City Research Online

City, University of London Institutional Repository

Citation: Cox, M G (1975). Numerical methods for the interpolation and approximation of data by spline functions. (Unpublished Post-Doctoral thesis, City, University of London)

This is the submitted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/20601/

Link to published version:

Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

qaE OITI UNTVESETY
Department of Mathematies

by

IS G COX, BSO, ARTMA

Thesis submiltisd for the Degree of Doctor of Pnilcsophy to the Wity Universaty, St John Street, London

BEST COPY AVAILABLE.

VARIABLE PRINT QUALITY

To my wife Rosaliee who suffered niy moods and had only a purt-time
husband during the preparation of this work.

It is often important in practice to obtain approximate representations on physical data by relatively simple inathematical functions. The appoximating functions are usually required to mect cortajn critcria relating to accuracy and smoothnoss. In the pasts polynomials have frequently been used for this task, but itt has long becn recognised tinat therc are many types of data sot for which poiynomial approximations are unsatisfactory in that a very high degree may be required to achieve the roquired ancuracy. Moreorcr, aven if such a polynomial can bo computed., it. Prequentily tends to exhibit spurious oscingations not present jai the data itsolf.

In an attenpt to overeose these difficulties attention has turned in recent years to the use of piacerise polynonials or spline functions. Λ spline function, or simply a spline, is composed of a set of polynomial aros, usually of low doeree, joimed ond to end in suoh a nay as to form a smooth function. Splines tena to have greater flexjbility than polynomials in the approximation of physical data and much attertion has been devoted in the last ceeade to the theory of splines. The devolopment of robusti numericel mothods for computing with splines has, however, laggea somemat behind the theory. The main obirotive of this work is the construction and analysjes of such rothods. In order to obtain efficient and stable metiods a represertation of splines that is wollconoitioned and that results in fast computational schemes is required. lrepresentetions in tertas of B-splines prove to be eminentiy suitable and
accordingly we stuảy B-splines in some detwil and give various algoritinms for calculations in which they are involved.

Then B-splines are used as a basis for intorpolation or least--squares data fitting the resultine linear algebraic systems to be solved for the snline coefficients have a special structure. Stable numerical methods trat exploit this siructure to the full ars presented.

Cur algorithms are used to obtain spine approximations to a varisty of data sets dram fom practical applications. Their performance on thesa problems illustrates the power of splines over mare conventional approwimating fiunctions.

ACKNOMLEDCTMMETIS

This thesis is based on work carried out between 1969 and 1975 while the author was employed at the National Physical Lahoratory and registored at the City University as a part-time atudent for the Degree of Doctor of Philosophy.

I am indebted to my intornal supervisor Professor V E Price and my external supervison Jr J Hayes whose guidance and cnooungemert enabled ne to complete this work.

I ulso wish to aclmowledge many fmuitful discussions with 1H E L Albasinys Ir G I Anthony, Profussor C Wienshaw, Plofessor Wु f Gentleman, Dr \ddagger H Willrinson ana my superrisors on various aspects of linear algebra, evror analysis, spline fumctions, data approxination and numerical methods in general.

Finally J thank lirs Joan lian Cor her accurate typing of the manuscript.
Tiitle pace \therefore
Absiract iii
Acknowledgenents v
Conteats vi
Introduction xi
Chapter 1 FInating-point arithmetio and error analysis 1
1.1 Floatirg-point axitunnetic 1
1.2 Filcating point crror anelysis 4
1.3 Algorithens and munericul stability 14.
Chapter 2 The numerjcal solution of linear algebraic equations 19
2.1 The solution of thriangular systems 21
2.2 The lingar least-squares problem 24
2.3 Chulesky decomposition of the nounal equetions 27
2.4 Gaussian elimination 23
2.5 The use of orthocional traisformations 34
2.6 The modified Gran-Schmiat method 36
2.7 The method of Householdor transfometions 4.0
2.8 Classical plane rotations 4.3
2.9 Modern plane rotations 48
2.10 A comparison or the planemrotation methods rithother metnocis based upon orthogonal transfomations 61
2.11 Stepped-banded matrices 69
2.12 Triancularization of stepped-banded matrices using Gaussian climination 70
2.13 Triangulariation of stepped-banded matrices usjng stabiljzed elomentary transformations 74
2.14 Orthogonal triangularikation of stepped-handed matrices using plane rotations 79
2.15 The singular value decomposition 82
2.16 Perturbation hounds for the solution of linearesystems87
Chapter 3 b-splines and their numarical evaluation 92
3.1 Definition of a spline function 93
3.2 The definition of a B-splinc 95
3.3 The conventional methoa of evaluating B-splines 101
3.4 A recurrence relation for B-syilines 105
3.5 The values of B-splines at the ende of the rarge 111
3.6 The sum of normalized B-snlines and bounds for: their values 112
3.7 A posteriori crror hounds for the values of B-splines computed from dirjded aifferencos 115
3.8 A posteriori error bounds for the values of B-splines computed by the method on comver combinations 117
3.9 A priori error bounds for the values of B-splines computed by the method of conver combirations 119
3.10 The effects of pecturbations in the data 122
3.11 Numerical examples 123
3.12 The evaluation, for a proscribed argument, of aln non-zero B-plines of order n 129
3.13 Other methods for evaluating B-splines 134
Chapter 4 Difierentjation ana integration of B-splines 137
4.1 Recurrence relations for the derivatives ori B-splincs 437
4.2 The derivatives of the J -splines at the ends of the range 140
4.3 The derivatives of B-splines at tho krots 145
4.4 Algorithms for the evalualion of B-Splinederivatives14.9
4.5 The dofinito and indefinite integrals ofB-splines150
Chapter 5 The B-spline ropresertation of splines and polynomials 157
5.1 The B-spline reprosentation of splines 153
5.2 The numerical evaluation of a spline from itts B-spline representation 162
5.3 Frror analyses of algorithrs for ovaluating a spline from its B -spline reuresentation $i 64$
5.4 The effect of errors in the B-spline cuefincients on the computed value of the spiline 170
5.5 The B-spline representation of porers 172
5.6 ilgorithms for computing the B-ospline coefficionts 175
5.7 The B-spline representation of polynomieis 181
5.8 Fror analyses of the algorithms ror computing
B-spline coefficionts 187
5.9 the derivatives of a spline represented in B-spline form 195
5.10 The inderinite integral of a spline represented in B-spline form 203
5.11 Representation in piecerise - Chely shev-scries forill 205
Chapter 6 Spline interpolation 203
6.1 The spline interpolation probiem 209
6.2 'hhe linear system: fomation - 210
6.3 The linaux system: solistion 213
6.4 Aleorithms fon thic spline interpolution moblem 213
6.5 Errox analysia $21 ;$
6.6 hultiple fnots 22.3
6.7 The choice of exterion knots 223
6.8 A conjecture rolating to the choice of intesion knots and comments on the "wellopnactness" of the spline interpolation problem 226
6.9 Numerical cxamples 233
Chaptex 7 Ioast-squares spline approximation 242
To1 The least-squares splinnointtirg problem 243
7.2 liethod of solition $24 t$
7.3 An algorithm for least-squares spline
" ayproxjmatios 248
7.4. Erron analysis 250
7.5 Sonsitivity of the 1mopline soefficierts te perturbations in the datia 256
7.6 Tine important oase of cubic spiras 2.59
7.7 Assessing the acceptabiljity of a least-squares cubic-splise apmoximation 262
7.8 The chojec of lenots 264
7.9 Numerical eximples 266
\%. 10 Automatic lensi selection 2847.11 Least-squaras splire approximation of amatheraticel function287Chapter 8 Spline fitting with converity and concavitycomstraints291
8.1 The read for constrained eproxinations 292
8.2 A class of constrainud linear avproximation probiems 293
8.3 A representation of cubic silines 206
8.4 Constrained cubicmsplino approxination 301
B. 5 Numerical examples 305
Chapter 9 The imposition of boundacy conditions and other equality constraints 315
9.1 The imposition of a single derivativa boundary conBition 315
9.2 Tmposition of a set of boundary conaitions 318
9.3 Sjmple point constraintes 320
9.4 Compound point constraints 320
9.5 Stable methods for the inposition of genexay Iincer constraints 321
Chaptor 10 Nultivariate apljies 3.7
10.1 Intorpolation of aiata on er rectanguar mesh by a tensor procuct of univariate functions 327
10.2 Inast-squares approximation to data on a reotangular mesh by a tensor product of. univariate functions 330
10.3 Interpolation ana lecst-sguares approxination to data on a rectancular mesh by bivariate aplines 332
10.4 The eneral Jeast-squarcs multivariate shine approximation juotzem 335

- 0.5 The imposition of constraints 339
0.6 Eveluation of a multivariate spline fron its B-spline representation 341
References 343

Irany computations with polynomials have becn systematieed in the Iast two decades by the use of Ghebyshev series. tixpressing the approxiratio solution to a wide rariety of problems as a rolynomial in its Chebycherseries form has often proved extremely beneficial. One of the main benefits of this appioach shems from the fact that in many applications Chokysher polymomials form an extromely well.-conditioned basis for the class of polynomial functions. Examples of the application on Chetrahev serios abound: in the fields of function and data approxination, interpolation, quadrature, differortial oquations and integral equations are to be found many interesting and practical results.

Polgnomial eplines are a generalizabion of polynomiuls in that a spline of order in inctudes, as speciel caser, all polymomials of degre hass than n. We treat in some detajl in this wow what we comsidan to be n spline courtexpart to the Chobyshev polynomials, viz the l-splince. Lhe B-splines of a given order defined upuri a prescribed set of knotis fora for many purposes a well-conditioned besis for the class of splines of that: oroues vith the sane kelots. Koreover, the B-splines too have apnlication to many problems in numerical analysis, including those referred to above, Considered here are some of the properties oi B-splines, many of which are new, and ways in which these properties cen be utilited to advantage in problems of interpalation and approxjation of discrete data.

Whe theory of splines has mace signiricant advances, particularly in the last decade (see the bibliography by van fooid and Schurex, 1973), ofter a relatively quicti period following tho mioneering mork of Schoenbere (1946 . However, the develurnem: of welithec and exficient
alGuxthms for spline computations hace lageed simioicantly behund tho theoretical devclopmentio Acoorunglys in orcer to whe the wance a fraction in favour of the practicat sicie, our approach is predominantyy algorithnic. we concentrate upon the development of rhat me believe aic fundamontal and useful algoxithus for computing witi mpines cruresse in their B-spline forme Many of these algomithms are supportec by practical resultis as well as by rigorons error enalysen, the lattor ofter indicating the degree of stability of the algorithim.

Of tha ten chapters in this work tice first inve constitutc "babocne" chaptens upon which the rendining five depend.

Chapter 1 is prinarily expository and discusses fooniing-pojni arithmelic and basic concepts relating to the errom analysis of computationm processes, our app:oach is essentialy that propounciod by wirninson (sce, in particular, Milkinson, 1955; Deters ank wilueinson, 191). We also describe the step-by-utcp manner in rhich oun algorithms are presented and what me understand by the numericai stability of a computational process.

Mne fixwt paxt of Chapter 2. is also mainly expository in that mrithods for the numerical solution of linear algebraic sjatems in both the deterrined and overmetermined eases are surveyta. The work of Vilkinson (lairicularly Wilkinson, i965; Peteris and Wilkinson, 1970) has again strongly influenced our treatnent. We then disciss the use of votil classical and mod:n foms of plane (Givens) zutations (Gentieman, 1973; Hamaraing, 1974) for solving over-acterminct (Ieastsquare:) systers and give reasons why we believe that plane rotabjors have adranteges ovar other methods such as Householdex transformettors ens modified Grara-Schnidt, These reasons are reinforced by a conparisun,
besed can the fining analysis of Wichatme (is73), of the relative efriciencies of methods for least-squmes moblom The socond part oft Chnpter 2 contains detaileü description of some new algorithons for the solution of the structured (stepperi-banded) Linear systems that axise in spline interpolation and approwination probloms. For tho fullydetemined square case (inturpolation) wa give algorithms based upon Galdsian elimination (GE) and alementary transformations, and for the roctangular case algorithons based upon classical and nodem forms of plane rotation (PR). The GN algorithm can be consideread as a
 Bystems, and the FR algoritha as a sperialiuation of the rivens ilgorithm of. Gentileman (1973). Oar algorithms prove to have advanteges in terms of sinpiaitys specd and storage over those based or fousokoluen tranaforations; for steppedobanaed linear syatem givan by Roid (1957) and Iewson ari Hanson (197\%). Finaly, it is show that tho powerut singular value decomposition may be admbed to anajuse steppori-bandeç systems efficientiy.

In Chapter 3 polynoaial eplines thd their propertjes are inscussed and a particular form of findatiential spline, the B-spline, is introcuced. A new identity (Cox, 1972) relating B-sp), ines of consecutive decroos is then established. This identity, which expresses the value of a jo-spline of order n as a convex conbinstion of two B-splines of arder r-í, end which proves iundmatitel to our work, was discovered simultaneously in the united states by de bour (1972). We eive alcerithms wased upon the conventiursil nethod emploving dividen differences ani upon convex conivations for evaluating B-rplines. Detailed error analyses and test computations are used to denonstrate corclusively that algoritins based upon the use or corvx combinations are uncontittonaily stolide fore arbitraxy (even mutinte) hnots, wereas algoxiths aqloying diviclod differences may give extremely poor results.

In Chapter 4. a recurrance relation due to do Boor (1972) for the derivatives of B-splines is eatabished. A new relation of this type is then obtained that proves to be an extension of the furdunertal identity discovered in Chapter 3. Two results that prove to be of considerable use in subsequent chapters are then established: tho velues of all E-spline derivatives at the erids of the range, as woll as cectrin derivatives at the knots, can all be computed in an unconditionciliy stable manner. A class of algorithms due to Butterfield (1975) for E-splino cemivatives in the general case is then outimed. Finally, some rosujum relating to the definito and indrefinite integration of B-sjpines aro fiven: these results all appecr apparently f'or the first tian, mitio the exception of one due to Butterfield (1975), which is a further gencralization of the identity of Chapter 3, und one disoorred indepenaenicigr by Gacfoney (1974).

Chapter 5 is concemed with varjous computations arising fron tha representation of splines and polynomisls in terms of B-splines. Vo present a particularly usef́ul result due to de Boor (1972) which expressas a linear combination of B-splines in tems of B-splines of lowor orden vith certain rolynomial coerficients. Thsis nesult is then used to eatablish a new proof that the E-rglines form a linearly independenti sob of basis functions in teras of which an arbitrary spline $s(x)$ can le expressed, and to establisll loeal lovex and upper bownis for $s(x)$ in terms of its Bomspline cosfficients. Two schemes proposed ly do Boos (1972) for the evaluation of $s(x)$ are described and, for the first time, error analyses of these sohemes; which demonstrate their unconditional. stability, already observa emrirically by de Boor, are giten. The problem of representing forers of x in texqs of B-splines is then addresseả and new alerothme for this moblen are presonted and detaileत
error analyses oarried out. wothocs for xupresenting in their b-spline form the decivatives and intecriss of $x(x)$ aro then considerod.

Chapter 6 is the first of" three "applications" chapters anu dijeusces the intorpolation of a data set by splinos of arbitrary ockar with arbitrary knot positions. A nem algonithn, together with a detajled error amalysis, is presented for this problem. Schmarser (1969) has spoken of the need for such an algorithm. In particulew, it in whowa that if B-splines are evaluated as reconmended and if one of the algorithoms proposed fom solvinig steppej-bandad systens is emroloyed, the connued spline is the exaot interpolart of a neichbouring data set. Chojoes for the exterion knots (roruired in orbex to derine ofull set of p...spine basis funcions) and the interior knots are discussod; in partioula tho dependence of a cortain condition nurnber upon the positions or these lmots is investigated using the singular value decomposition (STD). Some informative numorical tosts are carried out and a paction. problem is solved.

Chapter 7 is the counterpart of Chapter 6 in the case where a leastsquares approximation rather thon an interpolating funcion is required. A new algorither for tesitng whether a unique sphine approxinant exists in any given case is presented. For the least-squares spline-fitting problem itself an algorithm for splines of arvitravy ordor vith artitrony knot cositions is proposer. This illprithm again utilizers the comvex combinations schemo and the methods for steppedmandec systems ad is a generaliation of that given by Cow and liayes (1973) for cubic splines. An error analysis of this athorithm is givon and, with the aid of tine sin, an extremely encouraging conclusion is made relating to its stability. The inportant case of cubic sylines is discussed ard the nuestion of knot. pacement iz edaressed. Ls well as a teet cxample, a number of spine
fits to real data sets are presented.

Chapter 8 concentrates on the typo of problem where more information than that contained solely within the data set jtself is prescrived. It ja shown that some important types of continuons constraints upon the approximating spline may be enforced by jnposing upon tion srime a finjota number of point constrajnts. A now representation of cubic splines is thon used, in conjunction with an extension to algorithms due to Barrodale and Young (1966) for J_{i} - and I_{∞}-approxjmation, for splise fitting subject to convexity and concavity constraints. Procticed examples are given to demozativete the usciulnass of the approach.

In Chapter 9 the incorpocation of linerr equelity constwaints in spline approximation problems is dischssed. In particular, it is ehomm ihat. boundary conditions rey be incurporated readily hy a witple mudification to the banis. For more ecnemi constraintis, algorithas ion Iixumu Jeantsquares pioblems with lincar equality constiaints ane discussed.

Fincilly, Chapter 10 discusses brienly the extension of sume withe mothods of the eaxiler chapters to moxe then one independent variable. Inhe interpolation and Least-squajes approwination to data geven at all rorticos of a rectangrinx mesh by a tensor product of univaristo functions js fitst disoussed. The case where ine univariate funcljons ame B-aplines is then troated. The generel problem of the leastonouares spline approximation of arbitraxy nultivaxiate data, for wich ar algoritin has been given in the cubic cuse by Hayos and Halliday (1974), is then examincc.

GIIJETR 1

This chapter is one of three "rackbme" chaptens to this worls; it soives as en introduction to flonting-point ardithutic, empor analysis, \&lgoritusn end rumering stability. In Soction 1.1 te sunvoriico the jubiments of flonting-point; arithmetjo, adhering closely to the concents developed by Milkinson. In panbicutar, wo detail those aspocts of floating-point arithmetic of which we shell rake considerable use in subsequent diantern where rie analyze a number of computational procosses reluvant to spline ayproximation. In Section i.? We illustrate the type of orive analy ins we shatl be carrying out by amining sans ample formulne for lymer transformations ma, from tho results of our piadyons, matio a conjecture
 rumine error anslyois and tho derivation of a noterion on a nrioni error bounde. In Section $1 . \bar{z}$ ve Give en brief discussion of ivorithrs and what we understand by nuncrical stability. We slso outiline the way in which we shatl mesent sileorithmic descriptius of our comutetrions? processes.

1.1 Plonting-noint arithmstso

lany of the numevical methods described in the following chaptore will be analyzed in terms of their implementation in standand binary flontine. point arjinnetic. In this respect we shall frilow closely the approech of wilkinson (1953, 1965).

A number x is termed a standard binspry fostingoint number if it car be representel bja $_{j}$ anderod pair (a, b) such thst $x=a 2^{h}$. Here b, tio exromont, is an finteger, positive or negtive, usually rostizcted to the rance $-2^{c} \leqslant n<2^{c}$, where c is on integer, typically in the renge i tu 10 :
a, the mantissa, is a binary number, usual?y satisfying $\frac{1}{2} \leqslant|a|<1$, with no mero than t hinary digits. Typical values of t lia in the rango 16 to 48 . The value of 2^{-t} is termed the relative machino precision. The number eero is represonten in the non-standard forn $a=b=0$.

A relation of the form

$$
\begin{equation*}
y=f 1\left(x_{1} * x_{2} * x_{3} * \ldots * x_{n}\right), \tag{1.1.1}
\end{equation*}
$$

where cach * denotes any one of the erithretic operations,$+-x$ or \div, implies that $x_{1}, x_{2}, \ldots, x_{n}$ and y aro standard binary floatine-point numbers (or zero), and that y is the result of performing the appropriate floating-point operations. The multiplicaiion sign will frequently be onitted; thus $x_{1} x_{2}$ implios $x_{1} \times x_{2}$. The division sign (\because) will frequently be replaced by slash (/) or a horizontal line, in the usual may. Parentheses on the right-hand side of (1.1.1) are often necessary to remove ambieuity or to emphasise the order of the computation. 0therrise the sequence of floating-point operations is assumed to take place from left to rigkt, with the usual rules of precedence of X and \div over + end - . Thus, for example, $y=f l\left(x_{1} \times x_{2} \div x_{3}\right)$ jupless (j) $y_{1}=f 1\left(x_{1} \times x_{2}\right)$, (ii.) $y=f l\left(y_{1} \div x_{3}\right) ; y=f l\left(\frac{x_{1} x_{2}+x_{3} x_{l}}{x_{5}-x_{6}}\right)$ implies $(i) y_{i}=f l\left(x_{1} x_{2}\right)$, (iil) $y_{2}=f I\left(x_{3} x_{4}\right)$, (iii) $y_{3}=f \cap\left(y_{1}+y_{2}\right)$, (iv) $y_{4}=f l\left(x_{5}-x_{6}\right)$, (v) y $=f^{\prime}\left(y_{z_{j}^{\prime}}^{\prime} y_{l_{1}}\right)$. Eviūenily, any raibicial arithmetic expression can de representeã in floating-point arjthmetic terms by compounding basic operations of the form $y=f\left(x_{1} * x_{2}\right)$.

We assume that the rounding errors in the cperations are such that

$$
\begin{equation*}
f i\left(x_{1} *_{2}\right)=\left(\pi_{1}{ }^{*} x_{2}\right)(1+\varepsilon), \tag{1.1.2}
\end{equation*}
$$

whore

$$
\begin{equation*}
|\varepsilon| \leqslant 2^{-t} . \tag{1.1.3}
\end{equation*}
$$

For multiplication and division the value of a mill ho tiken as zisu if oither x_{1} or x_{2} is an integral power of ? Wo assunis further that relations of the tyee

$$
\begin{equation*}
P I\left(x_{1}+x_{2}\right)=\left(x_{1} \pm x_{2}\right) /(1+\varepsilon), \tag{1.1.4}
\end{equation*}
$$

where ε satisfies (1.1.3), aiso holà. Rejaions (1.1.k) sre due to Kahan (see I'etors and Wilkinson, 1971) and are sometimes mure ochvenient than (1.1.2). In any particular situation we shall use oither (1.1.2) or (1.1.1) as appropriate.

Filkinson (1963) states that some computers heve less accurate rounding procedures than those which give the above result:s, but we assume (as do Peters anā Wilxinson (1971) in a different context) that the differences are not of ereat consequence.

Fie shall also make use of the relations

$$
\begin{align*}
& \left(1+2^{-t}\right)^{s}<1+1.06 s 2^{-t} \tag{1.1.5}\\
& \left(1-2^{-t}\right)^{-s}<1+1.12 s 2^{-t} \tag{1.1.6}
\end{align*}
$$

whore s is a positive mumber (often integral). Relations (1.1.5) end (1.1.6) hold as long as s and t satisfy the mila restriction

$$
\begin{equation*}
s 2^{-t}<0.1 \tag{1.1.7}
\end{equation*}
$$

We assume throughout this mork that the inequality (1.1.7) is satisfied for all (reascnable) values of s that arise. (or the Enclish flectric KDF9 computer, for which $t=39$, this means that s can be as large as $(0.1) 2^{39} \doteq 5.5 \times 10^{10}$). Relation (1.1.5) As Eiven by willinson (1965:

shall sometimes use relation (1.1.5) in the form

$$
\begin{equation*}
\left(1+2^{-t}\right)^{\hat{0}}<1+s 2^{-t_{i}}, \tag{1.1.8}
\end{equation*}
$$

where

$$
\begin{equation*}
2^{-t_{1}}=(1.05) 2^{-t} . \tag{1.1.9}
\end{equation*}
$$

We observe that relation (1.1.7) is therefore equivalent to the inequality

$$
\begin{equation*}
: 2^{-t_{1}}<0.106 \tag{1.1.60}
\end{equation*}
$$

Moreover, $(1.1 .5),(1.1 .6)$ and $(1.1 .7)$ yield

$$
\begin{equation*}
\left(1+2^{-t}\right)^{s}<1.106 \tag{1.1.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(1-2^{-t}\right)^{-s}<1.112 . \tag{1.1.12}
\end{equation*}
$$

Throughout this work, unless otherwise stated, ε (with or without subscripts or superscripts) denotes a number satisfying

$$
\begin{equation*}
|t| \leqslant 2^{-t} \tag{1.1.13}
\end{equation*}
$$

and e (again with or without subscripts or superscripts) a number satisfying

$$
|e|<e^{-t_{1}} .
$$

Fie shall often estimate the arithretionl fork required by various computational processes by counting the number or long orations required. A long operation is one floatirg-point multiplication or one floating-ycint division.

