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ABSTRACT

NUMERICAL METHODS FOR THE INTERPOLATION AND

APPROXIMATION OF DATA BY SPLINE FUNCTIONS

It is often important in practice to obtain approximate representations
of physical data by relatively simple mathematical functions. The
approximating functions are usually required to meet certain criteria
relating to accuracy and smoothness. In the past, polynomials have
frequently been used for this task, but it has long been recognised that
there are many types of data set for which polynomial approximations are
unsatisfactory in that a very high degree may be required to achieve the
required accuracy. Moreover, even if such a polynomial can be computed,
it frequently tends to exhibit spurious oscillations not present in the

data itself.

In an attempt to overcome these difficulties attention has turned in
recent years to the use of piecewise polynomials or spline functions. A
spline function, or simply a spline, is composed of a set of polynomial
arcs, usually of low degree, joined end to end in such a way as to form
a smooth function. Splines tend to have greater flexibility than
polynomials in the approximation of physical data and much attention has
been devoted in the last decade to the theory of splines. The development
of robust numerical methods for computing with splines lias, however,
lagged somewhat behind the theory. The main objective of this work is
the construction and analysis of such methods. In order to obtain
efficient and stable metnods a representation of splines that is well-
conditioned and that results in fast computational schemes is required.

Representations in terms of B-splines prove to be eminently suitable and



accordingly we study B-splines in some detain and give various algorithms

for calculations in which they are involved.

when B-splines arc used as a basis for interpolation oi' least-squares
data fitting the resulting linear algebraic systems to be solved for the
spline coefficients have a special structure. Stable numerical methods

that exploit this structure to the full are presented.

Cur algorithms are used to obtain spline approximations to a variety of
data sets drawn from practical applications. Their performance on these
problems illustrates the power of splines over more conventional

approximating functions.
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INTRODUCTION

ITany computations with polynomials have been, systematised in the last
two decades by the use of Chebyshev series. EXxpressing the approximate
solution to a wide variety of problems as a polynomial in its Chebyshev-
series form has often proved extremely beneficial. One of the main
benefits of this approach stems from the fact that in many applications
Chebyshev polynomials form an extremely well-conditioned basis for the
class of polynomial functions. Examples of the application of Chebyshev
series abound: in the fields of function and data approximation,
interpolation, quadrature, differential equations and integral equations

are to be found many interesting and practical results.

Polynomial splines are a generalization of polynomials in that a spline
of order n includes, as special cases, all polynomials of degree less
than n. We treat in some detail in this work what we consider to be a
spline counterpart to the Chebyshev polynomials, viz the B-splines. The
B-splines of a given order defined upon a prescribed set of knots form
for many purposes a well-conditioned basis for the class of splines of
that order with che same knots. Moreover, the B-splines too have
application to many problems in numerical analysis, including those
referred to above. Considered here are sone of the properties of
B-splines, many of which are new, and ways in which these properties can
be utilised to advantage in problems of interpolation and approximation

of discrete data.

The theory of splines has made significant advances, particularly in
the last decade (see the bibliography by van Rooij and Schurer, 1973)»
after a relatively quiet period following the pioneering work of

Schoenberg (1946), However, the development of reliable and efficient



algorithms for spline compuiaxions has lagged significantly behind the
theoretical development. Accordingly, in order to swing the balance a
fraction in favour of the practical side, our approach is predominantly
algorithmic. We concentrate upon the development of what we believe are
fundamental and useful algorithms for computing with splines expressed
in their B-spline form* Many of these algorithms are supported by
practical results as well as by rigorous error analyses, the latter

often indicating the degree of stability of the algorithms.

Of the ten chapters in this work the first five constitute "backbone"

chapters upon which the remaining five depend.

Chapter 1 is primarily expositors- and discusses floating-point arithmetic
and basic concepts relating to the error analysis of computational
processes. Our approach is essentially that propounded by Wilkinson
(see, in particular, Wilkinson, 1955; Peters and Wilkinson, i971)- W
also describe the step-by-step manner in which our algorithms are
presented and what we understand by the numerical stability of a

computational process.

The first part of Chapter 2 is also mainly expository in that methods
for the numerical solution of linear algebraic systems in both the
determined and over-determined cases are surveyed. The work of
Wilkinson (particularly Wilkinson, 1965; Peters and Wilkinson, 1970)
has again strongly influenced our treatment. We then discuss the use
of both classical and mod -m forms of plane (Givens) rotations
(Gentleman, 1973; Hammarling, 1974) for solving over—determined (least-
squares) systems and give reasons why we believe that plane rotations

have advantages over other methods such as Householder transformations

and modified G-ram-Schmidt. These reasons are reinforced by a comparison,
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based on the timing analysis of Wichmanu (1973), cf the relative
efficiencies of methods for least-squares problems. The second part of
Chapter 2 contains detailed descriptions of some new algorithms for the
solution of the structured (stepped-bended) linear systems that arise

in spline interpolation and approximation problems. For the fully-
determined square case (interpolation) va give algorithms based upon
G-aussian elimination (GS) and elementary transformations, and for.’ the
rectangular case algorithms based upon classical and modern forms of
plane rotation (Pil). The GS algorithm can be considered as a
generalization of the algorithm of Martin and Wilkinson (1367) for Larded
systems, and the HI algorithm as a specialisation of the Givens algorithm
of Gentleman (1973)» Our algorithms prove to have advantages in terms
of simplicity, speed and storage over those based on Householder
transformations for stepped-banaed linear systems given by held (1967)
and Lawson and Hanson (1974). Finally, it is shown that the powerful
singular value decomposition nay be adapted to analyse stepped-banded

systems efficiently.

In Chapter 3 polynomial splines and their properties are discussed and a
particular form of fundamental spline, the B~spline, is introduced. A
new identity (Cox, 1972) relating B-splines of consecutive degrees is
then established. This identity, which expresses the value of a B-spline
of order n as a convex combination of two B-splines of order n-1, find
which proves fundamental to our work, was discovered simultaneously in
the United States by de Boor (1972). We give algorithms based upon the
conventional method employing divided differences ana upon convex
combinations for evaluating B-splines. Detailed error analyses and
test computations are used to demonstrate conclusively that algorithms
based upon the use of convex combinations ore unconditionally stable for
arbitrary (even multiple) knots, whereas algorithms employing divided

differences may give extremely poor results.
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In Chapter 4 a recurrance relation due to de Boor (1972) l'or the
derivatives of B-splines is established. A new relation of this type

is then obtained that proves to be an extension of the fundamental
identity discovered in Chapter 3. Two results that prove to be of
considerable use in subsequent chapters are then established: the values
of all E-spline derivatives at the ends of the range, as well as certain
derivatives at the knots, can all be computed in an unconditionally stable
manner. A class of algorithms due to Butterfield (1975) for E-spline
derivatives in the general case is then outlined. Finally, some results
relating to the definite and indefinite integration of B-splines are
given: these results all appetir apparently for the first time, with the
exception of one due to Butterfield (1975)> which is a further
generalization of the identity of Chapter j> and one discovered

independently by Gaffney (1974).

Chapter 5is concerned with various computations arising from the
representation of splines and polynomials in terms of B-splines. Pc
present a particularly useful result due to de Boor (1972) which expresses
a linear combination of B-splines in terms of B-splines of lower order
with certain polynomial coefficients. This result is then -used to
establion a new proof the, the B-splines form a linearly independent set
of basrs funccions in terms of which an arbitrary spline s(x) can be
expressed, and oo esoablxsli local lower and upper bounds for s(x) dn
terms of its B-spline coefficients. Two schemes proposed by de Boor (1972)
for the evaluation of s(x) are described and, for the first time, error
analyses of these schemes, which demonstrate their unconditional
stability, already observed empirically by de Boor, are given. The
problem of representing powers of x in terns of B-splines is then

addressed and new algorithms for this problem are presented and detail”



error analyses carried out. Methods for representing in their B-spline

form the derivatives and integrals of r(x) are then considered.

Chapter 6 is the first of three "applications” chapters and discusses

the interpolation of a data set 'ey splines of arbitrary order with
arbitrary knot- positions. A new algorithm, together with a detailed
error analysis, is presented for this problem. Schumakor (196?) has
spoken of the need for such an algorithm. In particular, it is shown
that if B-splines are evaluated as recommended and if one of the algorithms
proposed for solving stepped-bandod systems is employed, the computed
spline is the exact interpolant of a neighbouring data set. Choices for
tlie exterior knots (required in order to define a full set of P-splino
basis functions) and the interior knots are discussed; in particular the
dependence of a certain condition number upon the positions of these Imots
.is investigated using the singular value decomposition (SVD). Sone
informative numerical tests are carried out and a practical problem :ia

solved.

Chapter ] is the counterpart of Chapter 6 in tho case where a least-
squares approximation rather than an interpolating function is required.
A new algorithm ior testing whether a unique spline approximant exists in
any given case is presented. For the least-squares spline-fitting
problem itself an algorithm for splines of arbitrary order with arbitrary
knot positions is proposed. This algorithm again utilizes the convex-
combinations scheme and the methods for stepped-banded systems and is a
generalisation of that given by Cox and Hayes (1973) for cubic splines.
An error analysis of this algorithm is given and, with the aid of the SVD,
an extremely encouraging conclusion is made relating to its stability.
The important case of cubic splines is discussed ar.d the question of knot

placement is addressed. As well as a test example, a number of sptjne
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fits to real data sets are presented.

Chapter 8 concentrates on the typo of problem where more information than
that contained solely within the data set itself is prescribed. It is
shown that some important types of continuous constraints upon the
approximating spline may be enforced by imposing upon the spline a finite
number of point constraints. A new representation of cubic splines is
then used, in conjunction with sn extension to algorithms due to
Barrodale and Young (1966) for L.j- and Lw -approximation, for spline
fitting subject to convexity and concavity constraints. Practical

examples are given to demonstrate the usefulness of tho approach.

In Chapter 9 the incorporation of linear equality constraints in spline
approximation problems is discussed. In particular, it is shown that
boundary conditions may be incorporated readily by a simple modification
to tho basis. For more general constraints, algorithms for linear least-

squares problems with linear equality constraints are discussed.

Finally, Chapter 10 discusses briefly the extension of some of the methods
of the earlier chapters to more than one independent variable. The
interpolation and least-squares approximation to data given at all
vortices of a rectangular mesh by a tensor product of univariate functions
is first discussed. The case wliero the univariate functions tire B-splines
is then treated. The general problem of the least-squares spline
approximation of arbitrary multivariate data, for which an algorithm has
been given in the cubic case by Hayes and Halliday (1974), is then

examined.



CHATTER 1

FLOATING-POINT ARITHMETIC ANN ERROR ANALYSIS

This chapter is one of three "backbone'l chapters to this work; it serves
as an introduction to floating-point arithmetic, error analysis, algorithm
and numerical stability. In Section i.1 vie summarise the rudiments of
floating-point arithmetic, adhering closely to the concepts developed by
Wilkinson. In particular, wo detail those aspects of floating-point
arithmetic of which we shall make considerable usein subsequent chapters,
where we analyze a number of computational processes relevant to spline
approximation. In Section i.2 we illustrate the type of error analysis
vie shall be carrying out by os».mining some simple formulae for linear
transformations and, from the results of our analyses, make a conjecture
relating to the analysis of more general processes. We also discus.:
running error analysis and the derivation of a posteriori and a priori
error bounds. In Section 1.3 viegive a brief discussion of algorithms
and what we understand by numerical stability. We also outline the way
in which we shall present algorithmic descriptions of our computational

processes.

11 Floating-point arithmstj,c

Many of the numerical methods described in the following chapters will

be analyzed in terms of their implementation in standard binary floating-
point arithmetic.'" In this respect we shall follow closely the approach

of Wilkinson (1973, 1975)

A number x is termed a standard binary floatin,--point number if it car.
be represented by an ordered pair (a,b) such that x = a2*\ Here b, the
exponent, is an integer, positive or negative, usually restricted to the

G G
range -2 %— n\2 , where c is an integer, typically in the range 7 to 10:



a, the mantissa, is a binary number, usually satisfying g ™ Ja] < !,
with no more than t binary digits. Typical values of t lie in the range
16 to 48. The value of 2 “ is termed the relative machine precision.

The number aero is represented in the non-standard form a = b = 0.

A relation of the form

y =fl(x1 * x2 *x»* ... « xn), (1.1.1)
where ca,ch * denotes any one of the arithmetic operations +, -, X or 4,
implies that , X0, ..., X andy aro stai',dara binary floating-point

numbers (or zero), and that y is the result of performing the appropriate
floating-point operations. The multiplication sign will frequently be
omitted; thus x”™ 2 implies / x?. The division sign (-)) will frequently
be replaced by slash (/) or a horizontal line, in the usual way.
Parentheses on the right-hand side of (1.1.1) are often necessary to
remove ambiguity or to emphasise the order of the computation. Otherwise
the sequence of floating-point operations is assumed to take place from
left to right, with the usual rules of precedence of X and ~ over + and
Thus, for example, y = fl(x.j X 7 y*) implies (i) y™ = fl(x™ X x7),
(ii) y - fiCwg. t y = fI(-"~ -——Ilit) implies (i) y» =flfrn),

5 6
(ii) y2 = n ~3x~ > Nii) » (iv) y4 = fi(x 5-xé),
(v) vy = fl(yy yif) = hi/Zidently, any rational arithmetic expression can be
represented in iioating-point arithmetic terms by compounding basic

operations of the formy = fl(x «x”)e
We assume that the rounding errors in the operations are such that
fIC*,*"~) = (-1'x2)(1+e), (1.1.2)

where



For multiplication and division the value of s will bo taken as zero
if either x or is an integral power of 2. Y/ assume further that

relations of the type
fi(xix:;2) = (x*gVCl+e), (1.1.4)

where s satisfies (1.1.3), also hold. Relations (I.1JH are due to
Kahan (see Peters and Wilkinson, 1971) and are sometimes more convenient
than (1.1.2). In any particular situation we shall use either (1.1.2)

or (1.1 J\) as appropriate.

Wilkinson (1973) states that some computers have less accurate rounding
procedures than those which give the above results, but we assume (as do
Peters and Wilkinson (197"1) in a different context) that the differences

are not of great consequence.

We shall also make use of the relations
(142 *)° <« 1 + 1.06s2 ", (1.1.3)
(I-2-t)“S< 1 +.1.1282%~*, (1.1.6)

where s is a positive number (often integrall). Relations (1.1.5) and

(1.1.6) hold as long as s and t satisfy the mild restriction
s2 t< 0.1. (1.1.7)

Y/e assume throughout this work that the inequality (1.1.7) is satisfied
for all (reasonable) values of 5 that arise. (On the English Electric
XDF9 computer, for which t=39, this means that s can be as large as

(0.1)2"~ = 5*5 X10 ) Relation (1.1.5) is given by Wilkinson (1963:

pli3) (1.1.t; by Cox (1972). Following Wilkinson (1965:pH4.) we



shall sometimes use relation (1.1,5) in the form
(1+2"t)s < 1+ s2 ‘1, (1.1.8)

where

2 tl = (1.06)2"* (1.1.9;
We observe that relation (1.1.7) is therefore equivalent to the inequality

2 < 0.106 . (1.1.10)
Moreover, (1.1,5), (1.1.6) and (1.1 .7) yield

(142 t)S< 1.106 (1.1.11)

and

(12 % s< 1.112 . (1.1.12)

Throughout this work, unless otherwise stated, a (with or without

subscripts or superscripts) denotes a number satisfying
le| ~ 2t (1.1.13)

and e (again with or without subscripts cr superscripts) a number

satisfying

le) < V-1

T/e shall often estimate the arithmetical work Fequired by various
computational processes by counting the number ¢ long operations required.

division.

1.2 Floating-point error analysis
As an illustration of the type of floating-point error analysis we shall
be carrying out in subsequent chapters, we examine various formulae for

linear transformations. Linear transformations are required in Chapters 5



and 6, where it is important that they are carried cut in a minericalUy
stable manner. We will see that the error analyses indicate very ole-'irly
whether a particular way of computing the transformation is stable or

potentially unstable and, in the latter case, the reasons for the installlat;

Consider the linear transformation

X=@2x- a- b)/(b -a), (1.2.1)

which maps the interval £a,b] into {1, +1J. When implemented in

floating-point arithmetic the computed value X of X will bo contaminated

by rounding errors. Our aim is to produce a bound for jbxj, where

SX = X - X, (1.2.2)
which holds for all x6M . We seek a function K(a,b) such that
IBX] ~ K(a,b)2 t. (1.2.3)

It may seem somewhat surprising that v.e employ this formal approach to

such an apparently innocuous computation as (1.2.1). The point we wish

to stress, which we hope is brought out ry our analyses, is that attention
to detail is of vital importance in this and in many other computational
processes. For instance, the nature of the error introduced in forming X
is dependent upon the precisa ordering of the basic arithmetic operations

in (1.2.1) and, moreover, is influenced even mora if (1.2.1) is re-expiessed

in certain other mathematically equivalent but computationally distinct

forms.

Three possible ways of carrying out the transformation are given by

X t-a 5 (1.2.4)
« = 2x-(a*b)
= ba (1.2.5)

uid



X =cx - d, (1.2.0)
where
c = 2/(b-a), (1.2.7)
d = (a+h)/(b-a). (1.2.8)

A floating-point error analysis of (1.2.4) yields

X = {(2x-a)(l+el)-h} (I+e2)(I+e”)(l iK™/ (t>-a). (1.2.9)
where

9] *2t (i=i.,2,3,4), (1.2.10)
from which

SX = X-X = (g l(2x—a)+3e (2x-a-b)}/(b-a), (1.2.11)
where

lel| - €01 < 2"t (1.2.12)
Thus

£X = e. {b/(b-a)+x} +3e2X (1.2.13)
and hence

leX] < {jbi/Z(b-a)+t} f t1. (1.2.1L;

y/e see immediately from (1,2.14) that the error in the computed value of
X may be appreciable if the length b-a of the original interval is small

compared with the'magnitude of b.

Analysis of (1.2.5) and (1.2.6) result in boundsfor £X similar in form
to (1.2.14). This state of affairs is particularly unfortunate in the

case of the tnird form of the transformation equation because the use cf
(1.2.6) appears to be eminently sensible if the transformation is to be
used for a large number of x-values, since the constants ¢ and d can be

pre-computed from (1.2.7) and (1.2.8) with 2 consequent saving in arithmetic,



A fourth fern of the transformation, which we now study, is uncord;tionaily

stable. Consider the use of the expression

X = {(x-a)-(b-x)} Z/(b-a) (1.2.15)

to compute the value of X. An error analysis of this "somewhat \;nnatural”

form gives
(M il+e~-M C l+en} (I+eb)(I+ed)(l+eb) N> N
b-a
where
ju.j ~ 2t (i=1,2,3,4,5), (1.2.17)
from which
(n NV o ( - I.N 1218
_ (1.2.18)
SX = b -a
where
hi» hl> h <2'tl- (1-2-19)

Thus, since ? a ™ b, it follows from (m'.2.18) and (l.2.iy) that
foxj < (4)2"t1. (1.2.20)

Note that the form (1.2.15) is computationall;.- no mere expensive than

(1.2.A) or (1.2.5), but unlike them yields at worst a very small error.

We now consider briefly a second stable form, having an error round only
slightly inferior to (1.2.2C). The approach is based upon carrying out
the linear transformation (1.2.1) in two stages, viz. transformation to
the interval £0,lj, followed by transformation to C~1,1}. Error analyses

of the "obvious" transformations

r =fq (*.2.21)

and



X = 2X -1,
(1-2.22)
vrhioh carry out inns two—stage pi'ocess, yield

o= rf (1.2.23)

and

X = (2X'-a)(1+e”) = (+cl)(1+e9) (1+e~)*i] (i+e”), (1.2.24)

where X' is the value of the intermediate variable, computed values are

denoted by "bars" as usual, and
Is.|~2t (i=1,2,3,4) (1.2.25)
From (1.2.24),

6c (x-a) /\
BX = X-X = __b_—_é____ + 6,4 - 4- (1 226)

where

hi- kl< A (1.2.27)

from which

M < (7)s"tl. (1.2.26)

The transformations (1.2.21) and (1.2.22) can of course be combined to

form the single transformation

2(t-&)
b-c (1.2.25)
or, expressed slightly differently, as
b-a (1.2,30)

It is readily established that the use of (1.2.29) also gives an error

satisfying (1.2.23) and that the bound for (1.2.30) satisfies

6 6)2"t1.
X< (f) (1.2.31)



A much more detailed analysis, which takes into account the precis's

nature of the bit patterns in the mantissae of the floating-point
representations of a, b and x, reveals that for nearly all values of those
numbers the bound (1.2.1k) is unduly pessimistic. In particular, the
analysis shows that in these cases the value of e in (1.2.9) is zero,

with the consequence that in (i.2.11) is zero and hence
16x| < (3)2~ti. (1.2.32)

However, the detailed analysis also shows that there are values of the
numbers a, b and x which result in e” being exactly equal in modulus to
2 . In these cases the bound (1.2.14) proves to be realistic and predicts

accurately the magnitude of the actual error in the computed value of X.

Detailed analyses of (1.2.3) and (1.2.6) reveal that the corresponding
bounds are in fact realistic for most, rather than a few, values of a, L
and x. | am indebted to Dr J H Wilkinson who suggested the method of

approach to these detailed analyses.

The main conclusion to be drawn from the above relatively simple analyses
is that for stability the transformation should be expressed in a form
that ensures that the magnitude of each intermediate computed quantity is
related as appropriate to the length of the original or of the transformed
interval. Tie see that the unstable formulae (1.2.4)’, (1*2.3) and (1.2.6)
all produce as intermediate quantities numbers related to the absolute
value of the untransformed variable, a number having no relation to the
length of the original interval. On the other hand, the intermediate
guantities produced by the stable formulae (1.2.13), (1.2.21) and

(1.2.22), (1.2.29), and (1.2.30) are all related to the lengths of the

original or transformed range.

Extrapolating this conclusion we conjecture that numerica] processes in

general are more likely to be stable if, wherever possible, the intermediat

JL
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computed quantities are not allowed to grow too large (or, in spine

rather special instances, too small). The principle certainly holds for
Gaussian elimination, for it is known (field, 1971) that whatever strategy
(whether it he partial pivoting, complete pivoting, pivoting down the
main diagonal, etc) is employed, a hound for the departure of the linear
system actually solved from that required to he solved is related directly
to the largest matrix element at any stage of the reduction. |If a linear
system (square or rectangular) is solved using orthogonalization methods
then no growth can occur (Peters and Wilkinson, 1970), with the result

that the process is stable.

In the numerical methods we discuss we adhere to this general principle
wherever possible. Particular instances are the use of plan0O rotations
(Chapters 2 and 7), elementary stabilised transformations (Chapters 2 and
6) and the taking of convex combinations. The latter process is basic to

many of our computations (Chapters k, 9, 6 and 7 in particular).

We do not reproduce error analyses of well-accepted numerically stable
methods such as the modified Gram-Schmidt process, Householder
transformations and classical Givens rotations for solving linear systems,
since such analyses abound in the literature, the key reference being
Wilkinson (19»5)e However, wherever appropriate, we analyze methods that
have appeared recently or have been developed during the course of this

work.

Y'e shall carry out, in later chapters, floating-point error analyses of
various recurrence relations which arise in the solution of linear systems
and in certain computations with splines. In particular we shall sometimes
(i) employ a "running" error analysis (Peters and Wilkinson, 1971) to
enable the computer itself to determine rigorous bounds on the errors it

is making, (ii) obtain a posteriori absolute or relative error bounds and.
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occasionally, (iii) obtain a priori absolute or relative error bounds.

To give the flavour of the types of results re obtain we analyse a simple

example.

Consider the following recurrence relation which defines and generates

the Fibonacci numbers:

(1.2.33)
fr “ fr-i + fr-2 (r-2»3»-*) ~

Suppose this computation is carried out in floating-point arithmetic.

Let f denote the computed value of fA and b?r = fr~fre Then

o} 0
(1.2.34)

r, =f, ff = 0
and

fr = fI(fr_1+fr_2)=(fr_i+fr_2)/(l+er) (r=2,3,...). (1.2.35)
Thus for r ~ 2,

(e )f =f  +f P (1.2.36)
and therefore

f +6f +o f =f  +6f ,+f ,+6f D (1.2.37)
The use of (1.2.33) reduces (1.2.37) to

6fr = £f _,+tf _g-e f . (1.2.38)
Thus

tfr|s (1.2.39)

where
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Fo

—

(w1.2.A0)

So, at the same time as it forms the f~, the computer can form the values
F . Such a process is called a running error analysis. However, like the
fr' the values of Fr cannot ha formed exactly, since rounding errors are
made in computing the error relation (1.2.40): This apparent difficulty
is easily overcome as follows. Let F be the computed value of F~. Then

the computational equivalent of (1.2.40) 3s

T
|

ro- FI(F r-1’+Pr-£)+fr)

flg’F r-1’+Fr—9)/£lue1,r)+fri (/|+22,r) (1.2.41)

Thus, since the F~ and tho f~ are non-negative, the contribution tc the

error incurred in computing from (1.2.40) is at most a multiplicative
factor (1—2_t)_2. Hence, since 6fo=6f)=0,
jffr | < 2¢t(i-2"t)2 2rk (1.2.42)

Noti, by virtue of (1.1.12),

(1-2. )2 2r < 1.112. (1.2.43)

Hence, since F > 0O for r ~ 2,

lof.] < (1.112)2"* Fr. (r> 2). (1.2.Vi)

This I'esult is an a posteriori absolute error bound. Although such a
result is extremely useful in. practice in that it. enables a rigorous
bound on the absolute error in the computed value to be obtained, it tells
us nothing about the qualitative nature of the error growth in the
computation. In other words it does not toll us whether the bound grows,

for example, linearly, quadratically or exponentially etc, with r. In



13

certain -favourable case» the running er.ror analysis approach can give
rise to a posteriori bounds which not only display the'qualitative nature
of the growth but also obviate the need actually to use a running error
relationship like (1.2-40) (which, imvidentally, requires even more
computational effort than the basic recurrence!). For instance, for the

above example we shall show that, for r 2, F~ satisfies the inequality
Fr ~ (42"t)r"2(r-1)fr, (1-2.45)
and hence that
i5frj ~ 0+2~t)r"2(r-N2*"tfr . (1.2.46)

In order to establish this result we first assume it to be true for

24, F , N Then the substitution of (1.2.45) (with r-i and then

r-2 replacing r) into the right-hand side of (1.2.40) and the use of

(1.2.36) gives
Fro< (1+2"t)r"3(r-2)fr_1-.(I+2-t)r~ (r-3)fr_2HHr
< (1+2-t)r"3{(r-2)(fr_1+" 2)+'fp )
A (1423 [(r-2) (1424 1) fr+fr]
<(i+2"t)re2(r-Nfr . (1.2.47)

But from (1.2.40), F2 = f~. lleneo (1.2.45) is true for r-2 and by

induction therefore for all r 2.

Having established a result of the form (1.2.45), it may then be possible
to obtain an a priori relative error bound. Firstly (1.1.11) is used to

simplify (1.2.45) slightly to give
vr $ 1.106(r-1)fr (1.2.48)

and hence
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Kr-1) .28y

But the relative error in f is simply

Tty ar M 7/ 2r fo
. v € o)
fX‘ fr-bfr 1-ifr/fr
/ 1.1Q6(r-i)2~'t
1-1.106(r-1)2"t
< 1e106(r-1)2"t
1-0.1106
< 1.244(r~N2_t , (1.2.51)

using (1.1.7)* W can therefore state, before the computation is started,
that the relative error in the computed value of f cannot exceed
1,?244(r-)2 I'. This result is absolute3y rirorov.s; in practice the
statistical effects of rounding errors are more likely to give an actual
error of the order of (r—I)“LZ_ . However, the importance of a result of
the type obtained here is not only that the precise natui'e of the error
bound has been obtained, but also that an a priori error bound car. be

obtained at ail and, as we will see in Section i t h at the computation

has he«ii shown to be unconditionally numerl mi? stable.

1.5 Algorttluas and numerical stability

An algorithm is a procedure (set of rules, recipe) for obtaining a solution
to a specific mathematical problem. An algorithm describes in an
unambiguous manner the way in which a required o<dc cf numbers, the
solution, may be computed from a given set of numbers, the data. For
instance, the recurrence relation (1.2.35) constitutes an algorithm for

computing the Fibonacci numbers f_, 5f,,, ... from the data (initial conditions)
¢
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Let the m-vector x denote a set of data values supplied to an algorithm L,
Let the n-vcctor f denote the solution obtained by A u-sing exact
arithmetic and the n~vector f the solution obtained by A using standard

floating-point arithmetic.

Every algorithm has a domain of applicability X (Rice, 1971; Cox, 1974),
defined by the set of data x for which the algorithm can provide the
desired solution f. For instance, X = j x£- 0j for an algorithm which
computes the positive square root of a real number x; in practice there
will be an upper bound Mfor the values of x for which the algorithm is

designed, in which case X =~x j 0 $ x ™ Lj.

A will be termed unconditionally numerically stabile if, for all :: G X,
the implementation of A in standard floating-point arithmetic provides a
solution '{fwhich W.m’mﬂﬁense bears a close resemblance to r{ Probably

the most desirable form of closeness is

IHHIU v'* Hill - (1.3.1)

where 2 is the relative machine precision, as before, and K, is relateu
to the particular process employed in A. jj.]jj denotes any convenient
vector normx. |f the computed solution is a single value then ||.jj may
be replaced by j.j in the usual way. Often, fur a particular process,

.is either a constant or depends upon a small number of parameters
relating to that process. Sometimes an expression for Kl can be determined

a priori; in other cases K, may be the result of a running error analysis

or an a posteriori analysis.

If K2 1 then (1.3-1) may be considered an excellent bound in that the

relative error in the computed solution will be small.

Sometimes it may oe difficult or impossible to obtain a bound of the form

(i.3.1). However, it may be possible to derive a bound of the form
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fl-in< V"V (1.3.2)

where, as before, Kg is a constant or is related to the particular
process, but

M=max //TII.
X6X 0_3.5)

vt
L. i then 0 .3.2) may also indicate a stable algorithm. Of course,

(1.3.2) is a somewhat weaker- result than (1.3.1) in that whereas (1.3,1)
gives a bound on the relative error and, consequently, on the absolute
error, (1»3.,2) merely gives a bound on the absolute error, which may or

may not imply a satisfactory relative error bound.

An algorithm will he termed conditionally numerically stable ff a result

of the form (1.3-0 or 0-3-2) holds for an identifiable subset X' of X.

For some algorithms it is not easy to quote a result as straightforward as
(1-3-1) or m-3+Y1, oven if such a result can be obtained at all. However,
we can sometimes say that a particular algorithm is "good" because it
fxbibtts Stable behaviour in practice for most, x 6 X, although no theoretical
statement of behaviour is easily obtained. The values of x G X for which
the algorithm fails to produce good results may correspond to pathological
or extreme situations, eg to data sets unlikely to ¢rise in practical

applications.

For some algorithms rigorous error bounds can be determined, but the bounds
are most unlikely to be attained or even approached at all closely. A good
example is the bound associated with Gaussian elimination with partial
pivoting for solving linear algebraic systems (Filkinson, 1965:p97), which
contains a factor of 2 , where n is the order of the system. It might
be thought therefore that for systems of quite modest size tbs --i.

obtained would have errors so large that the results were meaningless.
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However,- nothing could 'be further from the truth since, apart from
artificially-constructed examples (for an interesting example see
Wilkinson, 1961), a more realistic, though not rigorous, bound for

practical purposes contains a factor of the order of unity rather then
»N-1

Most of the above discussion relates to forward error analysis in which

a measure of the closeness of the computed solution to the actual solution
is sought. Per many algorithms it is more meaningful and relevant to vise
a baolrward error analysis. In such on analysis the solution obtained is
interpreted as the exact solution of a problem with data x which is
(hopefully) only slightly different from x. Bounds upon ” X~X ” are then
sought, which again indicate whether the algorithms can be considered as

being numerically stable.

Many of the computational processes we discuss ere accompanied by
commented algorithms. These algorithms ere intended to provide a
definitive "lnterfo.ee" between a "casual" description of a computational
process and its formal implementation in a high-level language such as
Algol or Fortran. Ve believe that a reader knowledgeable in a high-level
language would readily be able to code these algorithms. For commercial
reasons we are unable to list actual codes in this work. However, all the
algorithms presented here have been programmed in Algol 60, Fortran FT or
Babel, an Algol-like language due to Scowen (1969). Apart from the
relatively trivial illustrative algorithms, such as Algorithm 1.3.1 below,
they have been tested carefully on a wide variety of both model and

practical problems.

\7% use the algorithms as building blocks, jest as procedures are used in
Algol and subroutines in Fortran. Pul example, the relatively simple
algorithms in Section 2,1 for solving triangular systems are needed by

many cf the- more complicated algorithms for solving general linear systems



in the subsequent sections of Chapter 2. In turn, the algorithms in
Chapters 6 and 7 for spline interpolation and least-squares spline

approximation make use of the algorithms for linear systems.

Each algorithm is described by a sequence of steps or stages. Most steps
describe one or more of the following operations: assign a value to a
variable; advance or return to a stated step if a condition is satisfied,
execute the stated steps the stated number of times. These three types of
step occur frequently. Occasionally we need to nmake use of a dummy
statement (or null operation), io a statement whose presence is necessary
to describe unambiguously the flow of a computational process. For this
null operation wo borrow the term Continue from the Fortran language.

Other types of step also appear; we believe that most of these are self-
explanatory: qualification will be given where thought necessary. TThere
appropriate the algorithmic steps are interspersed by comments or remarks
which help relate the various stages of the algorithm to those of the
computational process being implemented. In particular, if a special
storage strategy is employed, such as in the algorithms of Sections 2.12 to
2.14 for stepnod-banded matrices, the algorithmic steps refer to the
notation appropriate to the special strategy, whereas the comments refer to

the natural storage notation.

As a very simple illustration of the form of our algorithms, the recurrence
relation (1.2.337 for generating the Fibonacci numbers is described by

Algorithm 1.3*1 below.

Algorithm 1.3*1: Generation of the Fibonacci numbers fo' fl‘ .......... f

n
Comment: Initialization.

Step 1. Set iQ=1and f = 1.

Comment; ilecur the defining relation for the Fibonacci numbers.

Step 2. For r=2,3,...,n form fr - fr*~|’ + fr—s
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CHAPTER 2

THE NUMERICAL SOLUTION CP LINEAR ALGEBRAIC EQUATIONS

Frequent use is made throughout this work of methods for the solution of
systems of linear equations (Chapters 6, 8 arid 10) and also for the least-
squares solution of systems of over-determined linear equations (Chapters 7
and 10). Accordingly, this chapter is devoted to the description of numerical
stable methods for solving such problems. We concentrate particularly upon
the linear least-squares problem, since the solution of a system of linear
equations can be considered as being included as a special case. The linear
least-squares problems that arise from the use of polynomial splines as
approximating functions tend to be highly structured, if a suitable basis
for the spline is employed. The so-called observation matrix (Section 2.2)
proves to have special properties in that many of its elements are aero and,
moreover, the disposition of the non-zero elements can be characterized in
a straightforward manner. Similar remarks apply to the systems of linear

equations arising from spline interpolation problems.

In order to obtain efficient algorithms for solving these problems it is
important to take advantage of the special structure of these matrices.
Firstly, however, we outline a number of methods currently available for
the solution of dense linear least-squares problems and consider subsequently

ways in which they can bo modified so that structured problems can be treated.

There are six methods in current use:
(i) Choleskv decomposition of the normal equations ,
(ii) Gaussian elimination
(iii) Gram-Schmidt orthogonalization

applied to the
(iv) Householder transformations

) ) observation matrix.
(v) Givens rotations

(v.i) The singular value decomposition
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For our purposes the use of Givens rotations provesto be most appropriate.
In order to establish this we give a brief description of each approach,

together with its merits and demerits.

In an attempt to obtain the utmost numerical stability, the methods applied
to the observation matrix are sometimes implemented so as to include a
column-interchange (pivoting) strategy (see, for example, Golub, 1965;
Businger and Golub, 1965 and Peters and 'Wilkinson, 1970). Unfortunately,
the interchanging of columns tends to destroy the nature of the sero-non-
sero structure. Since in our work we wish to take full advantage of
structure, we would be prepared to accept a slight loss of numerical
stability if the avoidance of column interchanges led to significantly more

efficient algorithms.

There is evidence both empirical and theoretical that the behaviour of the
modified Gram-Schmidt method (see Section 2.6) is not improved by column
interchanges. For instance, after obtaining considerable computational
evidence, Rice (1966) concluded that interchanges result in a perceptible
but small (even negligible) improvement. In a detailed! theoretical floating-
point error analysis Bjftrck (1967) concluded that, regardless of whether or
not interchanges are made, the errors in the computed solution are less

than the errors resulting from relative perturbations in the observation
matrix and right-hand side of K(m,n)2 \ Here t is the number of bits in
the mantissa of the floating-point word and K is a modest function of mand n
(the respective numbers of rows and columns in the observation matrix).
Similar conclusion can be expected to hold in respect of methods (iv) end

(v) (V/Zilkinson, 1974).

Many of the numerical methods we describe are applicable equally to the
square case (interpolation) and to the rectangular or over-determined case

(least squares). However, there are advantages to be gained in terms of

computational, efficiency by employing elimination methods in the square case,
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and in terns of stability and simplicity by using orthogonalization methods
in the over-determined case. Accordingly, mo3t of the algorithms we

present for these methods reflect these considerations.

In Section 2.1 we give algorithms for the solution of triangular systems,
since these are required by many of the subsequent algorithms for more
general systems. In Section 2.2 we introduce the linear least-squares
problem and describe in Section 2.3 the normal-equations approach to its
solution. Elimination methods are discussed in Section 2.4 and in Section
2.5 the use of orthogonal transformations is considered. Particular methods
for orthogonal transformations, viz modified Gram-Schmidt, Householder and
Givens rotations are described in Sections 2.6, 2.7 and 2.8. Modern
variants of Givens rotations are presented in Section 2.9 and a comparison
of the various methods for orthogonal triar.gularization is made in Section
2.10. In Section 2.11 stepped-banded matrices are defined and in Sections
2.12, 2.13 and 2.14 methods based upon Gaussian elimination, elementary
transformations and orthogonal transformations for solving systems with
stepped-banded matrices are presented. The powerful singular value
decomposition is considered in Section 2.15 arid, finally, in Section 2.16

perturbation bounds for the solution of linear systems are given.

2.1 The solution of triangular systems
Most of the numerical methods we describe for solving the frequently over-

determined linear system

¢ =& (2.1.1)

where A is a given mby n matrix and b is a given m-vector, firstly reduce
the system to upper triangular' form. This reduction is usually carried

out by pre-multipiying both sides of (2.1.1) by a sequence of transformation
matrices chosen to have the effect of annihilating in a systematic manner

the sub-diagonal elements of A. Triangular systems also arise in our work

in various other ways.
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We describe algorithms for solving three types of triangular system
that are of particular importance. We denote the general triangular

system by

&>=8§> (2.1.2)

where R is an upper-triangular matrix of order n by n and G an n-vector.

It is assumed henceforth that R is non-singular, ie the elements on the
main diagonal of R are non-zero. Any implementation of our algorithms
would of course test either implicitly or explicitly whether these elements

were indeed non-zero.

We consider first the simplest case where R is dense, ie a,ll or most of
the super-diagonal elements of R are non-zero. In the trivial algorithm
below, a natural storage strategy is assumed, ie that element M (j £1)
of R is stored in location (i,j) of an n by n array. Locations (i,j)

(j < i) of this array are not used.

Algorithm 2.1.1; Solution of the dense upper triangular system Rx = g,

in the case where & is stored in natural form.

Step 1. For j =n, n-1, ..., 1 compute

n

In this and subsequent algorithms we adopt the convention that there is no

contribution from a sum having a lower limit that exceeds the upper limit.

In order to minimize storage requirements, some of our algorithms store
the diagonal and super-diagonal elements of R sequentially by rows in a
vector of length -gn(n+l). In Algorithm 2.1.2 this storage strategy is
assumed. Algorithm 2.1.3 is similar to Algorithm 2.1.3 except that R is
taken to be 'unit upper triangular; in this case only the super-diagonal
elements are stored, again sequentially by rows, in a vector of length

~n(n-lI).
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Algorithm 2.1.2: Solution of the dense upper triangular system
Rx = e, in the case where the diagonal end
super-diagonal elements of R are stored
sequentially by rows.

Step 1. For j n, n-1, 1 execute Steps 2-7.

Step 2. Set 1

(j-1)(2n+2-j)/2+1.

Comment: r .. is stored as the 1 th element of the vector.
Step 3. Sety - H and z = Qy

Step 4. For k = j+1, j+2, ..., n execute Steps 5-6.
Step 5. Replace 1 by 1+1.

Step 6. Replace z by z-r-jx~..

Step 7- Set Xy = z/y.

Algorithm 2.1.3: Solution of the dense unit upper triangular system
Rx = 0, in the case where the super-diagonal elements
of R are stored sequentially by rows.

Step 1. For j - n, n-1, ..., 1 execute Steps 2-7.

Step 2. Set 1 = (j-1)(2n-j)/2.

Step 3* Set z = 00_

Step 4- For k s jtl, j+2y .... n execute oteps 5-6.

Step 5- Repiace 1 by 1+1.

Step 6. Replace z by z-rpXk.

* t X, =2z
Step 7+ Se d

Particular attention will be paid to the solution of systems where the
matrices are stepped-banded in form (for a definition see Section 2.11).
The resulting triangular systems have matrices that are band unoer
triangular. Algorithm 2.1.4 solves the system (2.1.2) in the case where

R has 1-1 super-diagonals. The strategy employed is to store the diagonal
and super-diagonals of R as the successive columns of an nby q array. This

condensed storage strategy is iliustrated in the case n =6, q =3 ~
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Fig 2.1.1 (* denotes an unused storage location).

r

12 13 ril rl2 ri3
22 "23 24 22 23 r24
r33 r34 r35 r33 r34 r35
rd4 r45 r46 r44 r45 r46
*

rs5 r56 rss5 rsé

*

r 66 r 66

Natural storage Condensed storage

Fig 2.1.1 Natural and condensed storage for an upper band

triangular matrix in the case n = 6, q = 3*

Algorithm 2.1.4; Solution of the upper band triangular system
Rjic = g, in the case where the diagonal and

super-diagonals of R are stored successively

in columns.
Step 1. For i =n, n-1, ..., 1 execute Steps 2-3.
Step 2. Set i = min(n-i-i-1,q).
Step 3- Form x, = (0. - rik\ +i-1)/ril*

2.2 The linear least-squares problem

Consider the linear least-squares problem

T
££ > (2.2.1)

7/here

=A% b (2.2.2)

In (2.2.2), A, a prescribed observation or design matrix, is an mby n
matrix of rank k (K £ n m), n is a prescribed right-hand-side yector

of length m, r is the residual vector and x the solution vector In the
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problems to be considered k is usually, but not always, equal to n.

The following properties of least-squares solutions are known (see, for
example, Peters and Wilkinson, 1570):

(i) Zill least-squares solutions satisfy the so-called
normal eque.lions
(%TAX = &Tb . (2.2.3)
(ii) If k=n then the system (2.2.3) has a unique solution.
(iii) If k< n then of all solutions satisfying (2.2.3)
there is only one, known as the minimal norm solution,
which minimizes z = (x x)2, the Euclidean length of

the solution vector.

Ore method for the solution of (2.2.1) is based upon the direct solution
of the system (2.2.3). The other five methods are all based upon an

initial factorization of the form
A= CH (2.2.20

where Gis an mby k matrix, H a k by n matrix and both G and H are of

rank k. Evidently this factorization is not unique since we may write

ﬁ,= OGN . (2.2.5)

where
& = 1, (2.2.6)
(2.2.7)

and F is any k by k matrix of rank k.

The substitution of (2.2.4) into (2.2.3) yields

(2.2.8)
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The pre-multiplication of both sides of (2.2.8) by H then yields
I—HTGTGHx = H—ITG!b . (2.2.9)

Now both H—IT and &T& are k by k matrices of rank k. sinco G and H are
themselves of rani: k. Hence the pre-multiplication of both sides of

(2.2.9) by (CTG)~1(HhV 1 yields
Hx = (GTG)" 1&b . (2.2.10)

Since H is of rank k, a particular solution (which may be verified by

inspection) of the equation

Ry =W (2.2.11)
where v is any given vector of length k, is

X=H V)" v. (2.2.12)

Thus a particular solution of (2.2.10) is

X . hWaor ), -W. . 1p1h e (2.2.13)

Peters and Yfilkinson (1970) show that (2.2.13) j.s in fact the minimal

least-squares solution. The matrix
A = HTOMIT) " HGTG) 1&T (2.2.14)
is termed the -pseudo-inverse of A.

In the full-rank case k-n, His an n by n matrix of rank n and accordingly

(2.2.13) reduces to

4 TL -IT
2 =H (s £) £s . (2.5.15)
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2.3 (holesky decomposition of the normal equations
One method of computing the linear least-squares solution in the full-
rank case k=n is suggested by equations (2.2.3). In this approach we

form the n by n matrix C and the n-vector d, where

£ = ata (2.3.1)
and
d = ATb , (2.3.2)

and then solve

Cx = d . (2.3.3)

Since @ is of rani: n, { is also of rank n. Moreover, (yis positive definite.
In such a case, Cholesky decomposition (Wilkinson, 19&5: P 229 et seq) may

be used to give the factor R in
c=rTr , (2.3.4)

where R is an upper triangular matrix of order n and rank n. The solution

X may then be obtained by solving the triangular systems

f 1= ) (2-3-5)
and

25 =7 o (2.3.6)

The main disadvantage of this approach is that in forming C = ATA some

t
of the information contained in A may be lost. The following example due
to Lauchli (1961) (also see Golub, 1965 and Bjorek, 1977) illustrates this

point very well. Let
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(2.3.7)
0 0 6 0 0
0 0 o0 6 0
0 0 o 0 6
Then
1+62 1 1 1 1
1 1+62 1 1 1
1 1 1+62 1 1 (2.3.8)
1 1 1 1+62 1
1 1 1 1 1+6
It is easily verified that if 6 / 0 then therankofC is five,since the

eigenvalues of C are 5+62, 62, é , g and ﬁz . Now consider the computation

of tho elements of C. Even if this computation is exact, apart from a

final rounding to t binary digits, then %+6 w illbe rounded tounityfor
all 6 such that JS{$2 In such cases the exact eigenvalues of the
computed Cwill be 5 C 0 and O and the corresponding rank will be

unity. Thus, however accurately the Cholcsky decomposition is carried

out, it is impossible to solve the system (2.3.3).

There are ?ono proolems, however, where the approach of this section is
effective. These problems correspond, at least in the context of data
approximation, to the choice of a'hearly-orthogonal” set of basis functions,

together with an appropriate set of data points.

2.4 Gaussian elimination
Ye now outline a method based upon Gaussian elimination fox' the full-rani
case k=n. and TTiUdnson (1970), who appear to have been the first

to use the method, give a more detailed description for the general case

k < n.
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It is well known that in the case n¥n the n by n matrix A can be

factorized in the form
A= LU , (2.4.1)

where L is lower-triangular with unit diagonal elements and. U is upper
triangular. A comnon way to obtain the factorization in a numerically
stable manner is to employ Gaussian elimination with partial pivoting
(TALIKkinson, 1975: p200 et seq). The partial pivoting strategy means that
in general we obtain an LU decomposition of a matrix A', where A* is

derived from A by suitably permuting its rows, ie

PO VRN TI (2.4.2)

whore P is a permutation matrix.

In the case m>n it is also possible to use Gaussian elimination to obtain
a factorization of the mby n matrix A. Tie still obtain a decomposition

of the form (2.4-2), but now 1 is an mby n unit lower-trapezoidal matrix:
(Peters and TCilkinson, 1970), ie L is of the form illustrated in Fig 2.4.1

for the case m=6, n=4.

._\
—~ O
o o
o o

> 132
N2 43
251 152 *54

hi *62 x3 264
Fig 2.4*1 A unit lower-trapezoidal matrix of order 6 by 4.
For notational convenience suppose that the rows of A have initially been

permuted so that no interchanges are subsequently necessary, ie P = |

the unit matrix. Then identifying G with L and H with U in (2.2.15) gives
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ex = UI(LTL)"1d , (2.4.3)

where

o
1

LTh. (2.4.4)

The solution vector x in (2.4-3) may then be computed as follows. After
forming the factors L and U, we form the vector d in (2.4.4) and the n by n

matrix

M= LTL . (2.4.5)

Since Mis symmetric positive definite, it possesses the Cholesky

decomposition

: (2.4.6)

where V is upper triangular. After forming V, the intermediate vectors
z. v and the solution vector x are obtained from the solutions of the

triangular sets of equations

¥ =Ry (2.4.7)
T

N (2.4.8)
Ux =y . (2.4.9)

In the case where A is square, ie nmeEn, then t5>e steps involving the
formation and the Cholesky decomposition of M are unnecessary. The

solution to (2.2.1) in this case is also that of

& =£ > (2.4.:0)

which can be found by the use of (2.4.1), ie by solving

»

& =£ (2.4.11)

and

Ux = ¥ . (2.4.12)
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It may be thought that, since this method forms M= LTL and then the
Cholesky decomposition of M, the stability problems associated with the
normal-equations approach are still present. However, Peters and

Wilkinson. (i970) state that pivoting usually causes L to be vrell-conditicnod
and any ill-condition in A is wholly reflected in U. Thus the squaring

of the condition number, as a result of forming ATA directly, is avoided.

We present, as Algorithm 2.4.1 below, an algorithmic statement of the method
of this section. In this implementation A is overwritten by L and U, with
the main diagonal and the super-diagonals containing the elements of U and
the sub-diagonals the sub-diagonal elements of L (the main diagonal of L

is not stored since all its elements have the value unity). The vector d

is overwritten on b. The sub-cLiagonal elements of the symmetric matrix M
then overwrite the sub-diagonals of A and the main diagonal of Mis formed
in an n-vector £. The intermediate vectors j and z are stored in the

locations ultimately used for x.

Algorithm 2.4.1: LU factorization and linear least-squares solution
using Gaussian elimination with partial pivoting.
Comment: L and U are formed in Steps 1-8.
Step 1. For 1 =1, 2, ..., n execute Steps 2-6.
Step 2. Determine the smallest value of k snub that
I n = N1l eeer ) e
Step 3- If k = 1 advance to Step 6.
Slep 4. For j =1, 2, ..., n interchange the values of a.» and a_.

Step 3. Interchange the values of b and b”.

Step 6. For i = 1+1, 1+2, ..., mexecute Steps 7-8.
Step 7. Replace by anr/a
Sten 8. For j = 1+1, 1+2, ..., n reulace a, . by a. .-a._a

[j if 3



Step 9-

Comment:

Step 10.

Step 11.
Step 12.

Step 13»

Comment:
Step 14.
Step 15.

Step 1b.

Step 17-

Step 18.
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: Branch according to whether the system is square or rectangular.

If m> n advance to Step 12.
In the square case the formation of M and d and the solution of
Mv = d are replaced by the solution of Lv = b.

For i =1, 2, ..., n compute X3=b1 -/ , ax

Advance to Step 26.

Comment: Form g = }va.

1, 2, ..., nreplace b. by b. + b.a,
J 3 63+1 11

For j

M = LTL is formed in Steps 14-18.
For i =1, 2, ..., n execute Steps 15-18.
For j =1, 2, ..., i execute Steps 16-18.

Set g =a.. (if i / j) or 1 (otherwise).
1J m
Replace g by g + 2Lj an al-

Set a. . =g (if i / j) or p. =g (otherwise).

Comment: V is formed in Steps 19-23.

Step 19-
Step 20.
Step 21.

Step 22.

Step 23.
Comment:

Step 24-

Comment :

Step 23-

Comment:

Step 26.

For j =1, 2, ..., n execute Steps 20-23.
For i =j, j+1, ..., n execute Steps 21-23.
Set g - an (if i / j) or p. (otherwise)
il
Replace £ by g - Ay Sy
I
Set p‘..: h=g 2 (if i =j) or a..=hg (otherwise).
i)
Solve Vj = d.
i-1
For i =1, 2, ..., r. compute xt = ptx (bx - T~I xXN).
k=1
Solve Vy - 2.
n
For i = n, n-1, .... 1lreplace x by p (x - a . X )
k=itl kIl k
Solve Ux = .
n
For i = n, n-1, ., 1 replace x. by (x. - ZZj XV)A .. .

1 J k=itl o« *
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A variant of the method of this section for m” n, proposed by Cline
(1973)» avoids the formation of Min (2.4.5). In Cline's method}v is

decomposed into

(2.4.13)

where Q is an mby m orthogonal (unitary) matrix (Section 2.5) and L* is
n by n lower triangular. Cline shows how to construct L' (it is not
necessary to form Q explicitly) using Householder transfoi'mations

(Section 2.j). Now, since

IT.= %)T[I n] OTE  L* =(L)" (2.4.1%)
(2.4-3) reduces to
~1
% dy (2.4.15)

from which x may be obtained, via intermediate vectors z and y, from the

solutions of the triangular sets of equations

(L»)Tz = d, (2.4.16)
L'y =s, (2.4.17)
M =M - (2.4.1R)

Cline shows that, if terms of order nm and vf ere ignored compared with
2
those of M and n , on a multiplication count his method is faster than

the normal-equations approach if m< 4rn/3 and faster than the use of

Householder transformations if m< 5n/3.



2.5 The use of orthogonal transformations

That orthogonal transformations can usefully be employed in the solution

of linear least-squares problems appears to have been first proposed by
Householder (1958). However, it was not until seven years later that Golub
(1965) and Golub and Kah&n (19&5) gave detailed expositions of the
application of orthogonal (Householder) transformations to least-squares
problems. The joint work was concerned with the more sophisticated

singular value decomposition (STO); we shall riefer discussion of the S\D
until Section 2.15. A further seven years later the work of Gentleman
(1972, 1973) showed that Givens rotations could also be used to advantage

in solving such problems. This and the subsequent work by Hammarling (197k)
and Moler (1974) gave a new impetus to the use of Given3 rotations in that
they showed that the amount of arithmetic could be reduced to that of the
method of Householder transformations, whilst still preserving numerical
stability. A third method, the Gram-Schmidt factorization, can also usefully

be classified with the Householder and Givens methods.

Suppose an orthogonal matrix Q of order mby k can be found to yield the

factorization

@zm (2.5.1)

where R is an upper-trapezoidal matrix of order k by n. The identification

Of Qwith G and R with H in (2.2.4) gives, upon using (2.2.13),

(2.5.2)

Now i f the transformations applied to A to yield R are also applied to b,
then

b=~Q.

say, where c is the transformed vector. The substitution of (2.5.3) into



(2.5.2) yields

(2.5.4)

We now form the k by k symmetric positive definite matrix

B
M=FR (2.5.5)

and, as in the Gaussian elimination algorithm (Section 2.4), take the

Cholesky decomposition

T
M=W 1 (2.5.6)

where V is upper triangular. Then intermediate vectors z and £ may be

obtained from the triangular sets of equations

V3 = ¢ (2.5.7)
and

T _

Xy =& (2.5.8)

and finally the solution x from

X = B(TP( (2.5.9)
In the full-rank case k=n, (2.5.4) reduces to

X =R "¢ , (2.5.10)
a single triangular system.

