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Abstract
Organizations face the issue of how to best allocate their security resources. Thus, they
need an accurate method for assessing how many new vulnerabilities will be reported
for the operating systems (OSs) and web browsers they use in a given time period.
Our approach consists of clustering vulnerabilities by leveraging the text information
within vulnerability records, and then simulating the mean value function of vulner-
abilities by relaxing the monotonic intensity function assumption, which is prevalent
among the studies that use software reliability models (SRMs) and nonhomogeneous
Poisson process in modeling. We applied our approach to the vulnerabilities of four
OSs (Windows, Mac, IOS, and Linux) and four web browsers (Internet Explorer,
Safari, Firefox, andChrome). Out of the total eight OSs andweb browsers we analyzed
using a power-law model issued from a family of SRMs, the model was statistically
adequate for modeling in six cases. For these cases, in terms of estimation and fore-
casting capability, our results, compared to a power-law model without clustering, are
more accurate in all cases but one.

Keywords Vulnerability assessment · Nonhomogeneous Poisson process ·
Clustering · Software reliability models · Software reliability growth · Security
growth models

Mathematics Subject Classification 62H30 · 68M15

B Ilir Gashi
ilir.gashi.1@city.ac.uk

Yazdan Movahedi
ymovahed@umd.edu

Michel Cukier
mcukier@umd.edu

Ambrose Andongabo
ambrose.andongabo.1@city.ac.uk

1 University of Maryland, College Park, USA

2 City, University of London, London, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-018-0663-0&domain=pdf
http://orcid.org/0000-0002-8017-3184


Y. Movahedi et al.

1 Introduction

Security decision makers often use public data sources to help make better decisions
on, for example, selecting security products, checking for security trends, and estimat-
ing when new vulnerabilities that affect their installations will be publicly reported.
Several studies have applied software reliability models (SRMs) to estimate times
between public reports of vulnerabilities [1–6]. The studies we are aware of estimate
all vulnerabilities together.We postulate that such analysismaymiss some insights that
apply to separate categories of vulnerabilities, rather than all vulnerabilities together.
Moreover, SRMs assume vulnerability detection to be an independent process. How-
ever, this might not be the case due, for example, to the discovery of a new type of
vulnerability that might prompt attackers to look for similar vulnerabilities [7]. This
may lead to less accurate predictions on the next reporting date of vulnerability, or
the total number of new vulnerabilities reported in the next time interval. One way to
mitigate these issues is to split vulnerabilities into separate clusters and test whether
the clusters are independent.

In this paper we present an approach that does the following:

– Uses existing clustering techniques to group vulnerabilities into distinct clusters,
using the textual information reported in the vulnerabilities as a basis for con-
structing the clusters;

– Uses existing SRMs to make predictions on the number of new vulnerabilities
that will be discovered in a given time period for each cluster for a given OS/web
browser;

– Superposes the SRMs used for each cluster together into a single model for pre-
dicting the number of vulnerabilities that will be discovered in a given time period
for a given OS/web browser.

We have applied our approach on vulnerabilities of four different OSs (Windows
(Microsoft), Mac (Apple), IOS (Cisco) and Linux) and four web browsers [Internet
Explorer (Microsoft), Safari (Apple), Firefox (Mozilla), and Chrome (Google)]. For
these OSs, our approach when compared to a power-law model without clustering
issued from a family of SRMs, gives more accurate curve fittings and predictions in
all cases we analyzed. For these web browsers, in all the cases where the power-law
model is statistically adequate for modeling (at least one of the models has a p value
greater than 0.05), our approach provides more accurate or more conservative curve
fitting and forecasting results.

The rest of the paper is structured as follows. Section 2 presents the related work.
Section 3 details the dataset and how we processed the data. Section 4 details the
analysis. Section 5 presents the obtained results. Section 6 discusses the results and
lists the limitations. Finally, Sect. 7 concludes the paper.

2 Related work

Vulnerabilities are software faults which are exploited as a result of security attacks.
Thus, vulnerability discovery models (VDMs) and Software Reliability Models
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(SRMs) can be considered similar based on the fault detection processes. Thus, the
intensity function can represent the detection rate of vulnerabilities [8]. Research has
been conducted to create a link between the fault discovery process and the vulner-
ability discovery process for modeling purposes [9]. Several studies have proposed
new SRMs/ VDMs or applied existing models to estimate software security indicators
such as total number of residual vulnerabilities in the system, time to next vulnerability
(TTNV), vulnerability detection rate [1–4,7–13].

Rescorla [2,3] proposed a VDM to find the number of undiscovered vulnerabilities.
In [4–6], Alhazmi and Malaiya proposed regression models to simulate the vulner-
ability disclosure rate and predict the number of vulnerabilities that may be present
but may not yet have been found. Some studies have tried to increase the accuracy of
vulnerability modeling. Joh and Malaiya [14] proposed a new approach for modeling
the skewness in vulnerability datasets by modifying common S-shaped models like
Weibull and Gamma. These models assume that the software under study has a finite
number of vulnerabilities to be discovered [8]. Note that, releasing new patches might
be accompanied by introducing new vulnerabilities and dynamically change the num-
ber of vulnerabilities. The mentioned models provide better curve fitting results than
prediction ones. This is because a model may provide an excellent fit for the available
data points, but if the detection trends are not consistent with the model, the model
doesn’t lead to accurate prediction results [14].