1.2 Floating-coint error analysis

As an illustration of the type of floating-point error analysis we singly be carrying out in subsequent chapters, we examine various formula c for linear transformations. Linear transformations are required in Chapters 5
und 6, where it is inportant that they are comried out in a munerionly stable minner. Wo will see that the ormur analjse indicate vary cleary Whether a particular way of computing the Lianisformation is stable or potentially unstakle and, in the lattor casu, the reasons for the instimilata,

Consider the linear transiornation

$$
\begin{equation*}
x=(2 x-a-b) /(b-a), \tag{1.2.1}
\end{equation*}
$$

Which maps the Ënuerval $[a, b]$ into $[-1,+1]$. Finen implemented in floating-point arithmetic tho computed value \vec{X} of X will be contaminutea by rounding errors. Our aim is to produce a hound for $|\delta x|$, where

$$
\begin{equation*}
\delta X=\bar{X}-X \tag{1.2.2}
\end{equation*}
$$

which holds for all $x \in[a, b]$. Wre seek a function $K(r, b)$ such that

$$
\begin{equation*}
|\varepsilon x| \leqslant K(n, b) 2^{-t} . \tag{1.2.3}
\end{equation*}
$$

It mey soem somerhat surprising that we employ this formal approach to such an apparently innocuous computation as (1.2.1). The point wo pisis to stress, which na hope is brought out iy our analyses, is that attereion to detail is or vitil inporlance in this ani in many other computational processes. For instance, the nature of the error introduced in forming \because is dependert upon the precisa ondering of the bssic axithmatio operations in (1.2.1) and, woreoter, is influenced ever wore if (1.2.1) is re-sxpissjo3 in certain other mathematically ecuivalent bui computatjonally aistinct forms.

Threa possible nays of carrying out the transformation are given dy

$$
\begin{align*}
& x=\frac{(2 x-a)-b}{t-a} \tag{1.2.4}\\
& x=\frac{2 x-(a, b)}{b-a} \tag{1.2.5}
\end{align*}
$$

and

$$
\begin{equation*}
X=c X-d \tag{1.2,0}
\end{equation*}
$$

Where

$$
\begin{align*}
& c=2 /(b-a) \tag{1.n.7}\\
& d=(a+b) /(b-a) \tag{1.2.8}
\end{align*}
$$

A floating-point exror analysis of (1.2.4) yield.s

$$
\begin{equation*}
\bar{x}=\left\{(2 x-a)\left(1+\varepsilon_{1}\right)-b\right\}\left(1+\varepsilon_{2}\right)\left(1+\varepsilon_{3}\right)\left(1 \mid \varepsilon_{4}\right) /(b-a) \tag{1.2.9}
\end{equation*}
$$

where

$$
\left|E_{i}\right| \leqslant 2^{-t} \quad\left(i=1,2,3,1_{t}\right)
$$

from which

$$
\begin{equation*}
\varepsilon X=\bar{X}-X=\left\{e_{1}(2 x-a)+3 e_{2}(2 x-a-b)\right\} /(1-a) \tag{1.2.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\left|e_{1}\right|,\left|e_{2}\right|<2^{-t_{1}} \tag{1.2.12}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\varepsilon X=e_{i}\{b /(r-a)+\pi\}+3 e_{2} X \tag{1.2.13}
\end{equation*}
$$

and nence

$$
\begin{equation*}
|\overline{i x}|<\{\mid s i f(b-2)+4\} e^{-t_{1}} \tag{1.2.14}
\end{equation*}
$$

He see immedistely from (1.2.14) that the error in the computec value on X may be appreciable if the lengti $b-a$ of the original interval is sment compered witin the megnitude of b.

Analysis of (1.2.5) and (1.2.6) result in bounçar for similan in form to (1.2.14). 'this state of affeirs is particiulerly miortunate ir the case of the taird form of the transformation equation because the use (1.3.6) ippears to be eminertly sensiule if the transhormation is to be used for 2 laree number of x-values, since the constantis c and a can ve pre-computed trom $(1.2 .7)$ ard (1.2.8) with o sorsequent seving in mishmetiz.

A fourth fom of the transformation, which we now stady, is uncondtionalyy stable. Conztiar the use of the exprossion

$$
\begin{equation*}
x=\{(x-a)-(b-x)\} /(b-a) \tag{1.2.15}
\end{equation*}
$$

to compute the vaiue of X. An error analysis of this "somewhat innatural" form gives

$$
\begin{equation*}
\bar{x}=\frac{\left\{(x-a)\left(1+\varepsilon_{1}\right)-(b-x)\left(1+\varepsilon_{2}\right)\right\}\left(1+\varepsilon_{3}\right)\left(1+\varepsilon_{4}\right)\left(1+\varepsilon_{5}\right)}{b-a}, \tag{1.2.16}
\end{equation*}
$$

where

$$
\begin{equation*}
\left|i_{i}\right| \leqslant 2^{-i} \quad(i=1,2,3,4,5) \tag{1.2.17}
\end{equation*}
$$

frow which

$$
\begin{equation*}
\delta X=\frac{\varepsilon_{1}(x-a)-e_{2}(z-x)+j e_{3}(2 x-a-b)}{b}-a \quad \tag{1.2.13}
\end{equation*}
$$

Where

$$
\begin{equation*}
\left|c_{1}\right|,\left|e_{2}\right|,\left|e_{3}\right|<2^{-t_{1}} \tag{1.2.19}
\end{equation*}
$$

Thus, since ? $\leqslant x \leqslant b$, it foilows from ! 1.2 .18) snd (1.2.19) that

$$
\begin{equation*}
|\delta 7|<(4) 2^{-t_{1}} \tag{1.2.20}
\end{equation*}
$$

Note that the form (1.2.15) is computationally nc more expensive than (1.2.4) or (4.2 .5), but unlike them yields at worst a very small error. He now consider hriefly a selond stable form, havine an error bound only siightiy inferior to (1.2.20). The appoach is hased upon carryine out the linear transformation (1.2.1) in tru stages, viz. transformation to the interval [0, 1 , follamed of the "obvious" transformations

$$
\begin{equation*}
X^{1}=\frac{z-a}{b-a} \tag{1.2.21}
\end{equation*}
$$

end

$$
\begin{equation*}
X=2 x^{9}-1 \tag{2}
\end{equation*}
$$

which carry out this two-stage process, yield

$$
\begin{equation*}
\bar{x}^{\prime}=\frac{x-a}{b-a}\left(1+\varepsilon_{1}\right)\left(1+\varepsilon_{2}\right)\left(1+\varepsilon_{3}\right) \tag{1.2.23}
\end{equation*}
$$

an k

$$
\bar{X}=\left(2 X^{s}-a\right)\left(1+\varepsilon_{4}\right)=\left\{\frac{2(x-a)}{b-a}\left(1+\varepsilon_{1}\right)\left(1+\varepsilon_{2}\right)\left(1+\varepsilon_{3}\right)-1\right\}\left(1+\varepsilon_{4}\right), \quad(1.2 .21)
$$

Where X^{\prime} is the value of tho intermediate variable, computed values rue denoted by "bars" as usual, and.

$$
\begin{equation*}
\left|\varepsilon_{i}\right| \leqslant 2^{-t} \quad(i=1,2,3,4) \tag{1.2.25}
\end{equation*}
$$

$\operatorname{From}(1.2 .24)$;

$$
\begin{equation*}
\delta X=\bar{X}-X=\frac{6 c_{1}(\bar{x}-a)}{b-a}+e_{2}\left\{\frac{2(x-a)}{2-a}-1\right\} \tag{1.2.25}
\end{equation*}
$$

where

$$
\begin{equation*}
\left|e_{1}\right|,\left|e_{2}\right|<2^{-t_{1}} \tag{1.2.27}
\end{equation*}
$$

from which

$$
\begin{equation*}
|\varepsilon x|<(7) 2^{-t_{1}} \tag{1.2.28}
\end{equation*}
$$

The transformetions $(1.2 .21)$ and $(1,2.22)$ can of course be combined to form the single transformation

$$
\begin{equation*}
x=\frac{2(x-2)}{0-2}-1 \tag{1.2.29}
\end{equation*}
$$

or, expressed slightly differently, as

$$
\begin{equation*}
x=\frac{2(x-a)-(b-a)}{b-8} \tag{1.2.30}
\end{equation*}
$$

It is readily established that the use of (1.2.29) also gives an error satisfying (1.2.28) and that the bound for (1.2.30) satisfies

$$
\begin{equation*}
|\delta x|<(b) 2^{-t_{1}} \tag{1.2.31}
\end{equation*}
$$

A moch more atailen anlysis, which takes ints account the precisic
nature of the bit yatterns in the mantissae of tho floating-point representations of a, b and x, revoals thet for nearly all values of then numbers the bound (1.2.11) is unduly poscimistic. In particula, the analysis shows that in these cases the value of ε_{1} in (1.2.9) is zeno, with the consequence that θ_{1} in (1.2.11) is zero and hence

$$
\begin{equation*}
|\delta x|<(3) 2^{-t_{1}} \tag{1.2.3}
\end{equation*}
$$

However, the detailed analysis also shows that there are values of the numbers a, b and x which result in ε_{1} veing axactly equal in modulus to 2^{-t}. In these cases the bound (1.2.i4) proves to be realistic and preaicius accurately the magnitude of the actual error in the computed value of X.

Detailed analyses of (1.2.5) and (1.2.6) reveal that tine corresponding bounds are in fact realistic for most, rather than a few, values or a, b and x. I an indebted to $\operatorname{Dr} \mathrm{J} H$ Hilkinson who suggested the inethod of approach to these detailed enalyses.

The main conclusicin to be dram from the above relativily simile tialuses is that for stability the transfomation should be exprossed in a form that ensures that the mannitude of each intermediate corputed quantity is related as appropizate to the length of the orfeinal or of the transforinecu interval. Te see that the unstable formulae $(1.2 .1$) , (1.2.5) ana (1.2.0 $)$ all produce as intermediate quentitios nunbers related to the absolute value of the untransforme pariable, a number havine ro relation to the length of tire criginal interval. On the other hand, the intermediate quantities producad by the stable formulae (1.2.15), (1.2.21) and $(1.2 .22),(1.2 .29)$, and $(1.2 .30)$ are all related to the lengths of the criginal or transformed range.

Fixtrapolating this conclusion we conjesture that numerical processes in generai ere rora likely to be stable if, wherever possible, the intermedicito

ration speuial instances, too shiall). Tha nrinciplo certainly holds for Gaussian elinination, for it is knomn (Resa, 1971) that whatever stratogur (vinether it be partial pivoting, amplete pivotine, pivoting dom tho main diagonnl, etc) is employred, a bound for the departuro of the Linoor syiter actually solved from that reguired to be solved is related directily to the largest matrix elemont at any stere of the reduction. If a linetar system (square or nectaugular) is solved using orthogenalization methozs then no growth can cocur (Feters and Vilkinson, 1970), with the result that the process is stable.

Tn the numerical methoas we discuss we abhere to this goneral principle wherever possible. Particular instances are the use of plan rotations (Chapters 2 and 7), Olementary stabilizod transformations (Chaptirs 2 anh 6) and the taking of convox combinations. The latter process is basic to many of our computations (Chapters 4, 5, 6 and 7 in particuler).

Te do not reproduce error enalyses of vell-accented mumerically stanle methods such as the modificd Grom-Schmidt mocess, Houscholacr transformations and classical Givens ratetions for solvine linear systers, since sucli anslyses abound in the literature, the kay reference being Wilkinson (1965). However, whever approriate, we analyzo methowe thai have appeared recently or have been developed iming the course of this mork.

Ve shall carry out, in later chaptors, flcuine-noint error analyses of various recumence relations wich arise irn the solution of linear systems and in certain computations with spines. In particular we shell sometines (i) employ a "runninc" errar analysis (Petcx's and milkinson, 1971) to enable the omputer itself to aetermine rienous bounds on the someri it is making, (ii) obtain a posteriori absclute or relative exror bounds and,
occasionally, (iii) obtain arioxit absolute or relative error bounds.
To give the flavour of the types of results me obtain we analyze a simple example.

Consider the following recurrence relation which defines and generates the Fibonacci numbers:

$$
\begin{align*}
& f_{0}=f_{1}=1, \\
& f_{r^{\prime}}=f_{i-1}+f_{r-2}(r-2,3, \ldots) \tag{1.2.33}
\end{align*}
$$

Suppose this computation is carried out in floating point arithmetic. Let \bar{f}_{r} denote the computed value of f_{r} and $\delta f_{x}=\bar{f}_{r}-f_{r}$. Then

$$
\left.\begin{array}{l}
\bar{s}_{0}=f_{0}, \delta f_{0}=0 \tag{1.2.34}\\
\bar{f}_{1}=f_{1}, f_{1}=0
\end{array}\right\}
$$

and

$$
\begin{equation*}
\bar{f}_{r}=f l\left(\bar{f}_{r-1}+\bar{r}_{r-2}\right)=\left(\bar{f}_{r-1}+\bar{f}_{r-2}\right) /\left(1+\varepsilon_{r}\right) \quad(r=2,3, \ldots) . \tag{1.2.35}
\end{equation*}
$$

Thus for $r \geqslant 2$,

$$
\begin{equation*}
\left(1+\varepsilon_{r}\right) \bar{f}_{r}=\bar{f}_{r-1}+\bar{f}_{r-2} \tag{1.2.36}
\end{equation*}
$$

end therefore

$$
\begin{equation*}
f_{r}+\delta f_{r}+\varepsilon_{r} \bar{f}_{r}=r_{r-1}+\delta f_{r-1}+f_{r-2}+\delta \tilde{f}_{r-2} . \tag{1.2.37}
\end{equation*}
$$

The use of (1.2.33) reduces (1.2.57) to

$$
\begin{equation*}
\delta f_{r}=\varepsilon f_{r-1}+\delta f_{r-2}-\varepsilon \bar{f}_{r} . \tag{1.2.38}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left|\varepsilon f_{r}\right| \leqslant 2^{-t_{F}}, \tag{1,2.39}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
F_{0}=F_{i}=0, \tag{1.2.40}\\
F_{r}=\bar{F}_{r-1}+F_{r-2}+\bar{f}_{r}
\end{array}\right\}
$$

So, at the same time as it forms the \bar{f}_{r}, the computer can form the values F_{r}. Such a process is called a runniag exror analysis. However, like the f_{r}, the values of F_{r} cannot be formed exectly since rounding errors are mede in cormpting the error relation (1.2.40) : This apparent diffioulty is easily orercome as follows. Let $\overrightarrow{\mathrm{F}}_{\mathrm{r}}$ be the computed value of F_{r}. Then the computational equivalent of $(1.2 .4 .0)$ is

$$
\begin{align*}
\overline{\mathbb{F}}_{r} & =f I\left(\overline{\mathrm{~F}}_{r-1}+\overline{\vec{T}}_{r-2}+\overline{\mathrm{F}}_{r}\right) \\
& =\left\{\left(\overline{\mathrm{F}}_{r-1}+\overline{\mathrm{F}}_{r-2}\right)\left(1+\varepsilon_{1, x}\right)+\overrightarrow{\mathrm{F}}_{r}\right\}\left(1+\varepsilon_{2, r}\right) \tag{1.2.41}
\end{align*}
$$

Thus, since the $\overline{\mathcal{F}}_{r}$ and the $\overline{\tilde{F}}_{r}$ are non-rogative, the contribution to the error incurred in computing F_{r} from (1.2.1,0) is at most a multiplicative factor $\left(1-2^{-t}\right)^{-2}$. Hence, since $\delta f_{0}=\delta f_{1}=0$,

$$
\begin{equation*}
\left|\varepsilon f_{r}\right| \leqslant 2^{-t}\left(1-2^{-t}\right)^{2-2 r_{\bar{r}_{r}}} \tag{1.2.1.2}
\end{equation*}
$$

Now, by virtue of (1.1.12),

$$
\begin{equation*}
\left(1-2^{-t}\right)^{2-2 r}<1.112 \tag{1.2.4,3}
\end{equation*}
$$

Hence, since $\tilde{F}_{r}>0$ for $r \geqslant 2$,

$$
\begin{equation*}
\mid \text { if } r_{.} \left\lvert\,<(1.112) 2^{-\frac{t}{t}} \bar{F}_{r^{\prime}} \quad(r \geqslant 2)\right. \tag{+}
\end{equation*}
$$

This result is an a posteriori absolute srnor bound. Aithough such a result is extremely useful in practice in that it enables a rigorous bound on the absolute error in the computed value to be obtained, it tells us nothing about the gualitative nature or the error growth in the computation. In other words it does not teIn us whether the bound eroms, tice example, linearly, quadratically or exponontiallyy etc, with r. In
certuin favoureble cases the running ecror nnalysis approach con givo rise to a nosteniori bounds which not only display tho qualitative naturo of the growth but also obviate the need actually to use a rumingerror relationship like (1.2 .40) (which, incidentally, requires even more compitational effort then the hasic recurrence!). For instanoe, for the above exanole we shall show thet, for $r \geqslant 2, F_{r}$ satisfies the inequality

$$
\begin{equation*}
F_{r} \leqslant\left(1+2^{-i}\right)^{r-2}(r-1) \bar{f}_{r} \tag{1.2.1,5}
\end{equation*}
$$

and hence that

$$
\begin{equation*}
\left|\delta f_{r}\right| \leqslant\left(1+2^{-t}\right)^{r-2}(I-1) 2^{-t_{\bar{f}}} . \tag{1.2.4+6}
\end{equation*}
$$

In order to estabijsh this result we first assume it to be true for
 r-2 replacing r) into the risht-hand side or ($1.2 .1,0$) and the use of $(1.2 .36)$ gives

$$
\begin{align*}
F_{r} & \leqslant\left(1+2^{-t}\right)^{r-3}(r-2) \bar{f}_{r-1}+\left(1+2^{-t}\right)^{r-4}(r-3) \overline{\bar{r}}_{r-2}+\overline{\bar{P}}_{r} \\
& <\left(1+2^{-t}\right)^{r-3}\left\{(r-2)\left(\bar{f}_{r-1}+\overline{\mathrm{P}}_{r-2}\right)+\overline{\mathrm{f}}_{r}\right\} \\
& \leqslant\left(1+2^{-t}\right)^{r-3}\left\{(r-2)\left(1+2^{-t}\right) \overline{\mathrm{f}}_{r}+\bar{x}_{r}\right\} \\
& <\left(1+2^{-t}\right)^{r-2}(r-1) \overline{\mathrm{f}}_{r} . \tag{1.2.177}
\end{align*}
$$

But from $(1.2 .40), F_{2}=\overline{1}_{2}$. Henco $(1.2 .45)$ is true for $r=2$ and by induction theseíue for ail $r \geqslant 2$.

Heving established a result of the form (1.2.45), it may then be possible to obtain an a nriori relative orror bound. Firstly (1.1.11) is used to simplify $(1.2 .45)$ slightly to give

$$
\begin{equation*}
r_{r} \leqslant 1 . i \cos (x-1) \bar{f}_{r} \tag{1.2.1.8}
\end{equation*}
$$

and lience

$$
\begin{equation*}
\left|\delta f_{r}\right| \leqslant 1.105(\Gamma-1) 2^{-t_{\bar{f}}} \tag{1.0,4g}
\end{equation*}
$$

Iu's the relctive orror in \bar{f}_{x} is simply

$$
\begin{align*}
\left|\frac{\vec{f}_{r}-f_{r}}{f_{\bar{r}}}\right| & =\left|\frac{\varepsilon f_{r}}{f_{r}-\varepsilon i_{r}}\right|=\left|\frac{\varepsilon r_{r}}{1-\varepsilon_{r}^{r} / \bar{f}_{r}}\right| \tag{1.2.50}\\
& \leqslant \frac{1.105(r-1) 2^{-t}}{1-1.106(r-1) 2^{-t}} \\
& <\frac{1.105(r-1) 2^{-t}}{1-0.1106} \\
& <1.24+(r-1) 2^{-t} \tag{1.2.51}
\end{align*}
$$

using (1.1.7). We can therefore state, before the conputation is starten, that the relative erron in tho computed velue of f_{r} cemont axceed 1.244($r-1) 2^{-t}$. This result is absolutely rirorous; in pactice the statistical effects of rounding eryors are more likely to give ari actian error of the order of $(r-1)^{\frac{1}{2}} 2^{-\frac{t}{t}}$. However, the importance of a result of the type obtained here is not only that the procise nature of the exre: bound has been obteined, but Elso that an 三wniow orrom bound aen be obtained at ail and, as pie will see in Section ? 3, that the compuistion has terii shom to be uncunaitionally numericuig stable.

1.3 Nerorithus and numerical stability

Ar alporithm is a procedure (set of rules, recipe) for obtaining a solution to a specific mathomatical froblem. An ajerorithe describes in an unambiguous manner the way in wich arequired ow of inmers the solution, may be computed froil a given set of numbers, the iata. For instance, the recurrence relition $(1.2 .33)$ constitutes an algorithm for complutine the Pirmecci rumbers f_{2}, f_{3}, \ldots fron the data (injtial condations) $\hat{I}_{0}=f_{1}=1$.
 Let the M-ventor f derive the solution obtained by A using expect: arithmetic and the n--vector \bar{A} the solution obtained by A using standard floating-point arithmetic.

Every algoritinn hes a domain of applicability X (Rice, 1971; Cox, 1974), defined by the set of data $\begin{gathered}\text { y for which the algorithm en n provide the }\end{gathered}$ desired solution f. For instance, $X=\{x \mid x \geqslant 0\}$ fox mu alecrithra which computes the positive square root of a ron l number x; fin practice there will be an upper bound M for the values of for which the aleronithm is designed, in which case $X=\{x \mid 0 \leqslant x \leqslant 1$,$\} .$

A will be termed unconditionally numerically stable if, for all $\approx \in X$, the implementation of A in standard floating-point arithmotio provides a solution $\bar{\sim}$ which in some sense bears a close resemblance to $\underset{\sim}{f}$. Probably the most desirable form of closeness is

$$
\begin{equation*}
\left\|\frac{\|}{x}-r_{N}\right\| \leqslant k_{1} 2^{-t}\left\|\frac{1}{\sim}\right\| \text {, } \tag{1.3.1}
\end{equation*}
$$

where 2^{-t} is the relative machine precision, as before, and K_{1} is relateú to the particular process employed in A. || . \| denotes any convenient vector norm. If the computed solution is a single value then $\|\cdot\|$ may be replaced by $\mathfrak{j} \mid$ in the usual way. Often, fur a particular process, K_{1} is either a constant or depends upon a small number of parameters relating to that process. Sometimes an expression for K_{1} can be determined a priory; in other cases K_{i}, ray be the result of a running error melys.is or an a posterior analysis.

If $\mathrm{K}_{1} 2^{-t} \ll 1$ then $(1.3 .1)$ may be considered on excellent bound in that the relative error in the computed solution will be smell.

Sometimes it may be difficult or impossibles to detain a hound of the form (1.3.1). Horitver, it may be possible to derive a bound of the form
where, as before, K_{2} is a constant ox is relate i to the parbiculas: process, but

$$
\begin{equation*}
\mu=\max _{\underset{\sim}{x} \in X}\|\underset{\sim}{\imath}\| . \tag{1.3.3}
\end{equation*}
$$

If $\mathrm{K}_{2} 2^{-t} \ll 1$ then (1.3.2) may also indicate a stable algorithm or course, (1.3.2) is a somewhat weaker result than (1.3.1) jr that whereas (1.3.1) gives a bound on the relative error and, consequently, on the absolute error, (1.3.2) merely gives a bound on the absolute error, which may or may not imply a satisfactory relative error hound.

An algorithm will be termed conditionally numerically stan le if a result of the form (1.3.1) or (1.3.2) holds for an identifiable subset X of X. For some algorithms it is not easy to quote a result as streaightfomard as (1.3.1) or (1.3.2), even ir such a result can de obtained at all. However, We con sometimes say that a particular algorithm is "goon" because it exhibits stable behaviour in practice for moi $\underset{\sim}{x} \in X$, although no theoretical statement of behaviour is easily obtained. The values of $\underset{\sim}{x} \in X$ for which the algorithm fails to produce good results may correspond to pathological or extreme situations, eg to data sets unlikely to frise in practical applications.

For some algorithms rigorous mon bound an be determined, but the bounds are most unlikely $1 ; 0$ be attained or even approached at all closely. A crond example is the bun associated with Gaussian elirairation with partial pivoting for solving linear algebraic systems (Wilkinson, 1963:p9\%), which contains a factor of 2^{n-1}, where n is the order of the system. It might be thought therefore that for systems of quito modest size the volutions obtained moved have errors so large that the results wore meaningless.

Howevor, notinine could be furthex fron tre truth since, upext from artifficially-constmeted ernyiles (for an interestine cxamile aec Wilkinson, 9061 , a more realistic, though not rigorous, bound for prostionl purposes combeins a factor of the order of unity rather than 2^{13-1}.
llost of the dove discussion relates to forward error analysis in which a measure of the closeness of the computed solution to the antiual solution
 a haciward ewron anthysis. In such en ane tysis the solution obtainor is. interpreted as the exect solution of a problen with data $\underset{\sim}{\underset{z}{x}}$ which is (hoperully) only slightiy different frown x. Bounas upon $\|\underset{\sim}{x}-x\|$ are then sought, which again inaicate whether the alforithas can bo consiceroa an being numerically staille.

Many of the computational processes we diecuss ere accoapariea by comented aigorithms. These aigorithms are intended to proride a definitive "interface" betrren a "casual" description of a computational process and its formel implementation in a high-level langusse suoh as Algol or fortrain. We believe thet a reader knomledgenble fir a hisin-levei language woun resizily be able to code these aiforithms. For comareini reasons we are unaile to list actual oodes in this work. However, aij the algorithms presented here have bson programed in AEcl 60, Fortran IV w Babal, an Aleol-like lenguage due to Scoven (1969). Apart from the relatively tivin illustrative algorithms, such as Aigorithm 1.3.1 belar, they have tejn tesied carerfily on a wiat variety of botin nouej and practical probleain.

Fe use the algoritims as bujlding blocks finst as procedures are used ir A.Eul ank subroutines in Fortrai. Fui exaiple, the relativaly simpie 2lenibiras in Sention 2.1 for solving trionguinn systoms are necact by many of the mont complicated aforithra for solving general linear systems
is tho subseguent sections of Cheprex 2. In turn, the alrorithms in Ciapters 6 and 7 for spline interpulition airy lesst-squares my ine approxjination mane use of the algorithms for linear systems.