There are three methods currently available for carrying out the
iacturisauior ~2.5.1). These methods are (i) modified Gram—-Schmidt,

(ii) Householder transformations and (iii) Givens rotations. Y/ give brief
descriptions of these methods for the case of full rank, ie k=n. Their
extension to the general case k ® n is straightforward (Peters and
Wilkinson, 1970); we shall not concern ourselves with the specific details

here.



It will be noticed that in the Householder and Givens methods, the matrix
£ is in fact mby mrather than mby k. However, in the product A - £R,

the last m-k columns of Q play no part and hence we may write
A= QIR , (2.5.11)

where 1/~ consists of the first k columns of the mby munit matrix, which

is compatible dimensionally with (2.2.1+) .

Note that the expressions (2.5.4) and (2.5.10) for the solution vector x

do not involve the orthogonal matrix g. In fact tho Householder and Givens
methods do not even form £ explicitly. The Gram-Schmidt method does in

fact form £ column by column, but as soon as a column has been utilised it
may be discarded before the next column is formed and hence an extra storage

space of only one m-vector is required.

Nearly always in our discussions £ will be orthonormal (QT£ = 1), rather

T . . .
than merely orthogonal (g £ diagonal). However, in accordance with custom
we shall refer to an orthonormal £ as orthogonal; we shall make clear cases

where Q is not orthonormal.

2.6 The modified Gram-Schmidt method
In this method the matrix Q is determined explicitly. Let g. denote the
jth column of £. The computational process consists of n major steps in

which the matrix A = Agll) is transformed successively to A\% ', ATV%A/

A(n+1) At the beginning of the 1th step (I =i, 2, ..., n),
©-fa 00 ax ) e (2.6.0)

where q,, g0, . , G j are a set of grthonormalised vectors and a(D.

’(i)l See> Mn modified versions of the corresponding columns *

,a(/l) of the original matrix N(‘Jc}
n _—
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The 1th major step consists of (i) making the 1th column a unit vector

by replacing a”1” by

& - ~4aVv (2.6.2)

followed by (ii) n1l minor steps, the jth of which (j = 1+1, 1+2, ..., n)
involves the orthogonalization of the jth column with respect to the lth

column. It is easily verified that the computation

a(l+1> ST (2.6.3)

where

fioos &l gl) (2.6.4.)

yields the required orthogonalization.

The same transformations are applied to the vector b, ie b is treated

just as if it were another column of A.

A formal statement of the complete process is given by Algorithm 2.6.1
below. During the 1th major step column 3 of q is held in the a-vector g.

In this and subsequent algorithms we suppress superscripts and write eg

EepUce ~ . by ak, - (2.6.5)

(as in Step 6 of Algorithm 2.6.1), rather than

(1+1) (1
dkj “Aj o rljpk * (2.6.6)

Apart from tne advantage of brevity, the superscript-free notation also

implies forcibly (as we wish to imply) that the old value of a”, ie

o

aj' , is overwritten by the new value, ie
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Algorithm 2.6.1: Orthogonal triangularization and lineal- least-
squares solution using tho modified Gram-Schmidt
process.

Comment: The 1th major step is described by Steps 2-8.

Step 1: For 1=1,2, ..., n execute Steps 2-8.

Comment: Column 1 is made a unit vector in Steps 2-3.

Step 2: Compute rn =/ \ k)2*
Step 3: For k=1, 2, ..., mset pk = a™/r”".
Comment: Row 1 of R is formed and columns 1+1, 1+2, ..., n of A are

orthogonalized with respect to column 1 in Steps 4-6.

Step 4: For j = 1+1, 1+2, ..., n execute Steps 5-6.
m
Step 5: Fomr” = g p~..
Step 6: For k =1, 2, ..., mreplace by -r ph.

Comment: Similar operations are applied to the right-hand side in

Steps 7-8.
m
Step 7: Form = *I"1L p©.
Step 8: For k =1, 2, ..., mreplace bk by b - p ™.

Step 9: Use Algorithm 2.1.1 to solve Rx = c.

The process described here is termed the modified Gram-Schmidt process

to distinguish it from the classical procedure. The classical procedure
differs from the modified method in that a\l1” rather than a ™ is used to
determine r-, ., with similar considerations applying to the right-hand side.
Mathematically, the processes are identical; computationally, they behave
very differently, the classical method being extremely unstable and the
modified process a very reliable technique. In fact, the modified process
is more convenient in practice than the classical procedure, since the
initial columns a. ' do not have to be preserved but, as in Algorithm 2.6.1,

can be overwritten by subsequent columns 9*(:11)
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In the above description of the modified Gram-Schmidt process, it is
necessary to compute square roots. Modifications to the method have been
proposed (Bauer, 19&5; Bjorck, 19&7) which obviate the necessity to

compute these square roots. The basic idea is to form the decomposition

A=1, m (2.6.7)

/a\Ta . . . ooa
where (Q; 8 is diagonal, ie £ is generally orthogonal rather than

A
orthonormal, and R is unit upper triangular. Equivalently, this

decomposition may bo expressed as

A = O"R , (2.6.8)
where Q is orthonorraal and D = cliag ~d®, &, ..., d”?j is the diagonal
A TA
matrix (Q) Q. In terms of this decomposition the 1th major step consists
I (I
of (i) forming d» = () %» followed by (ii) n-1 minor steps, the jth
of which (j = 1+1, 1+2, ..., n) involves forming anl+1" = -, ,
~J ~J lj-1
where r~. = CGj) /d”.  Algorithm 2.6.1 is readily modified to use this

alternative decomposition.

The modified Gram-Schmidt algorithm and its square-root free variant are
extremely satisfactory in practice. Indeed, in discussing the basic
process (upon which Algorithm 2.6.1 is based), Peters and Wilkinson (1970)
state that "Evidence is accumulating that the modified Gram-Schmidt gives
better results than Householder in spite of the fact that the latter
guarantees almost exact orthogonality of the columns of Qwhile this is

by no means true ci the modified Gram-Schmidt procedure when A has ili-
conditioned columns. The reasons for this phenomenum appear not to have
been elucidated yet." Despite this point in its favour the modified Gram-
Schmidt process as not particularly appropriate in spline approximation

problems. There are two reasons for this. Firstly, the organisation of the

modified Gram-Schmidt process is usually such that the complete matrix A5,



40

required in store at the start of the process; it does seem possible, however,
to modify the method so that A can be processed stably in a row-by-row manner,
but it is an open question whether one will still have an efficient

algorithm. Secondly, and more importantly, even if A initially has a

high proportion of zero elements, fill-in, ie the replacement of zero by
non-zero elements, tends to occur so rapidly that little or no advantage

can be taken of the structure of A.

2.7 The method of Householder transformations

Like the modified Grara-Schmidt method, the method of Householder

transformations (Golub, 1965; Businger and Golub, 19&5) consists of n

major steps in which the matrix A = A(I) is transformed successively to
A<3>, ..., A™M+1™ = R. However, unlike the modified Grarn-Schmidt

method, it is unnecessary (except in special applications) to determine

Q explicitly.

At the beginning of the kth step, Aglk) has the property that ailz n O
(i = j+1, J+2, mj=1, 2, k-1), ie the first k-1 columns of

(K) are in "upper-triangular form". The kth step consists formally of

00

pre-multiplying A by the matrix

- 2
= | 9 (2.7.1)
to produce A(k+1)
Since
f (k)}Tp(k) (v) Ik
Vot |{|-‘.'2 )/|W()
- - 1 (k)
}g(k) 4
2
2 . (kY (kWT/
mi- «CKW)*/  ]]5¢ 5 4 A )(2( )")T/ LK i

i > (2.7.2)
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it follows th is orthogonal. and symmetric.

The vector is chosen to annihilate the elements a(k”™ (i = k+1, k+2,

(k)

.., m). It is easily verified that the vector w ' defined by

X
0 (i ~ 1,2, ..., k-1)
WK = Ysgn (anr) (A kst an) (i =K (2.7.3)
a|(|)<0 (i = k+l, k+2, , m
where
a(k)\2
(-(k))2 - IS=k( ai(k)] (2.7.4)
an;
-1 (x< 0
sgn(x) = 0 (x =0) (2.7.5)
+1 (X > O) ’
possesses the above annihilation property.
Now since
Kk * = - 2 + 2cr(k
wd) (a-W)z+2erld pgri+ 3 kaik))2
27 ) (r (k4 Ak ) (2.7.6)
we may write
R« - EW AW (W )T, (2.7.7)
where
= ferrerrg 00 )8 (2.7.8)

It is both inefficient and unnecessary to compute Fk”™ explicitly;

rather, we compute first
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(E(k))T = P(k)(w(k))TrA(k) (2.7-9)
and then
A(A> . AV . (2.7.10)

As with the modified G-ram-Schmidt method, the same transformations are
applied to the vector b = b ™ to yield successive vectors b ~, b ~ ,

V™D = ¢ The right-triangular system

Rx = ¢ (2.7.11)
is then solved for x.

Algorith 2.7.1 below is a statement of the method of this section. The
initial matrix g,= A" is successively overwritten by ™ « 4, °°*>

n+1)

A( - 5 Likewise, the right-hand side R = b(l) is successivelx

overwritten by b(2)  K(3) ., b = c.

Algorithm 2.7.1: Orthogonal triangularization and linear least-
squares solution using Householder transformations.

Comment: The kth major step is described by Steps 2-11.

Step 1. For k = 1, 2, ..., n execute Step3 2-11.

Comment: The parameters of P(k)

m p -
a., )2.

are formed in Steps 2-6.

Step 2. Form O~ = ( *y

Step 3» Forma = CT + |a™].

Step 4. Form = asgn(a”).

Step 5* For i = k+1, k+2, ..., mset w1 = au: .
Step 6. Form B = (ao~) 1 and replace a”. by a

Comment: The transformation is carried out in Steps 7-9.
Step 1. For j —k+1, k+?, , . n execute Steps 6-9.
m
Step 8. Compute y = B.£ ~ w.a, ..
P p y el o1l

Step 9+ For i =k, k+1l, ..., mreplace a” by a.. - yw.
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Comment: The same transformation is applied to the right-hand side
in Steps 10-11,

m
Step 10. Compute y = p ZJ w.b..
v 12

Step 11. For i =k, k+1, ..., rareplace In "by b~ - yw™

Step 12. Use Algorithm 2.1.1 to solve Rx = ¢ (R stored in A, c in b).

2.8 Classical -plane rotations

In this section we consider classical Givens plane rotations and give

two algorithms based on their use for the orthogonal triangular!zation

of an mby n matrix A of rank n and for the least-squares solution of the
over-determined linear system A% = R In Section 2.9 we examine variants
of the modem form of plane rotations without square roots and again give
algorithms based on their use for the orthogonal triangularisation of A.
In Section 2.10 we compare the use of both classical and modern forms of
plane rotations with the more conmon methods described in Sections 2.6 and
2.7, and give reasons why we believe that plane rotations are particularly
appropriate for solving the types of least-squares systems arising from

spline approximation problems.

Consider the pre-multiplication of the mby n matrix A by the orthogonal

m by m matrix

(2.8.1)



where ¢ and s denote cos 6 and sin 9, respectively, and 0 is chosen

such that the element in position (j, i) of the matrix

(2.8 42)

is zero. It is straightforward to verify that the appropriate values of

c and s are given by

¢ =a/h, (2.8.3)

s=a./h, (2.8.4)
where

W = (g)?(.x + a%.l) . (2.8.5)

Here we assume that a.. -/ 0, which ensures that h is non-zeiu. Note that
if a., is already zero then no rotation is needed, in which case we take
c=1lands -0 (/even if agq = 0), so that 913. reduces to the unit matrix
Only rows i and j of A are altered by the transformation, the effect

being to replace row 1 by (c X row i + sX row j) and row j by (C X row j

s Xrow i). It follows therefore that if both rows i and j have zeros in

the same column position, then these zeros are undisturbed by the process

The rotation can be described completely by (2.8.3), (2.8.4) and (2.8.5),

together with the expressions
a%+ = h (2.8.6)

or. + sa

| =
Ak xk jk

(k = i+1, i+2, ..., n). (2.8.7)

ajk 3 -sajlk + cajk

Fe term (2.8.7) a 4-multjplication rule, since for each value of k four

multiplications are required to evaluate a and a*, from ad( and a., .

RC Ik



Wilkinson (1965: 131 et seg) has shown that the 4-niultiplication rule is
unconditionally stable in that if a~ anda (k =i, i+1, .. n) are

specified then

«(»k 5- °lk ik
£ 6 (2.8.8)

fl(\?jk) - aj'k CE

where the factor of 6 is, according to Wilkinson, extremely generous.

Since the Euclidean norm is invariant with respect to orthogonal
transformation, the right-hand side of (2.8.8) can, apart from a

multiplicative factor of (1+e)™ (Je] ™ 2 ©), be replaced by

A

2"t . (2.8.9)
2
Thus making the very mild assumption that the factor (1+e)™ can be absorbed
into the "generous" factor of 6, the relative error in the 4-multiplication

rule is bounded in modulus by (6)2

Pre-multiplication of A by Q. . is termed a rotation in the (i,j)-plane. -
We also refer to this pre-multiplication as the rotation of row j into

row i .

Two variants of the class of methods which employ classical plane rotations
may be described as follows.

In the first method, which we term triangularization by columns, there are

n major steps. The kth major step (k = 1, 2, ..., n) consists of m-k manor
steps, the ith of which (i = k+1, k+2, ..., m) has the effect of reducing

element a”v '¢co zero, whilst preserving zeros established in previous steps.



46

In the second method, which we shall refer to as triangular!zation by rows,
there are ml major steps. The ith major step (i = 2, 3, m) consists
of at most n minor steps, the kth of which (k = 1, 2, min (i-1, n))
has the effect of annihilating element a”, whilst preserving previously-

established zeros.

In either of these two methods a minor step consists of a single plane
rotation. In that the sub-diagonal elements in successive columns are
reduced to zero, the first method is analogous to the modified Gram-Schmidt
and the Householder methods. On the other hand, the second of the two
methods, in which elements to the left of the main diagonal in successive
rows are annihilated, has no natural correspondence with the other

orthogonalisation methods.

If, in either of the two methods, the same sequence of rotations is performed
upon the vector b (by treating it essentially as another column of A), then
the least-squares solution is given by the solution of the system Rx * c,
where R denotes the triangle ultimately produced in the first n rows of A
and c the first n elements of the transformed vector R.

/
T now present algurithms based on these two methods.

Algorithm 2.8.1: Orthogonal triangularization by columns and linear
least-squares solution using classical plane
rotations.

Comment: The kth major step is described by Steos2-11.

Step 1. For k=1, 2, ..., n execute Steps 2-11.

Comment: The ith minor step is described by Steps3-10.

Step 2. For i =k+1, k+2, ..., mexecute Steps 3-10.

Comment: A rotation is skipped if is already zero.

Step 3» |If aik = 0 advenes to Step 10.
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Ccrament: The plane rotation annihilating a.v is applied in Steps 4-7-

Step 4- Compute h @v + a MN2. Form c = a¥VWh and s = a ~/h.
Replace a.™ by h.

Step 5» For j = k+1, k+2, ..., n execute Steps 6-7.

a .and z = aij"

Step 7 Replace a, 3 by cy + sz and af[J' by cz - sy.

Step 6. Set g

Cemirent: The same rotation is applied to the right-hand side in Steps 8-9.
Step 8. Set}j = bk and z = bl"
Step 9 Replace bfc by cy + sz and bj_ by cz - sy.
Step 10. Continue.
Step 11. Continue.

Step 12. Use Algorithm 2.1.1 to solve Rx = ¢ (R stored in A, c in b).

Algorithm 2.8.2: Orthogonal triangularization by rows and linear
least-squares solution using classical plane
rotations.

Comment:  Theith major step is described by Steps 2-11.

Step 1. Fori =2, 3, ..., mexecute Steps 2-11.

Comment: The kth minorstep is described by Steps 3-10.

Step 2. Fork =1, 2, ..., min (i-1, n)execute Steps 3-10.

Steps 3-12. As Steps 3-12 of Algorithm 2.8.1.

The above methods for orthogonal triangularization by columns and by rows
have their analogues when modemforms of plane rotations (Section 2.9)
are used. The main differences relate to the nature of the arithmetic
operations within individual rotations, the overall strategies, ie the

orders in which the sub-diagonal elements are annihilated, being unchanged
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2.9 Modern plane rotations

The more general factorization

(2.9.1)

considered in Section 2.6 in terms of the modified Gram-Schmidt method,

can also be formed using a generalization of the method of plane rotations.
As in Section 2.6, D is a diagonal matrix with non-negative elements, Qs
orthogonal and R upper-triangular. The factorization (2.9.1) has more
decrees of freedom associated with it than the usual factorization A = OR
These degrees of freedom may be used to advantage in a number of ways. The
factorization evidently includes the classical form as a special case, viz
when D = |I. é can be made unit upper-triangular by setting the diagonal
elements of B equal to the squares of the diagonal elements of §. Other
choices of D and?e enable not only the square roots in the plane rotation
method to be avoided, but also the number of multiplications to be reduced
by either 25% or 50% (Gentleman, 1972, 1973? Hammarling, 1974). The 50%
reduction makes Givens rotations as attractive arithmetically as Householder
transformations and the modified Gram-Schmidt method for solving linear

least-squares problems.

To examine the generalized class of rotations, suppose that immediately

before the rotation,

and that after the rotation

we have

(2.9.4)
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Both R andg denote diagonal matrices with non-negative elements. W
wish to determine formulae for computing those elements of D' and G

changed hy the transformation in terms of those of D and G. Now since

a; = arg,, (2.9.5)

and

i w . (2.9.6)

the counterparts of (2.8.3) to (2.8.7) are

c = djgi/b > (2.9.7)
s - alsii/Zh (2.9.8)
h==<d 4 + 4j«3i)4 " (2.9.9)
cii = ’ (2.9.10)
PV iiN ik +
A (k= i+l, i+2, ..., n). (2.9.11)
83k = dl4 Csxis3k - V u P 7 { h(d3)4i

Suppose that D and G are given, and that we have freedom just in our choice

of D~.
Gentleman (1972, 1973) chooses
(2.9.12)
a =a,a/h2 . (2.9.13)
i 1

Then (2.9.10) and (2.9.11) become

(2.9.14)
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(\zii (5
Sik "\ 42 h ok

= Siiejk " ejigik

> (k = i+1j i+2, n). (2.9.15)

But if previous rotations made g~ = 1 then (2.9.15) reduces to
d
dk 2 N
\ (k =i+1, i+2, ..., n). (2.9.16)

sjk  gjk gjiSik

As a consequence, Gentleman's rotation is defined by the relations

2
| =
di d. + O}'gji* (2.9.17)
_ ; 2.9.18
d’f] d.(?/Jdi , ( )
c = d./d» , (2.9.19)
_ (2.9.20)
s" doSj/ d *
Sik = °gik + ~gjk
V (k =i+1, i+2, ‘'eej n) (2.9.21)
gjk = gJk " Sji6ik

4

This is a 3-~ultiplication rule»

Gentleman (1975) has shown that his 5-multiplication rule is unconditionally

numerically stable in that

1
fI{(d p ~}fl(g!k) - (dp*g;, | aigii
£ 7.5 2t . (2.9.2)
1
fi fep2pfifel) - (ag)Viy dj Sjk
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This result*, which should be compared with (2.8.8), shows that the
3—multiplication rule and the classical 4-multiplication rule have comparable

stability.

Golub (private communication - see Gentleman, 1973) has pointed out that-
the arithmetic involved in relations (2.9.21) may be reduced by observing

that

*ik = «lk + S<«jk * (2-9-23)

%k + SEJK > (2-9.24)

upon using (2.9.17), (2.9.19) and (2.9.20). Thus Golub's form of the

rotation may be defined by the relations

ai - di +aA i - (2.9.25)
a, . a.a/ai , (2.9.26)
= |
S djgji/dk , (2.9.27)
sjk = gjk " SjiSik
» (k = i+1, i+2, ..., n). (2.9.28)

glk + Sgjk -

This is a 2-multiplication rule .

Gentleman (1973) has curried out a floating-point error analysis of Golub's

rule and has shown that

* Gentleman (1970 has subsequently shown that the factor of 7-5 in

(2.9.22) may be improved to a value of 4 .5.
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fl mfl(s4> - ak Kk
$K(di,dp 2.t (2.9.29)
n(g'k) - (aj)*n o
2 d.ic.jt
where
= (4.52)2 + ~4.52 + 8.04(d'/cLi)2] ? , (2.3.30)

from which it is clear that the stability of the rule depends upon the
relative magnitudes of d® and dt. Gentleman (1973) states that this
2-multiplication rule is "numerically unstable, producing terrible
results for least squares problems with very well conditioned design
matrices". Hammarling (1974) gives a simple example to illustrate this
point. Gentleman suggests that since the instability can readily be
detected, simply by examining the ratio dl/d” then we can cut cost and
preserve stability by using the 2-multiplication rule if d)'(/di ~ 100,

say, and the 3-multiplication rule otherwise. |If this strategy is

employed then relation (2.9.22) holds with 7.5 replaced by 85.04.

Hammarling (1974) has considered choices of d® and d]. that lead directly

to 2-multiplication rules. The choice

d . 57 n s (2.9.31)

d aividA 2 (2.9.32)

reduces (2.9.11) to

A\
6ik £ik +t e ) 4jk
( V (k = i+l, i+2, ..., n) (2.9.33)
5k °jk igii JEit
According to Hammar-ling, the ether choicer, of d’[k gna of which there

are five in all, lead to similar relations. Hammarling's rotation mg, \a
vV —v
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defined by the relations

U~ Sj/ 6ii » (2.9%34)
*s = udji/dn. (2.9.35)
di #ﬂ-+®") » (2.9.36)
dj = d/7/~1 + 5 (2937)
«Le = 6ik + Sgjk

(k = i+1, i+2, ..., n) (2.9-38)

ejk = gjk " "sik

Although Hammarling demonstrates the stability of his rule, he states that
there is clearly some danger of underflow in d! and dj when a sequence of
rotations is involved. He suggests, without giving specific details, that
this danger may be avoided by storing the exponents of jD separately, by
normalizing occasionally or by performing row interchanges. Moler (1974)
has recently given details of a row interchange strategy which reduces
the danger of underflow in the 2-multiplication rule. However, even in
Holer’'s algorithm underflow can occur and hence periodic testing should be

incorporated to see whether scaling is required.

Before we give algorithms for the modern G-ivens rules we describe an
algorithm for orthogonal triangularization by rows using classical plane
rotations which has storage requirements independent of m The basic idea
is due to Gentleman (1972). Now the solutions to the problems of

minimizing r r, where r is given by (2.2.2), or by

are evidently identical. Thus we can determine the required least-squares

solution by initializing R and 9 to zero, ana then rotating each successive
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row of (A \] b) into (R J 0). This scheme has the advantage that the only
storage required, assuming that each row of (A J b) can be input or formed
when needed, is 4n(n+l) words for R, n for G and n+tl for the current row
of (A |b). Thus the total storage for such a scheme is -gn(n+5)+0(1) words.
This is to be compared with the storage required for the column by column

process which requires mn+0(m)+0(n) words.

A worthwhile saving in arithmetic can be made if a rotation involving a null
row is treated specially. Suppose, in the notation of Section 2.8, that

row i is null and that a., /7 0 (if a.. = 0 a rotation is not required).

Then from (2.8.3)> (2.8.4) and (2.8.5), ¢ = 0 and s = 1, with tho result

that (2.8.6) and (2.8.7) reduce to

(2.9-39)
f (k = i+l, i+2, Cey n). (2940)
Thus, since a'.. = 0, the effect of the rotation is to interchange rows i and

j. Note that there is an ambiguity associated wnth the sign of s. Here we
have chosen s = +1. The choice s = -1 could also be made, the only difference
being that all values in row i are negated. In either case no further
rotations involving row j are necessary since it is now null. This
refinement and its counterparts for the modem Givens rules have been

Incorporated in Algorithms 2.9.1 to 2.9.4 below.

In Algorithm 2.y.1 the uppor-triangular matrix R is stored by rows in the

vector ~ (I - 1, 2 -n-i1)). The ith row of (A |b) is read into or

formed in locations , (j =1, 2, ..., n) .and b and the associated weight

(often unity) in V.  The minimum sum of squares is formed in cr ,
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Algorithm 2.9. | Orthogonal triangularization by rows and linear
least-squares solution using classical plane
rotations (vector storage strategy).

Cornment: R, & and cr are initialised to zero.

Step 1. For 1 - 1, 2, -en(n+l) set r» - 0O and for j =1, 2, ...> n

set Gj = 0. Set cr =0.

Comment: The ith major step is described by Steps 3-30.

Step 2. For i ~ 1, 2, ..., mexecute Steps 3~30*

Comment: The ith row of (A Jb) and the corresponding weight ere read or

formed..

Step 3« Read oi' form the ith roww. v., v,. .... v , b.

Corament: No operations on row i are required if wis zero.

Step 4- |If w = 0 advance to Step 30.

Comraent: The weight is incorporated in row j. in Steps 5-8.

Step 5 If iv =1 advance to Step

N
Step 6. Set z = w2.
Step 7« For j =1, 2, ..., nreplace v‘.J by zvj.

Step 8. Replace b by zb.
Comment; The jth minor step is described by Steps 10-28.
Step 9. For j =1, 2, ..., n execute Steps 10-28.

Comment: A rotation is skipped if a, . is already zero.

1J
Step 10. If v\.] = 0 advance to Step 28.

Comment: Element rl].3 is stored as r
Step 11. Set 1 = (j-)(2n+2-j)/2+1.

Comment: The algorithm branches according to whether r . is zero cr non-
Step 12. If r~ / O advance to Step 19.

Comment: In the case r _ = O row/ j of (RjO) is replaced by row i of

(¢]h) in Steps 13-17.

Step 13- Set r1l - Vg



Step 14.
Step 15*
Step 16.
Step 17-
Comment:
Step 18.

Comment:

Step 19-
Step 20.
Step 21.
Step 22.
Step 23.
Step 24-
Step 25-
Step 26.
Step 27.
Step 28.
Comment:
Step 29-
Step 30-

Step 31*

Although

methods,
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For k = j+1, j+2, ..., n execute Steps 15-16.

Replace 1 by 1+1.

Replace r™ by Vy

Replace 0. by b.

No further rotations involving row i of (Al b) are required.
Advance to Step 50-

In the case r., 0 a conventional rotation to annihilate aij
is carried out in Steps 15-28.

Sot g = (r? 4 v2) 2.

Set ¢ = rj/&> s = v™/g.

Set I = g.

For k = J+1, j+2, ..., n execute Steps 23-25.

Replace 1 by 1+1.
Sety = r.l, and z 1= Vk'
Replace r™ by ey+sz and v® by cz-sy.
Sety = O(.sand z = b.

Replace tL by cy+sz and b by cz-sy.
Continue.

The residual sum of squares is updated.
Replace Q by cr +b2.

Continue.

Use Algorithm 2.1.2 to solve Rx = 9.

there is no possibility of "element growth" with crthcgonalization

another problem nmay arise. In the classical Givens method this

proo+eiu is associated with the computation of the parameters ¢ and 3 frcm

(2.8.3)

j (2.8.4) and (2.8.5). Even if the values of a” and a., are well

within the number range of the machine, overflow or underflow may result



when they are squared*. On the KDF? computer, for example, the number
27 27

. . . Z ,d .
range is 2 to 2 , ie approximately 1O~yIO to 10 . Thus if G or

20

<( 10_20 (say) underflow will occur and it a or > 10

a.. a..
Ji 12. Ji
overflow will result. Overflow is serious in that the computation will be
. 2 2
halted, but underflow is dangerous (unless both a.. and a  underflow) In
that on many machines the computation will continue'wi.thout warning and

erroneous results produced. The situation is easily remedied, however, by

using, instead of (2.3.3), (2.8.4) and (2.8.3),

c = sgn all{(l + (aj-i/aé,)Z}fZ : (2.3.41)
= ca,./a.. (2.9.42)
Jit i
if a., < la,|] , and
il 31l
= LfP1+ (a,,/a.)2W- , 2.9.43
s=sgnagf (ji JI)‘\jV ( )
c = sa i./aji (2.9.44)
if a.. The values of 3*11 is then formed from
o > ill
f a,/cC a..l a
11 (90,
ayy = 1 (2.9.45)
a./s (1, 5 a
L A i 3
rather than from (2.8.6). T/ have assumed of course that a_ end are

non-zero, since if either is zero special action is taken anyway.

< problem is also present in the modified Gram-Schmidt and Householder
methods, where the 2-norms cf certain vectors have to be formed. One way

of overcoming the problem in these cases is. before forming the sum of the
squares of the vector elements, to search for the element of largest

magnitude and to divide each clement by this value. The 2-norm so obtained

is then multiplied by the modulus of the element cf largest magnitude.
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Algorithm 2.9*1 is modified accordingly by replacing Steps 19-21 by those

in Algorithm 2.9.2 below.

Algorithm 2.9.2: Orthogonal triangularization by rows and linear
least-squares solution using classical plane
rotations with overflow/underflow prevention
(vector storage strategy).

Steps 1-18. As Steps 1-18 of Algorithm 2.9.1.

Step 19- |If advance to Step 21.1.

[ I
Step 20.1. Set g

rvv

Step 20.2. Set s = sgn vél @a+g) 2.

Step 20.3. Set ¢ = sg and replace by vy's.
Stop 20.H-. Advance to Step 22.

Step 21.1. Set g = v™/r"

2 4
Step 21.2. Set ¢ = sgn rx (I+g~) 2.

Step 21.3. Set s = eg and replace r™ by r~/c.

Steps 22-31. As Steps 22-31 of Algorithm 2.9.1

Further algorithms based on classical plane rotations, presented in

subsequent sections, can also be modified in this way.

In Algorithm 2.9-3j \ivhich implements the Gentleman 3-multiplication rule,
successive rows of V\_2(/Jb), where 7= diag W . w, ..., w) denotes a
matrix of non-negative weights, are rotated into b2(G|h). Here h s
related to the right-hand side Q in the classical Givens method by 0 = t,2h.
D. the super-diagonals of G, Ah and cr (in which the minimum sum of squares
is formed) are all initialised to zero. P is stored in dj(j =1, 2, ..., n
and the super-diagonals of Gby rows in g/ =1, 2, .., -¢n(n-1)) . Much

of the remaining notation is similar to that in Algorithm 2.9.1.
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Algorithm 2.9.3: Orthogonal triangularization by rows and linear
least-squares solution using modern plane
rotations (Gentleman*s 3-multiplication rule)
with vector storage.
Comment: D, h, cr and the super-diagonals of G are initialized to zero.
Step 1. For 1 =1, 2, -¢n(n-1) set g~ = 0. For j =1, 2, . n
set d\.J:Oandh‘.]:O. Set O~ = 0.
Comment: The ith major step is described by Steps 3-27.
Step 2. For i =1, 2, .... mexecutt? Steps 3-27»
Comment: The ith row of (A]b) and the corresponding weight are read or formed.
Step 3* Read or form the current (ith) row w, v, v?> ... . v , b.
Commrenb: The jth minor step is described by Steps 5-25*
Step 4- For j =1, 2, n execute Steps 5-25.
Comment: No operations on row i are required if wis zero.
Step 5* If w = 0 advance to Step 27-

Comment: A rotation is skipped if a, , is already zero.

1J
Step 6. If Vj = 0 advance to Step 29.
Comment: Element g... is stored as g ..
JJ w
Step 7- Set 1 = (j-1)(2n-))/2.
Comment: The algorithm branches according to Tihether dd is zero or non-zero.
Step 8. If a. t 0 advance to Step 15*
u J
Comment; In the case dd = 0 row j of /[\)?(&]h) is replaced by rew i of
]
W2(Ajb) in Steps 9-13*
P
= Replace d., b ~.
Step 9 p g Y Wvd
Step 10. For k = j+1, j+2, ..., n execute Steps 11-12.
Step 11- Replace 1 by 1+1.
Step 2. Replace gl by vj/v ..
Step 1ly. Replace h. by b/v..
oo d

Comment: No further rotations involving row i of (A.]b) are required.
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Step 14- Advance to Step 27.

Comment: In the case dj -/ 0 a 3-multiplication rule to annihilate a, .

Step
Step
Step
Step
Step
Step
Step
Step
Step
Step

Step

13«
16.
17-
18.
19.
20.
21.
22.
23.

24.

23.

Comment:

Step

Step

Step

In Algorithm 2.9.4 the extensions to Algorithm 2.9.3 to implement the

26.

27.

28.

is carried out in Steps 13-24.
Sety = dUands = W
Replace d. "oy y + zv..

Set 'o = y/d\.J and's = z/dj.

Replace w by cw.

i'or k = j+1, j+2, ...5 n execute Steps 20-22.
Replace 1 by 1+1.

Sety =gl and z = v~

Replace g by cy+sz and v by z-v.y.

Sety - h. and z - b.

Replace h(':l by cy+sz and b by b—vly.

Continue.

The residual sum of squares is updated.
Replace or by cr +’?ib2.

Continue.

Use Algorithm 2.1.3 to solve Gx = h.

hybrid 2- and 3-multiplication rule are incorporated.

Algorithm 2,9.4:

least-squares solution using modern plane rotations

(Gentleman’s hybrid 2- and 3-sultiplication rule)

v/ith vector storage.

Steps 1-18. As Steps 1-18 of Algorithm 2.9.3.

Step 18.1. If 100y~ d. advance to Step 24.2.

Steps 19-24. As Steps 19-24 of Algorithm 2.9.3.

Step 24.1. Advance to Step 23.

Orthogonal triangularization by rows and linear
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Stop 24.2. For k = j+i 5 j+2, n execute Stops 24.3-24.5.
Step 24.3. Replace 1 by 1+1.

Step 24.4. Replace v, by v, - v g

Step 24.5. Replace gl by gL + sv/.

Step 24.6. Replace b by b - v.h

Step 24.7. Replace h, by h.1 'sb.

)
Steps 25-28. As Steps 25-28 of Algorithm 2.9.3.

We do not present algorithms for the Hamraarling 2-multiplication rules,
since appropriate strategies to overcome the possibility of underflow ore

still being worked out.

2.1C A comparison of the plane-.rota.ti.on methods with other methods

based upon orthogonal transformations
Classical plane rotations appear to have been little-used for solving
linear least-squares problems, despite the fact that their stability
properties compare favourably with those of the modified Gram-Schmidt and
Householder methods. The main reason for this lack of use is tho
unfavourable amount of arithmetic required by classical rotations compared
with other orthogonalization methods (Wilkinson, 1965: 21-4-247). For
example, if m»m n, classical plane rotations require about 2m12 long
operations to triangularise an mby n matrix, whereas the other two methods
each take about mnr‘J long operations (these numbers are to be compared with
the loss satisfactory method of normal equations which takes about vmrF
long operations). As a result, nearly all numerically stable methods for
solving dense linear least-squares problems that have boon developed in
recent years use either the modified Gram-Schmidt method or Householder
transformations. Moreover, as a further consequence of the unfavourable

amount of arithmetic required by classical plane rotations, a number of

authors (eg Reid, 19\7; Hanson and Lawson, 1969) have preferred to develop
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extensions of Householder's method for exploiting structured problems
or for updating linear least-squares solutions. Cf course, the recent
appearance of the modern versions of plane rotations requiring fewer
arithmetic operations will almost certainly give rise to a greater

concentration upon their use.

Despite the above arguments which, superficially at least, seem quite
reasonable, we believe there are a number of reasons (here wo give four)
why the plane-rotation methods (even in their classical form) discussed in
Sections 2.8 and 2.9 have advantages over methods such as modified Graia-
Schmidt or Householder for solving either dense or structured linear least-

sugares problem.

firstly, the matrix can be orthogonally triangular!zed row-by-row, thus
enabling the complete process (in the dense case) to be carried out in a
storage space of ¢i(n+1) words for the upper-triangular matrix, n words for
the right-hand side, and n words for the current row of A, giving a total
of ¢ I(n+5) words (see Algorithms 2.9.1, 2.9.2, 2.9.3 and 2.9.4). Note that
this storage space is independent of m, and thus very large problems can be
solved, as long as there is sufficient store available for ¢ 1(1l+5) elements
plus, of course, the program itself (on the English Electric KDF9 computer,
for example, with its 32H-word core store, this implies that mis unlimited

and n may be well over 200.

Secondly, in performing a single plane rotation (as opposed to a single
Householder transformation or a step of the modified Graa-Schmidt method),
considerable advantage can frequently be taken of the zero-non-zero
structure of the matrix, ie unnecessary arithmetic operations upon zero
elements can be avoided, and further economics in storage can conaeouenfv
oado. An important instance, mentioned in Section 2.8, is when the two

rows involved in a rotation have aero elements in corresponding column



positions, in which case no arithmetic need be performed upon these

elements.

Thirdly, an aspect of scientific computation often overlooked is that when
many numerical methods are programmed in a high-level language such as
Algol cr fortran, the actual proportion of time spent in the execution of
purely arithmetic statements is frequently a small percentage of the t8ta|
time. The bulk of the time is often spent in referencing (either fetching
or storing) array variables, for- or DO loop overheads etc (see, for
example, Wichmann, 1973). for instance, Algol 60 implementations of
orthogonalisation methods (modified Gram-Schmidt, Householder or plane
rotations) for the solution of linear systems spend typically only about
10% of the total time executing purely arithmetic statements (see later in
this section). Consequently, even a substantial saving in the number of
multiplications has only a marginal relative effect on the total execution
time. Therefore, the main consideration is flexibility: a method such as
plane rotations that enables structure to be exploited in a more

straightforward and efficient manner is frequently to be nreferred.

fourthly, another factor, though not quite so important in the light of
the comments in the previous paragraph, is that the generalized forms of
plane rotation discussed in Section 2.9 enable the number of multiplication
to be reduced by a quarter or even by one-half. In the latter case the

amount of arithmetic is about that of the other orthogonalisation methods.

To reinforce our claims relating to the proportion of time spent on purely
arithmetic operations and to demonstrate the little-known competitiveness
of the plane-rotation methods we discuss in detail the "inner loops" of the
modified frram-Schmidt, Householder and plane rotation methods, for
simplicity we shall assume that m»n. for purposes of comparison we

present code segments, each written in Algol (0, for these methods. Ye have



made a serious attempt to code each of these computations as efficiently

as possible in order that our comparison shall be a fair one. Te then
apply to these code segments the method of Wichmann (1973) for estimating
the execution speed of Algol programs. In Hichmann's approach a weight
(representing a number of computational time units) is assigned to each
identifier, constant or delimeter in a program. This weight is independent
of the computer or the compiler and represents an average based on a number

of existing Algol compilers.

The “inner loop" of the modified Gram-Schmidt method (Steps 5 and 6 of
Algorithm 2.6.1) is really in two parts, code for which is
First part:
rlj := 0;
for k := 1 step 1 until n do
rlj =rlj + p[k] X a[k,j];
Second part:
for k := 1 step 1 until mdo
alk,j] := a[k,j] - rlj X p[k];
Note that a further advantage accrues from storing element g in position k
of the one-dimensional arr'ay p; one-dimensional array elements can be
referenced faster than two-dimensional array elements. Also, for purposes
of the summation the values of is accumulated as the simple variable

rlj. We incorporate similar ideas in the codes for the ether methods.
The time for the kth cycle (k - 1, 2, ..., m) in the first part is
T, =L+ M+A+ 27 +V, +V , \Ee 17 »J

rhere
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L = time for loop control (ie incrementing and testing
of counter k),
M= floating-point multiplication time,

A

floating-point addition or subtraction time,

Vi

time to reference a variable with i subscripts.

In the ensuing analyses we shall also need

S - time for floating-point square root.
The weights obtained by Y'ichmann (19755 for these parameters were KK = 14,
M=2, A -1,Vv~ = 1+4i and S = 50 computational units (I computational
unit (c.u.) = 8.3 /isec on KD?9i 0.85 nsec on (DC 6600, etc). Using these

values

Tl =14+2+ 1+ (2)(I) +5+ 9 =33 c.u. (k.10.2)

Thus the total time for the first part is 3m+ 0(l) c.u., the 0O(l) term
stemming from loop set-up costs. Similarly, for the kth cycle (k = 1, 7,

., m of the second part we obtain a time of

M =L+ M+A+Vg+V + 2/" (2.10.3)

14+2 +1+1+5+ (2)(9) =41 C.u. (2.10.4)

So the total time for the second part is 41n 0(l) c.u. The total time
spent in the two parts is therefore 74a + O(l) c.u. Thus, since the abov
two parts are executed about :;nz times in all, the overall tine for the

modified Gram-2cane,dt method is 37 rm2 c.u., ignoring terms of lower orde

2 2
Note that of these 37 un c.u., only 3 an (8/Q are purely arithmetical

2 _©
and only 2 m~ (5%) involve multiplications.

We now examine the "inner loop" of the Householder method (Steps 8 and 9

of Algorithm 2.?.1)> /gain there are two parts, codes for which are
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First part:
y = 0;
for i = k step 1 until m_do

y +wli] X afi,jl;

<
n

y = beta Xy;
Second part:
for i = k stop 1 until mdo
ali,j] = afi,j] -y Xwli];
We see, by comparison with the code for the modified Grara-Schmidt method,/
that the codes are very similar in form, the main difference being the
initial values of the for-loop counters. Accordingly, the total time for
the two parts is 74 (m-k) + O(l) c.u. Now the above code is executed for
values of j from k+1 to n and for values of k from 1 to n (see Steps 7
and 1 of Algorithm 2.7.1). Thus the overall time for the method of
Householder transformations is
'yv~1 *y ' 74(m-k) = 37 mm c.u., (2.10.5)
k=1  j=k+1
ignoring terms of lower order. Again, as with the modified Gram-Schmidt

method, only 8A of this time is purely arithmetic and only 5% involves

multiplications.

Te now turn to classical plane rotations. Code for the "inner loop"

of the triangularisation by columns method, based on Steps 5, 6 and 7 of

Algorithm 2.8.1, is

for j = k+t1 step 1 until n do
begin

y = al[k,jl;

z = ali, jl;

al[k,0] := cXy + sXz,*

ali,jl cXz - sXy

end ,i:
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The tine for the jth cycle is
L +4M+ 2A + 10Vo + (2.10.6)

=14 + (#)(2) + (2)(i) + (20)(1) + (4)(9) = 70 c.u. (2.10.7)

The total time for the inner loop is therefore 70 (n-k) + O(l) c.u. This
innex loop is executed for values of i from knl to mand values of k from
1to n, givi?g an overall time of

n”" "m
L—i i-—1i 70(n-k) = 35 nm2 c.u., (2.10.8)

k=1 i=k+1 \Y -
ignoring terms of lower order. An identical time is taken by the
triangularization by rows process. Note that 10/70 = 14%0f the total
time is spent on purely arithmetic operations and 8//0 = 117, 0f the total

time involves multiplications.

Finally, we examine the "inner loop” of Gentleman’s 3-multiplication rule

(cf relations (2.9.21)), code for which, if gji denotes the values of g..,

for k = i+1 step 1 until n do
begin

y = gli,kj;

* — 6L-JJK]j

ccap Xy + scap X z;
glj.k] =2z - gji Xy
end k;

The time for the kth cycle is
L+ 3VM+ 2A + VQ 4V? (2.10.9)

S 14+ (3)(2) + (2)(1) + (9)(1) + (4)(9) - 67 c.u. (2.10.10)

Thus the overall time is approximately 33.5 nm2 c.u., of which 8/67 n IP 7,

is spent on purely arithmetic operations and 6/67 = 9*%. on multiplications.
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All the above times, together with those for the Golub-llammarling class
of rules which are derived in a similar way, are summarised in Table

2.10.1. It should be emphasized that the values in this table apply to
the "average" Algol 60 compiler. Corresponding values for other high-

level languages, such as Fortran, may v”ell be different.

Proportion of time

Number of
Method multns computational of
) units times purely.
arithmetic multns.
operations
Modified 2 2
. m
Gram-Schmidt 37/m 1.00 8% 5%
Householder n‘n2
372 1.00 82 5%
Classical Y,
plane e Jsn 0.95 14 % 11%
rotations 29m 0.78 17 2 14%
Modern plane
rotations 33*5m 0.91
(Gentlemani1s —:?’*nn2 12% 9%
Modern plane
rotations 2
(Golub- 2 Jam 0.86 9% 6%
Hamnarling
>-multn. 26mn2 0.70 12% 8%
rules)

Table 2.10.1 A comparison of the theoretical computation times of
several methods for the orthogonal triangularization of an mby n matrix
(m>>n). For the plane-rotation methods the upper of the two entries in

Columns 3-6 applies to array storage ana the lower to vector storage.
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2,11 Stepped-banded Matrices

Matrices of a special form, which we term stepped-bandcd matrices, are
introduced in this section. These matrices, which are a generalization
of band matrices, arise in problems of interpolation and approximation

in one, two or more independent variables by linear combinations of basis

functions having restricted support (see Chapters 6, 7 and 10).

A stepped-ban&ed matrix A is defined as follows. Let Abe an mby n

matrix. Let g be an integer such that 1 £ q” n. Let Pow Py P ., sn-g+
be a set of non-negative integers which satisfy
0=p0< p, Sp2$ p emmi p, ,< Pn.gtl = m® (2.11.1)

Suppose A can be subdivided into n-g+1 blocks such that the kth block

(k =1, 2, n-g+1) consists of rows piC—1+1 to p,, and has non-zero
elements only in columns k to k-g+1 (note that the block is empty if

Pt N = pNe Such a matrix is termed a stepped-banded matrix of bandwidth
g. Fig. 2.11.1 illustrates a stepped-banded matrix of order 12 by 8 with

width g 4, having |,

X

X

xX X X I)i
X X X X X X
X X X X K
X X X X X X

<
<

X X X X
X X X X
X X X X

X X X X,

Fig. 2.11.1 A stepped-banded matrix with m= 12 n =8 and q ~ A
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Evidently A can be held in condensed form in a rectangular array of size
mby q, if the n-g values of the integers Vj[, Ty, p are also
stored. In this condensed form of storage ai 3 if it lies in the kth

¢

block, is stcrod in location (i, j-k+1).

A~ Jridularizgticn of stepped-ba.nded matrices using Gaussian
elimination

Let A be an mby n stepped-banded matrix as defined in Section 2.11. T

consider the LJ factorization (cf Section 2.4) of A using Gaussian

elimination. The process to be described generalizes the algorithm of

Martin and T/ilkinson (1967) for the factorization of uniformly-banded

square matrices.

The algorithm consists of n-1 major steps, the kth of which (k ~ 1, 2

n-i) involves the elimination of the sub-diagonal elements in the

kth column of A. Before the start of the kth major step, the first k-1
rows of A are in upper band triangular form with (at most)g-1 super-

diagonals. The final matrix also takes the form of an upper banded triangle

of bandwidth q.

The configuration at the start of the kth major step is illustrated in
Fig. 2.12.1 for the case m* 12, n=10, g, 4. p., = 2, ?22 =4, = 5j
pd = 7>P5 = Pg = 9, k =4. In the kth major step there are (at most)
pk - k sub-diagonal elements to be eliminated (here we define pk =mif
k?-n-qg). Tie kth'sajor step consists of (i) determines J, the smallest
.alue of i for which Jajfc] £ ja~J (i = Kk, k+1, n
(ii) interchanging rows k and j if k /7 j and (iii) N, r steps> the
ith of which (i = k+1, k+2, p,) involves forming m - a /a

K ik iif kk

(N.B. Imk] ™ 1) and replacing row i by row i_m,k* row kt
].



X X X X

0 X X X X

© X X X X

'©0 X X X
Rows involved
© x X X
in 4th major <
X X X X
step
X X X X
X XX X
X X X X
X X X X
X X X X
X X X X

Pig. 2.12.1 The configuration at the start of the 4th major step in the
LU factorization by Gaussian elimination with partial pivoting
of a stepped-banded matrix with m=12, n=10 and q = 4. X
denotes a (usually) non-zero element, (x) denotes an element

that has been reduced to zero.

In practice an economized form of storage is used in which A is stored as an
mby g rectangular array as described in Section 2.11* for further details

see Algorithm 2.12.1 below.

Note that, since at any stage of the reduction there are at most g elements
in any row, stage (iii) involves at most q(p, -k) long operations and hence
the total number of long operations Mis bounded by

n=I
M = (Pv~K) @ 12.1)

| t

It is easily established that if A is of rank n then an upper bound for
g (k =1, 2, n-q) is m-n+gq+k-1. Moreover, = mfor k = n-gq+1,

n-g+2, ..., n-i. Thus
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n-q n-1 n-1f
< Y 2 + 92 i D~ / m k
I M e L B
n-q
=q -¢qn(n-1) (2.12.2)
k=1 k=n-g+1
<gn(m-n+q). (2.12.3)

Note that in the square case nen this hound reduces to
M< ng2. (2.12.4)

These hounds are somewhat pessimistic however. A more realistic estimate
is given by assuming that each block has roughly the same number of rows.
Then pk (k =-1, 2, ..., n-q) h the approximate-value of mly/(n-g+1). In
this case

n-q
M= q J ' mk/Z(n-g+l) + q(g-I)m - ~gn(n-I)
k=1

n(m-n+H» (2.12.5)

which for nmm reduces to
M=iq(gq-I)n

Those two more realistic bounds are about half of the above rigorous

bounds.

Another approach to the solution of stepped-banded systems in the square
case is based on the observation that the non—scro elements of a square
non-singular stepped-banded matrix can be contained wholly within a

uniiormly-oun&ou. matiix vitn o1 super—diagona3.s and q—! sub—diagonals.

A uniformly-banded matrix with these dimensions requires for its
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factorization about 2n(g-£)(q-1) long operations, ie about twice as many
operations as the above rigorous bound or about four times as many as the
realistic bound. Thus the application of a standard algorithm for
uniformly-banded systems could be employed but computationally it would

be probably four times as expensive.

Having reduced A to LU form, the system Ax = b may be solved in the square
case mn by solving two banded triangular sets of equations, or in the
least-squares case m> n by applying the method of Section 2.4, taking fall
advantage of the banded nature of L and U. Alternatively, in the square
case, if the elimination steps performed on A are also performed on b to
produce a new vector d then it is merely necessary to solve the single band
triangular system Jix = d. Algorithm 2.12.1 below, for the case n¥n, in

which A is stored in condensed form, is based upon this alternative approach.

Some features of the algorithm are as follows. Immediately after the
element has been eliminated, the new value of a.. (j > k) is stored in
location (i, j-1). This strategy ensures that all non-zero elements remain
within the confines of the n by q array and, in particular, that successive
diagonals of the resulting band triangle are stored in successive columns
of the rectangular array. During the kth major step at most q blocks are
involved. Thus, if required, the matrix can be brought into store block by
block as the elimination proceeds. In particular, the kth block is not

processed until the kth major cycle.

Solution of a square stepped-bandefi linear system
using Gaussian elimination with partial pivoting
(economized storage strategy).

Comment: The kth major step is described by Steps 2-18.

Step 1. For k —>,2, ..., n execute Steps 2-18.

Coinsnt: Set 3 to the uuab« of the last row involved in tho kth major step.
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Step 2. Set 1 =p, (if K™ n-q) or n (otherwise).

Comment: The row number, j, of the element with meximum modulus in
column k is determined in Steps 3-5.

Stop 3. Set z = Janj and j = k.

Step 4. For i = k+1, k+2, 1 execute Step 5.

Step 5- If JaLl]> z replace z by ja~J and j by i.

Comment: A row interchange is not required if j = k.

Step 6. If j = k advance to Step 14.

Comment: Rows j and k are interchanged in Steps 7 13.

Step 7« For u =1, 2, ..., (g execute Steps 0-10.
Step 8. Set z = a
Step 9- Replace by a

Step 10. Replace a‘.Ju by z.

Step 11. Set z = b, .

Step 12. Replace b™ by b~

Step 13. Replace b. by z.

Comment: The ith minor step is described by Steps 15-18.
Step 14. For i = k+1, k+2, 1 execute Steps 15-18.

Step 15. Set z = ai/ akl*

Step 16. For u - 2, 3, g replace a. . by a. - za,
Step 17* Set = 0.
Step 18. Replace bt by - zbM.

Step 19- Use Algorithm 2.1.4 to solve Ux = b (IT stored in A).

2.13 Triangule-ication of ster-ped-banded matrices using stabilized
elementary transformations

Mg now describe a method employing stabilised elementary matrices for the

tri*”gularization of a stepped-banded matrix A. As with the Gaussian

elimination method of Section 2.12 the method tehee full advantage of the

structure of A an that only very far arithmetic operations are performed

on soro elements of A. The method has the further practical advantage that
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the rows of A are processed sequentially, ie each row In turn may be
computed or read from an input device, and then processed fully before
the next rov? is so treated. Thus, matrices with an indefinitely large
number of rows may be triangularized. The only restriction is that a
storage space of roughly nq locations must be available. A parallel of
the method \7hich uses plane rotations to effect an orthogonal

triangularization is given in Section 2.14.

The matrix N!LJ’ equal to the identity matrix apart from the element in
position (i, j) (i /7 j) which is -m, is termed an elementary matrix
(VZilkinson, 19&5: pl&t- et_seq). If Jm .| 1 then M 3 is termed a
stabilized elementary matrix. The effect of pro-multiplying the matrix
A by Mij is to replace row i by row i - n}J X row j and to leave the
remaining rows undisturbed. The inverse of M . is easily verified to be

equal to the identic matrix apart from the element in position (i, j)

which is +m.

The triangularization process consists of mmajor steps, the ith of which
(i =2, 3 m) involves the elimination, by employing a sequence of
stabilised elementary matrices, of the elements in row i of A that lie to
the left of the main diagonal. Immediately before the start of the ith
major step, the first i-1 rows of A are in upper band triangular form
with at most g-1 super-diagonals. The configuration at the start of the

ith major step is illustrated in Pig. 2.13.1 for the case q =4, p =3,

p2=5, P, 8, i =8.

The ith major step involves initially the determination of the smallest
integer k such that i ~ p~, followed by (at most) q ninor steps, the
jth of which (j - k, kn1, ..., i-2] is executed only if a.j’\ 0 end

consists of (i) interchanging rows i and j if Jazxj] > ja..j , (xx) fcrLllsii,

nij = aij/aii and (iii) rePlacin« row 1V row i - mz/ row j. The
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interchange in stage (i) is necessary if |a_j ja.”j to ensure that
mi_%/l and hence that the elementary transformation defined by stages

(ii; and (iii) is stabilized. A full description of the complete process

in the case m= n, including the treatment of a right-hand side b, is

given as Algorithm 2.13*1 below. In this algorithm R is formed in an n by ¢
array, the successive diagonals of R being stored as successive columns

in the array. The ith rows of (Ajb) (i =1, 2, ..., n) are assumed to be

supplied successively in locations v», v2, ..., v , U

Two refinements that result in a worthwhile saving in computation are
incorporated in Algorithm 2.13*1* The first refinement involves, in the
o N rjd , replacing the explicit row interchange and the following
elimination step by a simple strategy which combines these operations and
thus reduces the overheads associated with loop control and the accessing
of array variables (cf Section 2.10). The second refinement takes
advantage of any zero elements on the diagonal of R. If v. is about to be
eliminated and r .. is zero then the jth row of R (ie a null row) is

interchanged with the current row. The remaining rotations associated with

the new current (now null) row are then skipped.

