic material without implementing two different versions of the code.

Mode
Natural Frequencies (Hz)

Material Coupling Coefficient K[MN.m2]
-2.5 -2.0 -1.5 0.0 1.5 2.0 2.5

1st Mode 1.21 1.58 1.83 2.01 1.60 1.35 1.01
2nd Mode 3.29 3.48 3.52 3.73 4.08 4.14 3.90
3rd Mode 6.50 8.13 9.46 10.35 7.87 6.72 5.50
4th Mode 9.00 11.14 12.00 13.52 14.36 12.31 9.33

Table 6.3: Natural Frequencies of Heavy Goland Wing for different K values (Hz)
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Figure 6.10: Natural frequencies of composite Goland wing.
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6.2.2 Mode Shapes

As expected the fundamental difference between the mode shapes for metallic

and composite wing is due to the presence of the coupling stiffness parameter K.

In particular, the coupling between bending and torsion is prevalent in compos-

ite wings arising from the anisotropic nature of fibrous composites in addition

to the inertial coupling that exists due to the noncoincident of mass and flex-

ural axes (geometric coupling) . Figure 6.11 shows the effect of both material

and geometric coupling on the mode shapes. For metallic Goland wing the

first mode was a pure bending mode, but this is not so for composite Goland

wing. The existence of the material coupling is the main reason for the cou-

pling between the bending and torsional deformation in the four first modes.

Figure 6.11 also shows that higher mode shapes of composite wing are more

complex compared to wings made of isotropic material. This also could be

attributed to both material and geometrical coupling.

6.2.3 Dynamics Response

In this section the effect of the material coupling on the dynamic response

of composite Goland wing is mainly discussed. A number of selected cases

with different material coupling coefficient K under a range of Mach numbers

and velocities are investigated. As in the previous section, all other material

parameters are kept constant apart from the material coupling coefficient in

order to isolate and pinpoint its effect.

Figure 6.12 compares the generalized coordinates corresponding to the first

mode for both isotropic and composite wing with K = 15MN.m2 at Mach 0.75

75



Figure 6.11: Mode shapes of composite Goland wing.
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and velocity 110m/s. This case shows a very slow damping response but it

should be noted that it focuses on a small time window. It is clear that the

amplitude of modal displacement is almost 50% less in the case of composite

which reveals the advantage of using composites to reduce the vibration of the

structure.
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Figure 6.12: Near flutter point Response. M∞ = 0.75, V∞ = 110m/s.

Figure 6.13 shows another set of results for a subcritical speed at Mach 0.8

with three different material coupling values. Again, it is clear that the mate-

rial coupling reduces the amplitude of the oscillation considerably. However, it

also shows that the oscillation amplitude for K = 15.0 MN.m2 suggests that

the damping is not always proportional to K values. It is worth mentioning

here that the negative K values cases always diverge and therefore, they are

not plotted here. These findings agree with Weisshaar and Ryan’s theoretical

analysis for rectangular wings [116].
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Figure 6.13: Near flutter point Response. M∞ = 0.80, V∞ = 100m/s.

6.3 Summary

This chapter represents three main validation steps of the newly developed

model. It starts with a validation case of a rigid pitching wing in transonic

flow. The predicted aerodynamics force and moment were compared against

different codes from the literature which showed excellent agreement. Second

step is on studying the free vibration behaviour of isotropic wing as well as its

dynamics response. Again, the predicted results were compared and contrasted

with previous studies. Finally, the material coupling effect on the dynamic

response of composite wing was investigated. This chapter shows clearly the

capabilities of this model and verifies the correctness of the developed code.
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Chapter 7

Conclusions and Future Work

In addition to the summary at the end of each chapter, here the summary of

principal final conclusions of the thesis given. The focus is on two main aspects,

the significance of results and the overall methodology developed. This chapter

ends by general recommendations and possible future directions based on the

current work.

7.1 Principal Conclusions

Pertaining to the multi-aspect nature of the problem, this work has contributed

to aeroelastic analysis particularly from a computational point of view. The

main objective has been achieved, which was set out to predict the tran-

sonic flutter of composite wings, using the dynamic stiffness method coupled

with high fidelity computational fluid dynamics model. The dynamic stiff-

ness method has proven again tremendously advantageous as an indispensable

tool for modal analysis. The model accuracy and efficiency are the core es-
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sential attributes of this method. Moreover, the investigation has shown that

DSM’s elegant formulation can be implemented within modern CFD program-

ming paradigm. This is a significant step towards implementing the method in

modern structural dynamics and CFD software packages. Although DSM was

primarily developed for frequency domain analysis, this work has successfully

utilised it in the time domain. In general, this research has shown through dif-

ferent case studies the importance of considering the flow non-linearity when

predicting the transonic flutter.