In addition to the vulnerabilities publication dates, software source code has been
used for vulnerability assessment in the context of VDMs. Kim et al. [15] introduced
a VDM based on shared source code measurements among multi-version software
systems. In [16],Ozment andSchechter employed a reliability growthmodel to analyze
the security of the OpenBSD OS by examining its source code and the rate at which
new code has been introduced. However, source code has proved not to be an accurate
measure in terms of prediction [7].

Clustering is a method of structuring data according to similarities and dissimi-
larities into natural groupings [17]. Clustering for vulnerabilities has been used for
splitting real-world exploited vulnerabilities from those which were exploited during
software test (proof-of-concept exploits) [18], as well as for detecting exploited vul-
nerabilities versus non-exploited ones when there is not enough information about
some vulnerabilities [19]. Lee et al. [20] investigated a distributed denial of service
(DDoS) attack detection method using cluster analysis. Shahzad et al. [21] conducted
a descriptive statistical analysis of a large software vulnerability dataset employing
clustering on type-based vulnerability data. Huang et al. [22] classified vulnerabilities
employing several clustering algorithms to create a relatively objective classification
criterion among the vulnerabilities.

3 Dataset and data processing

The data used in this paper has been collected from theNationalVulnerabilityDatabase
(NVD)maintained by NIST.We developed Python scripts to scrape the publicly avail-
able data on vulnerabilities from NVD. We then stored the data in our own database,
and identified each vulnerability by its Common Vulnerability Enumeration (CVE)
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Table 1 Number of vulnerabilities per OS

OS Windows Mac IOS Linux

# Vulnerabilities 1015 1129 389 1705

# Labeled vulnerabilities 888 (87.5%) 920 (81.5%) 360 (92.5%) 1439 (84.5%)

# Non-labeled vulnerabilities 127 (12.5%) 209 (18.5%) 29 (7.5%) 266 (15.5%)

identifier. We used the CVE ID to compare the reporting date of each vulnerability in
NVD, with the dates in other public repositories on vulnerabilities.1 We then updated
the reporting date on our database to the earliest date that a given vulnerability was
known in any of these databases. Details of the tool (vepRisk) we developed to gather
the data is given in [23]. For the rest of the paper, we will focus on four OSs (Windows,
Mac, IOS, and Linux) and four web browsers (Internet Explorer, Safari, Firefox, and
Chrome).

3.1 Operating systems

We will focus on the vulnerabilities reported for four well-known OSs: Windows
(1995–2016), Mac (1997–2016), IOS (the OS associated with Cisco) (1992–2016),
and Linux (1994–2016).We chose these OSs as they aremost widely used, and had the
most vulnerabilities in NVD. For each OS, we included all the vulnerabilities reported
for any of its versions. For instance, all the vulnerabilities reported formac-os, mac-os-
server, mac-os-x, and mac-os-x-server were put together to create a dataset for Mac.
We did this to have enough data for each OS. The total number of vulnerabilities in
NVD for these OSs is 4238. We used text information within vulnerabilities reports
to then label the vulnerabilities. The keywords for labeling (e.g., denial, injection,
buffer, execute) were extracted from these reports. Table 1 shows the total number
of vulnerabilities as well as the number of labeled and non-labeled (vulnerabilities
without any associated text information in the database) vulnerabilities for these OSs.

For the labeled vulnerabilities, we indicate the number and proportion of vulner-
abilities associated with a specific keyword. Note that vulnerabilities can be labeled
with more than one keyword. Details for OSs are in Table 2.

We treated each keyword as a binary variable. Thus, each vulnerability is repre-
sented as amatrixwith a binary vector; if a keyword is present in the textual information
of a given vulnerability, the value of that keyword is “1” otherwise, the values is “0”.
We excluded non-labeled vulnerabilities from our clusters. For cluster analysis, we
need to ensure that the features (keywords) are not correlated. Therefore, we checked
the Pearson correlation coefficient for every two keywords per OS. When we found
statistically significant correlation, we merged the correlated keywords with a title
which included both terms. For instance, due to the high correlation of 0.99 (p value
< 0.001, H0 :p=0) between “Execute” and “Code” for all OSs, these terms were
treated as “Execute Code”. The same applied for the keywords “SQL” and “Injec-
tion”. No other significant correlation was observed.

1 cvedetails.com, cxsecurity.com, security-database.com and securityfocus.com.
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Table 2 Number of vulnerabilities per type and OS

Keywords Windows Mac IOS Linux

Denial of service 242 (27.25%) 412 (44.8%) 296 (82.2%) 860 (59.8%)

Execute code 289 (32.5%) 458 (49.8%) 24 (6.7%) 161 (11.2%)

Overflow 174 (19.6%) 338 (36.7%) 29 (8.1%) 298 (20.7%)

SQL injection 0 0 0 4 (0.3%)

Obtain information 49 (5.5%) 113 (12.3%) 9 (2.5%) 229 (15.9%)

Gain privileges 325 (36.6%) 116 (12.6%) 4 (1.1%) 205 (14.25%)

Bypass restriction or similar 62 (7.0%) 115 (12.5%) 38 (10.6%) 112 (7.8%)