X X X X
© X X X 1
(x)(x) X X X X
®(x) X X X

® ® 0 X X

X X X X

fig. 2.13*1 The eonfiguration at the start of the 8th major step in the

TJ factorization by stabilized elementary matrices of a

stepped-banded matrix with q = % Pi =3 P2 =5 8

X end © as in Fig. 2.12.1.
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Vith very minor changes, plane rotations can Idb used in place of
\
stabilized elementary transformations in order to effect a Of rather

than an LU decomposition (See Section 2.14).

In the square case iu= n the solution of Ax - b then reduces to the

solution of the triangular system Hx = O.

In the general case n ?n the least-squares solution can be obtained using
the method described in Section 2.4. It is necessary to form the unit
lower trapezoidal matrix 1, which has the same sub-diagonal structure as
that of A. In fact, L is easily formed as the product of the inverses of

the stabilized elementary transformations computed during the reduction.

Him,-7«13«1: Solution of a square stepped-banded linear system
using stabilized elementary transformations
(economized storage strategy).
Comment: k is the number of the current block being processed.
Step 1. Set k = 1.
Comment: R and G are initialized to zero in Steps 2-4.

Step 2. For i =1, 2, ..., n execute Steps 3-4.

Step 3* ior J=1» 2, ..., gsetr..=0.

Step 4« Set 0. = 0,

Comment. The ith major step, in which row i is processed, is described
by Steps6-31.

Step 5. For i =1, 2, n execute Steps 6-31.

Comment: The current block number is updated in Steps 6-7.

Step 6. If i ™ p,. advance to Step 8.

Step 7. Replace k by k+tl1 and return to Step 6.

Comment: The ith row of (AJ b) is read or formed.

Step 8. Read or form the current (ith) row Vl* Y

\'
20 * gy

Comuent: The Jth minor step, ip which , y (v'.)) is eliminated, is

described by Steps 10-30.



Step 9*

Comment:
Step 10.
Comment:
Step 11.
Comment:
Step 12.

Comment:

Step 13.
Stop 14.
Step 15.
Step 16,
Step 17.
Step 18.
Step 19.
Step 20.
Step 21.
Step 22.

Comment:

Step 23.

Step 24.

Step 25.

Step 26.

Comment:

Step 27..
Step 28.

Step 25.
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For j — 1, 2, ..., g execute Steps 10-30.

A transformation is skipped if a is already zero.

3) J
I f vJ. - 0 advance to Step 30.

Special action is taken if r ) is zero.

crd—t Torda i 1yl
If rk(®~ ~1 = 0 adva,nce to Step 27.

A test is made to see whether a row interchange is required.
If Jaw Jrlctj 1 ] advance to Step 23.

A transformation with implicit row interchange is carried out
in Steps 13-21.

Compute n = rk+ul”™ Ay

Replace rk+j 1™l b7 v .

For 1 = j+1, j+2, ..., q execute Steps 16-18.
Set z = v
Replace ™~ by p™ j.~ tj+, - d*.

Replace rk+j.1lil_j+1 b7 z*

Set z = u.

Replace u by °k+j - ”

Replace Ok+._, hy 2.

Advance to Step 30.

A transformation without interchange is carried cut in
Steps 23-25.

Compute p = v™/r" j 1.

For 1 = j+1, j+2, . g replace by ArK+j-1,1-j+1

Replace u by u - hSk+J- 1e

Advance to Step 30.

The (k+j-Ith row of (R j0) is replaced by the current row in
Steps 26-27.

For 1 =j, j+1, g replace rk+j—1,1— ‘1 by vy
Replace by u.

Advance to Step 31.
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Step 30. Continue.
Step 31. Continue.

Step 32. Use Algoritlm 2.1.4 to solve Fe = O.

2.14 Orthogonal trinngularlzation of stepyed.-~br.nded matrices using

plane rotations
1% now consider the triangularization by classical plane rotations of a
stepped-banded matrix A. The method follows very closely the algorithm
based on stabilized elementary transformations treated in Section 2.13
and shares similar advantages. However, there are two further advantages,
not enjoyed by the method of Section 2.13. The first is that there is no
possibility of severe element growth since the Euclidean norm of each
column of A remains essentially constant. The second is that, if the same
operations are applied to the right-hand side, it is not necessary to

store details of the transformation matrices themselves.

The process is identical to that of Section 2.13 except that we allow
m” n rather than m= n and the jth minor step of the ith major step
involves a plane rotation rather than a stabilized elementary transformation

to annihilate a..!

If a. . = 0 do nothing; otherwise

(ii) Replace row j by ¢ x row j + sxrow i and row i by

c Xrow i - sX row j.

A full description of the complete process is given as Algorithm 2.14.1
below. Algorithm 2.14.1 can also be viewed as an adaptation of Algorithm
2.9.1 to stepped-banded systems. Similar adaptions of Algorithms 2.9.3

and 2.9*4 enable Gentleman’'s rules to be applied to such systems.
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Algorithm 2.14.1: Orthogonal triangularization by ro~s and linear
least-squares solution of a stepped-banded
system using classical plane rotations
(economized storage strategy).

Comment: k is the number of the current block being processed.

Step 1. Set k =1 and cr = 0.

Comment: R and O are initialized to zero in Ste-ns 2-4.

Step 2. For i - 1, 2, ..., n execute Steps 3-4.

Step 3» for j=1,2, ..., set r.. =0.
p o J q i3

Step 4* Set C!i- 0.

Comment: The ith major step, in which row i is processed, is described
by Steps 6-30.

Step 3. for i =1, 2, ..., inexecute Steps 6-30.

Comment: The current block number is updated in Steps 6-7.

Step 6. If i ~ advance to Step 8.

Step 7. Replace k by k+l and return to Step 6.

Comment: The ith row of (A Jb) and the corresponding weight ere read cr
formed.

Step 8. Read or form the current (ith) row *, v,,

Comment: No operations on row i are required if wis se"o

Step 9 If w _ O advance to Steu 30.

Comment: The weight, is incorporated in row i in St*“o® 104"

Step 10. If w = 1 advance to Step 14.

Step 11. Set z = w2.

Step 12. For j = 1, 2, q replace v.J by zv .

J
Step 13. Replace u by zu.

» (v.) is eliminated,

Comment: The jth minor step, in which a. , . i
i k+o-i y S
described by Steps 15-23.
Step 14. for j = 1, 2, g execute Steps 15-28.
Comment: A rotation is skipped if a is already zero.

j-1



Step 15»

Comment:

Step 16.

Comment :

Step 17*
Step 18.
Comment:
Step 19*

Comment:

Step 20.
Step 21.
Step 22.
Step 23.
Step 24.
Step 25-
Step 26.
Step 27.
Step 28.
Comment :
Step 29.

Step 30-

Step 3l
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I f tj = 0 advance to Step 28.

The algorithm branches according to whether r, . , . , IS
k+j-1 k+j-1I
ZEero or non-zero.

I f / 0 advance to Sterp 20.

"k+d-1 1
In the case r . =0 row k+j-1 of (R ]0) is replaced
by row i of VA ]b) in Steps 17-18.

For 1 - j,j+1, ..., gset rk+j_1A .+l - vr

Set ok+j-1' = u.

No further rotations involving row i of I2(Aj b) are required,
Advance to Step 30.

In the case ric+j—'1',k+j-1’ ¥ 0 a conventional rotation to

annihilate a. . . . is carried out in Stops 20-27.

Sct S: (rLo-1,k+j-1 "

Set ¢ z rk+j-1,/& and s = v/ 6°

Set rk+j-’1’,1: & e

For 1 = j+1, j+2, ..., ( execute Steps 24-25.
Sety -V j-i 814 2 - v

Replace W.j 1 I-j+l °y+s3 arxd vi hy cz-sy,
Set Yy - ok+j-1' and z = u.

Replace O}@j_| by cy+sz and u by cz-sy.
Continue.

The residual sum of squares is updated.
Replace ¢~ by cr +u”.

Continue.

Use Algorithm 2.1.4 to solve Rx - 0.

Reid (1967) and Hanson and Lawson (1969) have also described methods fci

the orthogonal triangularization of stepped-banded matrices. Tliese

methods utilize a special sequence of Householder transformations which

avoid operations involving zero elements wherever reasonably possible.
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However, these mefchods involve more corneli csted strategies than, the b
described here, with the consequence that the resulting codec aro

somewhat longer.

2,15 The singular value decomposition

The most powerful tool for analysing linear least-squares problems is

the singular value decomposition (STD). Golub and Kalian (1965) appear to
have been the first to describe-in detail a computational scheme for the
SVD, but they refer to the complicated nature of the algorithm they
proposed. We confine ourselves to a brief discussion of a modern variant
of the algorithm. This variant is duo to Golub and Reinsch (19/0) and
constitutes an improvement of an earlier algorithm, based on the Golub-
Kahan paper, due to Golub and Businger (1967). We also discuos a refinement
of the Goluh-Reinsoh algorithm which demonstrates that the SYD can, in an
important practical case, be made to operate in roughly half the number
of multiplications. Moreover, the refinement enables structured problems
to he solved very much more efficiently. It is assumed throughout this
section that m>n. There is no loss of generality in this assumption

. . . T
since if m< n we can work with A rather than A,

If Alis an mby n matrix with n there exist matrices P, S and £ such
that

A (2.16.1)

'mhere P and Q are orthonormal with respective dimensions mby mand n by n
ilid S is an mby n matrix with non-se.ro elements only on the main diagonal.
A constructive proof of the existence of the decomposition (2.16.1) is
given by Golub and Kahan (19/75). The diagonal elements s. (i « 1, 2,

of § are termed the singular values of S and, by suitably permuting the

columns of F and Q, may be ordered such that
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"N KA AN K> kil k2 " Sy =0, (2.15.2)

where k is the rank cf A.

A particular advantage of the decomposition (2.15.1) is that it enables

the over-determined linear system

A% =\p (2.15*3)

to he de-coupled, ie to he expressed as the over-determined system

(2.i5.h)

where

5=& (2.15.5)
and

h = Rg, (2.15.6)
are orthoncrmal changes of variables.
Now S has the decomposition

S=&H, (2.15.7)
where

& = (2.15.8)
and

j<,—| = Lk 9 (2.15.5)

A
are respectively a hy k and k hy n matrices of rank k .and 3 is the

diagonal matrix with non-zero diagonal elements s. (i =1, 2, ..., k).

The use of (2.2.1V) then gives, as the pseudo-inverse of S,

(2.15.1C)
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yhu3 S* is an n by mmatrix -.¢hose only non-zero elemonbe arc jeven by

f*i"l  («it 0

- (2.15.11)
\ 0 (a. =0)

N

Ine least-squares solution oi (2,15*3) can then be computed from (2,15.5)

where

y = c /9 ,r
from (2.15.4) and

£E=££ (2.15.13)

from (2.15.6).

It remains to describe the manner in which g, § and Q are commuted. In

the Goluh-Reinsoh algorithm there are two main stages.

In the first stage two sequences of Householder transformations (of Section

2.7)

1<>9) v k- 2p-4(KT (*« 1>2> n) (2.15.14)
and

(k) t_2ikVKT =1 2 n * (2.15.15)
where (k) Jk) - 1; are applied to A from the left and from

the right in such a way that

P(N)... fF<*VIW o a<> la-2) 5 (2.15.16)
an upper bidiagonal matrix. The transformation matrices p(k) and Rre
(k) " *
computed so that £ annihilates the sub-diagonal elements in column k.
ie the elements a”~n:) (i = k+1, k+2, »), without destroying

previously established zeros, and Qk) annihilates the elements to the
right of the leading super-diagonal in row k, ie the elements alé\j+1)
(j * k.2, Su}, .... t), again vithout «aatrojing previously ostabltshe;

oeros. The sopersoripta here relate to the order in which the trnnafornations



are executed. Specifically,

i(k+5) _ -Ak) Ak) (k =1, 2, ..., n) (2.15.17)

and

Ab i =AK+i¥ k) (k= 192, . n-2)g (2.15.18)

vihsre A = A Throughout the SID algorithm it is convenient to apply
the sare left transformations to b. The final vector thus obtained is

then the vector c in (2.15.12) and (2.15.13).

In the second stage R is reduced iteratively to diagonal form using a
special form of the QR algorithm (Francis, 19Sl/2) with shifts for computing

tho eigenvalues and eigenvectors of a symmetric matrix.

An operation count establishes that about 2m2 - -n3 v * -

half of which are associated with the left and half with the right
transformations, are required to reduce A to bidiagonal form. The precise
number of operations for the diagonalization phase cannot bo predicted but,
because of the extremely rapid convergence of the (R algorithm with shifts,
can be expected to be roughly An (Lawson and Hanson, 1974). It is usually
necessary to accumulate the right transformations so that the orthonormal
change of variables (2.15.5) is available explicitly for subsequent
computationj i.his accumulation taker- about ~n3 long onerations. Thus thA
complete algorithm takes about 2m + An3 long operations. In particular,

if m~n, jhe S\D will be roughly twice as expensive as a conventional

least-squares solution by orthogonaljration.

Ve now consider a refinement of the Golub-Reinsch algorithm. In place of
the reduction to bidiagonal form using alternately left and right
transformations, firstly reduce A to upper triangular form and then to
bidiagonal iorm. The first of these two stages can be carried out using

any of the methods of orthogonal triangularisation, such as Stops 1-n Of

Algormtnm (including these associated with the right-hand side b)
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&i¢rcussed carl.'. ?r. The second, stage can be cajed out by applying the
Golub-Reinsch bidiag'on&lization scheme solely to the n by n matrix
containing the right triangle. The total work is easily verified to be
about nn'z' + 5n3 (is ran% - ’i n3 for the triangular!zation, gnz for the
bidiagonalization, for accumulating the right transformations and

about 4n3 for the diagonalization).

The refinement discussed above is important not only because it enables

the arithmetic work roughly to he halved in the case m n, but also because
it enables structured systems, such as ones with stepped-bended matrices,

to be solved pc¥l3cularly efficiently. |If the original Golub-Reinsch
scheme is applied to a stcpped-banded system of bandwidth q, there is

little that can be done without extensive reorganization to save arithmetic
operations and thus the number of long operations remains essentially

2" + 4n-'.  With the scheme based on the initial triangularization the
total work can he reduced to about m2 + no +4- n3 (pe me2 for the
triangularization, nzq for the bidiagonalir,ation, ? 2for accumulate» the
right transformations and about 4n7 for the Siagor?alization). The term n2q
is usually insignificant compared with = n3 and hence the total work is
essentially g + 5n (say) long operations. This refinement to the S\WD
therefore becomes particularly significant if m» n. For instance, consider
the values (tjpicul .in cubxc—spline approxxinatD.oii problems) n = 100, }i = 10
and g = 4. The Golub-Reinsch algorithm takes about 24,000 long operations,
whereas the refinement requires about one-quarter of this number. If mis
extremely large compared with n, the savings are even more substantial,

lor instance, a, m= 1C00, n 10 and q ™ 4» the Golub-Reinsch algorithm-

takes about (/><0,000 long operations and the refinement about --- of this

number.
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Te do not advocate the general use of the 5/D in situations where the
matrix A arises from a well-chosen set of basis functions and a sensible
choice of data. Kather, we view the DVD as a tool to employ in special
circumstances, such as when we wish to investigate how "well-posed" is

a particular formulation of a problem, or sometimes to obtain a reliable
estimate of the rank of the observation matrix, even if the problem itself

is well-posed (Chapter 10).

Tle make use of the SID in Chapter 7 to establish that the choice of
B-splines for the basis functions in spline approximation gives rise, in
a wide variety of practical circumstances, to an extremely veil-posed
formulation of the problem. In particular, we use the SID to estimate the
sensitivity of tho B-spline coefficients and hence the spline itself to

perturbations in the data (cf Section 2.16).

2,16 Perturbation bounds for the solution of linear systems

In solving the linear system

Ax = b , (2.16.1)

where A is a real mby n matrix (m£ n), it is frequently of some
importance to examine the sensitivity of the solution x to perturbations
in A and/or b. This question of sensitivity is of particular relevance
in cases where the system (2.16.1) arises from problems of interpolation
or least-squares approximation (Chapters 6, 7 and 10). In these problems
A corresponds to the matrix of a basis functions evaluated at m data
points, and b to a set of mvalues of a dependent variable. A will
inevitably contain errors resulting from roundings in the floating-point
oreratior.s needed to evaluate the basis functions, b will contain errors
corresponding, in the case of mathematical data, to the truncation or
rounding of non-computer-representable numbers or, in the more common

case of experimental data, to the finite precision of such data. Accordingly,



we "'ich to examine the affect on x of replacing é by A+6A and b by hr'b.
swhere 6A and 6b denote respectively perturbations in A and b. For the
square case m- n we follow Wil di son .(1963, pp 189 et »00) snd for the

over-determined caso m” n we follow Lawson and Hnson (1977).

In the case in = n, suppose A is non-singular, and consider the solution

X + 6x of
fMwt RAG + &P - Qb - (2.16.2)

Expanding (2.16.2) and subtracting (2.16.1) gives

Thus
Al + A TBA)6X I 6b - BAX (2.16.0
fron which -
= (1 + Arl6A)" 14" 1(6b - BAX) (2.16.5)
if £ ;01 + iB non-singular. The non-singularity of P is ensured if

731% - fl 6A $1 > (2.16.6)

a condition we shall assume to apply. Thue

b -
1 Bl (2.16.7)

“1lu )
1-11f 1 A1
Tee may express (2.16.7) in the fern of the relative error bound

M ‘< LRy

y 1-«(0JEUHT y IR,II ~IT
- H~1TR Iy

(2.16.8)

where



*(£) = 14 YH i-11. (2.16.9)

From (2.16.1) we obtain

12U lisIVIUII (2.16.10)

and hence (2.16.8) becomes

i8X X-(A) 6
< (2.16.11)
- *(A)JiMIiL

lIA]l

In cases whore X(A) 6A j/J A1<1>we see from (2.16.11) that the
relative error JJEA‘/ ‘jAJ in A plus the relative error |£b||/ bj in
b is amplified by a factor of X (A) to produce a bound for the relative
error ‘ N ‘ / in x. The number x(A) is evidently a measure of the
sensitivity of the solution of (2.16.1) in the cas'e m= n with respect to
perturbations in A and b, and is commonly known as the condition number of
A with respect to inversion. We shall make particular use of the spectral

condition number or spectral norm of A defined try

*2(A) = At (2.16.12)

Piere A . is the square root of the meximum eigenvalue of A*A or.

ecuivalently,

AZ |k"‘2—1 A g > (2.16.13)

where the 2-norm of a vector x is defined by

M= (2.16.14)

It follows from the above definition that in terms of the (ordered)

singular values of A (Section 2.15),

AA) msds,. (2.16.15)
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Thus, having obtained tho singular value decomposition of we can conpt
ittiaediately the spectral norm of A from (2.16.1,";) and then the required

sensitivity of the solution of (2.16.1) from (v. j6.11).

We now turn to the case m™ n. Lawson and Hanson (19Aw) shew that if A
and A + 6A have the same rank k then the inequality corresoonding to

(2.16.7) is

gx / (l\...l_ eb! A 1)? (2.16.16)
bA -

erhere A* denotes the pseudo-inverse of A, r the residual vector

A~ (2.16.17)

and x the minimal least-squares solution. Evidently, (2.16.16) reduces to

(2.16.7) if m=n = k.

The result (2.16.16) may be expressed as

W, I 6A

(2.16.18)

where X g(A) - 2 o 2NN (201 considered as a condition

number for the rectangular matrix A (of G-olub and Wilkinson, 1966), it

evidently reduces to the conventional spectral norm in the case m=n = k.

Since A Ax , (2.16.18) can be expressed as
8b
+- o Tivirrbe (2.16.19)

The result (2.16.19) reduces to (2.16.11) if m=n = k.

Nov? suppose that < 0.1 , aresult that will be true for nearly
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all least-squares solutions of practical importance (in any case it is a

trivial matter to check whether this result holds). Then

1
u b > 0.9 (2.16.20)

and hence (2.16.19) yields

or- iO db 10 ‘(’)a“ " Il rii

5 fel 2R

(2.16.21)

\7% make use of (2.16.21) in Chapter 7*



CHAPTER 3
B-SPLINES AND IHEJH MUK.SRICAI EVALUATION
Computations with splines are considered in this and in the remaining seven
chapters oi this work. Ic, is crucially important that our choice of"
representation of splines and the way in which v.c manipulate the
representation are such that the computations are numerically stable. One
reason why we make such demands is that we require a high degree of
confidence in our numerical results, Ilife wish to be able to say, for instanc
that the departures of an approximating spline from a set of data points are

real and are not due to deficiencies in the representation or its use.

In Section 3.1 we define polynomial spline functions and associated concepts
B—splines and some of their properties are presented in Section 3.2.
Algorithms based upon divided differences for the evaluation of E-splines
are developed in Section 3.3. A recurrence relation for B-splines that is
fundamental to much of our work is established in Section 3.4, where also
recommended algorithms for B-spline evaluation and further properties of
B-splines are presented. In Section 3-5 the values of the B-splines at the
ends of the range are derived. The sum of and bounds for the values of

normalized B-splines are derived in Section 3.0.

Error analyses of the algorithms of Sections 3.3 and 3.4 are given in
Sections 3.7 to 3*9. In Section 3.10 the effects of perturbations in the
knots and in the argument of the B-splines are discussed briefly. Some
numerical examples are given in Section 3-11. Algorithms for evaluating
all non-zero B-splines for a given argument are presented in Section 3.12,
Finally, in Section 3.13 other methods for evaluating B-splines are

discussed and compared with those recommended.
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31 Definition = aspline function

Firstly, we define an n-extcndcd partition. There are many equivalent

definitions in the literature; that given here is essentially that due to

do Boor and Fix (1973) Let n and N be proscribed positive integers. Let

(a, b) be a finite or infinite interval on the real line. \#& say

(v V V i) is an n-extended partition of (a, b) if

(i) a< A X2/ eee$ XN-1A
and
(ii) if d is the frequency with which the number x = appears

among the xJ’s, then dl_ En (i =1, 2, ..., N-1).

Condition (ii) can be expressed equivalently as

(ii) xi_n< xi ClL = nhlj n+2> N~1)- o
G

For example, if N = 8 the values depicted in Fig. 3.1.1 form a 3-extended

partition, whereas those in Fig. 3.1.2 form a 4-extended (but not a 3-

extended) partition. |If d. = 1 then is termed a simple knot or a

toot.qL*"pH city one; if d.> 1 then x. is termed a multiple knot

or, more specifically, a knot of multiplicity Aj' T/e term the

x. (i =1, 2, ..., N-1) interior knots.
Lo j - I —_—
X
5 b
X
%5

3.1 A A 3-extended partition



- 7 <
X
a Xl X2 _ X b
3
X,
5

Pig. 3-1.2 A A-extended partition

It is frequently useful, in cases where (a, b) is a finite interval, to
augment the interior knots by further knots with the properties that

xo =a *N =Db’ xi afor 1 <°>\ ~ h for i > N, and the completeset
oi knots lora a non-decreasing sequence. Y& terrg x and x. _end or
boundary knots and xx (i < 0) and x. (i> N) exterior knots. Y& call any
knot set { xt] of this form astandard knot set. Any standard knotset
with x1 = a for i ~ 0 and xx =b for i “"Nwe call a standard knot set
JEiiLiL P . Carasso and Laurent (1969) appear to have been
the first to suggest the use of coincident end knots, but they fgiled to
point out the many practical advantages accruing from such a choice. Those

advantages become apparent in this and in subsequent chapters.

Let . = X' x2' be an n-extended partition of the finite or
infinite interval (a, b) = (x >>T- A function s(x) is a -pdynomial spline
function (or simply a spline) cf order n (ie degree n-1) with the knots

(or joints) x. (i =1, 2, . h-lI) ii

(i) s(x) is a polynomial of degree less than n in each of

the intervals (xs ™, x™ (i =1, 2, ..., N).
(i) S(x) S O (Xi-1, x.) if X._1< x. (i =1, 2, ..., N),
(iii) s(r) (xo-) - (xi+) (L =1,2, ..., IT-: 0 $r< n-~d,).

Another definition of a spline is based upon the fact that the (n-I)th

ebrivative of a spline of order n is a step function v/ith discontinuities
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at the knots, and, conversely, the (n-1)th integral of step function is

a spline of order n.

even more concise definition is that s(x), x « (a, b), is a spline of
order n with knots x,, if and only if r » (x) =0 for all

X/\

Suppose all interior knots are simple. Then, since s(x) is composed of N

polynomial arcs of degree < n, it can evidently be described in terms of

at most Nn linear parameters, together of course with the N-1 knots.

However, because of condition (iii), this number of free linear parameters

is reduced by the number of continuity conditions at the interior knots,

ie by (N-1)(n-1), to a total of at most Nn - (N-I)(n-1) = N+n-1 linear
parameters. We obtain the same result if some or all of the knots are
multiple. For, suppose there are r., simple knots, r knots of multiplicity

2, ..., r knots of multiplicity n. Thenr + 2r_+ ... +m. =N.1 tho

number of interior knots (including coincidences), and the number of

(non-empty) intervals is + ™+ ... r™+1. The number of free parameters
is therefore n(™ +r2 + ... +r+1) less the number of continuity
conditions, ie n(® +r2+ ... +r+1) - (n-H)~ - N-2)r2 - ... - M

Fry +2r + .. +nrn+n=N+n-1 G

3.? The definition of a ?-spline

Let n be a positive integer. Define the truncated -power function

el
91 (=" o)
X (5.2.1)
(x <0
and
n-1

Suueose X. N> X.. , ..., X. are ntl real numbers (lusots) with
Vi-n R Xji_n+t - - - < i_ and x;_, < X;.. Such a set of knots forms an
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n-extendcd partition of the real line (of Section 3.1). Consider the
divided difference of order n of the function ('¢,2.2) with respect to the
variable y based on the arguments y >x; , X. , ..., X . Using a
notation similar to that of Steffensen (192*/) ve denote this divided

difference by I\M/ in . > X. j x), which in unambiguous cases vv

"i~n+l’
shall abbreviate to i .(x). If wo let
W (X)) = X OGX ) (X)) (3.2.3)

then in the particular case of distinct knots, ie where

-, < Xi-«i< oo SV

an explicit expression (Greville, 1969) is

\n-1

J
4 (X~
M. (x) = - 3.2.4
nx r=I|~" w! (X)) ( )

nx'r

o

where the prime denotes differentiation with respect to x.

The truncated power function (x-x)* ' is evidently a spline of ordd? n
with a single knot at x = x , since it satisfies the conditions of
Section 3.1 (with a = -co, n =+00. Thus, since the taking of divided
differences is a linear operation, it follows that in the case of distinct
knots M;(>*) is.a linear combination of the functions (/rx;xlﬁ]"l
(r - X-n, Xx-n-i-1, X) and hence is a spline of order n with knots

1? eee>x:e ihis result can also be seen immediately from
(3.2.4). For y> x*, \ x(x) is identically zero, by virtue of (3.2.1),
and for x < Xgx Ijm(x) is sinply the divided difference of order n of a
polynomial of degree n-1 and hence vanishes identically. For x. < x< Xx.,
vn).((x) has the proport;/ that it is strictly positive (Curry and Schoenberg-,

1966). This property is proved by a simpler argument in Section 3.4

(Theorem .jh';--)* ‘#™(3} ¢S 'conned a ft-spline or fur.damcntal ire of
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order n based on the knots X , .y, X, The b-splinos were
first introduced for the case of equally-spaced knots by Schoenberg (1946),

and for the case of arbitrarily-spaced knots by Curry and Schoenberg (19S6) ,

T/e have departed slightly from convention in our definition of B-splines
in two ways. Firstly, our definition has the property (see Section .1.5)

that
*0
Mi(x)dx = 1/n | (3:2-3

whereas the usual definition (see, for example, Curry arid Schoenberg, 1966)
includes a multiplicative factor n so that the value of the integral *z
normalized to unity. We find the inclusion cf this factor a hindrance,

however, particularly when we come to derive in Section '$br a recurrence

relation for the values of li~ x). The factor can always bo inserted for
computational or other purposes as required. Secondly, we employ a double
subscript in our abbreviated notation for B-splines, as opposed to the
single subscript preferred by most authors. Our notation is nefce«sar-
since we need to refer to B-splines of various decrees defined on various

knot sets.

Recently, a very similar definition has been introduced independently by

de Boor (1972); his I\/IJT((X) is identical to our Ifk.i'+l’<(>:zl'

The normalised B-spline M .(x) is defined (de Boor, 1972) by

i (%) (3.2.6)

= M Ko+ Xln£9, X © %)

- M Xione » Xioq ; X) e (3.2.7)

I f r, > n+Ni --e> x..} forms an (n-1)-extended partition,
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Xt> xi_n+tl or xt 1™ x, n, then it is readily verified that li (x) and
K i(x) are continuous functions. De Boor (1572) states (ei roneously)
that Mhi(x) and Nni(x) are continuous if xX. NN, x/J form

an n-extendcd partition. A counter-example to his statement is provided
= e < . i . )

by the case Xi-n X i X1 X%y for which Mm(x) and ngx),

are discontinuous at x = . However, do Boor’s result is true for

the (open) interval x. < X< X..

In the case n = 1, Mii(x) and Nnx(x) are discontinuous at x < x. ~ and at

X = x£. VYie assume, in accordance with (3.2.1) that

(1i min 51

Mow = < (3.2.8)
0 (otherwise)
and hence that
Nu &9 = (3.2.9)

(otherwise)

In Fig. 3.2.1 we illustrate the B-sPlines N (x), N J(X), N (x) and

Nd4(x) defined upon the knots xo = °* xi = ¢-3, x2 = 0.45, x3 , 0.65 and
= 1. In Fig. 3-2.2 we again illustrate N~ (x), N~(x), fi™~(x) and

NV f(x), but with knots xo = O, =x2 =x3 . 0.4 and x, 1.

In Section 3*4 wo state and prove a fundamental recurrence that relates
B-splines of consecutive degrees. Most of the good error bounds we obVin
and the numerically stable algorithms we develop stem from this and

related results.

Many of the theorems we prove and the results we obtain for the un-
normalized B-spline Mzt(x) extend, in an obvious way, using (3.2.6), to

the case of the normalized B—s)plines Nrﬁi (X)



N14(X)

Fig. 3.2*1 The B~splines N~ x), N”~x), N~(x) and N”™(x)
with knots xq = 0, x. = 0.3, x2 = 0.43,

XN =065 and Xj = 1.
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3<3 The conventional method of evaluating B-splines

For any particular value of x, M, (x) is conventionally evaluated (see,
eg Schumaker, 1969) by means of the recursive definition for divided
differences (Steffensen, 1927). This approach loads to the following
algorithm (we need only consider x. ”~ x < x., otherwise M (x) = 0).

Tre assume for tho moment that the knots are simple.

Algorithm 3-3-1: Evaluation of an isolated B-spline value using
divided differences.
Comment: Set the initial conditions.
Step 1. For j - i-n, i-n+1, .... i form Boj' = (xj—x)J’r’"l.
Comment: The divided differences are formed in Steps 2-3.
Step 2. Forr =1, 2, ..., n execute Stop 3.
Step 3- For j = i-n-t-r, i-mr+1, ..., i compute
»rj “ <v1,d - D-1,M )/(B - B-rb5 (3.3.1)
Ste;pL A. Set Mna?x)/ = Dni'

For example, if n = 6 the elements in the triangular array in Fig. 3.3.1*

are formed.

* The arrows in this and subsequent diagrams indicate the “direction

of flow" of the process; thus, eg )., . is computed from D
3*1“1 2.i-2

and D2,i—1
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X1-6 Vo, &6

lis« 3-3-1m Illustration ox a computational scheme using divided

differences for evaluating a B-spline.
In practice advantage can be taken of the property

DoJ = ° (3.3.2)

in order to reduce the number of applications of (3.3.1). Thus if, for

example, < x < *t+ 2, the above array takes the fora indicated in

iif£. 3-3-2.
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PiC. 3.3.2. Illustration of a more efficient scheme using divided

differences for evaluating a 3-spline.

In general it is necessary to compute and store only a trapezoidal array
of non-zero elements. A modified version of the algorithm, taking

advantage of (3.3.2) can be stated as foilevrs:

Efficient evaluation of an isolated B-spline value
using divided differences.
Comment: Find the interval containing Xx.
Step 1. Determine the unique integer 1 such that X114 C x ,<\in*
Set k = i-1.
Comment: The initial conditions are set in Steps 2-3.

Step 2. Forr =0, 1, 2. .... n-k-1 set Br,l—l =0.
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Step 3- Fox* j —1,1+i) eee, i lo-m Bo’J_(X *jx'\ «
Ceminent: The divided differences are formed in Steps 4-6.
Step 4. For r = 1, 2, n execute Steps 5-6-

Step 5- Set p = max(i-n+r, 1).

Step 6.  For j =i, i-1, .... P compute DpJ = (Dr_1j"®r-1,

Step 7» Set Mhi(x) = Dnt.

It is unnecessary in practice even to store the whole trapezoidal array.
since as soon as Drais computed in Step 6, it may conveniently overwrite
pr-ljj’ the latter being no longer required. It follows that the number
of storage locations required is at most n+l.

There are variants of Algorithms 3-3.1 and 3-3-2 in which the elements
1)”_. are computed diagonal by diagonal rather than column by column, for
example, the elements in Fig. 3-3-2 may be generated from relations
(3.3.1) and (3-3-2) along upward-sloping diagonals in the order %j %/
DL,i-2" *" \,i-25Vv - 1"\ i-1I 06,i-1J Doi’ Dli» « *' Gi
Alternatively, along downward-sloping diagonals the successive elements

Doid Do,i-1* Dli ? Do,i-2’ 1J,i-1li D2i JDL,i-2* D2,i-1* °3i; D4,i-2°
D5 e D~ are generated. Computationally, there is little to choose
- 0X
between these various forms of the algorithm. They require similar amounts
of computational, effort ana possess identical error-propagation

characteristbcs.

The elements r 3 are all theoretically non-negative (G-reville, 1969) and

cancellation may therefore take place in computing (3-3.1) if Dr—l i and
D 1 i1 are of similar size. Hence the possibility exists O®

r-1,.

significant errox- growth in the computed values of the . and hence of

appreciable error in the computed value of M”™(x) .

Tie expect therefore these algoritlims based upon the use of divided

differences to be unstablem this expectation is observed in practice,



even for relatively "simple" examples (see Section 3*11)- In particular,
the algorithm breaks down completely in the case of multiple knots. In
such cases the appropriate divided differences can be replaced by their
limiting forms as derivatives, but even then very poor results are
frequently obtained, as they are in cases of near-coincident knots.

In Section 3.7 we use a running error analysis to give a posteriori

bounds for the errors in the computed values of I)Aj'

3-4 A recurrence relation for B-splines

Te now state and prove a fundamental recurrence relation for B-splines;
its use enables B-splines of order n to be evaluated from those of order
n-1. The relation gives rise to a method for evaluating B-splines which
we shall refer to subsequently as the method of convex comblnati mu, This
method and the method based on divided differences are analyzed in detail
in the remainder of this chapter.

Theorem 3-4.1

The recurrence relation

XM O OIM ()
t (x) = (3.4.1)

and its equivalent for normalized B-splines,

X-X. A

Nni(x) =Vxi-rxi-n/ Nn-Dri-1(X) +( Xi-Xi-n+l/ n"15{x)’ (3'4*2)

hold for all values of x.

Proof

A proof for the case of distinct knots, ie x» "< x. ° X ., has
been obtained (Cox, (972) by making use of the explicit expression (3.2.4)
for a B-spline. For the moi'e general case, where the knots form an
n-extended partition, ie xt n N Xt n+l ~ n Xt n< x,, the following
more elegant proof has been given by de Boor (19?2) who, independently of

this work, also discovered the relation (3.4.1).



Leibnitz' formula for the nth divided difference of the function

h(y) = f(y)a(y) (3.4.3)

in terms of the divided differences of f(y) and g(y) is
h(yO.yl1.-.,Tn) - 5z f(yOyl,-..,ypE(yJd,yJ+l,...,yn). (3.4.4)

The application of (3.4.4) to the function

h(y) SM(y ; x) = (y-x)Mn_L(y ; x) (3.4.5)

yields

M (X,
n'"x-n

-n+lT g X) - » »>

+ L Mn—Iglxk—n+1*Xi—n+2" ,>\<(i ’.‘;3 j

since the divided differences of order greater than unity of the function

y-x vanish. Thus, employing the properties of divided differences,

X, -X
M .(X) T xn
% l-n. Fn-1X-n+13-n+2,,-*Xi 5x)

M-17%i-n Xi-n+1,*" sXi-1 1 XM+ \-1 oG-l xi-n+2" **** xj : x)

_ ™Xi-n™ n-1Xi -n  Xf-n+1 "’ 7 Xi-1 ? R (I
X. - X
%-n
sl 1@+(X JTX)Hnol,xg() )
i
XX X)-(_n (3.4.6)

Y-hich establishes (3.4.1). Relation (3.4.2) then follows from (3.4.1)

upon using (3.2.6). |

XfQ observe that (3-4.1) can bo r,written as
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Hhiw -6V 1,i-1Cl) + (3.4.7)

where

(3.4.8)

liow Mh.(x) =0 for x < x._n and x> x. (see Section 3.2). nence, for the
range of x over which Mii(x) /7 O, Glies between O and 1. It follows
that for xi_ n<$x < ~ni(x) 13 a convox combination of || . (x) and

My q 104

Theorem 3»4.2

Por all ny-0 and all i,

.7 9% (xi-n < x <

Mn-l(X)’ Nni(X) ) =0 (X< Xi_n>Xi < X) 549
Proof
Assume the theorem is true for n =r-1 > 0 and all i, ie that Mr—',i(x) >0
for all i and x*_ < X < xx. Now consider relation (3.4.1) with n
replaced by r. If X < X <X then the term (x-x. Y2{ ., . ,(x) > O.
If xi _r+l < x < xtx then the «.na (Ni-X)Mr_1 (x) > o. |If xi_r< x< x,
then at least one of these two terms is positive. It follows that
M 4(x) > O for xi_r< x<x;, ie the theorem is true for n=r. But the

theorem is evidently true for n = 1, by virtue of (3.2.8). Hence, by

induction, it is true for all n.

Yk refer subsequently to (3.4.9) as the restricted or compact support

property of B-splines.

Note that in (3*4-9) we have omitted the end-points x+ n and x... Normally,
M ~(x) and Nn~(x) are zero there too, but in the case n = 1 or if x* f is a
knot of multiplicity n, it is straightforward to verify that they are

non-zero at xi_n as a consequence of (3.2.8), (3.4.1) and (3.2.6).



We now give an algorithm based upon (3.2.8) and (3,7j.1) for evaluating
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ITrd(X) (again wc assume that Xiipg RX <X otherwise ﬂni(x) = OPJ :

Algorithm

Comment:
Step 1.
Comment:
Step 2.

Step 3.

Step 4-

3.4.1: Evaluation of an isolated B-spline value using convex

combinations.

Set the initial conditions.

For j = i-n+1, i-n+2, ..., i, sot M . =M (x).
*3 1J

B-splines are computed by convex combinations in Steps 2-3.

For r = 2, 3, n execute Step 3,
For j = i-n+r, i-.n+r+l, ..., i compute
-X. . + (X.- .
- (X X’l_r)Mr_l’J_l (XJ X)Mr_l,l
Hi X, - X
') 3 T dr

Set Nhll_(x) = '\QL]

For example, if n = 6, the elements in the following triangular arrajr

computed:

4]

pig.3.4.1.

Illustration of a computational scheme using convex

combinations for evaluating a B spline.

are
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As with the conventional divided difference algorithm, advantage can he
taken of aero elements in the array in order to reduce the number of

applications of (3-4--i)* By making use of the relation (3*2.8) the above

array takes, if for example Nx< x.the following form:
0]
0]
0] 0]
0]
0]
Fig. 3.4.2. Illustration of a more efficient scheme using convex

combinations for evaluating a B-spline.

In general it is necessary to compute and store only a rhomhoidal array
of non-zero elements. A modified version of Algorithm 3.4.1, taking

advantage of (j*2.8) can be stated as follows:

Algorithm 3.4.2: Efficient evaluation of an isolated B-spline value
using convex combinations.
Comment: Find the interval containing Xx.

Step 1. Determine the unique integer 1 such that x X < X

1-1 Ve 1*
Set k = i-1.
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y
Comment: The initial conditions are set in Steps 2-3. q
Stop 2. Forr =1, 2, ..., n-k-1 set Mr I~ = 0.
Step 3- Forr =1, 2, ...,k set Mr,l’+r = 0.

Comment: B-splines are computed by convex combinations in Steps 4-5»

Step 4- For j =0, 1, ..., k execute Step 5.
Step 3- For r = j+1, j+2, ..., j+n-k compute
K A I l+j-l+=cl+.r*>M-1 .U.i
- GV
Mo =S X+ " Lrjer
(r+j =1).

Step 6. Set Mhx(x) =

Ve need not store the complete rhomboidal array since as soon as M
r,l+]j
has been computed it may overwrite Mr—*yLL+] 1 The number of storage

locations required is at most n.

The value of i'ni(x) 21120 computed from variants of Algorithm
3.4.1 or Algorithm 3-4.2. Since M”~x) and H (x) are related by (3.2.6),

the only change necessary to Algorithm 3-4.1 is to omit the final division,

producing

Algorithm 3-4.3: Evaluation of an isolated normalized B-spline value
using convex combinations.
Comment: Set the initial conditions.
Step 1. For j = i-n+1, i-n+2, ..., i, set M _ =M .(x).
P ) g = M)

Comment: 3-splines are computed by convex combinations in Steps 2-3.

Step 2. Forr =2, 3, ..., n-1 execute Step 3.
Step 3- For j = i-n+r, i-n+r+1, ... i compute
M.. =
rj X5 Xj'—r

CouDute N . = (x- M . + (X -xM .
Step 4. ubu nXg/X) glx Xl_n) n-j.,l'l /XI xJ n-1,i*



Algorithm 3-4.2 may also be modified similarly.

Before concluding this section we note that the elements in the array

Hj (or N ) can be computed column by column (as in Algorithms 3.4.1

and 34 .3) or diagonal by diagonal (the diagonals either sloping upwards
from left to right as in Algorithm 3-4.2, or downwards from left to right).
As with the divided difference method, there is little to choose between

these variants of the basic algorithm.

33 The values of B-splines at the ends of the range

At the ends of the range, B-splines defined upon a standard knot set with
coincident end knots assume special values as established in Theorem
3.5.1 below.

Theorem 3.3.1

For B-splines of order n (n 52 1), defined upon a standard knot set with

coincident end knots,

b)) = 1
n,N+n-i [O (i> 1)

Proof

The recurrence relation (3-4.1) yields

Mm.(a) - Mn—l,x(a) (n> 1). (3.5.2)

But from (3.2.6), (3*2.8) and (3.2.9),

(i -1

(3.5.3)
(1>1) J
which in conjunction with (3.5.2) proves the theorem for Nnig(a). In v_>v

similar manner we nay prove the theorem for NU; 5 :.(b). Ul
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3«6 The sum of normalized B-splines ana bounds for their values

It is important in problems of interpolation and least-squares
approximation by splines (see, in particular, Chapters 6, 7 and 8) to

know whether the matrices of basis functions are well-scaled. The value
for the sum of normalized B-spiines and the bounds for individual B-splinss

established in this section are particularly useful in such problems.

Lct™ . x .} xq, ...}be an n-extonded partition of the real line.

Theorem 3.6.1

The normalized B-splines Nni(x) defined upon the knots X N,oX o, X,

have the property

2 Nni(x) =1 (3.6.1)

for all x and all n~ 1.

Proof
Summing (3.4.2) over i yields, for n)>1,
X-X.
=V j v
S NI "~ ir X ndnLisL(Y /L WOXien] NP LX)
i .

Replacing i by x1 in the first sum on the right-hand side of (3.s.2) gives

X.-X
*N 1t (x) 4 (- X—)K O I I k (%)
. 4 NN\ V xi-n+i/ “-1'1
9 1 * . X
"n-1,in e (3.6.3)
But from (3.2.5),
X X W =1- (3.6.4.)
Hence by induction the theorem is true for all x and all n” 1. Q

A generalization of (3.6.1) is considered in Chapter 5.
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Theorem j.6.2

"N owe KniW (n>1). (3.6.3)

Proof

We need only consider the interval x. <:c <X., since Il .(x) is zero

outside this range. Now the average value of (x) in this interval is,

using (3.2.5)} (3.2.6) and the compact support property,
r X.O /rv

N5 QAo dx= (~ r -)/(V xi-n) = Un. (3.6.6)

X. X,
X-N X-N

But the maximum value of a function over an interval must exceed (or at
least he equal to) the average value of the function over the interval.
Hence max ijni(x) N “ e But Liax Nni(x) © i because of (5.6. i) and the non-

negativity of the B-splines. lionce the theorem is proved. j~ j

Conjecture 3.6.1

~L £ max Nni(x) $1 (n~™ 2).
v (3.6.7)

We give proofs of this conjecture for the cases n = 2 and 3.

Theorem 5.6.3

For n = 2 and 3,

090 L (3.6.8)

el 6 max N
nx

n- X

Proof for n 2
Since N2i (x) is the only first-degree B-spline which is no"-z-ro at x
i . ” "A-1*
the identity *2j(x) =1 fields ™ .(x )y =1. Thus max N .(x)> J.
[ J . h-, *1
But N2+(x) ™ 1. Hence max NN (X) = j.j ]

Fmi
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Proof for n — 3
The use of the recurrence relation (3-4-2), after setting i - 3 and
transforming linearly the interval {xgK x ) to (O, 1) with no loss of

generality, yields
.2

X, XT 0 x<x»
X(X2-X)/x24(1-x)(x-x1)/(1-x1)

k33(x) = < (x1 ¥ X< xp) .(3.6.8)
x2 - X

(1-x)

(x2 <x < 1)

Since N' (z) is continuous and increases nonotonisally from sero for
Yy

0 is linear for x. X < and decreases monotonically to aero

for x2< x < 1, it follows that 113_(x) attains its (unique) maximum between

q] and x2. The maximising value of x is given by
x2-2x I+xP.x
. =0 -6-
1ox. (3-6-9)
ue
X = (3-6.10)
1 X2"X1

Substituting this value into (.3.6.8) gives

max N-,z(x) = I/ (l+x2~x]j) . (3.6.11)

Thus, since U4 x x2 < 1, the result

2~ max li33(x) ~ 1 (3-6.12)

follows. U
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5*7  A7posteriori error bounds for the values of B-splines

c from divided differences
Tfe derive in this section a posteriori error bounds for the values of
B-splines computed from Algorithm 5*3*1 or from Algorithm 3*5*2 using a

running cutor analysis (cf Section 1.2).

Theorem 3*7*1

Let the (simple) knots x. , x , X. and the argument x be given
standard floating-point numbers (in Section 5*10 we return to the
implications of this assumption), For the given value of x let DAlj denote

the computed value of D, , obtained from (3*3*1) if r }> 0 or from

€J
(x.-x)n " if r =0. Let
v J +
61)”.. = 1»”.. - I)I‘j' (3*7 %))
Chen
8D ] n 2 1Frj7 (3.7*2)
r;here 3?I 3 is defined by the recurrence relation
F .= -1)D . * 7%
oj (n-1) j (3*7*3)
(F, A, )3 5 . -D . |
- -1;3 r-1,,1-1 r-1,.1  j—i»i-ll
(o X. - X, = (r > 0). (3*7 A)

0 J-r

Proof

From (313%1))
_fl A~ r~1>35r-1,j-1j

D - A
rj | X Xj—r /
\
d « )1« >(,« >
0 J-r / n

( L I (1-:3¢) (3*7*5)
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where e, < 2-t (¢'=1,2,3) mend upon r and j.

Hence, using (3-7>0

D .,-B . . t6D
Ur“+6Dr" r-1.j r-1,j-1 r .
. . 37 T

(3.7.6)

Subtraction of (3.3.1) from (3.7*6) giver

B B TR B e L O R IS ST Y
' X, - X (3-7.7)
J J-r

If Prj (r> 0) is def;lned (3*7.4) and by (3-7-3), which is obtained
by a simple error analysis of the computation of (x,-x)n~1, the theorem

i 0
then follows. n

In proving (3*7'3) it is assumed that DO_. is evaluated by forming >:j,—x - h,
say, and then computing h‘I:Al by repeated multiplication. Such sn approach
.is in accordance with the Algol 60 report (Naur, 1963), and is therefore
appropriate if the method is programmed in Algol 60. If n i3 sufficiently
large it may be more accurate (and faster) to compute hiI'* frem

exp | (n-1)In(h) | ; we do not consider this approach here since any effect

the alternative computation have on our general results are insignificant.

The computer Itself can be made to determine the values of Fi ] since thoy
depend solely on previous values together with the computed values of P

In particular, 2_tIF . is a bound for the error in thelcon’:puted value oﬁ‘J
I\/!m(x). In practice the computer makes rounding errors in computing tnc F_ﬁ
(cf Section 1.2).- However, we see from a simple error analysis that the
further contribution to the error incurred from a single computation of
(3.7.4) is at most a multiplicative factor of (I-2-t)“~. Since the
contribution to the error incurred in computing F . from (3.7.3) is at most
a factor (I-2~")" , it follows that (1-2~t) br““2~t‘F ., where Fr ; is( the
computed value of Try gives a rigorous error bound for jgTj™.j ,, Jiow

(1-27t)”5IW' < 1.112, by virtue of (1.1.12). Hence a’simpler but

marginally cruder bound far {63 J s (1 .112)2"t|Frj or (1.179)2"ti?
s e * r, “ri*
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These a posteriori bounds prove tc be reasonably realistic; (see the

examples in Section 3<11)- Moreover, since advantage is taken of any

cancellations that occur during the course of the computation, those

bounds aro considerably better than those obtainable from an a priori

error analysis (but see the special case discussed in Section 3*11)*

3*8 A posteriori error bounds for the values of B-splineo computed
by the method of convex combinations
Vo derive in this section, again as the result of a running error analysis,

a posteriori error bounds for B-splines computed from Algorithm 3-4.1 or

from Algorithm 3*4*2. As before we assume that the xi , X, R X
-n i-n i

and the argument x are given floating-point numbers, and in Section"3.10

return to the consequences c.f this assumption.

Theorem 3*8.1

.(x) denote' the value of M .(*) computed

For the given argument x let
* X-u

from recurrences (3*4*1) and (3.2.8). Let

6I\/}j.(x) TH 00 - 'Vr'-j'(*)' (3+8. 1)
Then
oM 00 N2 (3%8.2)

where 1 is defined by the recurrence relation

H, .= 2N5J-(X), (3.8.3)

Hj = - _

Proof (3.8.4)

From (3-4.1) ,
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(*-*i_r>nr-1,~ (A (1 A1 Ljw
Ko 1(x) = fl N (3.8.5)
37 T3

{(™ jI ™™V ., j-1 (X)I+E2+(V x)(1+e3)V |,j(i"Y1+E4)] *

X (1+e5) (1+e6) (1+e?)/ (x"-x._r) (3.8.6)
where n Z_t (i =1, 2, .,,, 7) and depend upon r and j. Thus
(x-x M Loty 1(x)(I+ 5e 1)+(xJ—x)M.1 *gj(x)q+ 5eF~) y
K .(x) - X x — (3.8.7)
ryv J d~r
-t
where s 2 (i =1, 2) and depend upon r and j. Upon making use

(3.8.1) and (3-4--1), equation (3-8.7) gives

.m-i(:9.531sr-1~ U )} -(yO1 8w, .~~5~ .../ 4
6M. .(x) N
o-r

(3.8.8)
The theorem follows from (3-8.8) and a simple error analysis of the
évaluaiion of (3-2.8). |
Once again the computer can be used to determine the values of Hrj' and in

%»CGA
particular the value 2 H ., which is a bound for the error in the

computed vaine of kKn”™(x). As before the computer makes rounding errors

in forming the H .- However, it is straightforward to verify that the
contribution to the error incurred in computing H 3 from (3.8.4-) is at
most a factor (1—2~t)_7. Since the error incurred in computing Hl.Jfrom

(3.8.3) is at most a factor (l-2~t)~1 it follows that (i—?_t)6~7r?“t1i|r0
where H“. is the computed value of K 5 gives a rigorous error bound for

. . ' ' -t
&Vh__ . Again the simpler bound. I5|\/IM. g (1.179)2 h)<J may be preferred. 7/

Although the above analysis gives rise to extremely realistic a posteriori

bounds for the errors in the computed values of the li™.(x), the need to



compute such bounds, which roughly doubles the work involved in

computing the M ~(x) alone, is obviated when account is taken of the
non-negativity of the (see Theorem 3-8.2 below). It is shown in
Section 3.9 that realistic a posteriori bounds for the absolute errors in
the M .(x) can be deduced immediately from the computed results. Moreover,

a priori bounds for the relative errors are also derived in Section 3.9.

Theorem 3mci.2

Even in the presence of rounding errors the values of M .(x) (n ~ 1, all i,
Xt n< x < xt) computed in floating-point arithmetic from (3.4.1)

strictly positive.

Proof

The proof is similar to that of Theorem 3.4.2, except that the relevant
recurrence is (3-8.?), rather than (3-4.1). Since, in (3.8.7), the terms

1+45ej and 1+5e2 are both strictly positive, the theorem is proved, p

We noted in Section 3-3 that the values of 1n the method employing
divided differences are theoretically non-negative, but their- computed
values may be so inaccurate that they actually take negative values (see

the examples in Section 3-11)-

3-9 A priori error bounds for the values of 0O-,splines computed

by the method of convex conbinations
In this section we establish a priori error bounds for the values of B-spline
computed by the method of convex combinations. Firstly, however, we derive

a readiJy-computable a posteriori error bound for the computed value of

Mhi>2)-

Theorem 3-9ml

%/\

The values of Hrj. defined by relations ¢3.8.p) aha v.p.q..ly satisfy the

inequality
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Hd ¢ (1-2't)5(1'r)(5r-3)Kj,.Cr). (3.5.1)

Proof
Tre first assume the theorem to he true for r _ ¢ 13 here s > 0, ie that

Hs-1 w . (3.9.2)

The substitution of (3.9.2) into the right-hand side of (3.0.4), after

replacing r in the latter relation by s, then gives

r + *f(x-x.. OM . . .(x)+(x;-x)S .(X)

I $ {(I-2“t)-'(“",)(5f-8)+5]}< —_
I j G J

(3.9.3)

But it folio..s from (3.0.6) and Theorem 3.3.2 mgygt

. >e
S] x.o - XJ-S (3-9.4)
Hence
Hsj * {(1-2“V (2"s)(5s-8)+5} (I-2't)"' 5fiBj(x)
< (I-2")=(1~s)(5s-3)M .(x) . (3.9.3)

Thus (3.9.1) is true for r = s. But it is true for r = 1 by virtue of

(3.8.3). Hence by induction it is true for all r*> 0. Q

A slightly cruder bound, obtained by means of (1.1.12) is

H, £ 1.112(5r-3)M_ (x) (3-9.3)

It rollers from (3.8.2) that the computet, value of ~ (x ) differs from the

true value by an amount not exceeding 1-112(9n-3)2-t"l (v) O.

equivalently, 1.179(5n-3)2" ~0 0. 17 observe that this bound ii cmuutable.



since it involves the value of ~.(x), rather thin the true (unknown)

value M .(x).