Considering how the aeroelastic problem has different aspects, such as aero-

dynamics, structural dynamics and coupling between them, it is therefore

necessary to isolate each aspect of the problem first, towards establishing a

thorough investigation. The nature of this problem has been reflected clearly

in this work, when it began by investigating the free vibration characteris-

tics of four different aircraft wings. These aircraft are within the categories of

sailplanes and transport airliners, which have some common properties such as

the high aspect ratios. On the other hand, they have some major differences

too, in terms of the total mass, effects of engine weights , amongst others.

These differences have been captured by the free vibration analysis of these

aircraft.

The second main landmark in this study is the validation of the results

within the aerodynamic framework by studying flow over two pitching airfoils,

namely NACA0012 and NACA64A010 under different transonic conditions.

These forced vibration cases exhibit interesting features leading to the un-

derstanding of aeroelastic problems. The results showed excellent agreement
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with measured and modelled CFD investigations from the literature. More

importantly, they proved the capability of Euler solvers in OpenFOAM and

the dynamic mesh functionality. This particular phase of research ended by

studying a typical two degrees of freedom airfoil model in transonic flow. It

showed promising results which led to the next phase of the research, focusing

on a complete aircraft elastic wing.

Following the same strategy, the last phase of this research started by vali-

dating the aerodynamics model of pitching Goland wing in transonic flow. The

predicted aerodynamic forces showed a satisfactory agreement with numerical

data published in the literature. Then the attention was confined to inves-

tigate the free vibration characteristics and aeroelastic behaviour of metallic

Goland wing. The geometrical coupling effect was evident in the computed

mode shapes. The flutter boundary of this case was predicted by the devel-

oped methodology and compared against different theories from the literature.

A good agreement between similar theories was observed and also a sharp con-

trast between linear and non-linear theories was evident. Finally, a composite

version of Goland wing was studied from structural dynamics point of view

as well as from aeroelastic point of view. The significant differences between

the free vibration modes of the composite wing and its metallic counterpart

were demonstrated. Without doubt, the material coupling effect influenced

the mode coupling in a major way, resulting in complex mode shapes. Addi-

tionally, the variation of material coupling on the aeroelastic properties was

investigated, which showed its considerable influence on the oscillation char-

acteristics. The main contribution made in this thesis is the prediction of
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aeroelastic behaviour of metallic and composite wings in the transonic flow re-

gion by Euler-based CFD code OpenFOAM and the dynamic stiffness method.

7.2 Recommendations and Future Work

During this study the general framework for aeroelastic analysis has been de-

veloped and implemented successfully, which can be considered as a starting

point in many future studies. Given the multidisciplinary nature of the prob-

lem, it will inspire future work in multiple directions. One possible direction

is to include the structural damping effect on the aeroelatic characteristics of

composite wings. This could lead to less conservative flutter boundary, yet

it could increase the non-linearity of the system as well. Also, higher order

structural theories and different element types could be used. For example,

the beam theory could be extended to include the cross-sectional deformation,

which could be a numerically efficient way to include the surface deformation.

Different structural element types such as plates and shells could be incorpo-

rated and compared against the beam model. This will have applications for

low aspect-ratio and delta wings. Appendix A provides some insights into the

potential of such applications. A very significant development would be to

extend the methodology to study complete aircraft configuration, which will

require major development on both structural side as well as the aerodynamic

side with advanced coupling algorithms.

From an aerodynamic point of view, the viscous effect could be studied

by using Navier-Stokes solver which the current work-flow can handle with
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minimal code development. However, as discussed before, such modes are still

considered computationally expensive compared to Eular solver for aeroelastic

analysis. Coupling optimization algorithms with the developed framework of

this study could be also considered a significant contribution to select the wing

material efficiently. Another very important feature would be to use the current

framework to develop reduced order models, which could help minimise the

computational time significantly. Furthermore, industrial applications would

essentially benefit from incorporating a reduced order model with optimization

algorithms. Of course, all of the above approaches are just limited number

of the potential future developments in aeroelasticity based on the dynamic

stiffness method.
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Appendix A

Implementation in OpenFOAM

Considerable efforts were expended in developing the computer programs re-

quired in the investigation and this appendix gives a general description of the

newly developed features and discusses its implementation into the method-

ology described in Chapter 3. As mentioned before the implementation is

accomplished within the framework of OpenFOAM which is basically a C++

code. Due to the multi aspects nature of the problem formulation, such as

equations of motion solver, fluid structure coupling, mesh deformation and

many more other elements, it was necessary to design a modular code which

decomposes these parts into smaller pieces. Therefore, this final code is de-

signed as a library which consists of a number of C++ classes.