Directory traversal 2 (0.2%) 12 (1.3%) 4 (1.1%) 8 (0.6%)

Cross site scripting 10 (1.1%) 15 (1.6%) 2 (0.6%) 11 (0.8%)

Http response splitting 0 2 (0.2%) 0 1 (0.07%)

CSRF 0 2 (0.2%) 1 (0.3%) 0

Memory corruption 59 (6.6%) 145 (15.8%) 5 (1.4%) 70 (4.9%)

Fig. 1 Diagram of the presented clustering approach

Figure 1 shows the diagram of our clustering approach. For clustering, we used
the well-known k-means algorithm for clustering nominal input variables. Since we
cannot use binary variables to compute distances within seeds, we used the associated
principal component analysis (PCA) scores derived from the linear combinations of
binary attributes for each OS. PCA reduces the number of features that might be
correlated to independent linear combinations of them [17]. An explanation for using
PCA with binary data is provided in [24]. Using PCA scores, the k-means procedure
uses the least square method to compute cluster centroids. Each iteration reduces the
criterion (e.g., the least squared criterion for Euclidean distance) until convergence is
achieved or the maximum iteration number is reached [25].
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Table 3 Number of vulnerabilities per type, cluster (Windows)

Keywords Windows

1 2 3 4 5 6

Denial of service 16 22 6 188 5 5

(15.5%) (91.7%) (33.3%) (69.1%) (1.7%) (2.9%)

Execute code 98 5 15 0 0 171

(95.1%) (20.8%) (83.3%) (100%)

Overflow 103 21 0 17 33 0

(100%) (87.5%) (6.25%) (11.0%)

SQL injection 0 0 0 0 0 0

Obtain information 1 0 1 43 4 0

(1.0%) (5.55%) (15.8%) (1.33%)

Gain privileges 2 14 0 0 300 9

(1.9%) (58.3%) (100%) (5.3%)

Bypass restriction or similar 0 0 0 56 5 1

(20.6%) (1.7%) (0.6%)

Directory traversal 0 0 0 1 1 0

(0.4%) (0.3%)

Cross site scripting 0 0 0 8 0 2

(2.9%) (1.2%)

Http response splitting 0 0 0 0 0 0

CSRF 0 0 0 0 0 0

Memory corruption 9 23 18 0 9 0

(8.7%) (95.8%) (100%) (3.0%)

# Vulnerabilities 103 24 18 272 300 171

Since we are using an unsupervised clustering approach, after clustering data for
different values of k, we need to use a metric to choose the number of clusters (the
best k value). To find the number of clusters, we used the aligned box criterion (ABC)
method. The cubic clustering criterion (CCC) is another common metric used to find
themost suitable number of clusters [26]. Tibshirani et al. [27] proposed a gap statistics
method which leverages Monte Carlo simulation for finding the number of clusters
in a database. However, it has been shown that ABC improves the CCC and gap
statistics methods by leveraging a high-performance machine-learning based analysis
structure [25]. In addition, we used a within-cluster dispersion as an error measure
(also called a “Gap”) by the ABCmethod [27]. In order to find the number of clusters,
we applied the ABC method that compares the calculated Gap values over a range of
possible k values. The appropriate number of clusters occurs at the maximum peak
value in Gap (k) [25]. We obtained 6, 6, 7, 7 clusters for Windows, Mac, IOS, and
Linux, respectively. Tables 3, 4, 5 and 6 list the keywords associated with each of the
six/seven clusters for Windows, Mac, IOS, and Linux respectively.
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Table 4 Number of vulnerabilities per type, cluster (Mac)

Keywords Mac

1 2 3 4 5 6

Denial of service 174 0 120 0 0 118

(64.2%) (39.0%) (100%)

Execute code 253 0 0 3 90 112

(93.4%) (2.6%) (96.8%) (94.9%)

Overflow 101 0 23 3 93 118

(37.3%) (7.5%) (2.6%) (100%) (100%)

SQL injection 0 0 0 0 0 0

Obtain information 1 1 103 8 0 0

(0.4%) (6.7%) (33.4%) (7.0%)

Gain privileges 12 0 99 4 0 1

(4.4%) (32.1%) (3.5%) (0.8%)

Bypass restriction or similar 0 0 0 115 0 0

(100%)

Directory traversal 3 0 8 1 0 0

(1.1%) (2.6%) (0.9%)

Cross site scripting 0 15 0 0 0 0

(100%)

Http response splitting 0 2 0 0 0 0

(13.3%)

CSRF 0 0 1 1 0 0

(0.3%) (0.9%)

Memory corruption 139 0 5 1 0 0

(51.3%) (1.6%) (0.9%)

# Vulnerabilities 271 15 308 115 93 118

We assumed that the keywords which covered at least 60% of vulnerabilities in each
cluster can be good representatives of relative clusters. Since none of the keywords
reached the weight threshold of 0.6 in the third cluster associated with Mac, the
keyword with the greatest weight (Denial of Service) was selected as the cluster’s
label. There is only one common cluster name among all the OSs. There are also
clusters with similar names within some OSs.

However, analyzing their linear correlation, we did not find any significant rela-
tionship based on the Pearson correlation test. Table 7 shows the cluster summaries
for the OSs.