\le now give a bound for the relative error in the computed value of l\/II”{‘P.I)

Theorem. 3»9»2

6Mni(x) satisfies the relative error bound

iWIni(x) |/Mni(x) £ 1.337(5a-3)2"t. (3.9.7)
Proof
Now
i -3)2“ %! 3.9-8
GI\/ln(X)J! < 1.179(50-3)2 /o'ni(X)J ( )
(3.9.5)
and hence

1.179(5n-3)2’ t Hhl(x)
8H.00I1 < --—-- o (3.9.10)
1-1.179(5n-3%'

But from (1.1.?) it follows that the denominator is bounded from below bv

1-0.1179 = 0.8821. Hence

8M ,(x) |

| £ 1.337(5n-3)2"tMh,(x) (3.9.11)
ni

from whi€R {@.9.7) follows immediately. L

The a priori bound (5.9*/) is remarkable in that it is Independent of the
positions of thg knots(but see the comments in Section 3.10 on the effects
of decimal to binary conversion). It follows for example that B-splinea
of order 15 or less can be evaluated with a loss of accuracy not exceeding
100 units in the least significant binary place. Such a result compares
extremely favourably with the conventional method employing\givided

differences for which non-pathological examples of order very much smaller
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than 15 (see Section 3*1‘0 can be constructed that yield no correct

figures (on the EDF9 computer for which t = 39) in the results.

The counterparts of (3.9*6) and (3.9-7) in the case-of normalized B-splines
are, as a consequence of the omission of the final division when forming

Nni(x) from and jW  (see Algorithm 3-4.3),

Hni ~ 1-112(5n-5)NniU) = 5-56(n-1)Nn.(x) (3-9-12)

and
Nni(x) - N~Ax)! ~ 1.337(5n-5)2~"ni(x) a 6.635(n-1

(3-9.13)
3.10 The effects of perturbations .in the data
There is one aspenl of the problem that our analyses have so far not
covered, viz the sensitivity of the computed values of H (y.) with respect
to perturbations in the data. By data in this context wo mean the given
values of the knots x+_n, x+_n i and the argument x. A
particular reason why the study of such perturbations is important is that
our analyses are rigorous only for data that can be represented exactly as
standard floating-point numbers. However, we may be comforted by the fact
that our analyses do apply to the problem defined by the data stored in
the computer. So it follows that the method of convex combinations solves
accurately a problem with data perturbed slightly from that given. For
most computers the perturbed (stored) data differs from that given by

relative errors bounded in modulus by 2™\

A posteriori bounds relating to tho given data, rather than the stored
data, can be found if required by an extension of the running error
analyses described in Section 3.8. The manner in which this analysis is
carried out is straightforward bun tedious and is not given here. One
consequence of this analysis is that tho bounds sere now no longer

independent of the knot spacing. However, unless the knot spacing is
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highly non-uniform, the hounds for the stable method appear to depend

only mildly upon the positions of the knots, although it is now no longer

possible to quote a priori bounds. On the other hand the bounds (as well

as the computed values themselves) for the conventional method seem to
be very sensitive to small perturbations in the knots, vrhieh i3 a

reflection of the inherent instability of that method.

3.11 Numerics], examples
In order to compare numerically the conventional method (based upon

divided differences) and the stable method (based upon convex combinations)

we give a number of examples. For each case- wo consider the B-spline of a

Prescribed order n based on a given set of knots x. . Xi' nel X ;

The B-spline is evaluated by both methods (using Algorithms 3.3.2 and

3.A.2) at the positions of the interior knots x. . ., X. A e
I —A\/C.

For the conventional method the error bound (1.179)2_t' and for the

stable method the error bound 1.179(57-3)2 '5* are also quoted.

Example 3.11.1

Degree 5 Knots 0, 1, 2, 3* 4, 5j 6 (Table 3*11.1). The values produced

by the conventional method differ only slightly from those given by the

stable method.
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Table 3,11.1
Degree 5> Knots 0,1,2,3,7,5,6
Conventional method Stable method
Value Error bound Value Error bound

1.38888 88892,0-3 3.527907-10 1.38888 88889i()-3 8.0~221 a1

[

2 3.61111 1111110-2 9.1821*1-11 3.61111 1111342 2.09097j0-12

9.16666 66667,0-2 1.81933,0-11 9.16666 66667,0-2 5.30786,0-12

w

3.61111 1111110-2 2.22799,0-12 3.61lm 11111-2 2.09097,0-12

=~

5 1.38888 8888910-3 6.85077,0“it 138888 88889,0-3 8.0W21 -+

example 3.il.2

Degree 21 Knots 0,1,2,... ,22 (Table 8.i1-2). Por values of xbl 1 the
conventional method produces results of comparable accuracy to those of
the stable method. However, as x is decreased from 13 to unity the
conventional method becomes less and less accurate. Indeed, all values for
x<6 have no correct figures at all. (Note that since this B-spline is
symmetric about x=11 the conventional method could be used to give reliable

results by replacing x by 22-x if x<11).



1
2

10
11
12

U

16

17

18

20
21

Degree 21.

125

Table 3.11.2

Knots

Conventional method

Value

-2.901+93
1.70851

-5.09073
8.78U11
5.18082
1.07095
1.59735
1.15687
1+55"29
1.01975
1.33010
1.01975
)t. 55728
1.15690
1.59595
1.10732
3.H)296
3.7085)+
9.26531
1.86577

8.89679

6270)+10-
18Ul Txo
2958510"
730010-
9082910-
9073810-
1~25810-
8I53It10-
00755,0"

JO-
3122810-
iH972610-
59*22, 0~
83302, Q-
80785! 0-
9203010-
26271, 0-

135):3,0-

Error bound

4 1.0730210-

U 2.87569io0- 2

5 7.222K210- 3
6 1.69CH8I0-
8 3.6652710-
5 7.30865,0-

3 1.3296810-

aa o ¥

3 2.1868l4j0—6
3 3.2161+5,0~ 7
2 177H40- 8
2 +.7187210- 9
2 It. 55067, 0-10
3 3.6601110" 11
3 2.37665,0-12

% 1.1811)5, 0-13

5 1+.08175,0-15

7 8.2665010- i7

9 7.3799810-19

08068,0-12 1.73796,0-21

28133, 0-15 3.1+8119,0-25

1397\ 0722 1.65996, 0-31

0,1,2»...

22

Stable method

Value

1 8.89679 13921+

1.86577

9.26531

22

2813310-15

0806910-12

3.7UB5H 1351+3/fl-

3.1+0296
1.10732
1.59595
1.15690

1+55)128
1.019)5
1.33010
1.0,1915
1+.551+28
1.15690
1.59595
1.10732
3.1+0296
3.7085)+
9.26531

1.86577

8.89679

26271,0-
92030, -
80785, 0-
83302, 0-
50)125,0-
19722, 0"
31238, -
149722, -
50)125,0-
83302,0-
80785,0-
92030, -
26271,0"

135)i310 -

9

7

5

Error bound

2.01)156,0-31

}h28||+11 -
2.12612

0
10

25
21

8.51°°3i 0-19
7.8088ii0-17

2 .51+100

-15

¥ 3.66226, - 1k

3

3

2
3

3

5

7

9

08069j0-12

23133,0-15

1392)),9-22

10

2.651+77,0-13
1.01508,0~12

2.33935,0"12

3.0522(y12

2.33935, 0-12

1.01+508

-12

2.651+77,0-13
¥ 3.66226, 0~1y

2.51+100,0-15

7.8088110-17

8.51003, 0-19

2.1261%0-21

1+.2811+1

107

25
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Example 3.11.3
Degree 3. Knots -10000, -9999, 0, 9999, 10000 (Table 3.11.3).

This example is included to illustrate how erroneous the ‘results of the
conventional method can be for a degree as low as throe, j.f the knot
spacing is highly non-uniform. Such a case is important in practice since
it is often of interest to investigate the case of near-coincident knots.
We see that at x=~9999 the conventional method produces a negative value.
Even at x=0, the peak of the B-spline, three figures have been lost. At

Xx=<999 the result agrees with that of the stable method.

Table 3.11.3

Degree 3. Knots -10000, -9999, 0, 9999, 10000
Conventional method Stable method

Value Error hound Value Error bound

-9999 -1.50012 05611J0-12 2.57709,Q'll 2.50012 50063, r13 9.111»961 0-2It
0 2.50012 h981210- 5 3.2186510~12 2.50012 50062, - 3 9.11+96l(I-16

9999 2.50012 500631g-13 8.0W261j0-2k 2.50012 50063l0-13 9.11*0610-21»

Example AmMU-IA
Degree 9. Knots 2], ¢=0,1,...,10 (Table 3.11.4)

Again the conventional method produces very inaccurate results (from the
point of view of relative errors) for the small values of x. However,
in'terns of absolute error (measured with respect to the peak height), the
conventional method appears perfectly adequate. Since in many applications
such results would be quite acceptable ve might expect that for examples
similar to this the conventional method is satisfactory. Example 5 shown

that this is net the case.
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Table 3.11.4

Degree 9. Knots 1,2,1»,816,32,61», 128,256,512,1021»
Conventional method Stable method J

Value Error bound Val ne Error bound

2 -1.60028 39327,Q-1» 9.53785,0-13 9.60166 982)17,0-17 9 67807i0-27
h 8065k 2750710-12 9-11019,0—43 1.79167 15693, 0-12 1.80593,0-22

8 197171 1*8l11,n- 9 8.33280,0-13 197171 78228,0~ 9 1.9901i3,0~19

16 3.8122h 92651,Q- 7 7-03203,Q-13 3.81221» 914453 7 3.81*258,Q-17

32 1.72139 97270,k 5 5.11271,07 13 1.72139 97251, 0- 5 1.73510,0-15
6k 1.95187 17159,ak 2-9557*4, gg13 1.95187 17160,0~ k 1.967140,0-1It
128 5.{7660 k?2.09510~ ~ 1.11487*1,013 5.17660 %2095, 0~ k 5.2177910-',4
256 2. kb7t 09001y, 0- *» 2.19807, Q-4 2,07k 09001, p- b 2.1+2387,0-11*

512 6.59821 72615,0- 6 5.51868,c-16 6.59821 72615,0—6 6.65072,0-16 |

Example 3.11.5
Degree 9. Knots -210“J, j=0,1,...,10 (Table 3.11.5).

This example is identical to Example 3.11.2!, except that the knots have been
reflected about the origin. The stable method gives identical results

in each case. The conventional method again gives its most inaccurate
results for the smaller (i.e. more negative) values of x. However,

these values not only have large relative errors, but they also possess

largo absolute errors.
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Table 3.11.5

Degree o- Knots -102It, -512, -256, -128, -@J, -32, -16, -8 -if, -2, -1
Conventional method Stable method
Value Error bound Value Error bound

-512 -1.96579 3559310- It 2.0361t01Q- 2 6.59821 726151qg- 6 6.65072,0-16
-256  21+11+473 7201510- * 3.8027910- 5 2.IKOh7H 0900~ Q- )| 2.12387,01%
-128 5.17659 22318,0- K 6.8127910- 8 5.17660 1+289%5, 0~ It 52177910 -llt
-6U  1.95187 1698810- ¥ 1.1328910-10 1.95187 1716010- It 1.9671+0,0-1U
-32  1.72139 9725510- 5 1.6725910-13 1.72139 972511(1- 5 1.73510, 0-15
.16 3-81221+ 9HH52j 0—7 2.1897010-16 3-81221+ oltlt53io- 7 3.81(258, 0-17

-8 1.97U71 7822810- 9 2.6358010-19 1.97°71 7822010- 9 1 ggoH3,O-19

-It 179167 158931¢-12 1.5+89710-22 1.79167 15893,0-12 1.80593, 0-22

-2 9.60166 982It7Ip-17 8.0307"-27 9.60166 9021+7,0-17 967807, l-27

In all the above examples the error bounds for the stable method are
realistic. For the conventional method they are somewhat pessimistic, but
are considerably better than could be achieved using some form of a priori
error analysis (but see the special case xj | =X XY  considered below).

In every case the accuracy of the conventional method falls off as
X ranges from x to x _n. However, for values of x sufficiently close to
*1 ' and &lways for values of * betveen * and x , values comparable
in accuracy to those given by the stable method are produced. This result
is easily explained by means of a running error analysis along the lines of
Section 3.8 followed by an inductive proof similar in nature to that in

Section 3.9* In fact the a priori bound,

nijl i 1.179("2-1)2 *5n|“ (/xl_l $ x <x1) > (3.11.1)



is readily derived. The computed value of Mn).((x), viz I)n>'<’ is potiiive
and can be shown to have a maximum relative error of 1.337(4n~1)2~".

(The- slightly improved bound with the term 4u-1 replaced by 3n—, can be
obtained if further advantage is taken of the zeros in the D.’;. array in
this special case). Note that this bound is even better for n 3 than

(3.9-11) fer the stable method. However, this bound applies only for

X, + < X < X., whereas the bound for the stable method ap)plies for
x—+ i

X < X< X..
X

For B-splines of low degree with relatively uniform knot spacing the
conventional method is adequate for certain purposes in that the absolute
errors in the computed values are usually small (as in "Examples 3.11.1
and 3.11.4). However, in a conmon situation to be examined in Section
3.12 it is seen that the stable method is faster in that fewer arithmetic
operations are required and hence should bo preferred on grounds of both

accuracy and speed.

3.12 The evaluation, fer a pre.scribed argument, of ail non-zero
B-splxnes of order n
In many applications, including interpolation (Chapter 6), least-squares

approximation (Chapter 7) and constrained spline fitting (Chapter 8), it

is neceM*“V *° OTal",'® for prescribed argument x not on isolated
value of Mi(jc) (or H (x)) but all those values of Mn).((a) that are non-
zero. Since at most n values of M ~x) are non-zero for any particular

x, it follows tnat n applications of either Algorithm 3.3.2 or .Algorithm
3.4.2, for example, enable the required values to be computed. However,
such an approach entails considerable repetition of computation since
common elements in overlapping trapezoidal arrays (of the type illust-a{v,l
in Pig. 30.2), in the case of Algorithm 3.3.2, or those in overlapping
rhomboidal arrays (of the type illustrate 4w . 5 o\ ,, rhe case of

Algorithm 3*4-2, are formed. It is easily verified that with such



approaches the amount of arithmetic is proportional to n". |t is far

less expensive, tsting an amount of arithmetic proportional to n . to
compute a single array of elements which contains all the results required
Specifically, let 1 be the unique integer such that XL 1 ~ x < x1- Then

(x), ...,

the non-zero B-splines of order n ere M, (x), M ,
n’i n,l+n-1

n,i+i
These n values can be computed using the following algorithm, based on
the method of convex combinations, which is written to use minimal storage
requirements end also economizes somewhat further on the number of
arithmetic operations.

Algorithm 3.12.1: The efficient evaluation of all non-zero B-splines

for a given argument using convex combinations.

Comment: Find the interval containing X.

Step 1. Belerjuine the unique integer 1 such that N X< je.
Comment: Initial conditions are set in Steps 2-J>.

Step 2. Set el =x-x7, eg = x*-x and V* = (X"-x") A

Step 3- Par j =2, 3, .... nset W =elvj,/(xl,1l .

Comment: B-splines arc computed by recurrence in Steps 4-6.

Step 4. For j = 1, 2, ..., n-1 execute Stops 5-6.
Step 5- Set e3 =x-x~” endreplace v, by VY AV A -]-j) *
Step 6. Forr =2, 3 n-j replace by
'3V Q(l-lfrx)‘vr
oter X-1-j

Step 7. i'or ¢ = 1,2, n M(p’ ;].J(X) = vJ.

An illustration cf the scheme an the case n = 4 is given in Fig. 3.12.1
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M
n 35

ij i+l

3,j+1
K M
2,0+1 4,582

M 3.,

3>3+<

N - -
+?73+J
Fig- 3-12.1 Illustration of a scheme using convex combinations for

the evaluation of all non-zero fi-splines.

In Algorithm 3-12.1 the elements of the MJ(x) array are formed along
successive downward-sloping diagonals. As with the algorithms for
computing a single value of Mhi(x) or N~ x), minor variants may be
constructed which form elements along successive upward-sloping diagonals

cr in successive columns.

Algorithm 3-12.2 below is the counterpart of Algorithm 3.12.1 in the case

of normalised E-splines.

mgorithm 5.12,2: Efficient evaluation using convex combinations ct'
all normalized B-splines that are non-zero for r.
given argument.

Comment: Find the interval containing x.

Step 1. Determine the unique integer 1 such that Xl*'i < Xl’

Comment: The case n = 1 is treated separately.

Step 2. If n- 1 set v, =1 and advance to Step 11.

Comment: Initial conditions arc set in Steps 3-3.

Step 3- Set el = x-x~ , ™~ - x,-x end v, I/ ~-x~.,).

ooep /f;  Forj 2, 3, nl set v. Y\i-Z~%..1l ).

Step 5- sSetvn=Vn-1*
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Comment: B-splines are computed by recurrence in Steps 6-10.

Step 6. Por j =1, 2, ..., n-2 execute Steps 7-9-
Step 7« Set = x-xl_1j and replace vl by 1 &
Step O. Por i =2, 3, ..., n-j-1 replace v.. by
O3Vig * R i Wy
I-1+i 1-1-0

Step 9- Replace Va-j by e?’n—j-l + (/X1—1+n—j_x)vn—j’*
Step 10. Replace v, by enT™.

Step 11. For j =1, 2, a set »n>L. 1+J(x) . r}

Note that with this scheme, as with Algorithm 3.4.2, if the values of the
nth-order B-splines are required for a number of arguments x in the
interval A£ x < xn, all denominators can be pre-computed, with a
consequent saving in arithmetic. Such a strategy is particularly worthwh
in the context of data-fitting by splines (see Chapters 7 and 8) in which

ther.e are frequently many data points between an adjacent pair of knots.

A scheme based on divided differences for evaluating all non-zero

E-splines can also be derived and this is illustrated for the case n = 4

in Pig. 3-12.2.



133

.D. .
4j
D,.
-3
D .
4iJ+1
Noar;
jiT' 3,1
A 2,04 Dy je2
D, .
D1,j+1 3.,jt+2
2, ot2 .
4,j+3
Dl >O+Q *<*'$> 343
2,0t3
Dy,0%3
Do,j+3
Fig. 3-12.2 Illustration of a scheme using divided differences for

the evaluation of all non-zero B-splines

for the case n=4 the conventional method requires 32 additions, 8
multiplications and 16 divisions to compute the required values; the
stable method requires 25 additions, 12 multiplications and 10 divisions
(the number of additions for the stable method can be reduced to 19 by
careful programming; it does not appear possible to achieve a corresponding
reduction for the method of divided differences). Since on any computing
machine multiplication is at least as fast as division it is evident that
the stable method is faster for cubic B-splineo. In fact this result
applies in general; for a B-spline of degree n-1 (n>2) the number of
additions, multiplications end divisions are 2n', n(n-2) and n ,
respectively, if the conventional method is used, whereas for ths stable
method these numbers are 2n2—2rH'1, n(n-1) and 8n(n+1), respectively, for

2
large n the stable metnod has a saving of -¢n divisions over tho
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conventicmal method (if terms of order n are ignored in comparison with

those of order n ).

3.13 Other nethods for evaluating h-splines

A number of authors including Lc.Fata and Rosen (1970) and Powell (1970)

have suggested the use of formula (3-2.4) to evaluate H .(x). At first

sight this approach seems attractive since it gives K (x) in explicit

form. Unfortunately this mstnou is also unstable, as a running error

analysis along the lines of those carried out for the conventional and

stable methods indicates. This analysis is not given here, but wo neke

the following comment. The computation of the individual terms of the

summation (3-2.4) can be carried out accurately, but the evaluation of the

sum itself frequently involves heavy cancellation between the individual
terms, with the result that the computed value of ?'~(x) may suffer from

appreciable loss of accuracy. In our experience this loss of accuracy is

comparable to that incurred using divided differences.

Sogethova (1970, 1972) has considered a very different approach for the

evaluation of B-splines. He expresses 1!'*.(x) in terms of its n constituent

polynomial arcs:

#n,i~n; 1~ Xi_n ¥ XR % _n>1)
~nLi-n+27%N Mi-n+l A X's Xi-n+2;

U ) (3.13.1)
pK, i - i (x) (xi-2 $ x<

PRiW (x < X< X.)

Then, by representing each of these arcs as a Legendre series of degree

n-1 in a normalized variable, ie
n~1
Pnjw U3 |
f (j - i-n;i, i-n+2, ..., i) f (3.13.2)



where P (X) denotes the Legendre polynomial of the first kind of degree

u an X, he obtains recurrence relations from which the coefficients a
nju

may be evaluated. Having computed these coefficients he uses the three-

term recurrence relation for the Legendre polynomials to evaluate p (X)
(u=20,1, ..., n-1) and hence Mi(x), for any given value of x, having

first, of course, determined an interval containing Xx.

Scgethovals approach suffers a number of disadvantages compared with the

method of convex combinations. Firstly, the method, as developed, applies

only to the caso of equally-spaced knots, although a generalization to the

unequally-spaced case could presumably be made. Secondly, the determination

of the Legendre coefficients proves to be somewhat unstable numerically.

Segethova carries out computations in both single- and double-precision

floating-point arithmetic, using the differences between the results to

obtain estimates of the accuracy cf his values. He finds on an JBK 70%

computer that for n=21 some of the coefficients have relative errors as
-3 . . . .
large as 10 Note that errors of this order will then inevitably be

propagated to the computed value of M~ (x), even, if the resulting Legendre

series are evaluated exactly. Also note that Segothovs.'s actual relative

errors are as .Large as 10_3, whereas our relative error bound is, using
(3-9.il), (1.337)(102)2 . Thirdly, the arithmetic work to evaluate the

set of non-zero Il .(x) values, for a prescribed value of x, even

assuming the Legendre coefficients have been pre-computed, is about an%

2
additions ana 5n multiplications, which aico compares unfavourably with

the method of convex combinations. Fourthly, a Fortran subroutine

(Sogcthova, 1270) for evaluating the Legendre coefficients of the B-splines

up to order 21 requires over 10,000 words of store!

An approach similar to that of Segcthova*s was developed at an early ptL

of this work, in which Chehyshev rather than Legendre polynomials were



utilized. However, a corresponding loss of precision for large n was
observed, although the resulting computational procedure proved to be

more efficient in storage and speed.
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DIP.FT®RENTXATIOIi AND INTEGRATION OF B-SPLHJES

In this chapter we examine methods for differentiating and integrating
B~splines. In particular, we develop a number of recurrence relations

for performing these operations. The results of this chapter are used

in Chapter 5 to express the derivatives and integrals of arbitrary splines
in their B-splino form, in Chapter 8 to impose convexity and concavity
constraints in spline fitting problems, and in Chapter 9 where a general
class of constraint conditions in spline approximation problems is

examined.

In Section 4-1 we derive two recurrence relations for 3-spline derivatives
In Section 4.2 the important case of derivatives at the range end points
as examined and a proof is given that these derivatives can be obtajjnpd -in
a stable manner. In Section 4.3 it is established that the derivatives
required in felting vi*h convexity and concavity constraints can also be
evaluated stably. Algorithms for evaluating E-spline derivatives in the
general case are discussed in Section 4-4- Finally, in Section 40, stable

methods for evaluating indefinite integrals of B-splines are presented.

4.1 Recurrence relations for the derivatives of B-srlines
\7% state and prove in this section two recurrence relations for the
derivatives of B-splines; tho first is due to de Boor (19/2) and the second

is believed to be new.

Theorem 1

The derivatives of B-splines satisfy the relation

'Kﬁic’;,*;’ (X.-X. - (n-1)\
f .(X) N~A"0 (x) 2

: . 4.1.1
<rn I{ t g i-n Ak ar+13Y ( )
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Proof

Recalling that M ~x) = M(Xi_rm Xi-n+1* ° x) (Section 3.2) and

using the properties of divided differences, we have

“KM ' to{V xi-n> Xi-m 1’ eee' xi; *)} (4.1,2)
IR M ki Xsent 2 o XXM RGon Xion+1x o X 207
dx
X. - X.
| I-N
(4.1.3)
" (n-0 {-Ma.ijiw * (4.1.4)

differentiation of (4.1.4) 1-1 tines with respect to x, together with the

use of (3.2.6), proves the theorem.

Theorem 4.1.2

The derivatives of B-splines satisfy the relation

Proof
Assume tho theorem to be true for 1 = s > 0. Differentiation of (4.1.5)

after replacing 1 by s then gives

Xncir nti- 1G0T
*2.7 %i~n
*y ~ ™M™
fila (4.1.6)
X. i-n

But from (4.1.1),
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R O (A o
X. - X. rrl
i X-n
Thus
(s+1) 1N X R S p QX P A0 T (K 1.8
H . (*) I A, X, - Xa
ni X i-n

So the theorem is true for 1 = s+l. But the theorem is true for 1=0

by virtue of (3-4.1). Hence, by induction, it is true for 1 =0, 1, ..-v 4

Define the reduced derivative m”~”~(x) by

QM Kni {j-J (4.1.9)
Note that
@N?(x) = M (X)) = m.(x), ( )
say. In terms of reduced derivatives, (4.1.1) becomes
(1-1) /N J11)V
OBVARY __rj__l,l-lc- y m-1,i%j (4-1.11)

m@/\F _ 1-1.12)

It is usually more convenient to work in terms of the reduced derivatives
IV

I,Iinl)'(x) rather than the derivatives k', {x), because of the above

simplifications in the basic recurrence relations. If the values of the

[ Ii)(\)/() or the I’%F(x) are required, it is of course a trivial matter to
(Y

obtain the former by multiplying m~/(x) by the factor (n-1)\f(n-1-1)1 and

tnen Yy —-¥j -A to obtain the latter. These multiplications introduce
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negligible relative errors of the order of at most a small multiple of

the relative machine precision.

Note that relation (4,1,12), like (3.4.1), involves the computation of

convex combinations, a process that is numerically stable (cf Sections 3.9
and 3.3). Unlike the Hni(x), however, the m~v\x) for 1> 0 may be

positive, negative or zero. Me expect therefore th8t a priori relative

error bounds arc not obtainable (except in special cases - see Sections

4.2 and 4.3) for either of these relations. However, Butterfield (1975)

has recently suggested a class of algorithms for B-spline derivatives
based upon both (4.1.'l1l1) and (4.1,12) and has presented some convincing
arguments which suggest that a certain member of this class is the best

possible choice (soo Section 4.4).

Observe that (4+*'i.12) is in fact an interesting generalization of the

fundamental relation (3.4.1) for B-splines.

4.2 The derivatives of the B-splines at the- ends of the

In many dealings with splines it is necessary to treat derivative bounder,
conditions (cf Chapter 9). |If B-splines are used as the basis, their
derivatives at the ends of the range need to be evaluated. We derive in
this section some very satisfactory results relating to the numerical
evaluation of these derivatives in the case where the B-splines are

defined upon a standard knot set with coincident end knots.

Theorem =-2.1

At the range endpoints x * a and x _ b the rth derivatives (0 <r < n)

of the B~splinos possess the properties
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_ fu r 1*1 (i £rtl)
sign R (a) (4.2..1)
(i > r+l)
lo
end
- RI\/I = (i » N+n-1-r)
sign — (4.2.2)
| (i. < N+n-1-r) ,
where
g
-1 (u<0
sign (u) 0 (u=20 (4.2.3)
+] (u>0)
Proof

\V/c give the proof for the case x = a; that for x = b is seller. Proa

(4,1.11),

) .
sign R W;%Rtl“l(a) -wh -Gy (4.2.4)

Not; suppose the theorem to be true for r = 1*1 £ 0. The use of (4.2.1)

then enables (4.2.4) to be reduced to

_ R R — (i £ 141)
stgn - (4.2.5)

u > 1+1)

Thus the theorem is true for r = 2. But from (3.5.1) it is true for

r = 0, Hence, by induction it is true for O £ r < n.

Theorem 4.2.2

Even in the presence of rounding errors the values of (R'(x) at the range
endpoints .c = a and x = b computed from (4.1.11) satisfy the relations

(4.2.1) and (4.2.2).

Proof

Only the proof fee- x = a is given since that for x = b is similar



Lot S’r;').('—Va) denote the value of ETr)!l—’(a) computed from (4*1.11)x«. A

straightforward floating-point error analysis of this relation gives

("1 00 - ST

v I,
nx
Xy ™ Xs-n /
t (ry €W, - 5(f0%% \
r(1~1,§( v r('l—f,X\) /(1+s)3 (4<do/)
X, - X,
X X-n
(4*2.8)
V X ™ *x-n
where
lei Ci'l. e < 224 (4.2.9)

After setting x = xx n=ain (4.2.8), the remainder of the proof then
follows closely that of Theorem 4.2,1 with (4.2.8) used in plaoco of (4.1.11).
Tho only difference is the factor 1+3a in (4.2.8) which, since 3 je } < 1,
has no influencun the sign of the term it multiplies. Thus the theorem

is proved.

Theorem 4.203

lot 4 4 m te the value of aAfU) oomputod frra (4.1,11) for r > 0 and

from (3*5.1) for r = 0. Let
Sinfla) = 3%5d) - 4 i)(a) (4.2.10)

Then 8mXAP\a) satisfies the a -posteriori absolute error bound

N r-i m (4.2.11)

L (@), (4.2.12)

and the a priori relative error bound



$ 1.337(3rs-2)2 rar’;)](_’\.(a) (¢*-.2.13)

The results (4.2.11), (4*2*12) and (4.2*13) also hold with a replaced by b.

Proof

Only the proof for x = a is given since that for x = b is similar.

Firstly we note that (4.2.12) follows immediately from (4.2.11) upon

using (1.1.9) and (1.1.12). Also (4.2.13) follows from (4.2.12), since

the lattex* gives

find hence

1.179(3r+2)27 Y L tw i
6.79(a) < -t (4%2.15)
nx 1 - 1»179(37+2)2

jjut using (1.1.7), the denominator in (4.2.15) is bounded from below by

1 0.1179 = 0.8821; relation (4.2.13) then follows. It remains to prove

(4.2.11).

we consider initially the case r - 0. From (3*5.3) and (4.1.10),

(a) (4*%2.16)
and so Sm.((a) =m3(a) - O0if i y 1, which proves the theorem in the
trivial case r - Oandi ~ 1. Forr ~Oandi - 1, (4.2.16) gives

m ,(a) =fl { 1/~-a)} = (I+c) /(x"-a)

= (l+e)2nmrl(a) = (I+2e)mnl(a) (4%2.17)

where jej 4 'f 1 and ] < 2 Thus
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6nnl(a) = "fla) - “fia) = 20zpf(a) (4.2.18)

So

5nni(a) < (2)2 1nnl(a) (4.2.19)

But from (4.2.17),

ranl(a) N (1-2 b) T:ni(a) (4.2.20)
Thus

6mi(a) $ Zd-Z-~-V*linl(a) , (4.2.21)
which proves the theorem for the case r - 0 and i = 1,
Ve now assume the theorem to be true for r =1-] (i ~ i) and Dhow hy

induction that this implies it is true for r ~1. Prom (k.2.8) °nd

(4.2.10)

nﬁx(a)+ Sm~'ia) = ﬂ){

+ (1+3e).
/A 00\

The use of (4.1*11) reduces (4.2.22) to

() Bl BRAIgY

-(1-1),

1 ~r-(1-1) 7 x (
) “ m~1 i ji*

[ nn-1,5-1(a
Then, using (4.2.11) with r = 1-1, (4.2.23) yields

<(es)10-2i)1510i-i)oj a*1{is ~ L i(')

+ k-ciw! ] e (4.2.24)



As a consequence of Theorem 4*2.2,
jn-l,i-r -fe ll« -5& 3] = (4.2.25)

Moreover, from (4.2,7).

MM (4.2.26)

Halations (4*2.24), (4*2.25) and (4*2.26) together yield

ki 'd>! JO'Z'h -V ot I m va'j U+.§.2/)

Ni-2-tr -3V N ) 2-t |/W (4%2.28)

Thus the theorem is true for r = 1. But we have already proved ii. true
for r 0. Monee by induction it is true for r ~ 0.

The numerical evaluation at the range endpoints of the derivatives of the
B-splines defined upon a standard knot set with coincident end knots is
thus unconditionally stable.

4.3 The derivatives of B-splines at the knots

In this section we prove firstly (Theorem 4*3*1) an interesting result
relating to the signs of certain B-spline derivatives at the knots and
then show (Theorem 4*3*2) that lids result still holds in floating-point
computation. Finally wc prove (Theorem 4.3*d) that when these derivatives
are evaluated using relation (4.1.11) the computed values satisfy excellent
a posteriori absolute and a priori relative error bounds* These results
arc of particular relevance to the algorithm derived in Chapter 8 for

spiine fitting with convexity and concavity constraints.

Theorem 4» 3/

For n 22 and all i the value of at the interior knot Xx.



(j =i-n+l, i-n+2, ... i-1) is strictly positive or negative according

to whether i+j+n is respectively odd or oven.

Proof

Suppose the theorem is true for n = r-1 ~ 2. It then follows immediately
from relation (4.1.11) that the theorem is for n = r. But the theorem
is evidently true for n = 2, since ®2i™(xi-1) ~ Mi~xi~1) > 0 by virtue of

Theorem 3.4.2=, Hence by induction the theorem is true for all n ™ 2

As a consequence of Theorem 4.3.1, r(fn'_%)x) is a first degree spline

(ie a piecewise-linear function) with vallies at the interior knots which

alternate in sign.

Theorem 4.3.2

Even in the presence of rounding errors, for all n~ 2 and all i, the

value of b~1 '(x) at the anterior knot x. (j = i-n+l, i-n+2, i-1),
when computed in floating-point aritlimetic from (4.1.11) if n> 2 or from
(3.2.8) and (3*4*1) if n =2, is strictly positive or negative according to

whether i+j+n is respectively odd or even.

Proof

¥e merely have to show that m~?""~(x.) and the computed value N
J

Tux. TlIx

have the same sign. The result Trill then follow immediately from

Theorem 4.3*1.

Suppose the theorem is true for n =r-1, ie that for all i and for

j =i-r+2, i-r+3, ..e? i-1, 4NQL Hr-17i(xp ilave "Ne Sfline sign.
Then, using (4.2.8) (which holds independently cf the assumption in

Section 4.2 that the end knots are coincident) it follows immediately that
for j = i-r+1, i-r+.-j i- i, MRy \xj) and A'Wj\) P e same

sign, since the factor 1+3e > 0. Hence the theorem is true for n = r.
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But from Theorem 3.8.2, i~..(x” endra2;(x.) certainly have the same

Hence the theorem is true for n = 2 and therefore, by induction, for all

re
n”" 2. Lj

Theorem 4.3-3

Let i be any integer, r be any Integer £ 2, and j take any one of the

denote the value of xSr~2\

AN

J. AL J &1] XJ
computed from (4*1*11) if r > 2 or from

values i-r+1, i-r+2, i-1. Let

-1
»4 -1 >*"2ixi-1) » (V Xxi-2) (4*3.1)
if r = 2 Lei
. (r-2) \_ -(r~2)M/ * ——2&
o = YT - (4*3¢2)
(r-2) - o
Then 6ran_" (X .) satisfies the a posteriori absolute error bound
6dfjr.2 )(xg3) » N 4 r 2)xi) (4.3.3)
A 1-179 (3r-4)2°t |4 r 2)(y])) (4.3.4)
and. the a priori relative error bound
Am2Nhxp/Zari"2Vii)| N 337 (33-4)2" (4.3.3)

Proof

Now (4.3.4) and (4.3.5) follow from (4.3.3) in essentially the same way
that (4.2.i2) and (4»2013) follow from (4.2.11). Hence we only prove
(4.3.3). The initial stages of ‘the proof are very similar to those of

Theorem 4-,2.3- from (4.2.S), v4»3*2) and (4*1.11) we obtain
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6 nfg-2){) \X-;'C;(_r; r-1,x=%v j'
+(3)2~hl
(4.3.6)
Nov assume the theorem to be true for r = s~1 22, ie that
5m3-17Ni(xj) N (1-2"t)743s(3s-7)2“°1 E ™ 0 (X)) (4.3.7)

Putting r = s in (4.3*6) and using (4.3.7) then gives

(1.2-7-33@5. )21 ((=43) |\ .

" }4.@“ |4;|_(/)- 1 s

But it follows from Theorem 4*3*2 end from (4.2.8) that

+5-3) (s-3)( )
s4,x J ((( - S)

f@'ZM,X,])V (4.3.10)

The use of (4*3.9) and (4.3.10) reduces (4-3-8) to

6mA~2~(x.)] < | (1-2"t)7"33x3s-7):3} (I~2-T)“32~ti
(4.3.11)

AN(-2"tf" 3s(3s-4)2't] N r ?)(x.) . (4.3.12)
So the theorem is true for r = s. But ix is very easily verified that the
theorem is tine for r - 2. Hence, by induction, it is true for ¢Ur >.2

,,0 conclude from Theorem 4.3.3 that the computation of n&y pX(lﬁ\ from g¢ o

recurrence relation (4.j.11) is unconditionally stable.



Two recurrence relations for the derivatives of B-splines have been
established. One, (4.1.11), relates the 1th derivative of a B-spline of
order n to the (.1-1) st derivatives of B-splines of order n-1. The other,
(4.1.12), relates the 1th derivative of a B-spline of order n to

derivatives of the same order of B-splines of order n-1.

These two relations, when used in conjunction with the fundamental
recurrence (3.4.1) suggest (at least) two computational schemes for the

numerical evaluation of m~~(x), for any prescribed value of x.

One such 3chene (Scheme A) involves initially the use of (3.2.8) and

(3.4-1)» as in Algorithm 3.12.1 for example, to compute for all relevant i

trie values of Then (4. i. mj is employed to compute successj yoly
the values of _AtS eeey TN (X)? for ell appropriate
value3 of i.

A second scheme (Scheme B) involves initially the use of (3.2.8) and

( to compute the value, of «”~ (x), foiler,ad by the use of (4.1.11)
to compute successively the values of nSXQ/X)" 4w IPQ+)2 \/x‘\for
all appropriate i. This is followed by the application of (4.1'12) to

compute successively the values of m_LRg’)Z,‘X) q\]_})4{\4l. . Nﬁ(il){x);

again for all relevant values of i.

Butterfield (1373) has carried out a detailed analysis of a set of schemes,
which includes Schemes A and B as special cases, for computing B-spline
derivatives. A tentative result of his work is that Scheme A can be
expected to have superior stability properties to all the other schemes

in the set. Numerical evidence is accumulating to support this result.

Algorithm 4.4« 1 below implements Scheme A



Algorithm

Comment:

Step 1*

Comment:
Step 2,

Step 3-
Step 4.

Stop 5.

Svep o.

4.5 The
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A«4»1: The evaluation of tho 1th reduced derivative of all
non-zero B-splines for a given argument x (;, £ X X,
P given arg Cog & % A%
using Scheme A,
The B-splines of order n-1 arc computed by convex combinations

in Step 1*

Employ Algorithm 3»12.1 to obtain the values of

1> 2> 'e'* n-1)*

Tj = M-1Lk-1+j(X) (]

The required derivatives are computed by recurrence in Steps 2-5,
For r - n-1+1, n-1+2, n execute Steps 3-5*

Setv. =sv/ < 3W-1-*k-1).

For i = k+r-2, k+r-3, k+1 replace by
(vi-k~vi-k+1 )/™i" xi-r ™
Replace v~ by -v r).
— ,(D
For ¢=1, 2. cee>n set - v

definite and indefinite integrals of B-sp'Mrss

In this section some results relating to the integration of B-splines are

establ Gshed-

Theorem 4 «5«'|

The indefinite integral of a b-spline is given by

f x

- fO

and by

‘0 . S/x : X).( ir)
. _ J, N
&t 5 8- n >J:X—(1 31—f'!,s;]'\(x) Fseon X (4.5.1)
J,
n K s *)
k-ai
H',n-f'%'#—n ral . jW i X<V i-a<fc $ me).

(4-5.2)



Proof

Use of the relationship (4*1.1) yields

Mnj\(/x) =M -y n+1’rJA(/X (4.5.3)

Summing (4.5*3) over all values of j from i+1 to i+n gives

X+N
11n,><+n(/x) = Hp) -4/ Nr’1+1,j'\9x) (4.5.4)
Ve cone9i7i ourselves with the interval x”~n X.., since ¥:j(x) 1 O

outside this interval. Thus}, replacing x by t in (4.5.4), integrating
with respect to t between the limits - o0 and x and observing that

Mn,x'+n(/X = 0 for x < X.., We, obtain
r X x+n X
W I T ' fIJL\ /i r e\

mlanlv au—nle_ﬂ L , o
- Zz N (4.5.6)
nj=itl n-1,J

Putting X _ x» in (4<5«6) and using the compact support of the B-spline

gives
€6 X+n
Mn;((,t)'dt -9 / i Nn+1',j'\(/xi<) (4.5.
-co J
Since lﬁml),jai,(XL) = 0for j and j i-:n, tne right-hand side of (4.
is equal to © N+l ,(x..), which by virtue of (3.6.1) then yields
1
mn'i(t)‘a+ n (4

(cf Section 3»2J. The results (4*5*6) and (4.5»0), together with the

fact that Jn;(x) S O for x < x”.. and x >x+, prove (4.5.1).

Finally, if xv A$ x <x_, where i-n <k~ i, then N , .(x) = 0 for

j "> k+n, fro,-a which (4.5.2) follows. L]
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We note that the lower ltrait .in the integrals in (4.5*1) and (4*5.2) may

he replaced hy any value not exceeding x. n without affecting the results.

Moreover, it follows from (4.5*1) and (3.2,6) that the definite integral

of Nnl(x) is given by
oo
|fn).((/X)dX = (x).(—x.x_n)/n . (4*5*5)
-©
Finally, if the knot3 are uniformly spaced one unit apart’., (4.5.9)

reduces to
r
oc

Nm.((x)dx - 1. (4*5*10)

_(O

If the values cf N ,
11+

1,J(x) in (4.5*0 or (4*5*2) are computed using the
]

unconditionally stable Algorithm 3.,12.2, the value of ix M(t)dt has
) X-n
8 ve;» ma2l relativ9 orror* Alternatively, one of the'a iw a discussed

in Chapter 5 for evaluating a linear combination of B-splir.es can be used,;
the results of that chapter can be used to establish that the value of the

integral computed in this way also has a very small relative error.

‘Jhe following theorem shows that the integral of .(t) can pJrr, bo

computed from a reduction formula.

Theorem 4*5*2

If x. - <x ™ x_ then
X-n S a
r X
_ n-1
MDAt = 20 MO+ T M o137 db (4%5*11)
J-cO - @
Proof

Prom (4*5*0? (3*4. i) hnd (3.2.6),



rx i+n

I+n-1

» g 1(X-Xq RPIRIM + j=i+l (V XJ-»)M*‘J(z)

»

I+n V « Wj
i+n~1
nEexi-n N T00+ 2 -3 MO0 (4.5.12)
J =+ J
since IVIIJ>:'L+n(X) = Ofor iin &V EXi+ Bur hy replacing n by n-1 i
(4.5.1),
i+n-1 r x
t :  *ysm - M-l >i(9dL (xi-n+l ~» x 2 (4* 5¢ 15)
j=i+l -8

Now (4.5.13) also hblds trivially for x. n™~ x ~ x .~ . Hence (40.13)

bolds for x. n <X ,<x%+. “Substitution of (4.5.13) into (4.5.12) then

yields (4.5.11).

X
The following theorem establishos another useful form for
[ 10)
Theorem 4«5°3
For Xi-r ~ X £ xi>
r *
Mii(t)dt =1 «pj.Kiix).
(t) (=«p] ) (4.5.14)
-CS r.-1
Proof

The repeated application of (4.5.11) yields
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i-n. 1 1*>0f0"-(n--;.Jj | K2 j(t)d ti

X
+(n-3> m ¢(Oat
Il -¢0 bH,x
J
5 | <% Vi ., ) h,1l +(*-V  2)M2i (x)
+
=)V ¢ >Ft}
n v
a > i K A (X+i % (*)«. (4.5.15)
7-2 - ©
Sat it in readily established that
0
X
Mt(t)dt »
-&
G/ Xy i ~i *i)
* (Exi-d Hlto (-~ X) . (4.5.16)

The result (4*5.14) then follows from (4.5.15) and (4.5,16).

'xhe reduction formula (4.5.11) and the explicit foa (4.5.14) ha\_/frecently
\ O (FW

The value of
. . . J_J.
can be calculated particularly efficiently from (4.5.14) since a single

been discovered independently by Gaffney (1974).

application of .Algorithm 3.12.1 yields aa by-products all the required

values of M~fx) (r - i, 2, n)t

tie xaay also express (4.5*1)> in ~ho case iy <V \</6v no



H (Orli - ' ;
Lt -1> Nowr -G 16 « (4.5.17)

where C is a constant whose value depends on the lower limit of integration,

The r-fold indefinite integral of & .(t) can similarly be represented as a

linear sum of B-splines of order n+r plus an additional term of the form

r-1 V-'c

G™X + C
(4.5.18)

r

Yle discuss on detail in Chapter 5 the representation of polynomials of

degree < n in terns of B-splines of order n, Hence the complete

expression for the r-fold indefinite integral gﬁ W (X} can L>e/r\epYesented

solely in terms of B-splines of order n+r.

Finally, we state and prove an interesting result due to Butterfield (15/3).

The result is in fact an even broader generalisation than (4.1.3) Of the

fundamental recurrence relation (3.4.1).

Theorem 4.5.4

Lot r
M A X) = AR i'In
(L, sninmde (1< 0) , (4.5.19)
with
0),.\ \
SRACHES M (4.5.20)

Then the result (4*1.5) also holds for 2 < Ot

Proof

Suppose the theorem is true for 1 = -1, -2, t.., r (r < 0). Then (4.1.5)

XVu3
/ . / . \i (x-x. " , LX)+ (X 1 (X)
jaui e " " \n-r-y i X - T (4.5.21)

the integration cf which (by parts) yields



g%
m VO T \n-r-v/ ( (X_xi—V)Mr\/-rf%lj—l(X)+%i ' n—l,i)(*)

M 22 82U 2003 O3

(4.5.22)
But sines (¢..1.1) evidently holds with 1 < 0 »e have
(n-1) * W (4.5.23)
X - X.
3 i-n
The insertion of (if.5.23) into (4<3.22) reduces the latter to
> D (r) . (n-j\/
MUni ~\n-rj] Y ooy (4.5.24)
a i-n

Thus the result is true for 1 = r-1By using integration hy parts it I£

easily proved true for 1 = -1. Hence, by induction, the theorem is true

for all 1< 0. [1
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CHiV?ilsa 5

31; B-SPLINE REFNFGITATION OF 8PLH«8 «TO POLYNOMIALS-

In this chaPter WB concidor the representation of splits ana poDynomia]s

i.o B8zno of B-splines. There are at least tin*ee reasons why such
representations are useful. Firstly, in problems of interpolation and
data-fit oing by splines, B-spline representations usually prove: to bo woD7-
conditioned in that the coefficients in the representations are relatively
inSonuita./o to changes in uio data. Secondly, as we show in Section 5.3,
the numerical evaluation of the B-spline representation itself can be
carried out in an unconditionally stable manner. Thirdly, it is convenient
to be able co ¢.¢present polynomials in terns of splines in order that
repeated indefinite integrations of arbitrary splines can be accomplished
readily, in order to impose fairly general forms of line constraint in
least-squares bivariate spline approximation, and also to provide an

"interface" between mathematical software employing polynomials with that

employing splines.

In Section 5-1 we present a particularly useful result due to de Boor (1972)
which expresses a linear combination of B-splines in terms of B-srLines of
lower order with certain polynomial coefficients. The result is then used
to establish a new proof that the B-splines form a linearly inf.;- cadent set
of basis functions in terms of which an arbitrary spline s(x) car be
expressed, and to establish local lower and upper bounds for s(x) Tn
Section 5-2 two schemes for the evaluation of s(x) are presented and in
Section 5.3 rigorous floating-point error analyses of those schemes are
given. In Section 5.4 the effects of errors in the B-spline coefficients
are examined. In Section 5-5 the problem of representing powers in terms
of B-splimes is addressed and in Section 5.6 algorithms for obtaining these

roprOsentations are presented. ihe extension of the algorithms’ of



Suction 5-6 to cover finite power series is treated in Section 5-7,
where an interesting result relating the absolute convergence of a
Taylor -series representation to the boundedness of the coefficients in
a related B-spline representation is established- Error analyses of the
algorithms of Sections 5-6 and 5.7 are given Section 5.8. Sections 5.7
and 5.10 discuss methods for representing in their B~spline form the

derivatives and indefinite integrals of a(x).

Section 5*1 ® 5¢c exceptional in that it treats the conversion of the
B-spline representation of splines (or, indirectly, of powers or polynomial
into their equivalent piecev,ise-Chebyshev-series representations. The
latter representations require considerably more store than the B-spline

form, but they have the advantage that they are quicker to evaluate.

5.1 The B~spline representation of splines

Given an n-extended partition fx.j] and a sec of coefficients {c/j- , let
*(*) - 2 , c4iNn i : (551)

whore the are the B-splines of order n defined upon the knots

[x j = Evidently, any linear combination of the fora (5.1.1) defines a

spline with knots (IXX}.k .

Vie now establish a result due to do Boor (1972) of which we make

considerable use in this chapter. Using (5.4,2), (5.1.1) becomes



m, .
where the reduced r.occarrh:n cr "(:c; arc gjv..n h.

. "X. )C. +{x.~xJc.
~Njifx X-fl+vV x-*i " I {/f] 6”'1—\
Ai i-nil
Clearly this reduction process nay he repeated; we obtain
r-f
WL . i (yK -i,iMm (5.1.5)
where
(1-0)
oN(x) = (5.1.6)
, v fi-i3, x , x Ci-i3, X
X7 Kentt
In particular, because of (3.2.9),
/(%) Dl-1] (X) (xi,1 £c<\) (9.1*7)

Note that, as a consequence of (5.1.6), for any value of x such that
Xy 4 £ X<x , cf(x) is a convex combination of the values of c.,

c > ., C. In particular, s(x) is a convex combination of the
X

values of c., c™Ni eee* citn~1*

Curry and Schoenberg (1966) give a lengthy proof that the B-splines
[Nni(x)} defined upon an n-extended partition |]r..] are .linearly
independent and fora a basis for splines of order n with knots

We present simpler proofs, which we believe to be new, of these results.

Theorem 5.11
The B-eplinee {H ~x)} deitued upon an /--extended partition {*.] ~

linearly inderendent.
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Proof
If the N ) are linearly .independent then no non-trivial linear
combination of bhe li.,.. (x) can be identically Kero. Assuite> therefore,
that there exist values c,, not all zero, such that for all x, >

*OO = 2 e (518)

We shall show that such an assumption leads to a contradiction.

Consider values of x in the interval X, £ X < x., Then, using (5.1.7)»
ok Xk o)

«M = 0&-h(x) (515)

. n -l . : . :

Now, by virtue of (5.1,6), cl "(x) can he identically zero only if
c f- (x) and c~'/ "(x) are both identically zero. In turn, e™J"“(X) &

(x) can he identically zero only if c, ~(x), cP\'*(x) and

C1+1 0 J+

c;’\_px ) are all id(/e\nt/i\cally zero. Continuation of this argument leads
-

to the result that eU ‘(x) can be identically zero only if the values <

c. (i =j, Otl> eee> j+n-1) are all zero:, which is the required

contradiction, at least for values of x such that X, f x< Xj"

Consideration of such intervals for all j leads to the required

contradiction for all x.

Theorem 5.1.2

An arbitrary spline s(x) of order n defined upon a standard xnot set can

be represented uniquely as

N+n-1
W - 2 ] Ci'ﬁ i(x) g/a >X s b), . (5.1.10;
i=1

Proof

Since the B~splines N ~(x) (= - 1. 2f . N+n-l1) defined, upon a standard
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knot set arc linearly independent (by virtue of Theorem 5.1.1) and since
an arbitrary spline of order n can be described in terms of N+n~l iiruav

parameters (Section 3-1)» it follows that s(x) takes the form (5.1.10). j~j

i»e shall sometimes make use of the equivalent representation involving the
un-nornalized E-splines, viz
l1+n-1
»(*) - (a <X£ b). (5.1.11)
i —+
Ah a consequence of (3.2.6), the coefficients in the two representations

are related by

cf (xq-x. . (i =1, 2, ..., N+n-1). G .1.12)
The next theorem establishes lower and upper bounds on a spline in terms

of the coefficients of its B-spline representation.

Theorem 5.1.3

If s(x) has the B-spline representation (5.1.1), then for xf._ y SX< X,
i y

min £ s(x) $ max ch. (5.1.13)

I AN AR R g jN < g

proof

The proof follows immediately from the observation made earlier jn this

section that for x,& £ X < X_.. s(x) is a convex, combination of the values

J



5.2 The numericll evaluation of_a s-pli.ua from it.-; B-spllre repreve- t-'tlcn
Fo give in this section algorithmic preeentat:' jhis of two scheme.?, both,
based upon the use of convex combinations, for evaluating a spline s(x)

Oe-order n from its representation as a linear combination of B-splines.

Given a standard knot set and a sat of coefficients ct (i — 1, 2,
H+n-1), we wish to evaluate (5.1.10) for a prescribed value of x
(a itx b). For either scheme let j be the unique integer satisfying

X <€ x (in the exceptional case x = b, set j N). The value of 1
" J

L.ny be found either by sequential search or, if N is large, more

*x

efficiently by binary search. As a consequence of the compact support
property of the B-splines, the sum (5.1.10) reduces to

(x) = / i CXNni(X) (Xj-l'g X < Xx.) . (5.2.1)

J

In the first scheme (Scheme A) we use relation (5.1.6) to feria the
triangular array o. ' (i = j, j+1» j*tn-1-1; 1 =0, i, ..., n-l),

typified here by the case n = 4:

Y

cpJd
J
E>
Ojg-‘d J
DJ d i
cjrt Cj (5.2.2)
c[°3
j+2 °Th
VO
% 2
J+3

It is convenient to form this array column by column, the single entry
in the last column being the required value of s(x). Evidently, the
vr.'lue of c'(‘)’—'(x), once computed, may overwrite the value of crmn th/}

since the latter is then no longer required. Thus only n storage locations



are required by Scheme A, an algorithmic presentation of which is given

below*

Algorithm 52.1: The evaluation of a(x) from its normalized B~spline
representation using Scheme A.