Figure A.1 shows the final structure of the code which has been developed

and used in this thesis. The main concept is based on the fact that, in order to

deform the wing in a particular mode, a special boundary condition is needed.

This boundary condition deforms the fluid solver mesh at each time step based

on the structural deformation. This newly developed boundary condition is
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called elasticBodyDisplacement, which is the main user interface where the

structure solver parameters in selected as in Listing A.1. This boundary con-

dition is responsible for the communications between the elasticBodyMotion

and the elasticBodyForce which are described in the next sections.

CODE

src

elasticBodyDynamics

elasticBody

elasticBodyMesh

elasticBodyForce

elasticBodyMotionFile

elasticBodyMotion

elasticBodyMotion

CSDODE

CSDInput

elasticBodyMotionState

pointPatchFields/derived/elasticBodyDisplacement

applications/test/testelasticBodyMotion

Figure A.1: Implemented code tree in OpenFOAM

A.1 elasticBodyDynamics

The user inputs in Figure A.1 will be described within the scope of each class

shown in Figure A.1. Starting from the elasticBodyDynamics library which

consists of few classes of subdivisions which constitute the core of this im-

plementation. The elasticBody is a class which represents the structure as

set of free vibration modes and discrete nodes. Every instance of this class

reads the structure type (only beam type used in this study but the code
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is ready to handle plates), the number of modes nModes and degrees of free-

dom of each node nDof. The implementation is fairly general and therefore,

each node can have up to six degrees of freedom whose directions are speci-

fied through transverse direction and rotation. In the example showed in

Listing A.1, the strucure has four natural modes and two degrees of freedom

(transverse in the y direction and rotation about the z axis). Finally, the

Modes and Frequencies entries are the file names where the mass normalised

mode shapes and frequencies are stored.

wing
{

type elasticBodyDisplacement;
value uniform (0 0 0);
structure
{

patch wing;
type beam; //plate
nModes 4;
nDof 2;
transverse (0 1 0);
rotation (0 0 1);
Modes (ModalMatrixH ModalMatrixP );
Frequencies Frequencies;
odeSolver RKCK45;
// X Y Z thX thY thZ
initialDisplacement (0.0 0.0 0.0 0.0 0.0 0.0);
initialVelocity (0.0 0.0 0.0 0.0 0.0 -0.3);
freeVib false;

}

mesh
{

corners ((0 0 0) (6.1 0 0) (6.1 1.83 0) (0 1.83 0));
nodesX1 10;
nodesX2 1;
orientation ZX;

}

forcesDict
{

type elasticBodyMesh;
patches (wing);
pName p;
UName U;
rhoName rho;
CofR (0.6096 0 0.3048);
pitchAxis (0 0 1);

}

}
Figure A.1: User input settings
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Another important class is elasticBodyMesh which is a data member in

elasticBody class. It defines the interpolation mesh which is essential for

the fluid-structure coupling. This class locates the CFD mesh cells which are

associated with each structure element. It requires four points which represents

the mesh corners, number of nodes in each direction nodesX1 and nodesX2

and the orientation with respect to the coordinate axes. Also, this class

was designed with plate element in mind and therefore, it has many features

which is needed for plate surface deformation. The final part of Listing A.1 is

required for the elasticBodyForce class which calculate the distributed force

and moment over the elasticBodyMesh. It follows OpenFOAM original forces

classes, therefore a full description of these inputs can be found in OpenFOAM

user guide [117].

A.2 The library elasticBodyMotion

The second part of the implementation concerns the elasticBodyMotion li-

brary where most of the calculations are performed. In order to make the

future development easier, the equation of motion is implemented in a sepa-

rate class called CSDODE and its input is processed in a separate class called

CSDInput. The only additional input for this class needed by the user is the or-

dinary differential equation solver called odeSolver. The elasticBodyMotion

itself contains elasticBody which encapsulates all the needed information for

the structure solver. For every time step, the solveMotion method calculates

the displacement based on the time instance and distributed loads. The com-
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puted generalized displacements are stored in elasticBodyMotionState class

object, which is essential for parallel computing and restarting the simulation

as required. In addition, it is referenced in elasticBodyMotionFile class for

writing the required outputs such as displacements and modal coefficients.