3.2 Web browsers

Wewill focus on the vulnerabilities reported for four well-knownweb browsers: Inter-
net Explorer (1997–2016), Safari (2003–2016), Firefox (2003–2016), and Chrome
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Table 5 Number of vulnerabilities per type, cluster (IOS)

Keywords IOS

1 2 3 4 5 6 7

Denial of service 0 8 19 3 4 0 262

(100%) (73.1%) (100%) (30.8%) (100%)

Execute code 3 0 8 0 13 0 0

(6.8%) (30.8%) (100%)

Overflow 1 2 26 0 0 0 0

(2.3%) (25%) (100%)

SQL injection 0 0 0 0 0 0 0

Obtain information 6 3 0 0 0 0 0

(13.6%) (37.5%)

Gain privileges 1 0 0 0 3 0 0

(2.3%) (23.1%)

Bypass restriction or similar 35 0 0 3 0 0 0

(79.5%) (100%)

Directory traversal 0 0 0 0 0 4 0

(100%)

Cross site scripting 2 0 0 0 0 0 0

(4.5%)

Http response splitting 0 0 0 0 0 0 0

CSRF 0 0 0 0 1 0 0

(7.7%)

Memory corruption 0 5 0 0 0 0 0

(62.5%)

# Vulnerabilities 44 8 26 3 13 4 262

(2008–2016). These browsers were selected since they are widely used and had the
highest number of vulnerabilities in the database. Similar to what we did for OSs, we
considered, for each browser, all the vulnerabilities reported for any of its versions.
As an example, all the vulnerabilities reported for ie, ieexplorer, and ie-for-macintosh
were combined under Internet Explorer. Thus, we had enough data for each browser.
The total number of vulnerabilities for these browsers is 2434. The process of extract-
ing text information from vulnerability reports and labeling vulnerabilities is the same
as for the OSs. The total number of vulnerabilities as well as the number of labeled
and non-labeled vulnerabilities for the selected browsers are presented in Table 8.
Table 9 shows the number and proportion of vulnerabilities associated with a specific
keyword for the labeled vulnerabilities. As previously mentioned, vulnerabilities can
be labeled with more than one keyword.

Following the same clustering approach we explained for the OSs, we obtained the
following number of clusters: Internet Explorer (5), Safari (3), Firefox (5), andChrome
(5). We used the same threshold value we had selected before for OSs since we believe
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Table 6 Number of vulnerabilities per type, cluster (Linux)

Keywords Linux

1 2 3 4 5 6 7

Denial of service 136 53 70 600 1 0 0

(53.1%) (100%) (100%) (100%) (0.9%)

Execute code 126 0 7 17 8 2 1

(49.2%) (10.0%) (2.8%) (7.1%) (1.4%) (0.5%)

Overflow 208 15 36 0 0 31 8

(81.3%) (28.3%) (51.4%) (21.2%) (4.0%

SQL injection 2 0 0 0 2 0 0

(0.7%) (1.8%)

Obtain information 4 2 3 10 3 5 202

(1.6%) (3.8%) (4.3%) (1.7%) (2.7%) (3.4%) (100%)

Gain privileges 0 53 15 0 3 134 0

(100%) (21.4%) (2.7%) (91.8%)

Bypass restriction or similar 1 0 0 5 106 0 0

(0.4%) (0.8%) (94.6%)

Directory traversal 0 0 0 0 7 1 0

(6.25%) (0.7%)

Cross site scripting 0 0 0 0 0 11 0

(7.5%)

Http response splitting 0 0 0 0 0 1 0

CSRF 0 0 0 0 0 0 0

Memory corruption 0 0 70 0 0 0 0

(100%)

# Vulnerabilities 256 53 70 600 112 146 202

that the keywords which covered at least 60% of vulnerabilities in each cluster can
be good representatives of relative clusters. For those clusters, for which none of the
keywords reach the weight threshold (i.e., cluster #2 in Safari), the keyword with the
greatest weight becomes the cluster’s label. The cluster summaries for the browsers
are shown in Table 10. More details about the clusters and frequency of the keywords
associated with the clusters are provided in the following report online2 (we had to
remove them from the paper due to space constraints).

4 Analysis

A nonhomogeneous Poisson process (NHPP) is often used when modeling the mean
cumulative number of failures (MCF) for repairable systems and for software reliabil-
ity evaluations. The core assumption is that the number of detected failures follows a

2 https://figshare.com/s/85366e113d19e4baeae3.
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Table 7 Cluster composition for operating systems