Nach alcouithm is describod by a sequence of steps ov stares. Most suops describe one or more on the following operitions: assiby a value to a voriahie: ravance or return to a statod step if a condition is satisfiec. execute the stateri steps the stated number of timos. These trinee types of sitep occur frequestiy. Occasionally we need to make use ot a dumry stiatement (or nuju operation), io a statement whose presonce is necessery to describe umabiguously the flow of a compitational process. Por this null operation we borrow the tern Contimue from the Portran language. Other types of step also appeav; we balieve that mrast of these fre selfexplanatory: qualification will ve given where thought necessexy. There appropriate the algorithuic steps are interspersed by camments or remarlis which help relate the various staces of the elgorithm to those of the computational process beins implemented. In particular, if a special storage strategy is employed, such as in the ahyorithms of Sections 2.12 to 2.14 for stemna-iended matrices, the aluorithmic steps refer to the notation apprepriate to the spocial stratem, whereas the comments refer to the natural storapn notation.

As a very simple illustration of the form of our algorithms, filc rocurrence relation (1.2.33) for generating the Fibonacci numers is described by Algorithm 1.3.1 bciom.

17forithm 1.j.1: Generation of the hivonacoi niubers $f_{0}, f_{1}, \ldots, f_{n}$. Comment: Initialization.

Siep 1. Set $f_{0}=1$ and $f_{1}=1$.
Commen: iecur the äfining rulation for wise fjoonacci numbers.
Stcp 2. Pur $r=?, 3, \ldots, n$ fomm $f_{r}=n_{n-1}+f_{y-2}$

CHAPTER 2

THE NUNERICAL SOLUTION OF LDNGAR ALGEBRATC EQUATIONS
Frequent use is made throughout this work of methods for the solution of systems of linear equations (Chapters 6, 8 and 10) and also for the leastsquares solution of systems of over-determined linear equations (Chapters 7 and 10). Accordingly, this chapter is devoted to the description of numerically stable methods for solving such problems. We concentrate particularly upon the linear least-squares problem, since the solution of a system of lineas equations can be considered as being includod as a special case. The linear least-squares problems that arise from the use of polynomial splines as approximating functions tend to be highly structured, if a suitable basis for the spline is employed. The so-called observation matrix (Section 2.2) proves to havc special properties in that many of its elements are zero and, moreover, the disposition of the non-zero elements can be characterizad in a straightforward manner. Similar remarks apply to the syotems of linear equations arising from spline interpolation problems.

In order to obtain efficient algorithms for solving these problems it is important to take advantage of the special structure of these matrices. Firstly, however, we outline a number of methods currently available for the solution of dense linear least-equares probiems and consider subsequontion ways in which they can bo modified so that siructured problems can be treated.

There are six methods in current use:
(i) Choleskr decomposition of the normal equations,
(ii) Gaussian elinination
(iii) Gram-Schmidt orthogonalization
(iv) Fouseholder transfometions
(y) Givens rotations
(vi) The singular value aecomposition
applied to the observation metriv

For our purposes the use of Givens rotations provesto be most appropijate. In order to establish this we give a brief description of each approach, together with its merits and demerits.

In an attempt to obtain the utmost numerical stability, the methods applied to the observation matrix are sometimes implemented so as to include a column-interchange (pivoting) strateฏy (see, for example, Golub, 1965; Businger and Golub, 1965 and Peters and Milkinser, 1970). Unfortunatelyz the interchanging of colums tends to destivy the nature of the zero-nonzero structure. Since in our work we wish to take full advantage of structure, we would be prepared to accept a slight loss of nunerical stability if the avoidanco of colum interchanges led to significantly mora efficient algorithms.

There is evidence both empirical and theorotical that the behaviour of the modified Grem-Schmidt method (see Section 2.6) is not improved by column interchanges. For instance, after obtaining considerable computational evidence, Rice (1956) concluded that interchanges result in a percoptible but small (eren negligible) improvement. Ir a detailed theoretical floatingw point error analysis BjHrck (1967) concluded that, regardiless of whether or not interchanges are made, the errors in the computed solution are less than the errors resulting from relative perturbations in the observation matrix and right-hand side of $K(m, n) 2^{-t}$. Here t is the number of bits in the mantissa of the floating-point word and K is a modest function or n and n (the respective numbers of rows and columns in the cbservation matrix). Similar conclusion can be expected to hoid in respect of methods (iv) and (v) (Wilkirson, 1974).

Hany of the numerical methods we aescribe are applicable equally to the square case (interpolation) and to ine rectangular or over-determined case (loast squaros). However, there are alventeges to be gained in terms of computationaj efriciency by employing elimination methods in the square cace,
and in terms of stability and simplicity by using orthogonalization methods in the over-determinea case. Accordingly, most of the algorithms we present for these methods reflect these considerations.

In Section 2.1 we give algorithms for the solution of triangular systems, since these ara required by many of the subsequent aigorithus for more general systoms. In Section 2.2 ve introduce the linear least-squares problem and describe in Section 2.3 the normal-cquations approach to its solution. Elimination methods are discussed in Section 2.4 and in Section 2.5 the use of orthogonal transformations j.s considered. Particular methots for orthogonal transformations, viz modified Gram-Schnidt, Householèer and Givens rotations are described in Sections 2.6, 2.7 and 2.8. Kodern variants of Givens rotations aro presented in Section 2.9 and a comparison of the various methods for orthogonal triangularization is made in Soction 2.10. In Section 2.11 stepped-banded matrices are defined and in Sections 2.12, 2.13 and 2.14 methods based upon Gaussian elimination, elementary transformations and orthogonal transformations for solving systems with stepped-banded ratrices are presented. The powerful singular vaiue decomposition is considered in Section 2.15 and, fine.lly, in Section 2.16 perturbation bounds for the solution of linear systems are given.

2.1 The solution or triangular systems

Most of the numerical methods we doscribe for solving the frequentily overdetermineù l.inear system

$$
\begin{equation*}
\underset{\sim}{A x}=\underset{\sim}{b}, \tag{2.1.1}
\end{equation*}
$$

where A is a given m by matrix and b is a given m-vector, firstly reduce the system to upper triangular form. This reduction is usually carried out by pre-multiplying both sides of (2.1.1) by a sequence of transformation matrices chosen to have the effect of anniluilating in a systematic manner the sub-diagenrl elements of A. Triangular systens also arise in our work in varinus othor ways.

Pe describe aleforithms for solving three types of triangular system that are of particular importance. We denote the general trianguler system by

$$
\begin{equation*}
\mathrm{P}_{2}=\mathrm{A}, \tag{2.1.2}
\end{equation*}
$$

where $\underset{\sim}{R}$ is an upper-triangular matrix of order n by n and θ an n-vector. It is assumed henceforth that $\underset{\sim}{R}$ is non-singular, ie the clements on the main diagonal of $\underset{\sim}{R}$ are non-zero. Any implementation of our algorithms would of course test either implicitly or explicitly whether these elements were indeed non-zero.

We consider first the simplest case where $\underset{\sim}{\text { I }}$ is dense, ie all or most of the super-diagonal elements of R are non-zero. In the trivial algorithm below, a natural storage strategy is asswined, ie that element $r_{i j}$ ($j \geqslant j$) of R is stored in location (i, j) of an n by n array. Locations (i, j) ($j<i$) of this array are not used.

Alcorithm 2.1.1: Solution of the dense upper triangular system $R=0$. in the case where $\underset{Z}{ }$ is stored in natural form.

Step 1. For $j=n, n-1, \ldots, 1$ compute

$$
x_{j}=\left(\theta_{j}-\sum_{k=j+1}^{n} r_{j k} x_{k}\right) / r_{j j} .
$$

In this and subscquent algorithrs we adopt the convention that there is no contribution from a sum having a lower limit that exceeds the upper limit.

In order to ainimize storage requirements, some of our algorithms store the diagonal and super-fiagonal eluments of \AA soquentially by rows in a vector of length $\frac{1}{2} n(n+1)$. In Algorithm E.1.2 this siorage strategy is assumed. Algorithm 2.1.3 is similar to Algoritin 2.1 .3 except that $\underset{\sim}{R}$ is taken to be unit upper triangular; in this case only the super-diagonal elements are stored, ágain sequentially by rows, in a vector of length $\frac{1}{2} n(n-1)$.

11porithm 2.1.2: Solution of the dense upper triangular system $B X=\underset{\sim}{e}$, in the case where the diagonal and super-diagonal clements of $\underset{\sim}{R}$ are stored sequentially by rows.

Step 1. For $j=n, n-1, \ldots, 1$ execute Steps 2-7.
Step 2. Set $I=(j-1)(2 n+2-j) / 2+1$.
Comment: $r_{j j}$ is stored as the I th element of the vector.
Step 3. Set $y=r_{1}$ and $z=\theta_{j}$.
Step 4. For $k=j+1, j+2, \ldots, n$ execute Steps 5-6.
Step 5. Replace 1 by $1+1$.
Step 6. Replace z by $z-r_{1} X_{k}$.
Step 7. Set $x_{j}=z / y$.
Almorithm 2.1.3: Solution of the dense unil: upper triangular system ${ }_{\text {Bx }}=Q$, in the case where the super-diagonal elements of R fare stored sequentially by rows.
Step 1. Tour $\mathbf{j}=\mathrm{n}, \mathrm{n}-1, \ldots, 1$ execute Steps 2-7.
Step 2. Set $I=(j-1)(2 n-j) / 2$.
Step 3. Set $z=\theta_{j}$.
Step 4. For $k=j+1, j+2, \ldots, n$ execute Steps 5-6.
Step 5. Replace I by $1+1$.
Step 6. Replace z by $z-r_{1} X_{k}$.
Step 7. Set $x_{j}=z$.
Particular attention will be peid to the solution of systems where the matrices are stepped-banded in form (for a defirition see Section 2.11). The resulting triangular systems have matrices that are band unver
triengular. Algorithen 2.1.4 solves the system (2.1.2) in the case where Phes nti suner-ifagenals. The strateg employed is to store the diagonai and super-liagonals of $\underset{\sim}{R}$ as the successive columns of an n oy q array. This condensed storage strategy is illustrated in the case $n=6, q=3$ in

Fig 2.1.1 (* denotes an unused storage location).
$r_{11} r_{12} r_{13}$

$$
r_{22} \quad r_{23} \quad r_{24}
$$

$r_{33} \quad{ }^{r} 34 \quad r_{35}$

$$
r_{44} \quad r_{4,5} \quad r_{46}
$$

$r_{55} \quad r_{56}$
r_{66}
Natural storage
$r_{11} r_{12} r_{13}$
$r_{22} \quad r_{23} \quad r_{24}$
$r_{33} r_{34} \quad r_{35}$
$r_{1,4} \quad r_{4,5} \quad r_{46}$
$r_{55} r_{56}$ *
r_{66}
Condensed storage

Fis 2.1.1 Natural and condensed storage for an upper band triangular matrix in the case $n=6, q=3$.

Algorithm 2.1.4: Solution of the upper band triargular system $\mathrm{RX}=日$, in the case where the diegonal and super-diagonals of P are stored successively in columns.

Stop 1. For $i=n, n-1, \ldots, 1$ execute Steps 2-3.
Step 2. Set $j=\min (n-i+1, q)$.
Stej 3. Form $x_{i}=\left(\theta_{i}-\sum_{k=2}^{j} r_{i k} x_{k+i-1}\right) / r_{i 1}$.
2.2 The linear least-squares problem

Consider the Jinear least-squares proklem

$$
\underset{\sim}{\min } \underset{\sim}{\underset{\sim}{r}}{ }^{T} \underset{\sim}{r},
$$

where

$$
\begin{equation*}
\underset{\sim}{r}=\underset{\sim}{A} \underset{\sim}{x}-\underset{\sim}{b} . \tag{2.2.2}
\end{equation*}
$$

In (2.2.2), A, a prescribed ohservation or design matrix, is an m by n matrix of rark $k(k \leq n \leqslant m)$, $\underset{\sim}{h}$ is a prescriner right-hand-side vector of longth m, r is the residual rector and $\underset{\sim}{x}$ the solution vector. In the
problems to be considered k is usually, but not always, equal to n.

The following properties of least-squares solutions are known (see, for example, Peters and Wilkinson, 1970):
(i) All least-squares solutions satisfy the soucalled normal equations

$$
\begin{equation*}
A_{\sim}^{T} A x=\underset{\sim}{A} A^{T} b \tag{2.2.3}
\end{equation*}
$$

(ii) If $k=n$ then the system (2.2.3) has a unjque solution.
(iii) If $k<n$ then of all solutions satisfying (2.2.3)
there is only one, known as the minimal norm solution, which minimizes $z=(\underset{\sim}{x} \underset{\sim}{x})^{\frac{1}{2}}$, the Fuclidean length of the solution vector.

One method for the solution of (2.2.1) is based upon the direct solution of the system (2.2.3). The other five methods are all based upon an initial factorization of the form

$$
\begin{equation*}
A=\mathrm{CH}, \tag{2.2.4}
\end{equation*}
$$

Where $\underset{\sim}{G}$ is an m by k matrix, $\underset{\sim}{\text { Ha }} \mathrm{k}$ by n matrix and botin $\underset{\sim}{G}$ end $\underset{\sim}{\text { H }}$ are of rank k. Evidently this factorization is not unique since we may write

$$
\begin{equation*}
\underset{\sim}{A}=G^{\prime}{\underset{\sim}{H}}^{\prime} \text {. } \tag{2.2.5}
\end{equation*}
$$

where

$$
\begin{align*}
& G^{\prime}=G F^{-1}, \tag{2.2.6}\\
& \mathcal{N}^{\prime}=\underset{\sim}{N} H \tag{2.2.7}
\end{align*}
$$

and $\underset{\sim}{f}$ is any k by k matrix of rank k.

The substitution of (2.2.4) into (2.2.3) yields

$$
\begin{equation*}
H_{\sim}^{T} G_{\sim}^{T} G H x=H_{N}^{T} G^{T} \underset{\sim}{T} . \tag{2.2.8}
\end{equation*}
$$

The pre-multiplication of both sides of (2.2.8) by $\underset{\sim}{H}$ then yields

Now both $\underset{\sim}{T H} H^{T}$ and $\underset{\sim}{G}{ }_{\sim}^{T}$ are k by k matrices of rank k, sinco $\underset{\sim}{G}$ and $\underset{\sim}{H}$ are themselves os rank k. Hence the pre-multipjeation of both sides of (2.2.9) by $\left.\left(\mathbb{C}_{\mathbb{T}}^{T}\right)^{-1}(\underset{\sim \sim}{H})^{T}\right)^{-1}$ yields

$$
\begin{equation*}
\underset{\sim}{H x}=\left(G_{N}^{T} G_{N}^{G}\right)^{-1}{\underset{\sim}{c}}^{T} \underline{Z} \tag{2.2.10}
\end{equation*}
$$

Since $\underset{\sim}{H}$ is of rank k, a particular solution (which may be verjfied by inspection) of the equation

$$
\begin{equation*}
\underset{\sim}{H X}=\underset{\sim}{\sim}, \tag{2.2.11}
\end{equation*}
$$

Where $\underset{\sim}{x}$ is any given vector of length k, is

$$
\begin{equation*}
\underset{\sim}{x}=H_{N}^{T}\left({\underset{\sim}{H}}^{T}\right)^{-1} \underset{\sim}{v} \tag{2.2.12}
\end{equation*}
$$

Thus a particular solution of (2.2.10) is

$$
\begin{equation*}
\left.\underset{\sim}{x}=H_{N}^{\mathrm{T}}\left(\mathrm{XH}^{\mathrm{T}}\right)^{\mathrm{T}}\right)^{-1}\left(G_{\sim}^{\mathrm{G}} \mathrm{G}^{\mathrm{j}}\right)^{-1}{\underset{\sim}{G}}^{\mathrm{T}} \underset{\sim}{\mathrm{~W}} . \tag{2.2.13}
\end{equation*}
$$

Paters and Wilkinson (1970) show that (2.2.13) is in fact the minimal least-squares solution. The matrix

$$
\begin{equation*}
A^{\dagger}=H_{\sim}^{T}\left(M_{\sim}^{T}\right)^{-1}\left(G_{\sim}^{T}{\underset{\sim}{G}}^{T}\right)^{-1} G^{T} \tag{2.2.14}
\end{equation*}
$$

is termed the nseudo-inverse of A.

In the full-rank case $k=n$, $\underset{\sim}{H}$ is an n by n matrix of rank n and accordinely (2.2.13) reduces to

$$
\begin{equation*}
\underset{\sim}{x}={\underset{\sim}{H}}^{-1}\left(G_{\sim}^{T} G\right)^{-1} G_{\sim}^{T} \underset{\sim}{b} \tag{2.2.15}
\end{equation*}
$$

2.3 Choleshy decomposition of the normal equations

one method of computing the linear least-squares solution in the fullrank case $k=n$ is suggested by equations (2.2.3). In this approach we form the n by n matrix $\underset{\sim}{\mathcal{L}}$ and the n-vector $\underset{\sim}{d}$, where

$$
\begin{equation*}
\underset{\sim}{C}=A_{\sim}^{T} A \tag{2.3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\underset{\sim}{d}=A_{\sim}^{\mathrm{T}} \underset{\sim}{\mathrm{~b}}, \tag{2.3.2}
\end{equation*}
$$

and then solve

$$
\underset{\sim}{C x}=\underset{\sim}{d} \cdot
$$

Since $\underset{\sim}{A}$ is of rank $n, \underset{\sim}{C}$ is also of rank n. Moreover, $\underset{\sim}{C}$ is p sitive definite. In such a case, Cholesky decomposition (Wilkinson, 1965: p 229 et seq) may be used to give the factor R in

$$
\underset{\sim}{C}=R_{N}^{T}{ }_{N},
$$

where $\underset{\sim}{P}$ is an upper triangular matrix of order n and rank n. The sojution $\underset{\sim}{x}$ may then be obtained by solving the triangular systems

$$
{\underset{\sim}{R}}^{T} X=\underset{\sim}{o}
$$

and

$$
\begin{equation*}
\underset{\sim}{R x}=\underset{\sim}{v} \cdot \tag{2.3.6}
\end{equation*}
$$

 of the information contained in A may be lost. The following example due to Läuchli (1961) (also see Guluu, 1905 anū Bĩ̛ick, 1967) illusirates this point very meli. Let

$$
\underset{\sim}{A}=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \tag{2.3.7}\\
\delta & 0 & 0 & 0 & 0 \\
0 & \delta & 0 & 0 & 0 \\
0 & 0 & \delta & 0 & 0 \\
0 & 0 & 0 & \delta & 0 \\
0 & 0 & 0 & 0 & \delta
\end{array}\right] \text {. }
$$

Then

$$
\underset{\sim}{C}=\underset{\sim}{A} A \sim=\left[\begin{array}{ccccc}
1+\delta^{2} & 1 & 1 & 1 & 1 \tag{2.3.8}\\
1 & 1+\delta^{2} & 1 & 1 & 1 \\
1 & 1 & 1+\delta^{2} & 1 & 1 \\
1 & 1 & 1 & 1+\delta^{2} & 1 \\
1 & 1 & 1 & 1 & 1+\delta^{2}
\end{array}\right]
$$

It is easily verificd that if $\delta \neq 0$ then the rank of $\underset{\sim}{\mathcal{C}}$ is five, since the eigenvalues of $\underset{\sim}{C}$ are $5+\delta^{2}, \delta^{2}, \delta^{2}, \delta^{2}$ and δ^{2}. Now consider the computation of the elements of $\mathbb{\sim}$. Even if this computation is exact, apart from a final rounding to t binary digits, ther $1+\varepsilon^{2}$ will be rounded. to unity for all δ such tiat $|\delta| \leqslant 2^{-t / 2}$. In such cases the exact oigenvalues of the computed $\underset{\sim}{C}$ will be $5, C, 0,0$ and 0 and the correspondine rank will be unity. Thus, however accuretoly the Cholesky ascomoosition js carried out, it is impossible to solve the systom (2.3.3).

There are somo problems, however, where the approach of this section is effective. These problems correspond, at least in the context of data approximation, to the choice of a"nearly-orthosonal" set or basis functions,

2.4 Gaussian elimination

We now outcine a methoci based upon Gaussian elimination for the full-rank case $k=n$. Yeters and Tilkinson (1970), who appear to have been the first tio uso the wethod, give a rore detailea descrintion for the general case

It is well known that in the case $m=n$ the n by n matrix A can be factorized in the form

$$
\begin{equation*}
\stackrel{A}{\omega}=\mathrm{IU}, \tag{2.4.1}
\end{equation*}
$$

where $\underset{\sim}{L}$ is lowcr-triangular with unit diagonal elements and $\underset{\sim}{\mathbb{O}}$ is upper triangular. A common way to obtain the factorization in a numerically stable manner is to employ Gaussian elimination with partial pivoting (Milkinson, 1965: p200 et seq). The partial pivoting strategy means that in general we obtain an $\underset{\sim}{U} \underset{\sim}{U}$ decomposition of a matrix A^{\prime}, where A^{\prime} is derived from A by suitably permuting its rows, ie

$$
\begin{equation*}
A^{\prime}=P A=I T D, \tag{2.4,2}
\end{equation*}
$$

whore $\underset{\sim}{P}$ is a permutation matrix.

In the case $m>n$ it is also possible to use Gaussian elimination to obtain a factorization of the m by n matrix A. Me still obtain a decomposition of the form (2.4.2), but now $\underset{\sim}{L}$ is an m by n unit Iower-trapezoidal matrjx (Peters and Wijkinson, 1970), ie $\underset{\sim}{\mathrm{L}}$ is of the form illuatrated in Fig 2.1.1 for the case $m=6, n=4$.

$$
I_{\sim}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
I_{21} & 1 & 0 & 0 \\
I_{31} & I_{32} & 1 & 0 \\
I_{41} & I_{42} & I_{43} & 1 \\
I_{51} & I_{52} & I_{53} & I_{54} \\
I_{61} & I_{62} & I_{63} & I_{64}
\end{array}\right] \text {. }
$$

Fie 2.4.1 A unit lower-trapezoidal matrix of order 6 by 4 .

For notational corvenience suppose that the roms of A have initially been permuted so that no interchangas are subsequently necessary, ie $\underset{\sim}{P}=I$,

$$
\underset{\sim}{x}={\underset{\sim}{U}}^{-1}\left(\underset{\sim}{T}{ }_{\sim}^{T}\right)^{-1} \underset{\sim}{d},
$$

where

$$
\begin{equation*}
\underset{\sim}{d}=\underset{\sim}{L} \stackrel{T}{\mathrm{~b}} . \tag{2.4.4}
\end{equation*}
$$

The solution vector $\underset{\sim}{x}$ in (2.4.3) may then be computed as follors. After forming the factors $\underset{\sim}{L}$ and $\underset{\sim}{U}$, we form the vector तi $_{\sim}$ in (2.4.4) and the n by n matrix

$$
\begin{equation*}
\underset{N}{M}=I^{T} \mathrm{I} . \tag{2.4.5}
\end{equation*}
$$

Since $\underset{\sim}{N}$ is symetric positive definite, it possesses the Cholesky decomposition

$$
\begin{equation*}
\underset{\sim}{W}=V V^{T}, \tag{2.4.6}
\end{equation*}
$$

where $\underset{\sim}{V}$ is upper triangular. After forming $\underset{\sim}{V}$, the intermediate vectors $\underset{\sim}{z}, \underset{\sim}{y}$ and the solution vector $\underset{\sim}{x}$ are obtained from the solutions of the triangular sets of equations

$$
\begin{align*}
& \underset{\sim}{Z}=\underset{\sim}{d}, \tag{2.4.7}\\
& \underset{\sim}{V} \underset{Z}{T}=\underset{\sim}{z}, \tag{2.4.8}\\
& \underset{\sim}{U} \underset{\sim}{x}=\underset{X}{ } . \tag{2.4.9}
\end{align*}
$$

In the case where $\underset{\sim}{A}$ is square, ie $m=n$, then tur steps involving the formation and the Cholesky decomposition of N_{N} are unnecessary. The solution to (2.2.1) in this case is also that of

$$
\begin{equation*}
A x=b, \tag{2.4+00}
\end{equation*}
$$

which can be found by the use of (2.1.1), ie by solving

$$
\begin{equation*}
\mathrm{I}_{\sim \sim}^{i v}=\mathrm{b} \tag{2.4.11}
\end{equation*}
$$

and

$$
\underset{\sim N}{U x}=\underset{\sim}{V} \cdot
$$

 Cholesky decomposition of $\underset{\sim}{M}$, the stability problems associated with the normal-equations approach are still present. However, Peters and Filkinson (1970) state that pivoting usually causes $\underset{\sim}{L}$ to be well-conditionod and any ill-condition in $\underset{\sim}{A}$ is wholly reflected in $\underset{\sim}{U}$. Thus the squaring of the condilion number, as a result of forming $A_{\sim}^{T} A$ directly, is avoided.

We present, as ilgorithra 2.4.1 below, an algorilimic statement of the meinod of this section. In this implementation $\underset{\sim}{A}$ is overwritten by $\underset{\sim}{\mathrm{I}}$ and $\underset{\sim}{\mathrm{U}}$, with the main diagonal and the super-diagonals containing the elements of U and the sub-diagonals the sub-diagonal elements of $\underset{\sim}{L}$ (the main diagonal of is not stored since all its elements have the value unity). The vector d is overwritten on $\underset{\sim}{b}$. The sub-diagonal elements of the symmetric matrix $\underset{\sim}{4}$ then overwrite the sub-diagonals of $\underset{\sim}{A}$ and the main diagonal of M is formea in an n-vector p. The intermediate vectors $\underset{\sim}{y}$ and $\underset{\sim}{z}$ are stored in the locations ultimately used for $\underset{\sim}{\underset{\sim}{*}}$.