Step 1. Determine j such, that x,J_‘jC X < >3} using sequential or
binary search.

Comment: Set the initial conditions.

Step 2. For i ~j, j+1, j+n-1 sot =c..

Comment: The value of s(x) is computed by convex combinations in
Steps 3-5*

Step 3. For 1 & 1* » *«epn-1 execute Step 4,

Step 4. For i-j, ,j+1, eee, j*n-1-1 replace d. by

1 Xion+1

Step 5. Set r,(x) = cL.

It has been observed empirically by de Boor (1972) that Scheme A is stable
even for orders as high as 80. In Section 5.3 we prove rigorously that
de Boor's observation is in fact a property of the method for arbitrary

coefficients and knots.

The second scheme (Scheme B) is more appropriate if two or more splines
with the same knots are to be evaluated from their respective B-spline
coefficients (for-an important application see Chapter 10). Scheme B is
based upon the initial generation of the non-zero values of the nth-order
B-splines, ie the values of v. = Nni(x) {i =j, j+i, ..., j+n-1), from

Algorithm j.'t2,2, followed by the direct evaluation of

s = N Yy (5.2,3)

-]
An algorithm for this scheme is given below. Again only n storage

locations are required.



Algorithm 5-2.2: Tho evaluation of s(x.) from its normalised B-spline
representation using Scheme E.
Step 1. Determine j such that x,_ X < , using sequential or
binary search.
Ste? 2. Use Algorithm 3*12.2 to evaluate v, = Nn(.)_(x) for
i =j, j+1, .**, j+n-1.

j+n-1
Step 3* form s(x) = J ctvt-

i=]

Either scheme takes ;ﬂz + 0O(n) long operations.

5.3 Error analyses of algorithmz for evaluating a spline from 1ls
B-spHhue re presentation
To carry out a floating-point error analysis of Algorithm 3.2.1 (Scheme A).

let BPLIJ(X) denote the computed value of cn '(x) and
ScpCx) - opJ(x) - cp'J(x) (5.3*1)
In accordance with (5.1.6) we set the initial condition:

N(x ) =¢°J3(X) =c¢. , bep(x) =0. (5*3*2)

Por | > 0, the floating-point equivalent of (5*1*6) is

cp{l) .on (x)- m ) (5+3.3)
X ) & fn+t I
Relation (5*3.3) is similar in form to (3*8.5), and the method of analysis

of the latter may he applied to some extent to the former. However, the

D3 fy\ rjlg cP'~(X) may be positive, negative or zero, whereas the

M (-A in ('i.8.5) are always non-negative (Theorem 3.8.2). By analogy

with (3*8+*8)
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+M { «»P "11(*)rf ()13 7 (X; _Xi—n+l),’
(5.3.4)

where JenJ, |GV~ 2 3 and and e0 depend on i and 1. Using (5.3*1),

(5.3.4) becomes
top3« = [(-V wva) {6c il(x)(115e1)+5,,i0.w I]w i

"(x.-x) jscf (M) (1+502)i5c20p-,:0(x)}] Z (Y "i.M1) o

(50.3)
Theorem 5.3>1
< X < QO i = +]1, eee> j+n-1-1:
H))\gj—l W< X x3 and the array ch(x) (i j, O+1, jtn-1-1;
3 o, 1, ..., n-l) is formed using relation (5-1.6), then the values
-D J(X) actually computed are such that the errors 6¢cp (x) satisfy
6cp (x) IiC5.86212“r max  jci-j* (5.3.6)
i $k<i+l
Proof
The slightly stronger result
6cfr(x) $ 5i(1+2_t)~'312 “1 max (5.3.7)
i$ k5i+l

is derived, from which (5.3.6) follows by virtue of (1.1.9) and (1.1.11).

Assume the theorem to be true for 1 =r-1 ~ 0, ie that

EqQM'0O0 <:5(r-D(1+2't)5'3(r'1)? il max c., (5-3.8)
i:$ i+r--
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Then (5*3*5) yields

SCW (*) ,<(l--1~ ](5(.--N)(1+2-1)5-=v il b |
1 %5t ! i+1 A k< i+r K|

+(5)2-tl1] ¢~ w j}
XX

if5(r-1) (1+2-t)5* 271 nax
% e ! i£k £i+r~1

e T

(5.3.9)
. %r—lS . o
But, since ¢b5i ~U(x) is a convex combination of the values of
c (k =i, i+1, ..., i+r-1) (Section 5*1),
xr-1) .. 7/
lar (x)i max 50.i0
i Gk<i+tr-1 K (50.10)

Thus the expression in the second set of braces in (5.3.9) reduces to

(r~-D(+2 t)J*'3r+5j 2 max (5.3.11)
i$ k< x+r-1 e

which is bounded by

5r(U2~t)5' 2~ti max (5.3.12)
i Mcri+r-l o
Similarly, the expression in the first set of braces in (5.3*9) is bounded
by a quantity that is identical to (5*3*12), but with i replaced by i+1.
But from (5.3*9)> 6CcP°M is bounded by a convex combination of

(5.3.12) and its counterpart with i replaced by i+1. Thus

&CPA (x) | < 5r(l+2"t)5*3r? tl ex
A K (5.5.13)

Thus (b.3.7) is true for 1 =r. But (5.3-7) 1« evidently true for 1 - O.

Hence, by induction, it is true for 1 = 0, 1, n-1.



Corollary 5e5e1

- 5~ 0 (i = 1+1> *ee? j+n-1) the elements ci “(;:) generated by
r-n _H» a
Scheme A have errors 60~ (x) = cJ-J(x) - c. (x) saﬁiglfyi!ng the relative

error bound

$ 6*54917" L Jenap

In particular, the error 6s(x) = i(x) - s(x) satisfies the relative errq,

bound
<

6s(x) | < 6.549(1-1)2 s(x) . (5.3.15)

Proof

Firstly, the a posteriori bound

5ci’\ (x) £ 51(1-2"t)“10,312 (5.3.16)

is established.

Suppose that (5-3.16) is true for 1 =0, 1, r i ~ 0. Then (5.3.5)

gives .

bof\x) [(x-xi-n :r™/ (X)+(Xxx-X)cp ’\(x)J N
"1 Xi " Xi-n+r J

X 5(r-1(1-2"t)"1°,3% A2 tl [1~(5)2 t1J h(5)2_t1

@

(5-3.17)

-t.

Now 1+(5)2" U = 1+(5.3)2“t < (1+27)-*3< (lI-2_t)-5*3. Hence the term in

square brackets in (5*3*17) is less than

5{ } 2-11< 5rd-rh5-10-~ -*1. How the non-negativity

of the c\p (x) follov’i; from the non-negativity cf the (cf Theorem 3.6.2)

and, as a consequence, cirj(x)(I-2 ‘) 3 is * bound for the first term in

braces in (5*3*1/)* (c* v.3.9-4))* Thus
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60f-(x)UBKI-2't)“">3V tI5W (x) .
3 s J (5-3.18)

Thus (5-3-16) is true for 1 =r. But it is evidently true for 1 -0 and
hence by induction for 1~ 0. Since from (1.1.12), (I--2“t)*" n

(5.3.16) may be simplified to

ccp-(x) is 5.8%.1é-““¥_c:%_§(x) , (50.i7?)

from which the relative error bounds (5.3.14) and (5.3.15) follow readily. ! j
Ylo now analyze Algorithm 5.2.2, presenting our main result as a theorem.

The orom 5-3.2
The value of s(x) generated by Algorithm 5-2.2 (Scheme B) has an error
6s(x) = s(x) - s(x) satisfying the bound

6s(x) | £ 7.745n2_t max c | (5.3.20)
« ! iNk<jtn 1 K]

Proof

Summation of the series (5.2.3) yields

j+n-1
s(x) ry._, QTi(l+£i)" (5.3.21)
i=0
where
N2 (Mg gL j+n-1) (5.3.22)

and v. denotes the computed value of Vk = nni(x). The term (i+ei)n 3

(5.3.21) can in fact be replaced (in the case of forward summation) by

(I+£ )" it = - i and by (l+e.)n+l+~ if 3 = i+1> J+2# n
(WilkinSun, 114), out we need only the weaker result here. ;,ov

from (3.9.13)3
Ve = K (x) = N ({I+Z ) (5.3-23)

X m.

where



Hence
6.,(,) . g | (5.3.25)
New the tern in braces in (5*3-?5) is bounded in modulus by
{1+6.685(n-1)2_t} (1+2_t)n-1

< {1+6.685(n-12"t j (1+1.06n2-t)-1
= £7 745n-6.685+(c.<58)(1.06)n(n-i)2“"j 2-~

< (7.745n-6.685+0.1)2_t = (7.745n-6.585)2_t

N

7.745n2_t . (5.3.26)

Hence
| + J+n-1
Ss(x)j ™ 7-745n2™ *2_J N_.(x) . (5.3.27)
i=]j
The result (5.3*20) then follows from (5-3.27) since N .(x)~ 0 and

t+n-1 HI
T -1 Kn(C =1.0O

x=J
Corollary 5*3*2

If e i 0O - j-11» eee» J+n-1), then the value Of s(x) generated by

Scheme B has an error 6s(x) satisfying the relative error bound
8s(x)] N 7.745n2_ts(x) . (5.3*26)

Proof
Since ¢. ® 0 NidH™M\(x) 0, one sun in (5.3*2/) can be replaced by

c.N .(x) = s(x) from (5-2.1), which then establishes (5.3-28). N
i=J

Note that we may also interpret cur result in the sense of a backward error

analysis. For Scheme B, from (5-3-21) and (5.3.23),
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«+n-1
HO =2 U 3 X)) (5-3.29)

where

(5.3.30)

It is easily established that

< 7.745112°¢
ni (5.3.31)

Hence the computed value i(x) is the value that would- be obtained using
exact computation upon a set of coefficients c. perturbed slightly (in a

relative sense) from the c... Similar results may be established for

Scheme A, the only difference being the magnitude of the numerical constant

in (5.3.31).

5.4 errors” coefficients on

value of the soline

I7e now consider the numerical evaluation of s(x) when the coefficients (V j

are subject to uncertainty. This would be the case if the c were the
i

results of a previous computation, as they would be in the determination of

spline approximations and spline interpolants (Chapters 6 and 7) and also

in the representation of polynomials as splines (Section 5.7). Specifically,

suppose that perturbed coefficients f5.] are tnom and that a bound tc

such that
max |cN-cJ $ 6(
(5.4.1)
is available. Let
i(x)STI1{S 3iNni(x)] - (514.2)

tie require a bound for S(X)-s(x in terms
d Is()-s(x)l of the known quantities {c. j

and be.



Por Schemes A and B of Section [>.2, the use of (5.3.6) and (5.3.20) gj.yss’

s
(x) = > CINin.gx)7H

(34 o)
v/hore
E 66K2 max c.
i 13 (5.A.A)
and
( 5«y(n-1) (Scheme A)
K =
/.8n (Scheme B) . (5.4.5)
Thus
S(X) = e(x)+ 2H (03-°.UN .(X)+E (5.A.6)
nd hence
£.:X)j - Is(x)-s(x)] ™ max jcNc .. | +K2 Nnax (5.4.7)
oc+K2 \ax l (5.4.8)

which demonstrates that the bulk of the effect on the computed value of
any errors in the {c.} is at most equal to the largest of these errors.

There is a further very mild contribution to the error from the term

max |c. [ in (5.4.8). From (5.4.8),
i

8s(x) o cctK2 “mex Ic. +K2 ax c~0

a; (5.4.9)

N 1.16cHK2 Mex jcd o,
(5.4.10)

under the very weak assumption (in accordance with (1.1.7))

K2-t < 0.1.

that



5.5 The B spline representation of powers

Since a polynomial of degree less than n is a special case of e spline of
order n, it follows from Theorem 5.1.2 that any such polynomial has a
unique representation on (a,b) as a linear combination of the B-splines
mi(x) (i =1, 2, N+n-1). This result will therefore apply in

particular to the "polynomial" x (r =0>1, . n-1).

Marsden. (1970) gives a result (see (5.5.1) below), which enables certain
powers of x to be represented explicitly in terms of the IJ .(x). Marsdsn’'s
original (unpublished) proof of (5¢3-1) was in fact rather complicated, so
in his 1970 paper he gave a more elegant proof communicated privately to
him by T NS Grevn.llc. A far neater proof, however, is due to de Boor
(1972) and is based upon the use of identity (3.>+.2) which was unhncvn of

course to the above authors at the time of their work.

Te show that the Marsden-Greville result, which in fact gives representations
of x1 in terms of the Nnt(x) for r =0, 1 and 2, may be generalised to the
case of all r n. ©Me establish a simple recurrence relation, which enables
the coefj.icj.ents in these representations to be computed efficiently and
accurately. These results are applied in Section 5-7 to the problem of
representing an arbitrary polynomial given in its power-series form in

terms of E-splincs.

Finally we prove that the coefficients in the B-spline representation of a
function f(x) are bounded if the Taylor series expansion of f(x) (]x[ < 1)

converges absolutely.

Theoren 3-5-1

pp p and g are xnbogers juwA that

V I <V-»-1"~

then the relation



173
1

(e =20 (X ) (X X K (3.5.1)

\

is valid for all t and for x o< X< X
aq-n+m

Proof

The proof is by induction. Assume the theorem to be true for n =r ~ 1,

ie that
(t-x)1 . eee (t'V I )Nri(x) -’ (5-5.2)
i=p
where
31 NX W Xgrid (5.5.3)
Por consider the expression
q
h- I{.l—« (/t'xi_r)(t'x'i_r+1) (,t‘xi_|)Hr_f_1,|-(X) (5.5.0
i—P
YEe wish to show that E = (t-x) if x X < Now, by making use

of the recurrence (3.4.2), ana the limited support of the B-splines, we

obtain

(5.5.5)
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Simplification of (5.5*5) .yields

Lu (E-x) 1 ) tre2n . (5.5.6)

which by virtue of (5.5.2)* (5-5.3), and the limited support of the

NJ .(x), is equal to (t-x) if xp_i B x\ Xq_a-' Thus the theorem is true
f(br n =r+l. But for n = 1 the right-hand side of (5.5.1) is simply
Z~.' Nlt(@e), which sor x v X»»® X is equal to unity, by virtue of

i=p *

(3.6.1); the left-hand side cf (5-5-1) equals (t~x)° =1, also. Hence

the theorem is true for n = 1 and therefore, by induction, for all n~ 1. j"j

Now let p = 1 and g « N+n-i. Then by equating coefficients of powers of
t in (5.5.1), and once again utilizing the finite supoort of the Nni(x),

we obtain for xQ< x < x7,

N+ INHR-L

1.2 3 T )« i(x). 2 3lg 1M (5.5.7)
i=1 i=
N+n-1

= 7—3 Onx ra (5.5.8)

N+n-1
— N
x2 = nj- Nni(x) (5.5.9)
and, in general, for 0~ r \ x, by
Nhn-1
— e N, (X). (5.5.10)
Ax?ﬂ ? nt Nar

r
The coefficients 5 (R are obtained by equating like powers of t in

(3.5."0 and hence ere defined by

fi? o1 (5.5.11)



and, in general, for 0 < r < n, by

(<)

5.6

Define

< NX

Algorithns for computing the B-spline coefficients

ZL. k
k,lI=i-n+1
k<l

v T

{ i-n<k <k <

S((} = W icr £ IAN

Theorem 5-6.1

Proof

X

£ nx

1'J

SHOFior F %rSia

From (5-6-1) and (5-5.14),

and

lienee

i 2-1 w

] V
- Z-i \

y

y

Ln<M<@s”.

k

..<k <i

XK.,
i-n< k™M k2< ee-<Kkr, 1< i®"

> [

1

1

(5-5.12)

(5-5-13)

(5-5-15)

(5-6-1)

(5.6.2)

(5.6.3)

(5-6.5)



o( i)
(-%,1'-1 H X3 n-1 e

T fCe ! )X XX,
l K2 xa k—4 1 X2 i
i-n <k <3 kr< i i-n< <kg<...< k&<
kp X i-1 k. = i1
= &lE ~
Z XieXng -+ Xk-; = sm)é : (5.6..5)

i-N< kK<~ k?< m-e< KN<

It is easily verified that the elements in the first diagonal and the first

row of the array (see figs 5*6.1 and 5*6.2 below) are given by

° - i —1i 5*6.6
SFR=n+j 1 (j —1j 2, n—F) ( )

and those in the first row by

Sl(gi?n+1 =1 (5.6.7)
and

of ) 9(-1) > : (5*6.8)

L icn+jid Ylnerj jji-ne ’ ) '

Relations (5*6.6) or relations (5*6.7) and (5*6.8) provide a set of
starting values for recurrence (5.6.2). Values in the array may then bo

generated diagonal by diagonal, row by row or column by column.

It follows from Theorem 5.6.1 that a particular value of Sr&; nay be
generated by computing the elements of a rhomboidal array, typified here

by the case n- 7, i =9, r = 4:
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(0) ~ so> 72) (5) 0.
55 46 °50
\ \
NeAO) —oh dd | A1 2) e IOV
24 v 57 %8
N N\ VAN
HSS /)\ S(I éz_l%* &(?*)*X%R(f)
Fig 5.6.1. Schematic illustration of the computation of
st4)

79

The arrows in Fig .5.6,1 Indicate the dependence of an element in the
array upon its immediate neighbours (predecessors). Thus, for example,
(mz) (?) (3)

$é7 is computed from 8,6/ and f

In the general case the array takes the form:

n+1 SA> +2 **Sg\]n+§_»* "_:-S;\H,i—nﬂil

\
. \
2,i-m2 —3,i-n+3 \
\
Ns
\
~(0)
Sh-ri-r n-r+1 ,i~r-;-1 Y
Fig 5.6.2. Schematic illustration of the computation of

the general value of Srlw\%\

In practice it is unnecessary to store the complete array since a new row
(column or diagonal) may overwrite the previous row (column or diagonal),

the latter being no longer required once the former has been computed. In
Algorithm 5-6,1 below for evaluating vz the elements in the array are

formed row by row in the vector | Vq, v



Algor*thu ,1:  Evaluation of

Oomment: Tho initial conditions

Step i. Set

Step 2. For k=1, 2, vV S in+k Kel®

Comment:  The value of 3;\r.) is

Step 3- For ¢ =2,3, ..., n-r
Stept. For j=1»2, ..., rr
Step Set A i =Vr/'b "

A simple extension of the array enables bhe values of nx (and hence

5rr’1\X ) to ho computed for all values of j from O to n-1. Tho extended

array for the above example in which n :: 7 and i = 9 becomes:
Pig <5.6.3. Schematic illustration of the computation of
the values of (j =0, 1, 6).

The final column of such a triangular array then yields the required

values. In general this triangular array assumes the form:
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a(°) o) __s@ (3) Arn-2) . Qn-1)
Lx-nl Lo PA-n+2 " -n+3 " %,i-xi+IC~ N n-1,i-I ni
N \ \ \ XV XX
’ Xv
\(0) DY - - _
2,i-n+2 N - 24\£i-zfn+4‘ o 'n?l ,)'_1’ X_ sr(]r: 2)
% (o) N t(i) (n-4) X . («t3)
J iy p dj n-1,i1-1 m
"X
s(°)
4, i-n+4
\
X
Spig |\ >R
it 7 - sw
\ o)
ni
I?ig 3.6.4. Schematic illustration of the computation of the
values of (j =0, 1r n-1)..

lii Algorj. oim 5*6« below the elements are again generator!, row by row in
the vector | "aqj i vn.] ; , the final valuos of v. (4 - O, 1,
=\ r‘W 9

n-1) holding the values of
Algorithm 5.6u2:  Evalnation of the 3-epline coefficients
k =0, 1, vO, n-1.

Comment: Initial conditiens are set in Steps 1-2.

Tp | Set \, = 10

Step 2. For VvV - 1 2 »adj nl set Vie ™ XinekVke1

{ w The valuer. of )(q(lll() >0 computed by recurrence in
Step 3+ For k = 2, 3y O#«} n-1 execute Step 4*
Step 4« For 1+ 1, 2, ***>u Kk replace v by vy.

J xn+tk-1-,
Step 9. For k=0, 33 «3*In1l set nx - vk ZL'L-
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In Step * 0.? Algorithm 5.6.1 it ia necessary to divide the final value
of VA'ni >y cr to obtain % Sirui ,r remarks apply to

Algorithm 5.6.2. A few words regarding the evaluation of "% are in

order here. For a prescribed value of n, let

isx - q( (5.6.9)
Then it is readily verified that
r i (k = 0)

k =J (5.6.10)

i k_1(n-K)/Ic (k> 0).

We recommend that (5.6.10) be used recursively to fora ug> u ,

ur=n~1Cr. In Algorithm 5-6.2 and also in the methods considered in
Section 5»7 it is necessary to form ‘é'('ﬁ) for k=0, 1. .... n1 ad in
jjuoh cases it is efficient to form the required values of u(. in the above
manner. Since u® is an integer (it being the number of ways of choosing
3 objects from n-1) then, unless integer overflow occurs, integer'

arithmetic can be used throughout to compute exactly the values of U,

4, = n-1). Note that the precise order of operations is
%
(Uj.-~n-kJj 7k rather than

% { (n-k)/k \, since the former expression in braces is always integral
whereas the latter may well not be so. |If integer overflow is likely to
occur, floating-point arithmetic must be employed, in which case a
straightforward error analysis of (5.6.10) shows that the computed value

u satisfies
r:

\ = W(1Hffo)2l (x> (5.6.11)
I+ . N . .
where 2 ", ie u™ has a relative error bounded in modulus by
(2k-1)2 ‘- 1»Co(2k-1)2 . Me assume, for the sake of complete rirour

jr. our subsequent analyses, that who computed values cf u do indeed



satisfy (5.6.11) rather than being exact, However, for most practically
useful values of n (eg for n less than about 50 on KISSS)), u}, v.lil indeed

be equal to Uy -or all- —x 1, ..», n—

5,7 The B-spline reprise;:-.tailon of polynomials
I now consider the representation of a polynomial of degree less than n
(expressed explicitly in its power-series form) as a series of B-splines

of order n defined on a standard knot set. That is, we wish to determine

the coefficients c™ (i =1, 2, N+n-1) in the 1-spline representation
of-
n-1
p0 =/ .., Db (5.7.1)
-n
v.-hcre the coefficients b (r = 0, 1, n-1) are prescribed.

n-1 <H~1
p(X) = ¢ Vr Z—]-* ?
r=0 i~1
+p-1
= y c.n .(x), (5.7.2)
i=1
where
n-1
{’ - /"™t (1:1’ 2, .... N+n-l). (5.7.3)
r=0

To determine each coefficient oi it is merely necessary to Invoke
Algorithm 5.6.2 for the values of N (r =0, 1, c.., n-1), multiply by
the respective values of br and sum. A slightly more efficient approach-

given as Algorithm 5.7.1 below, is to for,a scaled coefficients

dr =b/ n 1°r 'r = ° 1j *** p_1n (5«7.4)

evaluate (r =0, 1, n-1) from Steps 1-4 of Algorithm ,5.6.2 ana
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finally to for: the values of c1

n-1
0 => 1 ds~» A N
B r~nx A B)e 5.7.4)
r=0
Algorithm 5.7.1: Conversion of

equivalent 3-spline representation,

Comment!  The values of & - tu/Y'="C. are determined in Steps 1-4.

b,

Stop 1° Set - - 1 and d
0 o)

Step 2. Fori =1, 2, . n-1 execute Stops 3-4.
Stop 5* Replace p by p(n-i)/i.
Step 4. Set dil = n).(/g.

Comment: The values of c. are formed in Steps 5-7*

Step 5. For x - 1, ?, K+n—1 execute Steps 6-7-
Step 6. Use Steps 1-4 of Algorithm 5*6.2 to evaluate Srgh) — v
| .
(k = o! 11 **_ > n—l)
n-1
Step 7- Form ¢, = 6T»"11 dkvct

k=0

Now suppose that the xt fom a standard knot set with coincident end knots

and that
¢

a=-1'b=+1* (5.7.6)

There is little loss of generality in this assumption, since any finite

interval can, under a linear transformation, be mapped into the interval

-1 ix”~ 1 (for details on the way in which such a mapping should be

carried out see Section 1.2). Then, using (5.5.14) and (5.7.6) (recall that

A o ~X-i ~Xo< "1 % * £ "-1< N “ N4l =y =h),
£ (*0| £ S . n-1
ni | 1\1%JZ~ N 32rC i\)'o>14-—20 XR—r -
< y /4-1
i-n <kl<k2<...<k <i j J*
n-1 /n-1
n /
(5.7.7)

TJ



Thus, using (5.7.5) and (5-7.7) ?

|-LJ \/“1 .
r !|>-rJ (i - L 2, NHin-i ) .

Di'i L—I
1
(5-7-8)
This result is interesting in that if the b (r « 0, I, ...) denote the
coefficients in the Taylor expansion about the origin of a function
f(x) (|*U then the absoluto convergence of the Taylor series implies

the boundedness of the B-spline coefficients for any order n. Indeed, as
long as the x* form a standard knot set with coincident end knots, the
bound (5.7.8) is independent of the number of knots and of their pos-thior,n.
The bound is sharp in the senso that it can be attained arbitrarily closely

(see the example below) for certain functions f(x).

As a simple example consider the series expansion

(D)
x G
e =zZm YW\ . (5.7.9)

r=0

Ve have br = I/r%= and therefore, for any standard knot set with coincident

end knots a = -1, b = +1,

©
I K—

cij™NZ j
r=0

1/rl = e (5.7.10)

(cf Example 6.8.3 in Chapter 6). for the exponential function the bound

(5.7.8) may be approached arbitrarily closely far sufficiently large n

(see the following numerical example).

As an illustrati.on Of the rerar.rk.able numerical Stability of the processes
describad by Algorithms 5.6.1, 5.8.2 and 5.7.8, egnsjder the computation
cf the values of c” corresponding to the troncated Taylor expansion of eX

atout | - 0 for the interval JX] ~1. The error jn truncating this



expansion after n terras is

Rg= f_qt/rl (5.7.11)

for some t in (-1, i). Thus

@
: . -r n+l
H | wyjvrt < y j (n+l) nnl (5.7.110)
r=n r=0
Nov; fox’ n)> 14, Rnl X 10 <"2 the relative machine precision of

EDS9“ inns the E-spline representation with n 3'i4 of the truncated
Taylor series should (at least in the absence of rounding errors) Provid(
full machine accuracy on KDF9. The computed values of c, in Table 5.7.1
correspond to the choice n = 15, N = i, x¢, = -i (i £ 0), x. = «j(1> 0)
and b. = i/i. The resaluing B-spline series was computed from the-sc
values using Algorithm 5.2.1 for x = -1(0.1)1. These values are given

in Column 2 of Table 5.7.2. In Column 3 cf Table 5.7.2 arc the
differences between these values and the corresponding values of eX as
computed by the library exponential function on KDF9. In Column 4 are

P

the differences between the values of the power series p(x) = ¢2 xAi’
computed by nesting and those of e’. "o

Note that over the 21 points of evaluation the maximum departure of the
computed E-spline series from the value of eXis 2 X iffl1l rivch :c
merely twice that of the maximum departure of p(x) from eZ. This
excellent agreement occurs in spite of the fact that there are three nain
sources of rounding error contributing to the values in Column 2 of
Table 5 * 7 the rounding errors in the computed Taylor coefficients

the evaluation of the ot from these coefficients and the evaluation of

the B-spline series from these values of ci



o
|

1 0.36/87 94411 7

2 0.42043 36470 5
3 0.48107 31153 «
4 0.55114 53898 8
5 0.63224 30222 8
6 0.72625 25737 7

0.83541 45060 O
8 0.96237? 66833 3
Q 1.11038 49869 6
10 1.28319 55777 7
11 1.48541 47454 2
12 1.72257 41989 9
13 2.00137 23352 4
14 2.32995 58529 7
15 2.71828 18284 6

Table 5.7-1 Values of the coefficients in the B-spline

. X
representation of e .
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— e —
X b(x) 1011fs (x)-ax} 1011 [p W -e X]
-1.0 036787 94411 7 0 0
-0.9 0.40656 96597 4 0 0
-© 8  0.44932 89641 2 0 0
-0.7  0.49658 53037 9 0 o
-0.6 0.54881 16361 O 0 0
-0.5 0.60653 597 2 +1 0
-0.4 0.67032 00460 5 +1 0
-0.3 0.74081 82206 9 H o
-0.2  0.81873 07530 9 +1 0
0.1 SRy 7Ad & © 0
0.0 1.00000 00000 1 +1 .
0.1 1.10517 09180 8 0 0
0.2 1,22140 27581 7 +1 0
0.3 1.34985 88075 9 +2 0
0.4 1.49182 46976 6 +2 0
0.5 1.64872 12707 1 +1 0
0.6 1.82211 88003 9 0 0
0.7 2.01375 27074 e 1% +1
0.8 2.22554 09284 9 0 0
0.9 2.45960 31111 6 0 +1
1.0 2.71820 18284 6 0 0

fable 5-7.2 Tabulation of the values of the computed B-spline

representation of ¢" and a comparison of their

Ny
departures from 0" with the departures of the

equivalent truncated Tailor series iron eX.



5.0 brror analyses of tin algorithms for computing B~spline
coefficients

Tle establish in this section some results relating to the stability of

the processes described by Algorithms 5.6.1, 5.6.2 and 5.7.1.
p

~(I
lot Sr(li denote the computed value of 6nx') and

m (p.8, 1

Then, from (5*6.2),

6.« S fi (/svri L, Xi—l’sr(1r—;11,}i—v)
ry - ' I} fA~B_1
G él—)l,i—l %1 on —Ip—I’\'—fJ} vl,c2’ (5.5.2)

- n-1 (5*83)

where *
h , g2 1h (5*8.4)
h o 0 o2 <2\ (5.8.5)

(Actually, eli~(l)2_t, but we make no use of this fact here). The

expansion of (5*8.3), uith the use of (5.5.1), gives

X O T 8Si ) 1 Pesi N 5 8.4

which, using {5-6.2), reduces to
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(r)

N = A N 1?2 "
6% TS x1 T RN TN e 15i-1.
(5.8.7)
It follows from (5*8.7) that
3(r)
“nx nx ’ (5.8.3)
where F( .) is defined recursivelx bx
nx
No_ : F2be o) 1 e
) - ke Tien PR T 2SS0 g LT i r(1—1,)x—ll * A Org

Relation (5.8.9) can be used in a running error analysis with appropriate
starting values obtained from (5.6.6) or from (5.6.7) and (5.6,8) to
provide Otiuo on cre eii Ols xn cre vuxues of the S .~ as they are computed
However, in at least two important oases we show that (5.8.9) can bo

solved explicitly to yield sharp a priori bounds for

nx
The first case we consider is where the are non-negative,
ilieorom 5*8.1
If the x+ are non-negative then 6 S~ and satisfy the a priori
relative error bounds
VI
6s~} £ 2.620(n-i)ZWL) (5.8.10)
(;% Anlx £,5.106(1-1) 2~ /r\lx (5.8.11)

Proof

\E first establish by induction the result

F& & 24n-i)(l-?"t)y2"2ni .~ (5.8.i2)
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The non-negativity of the xx implies from (9.6.27) the non-negativity

of the S'(r—) and from (9.8.3) of the Srl}y . Hence (.9.8.9) become

Wi "R i nenicr AT % 1o (5-8.13)

How assume that (3-8.12) holds for n = p-1£1. Then (3.8.13) yields

pr 2 P-2)(1-27Vi=2pk 24 (SEy, 5+ XS0, )

< 2(p-1)(1-2-94" 20 (00, 0 X H T ) ) (3.8.17,.)

But from (5-8.2),

] ')____ )
S0 N1 peniicn A Reed Tt (5.8.15)
Thus
sty < 2(p~1)(1-2 ©)2.2p (5.8.16)

Hence (5.8.12) holds for n=p. But (5.8.12) is trivially true for n = 1.

Hence by induction it is true for all n 1.

It follows from (5.8.1), (5.8.8) and (5.8.12) that

(r) K2 ~j

6Syi £ L2V 2j R KIUIEE) + 6§00 ) (5.8.17)
where

K= 2(n-I)(i-2~t)2-2n (5.8. 18)
Thus

B fh
H N N
Jss”) - sty . (5.8.19)

I nl « 1-~1
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It is readily verified that the application of the results of

Section 1.1 to (5.8.19) than yields (5.8.10).

Finally, tho computed value of is given by

g(r)
(14 «»)

U
r

where s’ ”~ 2~1 Thus, using (5-6.11), (1.1.11) and (1.1.12),

L,V (SNh+6SN)(lI+e*)
Jd(r) _ oni
~ni uré,*e)\Zr—l

(Sp *8SM(1+B)/u
no. ni r

where
-t
P < 2.227™P
s
Hence
N N
(el Sk, BRL
tinl = “ni + wu - u
r r
from which
(r) (r)
stW _ gM -fd) =_j2k (nE) +_si.
O~rni ™ tni  sm . 5
giving ¢ s<9 . s (n)
- m -
bXA\, £ 2.620(151)2 (1+0.1) + 2.224r27 % M
m | U u

=]2,882(n-1) + 2.224r]2%“tg ~

upon using (5.8.10). (5.0.23) and (1.1.7). The hound (5.8.fi) then

(5-8.20)

(5.8.21)

(5.8.22)

(5.8.23)

(5.8.21)

(5.8.25)

(5.8.26)

(5.8.27)

follows from (5.8.27) after setting r to its meximum value of n-1. jd
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liote that roughly half of the contribution to tJ.. grror pound (5.8.11)

00l/ies from the rounding errors made while using the recurrence (5.6.

and half from the formation of and multiplication by u

Wb now examine the ease where the x form a standard knot set with

coincident end knots and (5.7-6) applies

It is then apparent from (5-5-14), (5.6.1) and (5-7.7) that

2ni $1 5.8.20)
and

rioov e (5.8.29)
the bounds being attained for i = 1, i - N+n-1 and r = O.
We consider the growth of the numbers F ~ for these knot sets. If m

replace computed quantities in (5.8.9) by their exact counterparts

(subsequently we remove the assumption implied in this replacement), e

obtain, upon using (5.8.29),

Fri v n-1,11 IR 202G +2n2G,

. ¢ n-l,l'l .a - hr . 830)

W)

. . r .
If* xre now define quantities Q\’ by the recursion

8M> = Cr(1[1>,i'—1' . Ghr—llél +2 n- 1cr 5 (i3.0.31)
then

A § ﬂl : (f -8.32)

oome values of ni computed fro(%(i 8 i.,\ are given in the array in

Fig 5-8.1.
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1 2 . 4 6 1
r \ y 5
0 0 2 4 6 8 10 12
1 2 8 18 32 50 72
2 4 18 48 100 180
3 6 32 100 2 o
4 8 50 180
5 10 72
6 12

Pig 5.8.1. Some values of the bound M computed from
(5.8.31).

Note that, at least for the values of n ad. r in Pig 5.8.-]

N = _ 0
G~ =2(n-) nic (5.8.33)

and honee from (5.8.8), (5.8.32) and (1.1.9) that

l6S(f £ 2.12(n-1) n-1G2** (5-8.34)

It is now proved rigorously in Theorem 5.8.2 that (5.8.%) is
qualitatively correct and it is also shown that the sole effect of there
being computed rather than exact values in (5.8.9) is to inflate the

factor of 2.12 in (5.8.34) to 2,346.
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Theoreg. 5.£.2

I'or a standard knot set with coincident end knots and

a =~ and
c(r) (r)
L i, ' °Y0 13ni satisfy the a priori bounds
&&>I <(S.((i(n—0- """V or* (3_833)
>r(r) «
3 ni 4.821(n-1)2"t (5.8.36)
Proof
Ve first establish the result
<2 {1422t} i(n-ny "L
( 14221} *_i(n-) (5.8.37)

from which (5-8.35) follows upon using (5.8.8), (1.1.9) and (*1.1.11).

1),
N W .
PI S PSYin +2 Oplaq +2 6S(1) i1}

S(r-1 . i
p-1,i-1 +72 336[1,2-1 (5.8.33)

since k 11$1. Thus, using (5.8.8),

(5 SR (22" IY(F irg o +FraSs, 4) 12 |Sé[)1,i-l +2 D
(5.8.39)
i fl+(2)2- | * 2 '
i (2)2-" 1} P~15i —1 P40k
(5-8.40)
But, using (5.8.29),
Ar) I c(r-0 ! > P-1
Vi S p'2c +P- 1 (5-8.41)

and therefore (5-8.40) yields



Now suppose that (5-8.37; is true for n = p~i, whore p> 1. Then (5.8.42)
¢Vivos

[* (1-(2)*"tl) "m"V *)
+ 2 {li-(2)2"113 P_2(p-2) P"2Q_i + 2 P~1Cr ]
£ {n(2)2~tl) p"1{ 2(p-2) p 1a+2 P'1Q}
= 2 {1+(2)2"t1} P Yp-i) P'Ilg,. (5.8. )

®ms (5.8.37) is ta» forr.. p. But (5.8.37) is trivially tru.- for

n = 1 and hence by induction it is true for all n£ 1.

TlHio remainder of the proof follows closely the latter part of Theorem
5.8.1. It is readily established that (5.5.25) and (5.C.23) hold, from

which, using (5.8.35),

jL,f;(E) A 2.346(n-12° " (142.24x2°Y) + 2.24r2

A 2.346(n-i)2"t (1+0.1) + 2.24r2~t (5-8.44)

which, since r $n-1, leads to (5*3.36).

Note, finally, that for values of n and r for which ur = nCr can be
computed exactly using integer arithmetic, the numerical constants in

(5.8.11) and. (5*3,36) are reduced by factors of about one half.



sj.0  ‘fte derivstives of a spline represented in 1-spline form

In this section wc concern ourselves with the detei dr-Ation in it:;

B-spline form of the via derivative (0 < r < n) of an ;rbitrary spline

s(r.) of order n defined upon a set of knots which, apart from one resirrictio/-,
form a standard knot set. The restriction is that the interior knots x»

(i =1, 2, . N-1) must form an (n-r)-extended partition of (a,b). The
reason for the restriction is simply that the rth derivative of s(x), vis
:Sr\(x), is evidently a spline of order n-r and hence can "be meaningfully

defined only upon an (n-r)-extended partition.

The first derivative of (5.1-10) with respect to > gives, for n£x”b,

li+n-1
5(X) =Y ? GCas(X) (5-9-1)
1=1

which, upon applying (4.1.1) and using the restricted support of the

B--splines, becomes

T~ INn—l,i-l(&() Vnhh ]

- —— * - —
X/ Xon 42 %1 i XX n+1 ]

Nn-1,N+n-2/~""

+ °N+n-1
XK+n-2“Xii-i  J
A >r°A — . .

= (n-1) > (r -------- )WV i, iv(x‘) (5-9-2)

i1\ %itn+1 /

Thus

PVnN-2

a’> -z N g ;X (@< b) (5.9.3)

where
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(n-1)(o1+1-:c.)
NOD) fi 5 ° . Jun2 (5.9.0

v =X,
-1 Il
Evident.ly higher derivatives of s(x) way he obtained by repeated application

of this process. ¥e state, without proof, this result as a theorem.

Thsoraosi 5.9.1

Let s(x) be an arbitrary spline of order n defined xjpon a sot of knots
which form a standard knot sot with the exception that the interior knots

form an (n~r)~extended partition of (a,I>). Then, for O £ r < n,

N+n-1-r

SM(X) = g 7 ef'Ng  (X) (@$XED) A

Ir1

where the coefficients c]fjo are defined recursively' by

c0 (r , 0)

C‘(f)J _ \S;E (5-9.6)

, w (r-1) (r-lv
(n"r)°i,.1  -ci > 0 < r< 1)

X X-n+r

Having obtained the representation (5-9.5), the (n-r)th-order spline
rST\ x) can then he evaluated as required using either Algorithm 5.2.1

or Algorithm 5.2.2.

It may sometimes he appropriate to define modified coefficients cfr) by

N3+ /
r,(x) =B, T~A 1 Hn—r,x'(*)' (5.9.7)
L=1
where
B = (n-H(n-2) ... (n-r). (5.9.B)

nr

Then, using (5*9.5) and (5*9.6),
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oM » B . (5.5.9)

and
C. (r 5 0

~(r) (5.9.10)
S@-h (D)
41

n X Kensr

OKr n)

Since the factor B can be formed exactly, at leant for reasonably sm&
values of n, the latter form has the advantage that smaller roundinr

errors can be expected in the computation of the c(T~ from (5,9.10).

To conclude this section we make some observations relating to bounds on

the derivatives of a spline in the case of equispaced knots. Consider

the interval x. ~ x <x . By analogy with (.5.1.13),
1 1
min ci( )$ «'(*)% max () (5.9.11)
i $1  jn-2 j i Mj+n-2

which, using (5-9.4), gives

(n-NH(c. . .—€) n-h (%
non *Lox g s'(x) £ max ( (%
j £i $ jtn-2  "x i~n+1 O$i ~j+tn-2 X4 Vyi-n-f1
(5.9.12)

For Icnots with constant spacing h,

(ci+rci) £ ha'(x) 4 max (ci*r°ib t5---13)
j 40 £ jn-2 joiin jHn-2

Evidently, this approach can be extended to higher derivatives. Yo obtain
mn ~O+2~2ci+14ci) h?G  (x) < (Ci +2-2¢i +1+0i>
j <i i j+n-3 j £i ™ j+n-3

(5.9.14)
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and, in general, for O isr < n,

min A\ 4 hr«(r)(*) s nix A 5)
I

j =i i j+n-r-1 ja $ 3, -r-1

where A denotes the usual forward difference oporator.

ne note that the B-spline coefficients have an analogy with function

values, since their jifffenoer, (or, in the case of non-uniformly--spaced

knots, derived entities similar to divided differences) giro us knowledge

related to the derivatives of s(x). In one respect, this information is

superior to that obtained, from the differences of an arbitrary function,
since in that case, without further a,priori or computable knowledge, no

useful bounds on the derivatives can bo obtained from the differences.

TZc do not carry out an error analysis of the recurrence (5.9.6), hut

content ourselves with a simple but informative numerical experiment.

Consider firstly the conversion of the polynomial power series (5.7.1)

into its equivalent B-spline representation (5.1.10). For any given

standard knot set this conversion can be carried out using Algorithm 5.7.1.

Now suppose that for some value of r (0 <r< n) the recurrence (.5.9.6)

is used to obtain the coefficients c.(r) in the B-spline representation

(5.9.5) of s 1 (x). The computed coefficients Zfr) will be contaminated

to some extent by the inevitable floating-point arithmetical errors made.

The bulk of the contribution to the error in . _if - § i ui o,
L] > m.u oe one to

loss of significance when forming the Mfferenoes of previously counted

B-spline coofficicnts.

<*US* values for the coefficients ¢~ n MilOtp,. n

(5.7..;).

Fo «
relatively more accurate by using the explicit fo.m of p(x)

Me formally differentiate the power series r- times to obtain



N (5.9.16)

« ||

i1=0

vihere the coefficients bt ' are def%g recursively by

< >i =0

i (5.5.17)

£ (+Dhig (0< r <u).

Evidently the values of B’ computed frcn (5.9.1?) will have very smell

relative errors. The B-spline coefficients can then he formed fr>o™

these values of b} * using Algorithm jl 3 Rt o) &enote tin value of
c.1l' computed by this latter process. Ve shall assume that e.”™ is n
re_at. ..li 6*d — °A vtu.ua c® It is reacu.i.y established

using the error analyses of Section 5.8 that this assumption is roll

justified.
Let N+n-1--r
HOw =71, yON ) (5.9.18)
i=1
and N--n-1-r
A(r), v W~~? A
W - cir):;, .
1 n-r,i(x) e (5.9.19)
I_

(v) o .
Thenthe error 6s (x) ui the rth gs?hative of s(x) due to using the

inaccurate coefficients l:fl’) is

Bs(r)(x) « s(r)(x)-s(r'(x) = {s(v)(x)-s(r)(x)] + [cM\x)-s(r)(r)J
(5.9-80)

In accordance. with the above assumption we ignore the term S <(x)-s™' \ x)

and obtain
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(N - s

Xiiaa ] A
,~(r) .sir)
Z. 1 + 7+ n-r,x(X (5.9.71)
i—

and hence, as a consequence of (5.1.13),
Ss~AA ) N mex [J(r)/—l(':' )
| i X X (5.9.22)
Thus, by evaluating the ¢cW and ¢l as described and using (5.9.22) the

required error bound is obtained»

Although a bound obtained in this way is of considerable interest, it is

more valuable to compare its value with a bound for a well-est-blirhed

process. Yle therefore consider a process analogous to the above in which

we employ Chebyshev polynomials instead of B-splines.

Firstly we convert the representation (5.7.1) into its equivale,,

Chebynhev-series form

aT () (5.9.25)

where T.(x) is the Chebyshev polynomial of the first hind of degree i in

X, the prime on the summation symbol denotes that the constant term in

(5.9.23) is to be taken with weight one-half and, for simplicity it ia

assumed that the range over which p(x) and s(x) arc defined is [-1, +11

Tills conversion can be carried in an extremely stable manner (sec Cox, 197/

“ * alr,° S tiOn 5-1b . with expected errors of similar magnitude to those

in obtaining the B~spline fora. The coefficients a(r) iﬂ the> C
i 1 the representation

p M w . f"NW :
wu 30! : (5.9.24)



;an be determined by the recursion

X, - =0

(5.9.25)

.« -

|
h="la~—h

1 (r)

| ai+2 + 2(z+i)a+in  O<r=<n,

¢évén by Clecnobaw (19a2) . Al undefined terms in (5.9.25) are to bo
regarded as koto. Let the values of a;"' computed in this manner bo

_(fx)
denoted by o

As v/ith the B-spline coefficients we can obtain good values of the >;11
by evaluating the Chobyshev coefficients directly from the form (5.9.1b).

We denote the computed values of these coefficients by awW/. Hou let

IM-L" anve

and n-r-1
'V, ~tl A[r)_ , Vv
P(r)w S 7 a. 'T.(x). (5-9-97)
1=0

Then we define
ip(r)(x) =1fr\x)-p(r)(x) = {r(r))~p(r'(x)j + {p'r\x)-p (r\x)}

Again we can readily justify that the term pv ( ( l( may safely ba

ignored and hence essentially

6p”"(x) =prrx)-pt-(x)
n-r-1
"y |
= [t GETRENT 0) (90 Ry
lines Tx(x)! < 1for j:j,< 1, we obtain

II 1 n-r-1

< ey S (5-9-99)
1-0
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aovw/ give aone numerical results. Tie set b. - 1/ii for i
Tl 13. Thus p(") is the Taylor expansion of e ' about the origin.
truncated after 14 terras. This choice of coefficients b. has the
advantage that hfr) h. and hence has no further error. Yfe also sot
h )] (i =0 ana x™ - +1 (i ~>0). rorr =1, 2, .. 6 the
values of E&r‘z, é\n(r), gﬁ‘r) and Aair‘lwere computed as described above an

the bounds (5.9.22) and (5-9.29) formed. The* bounds are given in

Table 5.,9.1.
Polynomial representation
B-spline form Chebyshov series
r The bound (5.9.22) The bound (5«9.29)
1 1.2732910-H 1.3837210~*10
2 1.47338.10~10 8.31460,59
3 1.45246iQ-9 2.36133i 0-7
4 1.252471g-8 5.22095i0-6
5 1.0854710-7 7.84445"-5
6 7.50009., 0~7 9.10534i0-4

Table 5-9.1 A comparison of bounds for the errors in the rth

derivative of a polynomial expressed in its

Chebyshev series form and in its b~spline form.

It is seen that the bound (5-9-29) compares favourably with (5.9.22".

Other experiments were also carried out, but Table 5.9.1 typifies the

vesv.lts obtainsu.
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5-10  gshe indefinite integral-of a spline represented in B-aplina form

We canaiter the inverse protest: of that of Section 5.9. vi:: the
determinatier; .in its B-spline fori: of the r-fold indefinite intep:. ;\x
(:c > 0) of an arbitrary opline s(e) of order n defined upon a standard
knot set. 5dhero in no further restriction on the knot set, as in

Section 3*9> however.

Tbcorcm 510-"»
(x) be an arbitrary spline of order n defined upon a standard knot
set and have the representation (3.1.10). Thenthe r-fold indefinite

integral rf ~'(v) of s(x) is given by

I3+ 1+ r
(S 1\x) ="Li... fs(y.)gdvch: p . .
v:_rf(r—& W 7 of r)Kn+r#3(/‘\)/j __k.J vih
1 d=' (-0-.i)i
() (3.10.1)
where is defined recursively by
f (i $1)
(m-r-1)o} 1N =3
(5.10.9)
! LO-r i
\VARE 2.-1 i—n~r) P-1 ) {—' i r)
and k, (J =1, 2, ..., r) are arbitrary coR-g o
It is sufficient to establish that, for arbitrary r > 0, a single
differentiation of the right-most expression -h fs -0
teoJ” £ion oi' “* M'Mtrary «M l«ve ««te |, 3-ieXa. an «*rceion of

JJUUM- j-c« >AfU r wjOawa by r-1. Aoooraingjy, up,, eHJboytac

Theoren 5-9.', to (M to, as the first derivative of this expression,
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N-in-2+r , (~r -r),
*-c..3 (/)—e;( ) !

(n+r-1) /o N - ifAx) £ > - JL_, xrSM (5.10.7/)
1-1 i i-n+1-r o (r=dieeitl T

which, using (5.10.2), reduce: wo

N+n-2-i-r g_l_l
b -—-_j_i

}»——\ i n+ro. . .
i =1 -haiw o+ 2 -1 U
o=

(5.10.4;

It may be somewhat inconvenient in some applications to work with the
expression (5-10.1) since it involves both E-splines and powers of Xx.

However, for any particular choice of the Constanta kj 1;i - qi ’?i w3k

the power-series part of (5.10.1) may be converted into a line.r

combination of the B-splines Nn+r AX. (/l - ©eee> a6 |+H:' usnig f‘he

method of Section 5.7 (and, in particular, Algorithm 5.7.1). Thua V3

obtain the representation

N+n-1+r
- / v,
s (Xf _(=r),
/ 1 n+r,x y J (5.50.5)

i=1

"hBra the °i contributions from the prar. se,ill4 tors.s.

In coomb *ith moot Integration processes involving tamUee, it con bo

cocpectod that the use of recurrence (5-10.2), in which the difference

Xi-1 - Xi-n-r csn bB f°™ed *“ & a very snail relative error (of Section 1.

will give rise to a stable algorithm for forming the coefficients c(~r>
i

*> °°neludo ihls sootion "Ith « expression for the definite'integral of

s(x) ever the range (a, b). If a(x) is a spline of order n defined upon

a standard knot set with coincident end tacts then each of She B-s;,lines

hi/ZJd) (A- < .» eee> e;n~l) as identically scro outside of the interval

£a, b]. Consequently,
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THNn-1

ra
s(x)dx = Z(—I' Cq Kni(*)éx
i—
N+n-1
= > Y C. N _.(x)ax (3.10.6)
/-i X ni
i='i ®> Co
Hence, using (4*5*9)i
N-in-1
a9 —7
s(x)dx = Lo g(x'l_x'h—xi)oi (5.10.7)
a i=1

or, in terms of the coefficients of the un-nomhplise d B-spline

representation (5.1.11),

h N+n-1
(x)ax =- 2 _j °i e (5.10.8)
& a i—

Thus, having obtained the coefficients in a B~spline representation of s(x),

it is a very simple matter to determine the value of the definite integral.

For example, s(x) may be an interpolatory or a least-squares approximation

to data representative of a function f(x) (Chapters 6, 7 and &), in .vhich
f

case (5.10.7) or (5.10.8) will then provide an estimate of (x)dx.

Ja
5.11 Representation in piccewisc-Chcbysh e v -ieios form
The representation (5.1.10) is satisfactory for many purposes in that only
N+n-1 coefficients (the smallest possible number in general) are required
in its definition, and about Jn* long operations in its evaluation for a
prescribed argument x. |If an increased number of linear coefficients,
vis Nn, to define the spline, can be tolerated then, at the expense of some
pre-computation, its subsequent evaluation may be carried out for a giver
argument in about r. long operations. In order to obtain such a representst::0

the following approach is recommended.
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In each interval x. NXNXS (G =L, 2, N) for which x \Y
! J j-1 3
s(x) .Is a polynomial eegrc n— and hence iiay he expressed in the'

Chebyshev--series form,

4~i

<> a2 jW —Z_.)é CjJA W
1=

: (5.11.1)

where

(5.11+7?)

In (5.11.1), '-“~(X) is the Chebyshev polynomial of the first kind of degree

i in X, and <iie double prime indicates that in the summation the first and
last terms arc to be halved. The linear transformation (b.11.?) mans each
interval x.~ £x$ x. into the interval -1 8 X 81. This representation
has also been used in the allied context of curve fitting with piecewise
polynomials (Cox, 1570- For completeness, in the case x. 1= Xj v.e define

a.o = 2s(xy) and =0 (i =1, 2, n-1).

In order to obtain the values of the coefficients a... in (5.11.1", WR -ay

utilise the fact that s.(X) is a polynomial of degree n-1 in x, and hence

(Clenshaw, i972)

I
(5.11.3)

The values 0? Sj i°0s (T |)) requirii in are conveniently

calculated naine Algorithm 5.P.1 or Algorithm 5.P.2 for computing a rp3:r£l

from its B-spline representation.

The evaluation cf the ojj- — tLc cubsequent evaluation of r (r)
0

for a prescribed argument 1, can be carried out using the scheme for
summing a Chebyshev series (very slightly modified to accomodate the

halving of the last tern in both (¢i.11.1) and (5.11.3))due to Clenshaw ( j952)



Greater stability in thea« computations can be achieved if' the .Ueinsch-
Gentleman Hodi.ficati-.ya of Glenshaw* & scheme (see Gentleman, 1969) is used

or alternatively, plane rotations are employed. For full details see

Cox ('j974).