OS Cluster number Prevalent keywords Cluster name

Windows 1 Execute code, Overflow EO

2 DoS, Overflow, Memory corruption DOM

3 Execute code, Memory corruption EM

4 DoS D

5 Gain privileges G

6 Execute code E

Mac 1 DoS, Execute code DE

2 Cross site scripting C

3 DoS D

4 Bypass a restriction B

5 Execute code, Overflow EO

6 DoS, Execute code, Overflow DEO

IOS 1 Bypass a restriction B

2 DoS, Memory corruption DM

3 DoS, Overflow DO

4 DoS, Bypass a restriction DB

5 Execute code E

6 Directory traversal DT

7 DoS D

Linux 1 Overflow O

2 DoS, Gain privileges DG

3 DoS, Memory corruption DM

4 DoS D

5 Bypass a restriction B

6 Gain privileges G

7 Obtain information O

Table 8 Number of vulnerabilities per web browser

Web browser Explorer Safari Firefox Chrome

# Vulnerabilities 379 248 890 917

# Labeled vulnerabilities 248 (65.4%) 210 (84.7%) 720 (80.8%) 796 (86.8%)

# Non-labeled vulnerabilities 131 (34.6%) 38 (15.3%) 170 (19.2%) 121 (13.2%)

nonhomogeneous Poisson process. In the case of NHPP-based repairable systems, the
intensity function λ(t) = dE[Λ(t)]/dt is often assumed to be amonotonic function of
t. Similarly, in NHPP-based software reliability models (SRMs), the intensity function
(the detection rate of software errors) is considered to be a monotonic function [28].

Let us expand the discussion for a software when there exists more than one type
of error. When any type of error independently causes the software normal function
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Table 9 Number of vulnerabilities per type and web browser

Keywords Explorer Safari Firefox Chrome

Denial of service 90 (36.3%) 162 (77.1%) 354 (49.2%) 634 (79.65%)

Execute code 114 (46.0%) 150 (71.4%) 432 (60.0%) 53 (6.7%)

Overflow 41 (16.5%) 98 (46.7%) 158 (21.9%) 203 (25.5%)

SQL injection 0 0 0 0

Obtain information 18 (7.3%) 17 (8.1%) 63 (8.75%) 36 (4.5%)

Gain privileges 0 0 15 (2.1%) 0

Bypass restriction or similar 32 (12.9%) 19 (9.05%) 95 (13.2%) 80 (10.05%)

Directory traversal 5 (2.0%) 2 (0.95%) 6 (0.8%) 2 (0.25%)

Cross site scripting 23 (9.3%) 10 (4.8%) 75 (10.4%) 29 (3.6%)

Http response splitting 1 (0.4%) 0 1 (0.1%) 0

CSRF 0 0 7 (1.0%) 3 (0.4%)

Memory corruption 33 (13.3%) 130 (61.9%) 220 (30.6%) 59 (7.4%)

Table 10 Cluster composition for web browsers

Web browser Cluster number Prevalent keywords Cluster name

Internet Explorer 1 DoS D

2 Execute code, Memory corruption, DoS EMD

3 Bypass a restriction B

4 Execute code E

5 Cross Site Scripting C

Safari 1 Execute code, Memory corruption, DoS EMD

2 DoS (0.29), Bypass a restriction (0.29) DB

3 Execute code, Memory corruption, DoS, Overflow EMDO

Firefox 1 Execute code, Overflow EO

2 Execute code, Memory corruption, DoS EMD

3 Bypass a restriction (0.34) B

4 Execute code, Memory corruption, DoS, Overflow EMDO

5 Execute code E

Chrome 1 Bypass a restriction B

2 Memory corruption, DoS, Overflow MDO

3 Memory corruption, DoS MD

4 DoS, Overflow DO

5 DoS D

to be compromised, then the superposition model represents the software failures.
Let us assume that we are dealing with vulnerabilities classified into independent
clusters. Let Λ j (t) denote the NHPP for the vulnerabilities from the j th cluster in
(0 t] with intensity function λ j (t |α j , β j ) where the function form of λ j (t |α j , β j ) is
given and the values of the parameters α j , β j are unknown. It is assumed that the
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number of vulnerabilities from any j th cluster Λ j (t), j = 1, 2 . . . J is independent.
A process Λ(t) = ∑J

j=1 Λ j (t), which counts the total number of vulnerabilities in
the interval (0 t] for the superposition model, is also a non-homogeneous Poisson
process with an intensity function λ(t |α, β) = λ1(t |α1, β1) + · · · + λ1(t |αJ , βJ ),
where α = {α1, . . . , αJ } , β = {β1, . . . , βJ }. Since the superposition model remains
an NHPP (all intensity functions are NHPPs), the associated superposition model can
be applicable [28]. Two important cases of NHPPs consist of the related intensity
function following a power-law and log linear (exponential) function of time [29,30].
In such case, the equations become:

λ j (t |α j , β j ) = α j

β j

(
t

β j

)α j−1

= α j tα j−1

β
α j
j

(1)

Λ(t) =
∫ t

0

J∑

j=1

λ j (t |α j , β j )dt, α j > 0, β j > 0 (2)

In this paper, we expect to obtain better assessment results when relaxing themono-
tonicity assumption of the intensity function that is prevalent in SRMs and VDMs.We
created independent clusters that can be modeled using separate NHPPs. In this paper,
we selected the power-law model since Allodi [31] showed that vulnerabilities may
follow a power-law distribution. In addition, the power-law model has been widely
used in research on software reliability analysis [32–34]. We considered two models
for this paper. The first model is a NHPP-based SRM, which uses non-clustered data
(including all the labeled and non-labeled vulnerabilities). The second model is the
superposition of the NHPPs fitted to the clustered data (only the labeled vulnerabilities
can be used to create the clusters), which relaxes the monotonicity assumption of the
intensity function. The purpose of both models is to fit and predict the total number
of reported vulnerabilities (labeled and non-labeled).