Algorithm 2.4.1: IU factorization and linear least-squares solution using Gaussian elimination with pariigl pivotirg.

Comment: \ddagger and $\underset{\sim}{U}$ are formed in Steps 1-8.
Step 1. For $1=1,2, \ldots, n$ execute Steps $2-E$.
Step 2. Determine the smallest value of $\dot{\underline{v}}$ sum that

$$
\left|a_{k 1}\right| \geqslant\left|a_{i 1}\right| \quad(i=1,1+1, \ldots, m)
$$

Step 3. It $k=1$ advance to Step 6.
Siep 4. For $i=1,2, \ldots, n$ interchange the values of $a_{k j}$ and $a_{i j}$.
Step 5. Interchange the values of b_{k} and b_{1}.
Step 6. For $i=1+1,1+2, \ldots, m$ execute Steps $7-8$.
Step 7. Replace $a_{i l l}$ by $a_{i l} / a_{11}$.
Step 8. For $j=1+1,1+2, \ldots, n$ replace $a_{i j}$ by $a_{i j}-a_{i 1} a_{1 j}$.

Comment: Branch according to whether the system is square or rectangular.
Step 9. If $m>n$ advance to Step 12.
Comment: In the square case the formation of M and d and the solution of $\mathrm{My}=\underset{\sim}{d}$ are replaced by the solution of $\mathrm{Ly}=\underset{\sim}{b}$.
Step 10. For $i=1,2, \ldots, n$ compute $x_{i}=t_{i}-\sum_{k=1}^{\frac{\tilde{i}-1}{\sim}} a_{i k} x_{k}$.
Step 11. Advance to Step 26.
Step 12. Comment: Form $\underset{\sim}{d}=\underset{\sim}{\underset{\sim}{L}} \underset{\sim}{T}$.
Step 13. For $j=1,2, \ldots, n$ replace $b_{j} b_{j} b_{j}+\sum_{i=j+1}^{m} b_{i} a_{i j}$.
Comment: $\underset{\sim}{M}=\underset{\sim}{L} \underset{\sim}{T}$ is formed in Steps $14-18$.
Step 14. For $i=1,2, \ldots, n$ execute Steps 15-18.
Step 15. For $\mathbf{j}=1,2, \ldots$, i execute Steps 16-18.
Step 16. Set $g=a_{i j}$ (if $i \neq j$) or 1 (otherwise).
Step 17. Replace g by $G+\sum_{l=i+1}^{m} a_{l i} a_{l j}$.
Step 18. Set $a_{i j}=6$ (if $i \neq j$) or $p_{j}=6$ (otherwise).
Comment: $\underset{\sim}{V}$ is formed in Steps 19-23.
Step 19. For $j=1,2, \ldots, n$ execute Steps 20-23.
Step 20. For $i=j, j+1, \ldots, n$ execute Steps 21-23.
Step 21. Set $E=a_{i j}$ (if $j \neq j$) or p_{j} (otherwise).
Step 22. Replace s by $g-\sum_{k=1}^{j-1} a_{j k} a_{j k}$.
Step 23. Set $p_{j}=h=g^{-\frac{1}{2}}$ (if $i=j$) or $a_{i j}=h g$ (otherwise).
Coment: Solve $\mathbb{Z}_{Z}=$ d.
Step 24. For $i=1,2, \ldots, n$ compute $x_{i}=p_{i}\left(b_{i}-\sum_{k=1}^{i-1} a_{i k} x_{k}\right)$.
Comment: Solve $\underset{\sim}{V} \underset{\sim}{T}=\underset{\sim}{z}$.
Step 25. For $i=n, n-1, \ldots, 1$ replace x_{i} by $p_{i}\left(x_{i}-\sum_{k=i+1}^{r_{1}} a_{k i} x_{k}\right)$.

Compent: Solve $\underset{\sim}{U x}=\underset{\sim}{x}$.
Step 26. For $i=n, n-1, \ldots, 1$ replace x_{i} by $\left(x_{i}-\sum_{k=i+1}^{n} a_{i k} x_{k}\right) / a_{i j}$.

A variant of the method of this section for $m \geqslant n$, proposed by Cline (1973), avoids the formation of $\underset{\sim}{M}$ in (2.4.5). In Cinne's method $\underset{\sim}{L}$ is decomposed intu

$$
\underset{\sim}{I}=Q\left[\begin{array}{l}
I \tag{2.4.13}\\
\sim \\
0 \\
\sim
\end{array}\right] \text { I' }
$$

where $\underset{\sim}{Q}$ is an m by morthogonal (unitary) matrix (Section 2.5) and L^{\prime} is n by n lower triangular. Cline shows how to construct I_{\sim}^{\prime} (it is not necessary to form Q explicitly) using Householder transformations (Section 2.7). Nom, since
(2.4.3) reduces to

$$
\begin{equation*}
\underset{\sim}{x}={\underset{\sim}{U}}^{-1}\left\{\left(\underset{\sim}{{\underset{\sim}{l}}^{\prime}}\right)^{T}{\underset{\sim}{L}}^{\prime}\right\}^{-1} \underset{\sim}{d}, \tag{2.4.15}
\end{equation*}
$$

from which $\underset{\sim}{x}$ may be obtained, via intermediate vectors $\underset{\sim}{z}$ and $\underset{\sim}{y}$, from the solutions of the triangular sets of equations

$$
\begin{align*}
& \left(I_{\sim}^{\prime}\right)^{T} z=\underset{\sim}{z} \tag{2.4.16}\\
& I_{\sim}^{\prime} \mathbb{Z}=\underset{\sim}{Z}, \tag{2.4.17}\\
& \underset{\sim}{X}=\mathbb{Z} . \tag{2.4.48}
\end{align*}
$$

Cline shows that, if terms of order mn and rie are ignored compared with those of mn^{2} and n^{3}, on a multiplication count his rethod is faster than the normal-equations approach if $m<4 n / 3$ and faster than the use of Householder transformations if $m<5 n / 3$.

2.5 The use of crthogonal transformations

That orthogonal transformations can useriully be employed in the solution of linear least-squares problems appears to have been first proposed by Householder (1958). However, it was not until seven years later that Golub (1965) and Golub and Kahan (1965) gave detailed expositions of the application of orthogoral (Householder) transformations to least-squares problems. The joint work was concerned with the more sophisticated singular value decomposition (SVD); we shall defer discussion of the SVD until Section 2.15. A further seven years later the work of Gentleman (1972, 1973) showed that Givens rotations could also be used to adventage in solving such problems. This and the subsequent prork by Hammarling (1971) and Moler (1974) gave a new impetus to the use of Givens rotations in that they showed that the amount of arithmotic could be reduced to that of the method of Householder transformations, whilst still preserving numerical stability. A third method, the Gran-Schmiat factorization, cen also usefully be classified with the Householder and Givens methods.

Suppose an arthogonal matrix $\underset{\sim}{\text { Q }}$ of order mby k can be found to yield the factorization

$$
\underset{\sim}{A}=\underset{\sim}{Q R},
$$

Fhere R is an upper-trapezoidal matrix of order k by n. The identification of $\underset{\sim}{Q}$ with $\underset{\sim}{G}$ and $\underset{\sim}{R}$ with $\underset{\sim}{H}$ in (2.2.4) gives, upon using (2.2.13),

$$
\begin{equation*}
\underset{\sim}{x}={\underset{\sim}{R}}^{T}\left(\underset{\sim}{R} R^{T}\right)^{-1}\left({\underset{\sim}{Q}}_{\sim}^{T} \underset{\sim}{Q}\right)^{-1} \underset{\sim}{T} \underset{\sim}{b} \tag{2.5.2}
\end{equation*}
$$

Now if the transformations applied to A to yield $\underset{\sim}{R}$ are also applied to $\underset{\sim}{\mathrm{b}}$, then

$$
\underset{\sim}{b}=\underset{\sim}{c} \underset{\sim}{c}:
$$

say, where c is the transformed vuctor. The substitution of (2.5.3) into
(2.5.2) yields

$$
\underset{\sim}{x}={\underset{\sim}{R}}^{T}\left(\underset{\sim}{R} R^{T}\right)^{-1} \underset{\sim}{G} .
$$

We now form the k by k symmetric positive dofinite matrix

$$
\begin{equation*}
\underset{\sim}{M}=\underset{\sim}{R_{\sim}^{2}}{ }^{T} \tag{2.5.5}
\end{equation*}
$$

and, 0.5 in the Gaussian elimination algorithm (Section 2.4), take the Cholesky decomposition

$$
\begin{equation*}
\underset{\sim}{M}=\Sigma V^{\mathrm{T}}, \tag{2.5.6}
\end{equation*}
$$

where $\underset{\sim}{V}$ is upper triangular. Then intermediate vectors $\underset{\sim}{z}$ and \mathbb{X} may be obtained from the triangular sets of equations

$$
\begin{equation*}
\bar{\sim} \bar{\sim}=\underset{\sim}{c} \tag{2.5.7}
\end{equation*}
$$

and

$$
\begin{equation*}
{\underset{\sim}{v}}^{T} y=\underset{\sim}{z} \tag{2.5.8}
\end{equation*}
$$

and finally tise solution $\underset{\sim}{x}$ from

$$
\begin{equation*}
\underset{\sim}{x}=R_{\sim}^{T} y . \tag{2.5.9}
\end{equation*}
$$

In the full-rank case $k=n$, (2.5.4) reduces to

$$
\begin{equation*}
\underset{\sim}{x}={\underset{\sim}{R}}^{-1} \underset{\sim}{c}, \tag{2.5.10}
\end{equation*}
$$

a single triangular system.

There are tiree methods currently available for carrying out the faciurizaiior (2.5.1). These metnoãs are (i) modjfied Gram-Schmiät, (ii) Householder transformations and (iii) Givens rotations. We give brief descriptions of these methods for the case of full rank, ie $k=n$. Their extension to the general case $k \leqslant n$ is straightforward (Peters and Wilkinson, 1970); we shall not concern ourselves with the specific details here.

It will be noticed that in the Householder and Givens methods, the matrix $\underset{\sim}{\mathbb{Q}}$ is in fact n by m rather than m by k. Horrever, in the product $\underset{\sim}{A}=\mathbb{N}$, the last mak columns of $\underset{\sim}{Q}$ play no part and hence we may write

$$
\begin{equation*}
\underset{\sim}{A}=\left(Q I_{m k}\right) R, \tag{2.5.11}
\end{equation*}
$$

where I_{mk} consists of the first k columns of the m by m unit matrix, which is compatible dimensionally with (2.2.4).

Note that the expressions (2.5.4) and (2.j.i0) for the solution vector x do not involve the orthogonal matrix Q. In fact tho Householder and Givens methods do not even form $\underset{\sim}{Q}$ axplicitly. The Gram-Schmid't method does in fact form Q column by column, but as soon as a column has been utilized it may be discarded before the next coiumn is formed and hence an extra storage space of only one m-vector is required.

Nearly always in our discussions \mathcal{L} will be orthonormal ($(\mathbb{Z} Q=I)$, rather than merely orthogonal ($Q^{\mathrm{T}} \mathrm{Q}$ diagonal). However, in accordance with custom We shall refer to an orthonormal \& as orthogonal; we shall make clear cases where Q is not orthonormal.

2.6 The modified Gram-Schmidt metnod

In this methou ine matrix $\underset{\sim}{q}$ is determined arplicitly. Let q_{j} denote the jth column of Q. The computational process coilsists of n major steps in which the matrix $\underset{\sim}{A}=A_{\sim}^{(1)}$ is transformed successively to ${\underset{\sim}{A}}^{(2)}, A_{A}^{(3)}, \ldots$, $A^{(n+1)}=\underset{\sim}{R}$. At the beginning of the Ith step $(I=1,2, \ldots, n)$,
where ${\underset{\sim}{1}}_{1}, q_{2}, \ldots,{\underset{\sim}{1}}^{q_{1}}$ are a set or orthonormalized vectors and $\underset{\sim}{a}(1)$, $\underset{\sim}{a}\left(1+1, \ldots,{\underset{\sim}{n}}_{(1)}^{(1)}\right.$ are modified versions of the corresponding columns $\underset{\sim}{\underset{\sim}{1}}{ }_{1}^{(1)}$, ${\underset{\sim}{a}}_{i+1}^{(1)}, \ldots, a_{n}^{(1)}$ of the original matrix ${\underset{\sim}{c}}_{(1)}^{(i)}$.

The Ith major step consists of (i) making the lth column a unit vector hy replacing $\underset{\sim}{a}{ }_{1}^{(1)}$ by

$$
\begin{equation*}
q_{1}=\underset{\sim}{a}(1) /\|\underset{\sim 1}{(1)}\|_{2}, \tag{2.6.2}
\end{equation*}
$$

followed by (ii) n-l minor steps, the j th of which ($j=1+1,1+2, \ldots, n$) involves the orthogonalizetion of the jth column with respect to the lth column. It is easily verified that the computation

$$
\begin{equation*}
{\underset{\sim}{a}}_{(1+1)}^{(1+1)}=\underset{\sim j}{(1)}-r_{l j \sim l}^{q_{1}}, \tag{2.6.3}
\end{equation*}
$$

where

$$
\begin{equation*}
r_{l j}=q_{\sim}^{T}{\underset{\sim}{2}}_{a}^{(l)} \tag{2.6.4}
\end{equation*}
$$

yields the required orthogonalization.

The same transformations are applied to the vector $\underset{\sim}{b}$, ie $\underset{\sim}{b}$ is treated just as if it were another column of A.

A formal statement of the complete process is given by Algorithm 2.6.1 below. During the lth major step column g_{1} of 2 is held in the m-vector 2 . In this and subseguent algorithms we suppress superscripts and write eg

$$
\text { Replace } a_{k j} \text { by } a_{l_{j}}-r_{I j} p_{k}
$$

(as in Stef 6 or Algorithm 2.6.1), rather than

$$
\begin{equation*}
u_{k j}^{(I+1)}=a_{i=j}^{(i)}-r_{I j} p_{k} . \tag{2.6.6}
\end{equation*}
$$

Apart from the advantage of brevity, the superscript-free notation also implies forcibly (as we wish to imply) that the old value of $a_{k j}$, ie $a_{k j}^{(1)}$, is overmritten by the new value, ic $a_{k j}^{(1+1)}$.

Algorithm 2.6.1: Orthogonal triangularization and linear leastsquares solution using the modifieã Gram-Schmiat process.

Comment: The lth major step is described by Steps 2-8.
Step 1: For $1=1,2, \ldots, n$ execute Steps 2-8.
Comment: Column 1 is made a unit vector in Steps 2-3.
Step 2: Compute $r_{l I}=\left(\sum_{k=1}^{m} a_{k k}^{2}\right)^{\frac{1}{2}}$.
Step 3: For $k=1,2, \ldots, m$ set $p_{k}=a_{k l} / r_{I I}$.
Comment: Row 1 of $\underset{\sim}{R}$ is formed and columns $l+1, l+2, \ldots, n$ of $\underset{\sim}{A}$ are orthogonalized with respect to column 1 in Steps $4-6$.

Step 4: For $j=1+1,1+2, \ldots, n$ execute Steps 5-6.
Step 5: Form $r_{l j}=\sum_{k=1}^{m} p_{k}{ }_{k j}$.
Step 6: For $k=1,2, \ldots$, m replace $a_{k j}$ by $a_{k j}-r_{1 j} p_{k}$.
Comment: Similar operations are applied to the right-hand side in Steps 7-8.
Step 7: Fora $c_{I}=\sum_{k=1}^{m} p_{k}{ }^{b}$.
Step 8: For $k=1,2, \ldots, m$ replace b_{k} by $b_{k}-p_{k} c_{1}$.
Step 9: Use Algorithm 2.1.1 to solve RX $=\underset{\sim}{c}$.

The process üscribed here is termed the moaijíiea Gram-Schmidt process to distinguish it from the classical procedure. The classical procedure differs from the modified method in that $\underset{\sim}{\underset{j}{(1)}}$ rather than $\underset{\sim}{a}{ }_{j}^{(1)}$ is used to determine $r_{1,}$, with similar considerations applving to the right-hand side. Mathematically, the processes are identical; computationally, they behave very differently, the classical method being exilemely unstaile and the modified process a very reliable technique. In fact, the modified process is more convenient in practice than the classical procedure, since the infial columns $\underset{\sim}{2}(1)$ do not have to be preserved but, as in Algorithn 2.5.1, can be overwritten by subscquent colunns aid.

In the above description of the modified Gram-Schmidt process, it is necessary to compute square roots. Modifications to the method have been proposed (Bauer, 1965; Bjbrck, 1967) which obviate the necessity to compute these square roots. The basic idea is to form the decomposition

$$
\begin{equation*}
\underset{\sim}{A}=\hat{a} \hat{\tilde{d}}, \tag{2.6.7}
\end{equation*}
$$

Where ($\hat{\underset{\sim}{Q}})^{T} \widehat{\hat{Q}}$ is diagonal, ie $\hat{\mathcal{Q}}$ is generally orthogonal rather than orthonormal, and $\underset{\sim}{\hat{R}}$ is unit upper triangular. Equivalently, this decomposition may be expressed as

$$
\begin{equation*}
\underset{\sim}{A}=Q D^{\frac{1}{2}} \underline{R} \text {, } \tag{2.6.8}
\end{equation*}
$$

where \sim_{\sim} is orthonormal and $\underset{\sim}{D}=\operatorname{diag}\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$ is the diagonal matrix $(\underset{\sim}{\hat{Q}})^{T} \underset{\sim}{\hat{Q}}$. In terms of this decomposition the lth major step consists of (i) forming $d_{1}=\left\|{\underset{1}{1}}_{(1)}^{l}\right\|_{2}^{2}$, followed by (ii) n-l minor steps, the jth of which $(j=1+1,1+2, \ldots, n)$ involves forming $\underset{\sim}{a}(1+1)={\underset{\sim}{j}}_{(1)}^{(1)}-\hat{r}_{I j} \hat{q}_{i l}^{q}$, Where $\hat{r}_{I j}=\left(\hat{\sim}_{j}\right)^{T}{\underset{\sim}{2}}_{(1)}^{(1)} / d_{1}$. Algorithm 2.6 .1 is readily modifiea to use this alternative decurposition.

The modified Gram-Schmidt algorithm and its square-root free variant are extremely satisfactory in practice. Indeed, in discussing the basic process (upon which Algorithm 2.6.1 is based), Peters and Wilkinson (1970) state that "Evidence is accumulating that the modified Gram-Schmidt gives better results finan Householder in spite of the fact that the latter guarantees almost exact orthogonality of the columns of Q whilo this is by no means true ef the modified Gram-Schmidt procedure when A has illconditioned columns. The reasons for this phenomenvin appear not to have been elucidated yet." Despite this point in its favour the modified GramSchmidt process is not particularly appropriate in spline approximation problems. There are two reasons for this. Firstiy, the oranaization of the modifjed Gran-Schinidt process is usually such thet the comrlete natrix \mathbb{A} is
required in store at the start of the process; it does seem possible, however, to modify the method so that A A can be processed stably in a row-by-row manner, but it is an open question whether one will still have an efficient algorithm. Secondly, and more importantly, even if A initially has a high proportion of zero elements, fill-in, ie the replacement of zero by non-zero elements, terids to occur so rapidly that little or no advantage can be taken of the structure of A.

2.7 The method of Householder transformations

Like the modified Gram-Schmidt method, the method of Householder transformations (Golub, 1965; Businger and Golub, 1965) consists of n major steps in which the matrix $\underset{\sim}{A}={\underset{\sim}{A}}^{(1)}$ is transformed successively to ${\underset{\sim}{A}}^{(2)},{\underset{\sim}{A}}^{(3)}, \ldots, A_{\sim}^{(n+1)}=\underset{\sim}{R}$. However, unlike the modified Gram-Schmidt methou, it is unnecessary (excepi in special appications) to determine Q explicitly.

At the beginning of the kth step, $A^{(k)}$ has the property that $a_{i j}^{(k)}=0$ ($i=j+1, j+2, \ldots, m ; j=1,2, \ldots, k-1$), ie the first $k-1$ columns of ${\underset{\sim}{A}}_{(k)}^{(k)}$ are in "upper-triangular form". The kth step consists formally of pre-multiplying $A^{(\underline{k})}$ by the matrix

$$
\begin{equation*}
{\underset{\sim}{P}}^{(k)}=\underset{\sim}{I}-P_{\mathcal{W}}^{(k)}\left({\underset{\sim}{W}}^{(k)}\right)^{T} /\left\|\mathbb{W}^{(k)}\right\|_{2}^{2} \tag{2.7.1}
\end{equation*}
$$

to produce ${\underset{\sim}{A}}^{(k+1)}$.

Since

$$
\begin{aligned}
& (\underset{\sim}{P}(k))_{\underset{\sim}{P}}{ }^{(k)}=\left\{\underset{\sim}{I}-2 \underset{\sim}{\sim}(k)\left({\underset{\sim}{\underset{\sim}{W}}}^{(k)}\right)^{T} ;\|\underset{\sim}{W}(k)\| \frac{2}{2}\right\}^{2} \\
& =\underset{\sim}{I}-4{\underset{\sim}{N}}^{(k)}\left({\underset{\sim}{W}}^{(k)}\right)^{T} /\left\|_{{\underset{W}{w}}^{(k)}}^{\|}\right\|_{2}^{2} \\
& +4 \underset{\sim}{\mathbb{N}}(k)\left\{\left({\underset{\sim}{W}}^{(k)}\right)^{T}{\underset{\sim}{W}}^{(k)}\right\}\left(\mathbb{N}^{(k)}\right)^{T} /\left\|{\underset{\sim}{W}}^{(k)}\right\| \begin{array}{l}
4 \\
2
\end{array}
\end{aligned}
$$

$$
\begin{align*}
& =\underset{\sim}{I} \text {, } \tag{2.7.2}
\end{align*}
$$

it follows that ${\underset{\sim}{\sim}}^{(k)}$ is orthogonal and symmetric.
The vector $\underset{\sim}{(k)}$ is chosen to annihilate the elements $a_{i k}^{(k)}(i=k+1, k+2$, ..., m). It is easily verified that the vector ${\underset{\sim}{f}}^{(\mathrm{k})}$ defined by

$$
w_{i}^{(k)}=\left\{\begin{array}{cl}
0 & (i=1,2, \ldots, k-1) \\
\operatorname{sgn}\left(a_{k k}^{(k)}\right)\left(\sigma^{(k)}+a_{k k}^{(k)}\right) & (i=k) \\
a_{i k}^{(k)} & (i=k+1, k+2, \ldots, m)
\end{array}\right.
$$

where

$$
\begin{equation*}
\left(\sigma^{(k)}\right)^{2}=\sum_{i=k}^{m}\left(a_{i k}^{(k)}\right)^{2} \tag{2.7.4}
\end{equation*}
$$

ena

$$
\operatorname{sgn}(x)=\left\{\begin{align*}
-1 & (x<0) \tag{2.7.5}\\
0 & (x=0) \\
+1 & (x>0)
\end{align*}\right.
$$

possesses the above annibilation property.

Now since

$$
\begin{align*}
\left\|{\underset{\sim}{w}}^{(k)}\right\| \|_{2}^{2} & =\left(\sigma^{(k)}\right)^{2}+2 \sigma^{(k)}\left|a_{k k}^{(k)}\right|+\sum_{i=k}^{m}\left(a_{i k}^{(k)}\right)^{2} \\
& =2 \sigma^{(k)}\left(\sigma^{(k)}+\left\lvert\, \begin{array}{l}
(k) \\
k k
\end{array}\right.\right), \tag{2.7.6}
\end{align*}
$$

we may write

$$
\begin{equation*}
{\underset{\sim}{P}}^{(k)}=\underset{\sim}{I}-\beta^{(k)}{\underset{\sim}{W}}^{(k)}\left({\underset{\sim}{N}}^{(k)}\right)^{T}, \tag{2.7.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta^{(k)}=\left\{\sigma^{(k)}\left(\sigma^{(k)}+\left|a_{k k}^{(k)}\right|\right)\right\}^{-1} \tag{2.7.8}
\end{equation*}
$$

It is both inefficient and unnecessary to compute ${\underset{\sim}{c}}^{(k)}$ explicitly; rather, we compute first

$$
\begin{equation*}
\left({\underset{\sim}{x}}^{(k)}\right)^{T}=\beta^{(k)}\left(\mathbb{W}^{(k)}\right)^{T}{\underset{\sim}{A}}^{A}(k) \tag{2.7.9}
\end{equation*}
$$

and then

$$
\begin{equation*}
{\underset{\sim}{A}}^{(k+1)}={\underset{\sim}{A}}^{(k)}-{\underset{\sim}{X}}^{(k)}\left({\underset{\sim}{y}}^{(k)}\right)^{T} . \tag{2.7.10}
\end{equation*}
$$

A.s with the modified Gram-Schmidt method, tha same transformations are applied to the vector $\underset{\sim}{b}={\underset{\sim}{b}}^{(1)}$ to yield successive vectors $\underset{\sim}{\underset{\sim}{b}}(2), \underset{\sim}{b}(3)$, $\ldots,{\underset{\sim}{d}}^{(n+1)}=\underset{\sim}{c}$. The right-triangular system

$$
\begin{equation*}
\underset{\sim}{R x}=\underset{\sim}{c} \tag{2.7.11}
\end{equation*}
$$

is then solved for 장.