7m important aspect of the computation is the linear transformation
(9.11.2). In Section 1.2 it was shown that if X were computed from :.n
unsatisfactory representation the error in X depends upon the value of

L. \/(x_-x_ ). For highly non-uniformly spaced knots, or if both x. ,
rji J J-i o-1

and x. are far-removed from the origin (compared with the interval length
J
.. 4+ ), this ratio nay well he very large. Of course, If His large,
o ;M
there will inevitably be values of j for which Jx,|”*>x.-x, .. It folic.’
[ty* N v

that one of the stable forms, eg

1= {{x-x._.,) - (x,-xX)]/(x.-x,_P h.r;

should be employed.
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CIATT3R 6

SP1JJIS UTTERR)MItOK

In many problems involving computations with splines the choice of

representation of the spline is of the utmost importance; the spline-

interpolation problem is no exception. Evidently there are many possible

sets of basis functions in terms of which the spline can be expressed.
For any particular set there are three main stages in the spline

interpolation problem (i) the formation of the system of linear equations

defining the coefficients of the basis functions, (ii) ,the solution of

this linear system, read (iii) the numerical evaluation of the interpolating

spline at various values of the argument. In stages (i) and (G i) if in

of course necessary to compute accurately the values of the basis functions

at various points. There are in existence excellent methods for stage

(ii) (see, for example, Wilkinson, 196% and VtLLkinson and Reinsch. 1571),

although for maximum efficiency these methods need to be tailored to take

full advantage of the structure of the linear systems. The accuracy to

which these methods cun deliver the desired coefficients depends upon the
numerical conditioning of the system, and therefore upon the choice of

basis functions.

In Section 6.1 the opline interpolation problem is defined. Section 6.2

a netted of forning the linear eyet*. defining the coefficients is £Ilv3a,

and the solution of this system is discussed ir. Section 6.3. In Section
al20i'it-aas ion the solution of the problem are presented. In Section

6.5 It is shorn that one of these algorithms yields a solution that ir, ni-

Igai* interpolant for data function values closo to those given, arcl

computable a posteriori measures of this closeness are 1ywOp

Section 0.6 a brief discussion of the method when —pn(r)'Hce, to splinas with

multiple knots is Siva In Sections

fand 6.
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ucL interior are discussed and in Section 6.9 some numeric.« |

examples are presented. Parts of this chapter appear alrc in cox (I$yf})w

6*1 The si-Jinc interpolation problem
The problem of concern nay be stated as follows:

H ‘ 1 = +
Interpolate function values f‘(x) at tho points x tl* t2* Ut a

spline s(x) of order n (degree n-1) with prescribed (interior) knots
Ty x2* ** J XJi~1

Jjot c. - t. and o — t.. It is assured that
tl< t2< ... < tf 6.1.1)

and that the interior knots form an n-extended partition of (a,b). Th-
choose additional knots x~ a (i ~ 0) and xA = b (i)k i) ar™ord C
w.'t i tne definition of a standard knot set with coincident end k' rJ

(Section 3*1)- The N+n-1 free linear parameters of s(x) arc to bo

determined such that ’‘trie conditions
>(t.) —n (j - 1> 2} n), (6 *1e"2.)

There f. . f('tp, m>« eeCsfied. To suarantoe the poosiMlifry o
interpolation for arbitrarily-prescribed function values, it +z manifesto

repaired that
jc - N+r-1 . (6.1.

Schoenberg and Whitney (1953) have show that a unique solution exists if

and only if the inequalities
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t. < X < t.
HnN

20N 2N 240

(6.1..V)
1ii-|: ! < yN~1<x t:u

are satisfied. It is therefore assumed henceforth that conditions (6.1.3)
ana (6.1,1+) hola, 7a refer to (6*1.4) subsequent™ as the Schoenberg-

Ydiitney conditions..

The rain interest in this Interpolation problem is that no additional
information relating to end derivatives, such as with a natural

interpolating spline, is required. The spline is treated simply as a
conventional interpolating function (such as a-polynomial, a rational
function or a trigonometric series), but advantage is taken of the
particular structure of the problem in order to yield an efficient algorithm,

Schunaker (1$67?) remarks that this Rarticular in?ﬁﬁﬁ%ﬁ{’i'ﬁ“ﬁ problem has been

all but neglected.

Taxi, approach to spline interpolation has the additional advantage th't It

has considerable approximating poper since it enables arbitrary polyuorifls
of degree n-1 to be reproduced exactly, 5Ma property is not shared by
aSJSESI =?llnoc »hdeh, if of order n a 2k, oar. reproduce only polyr.or.ial..-,

of degree loos than k (Srertlle, iS55). neither is the property chared bj-

spllne Interpolation Kith derivative end conditions, unless it i0, MIMe
to provide the exact values of the required derivatives.
6*2 The linear svstsr.: formation
Per any given set of knots, s(x) can be expressed in the form
s(x) = C.tf.(x) ,
(6.2.1)

1-1



where the x) (i -1, 2, <@ forili « linearly independent set of
basis functions, each of which is itself y spline function of order n
with interior knots X.., Xg, XN . s(x) cannot in general be expre:

in terms of fewer than m such functions.

Having selected appropriate basis functions y..(x). the coefficients c

are given by the solution of the following system of linear algebraic

equations,
m
| CXOX-V(tj) (j - 12 2> e»., m (6.2.2
i—
The linear independence of the functions together with the

satisfaction of the Schoenberg-YThitnay conditions (6.1.>), ensures the
existence of a unique solution to (6.2.2). The system can be expressed

in an obvious matrix n(;tation as
Ac~fT j (6,2 .3
inhere the element in position (i,j) of the n by n matrix 7/ & = - ft

The B-splines, which we intend to employ as a basis, are particularly
advantageous in that the linear system defining the spline coefficients
can be formed and solved extremely efficiently and, moreover, in a
numerically stable manner. We give some details of the arithmetic work
required tc set up and solve the system at the end of this section end in
Section 6.4. A discussion of the numerical stability is given ;In

Section 6.5.

As shown in Section 5-1, the spline cor. he expressed in the form
or (5.1.11). Consequences of the choice of coincident end knots are thr*
the full set of mB-splines is identically zero outside the reiip-e ar .. g

and that the definite integral of s(x) over the data range (a,L) c., b



computea very easily axl used as an estimate of { f(x)d,r once'the
la.

B-spline coefficients have Been determined (of Section iio).

By putting

i3 () 52,00 (6.2.4)

the system (6.2.2) becomes

?;cymﬂp=7;(j=L2,m,M (6.2.60

Because of the restricted support property of trie B-splinesit follows that
the coefficient matrix defined by equations (6.2.6) contains at most n non-
ze.ro Clements in each row> and that the column position of the first non-
zero element in each row is a non-decreasing function of the r QX number.

Thus A xs a hepped-banded matrix: (Section 2.11) of bandwidth n. For

instance, if N=6 and n=4, the matrix A obtained from data and knots

satisfying the conditions,

a Ieb1< b2< X1< t5< X2 < X<< \ < *5

<t6<\ < 6 <xf£ < A5 < *9 - (6.2.6)

takes the form

£ . (6.5.7)

X

X X X X
X
X



In (6.2.7) non-aero entries ere denoted by X. 1+ e- str-H -p

verify that data and knots disputed «3 in (6.2.6) satiny the Schoenberg-

1'hit.ney conditions (6.1.4). The prononce of only one «-»-aero c-lument in

the first and last rows of A is a further consequence of the choice of

coincident end knots. As a result of this choice and of (3.6.1) In

respective values of* ¢ and (= cQ in this example) are simply f, end f

A further feature of the matrix A is that it is nicely balanced for

computational purposes in the following sense. The meximum eler<n's in
each row is bounded from above by unity, as a consequence of relation

(3.6.1), end from below by 1/n, as a result of Theorem 3.6.2.

6.3 The linear system: solution

The solution of the system (6.2.5) car. be achieved efficiently if adw> . w:

is taken of the stepped-banded structure of A. For instance, either

Algorithm 2.12.1 based upon Gaussian elimination 0r Algorithm 2.13.1 which

uses elementary transformations may be used. Alternatively, since Q can

be regarded as a band matrix with n~1 super-diagonals and r-1 sub-diagonals,
a result which is a consequence of the Schoenborg-i/hitney conditions (6.1.A)),
a standard algorithm (eg Martin and Tiiikinson, 1967; for solving band

systems can be employed. Vith the last-menticned approach some loss of

efficiency err be expected, since advantage 5s not taken of zero elements

within the band. In fact at least (n-n)(n~I) of the total number of

(2m-n)(n-1)+m elements in the band arc xoro.

6.4 Algorithms for the spline inter-no?utxon rroblem
Algorithms 6.4.1 and 6.4*2 are implementations of the method described in

the earlier section*. O this 0.l-p™ez « -.ho algor.*,ohms axlov? cither (iolr,.rident

or non--coincident end knots to be chosen. The former choice is usually to

be preferred for the reasons giver, in Section 6.2, as well as for the

stability considerations discussed in Section 6.7. However, the latter
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choice may well be more appropriate il‘ the knots x. (i 0 i irl
are at a constant spacing, h, say, since, if the exterior knots are
chosen such that the complete set of knots is at the spacing h, the

23-splinca so defined art simply ..inear translations of each other.

The first i>ive stePs of either algorithm constitute checks on the data,
the computation being terminated if any of the five checks is violated.
(for simplicity of presentation there is an element of redundancy Sr these
checks). In Algorithm 6.4.1, the stepped-banded system (6.2.3) is formed
using Algorithm 3-12.2 to compute the values of the normalised B-splines
.tor each @a the u data points. In accordance with tho requirements of
ilgcrithm 2.12.1, which is then used to solve the system using Gnus, lan
elimination, the matrix A is stored in condensed form as an mby n arrav
with the vector p holding the row numbers that terminate each block. In
AlgoriLlua 6.4.2, which makes direct use of Algorithm 2. H.l for so'-nm:
stepped-banded systems by elementary transformations; the ith rev.

(i, 1, 2, m) of A is formed as required by tho latter algorithm,
using Algorithm 3*12.2 to evaluate the non-aero B-splinea at x - ta ‘jiv-re
is little to choose between Algorithm 6.4.1 and Algorithm 6.4.2 in terns
of speed or storage requirements and, in cur experience, in terms of

stability. An error analysis of Algorithm 6.4.1 is given in Section 6.¢.

It assumed tnao \alues cn mand n, data points (t fYy( —1 p
and knots x* (i = 1-n, 2-n, ..., m- U+n-1) are supplied to tho algorithms.
The last data point is always chosen to lie within the interval *Nl in '\I(I*

This choice, together with the following minor modification to Algorithm

3,12.2 for computing the normalized B-aplinas, is necessaiy to ensure that

tho appropriate B-spline values are properly defined in the ca*e t . y” :
»

Renlace Step 1 of Algorithm 3.12.2 by

Step 1. i# < >dMdetermine the unique integer 1 such that

X1—1 6, X< XJ.; otherwise set 1 = H.



Algorithm 6.4.1:

Comment:

Step 1.

Comment:

Step 2.

Comment:

Step 3-

Comment:

Stop 4-

Comment:

Step ).

Comment:

Step 6.

Comment:

Step 7.

Comment:

Step fi.

Step .

Stop 10.

Stop 11.

Dm;a Interpol .tion by a spline; of order n

using normalized 3-splinos and Gaussian elimination

Check whether there are sufficient data points for the

prescribed order of the spline.

Finish if the inequality a $ n is violated.

Check whether the complete set of knots is ordered.

Finish if the inequalities 2, < x < .

1-n" 2-n

not all satisfied.
Check whether the complete sot of knots forms
n-oxtended partition.

Finish if the inequalities x, < X, (i - 1J

. are not all satisfied.

Cheek whether the data abscissae arc strictly
lie within the range [a. b] ~ XrJ .
Finish if the inequalities x <t < t, <
0 1 2
are rot all satisfied.
Check whether the Schoenberg-Whitney condition
Finish if the inequalities R X Rty )
are not all satisfied.
1 denotes the number of the current interval.
Set 1. Oand pT=m
The ith data point Is proees3e
For i = 1, 2> ..., mexecute S
The interval containing t. is
If t~ €Xj or 1 =ii advance to
Set pj - i-1.
Replace 1 by 1+1 and return to
Use Algorithm 3-12.2 with x - 1

W — 11 1+1, ey |+I’.-l)

X T
4J1cp

an

p5 L X X 33 /

ordered and

Nt >t f -
m-1" me ''N

s are satisfied.

1= y» coe> n
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Comment: Store the. B~spline values for  _ t in row i of A.

0@ | ¢ por i —1, 1+1, +n-1 set a. . . ~N .it.).
i,j-1+1 nj o’

Comment:  Tho B~spline coefficients ore computed.

Stop 15. uyse Algorithm 2.12.1 to solve the stepped-handed system

Ac = f.

ASE2£2jhm _6.472:  Bata interpolation by a spline of order n using
normalised B-splines and elementary transformat:jjns.

Comment: Check the data as in Algorithm 6.1 1

Step 1. As Steps 1-5 of Algorithm 6.1.1.

Comments h jS cho .interval number os well as the number of the

clock currently being processed.

Step 1.1 Set k = 1.

Comment: Initialize R and t) to zero.

Stops 2-4.As Steps 2-4 of Algorithm 2.13.1 (with n interpreted as *
and g os n).

Comment:. Computations involving the ith data point are described

by Steps 6-31.

Step 5. Per i. =1, i, mexecute Steps 6-31.

Comment:  The interval containing t.. is located in Step: 6-7.

Step 6 | f or k = N advance to Step. 8*

Step 7- Replace k by k+l and return to Step 6.

Comment The 5th row of (¢ih), as required by Algorithm 2.13.1,

is formed in Steps 8-0.2.

Step 8. Use Algorithm 3-12.2 with x =t. to form the values of

AN (t) (j =k, kil k+n-1).
Sten 8.1. For j =1, 2, nsetv.=T . . At.).
1 n,k+j-1vi’
Step 8.2. Set u =f..

Comment: Ulenentary transformations to annihilate the elements

in ro'Ti of A arc applied in Stops 5..31.
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Steps 9-3i* As Steps 9-31 of Algorithm 2.13.1 (with n interpreted
as mand. q.as n).

Step 32. Use Algorithm 2.1.4 to solve Re - [

The computational work in Algorithms 6.4.1 and 6.4.2 is do.'inoted hr

the formation of A, which takes about §rm2 long operations, and the
solution of Ac = f, which takes about -y long operations (or, if Alis
regarded as a uniformly banded matrix, about 2nr. long operations).
Consequently, the complete process takes about Ann  (or ¢rsT) long
operations. In particular, for a given order of spline, the computations!
mwork is directly proportional to m the number of points of interpolation.
Note that, if the basis functions ~ (x) in (6.2.1) are not of compact
support, the number of long operations required to solve the linear erstcm

. ] 3
alone is proportional to m .

As regards the subsequent numerical evaluation of the interpolating orlino,
the use of Algorithm 5*2.1 or Algorithm 5-2.2 enables s(x) to be

evaluated for any particular value of x in about |r.2 long operations.
liov/over, ii a representation of s(x) possessing a greater number of
defining parameters is acceptable then, et the expense of sonp pre-
computation, this number of operations can be reduced to about n by usine

the equivalent piecewise Chebyshev-scries representation (Section 5.11).

6.5 Error analysis

Vo no* give on error analysis of the formation and solution of the system
(6.2.:,) in the oaso where the notra is regarded as a band of width 2r-1
centred upon the main diagonal and Gaussian elimination with partial
pivoting is employed. It is assumed that all computations are carried out

in single-length floating-point arithmetic with a mantissa of t binary

dH"its and that the roundi.ng rules (1-1.2), (1-1-3) and (1-1-4) apply.
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iolxowing ison plO/) the solution of*

Ac = f
(6.5.1)

bs reduced, using Gaussian elimination with partial pivoting, to that of

IlUc = f.
))g > (6.5.2)
where the computed L and IT satisfy
LU 5 A = 3.
poY (6.5.5)

The computed solution is then obtained by solving two triangular sets of

equations and in practice we obtain O and O defined by
(L +8»d=f,
(6.5.5)
(U+6U) cs d.
(6.5.5)

Hence O satisfies

(g +eL) 3= (+ gl &+gRC
- (A+ R+ LD+ BU+BLRY) ¢ =1 (6.5%6)

Note that here and elsewhere in this section c¢ is used to denote the

computed B-spline coefficients. For the case where Ais am i nb

aatrix, bounds for lIfl, 11, and |PBc]]. hava been given by

Vilkinson (1S6.3: p 1C3). For the case «<here Ais a handed j.-.atrjx v.ith

n-1 super-diagonals and n-1 sub-diagonals, Martin and IHIkinoon (liS/)

give the bound*
IIE |L 4 d 60 A

*

Since the preparation of this work | have learned in discussion. :vith

Dr J H TTilkinson that the hound (6.5.?) is not on upper (ie rigorous) bound

as stated in Partin and bilkinscn (1967). Hatnor, the ,bound, is such that

it is unlakely 00 be exceeded an practice. The remainder of this section

should be road with tnis qgtw-.i.xPicetiou in mini.
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where g its the largesv ele&ent (giisregarwxjig sign) uhat arise« ill A at
pi-y stage of its reduction to LJfoxrx, The analysis of Wilkinson
(1963S V 59 ;) for the solution of triangular systenis ic easily
ad.-odad to band triangular systems. We merely quote the relevant results
L is lower band triangular of bandwidth xwith all elements
bounded in modulus by unity, as a result of the partial pivoting strategy.
;I;J is upper- band triangular of bandwidth 2n1 as a consequence of the row
interchanges during the reduction. The elements clI’ ¥ are bounded in

laodulus by g. It is easily established that

lislL s n- (6.576)
2 ll« i Efn-D, (6*5%9)
Hsill. s in(n+1)2 't (6.5% g
listtlL i p'<2n-t|2 1 (6.5711)
where 2 is defined by (1.1.9)*
Hence, writing (6.5%) in the form
(A+5) £=i > (6.5.12)
\:0 have . . o
o ] ¢ PO 0 0 B 9 T
< g2D-1) ¢ N2(2i-1) M»>1)(2a-1) + t6(n(1 if

(6.5°12)

2-
Again nating vse of (1.1.9) and bounding the tern [E(n+1)(2n-1)(1. G)2

by 0.10o0 in accordance with (1.1,10) yields

N

3 .2
] < g(3r/j - b\ Tfi - 0.694)2 ' (6.5%i)
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Kovrcsver, A ia riot known exactly, since its elements are the coxaputed

valuea of B splines. Instead we have the computed matrix

Hp=A+E (6,5.15)
oliere the elements of H certainly satisfy (see (3.9.13)),

i %07 e s (6.5.16)

if Algorithm 3.12.2 has been used to generato the B-spline values. Thus

| —~
Hb3@>£ 7(n~N)2 umax / a5

=7(n-N2"t max /* , N ,(x )

- /(n-0z"k, (6.5.17)

as a consequence of (3.6«1). So to complete the analysis ire absorb H
*v

into the matrix X in (6.5.12) which yields

jx I < g(8ns-gn2 +-~n - 7.89A)2
< 3g(r+1)=2 ~ . (6.5.18)
liquation (6.5.12) may be put in the fora

aErnl > (6.5.19)

f-f+n, (6.5.20)

oo ISILIISL = (6.5.21)

Consequently our computed solution has the property that it COrreaponos to
the exact interpolation of the data point« (/t\/ Ti'Wu' - % 5s . m) by

a spline with interior knots xJ (1 =1, 2, v ve
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- T 20 gl (6,5.22)

According to Martin and Wilkinson (1967) g is seldom greater than

“ jaijj in the orieinra natrix’ = Knj(Xi) and O *ir (x) * n

Thus max Ja”j ~ 1. Consequently, the result

Ui-TIL « S€LBlIsH,, 2t (6.5.23)

will usually hold.

j.t is our experience that in moat practical situations the ratio
. »
llc i
be replaced by the approximate relative error bound

/ |if i1 proves to be close to unity. In such cases (6.5.23) can

I -t
Ul

Tho above bounds aro very satisfactory in that they depend only upon the

$ 3(n+NVil .
(6.5.24)

order n of the spline and are therefore independent of the number of data

points n. note that if a spline basis not haveing a compact support
property such as that of the B-splines wen, enjoyed then iiOuld be a full

l,ateta ani U,s "faulting error bounds t/ould contain a term in

WJ (ci* Wilkinson, 1963: p 108) rather than in (n+l)3.
i*x e

gl bounds ciud &) nn ) )
. \Y 1 *uo LeJ here Uirpe we believo they would

hold in most circumstances. It is always BB&%MQ to derfve relatively

lie I >>

pathological examples ia which I||f I[ )
I" Lo t- [mo a -Jn these circumstances

(i.5.24) m il provide an optimistic estimate of the accuracy of the result.-.

Such cases usually correspond to data nhioh coaes close in sot» sense to

violating the Schoenberg-Vhitney conditions (0.1.4) and henoo oould not bo

considered well-posed interpolation problems. It is of ooarae »
an

practice to verify whether ElC—HCD i° tndoed of the order of !l-,]
lu L *
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Only the bound (b.y.22) is rigorous, however, and the cautious user ray

prefer always to use it in practice* Its evaluation requires a value for
2 which in turn calls for the monitoring of the growth of the elements as
/+is reduced to LU form. Such a monitoring ecu he carried out efficiently

using a method described by Businger (1971).

An analysis, similar to the above, can be carried out of elimination
algorithms such as Algorithm 2.12*1 that utilise the specific structure r.f
A. Unfortunately, the error bound now depends upon the precise nature of
the stepped-banded structure* However, the bound (6.5.22) certainly holds.
For a band centred roughly on the main diagonal, the right-hand side of
(6.5»22) v.'ould be reduced by a factor of approximately 6. A somewhat worC.00

bound can be obtuineci ror Algorithm 2.1 0.1 based on elementary transformaftor.s.

Analogous error bounds can bo obtained for the methods that employ unitary
transformations (eg Algoritlua 2.14.1). These bounds are somewhat mors
satisfactory in that no factor g is present, there being no possibility of
error growth since toe 2-norm of each column remains essentially constant
during the reduction (Wilkinson, 1965: p 2tf). We have found, at least on
tue basis of some ¢.0-jQ problems considered to date, that Wilkinsonls
contention that g is almost invariably of order unity, when using Gaussian
elimination with partial pivoting, certainly seems to hold for the linear
systems arising from spline interpolation problems. Consequently, because
of the slightly simpler programming and faster computation of Gausaic,.
lamination methods, it appears that elimination methods offer some
¢vantages over methods employing unitary transformations. Moreover, in the
ases studied, Gaussian elimination with partial pivoting has never given
oarer results than unitary transformations (classical plane rotations),

n a number of casco the maximum error was about halt- -t-w &6 ravens

otations. We also observed comparable behaviour when stabilised sidlfentary

ansformatione were employed.
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6.6 ITHtiple knot3

The fact that the algorittoa .described in this chapter can be used for
multiple knots is essentially implicit in our description. However, it
nay be emphasised that Algorithms 6.4*1 and 6.4.2 can be used just as
efficiently to determine interpolating splines of a lower continuity class.
For example, in order to interpolate by a spline of degree 3 with
continuity up to raid including the second derivative, triple knots 5m
place oi toimplo nnooC are employed. It may sometimes he advantageous to
relax continuity ab a single point. For instance, the function jxj'"**
may be represented exactly by a spline of order n having a single knot of

multiplicity n-1 at x - O.

6.7 The choice of exterior knots

The condition number It of the matrix A is dependent on the choice of
additional knots. Y/ conjecture that, as regards obtaining a relatively
small value for X , a good choice of knots is that already suggested,
vis knots cf multiplicity n at the range end-points x = a and x = b. To
support, this conjecture and to investigate the possible extent of this

dependence we give a class of simple numerical examples.

Consider the interpolation of the data saints (/t'i’ fi i gé ~a b x% o}
m ~ N+3) by a cubic spline with interior logo's X, @ ti+2 - % uf
N-1) (cf Section 6.3). Ve have used the singular value decomposition
(Section 2.13) to determine the spectral condition number K ,, for throe

choices of the exterior knots, be set

t. - ih. (if o)
(6«/=m)

, t  +ih.. (i»N )



where

h. = h2=0
(6-7.2)
(coincident end knobs), or

L “ X3' ~* h2*“ *» " *H-1 (6.7.3)

(loft-liana one right-hand end tort» at »pacings respectively equal to

the first and last interval length), or

hi=h2=(V*,)/" (6.7.4)

(end knots at a spacing equal to the average interval length)

The values of K 2 for equi-spaced datat - i (i =i( 2, .. ') and

values of k=4, I> 20 for these tlu-ee choices of exterior knots

" giv:"* iaMe 6-7-1- 10 ***** the singular value» and thus th
spectral condition number of A ,» first used plane rotations to rcduco A

-V

to upper hand-triangular form. Then the published procedure ’'irdrfit»*,

vhich is one of the Algol 60 realisations given by Golub and Reinsch (1970)
of the singular value decomposition, was employed to diagonalize the band

triangle.

In Table 6.7.1 are the values of K 2icolumn 2 containing the values

corresponding to coincident end knots and columns 3 and K containing

* |In fact procedure 'minfit* failed, because of floating-point overflow.

in attempting the case m= 19 for the second choice of knots. This

failure was attributed to a division by zero, which resulted from underflow

in attempting to compute the rotation parameters. After replacing this

aspect of the computation by the modified process recommended in Sootier.

2.9, 'pinfit* then worked satisfactorily in all oases, ‘in cases where lhe

on-modified 'minfit' produced results, the singular values agreed, apart

from fl few mi***ji* +>e 17*?* place, with thn?e pnodunen hv



respectively the values corresponding to (6.7.3) and (6.7 .4).

Test

carried cut with a variety of unequally spaced data as veil as with

splines of other orders generally reinforce the conclusion that the

choice of coincident end knots seems to he a good one.

10

13
14
15
16
17

10

19

20
I

Tr|,,-e £.7.1.

Coincident

end knots

5.0541
5.0b2b
4.6119
4.4638
4.2120
4.0715
3-9935
3.9498
3.9252
3-9112
3.9032
3.8986
3*8959
3-8943
3.0933

3.0928

3.0924

Values of the spectral condition number K,} of A

for 12 equi-spaced data and three choices for the'

end knots.

Values of It

Distinct end knots

(1)

50.193
33.596
31.175
27.772
25.826
25.066
24.757
24.632
24.580
24.557
24.548
24.543
24.541
24.540
24.540
24.540

24.540

(2)

58.193

33.596

23.559
18.222

15.456
14.068
13.249
12.708
12.320
12.026
11.793
11.604
11447
11.314
11.200

11.101

11.014
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6.8 A oodii.iocture relating to the oboice. of jr.trior knots and
commenta on the »y-ell’-roscdasss" of the sr.lt-;'n s:rberpolntion
problem

'V6 make the following conjecture. From tha viewpoint of inherent

stability (ie sensitivity of the spline coefficients with respect to

the data), a good choice of interior knots in the case of even-order

splines, ie n = 2k, is
x. = H-1"1. (6.8.%9

For the choice (6.8.1) the interpolating spline of order 2k is composed
of polynomial arcs of degree 2k-1, each of which spans one interval
between adjacent data points, except the first and last arcs, each of
which spans k adjacent intervals. Later in this section we investigate
the dependence of the conditioning of the cubic spline interpolation
problem for the choice (6.8.1) upon the value of m. Firstly, however.
vc consider in detail what proves to he a very poor choice of knots and

subsequently compare it with the above choice.

The second choice of knots emphasises an important observation: the
satisfaction of the Schoohberg-'Whitney conditions (6.1.4) is no
guarantee in itself that the coefficients of the interpolating spline
are well defined. This remark is true even if the conditions are "well-
satisfied”, ie even if the data and knots are such that there exist
«appreciable perturbations in their values which are such that (6.1,4)

remains satisfied. Consider the following example. Interpolate data

t
1

m-p.

points (t., f.) (i = 8, ..., m) oy a cubic spline vith knots xd

(J (J ="' 2> ~ (j h). Here H

The system of equations defining the B-spline coefficients is

Ac - f (6.8.2)
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where A toLes the form* Ulus ‘retted here for the case it —Ap.

X
X X X X
X X X X X

(6.3.3)

X X X
X

Three stabilized elementary transformations, involving only the second,
third and fourth rows, enable A to be converted to the lower hand-

triangular form

A%
X X
X X X
X X X X
X X X
.= X X X (6.8.4)
X X
X X X
X
X

I'f the same transformations are agplieqd, t- { 1q produce a vector g, the

solution of tho system

Lc =
J (6.8.5)
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yields the required coefficient veov.oi

It is readily verified that, for i =7, 8,
Li.i-2 " 2ii "1 *

a4 (6.8.6)

NO77 consider the solution of (6.8.5) using forward substitution.

After

c. (i —1, 2, ..., 6) have been determined then, for i - 7, 8, ..., n-1,
2

°j = A -1 +°-2N = (6.8.7)

If c. denotes the computed value of o., in floating-point arithmetic,

(6.8.7) becomes

(6.8.8)

where

C’l,a s 'l2’204) G\/ J (689)

Suppose that no rounding errors at all ere committed, ie that e

% i * *3,1 ' °- after ****** 5 "» r *e* we obtain prosi

(6.8.8) and (6.8.7),

|
&°1 =~ 46V i " Eci-2 * (6.8.10)
Now the solution of the difforer.es equation (6.8.10) is
.o 4, ®
6Cc. = &(_2_3*) + B(_2+3")‘ , (6811)
where. A and B ere constants that depend on the initial conditions. The
i. p

1.
termw ) is oscillatory and dearsd, whereas the tern (-?-y )~ s

oscillatory and uncarr.ped. for s;if.iaoiently large values of i, the

damped term is negligible and for all practical purposes

8c. = -(iV)coi r

(6.8.12)
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Thus, although there will be a alight contain*!;ion of this result because
of the presence of the rounding errors, it may be expected that the errors
In the c, will eventually grow exponentially with i. In particular,
replacing xa by m#l implies that fcc” will grow by a factor of 2+3*. Ny
sensible condition number associated with this problem should therefore
grow by such a factor as the number of data points is increased by one.
yb see shortly that if [jA]j] iiA~1] is taken as the measure of condition,

where |[. j] denotes the spectral norm, such growth os indeed observed.

It should in empnasised that the reason for this rapid growth in condition

number is not thuo the forward-suostitution process is itself unstable, but
that the particular choice of knots gives.rise to an ill-posed problem.
That the problem, is ill-posed can be seen heuristically as follows. The

clue is given by the fact that in order to reduce A to triangular form,
operations on only the first four rows arc required. The interpretation of

this observation in the context of the actual interpolation problem is that
the data points (t~, f.) (j - 1, 2, 3, /) all lie within the interval

. spanned by the knots xo and x” and hence the cubic arc spanning this
interval is oeiiuc;d uniquely by chese four points. Because of the
continuity of a cubic spline, the cubic arc spanning the interval (x.. :./)
must take at x=x1 the value and first and second derivatives of the first
cubic arc constructed. Also it must pass through the point (tr, f,). bhc-ee
four pieces of information fully define the second cubic arc. In a

siwUar way all remaining cubic arcs and hence the complete cubic spline

may be constructed.

Evidently, any errors made in constructing a particular cubic arc will ne

propagated in come way to the subsequent cubic arc. Errors in the values
of the first and second derivatives will have particularly detrimental
effects. The situation is somewhat akin to the solution of an iritia]-

value problem, where the solution is sometimes much more sensitive to the
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effects of build-up 0L error; tuan tac sdut*on m’ mcorvospceding
ouncLary-value problem. Despite these commente, as a consequence of

the analysis ci' Section s*3, the resulting computed spline is neyertheles:.
the exact interpolant of a set of d-ta points close to those prescribed,

Hcuevar, the spline so constructed and the "true" spline may be very

different, coinciding only at or near the data points.

I f thé knots of the spline are. those in (6.0.1) then, in the case n.-4,

A takes the fera (of 6,0.3)

0
X X
X X X
X X X
AN x X X (6.8.13)
X X X
X X
X X X W
A

Ey anplying six stabilized elementary transformations the corresponding
system may be converted to triple-diagonal form. The solution then
proves relatively insensitive to data perturbations, the problem now

being considerably better-posed. In fact A may well be diagonally dominant.

The use of the singular value decomposition (Section 2.15)also displays
verv clearly the relative conditioning of the problems associated with

the two choices of knots. The following test was carried out. Por each
value of n from 4 tc 20 we set i i (i =i, 2,

.., ir) and made the

poor choice of knots



[l (i £ 0)
~1.2, ...; ra-4) « (6.8 .1w)

) (i jh m-3)

The matrix A based cn this data, which tabes the form (6.8.3)> was then
computed. The singular value decomposition was used to compute the

spectral norm (spectral condition number) A. -“C (ra of A. In Tablo
6.8.1 w0 give in Colunn 2 for each value of mthe value of K 2(m), as
well as the ratios of successive values of > i(n) in Column 3. The

exercise was repeated but with the good choice of knots

r 1 d x0)
J i+2 (i -1, 2, m-4), (6.8.13)
m (i » m-3)

which gives rise to a matrix A of the form (s.8.13). Tho ccrrospending
values of 72 (m) are given in Column 4 of Table e6.s.1 and their
successive ratios In Colum 5. It is to be noticed that for the better
choice of knots the ratio )//IC2(m-1) tends to unity, whereas that
for the poorer choice tends rapidly to a value approximating which

was derived from other considerations earlier in this section.



Interior knots

a X s X = Ve

* 2(m) Ji2(m/ ;'2(m~1) K2(ra ‘op(K)/
4  5.0540 5.0540
5  8.0252 1.588 5.0627 1.002
6  1.9254;QL 2-399 4.6119 0,Q11
7 7.0453101 3.659 4.4838- 0.972
8 2.635%6.J92 3.741 4.2120 0.939
5  9.8437102 3.735 4.0715 0.967
10  3.6742103 3«733 3.9935 0.980
1 1.3713104 3.732 3.9493 0.989
12  5-11/7104 3.732 3.9252 0.994
13 1.9099i05 3.732 3.9112 0.996
14  7.1280105 3.752 3.9032 0.998
15 2.6602106 3.732 3.8986 0.999
16 9.92801q6 3.732 3.8959 0.999
17  3.7052107 3.732 3.8943 1.000
18 1-3528108 3.732 3.8933 1.000
19  5.160?..98 3.732 3.8928 1.000
20 1.92601q9 3.732 3.8924 1.000
bio 6.8.1 Values of the spectral rendition number of A

m ccui-spaced data and two choices of the interior

knots



6.9 Numerical oxanpl £

All numerical examples were carried out on tbe Exx.lish Electric KDP9
computer, which has a floating-point word with J0 binary hits (between 11
and 12 decimals) in the mantissa. The results quoted correspond to

the use of Algorithm 6.4.2, Virtually identical results '.ere obtained

with Algorithm 6.4.1. Coincident end toots at the first end last data

points were chcoon in all cases.

The first three examples have been chosen to illustrate the run'erical
stability of the method, rather than to demonstrate the approximating
power of splines. The remaining example arose in a study relating to

the decay of p-particlcs.

Example 6.9.1  (tn-16, n=8)

A spline s(x) of order 8 was defined by the arbitrarily-chosen interior
toots x. and B-spline coefficients c given in columns 3 and 4 of

Table 6.9*1- Function values were computed using Algorithm. 5.2.1 from
the representation (5.1.10) for the values x ti (i - 1, 2, 16)
given in column 2 of Table 6.9.1. ALgoritluc. 6.4.1 was used to interpolate
these values; the differences between the resulting coefficients ¢ and

the values of e are given in column 5 of Table 6.9.1.

Values of s(x) at x =t. (j - 1, 2, ..., 16) and at the half-way points
Xr -t +t.) (j -2 3> 16) were computed using Algorithm 5*2.1
from the B-spline representation (5*1*10) for the given coefficients c
;”'d for the computed coefficients ¢, and from the piecouise-Chshyshcv-
scries representation (5.11.1). The maximum discrepancy between the
«riven and computed B-spline representations over these 31 points was

j * 10~9, and that between the given B-spline representation and the

Chebvshev-series form was also 1 x 10



1 6 8 =51 0.00
2 3 10 35 - 0.03
5 13 21 + 0.03
4 5 15 13 + 0.02
5 8 16 14 - 0.10

6 10 17 22 o
'y 13 18 a7 - 0.14
8 15 20 60 0.08
9 16 76 - 0.05
1 io 17 77 + 0.14
1t 18 66 — 0.z
12 20 54 + 1.01
13 2 44 - 1.37
14 25 40 + 1.29
15 28 41 - 0.52
6 30 \4i 0.00

nVble 6.9.1 Prescribed and computed E-spline coefficients for

Example 6.9,1,

Example 6.9.2 (m.-l |, n=6)
lii order to illustrate the performance of the Algorithm 6.1.2 upon an
example with multiple knots, the following case was considered. Values

of the function f(x) = jX + xJ\'were computed for the values x - t;

(deliberately chosen not to lie symmetrically disposed about, x = 0) ¢.ive*
in column 2 of* Table 6.9.2. f(x) is essentially a spline of order 6

with a knot of multiplicity 9 at the origin. Accordingly, the interior



knots given in column 3 of Table 6.9.2 were chosen. The algorithm
r.r.-'h'iced values c 'r'o.vb differ from the tni6é valves a (viven in column

nf Table 6.9.2) by the. quantities given in column 5-

f o

The vidue of 1(x)& c computed from (5.10.7) was 1.33333 33333>
which agrees to rl I»Xs x 1t =*
Value c of s(x) '’ computed at x = .. (] 1,J 2, il) and at

X - £(t. ,+tj])
the computed co
i'epre 3(d .tion,
points bet»00¥

that between the Chebyshev-.series form and f(x) was 1 K 10 1

i ta Xi’ CX (CX-C)2 X 1011
0
] ~ 1.0 0 2.0 0.00
2 - 0.8 0 0.8 + 0.36
~o6 o 0.6 - 1.82
4 - 04 0 0.4 + 2.18
5 - 0.2 0 0.2 - 0.91
6 0.1 0 - 0.01
7 0.5 0.2 4 0.14
8 ' 0.5 0.4 - 0.55
9 0.7 0.6 + 1.09
10 0.9 0.8 - O3s6
11 .0 2.0 0.00

Table b.®»2 True erc. ccaputjd B-stllne cooffid cuto

Ebcarmlo 6,9.2



y;"vAs 6.°..3 (arll, r <li)

By ray of a special test case., this example illustrates the interpolation
of 11 equally-spaced values of e~ in the interval -1 £ * < i> Iy a Spline
of ordcr 11 7/ith no intei'lor Jmots* ~ other words the spline degenerates
into a single polynomial of.degree 10. The function eX over the range

-1 " x <1 can in fact be approximated to 10 decimals by such a polynomial
Clenshrw, 1?02). The computed Checyshev coefficients (Table 6.9.4) differ

—10
by at most 1 x 10 from those given by Clonshs v.

Note that the computed B-spline coefficients (Table 6.9.3) are all
positive and display a very systematic behaviour. Tfe also observe that
to 1l significant figures c. €“lraid 5~ = e (as a consequence of the
choice of coincident end knots). The integral of the spline between -1
and +1 vias computed from (5-10.7) as 2.35040 23873. This value agrees to

11 significant figures with that of exXdx = e - e~1.
-1

It is of interest to observe that the functions N .(x) (or k .(>:)) in
nx

the case N = 1, when translated to the range 0 $ x $ 1, £re simply

multiples ef the basis funetieAs xa~!(l1-x)ai (i =1, 2, .. n) of the

Bernstein polynomials (Davis, 1963)



0.36787
2 0.44145 53279 4
J 0.53138 14217 7
4 0.64174 52279 4
5 0.77730 229¢4 5

6 0.94636 49130 0

7 1.15634 83957
8 | .41954 72062
9 1.75173 16123

1C 2.17462 54652
11 2.71820 8o8%

Computed B--spline coefficients for Example 6.9.3

: 11

0 2.53213 17555
1 1.13031 82031
2 0.27149 53395 0

3 0.04433 68499 0

(62}

4 c.00547 42404

5 c.00054 23263

6 0.0000-4 49773 2
7 31983 8
8 1992 0
Q 109 9
10 10 9

Cexputed Chsbyshev-series coefficiaOls not vxcmvl
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Example 6.9.4 (m-24, n~4 and 6)
.n,is example is conoernad with one aspect of a problm that originated
in the Division of Radiation Science of the Rational Physical laboratory .

1“ iElebtea tO tMs wbr persiission to inclnde their

the results of some of the computations upon it.
i-he 24 data points (t+, f.) (i = 1, 2, 24) in Columns 2 and 3 of

Table 6.9.5 represent the theoretical number of electron in the p-decay

of a raduoacta/Ze isotope (dependent, variable) for various values of

momentum (independent variable). Tho determination of each value of the

dependent variable involved the numerical evaluation of an extremely

complicated integral.; it is believed that the value is correct to tho

number of figures quoted. It was required to interpolate these data

points by a smooth function that would facilitate subsequent rapid evaluation

of a good approximation to the number of electrons for any value of

momentum in the prescribed range. An estimate of the definite integral

over the range of the data was also required. In the absence of any

further information it was decided to interpolate tho data by a cubic

spline With knots chosen in accordance with (6.8.1). A further

interpolation was carried out with a quintio spline s~ x), again choosing

B-spline coefficients ¢ 0" the

knots in accordance with (6.8.1).
i

interpolating splines obtained using Algorithm 6.4.2, and the integrals

formed from (5.10.7) are given in Columns 4 and 5 of Table 6.9.5. Not*

that the values of c., particularly in the cubic case, mimic quite closely

the values of fX'
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Estimates of

G
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0-9
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8

5.5613
5.6200

5.7159
5.0516
6.0300
6.2502
6.5069
6.7938
7.1052
7.4361
8.1407
8.8837
9.6496

10.429
11.216

12.005
12.795
13.583
14.368
15.149
15.926
16.698
17.465
18.227

definite integri

Table 6.9.3

.Data and computed B-spline coefficients of orders

39

n-4

5.56130
5.58655
5.66430
5»84435
6.02289
6.24411
6.50189
6.78974
7.10197
7.54413
8.13453
8.88005
9.64748
10.42765
11.21593
12.00465
12.79548
13.58345
14.36074
15.14959
15.92690
16.95612
17.72069
18.22700

41.4-6130

4 and 6 for Example 6.7.4

U6

5.56130
5.58526
5.64054
5.74222
5.93043
6.24109
6.49939
6-78771
7.16291
7 .63436
8.20618
8.87827
9.64660
10.42669
11.21633
12.00406
12.79605
13.58344
14.36931
15.46189
16.39353
17.15SS5
17.77176
18.22700

41.46131
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Ths first use made of the interpolating spline3 was to evaluate thorn
throughout a particularly important part of the range of the 5”~dependent
variable, vis from x s 0.10 to x 5 3.22 at in interval of 0,02 in x.

The resulting table is too bulky to reproduce in full; re give part in

Table 6.9.6«

It is reassuring to see a strong measure of agreement between the values

of t (x) and (my that s almost consistent Tilth the supposed acouracy
of the data. However, without further knowledge or assumptions, this
agreement tells us nothing about the closeness of either 2z} (x) or s™(x)

to f(x).



0.10
0.12
0.14
0.1b
0.18
0.20
0.22
0.24
0.26
0.28
0.30

1.30
1.52
1.54
1.56
1.58
1.60
1.62'
1.64
1.66
1.68
1.70

3.00
I®
3.04
3.06
3.08
3.10
3.12
3.14
3.16
78

3.20
3.2?

siF(x)

5.56130
5.57018
5.58046

5.59219
5.60536
5.62000
5.63613
5.65377
5.67293

5.69363
5.71590

9.26448
9.34120
9.41807
9.49511
9.57229
9.64960
9.72704
9.80461
9.88229

9.96009
10.03800

15.14900
15.22689

15.30474
15.38256

15.46033
15.53806

15.61574
15.69338
15.77097

15.84851
15.92600

16.00343

TV.v>4 />

orders 4 and 6 for Ex\\j

4U.

sg(-")

5.56130
5.57a%6
5.58033
5.59208
5.60531
5.62000
5.63616
5.65381

5.67297
5.69365

5.71590

9.26452
9.34123
9.41810
9.49513
9.57230
9.64960
9.72704
9.8a160
9.88227
9.96007
10.03797

15 14900
15.22689
15.30474

15.38255
15.46032

15.53804
15.61573

15.69337
15.77096

15.84851
15.9260c
16.00344

ro. v’].O ]:! >\

0.

oy 'xJ*sg (D)7

+12

+13
+11

C
+1
+1
+2
+1
>
+1

0

0
-1

VAAC W.Ji,WCT-WlJ.

h 6*9*4
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CHAPTERR 7
LEAST-SQUARES  SPLINE APPROXDIIATION

In this chapter we consider the least-squares approximation of discrete

data sets and of functions by polynomial splines. T£& pay considerably more

attention to the discrete problem, where the data is usually empirical in

nature, since we consider it to be of far greater practical importance than

the continuous case. In fact, if a spline approximation of a mathematical

function is required, it is usually more appropriate to seek a minimax

approximation, ie one that minimizes the maximum error of the approximation

(soe, for example, Eice, 1969: 145-154). Methods for the determination of

such approximations are outside the scope of this work. However, for

completeness, no show briefly in the last section of this chapter that if a

aSghHHBS? sJlins approximation is required, it cm bo computed

efficiently if the spline is first expressed in its B-spline form.

The organization of the earlier sections of this chapter follow to some

extent that of Chapter 6 on spline interpolation, since least-squares
approximation by splines can be considered as a generalization of spline

interpolation. After all, if the problem is properly posed (see Sections

6.2 and 7.1) and if the number of free linear parameters of the spline is

the same as the number of data points (assumed distinct), then the least-

sguares approximation of this data sot interpolates the points. Moreover,

similar numerical methods (Chapter 2) can be applied to the resulting

linear systems in both the interpolation and least-squares cases.

In Section 7.1 ue introduce the least-squares spline-fitting problem and

in Section 7.2 discuss a method of solution, using B-splines, In the case

.here the knots are prescribed. Also in Section 7.2 a simple algorithm is

presented for testing whether a unique spline approximant exists in any e3t6,,

case. In Section 7.3 an algorithm for the least-squares spHne-fittinr



problem is detailed and in Section 7.2. an error analysis of the algorithm

is given. The sensitivity of the B-spline coefficients to perturbations

in the data is discussed in Section 7-5- The important case of cubic
splines is considered in Section 7-6 and in Section 7*7 methods of assessing
the acceptability of a cubic spline approximant are discussed. The choice
of knot positions is treated in Section 7.8 and numerical examples are

given in Section 7¢9¢ Previous work on the automatic placement of knots

is surveyed in Section 7*10. Finally, in Section 7.11, a method is proposed

for the least-squares spline approximation of a mathematical function.

7.1 The least-squarc.s spline-fitting prob3.cm

The least-squares spline-fitting problem mey be posed in the following

manner.
Suppose a set of values t = [t~, t~, ..., t~j of an independent variable
x and corresponding function values (ordinates) f = {f~, f,,, ..., fA] are

prescribed. These function values may be the computed values of a
mathematical function; they may be the results of a previous computation;
usually they will be values derived from an experimental situation and
hence be contaminated to a greater or lesser extent by experimental error.

1% assume that the values of the independent variable are ordered such that

t. * t t . (7.1.1)

Note that equalities are permitted in (7.1.1), corresponding in an
experimental situation to the repetition, or replication, of measurements.
Suppose also that a set of corresponding positive weighting factors

W1 W’ wmiS FrGscribed. In many cases of interest all weighting
factors shall be set equal to unity; however, the general case is considered

here because of its importance in certain situations.

The problem is to compute the parameters of a spline function s(x) of



order n (degree n-1) with interior knotz x = xr > X4 SO as to
-t

minimise the residual sum of square:

2
i 2 20 o
2 2 1=7 M1t (1.12)
where
2 =dias { V w2’ *** wn} (7.1.3)
and
0o sMit ™AL (- 1) 2, ., m (7.1.4)

T/e assume that the set of N-1 interior knots is prescribed and, as in the

interpolation problem of Chapter 6, forms an n-extended partition of

(&* h) = t~- M Again, as in Chapter 6, we introduce additional knots

so that the complete set forms a standard knot set with coincident end

knots. Guidance relating to the choice of the number of knots and their

locations is given in Section 7.8.

*

/(\) il N *
J eets5 llly | GI

Let m denote the number of distinct values of t f-i - a

a given set of values of t., 5 is one greater than the number of inoqualitle

in (7.1.1) that can be replaced by .strict inequalities). It is assumed

henceforth that m n and IJ satisfy the condition
m N+n-1

(of Section 6.1), otherwise there is no possibility in general of a unique

solution to the problem as. defined.

7*2  Method of solution

For similar reasons to those discussed in Section 6.2 we intend to employ

the B-splines Nni(x) as a basis for s(x). Then s(x) may be expressed in

the form
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) - l— i GN ) (@ £x £ D), (7.2.1)
i=1
where
q = N+n-1. (7.2.2)
The least-squares problem is solver] by determining ¢ = fc~, c®, ..., j

such that jjr]]2 in (7.1.2) is minimized. Firstly, wo observe that in
the particular case inrmm-q there is a unique solution if and only if the
Schoonberg-IThitney conditions (6.1.4) are satisfied (in which case the
solution interpolates the given function values and ji£ IJr, = 0). In this
case the parameters c are defined uniquely by the system of linear

algebraic equations
Ac = f (7.2.5)

(cf Section 6.2), where Kis the q by q stepped banded matrix of

bandwidth n and rank q with a. , = N__.(t ).
J )

Now consider the general case where m~” . The solution vector then
minimizes [|[W(Ac-£) |2, where A is the mby g stepped-bandod matrix of
bandwidth n with at. = Nnj(1-L) m Again, for c to be unique, A must have
full rank q. For A to have this rank there must be at least one set of
g linearly independent rows of A. In other words, there must be at least
one ordered subset E = jI:c, 1 t*z, R | qu\ of t,where

1% ki< k2< ***< kq$ mJ (7.2.4)

for which the Schoenberg-TThitney conditions hold. It follows that for
any given data set a unique least-squares spline approximation exists if
and only if at least one ordered subset of the data satisfying the
Schoenberg-TThitney conditions can be identified. We terra the complete

set of conditions
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1+
< <
r2 X S 1
|
r
CNLL < \-1 < Yy (7.2.5)
q
< <
*| i 4
v q
L n S k< ' *< k$m
q
which must hold for at least one choice of the integers k,, k K
1 2

in order to guarantee the existence of a unique least-squares spline

approximation, the generalized Schoenberg.--.hitnov conditions.

It is to be noted that nearly all "reasonable" data sets arising in

practice will satisfy these conditions. Only if there are regions where

there are too many knots compared with the number of data points are the

conditions lively to be violated. Fe now show that a simple but efficient

algorithm, taking O(m) operations, can be constructed to scan any given

data set to identify whether such a subset exists. Fe first re-write

conditions (6.1.4) as the equivalent set of inequalities

g < («3=1,2, ..., n) , A
< 4 < U = "+1> n+2, N-1), (7.2.6)
Xi-n< tf (J."1TW . e e>1),

In the interpolation case these inequalities my he interpreted thus:

¢sajg&aaas-sU” Jth value of tre.
of the 1th

N

sole exceptions to this rule are that in the case of coincident end knots,



tl = X1-n ~ Xo} and Ki = Xq (= xIP are allowed. In the context of the

oata-fitting problem, there must be at least one subset of N+n-1 distinct
va3.ues of the independent variable, the jth of which lies strictly within
the support of the jth B-spline. Algorithm 7.2.1 below, based on this
observation, is composed of g steps, the jth of which (j - 1, 2, ..., Q)
involves the determination of the first data point, ie the value of t.
with smallest i, distinct from previously-used points, that lies within
the support of the jth B-spline. |If, for any of these values of j, no
such point can he found, the least-squares spline approximation of the
data is not unique. Otherwise, the approximation is unique. It is
assumed in Algorithm 7*2.1 that the data, points are ordered according to
(7.1.1), that the knots form a standard knot set.with coincident end knots
and that xQ = and = t~. An Algol implementation of Algorithm 7.2.1

in the case of cubic splines (n=4) appears in Cox and Hayes (1973).

Algorithm 7.2.1: Determination of whether tho generalized Schoenbsrg-
Ahibney conditions are satisfied (in which case | is
set to zero) or violated (in which case | is set to
unity).

Comment: i denotes the data point currently being examined.

Step 1. Set i = 0.

Comment: The first data point, distinct from previously-used points,

within the support of the jth B-spline is determined in Steps 3-7.
Step 2. Bor j =1, 2, ..., N+n-1 execute Steps 3-7.
Comment: The first data point, distinct from previously-used points,
lying to tho right of the left-most knot of the jth B-spline
is found in Steps 3-6.
Step 3* Replace i by i+1.
Comment: If the test in Step 4 is violated the data points have been

exhausted before all the conditions have been satisfied
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Step 4. Ifi>m setl=1 and finish.

Step 5- Ifi>1 and”™ -t return to Step 3.

Step 6. Ifj>n and tX,<\ Xj—h return to Step 3*

Comment: |f the point so found does not lie to the left of the
right-most knot a condition is violated.

Step 7 If j < N and t. x.set | = 1 and finish.

Comment A || the conditions are satisfied if Step 8 is reached.
Step 8. Set 1=0.
The least-squares solution of the system

i X
T2Ac = VASf
v XA (7.2.7)

r+fs*

may be solved efficiently using one of the algorithms for stepped-banded

systems discussed in Chapter 2.

73 An algorithm for least-sciuares spline approximation

Algorithm /*3*1 is an implementation of the method described in Section

7.2. As with Algorithms 6.4.1 and 6.4.2, either coincident or non-

coincident end knots may be supplied. Again, coincident end knots are

usually to be preferred. Steps 1.1 to 1.8 of the algorithm constitute

checks on the data. As with the algorithms of Section 6.4 there is an

element of redundancy in these checks. The algorithm employs Algorithm

7.2.1 to check whether the data satisfies the generalized Schoenberg-
Y.hitney conditions, Algorithm 3-12.2 to compute the values of the
normalized B-splines for each data point and Algorithm 2.14.1 to solve
the resulting stepped-banded system using classical plane rotations.
As with Algorithm 6.4.2 the complete matrix A of this system is not

formed initially, but rather each row is constructed as and when required

by Algorithm 2.14.1.

It is assumed that values of m, n and N, data points (t+, ?.) and



corresponding weights w (i = I, 2, ..., m and knots x"
(i = 1-n, 2-n, Nt-n-1) are supplied to the algorithm.
Algorithm 7 3e'l" Data approximation in the least-squares norm by a

Comment:

Step 1.1.
Step 1.2.

Step 1.3>

Comment:

Step 1-4.
Comment:

Step 1.5e

Comment:

Step 1.6.

Comment:

Step 1.7.

Comment:

Step 1.8.

spline of order n using normalized B~splines and
classical plane rotations.

The number of distinct data points is determined in Steps

1.1 - 1.3.
Set m= 1.
For 1-2,3, m execute Step 1.3.

If thy-t. replace mby m+1.

Check whether there is a sufficient number of distinct data
points consistent with the order of the spline and the
number of knots.

Finish if the inequality n™ Km-1 is violated.

Check whether the complete set of knots is ordered.

Finish if the inequalities NE xpn”h N XN N are
not all satisfied.

Check whether the complete set of knots forms an n-extended
partition.

Finish if the inequalities x. *< x (i =1, 2, k+ii-1)
are not all satisfied.

Check whether the data abscissae are ordered and lie within
the range [a, b] = jxQ, x™J.

Finish if the inequalities x <t <t ~ ... <t < x, are
not all satisfied.