The analysis was done in two steps. First, we used the time difference between
vulnerability report dates to find the model parameters from the process of fitting
NHPPs to the data (clustered and non-clustered). The models were fitted to the
datasets using a non-linear regression method described in [35] that uses a minimiza-
tion algorithm called “Levenberg − Marquardt” to estimate the parameter values.
Non-homogeneity of the clusters were also validated by looking at Laplace-trend test
results provided by MiniTab 16 to see whether there were meaningful trends in the
clusters. Second, we used the estimated parameters and the models, and simulated
corresponding MCFs (one MCF for clustered data, and one for non-clustered data)
starting from t0 = 0 and time interval of 30days.

5 Results

In this section we will provide the results regarding estimation (comparing the
results between clustered data and non-clustered data) and forecasting (comparing
the obtained predictions with clustered data and non-clustered data using a subset of
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the data). We first discuss the results obtained for the four OSs and then for the four
web browsers.

5.1 Operating systems

Figure 2 shows the observed vulnerability data, the MCF obtained without clustering
the data and the superimposed MCF when clustering is applied for the four OSs.
For Windows, the MCF with clustering is more conservative during roughly the first
3000days then the MCF without clustering becomes more conservative. The real data
crosses the estimates between roughly 2000 and 3000days. Besides this period, the
MCF with and without clustering provide more conservative estimates. For IOS, the
MCF with and without clustering as well as the real data are almost overlapping.
For Mac and Linux, the MCF with clustering is above the MCF without clustering,
providing a more conservative estimation. The real data is above the MCF without
clustering and for a short period above the MCF with clustering. Thus for Mac and
Linux, the MCF with clustering provide more conservative and accurate estimates.

The analysis of forecasting is done for the final third of the time period from the
beginning of the vulnerability discovery process. During the training period (first two
thirds of the time period), all the available data are used to estimate model parameters.
Figure 3 shows the forecast of the number of vulnerabilities based on the MCFs
calculated with and without clustering compared to the observed vulnerabilities. For
the vulnerabilities associated withWindows, the forecast with clustering leads to more
conservative and more accurate estimates compared to non-clustering. In addition, the
forecast without clustering remains below the observed vulnerability data (real data)
for the prediction time period which started after day 5088. Both models lead to
more conservative predictions for the vulnerabilities associated with Mac. However,
the clustering-based MCF trajectory provides more accurate predictions. For IOS
the forecast without clustering is more conservative compared to the forecast with
clustering. When the MCF without clustering remains above the real data (which is
good), it is not the case of the forecast with clustering where the real data crosses
the forecast after day 7500. For Linux, the predictions with clustering and the real
observed data are close but the forecast remains above the real data and thus provides
conservative estimation (which is good). The clustering-basedMCF is, however, more
accurate than that of the non-clustering MCF.

We applied the Chi-square (χ2) goodness of fit test [14] to see how well each
model fits the datasets for both estimation and forecasting. The Chi-square statistic is
calculated using the following equation:

χ2 =
N∑

i=1

(Si − Oi )
2

Oi
(3)

where Si and Oi are the simulated and expected observed values at i th time point,
respectively. N is the number of observations (the time blocks used for simulation).
For the fit to be acceptable, the corresponding χ2 critical value should be greater than
the χ2 statistic value for the given alpha level and degrees of freedom. We selected an
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Windows Mac

IOS Linux

Fig. 2 Comparison of clustered and non-clustered MCFs with vulnerability data

Windows Mac

IOS Linux

Fig. 3 Comparison of clustered and non-clustered forecasts with vulnerability data

alpha level of 0.05. The null hypothesis indicates that the actual distribution is well
described by the fitted model. Hence, if the p value of the χ2 test is below 0.05, then
the fit will be considered to be unsatisfactory. A p value closer to 1 indicates a better
fit.
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R2 is another fitting statistic widely used in regression analysis [17,36]. R2 values
close to 1 indicates a good fit. We also considered an additional error indicator to
compare the accuracy of the results derived from both models. The normalized root
mean square error (NRMSE) is often used. However, Mentaschi et al. [37] showed
that for some applications (e.g., high fluctuation of real data) the higher values of
NRMSE are not always a reliable indicator of the accuracy of simulations. To remedy
the situation, a corrected estimator HH was proposed by Hanna and Heinold [38]:

HH =
√
√
√
√

∑N
i=1(Si − Oi )2

∑N
i=1 Si Oi

(4)

where Si is the i th simulated data, Oi is the i th observation and N is the number of
observations (the time blocks used for simulation). The closer to zero HH is, the more
accurate the model.

Table 11 contains the Chi-square goodness of fit test for the clustering-based MCF
and the MCF without clustering, the values of R2, and HH for the vulnerabilities of
the four OSs in our study. We considered the entire dataset for analyzing estimation
accuracy. When considering the entire dataset, both estimations (with/without clus-
tering) are statistically sound for all OSs but one (Mac, without clustering) with p
values greater than 0.05. The Chi-square test results indicate that both fits are reason-
ably good in most cases except the case associated with the non-clustered based MCF
on Mac data. The R2 statistics show that estimations based on clustering are more
accurate than the ones without clustering. HH results also show that clustering based
estimations came up with smaller errors compared with non-clustering. For the four
OSs, the estimations based on clustering were more accurate in all cases. In addition,
the MCF model without clustering was not statistically adequate to model the vulner-
ability data in one case (Mac). Table 12 contains the Chi-square goodness of fit test
for prediction values of the clustering and non-clustering-based MCF, the R2 and HH
prediction values for the vulnerabilities of the four OSs. We considered the common
66% splits between training and forecasting which means all the available data in the
first two thirds of the study time period were used to estimate model parameters.