Algorith 2.7 .1 below is a statement of the method of this section. The initial matrix $\underset{\sim}{A}={\underset{\sim}{A}}^{(1)}$ is successively overwritten by ${\underset{\sim}{A}}^{(2)}, \underset{\sim}{A}(3), \ldots$, ${\underset{\sim}{A}}^{(n+1)}=\underset{\sim}{R}$. Likewise, the right-hand side $\underset{\sim}{b}=\underset{\sim}{b}{ }^{(1)}$ is successively overwritten by $\underset{\sim}{\underset{\sim}{p}}{ }^{(2)},{\underset{\sim}{a}}^{(3)}, \ldots,{\underset{\sim}{b}}^{(n+1)}=c$.

Algorithm 2.7.1: Orthogonal triangularization and linear leastsquares solution using Householder transformations.

Comment: The kth major atep is described by Stops 2-11.
Step 1. For $k=1,2, \ldots, n$ execute Steps 2-11.
Comment: The parameters of ${\underset{\sim}{p}}^{(k)}$ are formed in Steps 2-6.
Step 2. Forin $\sigma=\left(\sum_{i=k}^{m} a_{i k}^{2}\right)^{\frac{1}{2}}$.
Step 3. Form $a=\sigma+\left|a_{k k}\right|$.
Step 4. Formi $\pi_{k}=\operatorname{asgn}\left(a_{k k}\right)$.
Step 5. For $i=k+1, k+2, \ldots, m$ set $w_{i}=a_{i k}$.
Step 6. Porm $\beta=(\omega \sigma)^{-1}$ and replace $a_{\text {ki }}$ by a.
Comment: The transformation $\underset{\sim}{p}(k) \underset{\sim}{A}(k)$ is earcied out in Steps 7-9.
Step 7. Fror $i=k+1, k+2, \ldots$, neveninte Steps 8-9.
Step 8. Compute $\mathrm{y}=\beta \cdot \sum_{j=\mathrm{k}}^{\mathrm{m}} \mathrm{w}_{i} \mathrm{a}_{i, j} \cdot$
Stey 9. For $i=k, k+1, \ldots, m$ replace $a_{i j}$ by $a_{i j}-y w_{i}$.

Comment: The same transformation is applied to the right-hand side in Steps 10-11.
Step 10. Gompute $y=\beta \sum_{i=k}^{m} w_{i} b_{i}$.
Step 11. For $i=k, k+1, \ldots$, m replace b_{i} by $b_{i}-\operatorname{JN}_{i}$.
Step 12. Use Algorithm 2.1.1 to solve $\underset{\sim}{R X}=\underset{\sim}{c}(\underset{\sim}{R}$ stored in $\underset{\sim}{A}, \underset{\sim}{c}$ in $\underset{\sim}{b})$.

2.8 Classical plane rotations

In this sectiou we consiaer classical Givens plane rotations and give tro algorithms based on their use for the orthogonal triangularization of an II by n matrix $\underset{\sim}{A}$ of rank n and for the least-squares solution of the over-determined linear system $\underset{\sim}{A x}=\underset{\sim}{b}$. In Section 2.9 wo examine variants of the modern form of plane rotations pithout square roots and again give algorithms based on their use for the orthogonal triangularization of A. In Section 2.10 we compare the use of both classical and modern forms of plane rotations with the more common methods described in Sections 2.6 and 2.7, and give reasons why we believe that plane rotations are particulariy appropriate for solving the types of least-squeres systems arising from spline appreximaition problems.

Consider the pre-multiplication of the m by n matrix A by the orthogonal mby il matrix

where c and s denote $\cos \theta$ and $\sin \theta$, respectively, and θ is chosen such that the element in position (j, i) of the matrix

$$
\begin{equation*}
\underset{\sim}{A^{\prime}}=\mathcal{Z}_{\mathrm{i} j}{ }^{A} \tag{2.8.2}
\end{equation*}
$$

is zero. It is straightforward to verify that the approuriate volues of c and s are given by

$$
\begin{align*}
& c=a_{i i} / h, \tag{2.8.3}\\
& s=a_{j i} / h \tag{2.8.4}
\end{align*}
$$

where

$$
\begin{equation*}
h=\left(a_{i i}^{2}+a_{j i}^{2}\right)^{\frac{1}{2}} \tag{2.8.5}
\end{equation*}
$$

Here we assume that $a_{j i} \neq 0$, which ensures that h is nori-seiu. inote trat if $a_{j i}$ is already zero then no rotation is needed, in which case wo take $c=1$ and $s=0$ (even if $a_{i i}=0$), so that $Q_{i j}$ reduces to the unit matrix. only rows i and j of A are altered by the transformation, the effect being to replace row i by ($\mathrm{c} \times$ row $i+s \times$ row j) and row j by ($\mathrm{c} \times$ row j $s \times$ row i). It follows therefore that if both rowe i and j heve zeros in the same colum position, then these zeros are undisturbed by the process.

The rotation can be described completely by (2.8.3), (2.8.4) and (2.8.5), togetier with the expressions

$$
\left.\begin{array}{l}
a_{i i}^{\prime}=h \\
a_{i k}^{\prime}=\varepsilon a_{i k}+s a_{j k} \tag{2.8.7}\\
a_{j k}^{\prime}=-s a_{i k}+c a_{j k}
\end{array}\right\}(k=i+1, i+2, \ldots, n)
$$

We term (2.8.7) e. ㄴ-multinlication mine, since for each value of k four multiplications are required to evaluate $a_{j i k}$ and $a_{j k}^{\prime}$ from $a_{i k}$ and $a_{j k}$.

Wilkinson (1965: 131 et seg) has shown that the 4-multiplication rule is unconditionally stable in that if $a_{i k}$ and $a_{j k}(k=i, i+1, \ldots, n)$ are specified then

$$
\begin{equation*}
\left.\left\|f l\left(a_{i k}^{\prime}\right)-a_{i k}^{\prime}\right\|_{f l} \leqslant a_{j k}^{\prime}\right)-a_{j k}^{\prime}\left\|_{2}\right\| a_{i k}\left\|2_{j k}\right\|_{2}^{-t}, \tag{2.8.8}
\end{equation*}
$$

where the factor of 6 is, according to Wilkinson, extremely generous.

Since the Euclidean norm is invariant with rospect to orthogonal transformation, the right-hand side of (2.8.8) can, apart from a multiplicative factor of $(1+\varepsilon)^{6}\left(|\varepsilon| \leqslant 2^{-t}\right)$, be replaced hy

$$
\begin{equation*}
6\left\|\int_{i k}^{a_{j k}^{\prime}}\right\|_{2} 2^{-t} \tag{2.8.9}
\end{equation*}
$$

Thus making the very mild assumption that the factor $(1+\varepsilon)^{6}$ can be absorbed. into the "generous" factor of 6 , the relative error in the 4-multiplication rule is bounded in modulus by (6) 2^{-t}.

Pre-multiplication of $\underset{\sim}{A}$ by ${\underset{\sim}{i j}}$ is termed a rutation in the (i,j)-plane. We also refer to this pre-multiplication as the rotation of row j into row i.

Two variants of the class of methods which employ classical plane rotations may be described as follows.

In the first methno, which we term triangularization by columns, there are n major steps. The kth major step ($k=1,2, \ldots, n$) consists of m-k miror steps, the i th of which $(i=k+1, k+2, \ldots, m)$ has the effect of reducing element $a_{j k}$ "̈o zero, whilst preserving zeros established in previous sters.

In the second method, which we shall refer to as triangularization by rows, there are m-1 major steps. The ith major step ($i=2,3, \ldots, m$) consists of at most n minar steps, the k th of which $(k=1,2, \ldots, \min (i-1, n))$ has the offect of amihilating element $a_{i k}$, whilst preserving previouslyestablished zeros.

In either of these tro methods a minor step consists of a single plane rotation. In that the sub-diagonal elements in successive colurns are reduced to zero, the first method is analogous to the modified Gram-Schmidt and the Householder methods. On the other hand, the second of the two methods, in which elements to the left of the main diagonal in successive rows are annihilated, has no natural correspondence with the other orthogonalization methods.

If, in either of the two methods, the same sequence of rotations is performed upon the vector $\underset{\sim}{b}$ (by treating it essentially as another column of A), then the least-squares solution is given by the solution of the system $\underset{\sim}{R}=\underset{\sim}{c}$, Where $\underset{\sim}{R}$ denotes the triangle ultimately produced in the first n rows of $\underset{\sim}{A}$ and $\underset{\sim}{c}$ the first n elements of the transformed vector $\underset{\sim}{b}$.

We now present algurithms based on these two methods.

Algorithm 2.8.1: Orthogonal triangularization by column and linear least-squares solution using classical plane rotations.

Comment: The kth major step is described by Steys 2-11.
Step 1. For $k=1,2, \ldots, n$ execute Steps 2-11.
Comment: The ith minor step is described by Steps 3-10.
Step 2. For $i=k+1, k+2, \ldots$, m execute Steps $3-10$.
Comment: A rotation is skipped if $a_{i k}$ is already zero.
step 3. If $a_{i k}=0$ advence to Step 10.

Coment: The plane rotation annihilating $a_{i k}$ is applied in Steps $4-7$.
Step 4. Compute $h=\left(a_{i k k}^{2}+a_{i k}^{2}\right)^{\frac{1}{2}}$. Form $c=a_{k k} / h$ and $s=a_{i k} / h$. Replacs $a_{k k}$ by h.
Step 5. For $j=k+1, k+2, \ldots, n$ execute Steps 6-7.
Step 6. Set $y=a_{k j}$ and $z=a_{i j}$.
Step 7. Replace $a_{k j}$ by $c y+s z$ and $a_{i j}$ by $c z-s y$.
Comment: The same rotation is applied to the right-hand side in Steps 8-9.
Step 8. Set $y=b_{k}$ and $z=b_{i}$.
Step 9. Replace b_{k} by $c y+s z$ and b_{i} by $c z-s y$.
Step 10. Continue.
Step 11. Continue.
Step 12. Use Algorithm 2.1.1 to solve $\underset{\sim}{R x}=\underset{\sim}{c}(\underset{\sim}{R}$ stored in $A, \underset{\sim}{c}$ in $\underset{\sim}{b})$.

Algorithm 2.8.2: Orthogonal triangularization by rows and linear least-squares solution using classical plane rotations.

Comment: The ith major step is described by Steps 2-11.
Step 1. For $i=2,3, \ldots$, m execute Steps 2-11.
Comment: The ktil minor step is described by Stops 3-10.
Step 2. For $k=1,2, \ldots, \min (i-1, n)$ execute Steps $3-10$.
Steps 3-12. As Steps 3-12 of Algorithm 2.8.i.

The above meinods for erthogonal triangliarization by columns and by rows have their analogues when modern forms of plane rotations (Section 2.9) are used. The main differences relate to the neture of the arithmetic operations within individual rotaiions, the overell sirategies, ie the orders in which the sub-diagonal elements are annihilated, being unchanged.

2.9 Modern plane rotations

The more general factorization

$$
\underset{\sim}{A}=\underset{\sim}{Q D}{\underset{\sim}{1}}_{\frac{1}{2} \hat{R}} \text {, }
$$

considered in Section 2.6 in terms of the modif'ied Gram-Schmidt method, can also be formed using a generalization of the method of plane rotations. As in Section 2.6, $\underset{\sim}{D}$ is a diagonal matrix with non-negative elements, $\underset{\sim}{Q}$ is orthogonal ani $\hat{\underset{\sim}{~}}$ upper-triangular. The factorization (2.9.1) has more degrees of freedom associated with it than the usual factorization $A=\underset{\sim}{A}$. These degrees of freedom may be used to advantage in a number of weys. The factorization evidently includes the classical form 0.5 a spocial case, vie when $\underset{\sim}{D}=\underset{\sim}{I} \cdot \underset{\sim}{\hat{R}}$ can be made unit upper-triangular by setting the diagonal elements of $\underset{\sim}{D}$ equal to the squares of the diagonal elements of R . Other choices of $\underset{\sim}{D}$ and $\underset{\sim}{\hat{R}}$ enable not only the square roots in the plane rotation method to be avoided, but also the number of multiplications to be reduced by either 25% or 50% (Gentlenan, 1972, 1973; Hammarling, 1974). The 50% reduction makes Givens rotations as attractive arithmetically as Householder transformations and the modified Gram-Schmidt nethod for solving linear least-squares problems.

To examine the generalized class of rotations, suppose that immediately before the rotation,

$$
\begin{equation*}
\underset{\sim}{A}=D_{\sim}^{\frac{1}{2}} \underset{\sim}{G} \tag{2.9.2}
\end{equation*}
$$

and that after the rotation

$$
\mathrm{A}_{\mathrm{A}}{ }^{\prime}=\mathrm{Q} \mathrm{~A}
$$

we have

$$
\begin{equation*}
{\underset{\sim}{A}}^{A^{\prime}}=\left(D^{\prime}\right)^{\frac{1}{2}} G^{\prime} . \tag{2.9.4}
\end{equation*}
$$

Both $\underset{\sim}{D}$ and ${\underset{\sim}{r}}^{\prime}$ denote diagonal matrices with non-negative elements. We wish to determine formulae for computing those elements of ${\underset{N}{\prime}}^{\prime}$ and G^{\prime} changed by the transformation in terms of those of $\underset{\sim}{D}$ and $\underset{\sim}{G}$. Now since

$$
a_{i j}=d_{i}^{\frac{1}{2}} g_{i j}
$$

and

$$
\begin{equation*}
a_{i j}^{\prime}=\left(d_{i}^{\prime}\right)^{\frac{1}{2}} g_{i j}^{\prime} \tag{2.9.6}
\end{equation*}
$$

the counterparts of (2.8.3) to (2.8.7) are

$$
\begin{align*}
& c=d_{i}^{\frac{1}{2}} g_{i i} / h, \tag{2.9.7}\\
& s=d_{j}^{\frac{1}{2}} g_{j i} / h, \tag{2.9.8}\\
& h=\left(d_{i} E_{i i}^{2}+d_{j} g_{j i}^{2}\right)^{\frac{1}{2}}, \tag{2.9.9}\\
& g_{i j}^{\prime}=h /\left(d_{i}^{\prime}\right)^{\frac{1}{2}}, \tag{2.9.10}\\
& g_{j k}^{\prime}=\left(J_{i} g_{i i} g_{i k}+d_{j} g_{j i} g_{j k}\right) /\left\{h\left(d_{i}^{\prime}\right)^{\frac{1}{2}}\right\} \\
& g_{j k}^{\prime}=d_{i}^{\frac{1}{2}} a_{j}^{\frac{1}{2}}\left(g_{i i} g_{j k}-g_{j i} g_{i k}\right) /\left\{h\left(d_{j}^{\prime}\right)^{\frac{1}{2}}\right\}
\end{align*}
$$

Suppose that $\underset{\sim}{D}$ and $\underset{\sim}{G}$ are given, and that we have freedom just in our choice of Z^{\prime}.

Gentleman $(1972,1973)$ chooses

$$
\begin{align*}
& d_{i}=h^{2} \tag{2.9.12}\\
& d_{j}^{\prime}=d_{i} a_{j} / h^{2} . \tag{2.9.13}
\end{align*}
$$

$$
\left.\begin{array}{l}
E_{i k}^{\prime}=\left(\frac{d_{i} E_{i j}}{h^{2}}\right) g_{i k}+\left(\frac{d_{j} g_{j i}}{h^{2}}\right) g_{j k} \\
g_{j k}^{\prime}=g_{i j} g_{j k}-g_{j i} g_{i k}
\end{array}\right\}(k=i+1, j+2, \ldots, n) . \quad \text { (2.9.15) }
$$

But if previous rotations made $g_{i i}=1$ then (2.9.15) reduces to

$$
\left.\begin{array}{l}
E_{i k}^{\prime}=\left(\frac{d_{i}}{h^{2}}\right) g_{i k}+\left(\frac{d_{j} g_{j i}}{h^{2}}\right) g_{j k} \\
E_{j k}^{\prime}=g_{j k}-g_{j i} s_{i k}
\end{array}\right\}(k=i+1, i+2, \ldots, n), \quad \text { (2.9.16) }
$$

As a consequence, Gentleman's rotation is defined by the relations

$$
\left.\begin{array}{l}
d_{j}^{\prime}=d_{i}+d_{j} g_{i j}^{2}, \\
d_{j}^{\prime}=d_{i} d_{j} / d_{i}^{\prime}, \\
\hat{c}=d_{i} / d_{j}^{\prime}, \\
\hat{s}=d_{j} \delta_{j i} / d_{i}^{\prime}, \\
g_{i k}^{\prime}=\hat{c}_{j} g_{i k}+\hat{s} g_{j k} \tag{2.9.21}\\
g_{j k}^{\prime}=g_{j k}-g_{j i} g_{i k}
\end{array}\right\}(k=i+1, i+2, \ldots, n) .
$$

This is a 3-multiplication rule.

Gentleman (1973) has shown that his 3-multiplication rule is unconditionally numerically stable in that

This result\%, which should be compared with (2.8.8), shows that the 3-multiplication rule and the classical 4-multiplication rule have comparable stability.

Golub (private communication - see Gentleman, 1973) has pointed out that the arithmetic involved in relations (2.9.21) may be reduced by observing that

$$
\begin{align*}
g_{i k}^{\prime} & =\hat{c} G_{i k}+\hat{s}\left(g_{j k}^{\prime}+g_{j i} g_{i k}\right) \tag{2.9.23}\\
& =E_{i k}+s g_{j k}^{\prime}, \tag{2.9.24}
\end{align*}
$$

upon using (2.9.17), (2.9.19) and (2.9.20). Thus Golub's form of the rotation may be defined by the relations

$$
\left.\begin{array}{l}
d_{i}^{\prime}=d_{i}+a_{j} g_{j i}^{2}, \\
d_{j}^{\prime}=d_{i} d_{j} / d_{i}^{\prime}, \\
\hat{s}=d_{j} g_{j i} / d_{i}^{\prime}, \\
E_{j k}^{\prime}=g_{j k}-g_{j i} g_{i k} \tag{2.9.28}\\
\varepsilon_{j k}^{\prime}=\varepsilon_{i k k}+s E_{j k}^{\prime}
\end{array}\right\}(k=i+1, i+2, \ldots, n) .
$$

This is a 2-multiplication rule.

Gentleman (1973) has carried out a floating-point error analysis of Golub's rule and has shown that

* Gentleman (1974) has subsequentiy shown that the factor of 7.5 in (2.9.22) may be improved to a value of 4.5 .

$$
\left\|f I\left\{\left(d_{i}^{\prime}\right)^{\frac{1}{2}}\right\} f I\left(g_{i k}^{\prime}\right)-\left(d_{i}^{\prime}\right)^{\frac{1}{2}} g_{i k}^{\prime}\right\|_{f I}\left\{\left(d_{j}^{\prime}\right)^{\frac{1}{2}}\right\} f I\left(g_{j k}^{\prime}\right)-\left(d_{j}^{\prime}\right)^{\frac{1}{2}} g_{j k}^{\prime}\left\|_{2} \leqslant K\left(d_{i}, d_{i}^{\prime}\right)\right\|\left\{\begin{array}{c}
d_{i}^{\frac{1}{2}} g_{i k} \tag{2.9.29}\\
d_{j}^{\frac{1}{2}}\left\|_{j k}\right\|_{2}^{2^{-t}},
\end{array}\right.
$$

where

$$
\left\{K\left(d_{i}, d_{i}\right)\right\}^{2}=(4.52)^{2}+\left\{4.52+8.04\left(d_{i} / d_{i}\right)^{\frac{1}{2}}\right\}^{2},
$$

from which it is clear that the stability of the rule depends upon the relative magnitudes of d_{i}^{\prime} and d_{i}. Gentleman (1973) states that this 2-multiplication rule is "numerically unstable, producing terrible results for least squares problems with very well conditioned design matrices". Hamarling (1974) gives a simple example to illustrate this point. Gentleman suggests that since the instability can readily be detected, sinply by examining the ratio d_{i} / d_{i}, then we can cut cost and preserve stability by using the 2-multiplication rule if $d!/ d_{i} \leqslant 100$, say, and the 3 -multiplication rule otherrise. If this strategy is employed then relation (2.9.22) holds with 7.5 replaced by 85.04 .

Hammarling (1974) has considered choices of d_{i}^{\prime} and d_{j}^{\prime} that lead directly to 2-multiplication rules. The choice

$$
\begin{align*}
& d_{i}^{\prime}=d_{j}^{2} z_{i i}^{2} / h^{2}, \tag{2.9.31}\\
& d_{j}^{\prime}=a_{i} a_{j} \varepsilon_{i j}^{2} / h^{2}
\end{align*}
$$

reduces (2.9.11) to

$$
\left.\begin{array}{l}
g_{i k}^{\prime}=\varepsilon_{i k}+\left(\frac{a_{i} E_{j i}}{d_{i} g_{i i}}\right) g_{j k} \tag{2.9.33}\\
g_{j k}^{\prime}=g_{j k}-\left(\frac{g_{j i}}{g_{i i}}\right) g_{i k}
\end{array}\right\} \quad(k=i+1, i+2, \ldots, n) .
$$

Accurding to Hammarling, the other choices of d_{i}^{\prime} and d_{j}^{\prime}, of which there are five in all, lead to aimilar relations. Hamarling's cotation may bs
defined by the relations

$$
\left.\begin{array}{l}
\hat{u}=g_{j i} / g_{i i}, \\
\hat{\mathbf{s}}=\hat{u} d_{j} / d_{i}, \\
d_{i}^{\prime}=d_{i} /(1+\hat{s} \hat{u}), \\
d_{j}^{\prime}=d_{j} /(1+\hat{s} \hat{u}), \\
g_{i k}^{\prime}=g_{i k}+\hat{s} g_{j k} \tag{2.9.38}\\
g_{j k}^{\prime}=g_{j k}-\hat{u} g_{i k}
\end{array}\right\}(k=i+1, i+2, \ldots, n) .
$$

Although Hammarling demonstrates the stability of his rule, he states thet there is clearly some danger of underflow in d_{i} and d_{j}^{\prime} when a sequence of rotations is involved. He suggests, without giving specific details, that this danger may be avoided by sioring the exponents of $\underset{\sim}{D}$ separately, by normalizing occasionally or by periorming row interchanges. Moler (1974) has recently given details of a row interchange strategy which reduces the danger of underflow in the 2-multiplication rule. However, even in Moler's algorithri underflow can occur and hence periodic testing should be incorporated to see whether scaling is required.

Before we give algorithms for the modern Givens rules we describe an algorithm for orthogonal trianguiarization by rows using classical plane rotations whish has storage requirements independent of m. The basic idea, is due to Gentieman (1972). Now the solutions to the problems of minimizing $\underset{\sim}{\underset{\sim}{T}} \underset{\sim}{T}$, where $\underset{\sim}{r}$ is given by (2.2.2), or by

$$
\underset{\sim}{r}=\left[\begin{array}{l}
\underset{\sim}{0} \\
\underset{\sim}{A}
\end{array}\right] \underset{\sim}{x}-\left[\begin{array}{l}
\underset{\sim}{0} \\
\underset{\sim}{b}
\end{array}\right] \text {, }
$$

are evidently identical. Thus re can determine the required jeast-squares solution by intitializing \AA and $\underset{\sim}{\text { Q }}$ to zero, and then rotating each successive
row of $(\underset{\sim}{A} \mid \underset{\sim}{b})$ into $(\underset{\sim}{R} \mid \underset{\sim}{\theta})$. This scheme has the ad̃vantage that the only storage required, assuming that each row of ($\underset{\sim}{A} \mid \underset{\sim}{b}$) can be input or formed When needed, is $\frac{1}{2} n(n+1)$ words for $\underset{\sim}{R}, n$ for $\underset{\sim}{C}$ and $n+1$ for the current row of $(\underset{\sim}{A} \mid \underset{\sim}{b})$. Thus the total storage for such a scheme is $\frac{1}{2} n(n+5)+O(1)$ words. This is to be compared with the storage required for the column by column process which requires $m n+0(m)+O(n)$ words.

A worthwhile saving in arithmetic can be made if a rotation involving a nuly row is treated specially. Suppose, in the notation of Section 2.8, that rom i is null and that $a_{j i} \neq 0$ (if $a_{j i}=0$ a rotation is not required). Then from (2.8.3), (2.8.4) and (2.8.5), $c=0$ and $s=1$, with the result that (2.8.6) and (2.8.7) reduce to

$$
\left.\begin{array}{l}
a_{j i}^{\prime}=a_{j i}, \\
a_{i k}^{\prime}=a_{j k} \tag{2.9.40}\\
a_{j k}^{\prime}=0
\end{array}\right\}(k=i+1, i+2, \ldots, n) .
$$

Thus, since $a_{j i}^{\prime}=0$, the effect of the rotation is to interchange rows i and j. Note that there is an ambiguity associata, with the sign of s. Hora we have chosen $s=+1$. The choice $s=-1$ could aiso be made, the only differance Leine that all values in row i are negated. In either case no further rotations inrolving row j are necessary since it is now null. This refinement and its sountorparts for the modern Givens rules have been incorporaied in Algorithms 2.9.1 to 2.9 .4 below.

In Algorithm 2.9.1 the upper-triangular matrix $\underset{\sim}{R}$ is stored by rows in the vector $r_{1}\left(1=1,2, \ldots, \frac{1}{2} n(n+1)\right)$. The ith row of $(\underset{\sim}{A} \mid \underset{\sim}{b})$ is read into or formed in locations $v_{j}(j=i, 2, \ldots, n)$ and $\underset{d}{p}$ and the associated weight (often unity) in \bar{m}. The minimum sin of squares is formed in σ.

Negorithm 2.9.1: Orthogonal triangularization by rows and linear least-squares solution using classical plane
rotations (vector storage strategy).