Check whether the generalized Schoenberg-Whitney conditions
are satisfied.

Use Algorithm 7-2.1 to determine the value of I. finish if

| a 1.
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Comment: k is the interval number as well as the number of the block
currently being processed, a is the current value of the
residual sum of squares.

Step 1.9. Set k - 1 and a = 0.

Comment: Initialize R and G to zero.

Steps 2-4. As Steps 2-4 of Algorithm 2.14.1.

Comment: Computations involving the ith data point are described by
Steps 6-30.

Step 5- For i =1, 2, ..., mexecute Steps 6-30.

Comment: The interval containing ti is located in Steps 6-7.

Step 6. If ti< x or k =N advance to Step 8.

Step 7. Replace k by k+l and return to Step 6.

Comment: The ith row of (A |b) and the corresponding weight, as required
by Algorithm 2.14.1, are formed in Steps 8-8.2.

Step 8.  Use -Algorithm 3-12.2 (with the minor modification of Section 6.4)

with x t. to form the values of (t.) (j =k, k+l, ..., k+n-1)

Steg 8.1. For j 1, 2, n set vj = Nn,k+,T-I’ (/tx).

Step 8.2. Set u =f"* and w = v

Comment: Classical plans rotations to annihilate the elements dn row i of
W2A are applied in Steps 9-30.

Steps 9-30. As Steps 9-30 of Algorithm 2.14.1 (with q interpreted as n

and n as li+n-I).

Step 31. Use Algorithm 2.1.4 to solve Rc = 6.

7.4  Error analysis

We give an error analysis of the formation and solution of the over-
determined system of equations (7.2.7) in the case of unit weights, ie

M- 1. Our results will also hold approximately in cases where all the
weights are of roughly the same magnitude. We cannot derive useful results

in cases where the weights differ significantly in size.
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With exact computation we form the mby g matrix A with elements

a_ =N _(t,), followed by the factorization
ij nj i

(All) =RR g) . (7.4.1)

where Q is orthogonal of order mby g, R is upper triangular of order g
and g is the transformed ordinate vector. The B-spline coefficients c

are then defined by the triangular system

(7.4.2)

There are three sources of error in the practical realization of this
process: in the formation of A. in tho factorization of (A f . where A
is the computed A, and in the back-substitution process to solve (7.4.2).
Lot A = AnGA be the matrix, actually formed, and the computed B and. k.
R and g, say, the exact factors in a slightly modified system with A

replaced by A+3 and f by f+k. Thus
(A+B f +k) =QR]i) (7.4.3)

where Q is orthogonal. We shall make the realistic assumption that the

errors in the back-substitution process arc negligible (cf Gentleman, 1975).

Since the careful use of orthogonal transformations results in an exact
factorisation o™ a neighbouring system, any of the methods of Sections

2.6 to 2.9 ensures that, in a suitable norm,

(7.4.4)
and
il I IQ|f (7-4.5)
where and are "modest" functions of mand q (for precise forms of

Kl and Kg in the case of dense rectangular matrices see eg Bj&rck, 1967,
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Gentleman, 1973- Lawson and Hanson, 1974). For all practical values

of mand q, ZJb and hpzlm 1. If the values of the B~splines required
in forming A are computed using Algorithm 3.12.2, the very small error
EA (see Section 3-9) can conveniently be absorbed into the perturbation
matrix E (cf the error analysis in Section 6.5 of one of our algorithms

for spline interpolation), the only effect being to inflate slightly the

value of K]

In the error analysis of Section 6.5 it was convenient to interpret the
computed solution as the exact solution of a perturbed system with f
replaced by f = £+££. Bounds for |jf>f j were then derived, from which

it was possible to state that the computed .solution had the property that
it corresponded to the exact interpolation of a set of data points with
an ordinate vector slightly perturbed (usually in a relative sense) from
that prescribed. In the main, the derivation of the bounds for jjfcf |
were straightforward and followed closely the conventional approach of

backward error analysis of linear systems.

Vie believe it appropriate to seek a similar interpretation of our computed
least-squares solution. That is, we wish to find bounds for Jjof || such

that the computed least-squares solution of the rectangular system (7.2.7)
is the exact least-squares solution of a similar system with a (hopefully
slightly) perturbod right-hand side. The derivation of such a bound is

somewhat harder than in the square case (interpolation) and | am indebted
to Dr J HY/ilkinson for suggesting the following method of approach, which

we specialise to the circumstances of our particular problem.

Suppose that such a bf exists. Then it satisfies the normal equations

ATAG = AT(EFST) (7.4.6)

VvV IV

where c in (7-4-6) denotes the computed solution. But the same solution
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¢ satisfies the equations
(A+E)T(A+E)c = (A+E)T(f+k) (7.4.7)

where E and k satisfy (7-4-4) and (7-4.5)- Subtraction of (7.4.6) from

(7-4-7) yields

Ej(A+E)c + ATEo = E1(f+k) + Adk - AXGf | (7-4-3)
fl’ora which
AT6f = ATk - ATEc + Ei(f+k) - Ei (A+E)c (7.4.9)

In general (7.4-9) has an infinity of solutions for 6£. Wb arc interested,
of course, in that which is smallest in some sense; accordingly we select

that with minimum norm. Now the minimum-norm solution of the system
Ueg =2 (7.4.10)
for any vector v, can be obtained as follows. Let
A= (71419
be the exact orthogonal triangularization of A. Then
rRGT (7-4-12)

We now associate AT, RT and £T of (7-4-12) with A, & and H, respectively,
of (2,2.47. fhon, using (2.2.13), the minimal least-squares solution of

(7-4-10) is
(7.4.13)

which, in the full-rank case, simplifies to

6f =R V- (7.4.14)
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It follows that the minimal least-squares solution of (7.4.9)

-Pf T P P m
Bf = R LK. AR+ K (HK) - RIAYE)

k - Sc + QR-TET(k-Ec-r) , (7.4.15)
using (7.4.12), where
r =Ac - f (7.4.16)

is the vector of residuals. Thus, using 2-norms,

The main difference between this and the corresponding result for the
spline interpolation algorithm is that in the least-squares case the
perturbation (or, at least, its bound) depends explicitly on the condition

number and on the residual vector |r J.

(7.4.18)

(7.4.19)

(The trivial case f = 0 can be ignored; it is easily verified that

Algorithm 7.3.1 yields ¢ = 0 in this case). Then, using (7.4.4) ~

(7.4.5)» (7.4.17) yields

-1ff- 0 {1 e +vs-*

={ 1- KL32h-)2"t] (VKjUja-* trr2-\ (7.4.20)



255

where K= K. (AT, like * and K-, s a "modest" function of mand q

Note that [JA lIs
( A NIs lie 1B m' since aij” 0 Zja.. =1i).
J J

¥e cow make the following three assumptions:

(i) u 1 (or smaller),
(7.4.21)
(ii) v 1 (or smaller), (7.4.22)
(iii)  KLA:2(A)22"te 1. o
(7.4.23)

Then (7.4.20) approximates to
(7-4.24)

where is a further "modest" function of mand q.

I f the assumptions (7-4.21), (7.4.22) and (7.4.23) hold, the interpretation

of (7.4.24) is that the computed coefficients are those of the exact least-
squares spline approximation to a sot of data whose ordinate vector differs

only slightly in a relative sense from the actual ordinato vector.

In all practical spline-fitting problems considered to date (some 20 in

all) it was found that all three assumptions were well satisfied. In

particular, u was typically closer to a value of g/m than to unity, v was

2(A) was always loss than 10 and

Llsuallrl if o@cf<éi‘[or 1Cf2 since *
1°"2 of 10" 3, and the value of x X. was

Cases in which the

smaller than unity hy several orders of magnitude.
assumptions do not all hold appear to have to be constructed .artificially

and seem to occur only for badly-posed problems.

Although the three conditions cannot of course be guaranteed to hold in
all practical circumstances, the first is easy to check once the solution

has been obtained, and the remaining two likewise if the singular value

decomposition has been employed or if ~ (A ) can be estimated in some other

manner. We believe the conditions will hold for all well-posed spline

approximation problems. See Section ?.5 for some values of
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75 Sensitivity of the B-spline coefficients to perturbations in the
data
The problem of estimating the effects qf errors or perturbations in the
data on the values of the B-spline coefficients and on the approximating
spline itself is of considerable practical importance. We go some way
towards determining such effects by employing the results of Section 2.16.
In that section the bound (2.16.21) for the relative error In the
computed solution of the over-determined system Ax = b in terms of bounds
for the relative errors in A and b was established. For each of some
20 practical data sets (the bulb of which originated at the National
Physical Laboratory and the British Standards Institution), very
satisfactory approximations were obtained using cubic splinos, and in
every case the conditions assumed in establishing (2.16.21) were well
satisfied. (Note that in using (2.16.21) we associate respectively f,
c and W& of this chapter with b, x and r). In particular, (i) pgf i/ lif §
ajid v |1/1Ifllwere of order 1Cf? or 10~-3, (ii) * 2(A) was less than 10

*

in all cases and (iii)

2 K

2
i>0

< 7(n-NH2_t (7.5.1)
3J

(of Section 6.5). It then follows from (2.16.21; that

the terms omitted being negligible for a machine such as KID® with t = 39.
The interpretation of (7.5.2) is that a relative error bounded by p, say,
in the vector of data ordinates is amplified by a factor of about X. (A)
to produce a relative error of at moot , X~A) i, the vector of B-splino

coefficients. Since the B-spline coefficients themselves provide hounds
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for the values of s(x) (Theorem 5.1.3), we believe this result implies
that (at least for cubic splines) our formulation of the problem of least-
squares data approximation by splines is generally extremely well

conditioned. Inequality (7-5.2) also follows from the results of Section 7.4

In Column 3 of Table 7-5.1 we give the spectral condition numbers of A
for 10 practical cases. These 10 cases are representative of the 20-odd
cases referred to earlier in this section, and include near-uniform
distributions of interior knots, highly nonlinear knot distributions
(such as interior knots at x - 1, 10, 100, 1000,...) and cases of
coincident interior knots. Coincident end knots were used in each case.
Among these ten cases is the one with the largest condition number

( = 7*7192) jet observed, Ilor comparison we give in

Values of KQ

oS ot e oo
17 5 4.7975 23.178 66.928
25 7 4.5702 26.576 18.242
26 9 4.9444 37.986 16.711
28 5 5.3270 33.505 74.305
28 5 7.7192 64.208 171.530
30 6 5.7847 28.387 40.341
2 3 5.2555 38.282 62.318
30 4 5.2592 33-628 80.670
36 . 10 7.5524 34.084 26.861
84 9 6.6674 54.847 33.242

Table 7.5.1  Values of the spectral condition number K »
of # for a variety of data sets and three

choices for the end knots
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Columns 4 and 5 of Table 7-5.1 the values of * 2 corresponding to the
choices (6.7.3) and (6.7.4) for the exterior knots. As with the use
oi B-splines for spline interpolation,, the choice of coincident end

knots is evidently to be preferred. The values of * 2 were obtained
from the singular values of A (Section 2.15), which were computed by
reducing A to band-triangular form using Algorithm 7-3.1, followed by
the use of the Golub-Eeinsch procedure 'minfit* (cf Section 6.7) to

diagonalize the band triangle.

It is beyond the scope of this work to derive and to discuss in detail
statistical estimates of the B-spline coefficients. However, if such
estimates are required they can be obtained readily, under appropriate
assumptions, as follows (cf Draper arid Smith, 1968: 58 et seq). |If it
assumed that the values of t+ are exact, that the values cf Wi K‘i have
errors that are uncorrelated with zero mean and (generally unknown)

2
variance o , and that a spline function with the given knots is the

correct model (or in practice a good approximation to the correct model),

ie in statistical terms it does not suffer from lack of fit, then the

following results hold:

(i) The values of ct computed by our algorithm are unbiassed
estimates of the true (unknown) coefficients.
(ii) The matrix
9 9 fn _a
H=a G=o0 (liR) (7535
provides the variances (diagonal elements) and covariances

(off-diagonal elements) of the estimates.

(iii) An unbiassed estimate of a2 is

Note that the bulk of the computation involves the formation of the inverse

£ of £T2 (=£TA)* *hich can computed efficiently by solving the two
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band-triangular system

RT =1
(7.5.4)

and

RY =V
(7.5.5)

76 The important case of cubic splines
There .is little doubt that many practical data-fitting problems can bo
treated satisfactorily using splines as the approximating functions.

Particularly useful are cubic splines (order n=4) which appear to have

much to commend thorn. rhe choice of n~4 proves to be a good compromise

between the efficient computation of the coefficients of the spline, the
subsequent evaluation of s(x), and a degree of approximation and smoothing

power that seems to be acceptable in many circumstances.

For sufficiently accurate data we can expect, by analogy with the

continuous case (Ahlberg, Wilson and Walsh, 1967: 19 ot seq) that the doparti
of s(x) from the data varies essentially as , where

h = max h. = mex

X 1$iSN 1 1$iSN (7.6.1)

Xi-1)

is the largest spacing between adjacent knots. Thus, a new approximation

with additional knots inserted at points half-way between each adjacent

pair of current knots, ie at -;(x.~+x.) (i =1, 2, ..., N), can be

expected to have a maximum departure from the data of about 1/16 of the

previous value. For many sets of practical experimental data, with

typically 2 to 3 significant decimal digits in the ordinates, even if an

initial approximation has barely any accuracy at all, the above insertion

process carried out once or perhaps twice may well achieve an accuracy of

approximation warranted by the data. In practice, the insertion of knots

will not follow precisely the pattern suggested here. Because the behaviour



of a spline .approximation in the neighbourhood of any given argmnont
tends to depend predominantly on data local to that argument, oonaidarabla

improvements an the accuracy of tho approximation in regions of poor fit
can oftor. be achieved simply by inserting additional knots in those

regions. The nature of the men approximation in regions sufficiently

removed from regions where knots have boon inserted tends to be little

changed. Of course, the discussion here has been concerned with accuracy

rather than smoothness. In Section 7.8 we describe in outline a method

of selecting knots that has worked successfully for many different types
of data sot, enabling both smooth and sufficiently accurate cubic spline

approximations to be obtained.

Y/hile discussing smoothness we think it important to point out that a

cubic spline (with simple knots) is the spline of lowest order that

visual” appears to be smooth. By this remark we mean that, in the graph

of a function, most observers would be able to detect, by eyo, discontinuities

in value, in slope, and evon in second derivative, but not in higher

derivatives. The cubic spline (with simple knots), having continuity in

value, first and second derivatives, is the spline of lowest order that

is satisfactory from this point of view. Our belief is that tho trained

eye is sensitive to changes in curvature, which is of course dependent

particularly on second as well as on first derivative. A spline of lower

order, such as a quadratic spline, would have in general a visible change

in curvature at each knot.

Although versions, in a high-level language, of Algorithm 7.3.1 for
arbitrary values of n have been developed by the author, the case n-J, was

considered sufficiently important that a code be made available

specifically for it. For any particular value of n (~ 3, say) #t j£

possible to make various economies by tailoring Algorithm 7.3.1

specifically to the case in hand. Such a versi.qpi 0. n_4, piogramined in
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TTLgol 60, appears in Cox and Hayes (1973). This version employs
Gentleman s 3-niultiplication rule (as in Algorithm 2.9.3). hut if p
course tailored (as is Algorithm 2.14.1) to the case of a rteppe,l.banaed
system of bandwidth 4. This Algol code, together with code based on
Algorithm 3.2.1 for evaluating s(x), accompanied by detailed documentation
are available as NPL Algorithms Library Documents E2/03/0/Algol Ul/h/~/k
and E2/05/0/Ai.gol CO/K/IK. ANSI Standard fortran 17 versions aro
available as HHL Algorithms Library Documents E2/03/0/Fortran 17/1/7;

and E2/05/0 /fortran 17/11/74.

It should not be inferred from the comments of this section that U0 cubic
spline is satisfactory in all situations. Ve believe that it wi |, bo very
suitable in the majority of practical data-fitting problems, but there will
always be special circumstances in which splines of other orders ,re
appropriate. Por instance, first-degree splines (ie polygonal or
piecewise-lihear functions) are useful if the approximations aro to bo
implemented on an analogue computer using diode function generators (see
Cox, 1971, for a method for approximating convex functions by fin,(.-degree
splines, with optimal knot selection; the method described there u.m be
extended to the approximation of data having a convex hull). Mot-..over
splines of degree higher than cubic are required if certain derivelives

of the approximating function are themselves to be smooth. A furthor
consideration relates to the amount of information (ie the number Of knots
plus the number of B-spline coefficients) necessary to describe »(X) Pfx(,
example, Esch and Eastman (1969) show that for the approximation of data
representative of a function in the neighbourhood of a singular:! tv

spline of low degree is to be preferred, whereas for a "very smooth"

function such as exp(x), a spline of high degree is more economical.



77 Assessing the acceptability- of a | east-squares cubic-r.p3.inn

Suppose the set of data points (t., f\) (i - 1, 2, .. m) has been
approximated, using Algorithm 73ei > by a cubic spline s(x) defined on
a certain set of knots. It is important to consider whether s(x) is

acceptable from a number of points of view:

H 9
=i
(i) Is the residual sum of squares tolerably small?
i=1 11
l
(ii) Are the individual values of (or of v.tb.) tolerably small?

It may well be, particularly if mis largo, that a poor
distribution of knots could give rise to some very small
values of at the expense of others being unacceptably

large (oven if account is taken of the presence of the
weights va), although the residual sum of squares is itself

acceptable.
(iii) Is s(x) sufficiently "smooth”?

Points (i) and (ii) are usually not difficult to answer, and to treat

if necessary, since the insertion of extra knots or the re-distribution

of existing knots can often result in an acceptable approximation. The
"smoothness" of s(x), however, is somewhat more difficult to assess and
to correct. Mathematically s(x) is smooth in the sense that it is tv'ice
continuously differentiable (assuming here that it is based upon distinct
knots). However,'a mathematically smooth function can of course exhibit
oscillatory behaviour (even if it is infinitely continuously differentiable)
whereas such behaviour may be absolutely unacceptable to those who require
the approximation. It is important to be able to check quickly and with
certainty whether any particular cubic spline approximation does indeed

possess spurious oscillations or inflexions." Such oscillations and
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inflexions can arise, for instance, if the data has a high noise content

and the chosen knot distribution is poor (see Example 7,5.3)

Now slnce the second derivative of the cubic spline s(x) is piecewise

linear, it follows that s(x) has an inflexion between two (distinct)

adjacent toots x. ~ and x. if end only if the values of s” (x. ) and

s" ~Ng) have mlike (cf Chapter 8, where properties of this type
are used to impose conditions upon the approximating cubic spline). This
we recommend that any algorithm for least-squares cubio-splinn
approximation should not only provide (or present results an such a form
so as to be able to compute easily) values of quantities such as the

residual sum of squares, the individual residuals and the B-spline

coefficients, but also the values of s" (x) at each knot Xy -1 - O; i . W}

We now show that it is a trivial matter to compute the values of s™ (x )
"y

(j - C, i, **.,1>), once the B-spline coefficients c. (j = u} 2, Ni.3)

have been determined. Prom (5.1.10),

S(x) = c”N .M (7.7.1)
i-1
and thus
N+J
rw o1 ZJ a tm I (7.?))?}\'
i-1
which, by virtue of (4.1.1) and (3.2.6), reduces to
. N#5 r
s"W - 3 \ -k «}
i=1
N+3
=6 Z v -
- X .
Xa-1 i-4 X{ - X 4
(7.7.3)

Now, setting x « x. and noting from (3-4.1) and (3.2.8) that
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-~ . ) Po= i
1 G r) (i =j+1)
0 = y (7.7.4)
0 (otherwise)
(7.7 *3) ' becomes
6
= oy A l , l N o * ' l
s SXJ) o 1 i+1 j+2 ( : . i L
J+1 J-1 . Xj+ er—2 \XJ +|’\—j—2 *J+2"Xj-l / J+2 J-l J
n,i-i3~C,i32 _ C.i+2~Ciii-1
(7*7*5)

X300 %30 X X351 Xjei o2,
Note mhe similarity of the expression (7.7.5) to a second divided
difference (cf Section 5.?). Also note that if the knots are equally

spaced, viz xj+1 = xx+h (for all i), then (7-7*5) reduces to

h"'s }(x.) =c. - 2c. _+ c.
\Y 0+3 J+2 N
which is identical in form to the familiar expression for a finite
difference approximation to the second derivative of a function. However,
here, instead of functional values, the B-spline coefficients themselves

are employed (again cf Section 5.9).

finally, it should be remarked that, at least for low-accuracy work, some
form of graphical output (as in the examples of Section 7.9) is of

considerable value.

7.8 The choice of knots

Sensible choices for the number and positions of the interior knots of

s(x) may often be estimated in any particular instance by examining the
shape of the required curve. In general, more knots win be required 5n
regions where the behaviour of the curve is severe and fewer where it

is relatively smooth. In the experience of the writer, 5 sensible strategy

for obtaining an approximation is as follows:
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Step 1. Position an initial set of knots in accordance with the
above "criterionl.

Step 2. Obtain the approximating spline based on these knots.

Step 3- Examine key parameters and other features of the approximation,
such as the residual sum of squares' or root mean square residual,
the individual residuals, the values of the second derivatives
at the knots, and the behaviour of the approximation in regions
where there are few data points or in the neighbourhood of
special features such as discontinuities (in function or
derivatives), inflexion points, maxima and minima. A graphical
form of output, in which the data points, the approximating
spline and the knot positions are displayed, is particularly
useful at this stage.

Step t- In regions where the approximation is inadequate, Introduce
additional knots, perhaps after adjusting the positions of
existing ones, and in regions where the approximation is
"too good", ie where the approximation follows the data value.,
so closely that the spline has oscillations with amplitudes
of the order of the noise level of the data, or oven greater,
remove a number of knots, adjusting the positions of the
remaining ones if necessary.

Step 5* Repeat as necessary from Step 2.

With a little experience in applying the above process, the writer contends
that very many data sets can be approximated satisfactorily after having
made typically two or perhaps three passes through the process. Sonme of

the examples in Section 7*9 are intended to be illustrative of the

approach.

If the required approximation is to have special features such as a
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discontinuity in slope or a very sharp peal, this knowledge in itself
fives a good guide to the choice of at least some of the boots. For
continuity in ~ “”~(x), hut not in. s(~(x) (0 $r < n) at x =t, a knot
oi multiplicity n-i should be introduced at this point. Note that the
case r = O corresponds to a discontinuity in s(x) itself at x = t; such
a caso could be treated, but no more efficiently in fact, by computing
separately spline approximations to the data to the left and to the
right of x =t. Two of the examples in Section 7-9 illustrate the

imposition of discontinuities, -

79  Numerical examples

As for the spline interpolation algorithm of Chapter 6 we consider two
types of numerical example for Algorithm 7-3.1. The first type (Sample
7.9.1) is intended to demonstrate the ability of the algorithm to
reproduce a cubic spline from data that itself is taken from a cubic
spline, and therefore constitutes a partial test of the stability of the
algorithm. The second type (Examples 7-9.2, 7-9-3 and 7.9.4) is intended
to demonstrate the measure of success of cubic splines in providing
approximations to data drawn from practical experimental situations. All

examples were carried out on the KDF9 computer, for which t = 39.

'Example 7-9-1

Data points (t~,f*) (1 = 1, eee» m="1) with b = (r-1)/8, f. =70-j),
/
where
f(x) *4 - (x-1)°.+ (x-2)+ - 4(x-3)f + 16(x-4)~ (7-9.1)

were selected. Since f(x) -is a cubic spline with knots of multiplicity
1 * 2 and 1at x =1, 2, 3 and 4, respectively, the data should bo
representable exactly, if the above knots are selected, by Algorithm 7.3-1.

To measure the degree of success of the algorithm in reproducing a spline
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from such data, the B-spline coefficients were evaluated and compared with
th'j exacv Zalueo, ffhich are reaoily verified to be those .in Coluinn 3 of
Table 7.9.1. Note that the values of f. and x can all be held
exactly on the machine and hence any errors in the computed results art*

due solely to rounding errors.

Table 7-9.1 gives some of the results for this example. In particular,

ju Column 4 are the errors in the computed values c. of the B-spl:ine
coefficients; in Column 5 are the true values of 3" (Xj) and in Column 6
the departures from these of the values computed from (7.7 .5) using the
com?uted values c™. Note that the maximum value of (Cj_cj\;cj’ was

10 “”, which is a factor of only about 6 greater than the possible relative
error in rounding che true cj—values oo to.err wachine”rcyresenta’bT e }v*narv

equivalents. The maximum departure over the 41 data points of the computed

spline from the function f(x) was 2.9 x 1Q~"\

A graph of s(x), together with the data points, is given in fig 7.9.1.
In this and subsequent figures, the knots are denoted by vertical liner-

and the data points thus: O

In subsequent examples, s and s” Sxy) denote values of the
B-spline coefficients and. of the second derivative of the spline at tho

knots.



© O ~N o0 DN W N B O

H
o
g AP W W NDNMNNRPR PR R PO

=

13.
14

Table 7%9-1

268

% 1011(c34:9 s" (X)) 10in{a ” (x.)~s" (x

J
0 1.3
4 . 0 -3.9
4 0 - -
4 +3 - _
4 ~1 0 -0.4
3 0 0 +3.5
3 -1 - -
3 -2 0 +5.7
3 +2 0 -4.8
31 -2 -8 -2.5
4i +4 -8 -0.9
[5-% -1 88 +2.0
4e- +3
-23- -2
3 +3 *

Departures of the computed values Cj from the exact
B-spline coefficients Cb and those of the computed
values s* (x.J) from the exact values of s" (Xj) for

Example 7e9ele
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Fig. 7.9.1 Test example with knots of multiplicity 4, 3, 2 and 1
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Example 7.9.2

Ihi. example is intended to illustrate the strategy of Section 7.8 for

estimating knot positions. Data points (t~f.) (i _ ..., m=23)
were read from a graph on p 78 of British Standard Code of Praoti.ee CP118

(1963) on the structural use of aluminium. The graph relates naximum

stress tensile to stress ratio in structures subjected to fluctuating

loading. As part of a larger study to assess the' feasibility of

representing a variety of graphs and tables in British Standards documents
in terms of polynomials and splines, the data points read from this graph

were approximated by a cubic spline. | am indebted to the British

Standards Institution for permission to reproduce this example here.

Since the graph is bonding more sharply in the approximate region

-0.1 <x * 0.1 than elsewhere, it was decided to choose initially a pair

of interior knots at x = -0.1 and 0.1. The resulting approximation

(Tables 7*9.2 and 7-9.3 and. Pig 7-.9.2) was smooth, but there were some

departures from the data that were greater than warranted by the accuracy

of the data. Moreover, the residuals displayed a strong systematic

tendency, viz 5 adjacent positive values, neighboured on either side by

3 adjacent negative values. .Furthermore, the approximating spline had.

negative curvature for x near -1, which was unreasonable because the data

had a convex hull, as a result of the original graph being convex.

Because the larger residual errors were in or near the region of the -elbow

a second approximation with an additional knot at x = 0 was computed. Th«

resulting spline (Tables 7.9.2, 7-9-4 and Pig 7.9.3) w, 00nTOt
tfac as close to the data points as could be justified by their accuracy,

had residual errors which displayed a less systematic tendency and »as

therefore considered acceptable. Note that although the residual errors

for x * 0.1 are in the main greater than the remainder, this »as considered
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acceptable because of the greater difficulty in reading accurately data
values on the steeper parts of agraph than elsewhere. A useful
refinement, not considered here, would.be to incorporate weighting factors

which are estimated to reflect this variable reading accuracy.

Values of 100 {-(ti)-f.} for

i “x
2 knots 3 knots
1 -1.00 5.30 -5 -1
2 -090 5.44 +4 41
3 -0.80 5.62 +5 0
4 -0.70 5.30 +4 0
5 -0.60 6.01 -1 -1
6 -0.50 6.20 -3 0
7 -0.40 6.42 -6 0
8 -0.30 6.67 -7 -1
9 -0.20 6.91 -2 41
10 -0.15 7.05 41 vk}
1n -0.10 7.20 +5 0
12 -0.05 7-38 +9 -2
13 0.00 7.63 +9 )
14 0.05  7-98 +5 +1
15 0.10 8.42 -1 44
16 0.15 8.95 -8 41
17 0.20 9.52 -9 1
18 0.25 10.16 -8 -4
19 0.30" 10.85 -1 -2
20 0.35 11.64 +6 42
21 0.40 - 12.60 +9 42
22 0.45 13-75 44 1
23 0.50 15.10 -7 )

Table 7.9.2 Data points and values of two approximating splines

for Example 7-9.2.



212

j Xd c. b $/X|)
0 -1.0 -5*505

1 -0.1 5%247 8085
2 0.1 6.014 34*543

3 0.5 6.043 53*476

4 8.505

5 11.562

6 15.026

Resiclual sum of squares - 0.0804

Table 7-9*5 B-spline coefficients and values of s (x) at the

knots for the first approximation of I'kample 7*9-2-

i X; 5 3 (.))
0 -1.0 0.670
1 -0.1 5.292 2.307
2 0-0 5.764 64.108
0.1 6.390 7.371
4 0.5 7.501 86.617
5 9.390
6 11.270
7 15.085

Residual sun of squares = 0.0061

Table 7*9,4 B-spline coefficients and values of s" (x) at the

knots for the second approximation of Example 7.9,2.
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Fig 7.9.2 Maximum stress tensile distribution t 2 interior knots

Fig 7.9.3 Maximum stress tonsile distribution :«+ 3 interior knots
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Example 7.9«3

This example relates to one aspect of the programme of research work
currently being undertaken by the Quantum Metrology Division of the
National Physical Laboratory. | am indebted to this division for

permission to include data and results relating to their programme.

A high-resolution photoelectric ecbelle spectrograph is being used to
study the way the shape of a spectral line varies as a function of the
source excitation conditions. For any particular set of conditions, the
data comprises the count, in one-second time blocks, of the number of
photons arriving at the photomultiplier, as the exit slit is slopped
through the spectral line. The ordinates (numbers of photons) contain
appreciable noise, physical considerations indicating that the probable

error in an ordinate y is proportional to y”.

The main requirement is to obtain a smooth unimodal approximation to the
data for use in subsequent computations. In particular, it is of
importance to study the effect of the excitation conditions upon various
parameters of physical significance. These parameters include tho peak
height and its position, and the "centre of gravity" G Of tho curve for

a given height h. & is defined, if aline parallel to the x-axis and a
distance h from it intersects the curve at exactly two points, A and B,
say, as the aid-point of AB. The parameters were detemnined, having first
computed an acceptable cubic spline approximation s(x), using a procedure
based upon Algorithm 5.2.1 for evaluating s(x) from its B~spline
representation, a further procedure based upon the recurrence relations
of Section 5-9 for evaluating s'(x), together with a routine for computing

a aero oi a function (NPL Algorithms Library Document C5/01/0/Algol 68/ 1/ 73)

To demonstrate the point made in Section 7.8 that it is beneficial to

introduce more knots in regions where the behaviour of the underlying
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function in severe than elsewhere, two cubic spline approximations to

one of the data sets were computed. In both cases weights w - v~¥

were incorporated to reflect the knowledge of the errors in the values

of y» The first approximation was based upon choosing 19 uniformly-
spaced interior knots at x - 10, 20, 30, c.,, 190 and the second upon the
choice of 7 non-uniformly-spaced interior knots at x ~ 30, 60, 80, 90,

100, 120, 150. The second set of knots was chosen to cluster around the
sharp peak of the curve and to be widely displaced in the tails. Summaries
of the two approximations are given in Tables 7.3.5 and 7.9.6 and graphs
depicting the data points, the approximating splines and the knot lines

are presented as Pigs 7*3-4 and 7*9*5*

The first approximation, although being adequate for the bulk of the range
of the data, possesses spurious oscillations in both tails, due to the
spline following the data too closely, a3 a result of there being an
excessive number of knots in these regions. The oscillations in the left-
hand tail are visually evident; that those in the right-hand tail exist

follows from the sign changes in the second derivative (see Table 7.9*5).

Because oi the better discrabution of xnots, the second approximation is
satisfactory throughout the complete data range, despite the residual
sum of squares being about ?<$>greater. Moreover, as a result of there
being a smaller pumber cf parameters as well as the knots being bettor
placed, the approximation possesses no spurious oscillations. It could
be argued that the second approximation is superior to the first in the

neighbourhood of the physically-important peak (compare Pigs 7.9.4 and

7%9*5).
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a X 3 Cj s" (: <ﬂ)
0 1 -0.578
1 10 57.78 -0.232
2 20 67.41 0.568
3 30 71.27 -0.032
4 20 55.88 1.342
5 50 96.79 1.400
6 60 134.2,8 2. 000
7 70 306.31 0.549
8 80 617.82 =3
Q 90 1329.80 -8.943
10 100 2096.72 -3.966
110 2538.09 1.891
12 120 2085.19 3.641
13 130 1235.68 1.505
14 120 575.31 1.078
15 150 279.01 0.163
16 160 133.25 0.047
17 170 95.25 0.069
18 RBo 73.59 0.039
19 190 56.61 -0.030
20 200 46.57 0.095
21 40.41
22 34.30
23 32.82

Residual sum of squares - 200.1

Table 7*5.5 E-spline coefficients and values of s" (x) at the

knots for the first approximation of Example 7.9.3.
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’ 3 & G ke
0 1 0.069
1 30 65.60 0.206
2 60 59.10 2.993
3 80 65.66 -1.592
4 90 234.61 -12.019
5 100 1859.31 -1.134
6 120 2624.14 3.040
7 ISO 1786.46 0.076
8 200 189.71 QO
9 61.77

10 40.98

n 33.74

Residual sum of squares = 238.4

Tol'le 7.9.6 B-spline coefficients and values of s" (x) at the

knots for the second approximation of Uxample 7«93«
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7.9.A Photon count dota

poor knot distribution
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JBocspls 7« 9*4

X118 ex8° ple relateS to some data fro» a research project involving a

Fofcker-Planck feasibility study carried out at Culhsn laboratory, to

Tvon | am indebted for permission to include hero the data, and certain

results. The problem was to determine an approximation, to an accuracy

of 0.* of the peak value, to the sal of 70 data points depicted in
Fig 7.9.6. Previous attempts at Culham to obtain satisfactory fits

using a variety of trial forms for the approximating function had all
failed, mainly due to the presence of the slops discontinuity at

X = 14.3188,

The nature of this discontinuity suggested that en «Heerteatlon

consisting of a cubic spline with a triple loot at. x «= 14.3188

simple toots elsewhere) should be attempted. Accordingly, a spline with

a triple toot at this point, 5 uniformly-spaced toots betwoen the left-

14.5188, and a further 4 uniformly-spaced toots
iThe

hand end point and x ,

botween x . 14.3(88 and the right-hand end point was computed.

resulting approximation was considered very acceptable .In that the

required accuracy was achieved and is depicted in fig 7.9.5. Moreover,

its smoothness either side of the point of discontuity is apparent from

the graph and from Table 7.9-7. Part of a tabulation of the data and the

errors in the approximating spline (including . region containing the

discontinuity) is given in Table 7.9.0. The choice of 9 simple knots

was quite arbitrary and, to fact, acceptable approximations cm also bo

obtained v/ith different numbers of simple knots.



J XJ Cj' (* 3)
0 0.0000 0.0844
1 2.3805 0.0000 0.0916
2 4.7729 0.0007 0.0879
3 7.1594 0.1625 0.0533
4 9.5459 0.9268 -0,0195
5 11.9323 2.1918 -0,1035
6 14.3188 3.7601 -0.1618
7 14.3188 5.2175 -
8 14.3188 5.7962 0.0263
9 16.7053 5.9320 0.1434
10 19.0918 5.0095 0.1637
11 21.4782 3.2146 0.1076
12 23.8647 1.3388 0.C464
13 26.2512 0.3953 0,0035
14 0.0646
15 0.0203

Residual sum of squares - 8.7 x 10

Table 7.9.7 B-spline coefficients paid velues of s'1(>:) at the

knots for Example 7«9*4
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i X

1 0.0000 0.0000 0

2 1.0696 0. 0497 +1

3 1.5162 0.1002 0

4 1.6617 1514 -1

5 2.2887 0.2294

6 2.8726 0.3627 +1

7 3.3672 0.5000 +1

8 3.8078 0.6409 <1

9 4.2111 0.7853 0
36 12.6542 5.4426 1
37 13.0969 5.6104 -3
38 13.5362 5.7507 +1
39 13.9721 5.8631 +2
40 14.3188 5.9319 +1
4 14.5348 5.6826 «q
42 14.9643 5.1911 +1
43 15.3912 4.7133
44 15+8161 4.2525 +2
62 23.2215 01723 +1
63 23.6241 0.1303 -2
64 24.0260 0.0963 -5
63 24.4274 0.0630 +7
66 24.8284 0.0465 +8
67 25.2267 0.0304 +3
68 25.6285 0.0183 -6
69 26.0279 0.0087 -18
70 26.2512 0.0000 +15

Table 7.9.8 Part of the tabulation of the data arid the errors in

the approximating spline for Example 7*9*4.
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Fokker-Planck feasibility study data



It should bo stressed that in Ecanpiea 7.9.2, 7.9.3 mi 7.9,4 further
experimentation with the choice of knots would ahnoot certainly result
in improved approximations. liowovor, since the fits obtained were close
to being as good as possible with respect to the accuracy of the data,

such improvements could only be marginall.

7¢10 Automatic knot selection

Rather than the user having to select a suitable set of knots, it would
clearly be desirable to have an automatic method which in some sense

chose optimum or at least "good" knot positions in any particular instance.

A number of workers have examined this important problem.

Powell (1970) describes an algorithm for determining least-squares cubic-
spline approximations in which the choice of knot positions is based upon
a "trend" test. His approach involves initially the approximation of the
data by a spline with a small number of equally-spaced knots.m The
residuals ex (i =1, 2, ..., m) are then examined and if there are regions
where a trend is indicated, ie the yaluesof are not distributed in a
random manner about zero, further knots are inserted in the regions
indicated by the test. The process is then repeated until hopefully an
acceptable approximation is obtained. The method seems particularly
suited to cases where there is an abundance of data points (say several
hundred) and the underlying curve is complicated, perhaps with many pedes,
and has similar behaviour throughout the range. However, even in such
cases, rather more knots than are strictly neoessaiy are often introduced
by the method. In some other cases, particularly where the behaviour in
one part of the range differs radically from that in another, somewhat
unsatisfactory results may be produced. This difficulty is due mainly to
the restriction the algorithm places on the rate of change of knot spacing

throughout the range. It should be noted that Powell's algorithm 4
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based solely upon the least-squares criterion, but TCntains ad(Utionill

smoothing terns which tend to reduce the discontinuities in tho third

derivatives at the interior knots.

Be Boor end Bice (1968) have developed an algorithm which attempts to

determine a spline s(x) witlr as few knots as possible so that

iy 2 <6 y .y
2 (aio.i)
where 6 13 a presc'r:,;bed posltive number. They attack tills problem by

solving successivoly for N = 1, 2, ... the least-squares nonlinear spline

approximation problem: minimise j]c]j] with respect to both the linear

parameters .and the interior knots of s(x). Since the value of |]jc \j>

either decreases strictly with increasing N (Rice, 1569: 143) or>i for

some value of hi, is equal to sere, it follows that in theory at least, If

can be increased until condition (7.10.1) is satisfied.

Eie algorithm employed by de Boor and Rice is a method of descent. Given

an initial set of N-1 interior knots (N fixed), they are improved cyclically
to minimise ||£]] The cycle starts with the right-most knot and, working

to tho left, each knot is varied so as to reduce |E i2 as a function of

this single knot. This cyclic process is continued until some criterion

of convergence is met. Such a process can, of course, hope to find on.lv
1 i2

local minima of |le|l]. There may be many local minima (Cox, 1971)

consequently, it is unlikely that the global minimum is obtained, unlesl
the initial knots are sufficiently close to those corresponding to this
minimum. Additional knots are introduced one at a time. A point jo

determined where the approximation for N-1 knots is poorest and the Nth
imot is introduced midway between the two knots which bracket this point.
The method has been implemented in Forte*, by de Boor and Rico (1968) for

the cubic-spline case n=4.
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Although the method can sometimes yield very satisfactory approximations,

the whole process is fraught with difficulties. Firstly, there is the

problem of determining whether convergence has taken place. This problem

appears on three levels, namely, for the whole algorithm, for the least-
squares nonlinear spline approximation problem for any particular value
of N and for the adjustment of knots within this latter problem. The

decisions that convergence has taken place arc made on the basis of rather

delicate ad hoc numerical tests which arc not infallible. Secondly, the

resulting approximation may correspond to a local minimum of [jo |j*. As
indicated in Cox (1971) there may be many local minima, many of which are
far inferior to the global minimum. An example is given by Cox in which

the global minimum is relatively infinitely superior to a local minimum

in the sense that the former has a zero value of jle]] whereas the

latter takes a finite value. In fact the differences between the two

approximations, when drawn to typical graphical accuracy, are easily
aiscernible by eye. Thirdly, the method can easily consume enormous
amounts of computation time. For instance, de Boor and Rico quote an

example with a final value of N of about 30 which takes some 20 minutes

computation time on the powerful IBM 7090 computer. This time is to be

compared with a one of a fraction of a second for 30 fixed knots.

A somewhat different approach has been suggested more recently by de Boor
(1973) (also see Dodson, 1972), in which initial estimates of the nth
derivative of the function underlying the data are made. Then, using the
fact that, at least for a mathematical function, the local error in on
approximation by a spline of order n is proportional to the nth power of
the local knot spacing and directly to the magnitude of the nth derivative
of the function, he describes an algorithm for estimating "good" knot

positions. He outlines a way of iterating the process in an attempt to

improve further the approximation so obtained. The current writer has
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compered an implementation of this method with the approach discussed

in Section 7.8; starting with the approximations produced by the process

described in Section 7.8, in only two cases out of 20 did de Boor's

approach produce a superior approximation, and even these two wore only

marginally better. However, de Boor's suggestion appears to be worth

exploring further. It may be that certain refinements would enable a

good algorithm to be developed. The main advantage compared with, say,

the de Boor-Rice approach, is its speed. A major difficulty is the

initial estimation of the nth derivative of the underlying function. Aftor

all, the nth derivative (even for a cubic spline, n=4) is surely much

harder to estimate than the function itself, and the latter problem of

course is essentially the one we wish to solve'.

7N spline-approximation of a mathematical function
This section is exceptional in that we consider the approximation by

splines of functions rather than data. The main reason for incorporating

this digression is to demonstrate that B-cplines are a powerful tool in
this area also, and that their use compares very favourably with other

approaches (eg Bellman, Kashef and Vasudevan, 1974) that have been proposed

recently.

Consider the problem of approximate in the least-squares norm the funetion

f(x) over the range a ? * y b by a spline s(x). Is usual me introduce a

set of interior knots *. (i = 1, 2, tf.,) augBent thts ,,y ~tlon z |

knots at and x=b so that the complete knot set fx j forms a ska.,dard

knot set with coincident end knots. Our approximation problem can bo

loosed in the following way.

(1 =1, 2, .... g°K#n-i) which minimise

Determine coefficients Qj

fb

{ 72 dNni(x) " 1 ax (7.11.1)
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The minimizing values of @®. are defined by the equations

r,\ll v h
i I"IO(iO / 1°A W - fw
Ja =1
that is, by
q ib I'b
22 G NN e = f(ch:
+=i a a

Q

1,

2,

Q.

(7.11.3)

Because of the compact support property of the E-splines, the equations

(7.H .3) reduce to

j+n-1 fb
7 o \Aq‘as((x)Nnj.(x)dx =
i=j-n+1

Nnj,(x)f(x)fix.

(J

.., Q)

(7.11.4)

Equations (7-11-4) constitute a system of g linear equations of bandwidth

2n-1,
2
in O(gn ) operations.

necessary to compute the values of

fb

NniM N, jW fa (M < n)

and

by N i(x)f (x)a*
Ja

To determine the elements of the system it

symmetric about the main diagonal, which may bo solved efficiently

in

(7.11.5)

(7.11.6)

Further use of the compact support of the B-splines enables (7.11.5) and

(7.11.6) to be reduced to

HAWKnNnAxJto (i

eand

£]j < i+n)

(7.11.7)
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rxi

JIX.
i

There are many ways in which the integrals (7.11.7) and (7.11.8) may he

evaluated. The following approach is recommended. Express (7.11.7) in

the form
" r*k
a. . I Z . 7.11
al  kgjnf-1 (7.11.9)
i
In each of the intervals (x”~, y?) (k = j-n+1, j_n+2, 1) the

integrali! in (7.11.9) is a polynomial of degree 2n-1 and hence the
corresponding integral may he evaluated exactly hy any quadrature rule
that is exact for polynomials of degree 2n-1. The values of the integrand
required hy the quadrature rule are products of the values of B-splines
of order n which may be calculated using Algorithm 3.12.2. it wlll not
be possible in general to compute the values of Ik exactly. However.

their values may be approximated by expressing bi as

X
w " N5 (O F(x)dx (7.11.10)

1 k=i-n+l
V i

and applying an appropriate quadrature rule to each of the integrals in

(7. 11. 10).

Ili oases «tore the tacts are equally spaced, explicit expressions for the

aij *» te-"S of B splineB oi' order 2» O« available (see Schoenberg, 1569).

The approach ve have outlined in this section is a natural use of the
B-spline basis. Bellman, Kashef and VasuSevan (19/) have also considered
what they term "mean square spline approximation" arid have describ'd m,

algorithm based on dynamic programming for the case n=4. Because they do
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iio'’c use a suitable basis and because they employ dynamic proguc-raocinc-
urnecessarily (in a situation where more direct methods suffice), their
approach is relatively unwieldy. Moreover, we believe their approach
is comparatively inefficient and also suffers from a considerable degree

of ill-conditioning. .It is necessary in their method to evaluate

integrals of the fom

X2 (x) Ox (7-11.11)
) xk-1
and

%

2
£ xclx. 7 .11.12)
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®saaw*®» raj cwm m AVDcokcatot ew sm om
In this chapter a straightforward extension of acme algorithms for
solving unconstrained linear approximation problems In the 1., and I,(,

norms is given. The extended algorithms alio,, lever or upper bounJto

bo placed on the parameters of the approximating function, whilst still

retaining the computational efficiency of the unconstrained algorith, .

A representation of a cubic spline in tea,, of the values of its second
derivatives at the knots and its value,, at the ends of the range is

derived. By placing simple non-negativity or non-positivity constraints
upon the values of these derivatives the spline can bo forced to satisfy

proscribed properties such as local convexity or concavity.

The extended linear approximation algorithms, when used ip, conjunction
with this representation of a cubic spline, enable approximations to
discrete data sets to be obtained which are free from undesirable

inflexions or oscillations.

In Section 8.1 Ve discuss the need for constrained approximation and
indicate he» some important types of continuous constraints nay be

enforced by imposing upon a cubic spline a finite number of point ., stra-

in Section 8..? us consider the formulation as linear programs of the

general Discrete linear I, and | # approximation problems with simple

constraints upon the parameters. In Section 8.3 ,, derive a ropresentatio,

of a cubic spline in torus of the values of its second derivatives at the

knots and its values at the ends of the range. In Section 8.2, it ;m

shown that the linear programs obtained in Section 8,2 can be us-d <,
conjunction vith the representation derived e S oT-on ﬂp iD obtain

cubic-spline approximations which satisfy IO(L:P géiﬁolhv)ygt{/ and concavit
- - ))_
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constraints. -Also in Section 8.4 we discuss briefly the nu-oricej

atari]ity of the process. In Section 8.5 some numerical examples are

given.

1 frie need for constrained aoproxirnatj.ons
In problems of data approximation it is often important that the

approximating function employed should reflect certain properties cf the

f,motion underlying the data. Per instance., if it is known that the

underlying function is convex, then it is usually desirable that the

approximating function is also convex.

In many circumstances it is iound that cubic splines form good
approximating functions (see, for instance, the examples in Chapter /).

Unfortunately, the algorithm discussed in Chapter 7 is not gura-anteed to

produce approximations that ore free from spurious oscillat X

very frequently the approximations aro indeed osoillation-froo. nowevor.

if cubic splines are represented in an appropriate ray, they can he

forced to display desired local behaviour by the imposition of a finite

number of very simple point constraints. In fact, many aspects of the

local behaviour cf a cubic spline depend upon the values of its second

derivative at the toot«. In particular, since the second derivative of

a cubic spline s(x) with simple knots is linear between any pair of

adjacent toots x ~ tod x., the following typos of behaviour- can be forced

(i) convexity in the interval xj_1i x « X} is achieved by

ensuring that both s" and s” (X,) are non-negative.

(ii) concavity in the interval x~, S x* X, is achieved by

ensuring that both s" (~ J and s” (*,) are non-positivo,

(iii) the requir-emsnts that s(x) bo convex for x J X, f...__a

single inflexion point in the interval Xj-l < X <xj \Imh hg cr O for
ending that 8 (x.) ~ O for i $ j-i

X < Xj can be achiGved ©

d’ (x.) o for i 2-j-
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2-2 linear appro.yjnation orobler.-
Consider the approximation of the set cf points (t , f ]
PP points (t . f.) ® 1, L

by the function

4
X' =2 n > (8.2.1
&l
\,hcre the unknown coefficients g jg, , 9, . *j A are ¢0 satisfy the
constraints
° * AN
O; 0 ] g~ %)
gi» di (Jei2 (3.2.2)
9 unrestricted (je j-)

In (8.2,2), J», J2 and J.. are distinct sets, the union of which coat 'ANS

precisely q elements. Define

Kg> ti) = Kg, tj) -~ (i =1, 2, ..., m). (8.2.3)

The L., approximation problem is to determine e such that

m
(8.2.7,)
for all g, g* satisfying (8.2.2),
The L ~ approximation problem is to determine g" such that
* N\
max e(g*, t,) mex e(g, ty) (8.2.5)

ri $n 1£i $E
for all g, g* satisfying (8.2.2).

If re let



the constraints

/\0y

where a _ {a

+

Tedre fol —

- gj 0<= J,)
~ dj (d£ J2
+ aq+1- (j GJ3) ,

0. mex (- 49.) ",

jeij, JJ
(8.2.2) are equivalent to
°-2’ aa+l} ' Then> PwttinS
5o

e(@, t,) = x—j, a,. (d. - a.)

- je€Jr 9 3
2 (di+aj + 23 ;@ -~ wyj -
Je i

ni3 dj

‘M~ # 0 2 +
T tjid 0 j<= J2W5

64 E))

el

N

. 1 3£ J1UJ2

N

1 2,

—~
1

h

(8.2.6)

(8.2.7)

(8.2.;3

(8.2.9)

(8.X.10)

(8.2.11)
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a Ue jj
G G (i @ uj,) 891
£l L0 =a+i)
I kej1l
and
fl.o=f. - r. a. . d.
¢6:J.UJo0 1J J (8.2.13)
The L1 approximation problem is then to determine a* 0 such that
+1
y | ?“> a, & gl
w1 s oo $ Y3 z-a Vig? 57T (8.2.1h)
) i-1 j=i
for all & 7/ 0.

The jJa> appi ocimc..uion proolem becomes the determination of a’<”™ 0O guch

that
qtl G
ITHX V i ; a.* - ’~
i mex a..a.- f
1$i . 1370 1 i6em J% iJ % i (8.2.13)

for all avy, 0.

The problems are now in the fora considered by Barrodalo end: Young (1SS6),
except that in our formulation the parameters a era already non-negative '’

(the first stage of Barrodalo end Young's algorithm reduces the rroW (.,

to contain just non-negative parameters). Barrodale and Young show that

the problems can be reduced to linear programs as follows. FOv the L
approximation problem put
G(°i t.) = u. -
(8.2.16)

where vt £ 0, to give the following n equality constraints in non-

negative variabues,
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/ g & i U. SV, & f.x(i =1, 2, .... 7. (e.2.17)

J=

The problem is then solved, by minimizing ™~ j (u. + v.) subject to

i=1 1 1

(8.2.1?) e£ 0Oandin, vV 0 (1 =i, 2, ..., M.
For the Lw approximation problem put u = Kif le(L = \ +to obtain
the 2m constraints

a+l

JF1 . _

f (i = 1%"> o*ej *0e (0 .2.18)
g+’
Nt gL aLncf.-Uu£EDO
t Xj j
/1

This gives the linctur programing problem of minimizing u subject to

(3.2.18), a~. Oand u~O0.

Efficient algorithms which exploit the specific structure of those
formulations are given in Barrodale and Yeung (1966). Other versions of

these algorithms arc given by Barrodale (1907) and Barrodale and P.obcrts

(1971).

8.3 A representation of cubic splines
Y/ derive in this section an explicit representation of a cubic spiine,
which exhibits as parameters the values of the second derivative of the

spline at the knots.