For the vulnerabilities associated with Windows, Mac, and Linux, all considered
training/forecasting results using non-clustered data lead to statistically inadequate fits
since all the relative p values are zeros. For vulnerabilities associated with IOS, while
both models came up with adequate fits based upon the Chi-squared test result, the
clustering-based forecast is more accurate due to higher R2 and lower HH values. For
the other OSs, the predictions associated with clustered data are statistically sound
with p values greater than 0.05 and reasonably good R2 and HH values. Thus, the
forecasts based on clustering were more accurate in all cases. In addition, the MCF
model without clustering was not statistically adequate to model the vulnerability data
in three cases.
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Table 11 Estimation accuracy for the four operating systems

Estimation With clustering Without clustering

p value R-sq HH p value R-sq HH

Windows 1 0.975 0.098 1 0.945 0.145

Mac 0.052 0.851 0.242 0.028 0.837 0.326

IOS 1 0.987 0.084 1 0.972 0.098

Linux 1 0.995 0.06 1 0.992 0.099

Table 12 Forecasting accuracy for the four operating systems

Forecasting With clustering Without clustering

p value R-sq HH p value R-sq HH

Windows 0.792 0.838 0.104 0 0.558 0.196

Mac 0.115 0.577 0.238 0 − 0.316 0.514

IOS 0.992 0.902 0.122 0.977 0.896 0.135

Linux 0.708 0.833 0.102 0 − 1.822 0.367

5.2 Web browsers

Figure 4 shows the observed vulnerability data, the MCF obtained without clustering
the data and the superimposed MCF when clustering is applied for the four web
browsers. For Internet Explorer, the observed number of vulnerabilities almost leveled
off after 4000days which means the relative vulnerability detection rate decreased.
BothMCFswith andwithout clustering seem inadequate inmodeling Internet Explorer
data since they are power-law based equations and are designed to model data with
constant or increasing discovery rate. Thus, both MCFs show high deviations from
the real data. The number of vulnerabilities associated with Chrome also experiences
a similar condition after day 1500, and both MCFs seem inappropriate for modeling
such S-shaped data. However, in the first 1500days the MCF with clustering is more
conservative than the MCF without clustering. For Safari, despite large fluctuation at
day 3400, both MCFs are capable of providing good fits to the real data. However,
the MCF with clustering seems to be closer to the observed data, most of the time,
but is less conservative. For Firefox, which has almost constant discovery rate, the
MCF with clustering is more accurate and more conservative than the MCF without
clustering, especially after day 1500. In summary, the MCF with clustering provides
more accurate estimations for Safari and Firefox. However, for Internet Explorer and
Chrome, the power-law model is not adequate for curve-fitting purposes.

Like for the OSs, the analysis of forecasting is done for the final third of the time
period. During the training period (first two thirds of the time period), the data is
used to estimate model parameters. Figure 5 shows the forecast of the number of
vulnerabilities based on the MCFs calculated with and without clustering compared
to the web browsers’ observed number of vulnerabilities.
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Explorer Safari

Firefox Chrome

Fig. 4 Comparison of clustered and non-clustered MCFs with vulnerability data

For the vulnerabilities associated with Internet Explorer and Chrome, similar to
what we observed for estimation, both MCFs forecasting results are distant from the
real data. Since bothMCFs (with/without clustering) for Internet Explorer andChrome
highly deviate from the real data, we observe that the power-law model is not suitable
for modeling this data. For Safari, the forecast with clustering provides more accurate
predictions compared to the forecast without clustering. The MCF without clustering
was unable to provide accurate forecasts after day 3300. For Firefox, both MCFs
provide very accurate forecasts until day 3530. Starting from day 3530, both MCFs
provide conservative but less accurate forecasts, (the MCF with clustering provides
slightly conservative results).

Table 13 contains the Chi-square goodness of fit test for the clustering-based MCF
and theMCFwithout clustering, the values of R2, and HH for the vulnerabilities of the
four web browsers. When analyzing estimation accuracy, both MCFs (with/without
clustering) are statistically significant for two browsers (Safari and Firefox) with p
values greater than 0.05. The Chi-square test results indicate that both MCFs are not
statistically significant for Internet Explorer andChromewhichmeans that the selected
power-law model is not suitable for modeling the data with such attributes (i.e., data
with decreasing discovery rate in their overall discovery trend). The R2 statistics/values
for Safari and Firefox are almost equal per case, and indicate that both models have
provided goodfit to the real data. TheHH results show that clustering based estimations
have smaller errors compared with non-clustering for Safari and Firefox.

Table 14 contains the Chi-square goodness of fit test for prediction values of the
clustering and non-clustering-based MCF, the R2 and HH prediction values for the
vulnerabilities of the four web browsers in our study.We considered the common 66%
splits between training and forecasting which means all the available data in the first
two thirds of the study time period were used to estimate model parameters.