Comant: $\underset{\sim}{R}, 9 \underset{\sim}{9} \sigma$ are initialized to zero.
Step 1. For $I=1,2, \ldots, \frac{1}{2} n\left(r_{n}+1\right)$ set $r_{1}=0$ and for $i=1,2, \ldots, n$ $\operatorname{set} \theta_{j}=0 . \quad$ Set $\sigma=0$.
Coment: The ith major sten is deacrihed bry Stems 3-30.
Step …For $\dot{-1}-1,2, \ldots, m$ execute Steps 3-30.
Coment: The ith ino of $(A \mid \underset{\sim}{D})$ and the corresponding weizht are read or formed.

Step 3. Reac. or fonn the inh row w, $v_{1}, v_{2}, \ldots, v_{n}, b$.
Comment: No operations on rovi i are required if w is zero.
Stef 4. If $w=0$ adrance to Step 30.
Conment: The reight is incorporated in row in in Steps 5-8.
Step 5. If $w=1$ advance to Step 9.
Step 6. Set $z=w^{\frac{1}{2}}$.
Step 7. For $j=i, 2, \ldots, n$ replace v_{j} by $\pi{ }_{j}{ }_{j}$
Step 8. Replaro b by zb.
Comment: Tho jth minor step is described ojr steps 10-28.
Step 9. For $j=1,2, \ldots, n$ execute $\operatorname{Steps} 10-28$.
Comment: A rotation is skipped if $a_{i j}$ is already zero.
Stop 10. If $\mathrm{v}_{\mathrm{j}}=0$ advance to Step 28.
Comment: Elemerit $r_{j j}$ is stored as r_{1}.
Step 11. SEt ? $=(\dot{i}-1 j(2 n \div 2-j) / 2+1$.
Coment: The algoritho branchss according to whethen $r_{i j}$ is zere an =an-zero.
Step 12. If $r_{1} \notin 0$ adrance to Sten 19.
Sumeni: In the case $r_{j j}=0$ ror j of $(R \mid \theta)$ is replaced by rota it of (A|in) in Steps 13-17.

Step 13. Set $r_{1}=y_{j}$

Step 14. For $k=j+1, j+2, \ldots, n$ execute Steps 15-16.
Step 15. Replace I by $1+1$.
Step 16. Replace r_{I} by ∇_{k}.
Step 17. Replace θ_{j} by b.
Comment: No further rotations involving row i of ($\mathrm{A} \mid \mathrm{b}$) are required.
Step 18. Advance to step 30.
Cooment: In the case $r_{j j} \neq 0$ a conventional rotation to annihilate $a_{i j}$ is courried out in Steps 19-28.
Step 19. Sct $E=\left(r_{I}^{2}+v_{j}^{2}\right)^{\frac{1}{2}}$.
Step 20. Set $c=r_{1} / g, s=v_{j} / E$.
Step 21. Set $r_{1}=g$.
Step 22. For $k=j+1, j+2, \ldots$, n execute Steps $23-25$.
Step 23. Replace 1 by $1+1$.
Step 24. Set $y=r_{I}$ and $z=\nabla_{k}$.
Step 25. Replace r_{1} by cy+sz and v_{k} by cz-sy.
Step 26. Set $y=\theta_{j}$ and $z=b$.
Step 27. Replace e_{j} by $c y+s z$ and b by cz-sy.
Step 28. Contizue.
Comuent: The residual sum of squares is updated.
Step 29. Replace σ by $\sigma+b^{2}$.
Step 30. Cortinue.
Step 31. Use Algorithm 2.1.2 to solve $\underset{\sim}{R x}=\underset{\sim}{2}$.

Although there is no possibility of "element growth" :isth orthogonalization methods, ancther problem may arise. In the classical Givens method this problem is associated with the computation of the paremeters c and s frem (2.8.3), (2.8.4) and (2.8.5). Fiven if the values of $a_{i i}$ and $a_{j i}$ ore weil Fithin the number range of the machine, overflow or underflow may result
when they are squared*. On the KDF9 computer, for example, the number range is $2^{-2^{7}}$ to 2^{27}, ie approximately 10^{-38} to 10^{38}. Thus if $\left|a_{\text {inf }}\right|$ or $\left|a_{j i}\right|<10^{-20}$ (say) underflow will occur and in $\left|a_{i j}\right|$ or $\left|a_{j i}\right|>10^{20}$ overflow will result. Overflow is serious in that the computation will be halted, but underflow is dangerous (unless both ${ }_{i 1}^{2}$ and $a_{j i}^{2}$ underflow) in that on many machines the computation will continue without warning and erroneous results produced. The situation is easily remedied, honever, by using, instead of (2.3.3), (2.8.4) and (2.8.5),

$$
\begin{align*}
& c=\operatorname{sgn} a_{i i}\left\{1+\left(a_{j i} / a_{j . i}\right)^{2}\right\}^{-\frac{1}{2}} \\
& s=c a_{j i} / a_{i i}
\end{align*}
$$

if $\left|a_{j i}\right| \leqslant\left|a_{i i}\right|$, and

$$
\begin{align*}
& s=\operatorname{sen} a_{j i}\left\{1+\left(a_{i i} / a_{j i}\right)^{2}\right\}^{-\frac{1}{2}} \tag{2.9.1.3}\\
& c=s a_{i i} / a_{j i} \tag{2.9.44}
\end{align*}
$$

if $\left|a_{j i}\right|>\left|a_{i i}\right|$. The values of $a_{i i}^{1}$ is then formed from

$$
a_{i i}^{\prime}= \begin{cases}a_{i i} / c & \left(\left|a_{j i}\right| \leqslant\left|a_{i i}\right|\right) \tag{2.9.45}\\ a_{j i} / s & \left(\left|\left.\right|_{j i}\right|>\left|a_{i j}\right|\right)\end{cases}
$$

rather than from (2.8.6). Te have assumed of course that $a_{i i}$ and a ${ }_{j i}$ an non-zero, since if either is zero special action is taken anyway.

* The problem is also present in the modified Gram-Schmidt and Householder methods, where the 2 -norms of certain vectors have to be formed. One way of orerconing the problem in these cases is before forming the sum of the squares of the vector elements, to search for the element of largest magnitude and to divide each clement by this value. The 2-norm so obtained is hin muliiplied. by the modulus of the element of largest magnitude.

Algorithm 2.9 .1 is modified accordingly by replacing Steps $19-21$ by those in Algorithm 2.9 .2 belorr.

Algorithm 2.9.2: Orthogonal triangularization by rows and linear least-squares solution using classical plane rotations with overflow/underflow prevention (vector storage strategy).

Steps 1-18. As Steps 1-18 of Algcrithm 2.9.1.
Step 19. If $\left|r_{7}\right| \geqslant\left|\nabla_{j}\right|$ advance to Step 21.1.
Step 20.1. Set $\mathscr{E}=r_{I} / v_{j}$.
Step 20.2. Set $s=\operatorname{sen} v_{j}\left(1+g^{2}\right)^{-\frac{1}{2}}$.
Step 20.3. Set $c=s g$ and replece r_{I} by $v_{\mathcal{J}} / \mathrm{s}$.
Step 20.4. Advance to Step 22.
Step 21.1. Set $g=v_{f} / r_{I}$.
Step 21.2. Set $c=\operatorname{sgn} r_{1}\left(1+g^{2}\right)^{-\frac{1}{2}}$.
Step 21.3. Set $s=c g$ and replace r_{1} by $r_{1} i c$.
Steps 22-31. As Steps 22-31 of Algorithm 2.9.1.

Further algorithms based on classical plane rotations, presented in subsequent sections, can also be modified in this way.

In Algorithe 2.9.3, which implements the Gentleuan 3-multiplication rule, successive rows of ${\underset{\sim}{\mid}}^{\frac{1}{2}}(\underset{\sim}{2} / \mathrm{b})$, where $\underset{\sim}{V}=\operatorname{diag}\left(w_{1}, w_{2}, \ldots, w_{m}\right)$ denotes a matrix of non-negative weights, are rotated into ${\underset{\sim}{N}}^{\frac{1}{2}}(G \mid h)$. Here $\underset{\sim}{h}$ is related to the right-hand side $\underset{\sim}{\theta}$ in the classical Givens method by $\underset{\sim}{\theta}={\underset{i}{i}}_{\frac{1}{2}}^{\sim} \sim$. $\underset{\sim}{D}$, the super-diagonals of $\underset{\sim}{G},{\underset{\sim}{n}}_{h}^{h}$ and (in which the minirum sum of squares is formeà) are all initialized to zeru. I_{\sim} is stored in $d_{j}(j=1,2, \ldots, n)$ and the super-diagonals of $\underset{\sim}{G}$ by rows in $E_{1}\left(1=1,2, \ldots, \frac{1}{2} n(n-1)\right)$. Nuch of the remaining notation is similar to that in Algorithm 2.9.1.

Algorithir 2.9.3: Orthogonal triangularization by rows and linear least-squares solution uaing modern plane rotations (Gentleman's 3-multiplication rule) With vectom storage.

Corment: $D, \underset{\sim}{h}, O^{\circ}$ and the super-diagonals of G are initialized to zero.
Step 1. For $I=1,2, \ldots, \frac{1}{2}(n-1)$ set $E_{I}=0$. For $j=1,2, \ldots, n$ set $d_{j}=0$ and $h_{j}=0$. Set $\sigma=0$.

Coment: The ith major step is described by Steps 3-27.
Step 2. For $i=1,2, \ldots$, mexecute Steps 3-2.7.
Comnent: The ith row of $(A \mid k)$ and the correspondine meight ane read or formec.
Step 3. Read or form the current (ith) ror $w_{;} v_{1}, v_{2}, \ldots, v_{n}$, b.
Comment: The jth minor step is describod by Steps 5-25.
Step 4. For $j=1,2, \ldots, n$ execute Steps 5-25.
Comment: No operations on row i are required if w is zero.
Step 5. If $\mathrm{m}=0$ advance to Step 27.
Comment: A rotation is skipped if $a_{i j}$ is already zero.
Step 6. If $\mathrm{v}_{\mathrm{j}}=0$ advance to Step 25.
Coment: Flement $\varepsilon_{j j}$ is stored as E_{\perp}.
Step 7. Set $I=(j-1)(2 n-j) / 2$.
Coment: The algorithm branches accordine to whether d_{j} is zero or non-zero.
Step 8. If $\dot{\alpha}_{j} \neq 0$ advance to step 15.
Coment: In the case $\hat{a}_{j}=0$ rom j of ${\underset{\sim}{d}}^{\frac{1}{2}}(G /\{)$ is replaced by row i of $\mathrm{V}^{\frac{1}{2}}(\mathrm{~d} \mid \mathrm{b})$ in Steps 9-13.
Step 9. Revlace d_{j} by πv_{j}^{2}.
Stey 10. For $k=j+1, ~ i+2, \ldots, n$ execute Steps 11-12.
Step 11. Rep? ace 1 by $1+1$.
Step $i 2$. Replace E_{I} by ∇_{k} / v_{j}.
Step 13: Replace h, by $b /{ }_{j}$.
Coment: Mo further rotations involving row i of ($A \mid b)$ are required.

Step 14. Advance to Step 27.
Comment: In the case $a_{j} f 0$ a 3 -multiplication rule to annihilate $a_{i, j}$ is carried out in Steps 15-24.

Step 15. Set $y=d_{j}$ and $z=W_{j}$.
Step 16. Replace d_{j} by $y+z y_{j}$.
Step 17. Set $\hat{i}=y / d_{j}$ and $\hat{s}=z / a_{i}$.
Step 18. Replace wh by $\hat{\mathrm{c}}$.
Step 19. For $\mathrm{k}=\mathrm{j}+1, \mathrm{j}+2, \ldots, \mathrm{n}$ execute Steps 20-22.
Step 20. Replace I by I-1.
Step 21. Set $y=g_{1}$ and $z=\nabla_{k}$.
Step 22. Replace g_{1} by $\widehat{c y+} \hat{s} z$ and ∇_{k} by $z-v_{j} y$.
Step 23. Set $y=h_{j}$ and $z=b$.
Step 24. Replace h_{j} by $\hat{C Y Y+\hat{S} z}$ and b by $b-v_{j} y$.
Step 25. Contínue.
Comment: The residual sum of squares is updated.
Step 26. Replace σ by $\sigma+w{ }^{2}$.
Step 27. Continue.
Step 28. Use Algorithm 2.1.3 to solve Gx = 2.

In Algoriting 2.9.4 the extensions to Aleorithm 2.9.3 to implement the hybrid 2- anc 3-multiplication rula are incerparated.

AJgorithm 2.9.4: Orthogonal triangularization by rows and linear least-squares solution using modern plane rotations (Gentleman's hybrid 2- aid 3-wultiplication rule) with vector storage.

Steps 1-18. As Steps 1-18 of Aleorithm 2.9.3.
Step 18.1. If $100 y \geqslant \alpha_{j}$ advance to Step 24.2.
Steps 19-24. As Steps 19-24 of Aigerithm 2.9.3.
Step 21.1. Advance to istep 25.

Stop 24.3. Replace I by $1+1$.
Stop 24.4. Repluce v_{k} by $\mathrm{v}_{\mathrm{z}}-\mathrm{V}_{3} E_{1}$.
Step 24.5. Replace E_{1} by $\varepsilon_{1}+\hat{S} v_{1=}$.
Step 24.6. Replece b by $b-v_{j} h_{j}$.
Step 24.7 . Fopzace h_{5} by $h_{j}+$ Ŝb .
Stops 25-23. As Steps 25-2.8 of Algorithri 2.9-3.

Wie do not predent algorithms for the Hemnorling "́-multiplication rules, since appropriate strategies to overcone the possibility of underflom ore Etill beirg morled out.
2.10 A comparison of the plane-rofation mothods mitio otiner methocs based upon orthoment transfomaticas

Clasejcal plane rotaticns appeax to have been litthe-usad for solving linear least-squares probicms, despite the fact that their stability properties compare favourabiy with those on the nodiried Gram-Schmidt and Householaer methods. The main reason for this lack of use is tho unfavourable anount of arithmetic pequired by classical rotetions conpared vith other orthogonalization methos (Finginson, 1965: 24, .-24.7). For example, if $\mathrm{n} \Rightarrow \mathrm{n}$, classicul pinne rotations require sobut $2 \mathrm{mn}^{2}$ Jong operations to iriangularize an my n matrix, whereas the other two mathods each take about ma long operations (thes numbers are to be conpared with the loss satisfactory method ois momal equations vinch takes about $\frac{1}{\text { anini}}$? long onerations). As a result, nearly all numericaly stasle mathods for solvjng तense linear least-squares problems thet have been deyelefsa in recent years use eithor the mocifica Gram-Schriat method or ITousenol. der transformations. Morearer, as a furthor consequence of the unfavourehle anount of arithateforequired by classical plane rotations, z rumber of Ruthors (og Kead, 1967; Fincon ona Lawson: 1963) hove profersea to dnyclop
extensions of Householder' is metho己 for expioiting structured problems or for updating linear least-squares solutions. Cf course, the recent appearance of the modern versions of plane rotations requiring fewer arithmetic operations will almost certainly give rise to a geater concentration upon their use.

Despite the above arguments mhich, superficially at least, secm quite reasonable, we believe there are a number of reasons (here ve give four) why the plane-rotation methods (even in their classical form) discussod in Sections 2.8 and 2.9 have advantages over methods such az modieficd GranSchnidt or Householder for solving either donse or structureă Jinear leastsuqares problam.

Firstly, the matrix can be orthogonally triancularized row-by-wow, thus enabling the complete process (in the dense case) to be carried out in a storage space of $\frac{1}{2} n(n+1)$ words for the upper-triengular matrix, n wores ficr the right-hand side, and n words for the current row of A, giving a totrl of $\frac{1}{2} n(n+5)$ words (see Algorithms 2.9.1, 2.9.2, 2.9.3 and 2.9.4). Note that this storage space is independert or m, and thus very large problems can be solved, as iong as there is sufficient atore availeble for $\frac{1}{2} n($ nit5) elements plus, of course, the rrogram itself (on the English Electric KDFg computer, for example, with its 3 Ki-mord core store, tnis inpies that m is unlimited and n may be we? 7 over 200.

Seconaly, ir performing a single plane rotation (as opposed to a single Houscholder transformation or a step of the modified Gram-Schmidt uethoc), considerable advuntage can irsequently be taken of the zero-non-zero structure of the matrix, ie unnecessary aritimetic operations upon zero elements can be aroided, and further economics in storage can consequently be made. Ar zinportant instance, mentioned in Section 2.8, is when the trio roms involved in a rotation have zero elements iri corrospundine colum
positicns, ir which case no arithmetic need be performed upon those elements.

Mrirdly, an aspect of scientific computation of ten overlooked is that when many numerical methods are programmed in a high-lovel language such as Algol or Fortran, the actual proportion of time spent in the execution of purely arithmetic statements is frequently a small percentage of the tatal time. The buik of the time is of ten spent in referencing (either fetching oi storing) array variables, for- or D0- Joop overheads etc (see, for example, Wichmann, 1973). Por instance, Algol 60 inplenentations of orthogonalization methods (modified Gram-Schmiat, Householdar or plane rotations) for the solution of linear systems spend typically only about 10% of the total time executing purely arithmetic statements (see later in this section). Consequently, even a substantial saving in the number of multiplications has only a marginal relative effect on the total execution time. Therefore, the ingin consideration is flexibility: a method sucin as plane rotations that enables structure to be exploited in a more straightforward and efficient manner is frequently to be preferred.

Fourtily, another factor, though not quits so important in the light of the coments in the previous paragraph, is that the generalized forms of plane rotation iiscussed in Section 2.9 enable the number of multiplicatione to be reduced by a quarter or even by one-half. in the latter case the amount of arithmetic is about that of the other orthogonelization methods.

Io reinforce our claims relating to the proportion of tine spent on pursly arithmetic operations and to demonstrate ine little-known competitiveness of the plame-rolaiion methods we discuss in detail the "inrer loops" of the modified Gram-Schmidi, Householder and plane rotation methods. For simplicity me shall assume that in $\gg n$. For purposes of comparison we present code segments, each rrititen in flgcl 50 , for these methods. Ye have
made a serious attempt to code each of thesa computations as efficiently as possible in order thet our comparison shall be a fair one. Fe then apply to these code sogments the method of Ficimam (1973) for estimating the execution speed of Algol programs. In michmann's approach a weight (representing a number of computational time units) is assigned to each identifier, constant or delimeter in a program. This weight is indeperdent of the computer or the compiler and represents an average based on a number of existing Λ lgol compilers.

The "inner loop" of the nodificd Gram-Schnidt method (Steps 5 and 6 of Algorithm 2.6.1) is really in tro parts, code for which is

First part:

$$
\begin{aligned}
& \text { rlj }:=0 ; \\
& \text { for } k:=1 \text { step } 1 \text { until } n \underline{d o} \\
& r l j:=r l j+p[k] \times a[k, j] ;
\end{aligned}
$$

Second part:

$$
\begin{aligned}
& \text { for } k:=1 \text { step } 1 \text { until m do } \\
& a[k, j]:=a[k, j]-r l j \times p[k] ;
\end{aligned}
$$

Note that a further advantage accrues from storing element $q_{k]}$ in position k of the one-dirnensional array p : one-dimensional array elements can be referenced faster than tro-dimensional array elements. Also, for purposes of tie surnation the values of $r_{l j}$ is accurulated as the simple variable rlj. We incorporate similar ideas in the codes for the cther methods.

The time for the stin cycle ($k=1,2, \ldots, m$) in the first pant is

$$
\begin{equation*}
T_{1}=L+M+A+2 V_{0}+V_{1}+V_{2}, \tag{2.10.1}
\end{equation*}
$$

where

```
L = tine for loop control (ie incrementing and testing
    of counter k),
    M = floating-point multiplication time,
    A = floating-point aūãtion or subtraction time,
Vi
```

In the ensuing analyses we shall also need

```
S = time foi floating-point squaro ront.
```

The reights obtaincd by Wichmann (1973) for these parameters were $I_{1}=14$, $M=2, A=1, V_{i}=1+4 i$ and $S=50$ computational units (1 coraputational unit (c.u.) $=8.3 \mu \mathrm{sec}$ on KDF9, $0.85 \mu \mathrm{sec}$ on CIC 6600 , etc). Using these values

$$
T_{1}=14+2+i+(2)(1)+5+\bar{y}=33 \text { c.u. }
$$

Thus the total time for the first part is 33 m $+0(1)$ c.u., the $0(1)$ term steming from loop set-up costs. Similarly, for the ktt: cycle (k $=1, \varepsilon$, $\ldots, \mathrm{m})$ of the second part we obtain a time of

$$
\begin{align*}
T_{2} & =L_{1}+M+A+V_{0}+V_{1}+2 V_{2} \tag{2.10.3}\\
& =14+2+1+1+5+(2)(0)=41 \text { c.u. } \tag{2.10.4}
\end{align*}
$$

Sc the total time for the second part is $41 m+O(1)$ c.u. The total time spent in the tro parts is therefore $74 m+0(1)$ c.u. Thus, since the above two parts ane executed abcut $\frac{1}{2} n^{2}$ tires in all, the overail time for the modified Gram-ichmidt nsthod is $37 \mathrm{mn}^{2}$ c.u., ienoring terms of lower ordor. Note that of these $37 \mathrm{mn}^{2}$ c.u., only $3 \mathrm{mn}^{2}(8 \%)$ are pureiy arithmetica? and only $2 \mathrm{mi}^{2}(5 \%)$ involve LuItiplications.

Yie now examine the "inner loop" of the Rouseholder method (Steps 8 and 9 of Algoritive 2.?.1), Esain there are trio parts, codes for which are

First part:

$$
y:=0 ;
$$

for $i:=k$ step 1 until m do

$$
y:=y+w[i] \times a[i, j] ;
$$

$y:=$ beta $\times y ;$
Second part:
for $i:=k$ stop 1 until m do

$$
a[j, j]:=a[i, j]-y \times w[i] ;
$$

We see, by comparison with the code for the modified Gram-Schmidt method. that the codes are very similar in form, the main difference being the initial values of the for-loop counters. Accordingly, the total time for the two parts is $74(m-k)+O(1)$ cu. Now the above code is executed. for values of j from $k+1$ to n and for values of k from 1 to n (sen Steps 7 and 1 of Algorithm 2.7.1). Thus the overall time for the method of Householder transformations is

$$
\begin{equation*}
\sum_{k=1}^{n} \sum_{j=k+1}^{n} 7 l_{+}(m-k)=37 \mathrm{mn}^{2} \text { cu. } \tag{2.10.5}
\end{equation*}
$$

ignoring terms of lower order. Again, as with the modified Gram-Schmidt. method, only 8% of this time is purely arjhmetic and only 5% involves multiplications.

Te now turn to classical plane rotations. Code for the "inner loop" of the triangularization by columns method, based on Steps 5, 6 and 7 of Algorithm 2.8.1, is
for $j:=k+1$ step 1 until n do
begin

$$
\begin{aligned}
& y:=a[k, j] ; \\
& z:=a[j, j] ; \\
& \varepsilon[k, j]:=c x y+s x z ; \\
& a[i, j]:=c x z-s x y
\end{aligned}
$$

end i;

The time for the jth cycle is

$$
\begin{align*}
& L+4 M+2 A+10 V_{0}+4 V_{2} \tag{2.10.6}\\
& =14+(4)(2)+(2)(1)+(10)(1)+(4)(9)=70 \text { c.u. } \tag{2.10.7}
\end{align*}
$$

The total time for the inner 1 cop is therefore $70(n-k) \div O(1)$ c.u. This inner loop is executed for values of i from $k+1$ to m and values of k from 1 to n, giving an overall time of

$$
\begin{equation*}
\sum_{k=1}^{n} \sum_{i=k+1}^{m} 70(n-k)=35 m^{2} \text { c.u. } \tag{2.10.8}
\end{equation*}
$$

ignoring terms of lower order. An identical time is taken by the triangularization by rows process. Note that $10 / 70=14 \%$ of the total time is spent on purely arithmetic operations and $8 / 70=11 \%$ of the total time involves multiplications.

Finally, we examine the "inner loop" of Gentleman's 3-multiplication rulo (cf relations (2.9.21)), code for which, if gji denotes the values of $\xi_{j i}$,
for $k:=i+1$ step 1 until n do
begin

$$
\begin{aligned}
& y:=E[i, k] ; \\
& z:=E[j, k] \\
& E[j, k]:=\cos \times y+\operatorname{scap} \times z ; \\
& E[j, k]:=z-\operatorname{gji} \times y
\end{aligned}
$$

The time for the kth cycle is

$$
\begin{align*}
& I+3 M+2 A+9 Y_{0}+4 V_{2} \tag{2.10.7}\\
& =14+(3)(2)+(2)(1)+(9)(1)+(4)(3)=67 \text { c.u. } \tag{2.10.10}
\end{align*}
$$

Thus the overall time is approximateiy $33.5 \mathrm{mr}^{2}$ c.u., of mach $8 / 57=12 \%$ is spert on purely arithmetic operations and $6 / 67=9 \%$ on multiplications.

Mll the above tines, together with those for the Golub-Hamarling class of rules which are derived in a similar way, are summrised in Table 2.10.1. It should be emphasized that the values in this table apply to the "average" Algol 60 compiler. Corresponding values for other hichlevel languages, such as Fortron, may well bo different.