A cubic spline s(x) with strictly increasing knots X X, VX
additional exterior knots are introduced in the usual way) can be
expressed (Theorem .9.1.2) as

N3

w ci Hu (x) (0 3.1)
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fcr x m ja, oj - [xo, ~]. Me intend to express the values of
c. (i z2. 3, N+2) in terms of those of cq, c\y3 and «" (g _ (5 )
meei N)* Here s” denotes the values of s" (Xt))' Kcv
Nr:3
»3 \ 2 i W Clnr °* 1. K) (8.3.2)

i-i
which, because of the compact support property of tho B-spl.uioo* reduces

to

*i =/ ci.n,M(xj,.) (j =o, 1, M) (8.3.3)
i=j+1

Tfe re-write equations (3.3*3) as follows:



144(xg)  N§O i
Ti( O\ TM{=
JA2U 1, 43 1 B4 (V>

B~x2n KA (X2>

WL, N~iU R-2 NJ,N+i N
AL kW - 170 W N+ISN-1*  [14,r.H2AN-1m  “Ngl

N4,Ntj4 P 4,1424P N+2

(0.3.4)

= IZ‘:_
N

N-1

1 _N’A‘i,N+5(\7i|) OIIIF

%'m3

Tho use of relations (4.1.1), (3*4.2) and (3*2*9) gives

1A
Mot (x? m«F>l-w @G *V o4
ha j<3 (V = é(Is»2 " - Voo (8.3.5)
" %2 <h> * %131 (b> - K& w (*,)e ;

Insertion of the relations (8.3*5) in (8.3.4) anti the multiplication of

row j-rl (j = O, 1, .»* N) by the factor - gy (x. ~ - x. ) and putting
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- (xs'exiz) ‘vyields the system

f = B9 (8.3.6)
where

~ - {°2} cy VvV 2} (8-3.7)
ard

a iv *oe st N3} o> (8.3.8)

A is the (N+1) ty(Ni-lI) symmetric triple-diagonal matrix with ele.rr.uts

kj+1 " xj+2 (j = O» 1I# N).
(8-3.9)
a. .= a. .. .
Oid+1 J+iiJ d+l -+> h)
and B is the (N+1) by(N+3) matrix whose only
non-zero elements are
b1l “ k1 ' DbN+'i,N+3 “ ~K+2;
(8.3.10)

1 0.8

Since A has a dominant main diagonal it is positive definite and of full

rardi. Hence

=H
2 B (8.3.11)
whore Il is defined uniquely by
AH =B .
m (8.3.12)

The (N+1) by (N+3) matrix H can be computed an an efficient and numerically

stable manner by forming the Cholesiy factorization

A = LDLT ,
(0.3.13)
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where L is lower unit Li-diagonal ana D is diagonal, followed by the

appropriate forward- and back-substitutions to form the columns of H

froui the corresponding columns of £. It follows that
N-i3
Ci+2 ~L__j hj,r “r 3 -0 1, H). (8.3.14)
r=1
Time N+3
(x) “d VI "2 i ZLjhi-*1,rej'\iN ;0 f N3\ N+3AN (8>3*1t)
1=2 r=1
So, recalling that =gt~ and c ™ =g~ j ~o0 obtain
i N+2 - +2 N+2
1 1
*« =M V Xx) ) hi-i,iv (x) V)/, hi-1,r\i"
=2 r-2 1 i=; J
r N+2
+%+3}0 10 V i N43\IAXA + \,N+3A'V * (8.3.1 1)
1i=2 ]

Thus, defining.

hoi = Vi2k+3 ~ 17

(8.3.17)
ho,r+1 ~ -0 (r -1, 2, ,,,j N+2) |
we have
N+3
iw -¢o1Z sA (x' 5 (0.3.10)
r~1
where
<'>Ii'§j
4 « =2—hi-1,r HiW (8.3.19)
1-1

which is a representation of the cubic spline s(x) in terms of +h3 U ,*

basis functions 0~(x) (r = 1, 2, . N+3).
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Tli fiomo provilous work Ql thia VroUrn (Cox, 197.) a different approach

n USGdi In whioh a rGPressntatiou of cubic splines in ter,,« of a But
of blended cubic arcs was employed. The ,jt)i such arc (j = 1; 2, K)
applied for x.~ $ x £ x. and war. defined in terms of the values of s(x)

are s”(x) ac x - x. ™ and at x = iogather v.ith appropriate conditions

to ensure the continuity of .« (*), the use of thia representation, which

is given in ihlberg, Nilson and Welsh (19S7), also gave risr to a m etric

positive definite triple-diagonal system, but of order N~l rfi.t;:Cr than

K+1* Th9 ma5jl reason for usi»S the B-spline approach here is that its
generality enables it to be extended more readily than other approaches
to constrained spline-approximation problems of arbitrary degree.

Specifically, a spline (' order n, expressed in terms of B-oplines, cur

be represented in a form which exhibits as parameters the values of ita

derivatives of order n-2 at the knots. Thus approximating functions can

be constructed which enable conditions cn particular derivatives to be
imposed. For example, the use of a quadratic spline enables conditions to
be placed on the first derivative (monotonicity); the use of a qunrtic

spline enables conditions to be placed on the third derivative. Another
important reason for using the B-spline basis relates to the evaluation

of the derivatives in the generalization of equations (8.3.,.) to tho

of splines of order n. In this generalization all non-zero values of
havc to he GTaluatcd; it was established in Section 4.3
(Theorem 4-3.3) that these values can be formed in an xmcondi.tionally

stable manner.

8.4 Constrained, cubic-spline approxInatlon
We now return to the problem of approximating discrete data sots in tho

h. or Lc; norms by cubic splines satisfying certain prescribed properties.
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Suppose a set of data points (i., f ) (i ™ 1, m j.s ex-van,
together with s strictly increasing set of knots xq, x|, X , such

that xo$ Min t. and ™ > max t+x. Additional exterior knots ara added

in the usual way such that the complete set forms a standard knot set.
At the position of each knot Xj (j = 0, 1, ..., n) the approximating
spline s(x) is to be
(a) locally convex (ie to possess a non-negative second derivative),

(ii) locally concave (ie to possess a non-positive second derivative),
o1

(iii) unrestricted.
In terms of the representation (8.3.18) and (8.3.19) and recalling (8.3.8)

this requirement is equivalent to

8j+2 <0}
(ii) gj+2n0, @
(iii) £.j+p unrestricted.
But this formulation is just that discussed in Section 8.2, and hence can

be solved, by the method described there.

In some problems, it may be important that the value of the second
derivative does not fall below (or above) a prescribed critical value.
In such cases conditions (i) and (ii) are replaced by g. > a or

"j+2 N dj+2 as aprr°Prlate» where dj+g denotes the critical value.

Other methods for finding constrained cubic-spline approacimations have,
been proposed by a number of authors including Rabinowits (1968), Amos and
Slater (1969) and LaPata and Rosen (1?70). Al these methods introduce
additional equations to describe the constraints, rather than use an
explicit representation of the spline which enables the constraints to bo

dealu v./Mn /ii ouaxly no extra cost, as we have suggested here. /. a
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consequence their methods appear to he somewhat inefficient as records
both storage and computer time. Some of these methods also appear to
suffer from a certain degree of ill-conditioning. Amos and Slater (1969)
use the I g norm and solve the resulting quadratic program using the
The!l-Van da Panne procedure, a method which is known to be very

inefficient (Boot, 1964). Furthermore, they employ the representation

S(x) - S1+ & X+ S3 xg + g4 x- +§/_JI B.i(* - x._4)" 0.4.1)
i-5

for the spline, which is a particularly poorly-conditioned form for
numerical purposes (Carasao. 1966). Rabinowitz (1968) also suggests the
use of this ill-conditioned representation in the solution of suoli
problems in one 1~ norm. Lafata and Rosen (i973) use the Lj and L

norms end, as a basis for s(x), they employ B-splines, but consider only
equally-spaced toots. Moreover they compute the required values of the
B-splinos from the unstable explicit formula (3.2.4)/ rather than from

the numerically stable recurrence relation (3.4.1) or (3.4.2). »

The method we employ appears to comparo favourably with the above methods.
It results in a relatively short computer code; for either the L1 or the

norm, the complete procedure, including the code for the solution of
the linear program, and for the monitoring of the growth factor (sea

below), contains only about 270 Algol statements.

It is now becoming widely recognized that, because the Gauss-Jordan
elimination process without a pivotal strategy is employed, many of the
existing linear programming codes (including those of Barrodalc and Young
(1986), Barr.'dale (1967) and Barrodale and Roberts (1970 for-solvi js
discrete linear and Lw approximation problems) are potentially

unstable in that severe error growth (which in certain cases could ramp
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-wio r.rae solui-ion) may ocour. It. is to be expected, by analogy v.ith

Gausaiaa eliiaiaation (ffilkinson, 190%: 214; P.eid, 197'), that a good

incdoav.’on cf ohe lI6se of accuracy in Buch an implemontation of* the

Simplex method is given by the gror/th of tho magnitudes of the olamenta

in the tableau { } = A range cf sono fifteen exumples, having fron

it to 100 doi/a pQ-tigx 2 to 10 knots and knot spacing r~t'os* I'roin 1 io

20, werc solved on an English Electric KDF$ Computer. In eaoh oaae the

"grov.th factor" g, definsd by

6= "X (0)
i,j,k rj (8.4.2)

*“  QOT,puted- In * i;)UO taotos the value of a after

iterations of the simplex method. The largest value of g observed TO

approximately 104, indicating a loan of about four decimal tie«*, (out of
the .35 biMTjr, or about 12 decimal, «<gore, available on KBFJ) in tho

computation. In many oases tho value of g ,as lose than 10, indicating a

lose of at most one decimal digit; in some cases g ,as unity, indicating

essentially no error grovrth at all. The site of g seemed to bo unrelated

to m N or tho knot spacing ratio. This reasonably encouraging evidence,

docs not ot course imply that ,e can preclude tfco possibility that, in

some applications, completely unreliable results my be obtained. It is

recommended therefore that the greth factor be computed and examined

before the results are accepted. An efficient method for computing the

growth factor has bsen giren by Businger ({971).

In recent years, numerically stable algorithms for the simplex method

based upon triangular decomposition (Bartels and Golub, 1969) and upon

" The knot spacing ratio is ogfinod by ~ (X.- x. )/ *in
Ucih J J13 - UjiK - XM
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orthogonal recomposition (Call ana Murray, 1973), have appeared, which
avoid the difficulties associated with the possibility of severe error

growth. It is hoped that future variants of the spline-fitting algorithms

discussed here will incorporate versions of one of these stable staple*
methods, tailored to talc advantage of the features or the approximation

problem.

8.5 Numerical examples

*> pre3eat *» e:l” Ples "»<*, forthe purpose

small, but nevertheless illustrate some of the advantages of constrained

mapproximation. The norm was considered appropriate in both cases. The

results were obtained using the KDF9 computer, which has a floating-point

word containing 39 binary digits in the mantissa.

For each example we give firstly an unconstrained approximation based on
a prescribed set of knots, and secondly an approximation, based on the

same set of knots, constrained to possess certain properties of the

underlying function. The growth factors and the mean absolute residuals

Is(ti) “ fi / mare also quoted.
£i1
Example 8.5-1

Data: Temperature distribution (Amos and Slater, 1969) - Table 8 5 1
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|l ! t1 Ifl
1 0.25 17.0
2 0.50 15.2
3 O.75 13.8
4 1.25 12.2
5 1.75 11.0
6 2.25 10.1
7 2.75 9-4
8 3.25 8.6
5 6.25 6.1
10 12.25 35

Table 8.5.1  Temperaturemdistribution data

Property required: Convexity.
Interior knots. ihose chosen by Acios dad Slater, viz x =16 25 60

Approximation 1:  Unconstrained - Tables 8.5.2 and 8.5.3 and Fig 6.6.1.

Urowth factor: 104. I
Comment: The approximation is unacceptable since s(x) is concave for

g8.08 $ X N 12.25 (Table 8.5.2 anu Fig 8.5.1).

j " °0 Y

0 0.25 8.53235
1 1.60 17.0000 0.62750
2 2.50 13.3075 0.34528
3 6.00 11.4728 0.31493
4 12.25 8.1373 -0.63153
5 4.6560

6 6.4586

7 3.5000

Table 8.5-2 B-spline coefficients and values of the second derivative
at the knots ior the unconstrained splino approximation
to the temperature distribution data of Example 8.5.1.
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s (ty s(ty) - Ty

1 17.0000 0.0000
2 15.2000 0.0000
3 13.6418 0.0418
4 12.0847 -0.1153
5 11.0000 0.0000
6 10.1000 0.0000
7 9-3067 -0.0933
8 8.6000 0.0000
9 6.1000 0.0000
10 3.5000 0.0000
Mean absolute residual = 0.0250

Table 8.5+3 Unconstrained spline approximation to the temperature

distribution data of Example 8.5.1.
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Fig 8.5.1 Temperature distribution : unconstrained spline
approx imati on

Fig Temperature d ietr ibut ion convex sp line approxi mat ion
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Approximation 2: Convexity constraint at each knot = Tables 8.5.4 and

8.5*5 and Pig 8.5*2.
Graith factor: 12.5.

Comment: The constrained spline has a mean absolute residual which is

about 10/3 greater than that of the unconstrained spline.

!/j c i sJ
0 0.25 8.74185
1 1.60 17*0000 0.42650
2 2.50 13.2971 0.50328
3 6.00 11.5513 0.07516
4 ml2.25 8.0052 0.00000
5 5.4263
6 4.2525
7 3.5000

8.5-4 B-spline ccefficients and values of the seco
at the knots for the constrained spline appr

the temperature distribution data of Example

i s\gty— f'l

1 17.0000 0.0000
0 15.2000 0.0000
3 13.8501 0.0501
4- 12.-1158 -0.0342
5 11.0305 0.0305
6 10.1000 0.0000
7 9.2905 -0.1095
8 8.6000 0.0000
9 6.1000 0.0000
10 3.5000 0.0000
Mean absolut® residual = 0.0274

35 5 Constrained spline approxiiaation to the tempt

¢istributiori data of Example 8.5.1.
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Example 8.5.-

Data: Stress distribution for axially loaded aluminium strut". (.Br:ii:iOn

Standard Code of Practice CP118, 1969) - Table 8.5.6.

Property required: S-shaped (is exactly one inflexion point).

Interior knots: x ~ 1.2, 1.5, 2.1, 2.4.

Awr«dmati® |I: Unconstrained - Tables 8.5.7 end 8.5.3 and Kg 8.5.3.
Hrorfch factor: 75.1.

-Comnent: The approbation is unacceptable since »(*) ,as three points

or i»fIn*ion(Table 8.5.7 «d Mg 8.5.3). The spurious osoiUc'.ions can
be seen cleanly by sighting Mg 8.5.3 In the plane of the paper and

elooking along the curve.
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0 1.05 190.403
1 1.2 19-9000 121.997
2 1.5 17.5715 -7-858
3 2.1 12.7280 5.439
4 2.4 11.0338 -69.156
5 2.588 7.6831 - 66.965
6 5.5328
7 1.8235
8 0.0000

Table 8.5.7 B-spline coefficients and vainno of the second
derivative at the knots for the unconstrained spline
approximation to the stress distribution data of

Example 8.5-2.

i s(t.) s(t.) - f.
1 19.9000 0.0000
2 17.8000 0.0000
3 14.8000 0.0000
4 13.0238 0.0238
5 12.0348 -0.0652
6 11.4000 0.0000
7 10.7625 0.0625
8 10.0685 0.0685
9 9.3403 -0.0597
10 8.6000 0.0000
11 7.8698 -0.0302
12 7.1718 0.0718
13 6.4830 0.0830
14 5.6000 0,0000
15 4.2741 -0.0259
16 2.3000 0.0C00
17 0.0C0O0. 0.0C00
Mean absolute residual » 0.0289

8.5-8 UnconStrained spline approximation to the
disti ibution data of Example 8.5 2.
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Fig 8.5.3 Stress distribution s unconstrained spline approximation

Fig 8.5.A Stress distrioution : o shaped spline approximation
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Approximation 2:  Convexity constraints at x * 1.05, 1.2, 1.5; concavity

constraints at x = 2.1, 2.4, 2.588 - Tables 8.5.9 and 0.5.10 and

Pig 8.5.4.
Groufch factor: 14.0.

Comments: The mean absolute residual of 0.0499 for the constrained

spline is about 70$ greater than the value 0.028? of the unconstrained
spline.

If such a value were considered unacceptably large, a constrained

approximation with residuals comparable to those of the above unconstrained

approximation can be obtained by using more knots. Por exomple, for the

interior toots 1.2, 1.35, 1.5, 2.1, 2.25 and 2.4, the mean absolute

residual of the constrained spline is 0.0208. The unconstrained spline

for these toots has a slightly better mean absolute residual of 0.0196,

but again violates the requirement that the approximation is S-shapcd.

] X, c S,

i J 0

0 1.05 237.985
1 1.2 19.9000 101.090
2 1.5 17.5214 0.000
3 2.1 13.0530 -1.870
4 2.4 10.6839 -51.194
5 2 83 7.9649 -111.802
6 5.1960
7 1.9201

. 8 _ 0.0000

Table 8.5.9 B-spline coefficients and values of the second
derivative at the knots for the constrained spline
approximation to the giress distribution data of

Example 8.5.°.
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i s(t.) S(t:'i.) - f.X
1 19.9000 0.0000
2 17.8000 0.0C00
3 14.9312 0.1312
4 13.1760 0.1760
5 12.1000 0.0C00
6 11.3636 ==0.0564
7 10.6834 -0.0166
8 10.0000 0.0000
9 9.3104 -0.0896
10 8.6114 0.0114
11 7.9000 0.C000
12 7.1730 0.0730
13 6.4004 0.0004
14 5.4447 -0.1533
15 4 *1413 -0.1585
16 2.3000 0.0000
17 0.00co 0.0000
Kean absolute residual = 0.0499

Tabls 8.5.10 Constrained spline approbation to the stress

disti'ibution data or Example 8.5.2.

Discrete linear approximation theory informs us (Rice, 1984) that,
in the unconstrained case, the best N approximation interpolates (at
least) N+3 of the data points. V& see that in. the first example Ut
and the number of interpolated points is 7, ftS predicted by the theory.
In the constrained case only 6 data points are interpolated, but one
value cf s". takes the value zero. In other words an interpolation

condition has been traded for an active constraint.

Similar remarks apply to the second example in which N=5. The number of
interpolated poi “s is 8 in the unconstrained case, whereas in the
constrained case the number of interfiolated paiuts ns € and pne value of

the value sero.
a lf fr.Kpc
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CHAPTER 9

'‘‘HE IKPOSITIOK OP BODNPNBY CONDITIONS MID OTHra EQIMIJTT CONSIl./ aifS
It is sometimes necessary S, problems of spline approximation to force

the nth-order spline »(*) to have the property that at the boundaries

of, or within, the interval of interest, s(x) or some of its derivatives

are to tako prescribed values. Por instance, in spline interpolation it

is often required that »(*) satisfies 6iven derivative conditions at the

houndaries; in least-squares spline approximation it is sometimes required

that either proscribed boundary conditions, as in the interpolation

problem, are to bo satisfies, or that »(,) and possibly its derivatives

are to take given values at certain interior points.

Because of their relative simplicity, We treat boundary conditions

separately from the more general conditions. Thus, in Section 9.1 we

discuss the imposition of a single derivative boundary condition. In

Section 9.2 we treat the imposition of a set of derivative boundary

conditions. Both of these types of conditions are incorporated by a

simple change of basis. In Section 9-3 we consider simple point constraints

and in Section 9-4 the most general type of linear equality point

constraint, finally, in Section 9.5 we outline algorithms for least-

squares problems with linear constraints, and indicate how these algorithms

can bo applied to the general constrained spline approximation problem.

9-1 i€ ,~.0”ion ™aisingle derivativo
Let the nth-order spline s(x) be expressed in its B-spline form (3.1 10)

where the knots upon which s(x) and the B-splines are defined fori, a

standard knot set with coincident end knots. Suppose that in an interpolation

or least-squares approximation problem it is rem[ﬁda _f\N_i\z’:,]IV7 .t(x_\ or one of
) CJ' L)

its derivatives is to take a prescribed value at one or other of the -mge

end-points a and b. In the ease of interpolation the end condition would
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nearly always involve a derivative, since s(x) is usually already

required to take specific function values at a and b; moreover, in order

that the number of free linear parameters of s(x) matches the total

number of conditions to be satisfied, the end condition would be traded

for a conventional interpolation condition. For least-squares spline

approximations, however, the end condition may involve either s(x) or its

derivatives; further, it will not usually be appropriate or necessary to

trade the end condition for one of the data points.

We shall treat solely a condition at the left-hand end-point x_-n, .. ..

the right-hand end-point x=b is handled analogously.

Let r (O <r <n) and the value of £(r' (a) be prescribed. It is required

that s(x) satisfy

3(r>(a) = fW (a). (9.1.1)

1% shall show that condition (9.1.1) can be enforced by a simple

modification of tho data and of the basis functions.

We examine first the case r = 1. From (5.1.10), (9.1.1) and using

Theorem 4.2,1 we obtain

cINii(a) + C2Nn2<a) = f‘(a) * (9.1.2)

But from (4.2.1), (a) / 0. Hence, by eliminating ¢" between (5.1.10)
and (9-1.2) and setting q = W+n-1, we obtain

'f'(a)-c N' (a)

S(X) ————————— Y v ot 2 1 - {/ ,é
tZL vV, (9.1.3)

a simple re-arrangement of which yields

() =) - T Rnaa '
B 1n1 éaT) NS = s L (9.1.4)

where



(X)) =J (9.1.5)

But, by differentiating (3*6.1) and using (4.2.1), ?p f(a) + N'v(a) .. O.

Hence (9*1*5) simplifies to

fBnl(x) *V X (3 = 2)
I (9*1.6)
"niw .u._ memyl) o
Consequently, if appropriate values of the expression Nnl(x)

are subtracted from the data to be approximated, the use of the modified
representation s(x) enables, in the case r=1, the condition (9,1.1) to be
incorporated automatically. Note that, since N1 (X) = 0 for x ™ x.j, the
tei-m 1(a)/N’~@a)j N~ (x) involves modii'ication only of data values in
the interval a Xx < x** Also observe that the function Njo(x) has the
same support as N 2(x) end is non-negative. Moreover, Njp(x) is formed
stably, since it is simply the sum of two non-negative quantities, each

of which can be computed stably (Section 3*9).

We now consider the generalization of the above approach to the enforcement
of the boundary condition (9*1 -1) for a general value of r(0 £ r < n).

Proceeding along lines similar to the above we obtain the modified

representati on

Nniw - 2 cCiv>*) , (9%1.7)
i-2
where n
U L 2
N *(x) nlx 1
"ni(x) *4 (1 =2, 3» se=>7r+l) (9.1.8)
N (%) (i =r+2, r+3, ...» J=
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Uufortunately, no longer do all the basis function;-, .(X) have the
property that they are formed as positive linear- combinations of non-
negative quantities, and hence there is no guarantee that the Nnj'.(x)

can be computed with small relative errors. However, their values will
certainly possess small absolute errors compared with unity, the maximum

possible value of Nni(x) » In order to obtain basis functions which have

small relative errors we proceed as follows.

Consider the representation (9.1.7) with the N ~x) defined by

N~ (a)
Nni(*) mmooo Nn “(*)
n,x—I(a) n'1“!
H, i « ={ (i=2,3, r+1) (919)
N5 () (i = r+2, r+3, , Q)

rather than by (9.1.8). As with the representation (9.1.7) and (9.1.8)

it is easily verified that ?<r>(a) » Oand jwW (,) . .0 required.
Moreover, both representations enjoy the property that for i - ? |

the basis functions Nn.(x) have the same support as the functions N .(*).
However, the representation (9.1.7) and (9.1.9) has the distinct -advantage
that the factors ~ (aJ A ~ ~ a ) are all negative, by virtue of (4.2.1),
and hence that the Nn.(x) are formed as positive linear combinations of
non-negative quantities, with the consequence that the computed values

have small relative errors.

9.2 Imposition of a set of boundary conditions

In the previous section a method was given for forcing the nth-ordor spline
s(x) to have the property that s™r\ a) takes a prescribed value f~ (a).

We now consider the case where, for some k (0 £ k < n), the values of
s(r)(a) are to take prescribed values f~ (a) for r =0, 1, k. Thus

the conditions
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\a) =17 (q) (9.2.1)
i =1

aro to be satisfied for r = 0, 1, ..., k. Because of (4.2.1), conditions

(9.2.1) reduce to

r+l _
c,N¢kYia) f(r)(a) (r -0, 1, ..., k), (9.2.2)
Ti=l =
ie to
Lc(® = 4 (9.2.3)

where L is the lower-triangular matrix of order k+l with non-zero elements
li . =NCr 1>(a), = {, c¢c2, .... okt and d - ff(a), f‘(a), ...,
"fA ) (a)l . The values of the B-spline derivatives required in L aro
computed from Algorithm 4.": .1 in. an unconditionally stable manner (Theorem
4.2.3). The triangular system possesses a unique solution since its
diagonal elements N/’\\+1(a) (r =0, 1, ..., k) are all non-zero, by virtue

of (4.2.1). The system is easily solved by the usual process of forward

substitution.

Having obtained the values of C\’/ c§|. c}(/Jrf>we write
ket q
~s(X) = .(x) -"22 . NM(x) -2 ] . (9.2.4)
i=l i-k+2

Then, for each dlata abscissa x we subtract from the corresponding ordinate
k+

the value of S CjN (x) = The modified data is then approximated by
i =

s(x). Note that only data in the interval a £ x < is affected by the

subtraction. Boundary conditions at x = b are treated in a similar

fashion.

The method of this section has been used successfully in conjunction with



a variant of Algorithm 7-3.1 in a number of applications. In particular, it
has been applied to the fitting of various sets of data representative of
modes of vibration of a clamped plate where, as a consequence of the clamping,

values of 30 (x) for r = 0, 1, 2 were prescribed at each end of the data

range.

9.3 Simple point constraints

In some spline approximation problems it is necessary to impose restrictions
on s(x) or its derivatives at various points in the range of interest. We
have already treated cases where a single boundary constraint or a cortain

set of boundary constraints is to be imposed. Y/ now consider more general
constraints. We deal in this section with simple point constraints, io
constraints involving a single value' of the function or one of its derivatives
and in Section 9.A with compound point constraints, which may involve the

function value and the values of a number of derivatives.

Suppose bW (z) is to take the value f~ (to) at x =tQ. Hero r(0ir<n),

t (a~t £Db) and f» '(to) are prescribed. Thus ive require s(x) to satisfy
0 0 .

=(r)(t0) “23 °inm <*”>\E—p(r){ = (9.3.1)

i=1

Relation (9-3.1) is evidently a linear equality in the B-spline coefficients

\Y Jn fact> becauss the compact support of the B-splines, at most n of

the values of the are non-zero. Moreover, (9.3.1) has precisely
the same structure as the usual interpolation condition or "observational

equation”.

9.4 Compound point constraints
We now consider a more general form of linear equality constraint which

v/e term a compound point constraint. Let L be a linear operator of the

form
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b-z - (9.4.1)

v/hero Dr denotes r-fold differentiation with respect to x, and the e are

prescribed constants, not all of which are zero. Let g be a given number

It is required that at a proscribed value of x i _ sav

(possibly zero).
> 0 jm

Ls(x) is to take the value g, ie

r

| Ly <mxniE@ p - g (9.4.2)
- 4.
Thus
of
\/__1 C <LN .(x) =C
V.1 Cc <IN.O , (9.4.3)
x=t
f n1t
0
2:o M v O)N} (9.4.4)

is a linear equality iciont
licionts c.
X

with the same structure as a relation of the fonn

. ¢N __(t ) = .
X j I'nit o/
i1 (9.7,.5)

jn imposing constraints of the form (9.3.1) and (9.4.4) it is necessary
to evaluate the appropriate values and derivatives of Nni(x). Such

evaluations can be accomplished using Algorithms 3.12.2 and 4*4.1.

Yhen used in least-squares data fitting by splines those constraints r_ﬂay
1

be incorporated by the methods of Section 9*5.

9.5 Stabjrthods fer the imposition of general linear
It remains to discuss methods for imposing constraints of the form discussed
in Sections 90 are. 9-4. In the case of interpolation, by ordering the

interpolation conditions and constraints (assumed consistent) appropriately



the resulting linear system, which is stepped-banlcd, can be solved by
Algorithm 2.12.1 or Algorithm 2.i3-i e In the case of least-squares
approximation it is necessary to solve a problem, of the form

min (9.5.1)
X

subject to the equality constraints (assumed consistent)

& =g (9.5.2)

where A is an mby n matrix of (possibly unknown) rank k ( €n) and Cis a
p by n matrix of (again possibly unknown) rank 1 ( P). The notation used

in this section is chosen to be similar to that of Chapter 2.

We first mention two numerically stable methods for solving the above
problem. Ore of these methods is due to Golub (1965) and applies only

in the case where both A and C have meximum rank. However, this mothod
can be made very efficient for stepped-banded A and C. The other method

is given by Hayes and Ralliday (1974) ~<3 allows either or both of A and C
to be rank deficient. However, because of the need to carry out column
interchanges in their method, little or no advantage can bo token of the
structure of A and C. Finally, we present an enhancement of Golub's method
that allows cases of rank deficiency to be treated in a stable manner,

whilst taking advantage of structure such as stepped-bendedness in A and C

Golub’ s method is based upon the use cf Lagrange multipliers X to express
the solution of (9.5.1) and (9-5.2) as that of the "augmented normal

equations"

AA g

> &

K
%
of

(9.5.3)
c 0 s

Householder transformations are applied to solve (5.5.3), vdthout of course
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forming these equations explicitly and incurring the possible lor.s of
information associated with such a formation (cf Section 2.3). in Golub’-
description, column interchanges are carried out but, as wb indicated in
Chapter 2, such interchanges are unnecessary. After setting > IIV
where u denotes the unconstrained solution (obtained in practice via the

«R decomposition of A) satisfying An = ATb, it is seen from (0.3.3) that

7, the "correction tern*', satisfies

T, . T
POl +GL =0 (9.5.4)
ana

C(u+6) = g. (9.5.5)
Eliminating 6 from (9.5-4) and (9.515) yields

L
Cagy cl=i-g (9.5.6)

as an equation defining the Lagrange multipliers. Having solved (9.5.6)
for X, 6 is found from (9.5.4) and then x =jj + f. In actual computation
advantage is taken of the factorisation A . Jg to simplify the process.

In particular, (S'.5.6) reduces to

YNh =0 - g, (9.5.7)

where V is given by the triangular system R = CT. Equation (9.5.7) is
solved by carrying out an orthogonal decomposition of V. Finalllv f,

formed from (9-5.4) by taking further advantage of the already-factorised A.

Of course, plane rotations can be used in place of Householder transformations.
Since the bulk of the work (assuming the usual case in which p is small
compared with m) is involved in the factorisation of A, and sdr.ee advantage
can be token of the structure of A during its QR decomposition, the complete
process can be carried out in little mere time than that taken by the

computation of the unconstrained solution y.



Tb» method of jjayos and Halliday provides essentially a ,cans of
eliminating in a stable manner 1 of the n unknowns and thus reducing
tho system to one of order u-1, rather than having to treat one of order

n+p as in (9.0-3). Specifically, their approach, which works with an

orthogonal transformation y, say, of tl.e solution vector, first reduces

the constraint equation, to a triangular system of order 1, which is then

solved for the first 1 components of j. They then show that the remaining

n-1 components of y can be found by solving an unconstrained least-squares

problem, finally, 2 is recovered from on orthogonal transformation of y.

We have described their approach only in very broad outline for two reasons.

Firstly, it is given in considerable detail, in their paper and, secondly,

for stability, it is crucial to carry out column interchanges in thoir

method; consequently, we can sec no way of adapting thoir algorithm to

solving stepped-banded systems efficiently without destroying structure.

Tie now propose an adaptation of Golub's method that permits rank deficiency
in A or C or both and, moreover, allows considerable advantage to bo token

of the structure of these matrices.
Firstly, we consider the constraint equations. Frequently, in practical

spline-approximation problems, Ow ill be of full rank. However, whether

or not this is true, we recommend the following approach. Carry out an

orthogonal «composition ofCT using, say, plane rotations. The resulting

upper-trapezoidal matrix, U, say, will have precisely p-1 sero diagonal

elements (in the absence of errors in the elements of C and in tho arithmetic

operations or. C). In practico, p-1 diagonal elements will be "small"

(relative to some norm of C), and a suitable threshold value should be

selected to decide which diagonal elements arc to bo regarded as zero. By

deleting the corresponding p-1 columns of CT, (Vi r8v1\—/'§ gi. E'\ the constraint

equations are reduced to a total of .l equations whose coefficient matrix-
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is of full rank. Henceforth, we shall assume that the constraint
equations have, if necessary, been so treated and let (9.5.2), with p-1

replacing p, denote the reduced system.

It remains to treat the rank deficiency, if any, in A. W observe that
the solution to (9*5<l) and (9.5.2) is identical to that of

”i” Ax - b (9.5.0)

subject to (9.5*2), vilere
5-9)

and

(9.5*10)

In the cm. of stepped-bamded A and C it 1, desirable to jle ave the
nows of (O | g) with those of (A |b) so that the resulting system is
similarly stepped banded. It is advisable, if necessary, to introduce
suitable scaling factors so that the rows of A' have norms of similar
magnitude. Such a scaling is particularly appropriate if, for instance,
A is a matrix of B-spiane values and C contains values of B-spl-ine

derivatives (perhaps of various orders).

It should now be apparent that if A' is of rank n, Golub’s method may be
applied immediately to the solution cf (9.5*8) and (9.5.2). |If ﬁ\ is
rank deficient we recommend that, after having computed the (R factors of
A’ , elements of the solution vector corresponding to columns of A
containing "amall" diagonal elements be made zero by using the "resolving
constraint" concept due to Gentleman (1973). The resolving constraint is
treated as an additional row of (A- | g') and consists cf the row vector

(0O ... 00 ..0f[0 twhere the non-zero element lies in the column



containing ohe diagonal clement to be regarded as zero. By rotating th ?

o»

row into the current triangular- factor (R 1 G), the rank of m

increased by one and the residual sum of squares is unaltered. AIll such

diagonal elements are so treated. (This method of treating rank

deficiency is also of considerable use in unconstrained.problems).

A pilot computer program based upon the above ideas has been constructed

and tested on cases containing rank deficiency in C but not A in A but

noi C, and in both A and C. Cases in which A~ was ami ms not rank deficient
were also tested. The results achieved to date imply that the process

appears to function extremely satisfactorily.

It should be noted that the tests for zero diagonal elements are not

infallible since examples can be constructed (j Il Wilkinson, private

communication) for which a matrix is close to being rank deficient but
for which the resulting diagonal elements in the triangular or trapezoidal
factor are in no sense small even if arithmetic is carried out exactly.

However, such examples are somewhat artifical and in practice are moot

unlikely to arise. In cases of doubt the singular value decomposition

(Section 2.15) should be employed.
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CHAPTER 1C

MULTIAARIATE SPLINES

In this chapter we consider the extension to higher dimensions of the
methods for one-dimensional interpolation and least-squares approximation
by splines discussed in Chapters 6 and 7. In particular, we examine
problems in two independent variables, a natural (but notationally complex)

extension of which enables higher-dimensional problems to bo treated.

Pirstly, wo consider in Sections 10.1 and 10.2 the interpolation fud
least-squares approximation to data given at all the vertices of a finite
rectangular mesh by a tensor product of general univariate functions.

This treatment is then specialized in Section 10.3 to tho case where the
univariate functions are B-splines. In Section 10.4 the important problem
of least-squares spline approximation to arbitrarily-placed bivariate
data is considered. The imposition of constraints is discussed briefly

in Section 10.3- Finally, in Section 10,6, the evaluation of a

multivariate spline from its B-r.pli.no representation is examined.

10.1 Interpolation of data on a rectangular mesh by a torsor product

cf univariate functions

= 2 Cij% (xbj (10.1.1)
i1 1:zllz j% (xb j(y)

denote the space of functions obtained by taking the tensor product of

the ONO linecj xy indepenaent set;:;; of basis functions

Lox -1, 2, n) (j =1, 2 ny). (10.1.2)

ho(y)

Suppose data values z”~ are prescribed at all the vertices gf the

rectangular mesh, defined by the linos y - tr (v ., 'f“gg, nx) and
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iho problem is to determine the coefficients Chj’ in (10.1.1) £uch tliat

interpolates the given data values, ie to compute values of ¢

f(x,y)
which satisfx the n n equations id
Xy
nx n
rs 1™Mr,us) = Z_i 20 ij® i(tr)hj(ul)
i= a1
r=1, 2, .... ;s=1,2. ...\
( r-]X ]1) f k )yJ . (« 113)
in

Ihe system (10.1.3), once formed, could bo solved directly, since it

* squarQ Sy£to!” Of 1in0SJ- “iee-broic equations of order nyn . por ortosp]..,

Caussicn elimination with partial pivoting could be used, in which euo

the solution would be obtained in about l,,s operations. However,

with such an approach no advantage, apart perhaps in the formation of the

system, .. taken of the tensor-product representation of the approximating

function f(x,y). for instance, for a problem of modest size an which

nx =ry - ti3Cut 2 X 10 lons operations are required. A second approach

is therefore normally used (see eg Greville, 1961) and discussed briefly
here xn which full advantage is taken of the tensor-product form, with the

consequence that only about (V »y)*/3 long operations arc ncccssai-y. por

the case n = n - 30 this number is about 7 X IfA Tn + .
X " A 1U < In the case of B-spline

basis functions, further economies are achieved (Section 10.3)
The system (10.1.3) may be expressed in matrix form as
GCHT = Z
(10.1.7)
or, equivalently,
P m m

H G =272 ,
(10.1.5)

wher
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G is the Jv by nv matrix with elements 13 = g.e )
j n

Il is the n by n matrix with elements h, . =
~ v v 13

Cis the n by n matrix of elements c.
~ X Ty a]

«@nd
Z is the n by n matrix of elements z
X Yy 1]
So,defining
E = C]—IT :
(10.1.6)
the matrix E can be found by solving
SE =7 . (10.1.7)
Then 0 can be obtained by solving
T
H(1T - E (10.1.8)

Equations (10.1.7) involve on ~ by A~ matrix with ny rieht-hmd sides,
the solution of which using Gaussian elimination with partial pivoting
takes about y>x long operations for the decomposition plus about n2n

long operations for the solution of the resulting triangular systems!
Equations (10.1.8) involve an rny by ny matrix with right-hand sides,
the solution of which requires about + nxn2 long operations. Thus the
total amount of work involved in the solutions of (10.1.7) and (lu 1 ft) ;t
about jnx + nyry + \ny 4y j B 3(~+1")3 long operations. From the
symmetry of this result it is immaterial from the point of view of
computational effort whether we treat the system (10.1J,), os we have done

here, or the system (10.1.5).

Equations (10.1.7) and (,0.1.3) she« that the problem degenerates into two

sub-problems, each of which is essentially a set of univariate interpolation
problems, and may be interpreted as follows. Along each mesh line y = uo
(s —1, 2, « . rny) decox,.ane thf.. coefficients © (r =1, f n) om

the function '}'L-j &, g (x) which interpolates the data (—ti’# er'\
T-1
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(r- 1, ¢} n.). Then Tor each value of r - 1 72 noon .
o determine

n ) of the function3 ' ¢ h (v)
J / . F3 8"
st

the coefficient, ors (s = 1, 2,

=which interpolates the data (uSIS ers'W'S - {> 9. - n,J\-

10*" aPPrOXIrfly ggjg... ata on a roctammlin py n

tensor product of univariate fymivHnng

We treat in this section the extension of the interpolation problem

in Section 10.1 to the case where the data values z ere

considered
rs

prescribed at all the vertices of the rectangular mesh defined by the
lines x - t (r ,, 1j 2, r)adv=u fs ~i pr \

to be approximated in the least-sguares sense by a function of the form
Hero nx > nx and iy > ny and it is required to determine the

(10.1.1).

coefficients ctJ in (10.1.1) such that the residual sum of squares

X X{Ve¢

r.1 3=
is minimized.

Hole that arbitrary wilting factor, cannot bo incorporated in (10.2.1)

ai they can in the one-dimensional case ana, at the same timo, full

advantage taken of the tensor-product representation. Tor spline

approximation, cases of unequal ,eight may be tackled using the more

general but computationally relatively expensive method of Section 10.),.

let S, H, Cand 2 be as defined in Section 10.1, except that now 0 J,,
P4

bvn,Hisd byn and2is m bvm fr ie , v, )
- X ~ y y * X J B by ry as before). G.-oville

(1561) has shown that the solution to this least-squares problem is the

natural extension of that for the interpolation problem discussed in

Section 10.1. In fact, in place of the interpolator/ solution
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i 'V
cz&_}z(n ) .
(10.2.2)

obtained from (10.1.4), one uses

3 *m
C=GZzZH ) ,
~ ' (10.2.3)

where G and H are respectively the pseudo-inverses of fi and Il. Of

course it is unnecessary to compute explicitly these pseudo-inverses.

Rather, by analogy with (10.1.7) and (10.1.8), C may be formed by

determining the least-squares solution of

A =h
(10.2.4)
followed by that of

T_ T
HC = :
. (10.2.5)

r*<

Assuming that one of the faster orthogonalisation methods of Chapter 2

is employed and that v. ~ » V ry, an operation count reveals that

the solution of (10.2.4) requires about long operations for the

decomposition of G and about for the operations involving £.

Similarly, the count for the solution of (10.2.5) is about 1?2 + « ,

Thus the total emount of wort in determining C is dominated by the ~ ” "

computations involving the multiple right-hand sides in the first least-

squares system (10.2.4), and is approximately equal to n long

Unlike that for the interpolation problem of Seotion 10.1,
Note, therefore, that il.

operations.
this count is not symmetric in its parameters.

may be cheaper to form C from the transpose of (10.2.3), ie by computing

the least-squares solutions of

i =21
(10.2 .6)

ana

6C Vx
(102 7)



rathor than those of (10.2.4) and (10.2.5). The resulting operation

count is then about ram n long operations.
Yy

By analogy with our interpretation of equations (10.1.7) and (10.1.8)
in the interpolation problem, we may interpret the least-squares solution

of (10.2.4) and (10.2.5) as follows. Along each mesh lino y = u

o]
(3 =1, 2, ...hyra) determine the coefficients e _ (r - ]lj 0, - nN} of
the function ZS_Iu lersBr(/X) which Err%\ﬁja% '-cl-ﬁlg least-squares approximation
r=
to the data (t,., (r . 1, 2, ny). Then fur each value of
r = 2, ..., n_determine the coefficients c (s —1 \ -~
nm rs *  * **es> nJ ol

the function » ere*BW >*ich provide the leant-equaree approximation
S

to the data (Uf, e”) (s = 1, 2, y) . Clenshaw and Hayes (1965)

discuss the case where the ~(x) and hjy) form polynomial bases.

10*5 ari- least-squares approximation to data on a
rectangular mesh by bivariate splines

17 now specialize the approaches of Sections 10.1 and 10.2 to the case

where in (10.1.1) the functions g+(x) are B-splines of order n in x
(defined upon an appropriate set of x-knots) and the h.(y) are B-splinos
of the same order-- in y (defined upon an appropriate set of y-knots), and
we wish to interpolate or obtain least-squares approximations to data r

r3
prescribed at all vertices of the rectangular mesh x - t]» {)I . f; s ok m

ny). lie shall assume that t $ t9£ ... <t and
N

y =us (s =1, 2, ...,
1 ’\uX

Ul £ u2 ~ o o LI;I)/ that “ tho case of interpolation m = 0 and m - r}*

and that in the least-squares case m > n, and m *> n
X X y 2" y*

*  The methods given in this and Section 10.4 may without difficulty be
extended to the case where the B-spline3 are of different orders in

X and in vy.



In order to define our B-spline bases let (i = 1, 2, N -1) and

y. (] 2, N-1), where T =n - n+1andN =n - n+ 1, be
J y & X Yy y
two prescribed sets of interior knots which form respectively n-oxtendod

- - - _ _ 1 < .
partitions (Ssction 3,i) of the x- ana y-axos with t, <X, XNX_1 N tn;(

and u < VY’T .] < u = «We introduce additional coincident end knots

y y
in the U3ual way by augmenting those prescribed by x-knots of multiplicity

nat x =tj and at x = t , and y-knots of multiplicity naty u and at

Yy © Un
Let

a=v * = c=yoc dBv (10.3.1)
The knot-lines x =X (i - 0, 1, NX) and y =yj (j =0, 1, ..., Ny)

form a rectangular mesh, the boundary (formed by the lines x = a, x = h,
y = ¢, y = a) of which contains all the data points. We define pr,'l

(i, j) as the rectangular region bounded by the x-knot lines x - Xy and
X - x and the y-knot lines y =y andy =y . A panel may be null in
the sense that it has zero area, in which case x. =X orv \Y

We say that a point (x, y) (@ " x <b, c”™y < cd) lies in panel (i, j) jf
X £ X <X anay $y<y (ifx=bwsoti=IT andify ™ dwo
set j =IT )= Note that as a consequence of the above definitions, a nul]

mpanel contains nc points.

Upon the augmented set of x-knots we define the B-sline basis ITni(/X\)/

(i =1, 2, ..., n) and upon the augmented set of y-knots the B-splino
basis Pnj'(y) (j - 1, 2, nj). P'Bj(y) denotes the normalized B-spline
of order n in y based on the knots y. Y4 Hj - Y3 The tensor
product

® {Pn,W P,2 « V 7/ S) (1°-3-2)



foni'-s a "basis for the set of bivariate splines of order" n in x and in vy.
phus our representation of the bivariate spline s(x,y) is simply

X
(10.3.3)

in accordance with (10.1.1).

Evidently the interpolatory solution exists and is unique if and only if tno
Schoenberg-TVhitney conditions (6.1Jf) are satisfied for the x-knots x, and
the x-values and also for the y~knots y. and the y-valuos u . In the
least-squares case, the solution is uniqueif the conditions arc satisfied
for the x-knots x+ and at least one subsetof the values of t , as well as

for the y-knots yJ and at least one subsetof the values of u B

It is apparent that the matrices Gand H in (10.1.7), (10.1.8), (i0.2./:)
and (10.2.5) are all stepped-banded of bandwidth n, and that an obvious
extension (to allow for multiple right—-hand sides) of the methods (level orod

in Chapter 2 for systems with such matrices can be spoiled.

Operation counts reveal that for interpolation about n*nyn + (nX+r

long operations are required and that for least squares (again assuming that
vV “y”~ V V the doadnant term is mmn. Thus for a fixcd ordf)r of
spline the computational effort is essentially proportional to the total
number of data points (even taking into account the formation of & and H)

a result that holds also in one dimension (see Chapters 6 and 7). Such a
desirable situation would fail to hold if a basis not having the compact

support property were employed.

Note An excellent review (Hartley, 1576) Of methods for tensor
product approximations to data defined on rectangular meshes, is shortly

to appear. Hartley also shows how the computations may be organised to
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solve such problems in an arbitrary number of dimensions. Reference is
made by Hartley to the gains in efficiency achieved by using B-splines
as a basis in the case where the approximating function is a multivariate

spline.

10*4 The general least-squares nultivariate spline approxj.wation problem
The approach considered here is a generalization of that of Chapter 7 to
two independent variables. A further generalization to more than two
independent variables is in principle straightforward but notationally

complex and is not given here.

Ve consider only least-squares multivariate spline approximations since
it is rarely of practical interest to interpolate multivariable data unless
the data values are specially distributed such as at all vertices of a
rectangular mesh (Section 'i0.3) « However, if it is required to investigate
whether a spline interpolant to an arbitrary set of data exists and is
unique and, if so, to determine it, a simple extension of the method of

this section can indeed be applied to such a problem.

Suppose values z~ of the dependent variable z are given at points
(r =1, 2, ..., ji) in the (x,y)--plane. The problem is to determine a
bivariate spline s(x,y) of order n (degree n-1) .in x and of the seme order

in y such that the residual sum of squares

I 2 1 2 m
£ W z )ﬁrC (10.4.1)
|

I r=1

(10.4.2)

and

c 2. (r=1,2, «eeJu) (10.4.3)



is minimized with respect to the free parameters of s(x,y). It is

assumed that interior x-knots x =1, 2, N,~-1) and interior

3 ( X

» 2, . N’v_l) are prescribed. A detailed treatment

-knots y. (j
. j

of the case n = 4 is given by Hayes and Halliday (197A).

just as in Section 10.3 we introduce additional end knots, define
B-splines in x and in y, and employ the representation (10.3.3)*
Unfortunately, there is no analogue of the generalised Schoenborg-TOiitnoy
conditions (7.2.3) in the general multivariable situation (unless for
instance, the data lies at all. vertices of a rectangular mesh

cf Section 10.3)* Thus it will not usually bo possible to say, as the
result cf a simple test on the data and knots, whether the least-squares
multivariate spline approximation problem has a unique solution. However,
by analogy with the considerations of Section 7*2, we- make the following

conjecture.

Conjecture 10.A.1

In order for the least-squares bivariate spline approximation to bo unique
there must exist at least one subset of n n distinct data points with the
following property. It must be possible to find an "ordering"” of these
points such that the kth point (k =1, 2, n~) lies strictly within
the support of the kth bivariate B-spline. (The kth bivariate B~spl3n0 is
defined as the kth member of the tenser-product set (10.3.2). the supporl;

of ij>'<(X)Pnj'(y) being the rectangle )_(|_01 EX <X,V < y< yj).

A proof of this conjecture has not yet been attempted. Rather, efforts
have been made to construct an algorithm (a bivariate counterpart of
Algorithm 7.2.1) to test whether any given data arid knot sets satisfy the
property referred to in the conjecture. These efforts havo so far proved
unsuccessful for the following reason. In one dimension the data set has

a natural ordering in the sense that it is possible to examine sequentially
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the relative positions of the points and the knots. In two (or more)
dimensions, at least for arbitrarily-placed data, no such ordering exists.
Accordingly, when an algorithm associates a particular point with the
support of one of the bivariate B-splines, this decision affects
subsequent decisions of the same nature. As a result, the algorithm may
well conclude incorrectly that the conditions ore not satisfied. Some
form of back-tracking therefore seems to he required, but no satisfactory

solution along these lines has yet been worked out.

The solution to the problem of minimizing (10.4.1) with respect to the

c.., is given by the least-squares solution of tho system

(10,A.A)

the case; indeed, least-squares solutions (though not necessarily unique)
always exist (Peters and Wilkinson, 1970), even if m< nn . The rth row

of A contains the values

nn

and the vector c contains the coefficient



As a result of the compact support of the E-splines, A takes the

hi nek stepped-banded form

P M2 o Ag 0

"22 723 B ne1
A = . (10.4.5)

N Al N,

In order to achieve this form for A it is necessary to order tho values
of the independent variable so that they lie in tho successive panels (1,1),
(1.2), ..., (1 *>5(2jl)j (2,2), ==, (2,n))j .. (N>, >2),

(n n)e Tk assume henceforth that such an ordering has been carried out.
v *oy

Each sub-matrix A . is itself a stepped-bnnded matrix of bandwidth n.
The complete matrix A is a stepped-bandad matrix of bandwidth (N "I)(n-1)+n
Since the computational effort required to triangularize p stepped-banded
matrix with mrows and bandwidth q is essentially proportional to nq

(Sections 2.12 - 2.14), it is more economical to interchange the roles of

the independent variables x andy if N < I\&/

The computational effort to triangularis9 A using one of the2methods of
Sections 2.12 - 2.14 is proportional to m{ (N,-DH(n-H+n2} ! TJiis

number is to be compared with a value cf m(NX+n~I)2(Ny+n—I)2 if ais
regarded as full. Thus for a modest problem in which n = 4 (bicubic spline),
Nx ~ 8 Ny - the atove numbers are respectively about 800m and

O000ra; consequently the algorithms that take advantage of the steppod-banded

form are roughly an order of magnitude faster for this example.

Because of the remarks made earlier in this section relating to tho

difficulty of assessing in advance whether tho least-squares solution is
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unique, ana. cecause we contend that many, probably moot, practice] data
sets for which a multivariate spline approximation is required will give
rise to a non-unique solution, the factorization method itself must bo
able to detect rank deficiency in A. The reason why we belivo non-unique

solutions are commonplace can be seen by the following illustration.

Suppose data covering a roughly elliptical region is prescribed. Then, if
two sets of orthogonal knot lines are laid down over this data so as to
contain it, there are very likely to be single panels void of data, or a
number of adjacent panels with few data. In particular, a corner panel is
likely to contain no data points, with the consequence that one of the

basis functions will be zero at all data points, .ic the corresponding

column of A will contain only zeros and hence A will bo rank deficient.

Such a case is easily detected and remedied by setting the appropriate
B-spline coefficient to zero and deleting the null column from the matrix
before A is triangularized. However, a less obvious form of deficiency

may occur in which no columns of A are identically zero. As a simple example,
consider a case in which each panel contains precisely one data point. Then
all columns of A contain non-zeros, yot the rank of A is at most equal to

(@] , the number of data points in this case, which is less than the

number of columns of A by (n-1) (Nx+N +n-1). For a further informative

discussion, see Hayes and Halliday (1977).

Any rank deficiency in A is conveniently handled, after having computed
the upper triangular factor, using the "resolving constraint" concept

(Section 9*9).

10.5 The imposition of constraints
Kany of the ideas of Sections 9.1 - 9.4 carry ovor to the multivariate
case. T/ mention just two simple extensions. Tlio first is the simple

~Nich s(r)(x,y) is to take the value f(r)( u) at

o,
0 0



340

(x,y) = (t0, ug). Herer (0 ,<r<n), tQ@« tQ~b), «ole $ cl)
and fAr\ to> uq) are all prescribed. By analogy with the discussion of
Section 9*3, such a constraint can be formed very readily and imposed

using the methods of Section 9*5.

As an instance of a lino constraint we consider tho following example.

Suppose s(x,y) is to satisfy the line constraint

(10.5*%1)
where g(y) is a prescribed function of y. Now
n n
cs ) sr-"i
(10.5.2)
i=1 =1
and hence
n
y = s(y) (10.5*3)
Z 3 aiPniw '
0=1
where
n
X
a, = T;i C. 1m(a)
i
y_ A @) * (10.5%4)
i=1

using the compact support property.

Evidently, such a constraint can be imposed exactly only if g(y) is a
spline of order n in y with the same y-Icnots as s(x,y), or if g(y) is a
polynomial of degree less than n in y (which is of course a special case
of a spline of order n). In the former case, if g(y) is expressed in its

normalized B-spline form its coefficients are simply the values of d..
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In the lattei case, if g(y) ir, expressed in its power-series form,
Algorithm 5*7*1 can he used to determine the d,. If g(y) falls into
neither of those categories it is recommended that it is first
approximated, perhaps by using one of the interpolation algorithms of

Section 6.A, by a spline of order n having the same y-knots as o(x,y).

In any case the d. ore usually readily found. The remaining stop is the

J
imposition of the ny linear constraints (10.5*4), which may ho carried
out as in Section 9-5 or by a suitable modification of the basis as in

Section ?.1.

10.6 Evaluation of a multivariate spline from its B-spliuc .representation
Consider the evaluation of the bivariate spline (10.3*3) for given values

of xandy (@ £x $b, c $y £ d). Since

_ny
s(x,y) =y> , a.x)Pn.(y) , (10.6.i1)
&1
where n
drMx) =2-3 dAjNnin (j =1, 2, ..., ny), (10.6.2)
i =1

s can evidently be evaluated by forming each of the (at most) n values of

¢j(x) in (10.6.2) corresponding to the non-scro values of P ,(y)> followod
by the evaluation of (10.6.2). A total of n+tl splino evaluations is
required and if either Algorithm 5*2.1 or Algorithm 5.2.2 were employed
would take a total of -Jm™ + O(n") long operations. Note, however, that
advantage can he taken of the fact that for n of these evaluations, the
same knot set is employed. The following minor modification of

Algorithm 5*2.2 accomplishes this improvement.
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Algorithm 10.6.1 : The evaluation of s(x,y) from its normal!".od
B-spline repreaentation.
Step 1. Determine k and 1 such that X 1 < X < X and Vip \</ Yy < Y

using sequential or binary search.

Step 2. Uso Algorithm 3.12.2 to evaluate lu = N~ (x) for i h, k+1,
.-, ktn-1.
k+n-1
Step 3. For j =1, 1+1, l+n1 formd. =7~ v, Céj
i-k
Step 4. Use either Algorithm s5-2.1 or Algorithm s5-2.2 to evaluate

">~ dP . .
k » J no(y)

3=1

The total number of long operations taken by Algorithm 10.6.1 is an?+o(n).

An error analysis of Algorithm 10.6.1, carried out in a similar fashion to
those of Algorithms s5-2.1 and s5.2.?! reveals that the computed value
s(X,y) satisfies
-t
S(x,y) - s(X,y) £ 15-59m2 mex mex (10.6.3)
k $ick+n 1 $j <j+n 13

Algorithm 10.6.1 and the error analysis nmay be extended in an obvious way
to multivariate splines in p dimensions. The form of the error bound is

the natural extension of (10.6.3), the constant 15-59 being replaced by

7-745p-
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