123



Y. Movahedi et al.

Explorer Safari

Firefox Chrome

Fig. 5 Comparison of clustered and non-clustered forecasts with vulnerability data

Table 13 Estimation accuracy
for the four Web Browsers

Estimation With clustering Without clustering

p value R-sq HH p value R-sq HH

Explorer 0 0.92 0.31 0 0.95 0.21

Safari 0.96 0.98 0.12 0.90 0.97 0.13

Firefox 1 0.99 0.084 0.98 0.99 0.15

Chrome 0 0.88 0.455 0 0.88 0.295

Table 14 Forecasting accuracy for the four Web Browsers

Forecasting With clustering Without clustering

p value R-sq HH p value R-sq HH

Explorer 0 0.89 0.16 0 0.89 0.39

Safari 1 0.94 0.11 0 0.90 0.54

Firefox 0.98 0.98 0.071 0.98 0.98 0.057

Chrome 0 0.94 0.51 0 0.94 0.315

For the vulnerabilities associatedwith Internet Explorer andChrome, all considered
forecasting results using both clustered/non-clustered data lead to p values less than
0.5. However, it will not be a problem since due to high fluctuation of vulnerability
data, HH values are recommended to compare the modeling strategies in terms of
prediction. Almost all the research in this area used normalized predictability metrics
like HH, NRMSE, and average error (AE) for making predictability comparisons
between SRMs/VDMs.

For Safari, the forecast results without clustering are also statistically insignificant,
while theMCFwith clustering leads to statistically significant results. TheHHvalue for
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the MCF with clustering is also smaller than that without clustering. For Firefox, both
models lead to statistically significant results. The forecasts are very close based on
the R-squared values. However, the HH values show that the model without clustering
provides more accurate results than the model with clustering.

6 Limitations

The main limitation of the work we present in the paper is with regard to using SRMs
as VDMs. Software reliability models usually assume that the time between failures
represents total usage time of that product. What we are using is calendar time, which
may not be a good proxy for usage. Crucially the difference in security is the difficulty
in estimating the “attacker effort”—the total amount of time that an attacker spends
in finding a vulnerability—which is something that is not needed for reliability (we
assume the users accidentally encounter faults that lead to failures, hence usage time
is a good enough proxy for time between failures). A useful discussion of this is given
in [39]. Note that this limitation is not only for our work, but applies to research
that uses SRMs as VDM and utilizes vulnerability data. However, attacker effort is
something that is very difficult to estimate and quantify. The purpose of our research
is hence to make as good a use as possible of the publicly available security data to
help with decision making. But at the same time to be clear about the limitations on
what we can conclude from this analysis. The best we can say from the analysis we
present is “the total number of vulnerabilities that will be reported in the NVD over
an interval t for product x is y with confidence z”. And we show that we can do this
prediction better with clustering than without clustering for four of the largest and
most commonly used operating system and web browsers families. For some decision
makers this may be a valuable piece of additional information, which they can use
in conjunction with data they have from their own installations, when deciding on
security operating system/web browser/product choices, and provisioning of security
support services to deal with new vulnerabilities.

We have only applied the approach to four well-known operating systems and web
browsers that had the largest number of vulnerabilities compared to others. We do not
know yet how well this works for other operating systems and web browsers or other
applications like databases, though we plan to extend this work in the future.

7 Conclusions

We presented an approach that: first, uses existing clustering techniques to group
vulnerabilities into distinct clusters; second, uses an existing nonhomogeneousPoisson
process (NHPP) SoftwareReliabilityModel (SRM) tomake predictions on the number
of new vulnerabilities that will be discovered in a given time period for each of those
clusters for a given OS/web browser; and finally, superimpose the SRMs used for each
cluster together into a single model for predicting the number of new vulnerabilities
that will be discovered in a given time period for a given OS/web browser.
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We provided results from applying our approach to vulnerabilities of four different
OSs (Windows, Mac, IOS, and Linux) and four web browsers (Internet Explorer,
Safari, Firefox, and Chrome), and comparisons of the predictive accuracy of our
approach compared with an NHPP model (with monotonic intensity function) that
does not use clustering. For the OSs, we found that our approach with clustering,
compared with the same modeling mechanism without clustering:

– Is statistically adequate in terms of model fitting and forecasting based upon the
Chi-squared goodness of fit test results for all cases we analyzed, while the model
without clustering was not statistically sound in 4 out of 8 cases analyzed

– Gives more conservative forecasting results in all cases while the model without
clustering was not conservative for Windows

– Gives more accurate results for all the cases analyzed compared to non-clustering.

For the web browsers, we found that our approach with clustering, compared with
the same modeling mechanism without clustering:

– Gives more accurate results in terms of curve-fitting for all cases where the power-
law model was statistically sound to model the data (i.e., Safari and Firefox)

– Leads to statistically insignificant results in terms of prediction for two browsers
with or without clustering . For Firefox, the forecasting results are less accurate
but slightly more conservative for non-clustering compared to clustering.

These results look encouraging, especially as they have been applied for some of
the most widely used software products (operating systems and web browsers) which
tend to have the highest number of vulnerabilities reported.
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