Method	Number of multns.	Time in computational units	Ratio of tines	Proportion of time spent on	
				purely arithnetic operations	multns.
$\begin{gathered} \text { Modified } \\ \text { Gram-Schridit } \end{gathered}$	$m n^{2}$	$37 \mathrm{mn}{ }^{2}$	1.00	8\%	5\%
Householder	$m n^{2}$	$37 \mathrm{mr} \mathrm{I}^{2}$	1.00	8%	5\%
$\begin{aligned} & \text { Classical } \\ & \text { plane } \\ & \text { rotations } \end{aligned}$	$2 \mathrm{mn}{ }^{2}$	$\begin{aligned} & 35 \mathrm{mn}^{2} \\ & 29 \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 0.95 \\ & 0.78 \end{aligned}$	$\begin{aligned} & 14 \% \\ & 17 \% \end{aligned}$	$\begin{aligned} & 11 \% \\ & 14 \% \end{aligned}$
```Modern planc rotations (Gentleman's 3-multn. ruIe)```	$\frac{3}{2} \operatorname{mn}^{2}$	$\begin{aligned} & 33.5 \mathrm{mn}^{2} \\ & 27.5 \mathrm{~min}^{2} \end{aligned}$	$\begin{aligned} & 0.91 \\ & 0.74 \end{aligned}$	$\begin{aligned} & 12 \% \\ & 15 \% \end{aligned}$	$\begin{gathered} 9 \% \\ 11 \% \end{gathered}$
$\begin{aligned} & \text { Modern plane } \\ & \text { rotations } \\ & \text { (Golub- } \\ & \text { Henmarling } \\ & \text { 2-mulin. } \\ & \text { rules) } \end{aligned}$	$\mathrm{min}^{2}$	$\begin{aligned} & 32 \mathrm{mn}^{2} \\ & 26 \mathrm{~m}^{2} \end{aligned}$	$\begin{aligned} & 0.86 \\ & 0.70 \end{aligned}$	$\begin{gathered} 9 \% \\ 12 \% \end{gathered}$	$\begin{aligned} & 6 \% \\ & 8 \% \end{aligned}$

Table 2.10.1 A comparison of the theoretical computation times of several methoas for the orthogonal tricngularization of an $m$ by $n m n t r i x$ $(m \gg n)$. For the plene-rotation methods the upper of the twe entries in Colums 3-5 applies to array storace and the Iuwer to vector storage.

### 2.11 Stepped-banded matrices

Matrices of a special form, which we term stepped-banded matrices, are introduced in this section. These matrices, which are a generali\%ation of band natrices, arise in problems of interpolation and approxination in one, two or more independent variables by linear combinations of basis functions having restricted support (see Chapters 6, 7 and 10).

A stepped-banded matrix $A$ is defined as follows. Let $A$ bo an $m$ by $n$ matrjx. Let $q$ be an integer such that $1 \leqslant q \leqslant n$. Lat $p_{0}, p_{1}, \ldots, p_{n-q+1}$ be a sct of non-negative integers which satisfy

$$
\begin{equation*}
0=p_{0}<p_{1} \leqslant p_{2} \leqslant p_{3} \quad \cdots \leqslant p_{n-q}<p_{n-q+1}=m . \tag{2.11.1}
\end{equation*}
$$

Suppose $\underset{\sim}{A}$ can be subdivided into $n-q+1$ blocks such that the kth hlock $(\underline{k}=1,2, \ldots, n-q+1)$ consists of rows $p_{k-1}+1$ to $p_{k}$ and has non-zero elements only in columns $k$ to $k-q+1$ (note that the block is empty if $p_{k-1}=p_{k}$ ). Such a matrix is termed a stopped-banded metrix of bandriadth q. Fig. 2.11.1 illustrates a stepped-bended matrix of order 12 by 8 with banàmiath $q=4$, having $p_{1}=2, p_{2}=5, p_{3}=p_{4}=9$.

rig. 2.11.1 A stepped-banded watrix with $m=12, n=8$ and $q=4$.

Evidently $\underset{\sim}{A}$ can be held in condensed form in a rectangular array of size $m$ by $q$, if the $n-q$ values of the integers $p_{f}, p_{2}, \ldots, p_{n-q}$ are also stored. In this condensed form of storage $a_{i j}$, if it lies in the kth block, is storod in location (i, j-k+1).

### 2.12 Triangularization of stepped-benced matrices usinc Caussian elimination

Let $\underset{\sim}{A}$ be an $m$ by $n$ stepped-banded matrix as defined in Soction 2.11. We consider the IT fictorization (cf Section 2.4) of $A$ using Guassian elimination. The process to be described generalizes the algorithr of Martin and Milkinson (1967) for the factorization of uniformly-banded square matrices.

The algorithn consists of $n-1$ major steps, the kth of which $(k=1,2$, $\ldots, n-1$ ) involves the elimination of the sub-diagonal elements in the kth column of $A$. Before the start of the kth aajor step, the first k-1 rows of $A$ are in upper band triangular form with (at most) q-1 superdiagonals. The final matrix also takes the form of an upper kanded triancle of bandwicth q.

The configuration at tine start of the kth major step is illustrated in Fig. 2.12.1 fur tine case ifin $=12, \mathrm{~A}=10, \mathrm{q}=4, \mathrm{p}_{1}=2, \mathrm{p}_{2}=4, \mathrm{p}_{3}=5$, $p_{4}=7, p_{5}=8, p_{6}=9, k=4$. In the ktin major step there are (at most) $p_{k}-k$ sub-diagonal elements to be eliminated (here we define $p_{k}=m$ ir $k>n-q)$. The kth ratior step consists of (i) determining $i$, the smallest value of $i$ for which $\left|a_{j l}\right| \geqslant\left|\exists_{i k}\right|\left(i=k, k+1, \ldots, p_{k}\right)$, (ii) intercharging roms $k$ and $j$ if $k \neq j$ and (iii) $p_{k}-k$ minor steps, the ith of which $\left(i=k+1, k+2, \ldots, p_{k}\right)$ involves forming $m_{i k}=a_{i k} / a_{k k}$ (N.B. $\left|m_{i k}\right| \leqslant 1$ ) and replacing row $i$ by rois $j-m_{j . k} \times$ row $k$.


Fig. 2.12.1 The configuration at the start of the 4 th major step in the IU factorization by Gaussian elimination vith partial pivoting of a stepped-banded matrix mith $m=12, n=10$ and $G=4 . X$ denotes a (usually) non-zero elonent. (X) denotes an element that has been reduced to zero.

In practice an sconomized fcrm of storage is used in which $\underset{\Delta}{d}$ is stored es an Im by $q$ rectangular array as described in Section 2.11 ; for further dotails see Algorithm 2.12 .1 below.

Note that, since at any stage of tine reduction there are at most $q$ elemertis in any row, $z^{+}$きge (iii) involves at most $q\left(D_{k}-k\right)$ long operations and hence the total rimber of long operations $M$ is boundsd by

$$
\begin{equation*}
n=\sum_{k=1}^{n-1} q\left(p_{k}^{-i k}\right) \tag{2.12.1}
\end{equation*}
$$

It is easily esteblished that if $\underset{\sim}{A}$ is of rank $n$ then an upper bound for $p_{k}(k=1,2, \ldots, n-q)$ is $m-n+q+k-1$. Moreover, $p_{k}=m$ for $k=n-q+1$, $n-q+2, \ldots, n-1$. Thus

$$
\begin{align*}
n & \leqslant q \sum_{k=1}^{n-q} p_{k}+q \sum_{k=n-q+1}^{n-1} p_{k}-q \sum_{k=1}^{n-1} k \\
& =q \sum_{k=1}^{n-q}(m-n+q+k-1)+q \sum_{k=n-c+1}^{n-1} m-\frac{1}{2} q n(n-1)  \tag{2.12.2}\\
& <q_{n}(m-n+q) . \tag{2.12.3}
\end{align*}
$$

Note that jin the square case m=n this bound reduces to

$$
M<n q^{2} .
$$

These bounds are somemat pessimistic however. A more realistic estimate is given by assuming that each block has roughly the same number of rows. Then $p_{k}(k=1,2, \ldots, n-q)$ has the approximate value of $m k /(n-q+1)$. In this case

$$
\begin{align*}
M & \doteq q \sum_{k=1}^{n-q} m k /(n-q+1)+q(q-1) m-\frac{1}{2} n n(n-1) \\
& =\frac{1}{2} u\{m(q-2)+n(n-n+1)\}, \tag{2.12.5}
\end{align*}
$$

which for $\mathrm{n}:=\mathrm{n}$ reduces to

$$
\begin{equation*}
M=\frac{1}{2} q\left(q_{1}-1\right) n . \tag{2.12.6}
\end{equation*}
$$

These two more realistic bounds are about half of the above rigorous bounds.

Another approzich to the solution of stopped-handed systers in the square case is basea oii the observation thet the non-zero elements of a square non-singular stepped-banded matrix can be contained wholly withzn a uniformiy-binûcu matrix with $q_{1}-1$ super-dianorals aiza q-i sub-äiagonals. A uniformly-banded matrix rith these dinensions requires for j.ts
factorization about $2 n\left(q-\frac{1}{2}\right)(q-1)$ long operations, ie about twice as many operations as the abse rigarous bound or about four times as many as the realisisic bours. Thus the application of a standerd algorithm for uniformly-banded systems could be employed but computationally it wrould be probably four times as expensive.

Having reduced $A$ to $\underset{\sim}{I U}$ form, the system $A x=\underset{\sim}{b}$ may be solved in the square case $m=n$ by snlving two banded triungular sets of equations, on in the least-squares case n $>n$ by applying the mothod of Section 2.4, takine rull advantage of the banded nature of $I \mathrm{and} \mathbb{X}$. Alternetively, in the squere case, if the climination steps performed on $A$ are also performed on $g$ to produce a new vector $\underset{\sim}{d}$ then it is merely necessary to solve tho single band triangular system $\underset{\sim}{U x}=$ d. Mgorithm 2.12.1 below, for the case $m=n$, in which A is stored in condensed form, is based upon this alternat.ive approach.

Some features of the algorithn are as follows. Immeaiately arter the element $a_{i k}$ has been elininated, the new value of $a_{i j}(j>k)$ is stored in location (i, j-1). This strategy ensures that all non-zero elements remain within the coniines of the $n$ by $q$ array and, in particular, that successive diagonals of the resulting band triangle are stored in successive columns of the rectangular array. Durjng the kth meior step at most $q$ blocks ase involved. Thus, if required, the matrix can be brought into store block dy block as the eiimination proceeds. In particular, the kth block is not processed until the kth major cycle.

Algorithr 2.12.1: Solution of a square stepyed-bandec linear system using Gaussian eliminatica with partial pivoting (sconomized storage strategy).

Comment: The kth major step is described by Steps $2-18$.
Step 1. For $k-1,2, \ldots, n$ execute Steps 2-18.
Coment: Set I to the number of the last row involved in the kin major step.

Step 2. Set $1=\mathcal{F}_{2 k}$ (if $k \leqslant n-q$ ) or $n$ (otherwise).
Coment: The row number, $j$, of the element with naximum modulus in colvin $k$ is determined in Steps 3-5.
Step 3. Set $z=\left|a_{k 1}\right|$ and $j=k$.
Step 4. For $i=k+1, k+2, \ldots$, 1. exrcute Step 5 .
Step 5. If $\left|a_{i 1}\right|>z$ replace z by $\left|a_{i, 1}\right|$ and $j$ by i.
Comment: A row interchange is not reçuired if $j=k$.
Step 6. If $\dot{j}=k$ advance to Step 14.
Coment: Rows $j$ and $k$ are interchanged in Steps 7-13.
Step 7. For $u=1,2, \ldots, q$ execute Steps $8-10$.
Stop 8. Set $z=a_{k u}$.
Step 9. Replece kfu by $a_{j u}$.
Step 10. Revlace $a_{j u}$ by $z$.
Step 11. Set $z=b_{k}$.
Step 12. Replace $b_{k}$ by $b_{j}$.
Step 13. Feplace $h_{j}$ by $z$.
Comment: The ith minor stop is described by Steps 15-18.
Step $1 / 4$. Fror $i=k+1, k+2, \ldots$, ? execute Stops 15-18.
Step 15. Set $z=a_{i 1} / a_{k 1}$.
Step 16. For $u=2,3, \ldots$, q replace $a_{i, u-i}$ by $a_{i u}-2 a_{k u}$.
Stey 17. Set $a_{i q}=0$.
Step 18. Replace $b_{i}$ by $b_{i}-z b_{k}$.
Step 19. Use Algorithan 2.1.4 to soive $\underset{\sim}{U x}=\underset{\sim}{L}$ ( $\underset{\sim}{T}$ stored in A A).

### 2.13 Triangularization of steroei-baried matriees usine stailized alomentary transformations

He now describe a methed employing stabilized elementary matrices for the triangurarization of a stepped-banded metrix A. As with the Gaussjan animintition method of Section 2.12 the methed fokes full anvantage of the structure of $\underset{\sim}{i}$ in that only very fem arithmetic operations are nerformed on zero elemints of $A$. The method has the further practical advantage that
tine rows of A are processed sequentially, ie cach fow in turn may be computed or read from an input device, and then processed fully before the next row is so treated. Thus, matrices with an indefinitely large number of rows may be triangularized. The only reatriction is that a storage space of roughly ny locations must be available. A parallel of the method which uses plane rotations to effect an orthogonal triangularization is given in Section 2.14.

The matrix ${ }_{\sim}{ }_{i j}$, equal to the identity matrix apart fror the element in position ( $i, j$ ) $(i \neq j)$ which is $-m_{i j}$, is termed an elementary matrix (ifilkinson, 1965: p164 et seq). If $\left|m_{i j}\right| \leqslant 1$ then $M_{i j}$ is termed a stabilized elementary matrix. The effect of pre-multiplyjng the matrix $\underset{\sim}{A}$ by $M_{i j}$ is to replace row $i$ by row $i-m_{i j} \times$ row $j$ and to leave the remaining rows undisturbed. The inverse of ${\underset{\sim}{i}}^{2 j}$ is easily verified to be equal to the identity matrjx apart from the element in position ( $i, j$ ) which is $+\mathrm{m}_{i j}$.

The triangulariaation process consists of major steps, the ith of wich ( $i=2,3, \ldots, m$ ) involves the elimination, by employing a secquence of stabilized elementary =etrices, of the elements in row i of $A$ that lie to the left of the main diagonal. Inmediately before the start of the ith major step, the first i-1 rom of A are in prper bend trianguiar form with at most q-1 super-diagonals. The configuration at the start of the ith major step is illustrated in Fig. 2.13 .1 for the ase $q=4, p_{1}=3$, $p_{2}=5, p_{5} \geqslant 8, i=8$.

The ith maior ston involves initially the aetermination of the smallest integer $k$ such tituru $i \leqslant p_{k}$, followed by (at most) $q$ minor steps, the jth of mhjch $(j=k, k+1, \ldots, i-2)$ is executed only if $a_{i j} \neq 0$ and consists of (i) interchanging rows $i$ and $j$ if $\left|a_{i j}\right|>\left|a_{j j}\right|$, (ii) forming $m_{i, j}=a_{i, j} / a_{i i}$ and (iiij) replacing row i by row $i-m_{i j} \times$ rorn $j$. The
interchange in stage (i) is necessary if $\left|a_{i j}\right|>\left|a_{j j}\right|$ to ensure that $\left|m_{i j}\right| \leqslant 1$ and hence that the elementary transformation defined by stages (ii) and (iii) is stabilized. A full description of the complete process in the case $\pi=n$, incluoing the treatment of a right-hond side b , is given as Algorithn 2.13.1 below. In this alcoritha $\underset{\sim}{R}$ is formed in an $n$ by $q$ array, the successive diagonals of $\underset{\sim}{R}$ being stored as successive columns in the array. The ith rows of ( $\mathrm{A} \mid \mathrm{b})(i=1,2, \ldots, n)$ are assumed to be supplied successively in locations $v_{1}, v_{2}, \ldots, v_{q}$, $u$.

Two refinements that result in a worthpinilo saving in computation are jncorporated in Algoritha 2.13.1. The first refinement involves, in tin case $\left|v_{j}\right|>\left|r_{j s}\right|$, replacing the explicit row interchange and the folloring elimination step by a simple strategy which combines these operations anc thus reduces the overheads associated with loop control and the accessinf of array variables (of Section 2.10). The second refinement takos advantage of any zero elements on the diagonal of $\underset{\sim}{r}$. If. $v_{j}$ is ahout to be eliminated and $r_{j j}$ is zero then the jth row of $R$ (ie a null row) is interchanged with the current row. The remaining rotations associated with the new current (now null) row are then skipped.

$$
\begin{aligned}
& \mathrm{X} \mathrm{X} \text { X X } \\
& \text { (X) } X \bar{X} \quad \bar{X} \\
& \text { (x) (x) } x \quad x \quad x \\
& \text { (x) (x) } x \quad x \\
& \text { (2) (8) } 8 \text { x } \\
& \text { (8) (8) } x \\
& \text { (x) (x) (x) }
\end{aligned}
$$

$$
x \times x \quad x
$$

Yī̃. 2.1\%.1 The corfiguration at the start of ine 8th major step in the LU factorization by stabilized elementary matrices of $a$ stepped-bancad matrix with $q=4, p_{1}=3, p_{2}=5, p_{3} \geqslant 8$. $x$ and $(X)$ as in Fig. 2.12.1.

With very minor changes, plane rotations can be used in place of stabilized elementary trinsformations in order to erfect a ${ }^{\circ} \pi$ rather than an IUN decomposition (See Section 2.14).

In the square case $m=n$ the solution of $A \approx=\underset{\sim}{b}$ then reduces to the solution of the triangular system $\underset{\sim}{x} x=\underset{\sim}{Q}$.

In the general case $m \geqslant n$ the least-squares solution can be obtained using the method described in section 2.4. It is necessary to form the unit lomer trapezoidal matrix $\mathrm{J}_{\mathrm{A}}$, which has the same sub-diagonal structure as that of $\underset{\sim}{A}$. In fact, $I_{\text {d }}$ is easily formed as the product of the inverses of the stiabilized elementary transformations computed during the reduction.

Algorithm 2.13.1: Solution of a square stepped-banded linear system using stabilized elementary transformations (economized storace strategy).

Compent: $k$ is the number of the current block beine processed.
Stop 1. Set k=1.
Coment: $\underset{\sim}{R}$ anḋ $\underset{\sim}{O}$ arc initialized to zero in Steps $2-4$.
Step 2. For $\mathbf{i}=1,2, \ldots$, n execute Steps 3-4.
Step 3. For $j=1,2, \ldots$, q set $r_{i j}=0$.
Step 4. $\operatorname{Set} \theta_{i}=0$.
Coment: The ith najor step, in which row i is processed, is described by Steps6-j1.

Step 5. For $i=1,2, \ldots, n$ exeoute Steps 6-31. Comment: The ourwert block numier is uncated in Steps 6-7.

Step 6. If $i \leqslant y_{k}$ advance to Sitep 8.
Step 7. Replace $k$ by $k+1$ and return to Step 6.
Coment: The ith row of ( $A / \underset{\sim}{b}$ ) is read on formed.
Step 8. Read or form the cureme (ith) row $v_{1}, v_{2}, \ldots, \nabla_{q}$, u.
Comment: The ith minor step, in mhich $a_{i, k+j-1}\left(v_{j}\right)$ is eliminated, is describeci by Sieps 10-30.

Step 9. For $j=1,2, \ldots, q$ execute Steps $10-30$.
Comment: A transformation is skippeत if $a_{i, k+j-1}$ is already zero.
Step 10. If $\mathrm{v}_{\mathrm{j}}=0$ advance to Step 30.
Comment: Special action is taken if $r_{\text {kN }+j-1, k+j-1}\left(r_{k+j-1,1}\right)$ is zero.
Step 11. If $r_{k+j-1,1}=0$ advance to Step 27.
Comment: A test is made to see whether a row interchange is required.
Step 12. If $\left|v_{j}\right| \leqslant\left|r_{k+j-1,1}\right|$ advance to step 23.
Comment: $\Lambda$ transiormation with inplicit row interchange is carried out in Steps 13-21.

Step 13. Compute $\mu=r_{k+j-1,1} / v_{j}$.
Stop 14. Replace $r_{k+j-1,1}$ by $v_{j}$.

- Step 15. For $I=j+1, j+2, \ldots, q$ execute Steps 16-18.

Stop 16. Set $\mathrm{z}=\mathrm{y}_{1}$.
Step 17. Replace $v_{1}$ by $r_{k+j-1 \text {, } 1-j+1}-\mu z$.
Step 18. Replace $r_{k+j-1,1-j+1}$ by $z$.
Step 19. Set $z=u$.
Step 20. Replace o by $\theta_{k+j-1}-\mu$.
Step 21. Replace $\theta_{k+j-1}$ by 2 .
Step 22. Advance to Step 30.
Comment: A trancioimation without interchence is carried out in Steps 23-25.

Step 23. Compute $\mu=\nabla_{j} / r_{k+j-1,1}$.
Step 24. For $1=j+1, j+2, \ldots$, q replace $v_{I}$ by $v_{I}-\mu r_{k+j-1,1-j+1}$.
Step 25. Feplace u by u $-\mu \hat{\theta}_{k+j-1}$.
Step 26. Advance to Step 30.
Comment: The $(k+j-1)$ th row of $(\mathbb{R} \mid \underset{\sim}{2})$ is replaced by the current row in Steps 26-27.

Ston 27. For $I=j, j+1, \ldots$, q replace $r_{\text {lī } j-1, j, j, 1}$ by $v_{I}$.
Step 28. Replace $\hat{\partial}_{k+j-1}$ by $u$.
Step 29. Advance to Step 31.

Step 30. Continue.
Step 31. Continue.
Step 32. Use Algorithm 2.1.4. to solve $\underset{\sim}{\mathrm{Rx}}=\underset{\mathrm{Q}}{\boldsymbol{Q}}$.
2.1\% Orthcgonal trinngularjzation of sterped-banded matrices using plane rotations

We now consider the triangulanization by classiaal plane rotations of a stepped-banded matrix A. The method frollows very closely the algorithm based on stabilized elementary transformations treated in Section 2.13 and shares simjar advantages. However, there are two further adventages, not enjoyed by the method of Section 2.13. The first is that there is no possibility of severe element growth since the Euclidean norm of each column of A remains essentially constant. The second is that, if the same operations are applied to the right-hand side, it is not necassary to store details of the transformation matrices themselves.

The process is identical to that of Section 2.13 except that we allow $m \geqslant n$ rather than $m=n$ and the jth minor step of the ith major step involves a plane rotation rather then a stabilized elementary transformation to annihilate $a_{i j}$ :

If $a_{i j}=0$ do nothing; otherwise
(i) Compute $d=\left(a_{j j}^{2}+a_{i j}^{2}\right)^{\frac{1}{2}}, c=a_{j j} j d, s=a_{i j} j d$.
(ii) Replace row $j$ by $c \times r o w j+s \times r o w j$ snd row $i$ by c $\times$ rom $i-s \times$ row $j$.

A full description of the complete process is given as Aleorithm 2.14.1 below. Algorithu 2.14 .1 can also be viewed as an adentation of Algorithm 2.9 .1 to stepped-bandea systoms. Similar s.daptions of Algorithms 2.9 .3 and 2.9.4 enable Gentleman's mulsa to be applied to such systems.

Mgorjthn 2.11.1: Onthogonal triangularization by roms and Inear least-squares solution of a stepped-iondea system using classical plane rotations (economized storage strategy).

Comment: $k$ is the number of the cument block beine processed.
Step 1. Set $k=1$ and $\sigma=0$.
Comment: $\pi_{\sim}^{\pi}$ and $\underset{\sim}{\theta}$ are initiaiized to zero in Stops 2-4.
Stop 2. For $\mathbf{i}=1,2, \ldots, n$ execute Steps 3-4.
Step 3. For $j=1,2, \ldots$, q set $r_{i j}=0$.
Step 4. Set $\theta_{i}=0$.
Coment: The ith maion step, in which rom i is processed, is described by Steps 6-.30.

Step 5. For $i=1,2, \ldots$, m execute steps 6-30.
comment: The current block number is updated in Stops 6-7.
Step 6. If $i \leqslant p_{k}$ advance to Step 8.
Step 7. Replace $k$ by $k+1$ and return to Step 6.
Comment: The ith roa of ( $\underset{\sim}{A} \mid \underset{\sim}{b}$ ) and the correspondine peight are read or formed.

Step 8. Read or form the current (ith ) row $n, \nabla_{1}, \nabla_{2}, \ldots, v_{q}$, $u$.
Comment: No operations on row $i$ are required jif $w$ is zero.
Step 9. If $\bar{\pi}-0$ advance to Step 30.
Coment: The pieight is incorporated in rom in Steps 10-13.
Step 10. If $\mathrm{FI}=1$ advance to Step $1 \%$.
Step 11. Set $z=r^{\frac{1}{2}}$.
Step 12. Por $j=1,2, \ldots, q$ replace $v_{j}$ by $\mathrm{zv}_{j}$.
Step 13. Replace u by zu.
Corment: The $j$ th minor step, in which $a_{i, k_{1} j-1}\left(\nabla_{j}\right)$ is eliminated, j.s describec. by Steps 15-28.

Step 1h. For $j=1,2, \ldots, q$ execute $\mathrm{Steps} 15-28$.
Coment: A rotato on is skipped ir $a_{i, k+j-1}$ is elready zero.

Step 15. If $v_{j}=0$ advance to step 28.
Comment: The alsorithm branches accordine to whether $r_{k+j-1, k+j-1}$ is zero or non-zero.

Step 16. If $r_{k+j-1,1} \neq 0$ advance to Step 20.
Comment: In the case $r_{k+j-1, k+j-1}=0$ row $k+j-1$ of ( $R \mid \theta$ ) is replaced by row $i$ of $u^{\frac{1}{2}}(\AA \mid \mathrm{A})$ in Steps 17-18.

Step 17. For $I=j, j+1, \ldots, q$ set $r_{k+j-1, I-j+1}=v_{I}$.