A.3 Final Remarks

Despite the fact that the code developed for the thesis is not based on the first

version, but has been refactored and iterated many times during the investiga-

tion. Naturally there is still a considerable scope for improvement and future

developments. It could be generalised based on more abstract classes, for ex-

ample a structural element abstract base class which can be reimplemented

into concrete classes for beam and plate element separately. Also, for plates

and shells considering their surface deformation, more complex interpolation

techniques may be implemented. It is recommended that future developers

should isolate the interpolation techniques in separate objects to simplify the

interface for further future developments and to implement new mesh classes

for complex structure geometries. Finally, the code could be further developed

to include multiple elastic structures which could be used to model complete

aircraft configuration.
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Appendix B

Modal Analysis Code in Python

This appendix sheds some light on the implemented code in Python which has

been developed and used in this thesis. The main objective of this code is to

compute the mass normalized free vibration natural modes which are used as

input for the solver, as described in Appendix A. For this development, again

an object oriented programming concept has been used for the first time to

implement the dynamic stiffness method which paves the way for more general

and abstract implementations in future. In comparison with the development

discussed in Appendix A, this code is relatively smaller (around 2000 lines of

instructions compared to 5000 lines).

The general framework of the Python code is shown in Figure B.1 which

consists of two main parts, namely core libraries (src) and executable appli-

cations (APP). Because Python is an interpreted language, the user can modify

the script or create a new one and run it directly. So, these applications are

merely examples, but the user can build as many executables as needed.
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B.1 Material Properties

The first building block in the core library (src) is the material properties and

how they are calculated. The most fundamental and base class is laminatePly

which presents only one layer of material (ply). This class reads as input the

ply orientation, ply thickness and the material properties and it is core function

is computing the transformed Stiffness matrix. A list of laminatePly in the

staking sequence then can be used as input for creating a composite laminate.

This implementation allows each layer to have different ply angle, thickness and

even material properties. Obviously, the main outcome of laminate is stiffness

properties of the composite laminate. By taking a list of four laminate objects

in addition to the dimensions of the beam box, the properties of composite

boxed beam can be represented and computed by beamBox class. Due to the

generality of the code any four laminate can be used. It is not necessary for

the laminate to be similar or have the same material properties. However, it

worth mentioning here that the two most common cases, namely CUS and

CAS have be implemented a special cases to simplicity.

src

laminatePly

laminate

beamBox

DSM

GDSM

Gauss

functions

APP

plateStifness

boxStifness

wingBox

modalAnalysis_Uniform

modalAnalysis_General

Figure B.1: Implemented code tree in Python
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B.2 Modal Analysis

Three main classes have been developed in order to compute the free vibration

modes based on the dynamic stiffness method. These are DSM, GDSM and Gauss.

The DSM represents one composite beam element as describe in Section . This

class can be reimplemented for any type of beam as needed without breaking

the code dependency as long as the interface is kept the same. On the other

hand, GDSM is the global dynamic stiffness matrix where all beam elements are

assembled. It includes the Wittrick-Williams algorithm which uses standard

Gauss elimination method which is implemented in Gauss class. The Gauss

class is counting the negative elements along the diagonal after performing

Gauss elimination. GDSM class search for the natural modes using the bisection

method and normalise them if required.

B.3 Applications

With help of the functions, a few essential applications have been developed.

As the names suggest, plateStifness and boxStifness are simple applica-

tions to calculate the material properties of composite plate and beam box

respectively. By contrast, wingBox is for non-uniform wings which consists of

varying wing boxes along the wing span. The output from this program can

be used later for modal analysis of non-uniform wings. For modal analysis,

there are two applications one for uniform beam and one for non-uniform,

namely modalAnalysis_Uniform and modalAnalysis_General. Both are

able to produce mass normalised mode shapes and can plot the mode shapes
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automatically if needed. On the contrary, modalAnalysis_General reads the

input from CSV file which is convenient and can be created with MS-Excel or

any text editor.

B.4 Final Remarks

As mentioned in Appendix A, there is a wide scope for code improvement.

Despite the fact that Python is not as advanced as C++ in terms of high level

object oriented concepts, the code can be more generalized. Future improve-

ment could be achieved by taking advantage of parallel computing to speed-up

the calculations. Also, more efficient implementation of the bisection method

could increase the speed considerably. Additionally, different beam types and

plates could be implemented as well. A major development could be to include

double cells beam box and curved boxes. Finally, more applications could be

utilised to meet the user needs.
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