Step 18. Set $e_{k+j-1}=u$.
Coment: No further rotations involving row i of ${\underset{\sim}{V}}^{\frac{1}{2}}(\underset{\sim}{A} \mid \underset{\sim}{\text { b }})$ are required.
Step 19. Advance to Step 30.
Comnert: In the case $r_{k \cdot p-1, k+j-1} \neq 0$ a conventional rotation to ammihilate $a_{i, k+j-1}$ is carricd out in Steps 20-27.
Step 20. Set $g=\left(r_{k+j-1, k+j-1}^{2}+v_{j}^{2}\right)^{\frac{1}{2}}$.
Step 21. Set $c=r_{1+j-1,1} / E$ and $s=v_{j} / E$.
Step 22. Set $r_{k+j-1,1}=$.
Step 23. For $]=j+1, j+2, \ldots, q$ execute Steps $24-25$.
Step 24. Set $y=r_{k \div j-1,1-j+1}$ and $z=v_{1}$.
Step 25. Repiace $r_{k+j-1,1-j+1}$ by $c y+s z$ and $v_{7}$ by cz-sy.
Step 25. Set $y-\theta_{k+j-1}$ und $z=u$.
Step 27. Replace $\theta_{\underline{k}+j-1}$ by cy+sz and $u$ by $c z-s y$.
Step 28. Coritinue.
Coment: The residual sum of squares is undatea.
Step 29. Replace $\sigma$ by $\sigma+u^{2}$.
3tep 30. Cortinue.
Step 31. Uss Alzorithm 2.1.4 tio solve RX = Q .

Keid (1967) and Hanson awd Latison (1969) have also described methods for the orthoconal triangularization of stepped-banded matrices. These methods utilize a special sequence of Householder transformations which avoid operations involvinf zero elements wherevor reasonably possible.
 drscmibed reare, with tine conmencme thet the 1 esmations codee wro sonewhot longer.

### 2.15 The singuide velue decomposition

The most powerful tool for analyming Jincar Jcent-myarems moblomis is tho sirsuler valuo decomposjtion (SVD). Golub anc riainan (i9ós) aripear ús bave been the first to describe in datail a computetanal intume fon the SVD, but they refer to the complicated natume of the flemotho they proposed. We confine ourselve: to a briet aiscuscica of a modem varianti of the algorithm. This variant is duo to folum and Reinsch (190) amd

 of the colub-Rejnsch alcorthm mhich demonstxatos that the smD can, in ro important practical cese, be made to operate in ruichly half the muber of muttiplications. Moxeover, the refincment enebles structurod problems to be solved very much more effiriently. It is essimed throughow this section that $m \geqslant n$. There is no loss of generality in this assumpion since if $n<n$ we can work with ${ }_{\sim}^{n}$ rather than $\underset{\sim}{A}$.

If $\underset{\sim}{A}$ is an m by $n$ matrix with $n \geqslant r$ there exist matrices $P$, $S$ and $\underset{\sim}{0}$ wuni that

$$
\begin{equation*}
A=\operatorname{PSQ}_{\sim}^{T} \tag{2.15.1}
\end{equation*}
$$

where $\underset{\sim}{p}$ and $\Omega$ are orthonormal with respective aimensions in by a and $n$ by $n$ and $\sim_{\sim}$ is an m by n matrou with non-sero elrments only on the man diagonal. 1. combructive proof of thr existence or the deomuiunition (2.15.1) is
 of $\underset{\sim}{\sim}$ are termed the sinoula welues of $\underset{\sim}{S}$ and, by suitably permuting the colums of $F$ and 0 , may do muned such that

$$
\begin{equation*}
v_{1} \geqslant s_{2} \geqslant \cdots \geqslant s_{k}>s_{k+1}=s_{k+2}=\cdots=s_{n}=0, \tag{2.15.2}
\end{equation*}
$$

Where $k$ is the rank of $\underset{\sim}{A}$.
$\Lambda$ particular advantage of the decomposition (2.15.1) is that it enables the over-deterained linear system

$$
\underset{\sim}{f x}=\underset{\sim}{p}
$$

to be de-coupled, ie to be expressed as the over-determined system

$$
\begin{equation*}
\underset{\sim}{S X}=\underset{\sim}{c}, \tag{2.15.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\underset{\sim}{x}=C X \tag{2.15.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\underset{\sim}{b}=\underset{\sim}{p} \underset{\sim}{c} \tag{2.15.6}
\end{equation*}
$$

are orthonormal changes of variahles.

Now S has the decorposition

$$
\begin{equation*}
\underset{\sim}{S}=\underset{\sim}{G H}, \tag{2.15.7}
\end{equation*}
$$

where

$$
\underset{\sim}{G}=\left[\begin{array}{c}
\underset{\sim}{\hat{S}}  \tag{2.15.8}\\
0
\end{array}\right]
$$

and

$$
\underset{\sim}{H}=\left[\begin{array}{ll}
I & 0 \tag{2.15.9}
\end{array}\right]
$$

are respecticely $m$ by $k$ and $k$ by $n$ matrices of rank $k$ and $\hat{\sim}$ is the diagonal matrix with non-zero diagonal elements $s_{i}(i=1,2, \ldots k$ ). The use of (2.2.14) then gives, as the oseudo-inverse of $\underset{\sim}{S}$,

$$
{\underset{\sim}{S}}^{\dagger}=\left[\begin{array}{cc}
{\underset{\sim}{S}}^{-1} & \underset{\sim}{2}  \tag{2.15.10}\\
\underset{\sim}{\sim} & 0
\end{array}\right]
$$

Mius $S^{\dagger}$ is an $n$ by matrix. ihose only non-zero e? mante are wiven by

$$
s_{i}^{+}= \begin{cases}s_{i}^{-1} & \left(s_{i} \neq 0\right)  \tag{2.15.1i}\\ 0 & \left(s_{i}=0\right)\end{cases}
$$

The lenst-squares solution of (2.15.3) can then be computed from (2.15.5) where

$$
\begin{equation*}
\underset{\sim}{y}={\underset{\sim}{S}}^{\dagger} \underset{\sim}{e} \tag{2.15.42}
\end{equation*}
$$

frora (2.15.4) and

$$
\underset{\sim}{c}=p_{\sim}^{T r} \underset{\sim}{p}
$$

from (2.15.5).

It remeins to describe the manner in which $\underset{\sim}{I}$, and $Q$ ase comprated. tru the Golva-Reinsch algoritho thore are tho min stages.

In the first stiage tro sequences of Householder transformations for section 2.7)

$$
\begin{equation*}
\underset{\sim}{\underset{\sim}{F}}(k)=\underset{\sim}{I}-2 \underset{\sim}{u}(k) \underset{\sim}{u}(k) T \quad(k=1,2, \ldots, n) \tag{2.15.114}
\end{equation*}
$$

$\operatorname{sind}$

$$
\begin{equation*}
{\underset{\sim}{\underset{\sim}{2}}}^{(k)}=\underset{\sim}{I}-2 \underset{\sim}{(k)} \underset{\underset{V}{r}}{ }(k) T \quad(k=1,2, \ldots, n-2), \tag{2.15.15}
\end{equation*}
$$

where $\left\|u^{(k)}\right\|_{2}=\|v(x)\|_{2}=1$; are epplied to A from the left and from the right in such a way thad

$$
\begin{equation*}
{\underset{\sim}{p}}^{(n)} \cdots p^{(2)_{p}(1)}{\underset{\sim}{A}}^{(1)}{\underset{Q}{ }}_{(2)}^{\cdots}{\underset{\sim}{2}}^{(22-2)}=p, \tag{2.15.16}
\end{equation*}
$$

an upper bidiagonal matrix. Tho tranoformation matrices p $(k)$ and $9_{0}^{(k)}$ are
 j.e the elements $a_{i k}^{\left(k+\frac{1}{k}\right)}(i=k+1, k+2, \ldots, s)$, without destroying
 ricint of the leading supermaiagonal in 2 ow $k$, ie the elements $(k+1)$ ( $j=1-t 2,1 m 3, \ldots, n$ ), again without deatroving previonsly astablisheu geros. Tine sumeroripts hare reiata to the order in which the trensformbions
are executed. Specifically,

$$
\begin{equation*}
{\underset{\sim}{n}}^{\left(k+\frac{1}{2}\right)}={\underset{\sim}{j}}^{(k)} \underset{\sim}{A}(k) \quad(k=1,2, \ldots, n) \tag{2.15.17}
\end{equation*}
$$

and

$$
\begin{equation*}
A^{(1-1)}=A_{A}^{\left(k+\frac{1}{2}\right)}{\underset{\sim}{e}}_{(k)}^{(k)}(k=1,2, \ldots, n-2), \tag{2.15.18}
\end{equation*}
$$

Where $\underset{\sim}{A}(1)=$. Throughout the SW algorithur it; is convenient to apply the same lert transformations to b . The frinal voctor thus obtained is then the rector $\underset{\sim}{c}$ in $(2.15 .12)$ and $(2.15 .13)$.

In the socond stage $D$ is reduced iteratively to diagonal toran usinis a special form of the QR algorithm (Francie, $1951 / 2$ ) with shifts for computing the cigenvalues and ejgenventors of a siminetric matrix.

Ar operation count estallishes that about $2 \mathrm{mn}^{2}-\frac{2}{3} n^{3} \operatorname{Ion} 5$ onerations, holf of which are assocjated with the let't and half with tho rikht transicrmations, are required to reduce A to bidiagonel Corm. The precise number of operations for the diagonalizotion phose camot so predictod but, becanse of the extremely rapid convereence of the or alcorithm with shittin, can be expected to be roughly m 3 (Lawson aind Heninon, 1974). It is usurtly necessary to accumulate the righ's transformations so that the orthonormal change of var:iebies (2.15.5) is availablo axilioitily for subnoquent computation; this accumpation tares about $\frac{2^{3}}{3}{ }^{3} \operatorname{long}$ emenations. Thus the complote algoritim takes about $2 \mathrm{mn}^{2}+4 \mathrm{a}^{3}$ Iong operations. In perticulor, if $m>n$, the $S W$ will be roughly twice as expensive as a convontiona? least-scruares solution by orthogonalization.

We nor consider a refinement of the Golub-Reinser alforithm. In place of the reduction to bidingoral form using altornataly lent and right tranioformations, fixst?y reduce A to upper irienguler form and then to bigiagonal form. The first of these tho stages can be carrieci out uring any of the rethods of onthoconat triencularization, such as stops $1-11$ of Alcorthin 2.7.1 (including there assocjated mith the might-hara sian $h$ ),
discuesed namin. The second stace can he cataca out by appining the Golub-Reinsch bidiagonilisation scheme sole? yo the $n$ by $n$ matrox containing the right triancle. The total momk is oasily verifited to be about $m n^{2}+5 n^{3}$ (ie $m n^{2}-\frac{1}{3} n^{3}$ for the triangularigation, $\frac{2}{3} n^{3}$ for the biaiagomalization, $\frac{2}{3} n^{3}$ for accumulating the rifht transiormations and about $4 n^{3}$ for the diagonalization).

The refinement aiscussed above is inportant not only boceuse it embles the arithnetio work roughly to be halved in the case ming but also becuruse it enables struaturea systems, such as ones with stepned-bended natrices, to te solved particularly efficiently. If the original Gotub-Reinsch scheme is auplied to a stcpped--banded system of bandriaith c , there is lititle that can be done withont extensive reorganization to savo orithmetic operations and thus the rumber of long operations remains essentially $2 \mathrm{mn}^{2}+4 \mathrm{n}^{3}$. With the scheme based on the ititital triangularization the total work can be rearea to about $m q^{2}+n^{2} q+\frac{14}{3} n^{3}$ (ie mq for the triangularization, $n^{2} q$ for the bidiaconalivation, $\frac{2}{3} n^{3}$ for accumulating tirs richt transformations and about $4 n^{3}$ for the diaconalizetion). The ion $n^{2} q$ is usually insigniffeant compared with $\frac{14}{3} n^{3}$ and hence the total worl is cssentially $m q^{2}+5 n^{3}$ (say) long operations. This refinement to the SVD therefore becones particulerly significant if myn. For instance, consiacr the values (typical in cubic-spline approximation problems) $n=100, n=10$ and $q=4$. The Golub-Reinsch algorithm takes about 24,000 lung operations, whereas the refinement requires about me-quartor of this nwber. If $n$ is extrenely Jarge compared with $n$, the savings are even more substantial. For instance, $i_{i f} \mathrm{~m}=1000, \mathrm{n}=10$ and $q=4$, the Golub-Reinsch alegitias takes about 20C, Nod lone operitions and the refinemerit about $\frac{1}{10}$ of this number.

Re do not advocate the ecneral use of the SVD in situations where the matrix $\underset{\sim}{A}$ arises from a mell-chosen set of basis furctions and a sensible choice of data. Rather, we view the SVD as a tool to employ in special circumstances, such as when we wish to investifate how "well-posed" is a particulan formulation of a problem, or sometimes to ditain a roliable estimate of the rank of the observation matrix, even if the problem itself is well- -posed (Chapter 10).

Te nake use of the SVD in Cliapter 7 to establish that the choice of B-splines for the basis functions in spline approximation gives rise, in a wide variety of practical circuastances, to an extremely vell-posed formulation of the problem. In particular, we use the SVD to estimate the Sonsitivity of tho B-spline coofficients and hence the eplins itself to perturbations in the data (of Section 2.16).

### 2.16 Perturbation bounds for the solution of linear systems

In solving the linear system

$$
\begin{equation*}
A x=b \text { : } \tag{2.16.1}
\end{equation*}
$$

Where $A$ is a real mby $n$ matrix $(n \geqslant n)$, it is frequently of some importance to exarine the sensitivity of the solution $\underset{\sim}{x}$ to perturbations in $A$ and or $\mathfrak{d}$. This question of sensitivity is of varticular reievance in cases where the system (2.16.1) arises fiom problems of interpolation or least-squares approxiration (Chepters 6, 7 and 10). In these problems A corresponts to the matrix of $n$ basis funstions evaluated at m data
 inevitably contain errors resulting from rounaings in the floatineroint operations neaked to evaluate the basis functinns. $\underset{\sim}{b}$ wiln contain errors corresponding, in the case of mathematical data, to the truncation or rounding of ron-computer-reyresentable nuruers or, in the more common case of experinental data, to the finite precision of such cata. Accordinely,
we Fish bo examine the affect on $x$ of melamine by AnA and by br be




In the coss $H=n$, suppose $A$ is non-cingular, and consider the solution $x+\delta_{n} x^{\circ}$ of

$$
\begin{equation*}
(A+8 i)(x+8 x)=h+80 \tag{2.16.i}
\end{equation*}
$$

Expanding ( 0.16 .2 ) ant sutuacting (2.16.1) fives

$$
\begin{equation*}
\delta A x+(A+\delta A) \delta x=\delta \underset{\sim}{\delta b} \tag{2.i6.3}
\end{equation*}
$$

Thus

$$
\begin{equation*}
A\left(I+A_{\sim}^{-1} £ A\right) \sum_{\sim} \underset{\sim}{x}=\underset{\sim}{\delta} \underset{\sim}{n}-\sum_{\sim} A X \tag{2.76.1}
\end{equation*}
$$

from which

$$
\begin{equation*}
\varepsilon \underset{\sim}{x}=\left(\underset{\sim}{x} \div f^{-1} \underset{\sim}{D}\right)^{-1} A^{-1}\left(\delta b-\sum \Delta x\right) \tag{2.16.5}
\end{equation*}
$$



$$
\begin{equation*}
\left\|A_{i}^{-1} \sum_{i \sim}\right\|_{i} \leqslant\| \|_{i}^{-1}\| \|\left\|_{i}^{A}\right\| \leqslant 1 \tag{2.16.6}
\end{equation*}
$$

a condition we shall assure to apply. Thus
 where

$$
\begin{equation*}
\mu(A)=\|A\|\left\|A_{\sim}^{-1}\right\| . \tag{2.16.9}
\end{equation*}
$$

moan (2.16.1) we obtain

$$
\|\underset{\sim}{x}\| \geqslant\|D\| /\|A\|
$$

and hence (2.16.8) becomes

$$
\begin{equation*}
\frac{\|\delta x\|}{\|x\|} \leqslant \frac{x(A)}{1-\mu(A) \frac{\| \xi A!}{\|A\|}}\left(\frac{\|\delta A\|}{\|A\|}+\frac{\|\delta z\|}{\|\mathrm{D}\|}\right) \tag{2.16.11}
\end{equation*}
$$

In cases where $\mathcal{K}(A)\|\underset{\sim}{E A}\| /\|A\|_{\sim} \|$, we see from (2.16.11) that the relative error $\|\Sigma \underset{\sim}{\sim}\| /\|A\|$ in $A$ plus the relative error $\|\underset{\sim}{c}\| /\|\underset{\sim}{d}\|$ in $\underset{\sim}{b}$ is amplified by a factor of $K(A)$ to produce a bound for the relative error $\|\underset{\sim}{x}\| /\|x\|$ in $\underset{\sim}{x}$. The number $\mathcal{K}(\underset{\sim}{A})$ is evidently a mes sure of the sensitivity of the solution of (2.16.1) in the case $m=n$ with respect to perturbations in $A$ and $\underset{\sim}{b}$, and is commonly known as the condition number on A with respect to inversion. We shall make particular use of the spectral condition number or spectral norm of A defined by

$$
K_{2}(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2} .
$$

Here $\|A\|_{\mathcal{L}}$ is the square root of the maximum eigenvalue of $A^{2} A$ or: equivalently,

$$
\begin{equation*}
\|A\|_{2}=\|x\|_{2}^{\max }\|A x\|_{2} \tag{2.16.13}
\end{equation*}
$$

Where the $\hat{2}$-norm of a vector $X$ is define $\begin{gathered}\text { ny }\end{gathered}$

$$
\begin{equation*}
\|x\|_{2}=\left(x_{i}^{T} x\right)^{\frac{1}{2}} . \tag{2.16.14}
\end{equation*}
$$

It follows from the above definition that in terms of the (orderaa) siñôular values of $\underset{\sim}{f}($ Section 2.15),

$$
\begin{equation*}
k_{2}(A)=s_{1} / s_{r_{1}} . \tag{2.16.15}
\end{equation*}
$$

Thus, having obtained the singular value decomposition of $A$ we cer compute
 sensjitivity of the sulution of (2.16.1) from (?.16.i1).

Fe now turn to the case $m \geqslant n$. Lawson and itmson (1974) show that if A and $A+\underset{\sim}{f}$ have the same rank $k$ then the inequality cocresponüirg to $(2.16 .7)$ is
macre ${\underset{\sim}{A}}^{\dagger}$ denotes the psendo-inverse of $A=\underset{\sim}{\sim}$ the residuml vector

$$
\begin{equation*}
\underset{\sim}{r}=\underset{\sim}{A} \underset{\sim}{A}-\underline{b} \tag{2.16.17}
\end{equation*}
$$

and $\underset{\sim}{\pi}$ the minimal leestosquares solution. Rvidentiy, (2.16.16) reduces to (2.16.7) if in $=n=k$.

The rosult (2.16.16) may be expresced. as

(2.16.18)
where $火_{2}(A)=\|A\|_{2}\|\stackrel{A}{\sim}\|_{2} \quad K_{2}(i)$ can be considicrod as a condition number for the rectangular matrix \& (cf Golub and Wilhinson, 1966); it evidently reduces to the conventional spectral norm in the case $n=n=f$. Since $\|A\|\|\underset{\sim}{x}\| \geqslant\|\underset{\sim}{x}\|,(2.16 .18)$ can be exprossed as $\frac{\|\delta x\|}{\|x\|} \leqslant \frac{x_{2}(A)}{1-x_{2}(A) \frac{\| \delta A}{\|A\|}}\left(\frac{\|\delta A\|}{\|A\|}+\frac{\|\delta x\|}{\|A x\|}+\frac{\|\varepsilon A\|}{\|A\|} k(A) \frac{\|E\|}{\|A\|}\right)$.

The resuit $(2.16 .19)$ reduces to $(2.16 .11)$ if $m=n=k$.
Nov: suppose that $\|\underset{\sim}{n}\| \leqslant 0.1\|\underset{\sim}{b}\|$, a result that will be true for nearly
all Ieast-squares solntions of practical imortance (in any case it is a trivial matter to check whether this result holds). Thon

$$
\begin{equation*}
\|\underset{\sim}{A x}\|=\|\underset{\sim}{b}+\underset{\sim}{r}\| \geqslant\|\underset{\sim}{b}\|-\|\underset{\sim}{x}\| \geqslant 0.9\|\underset{\sim}{b}\| \tag{2.15.20}
\end{equation*}
$$

and hence (2.16.19) yields


We make use of (2.16.21) in Chapter 7.

## CHAPTIG 3

J3-STLTNES AND THBR NUKERTCAL EVALUATION
Computations with splines are considered in this and in the remaining seven clapters of this work. It is crucially important that our choics of representation of splines and the way in which ro manipulate the representation are such that the computations are numerically stable. One reason why me make such demands is that we require a high degree of confidence in our numerical results. We wish to be able to say, for instancs, that the departures of an approximating spline from a set of dota points are real and are not due to deficiencics in the representation or its use.

In Section 3.1 we define polynomial spline functions and assocjated concepts. B-splines and some of their properties are presented in Section 3.2. Algorithms based upon divided differences for the evaluation of B-splines are developed in Section 3.3. A recurrence relation for B-splines that is funderental to much of our work is established in Section 3.4, where also recomended algorithms for B-spline evaluation and further properties of B-splines are presented. In Section 3.5 the values of tho B-splines at the ends of the lange are derived. The sum of and bounds for the values of normalized B-splines are derived in Section 3.6.

Frror analyses of the algorithms of Sections 3.3 and 3.4 are Eiven in Sections 3.7 to 3.9. In Section 3.10 the effects of perturbations in the knots and in the arement of the B-splines are discussed briefly. Some numerical exanples are given in Section 3.11. Algoritims for evalueting 211 non-zero B-splines for a giver angument are presented in Section 3.1?. Finally, in Section 3.13 other methods for evaluating B-splines are discussed and compared with those recommended.

### 3.1 Definjtion a spline function

Firstly, we define an n-exterded partition. There are many equival ent definitions in the literature; that given here is sseentially that due to do Boor and Rix (1973). Let $n$ ard $N$ be prescribed positive interers. Let ( $a, b$ ) be a finite or infinite interval on the real line. We say $\pi=\left\{x_{1}, x_{2}, \ldots, x_{N-1}\right\}$ is an n-extended partition of $(a, b)$ if
(i) $a<x_{1} \leqslant x_{2} \leqslant \ldots \leqslant x_{N-1}<b$,
and
(ii) if $d_{i}$ is the frequency with which the number $x=x_{i}$ appears among the $x_{j}{ }^{\prime} s$, then $d_{i} \leqslant n(i=1,2, \ldots, N-1)$.

Condition (ii) can be expressed equivalently as

$$
\text { (ii) } x_{i-n}<x_{i} \quad(i=n+1, n+2, \ldots, N-1) \ldots
$$

For example, if $N=8$ the values denicted in Fig. 3.1.1 form a 3-extended partition, whereas those in Fig. 3.1.2 form \& 4 -extended (but not a 3extended) partition. If $d_{j}=1$ then $x_{j}$ is termed a sjmple knot or a knot on multiplicity one; if $\alpha_{j}>1$ then $x_{j}$ is termed a multicle knot or, more specifically, a knot of multiplicity $\bar{\alpha}_{j}$. We term the $x_{i}(i=1,2, \ldots, N-1)$ intericr knots.


Fig. 3.1.1 A 3-extended pertition


FiE. 3.1.2 A + +extended partition

It is froquently useful, in csises where ( $a, b$ ) is a finitie intorval, to augment tho intorion lnots by furtion lmots with tine propertios that $x_{0}=a, x_{i j}=b, x_{i} \leqslant a$ for $i<0, x_{i} \geqslant b$ for $i>N$, and the completo set of knots form a non-decreasing sequence. We tern $x_{0}$ and $x_{i y}$ and or boundary knots and $x_{j}(i<0)$ and $x_{i}(i>N)$ cxterior lnots. Wio call aing linot set $\left\{x_{j}\right\}$ of this form at standard knot set. Any standird lnot sot with $x_{i}=a$ for $j \leqslant 0$ and $x_{i}=b$ for $i \geqslant N$ we ceil a standard bnot set With ocincident end kots. Carasso and Laurent (1569) apreear to have been the first to suegest the use of coincident end knots, but they failed lo point out the many practical advantages accruing from such a choice. These advantages becone apparent in this and in subsequent chapters.

Let $x=\left\{x_{1}, x_{2}, \ldots, x_{N-1}\right\}$ be an n-extenced partition of the finjite or infinite interval $(a, b) \equiv\left(x_{0}, x_{1 f}\right)$. A function $s(x)$ is a volynomiol sfline function (or sjoply a soline) of order $n$ (ic doeree $n-1$ ) with the knots (or ioints) $x_{i}(i=1,2, \ldots, n-1)$ if
(i) $s(x)$ is a polynnmial of degree less than $n$ in each of the intervals $\left(x_{i-1}, x_{i}\right)(i=i, 2, \ldots, N)$.
(ij.) $s(x) \in c^{n-2}\left(x_{i-1}, x_{i}\right)$ if $x_{i-1}<x_{i}(i=1,2, \ldots, N)$, (ijij) $s^{(r)}\left(x_{i}-\right)=s^{(r)}\left(x_{i}+\right)\left(i=1,2, \ldots, N-1 ; 0 \leqslant r<n \sim a_{j}\right)$. Anther definition of a spline is based upon the fact that the (n-1) th cerivative of a spline or ordar $r$ is a sten function witn discontinuties
at the knots, and, converseliv, the (n-i) th integral of step funclion is a spline of order $n$.

An even more concise definition is that $s(x), x \in(a, b)$, is a spline of order $n$ with lnots $x_{1}, x_{2}, \ldots, x_{N-1}$ if and only if $s^{(n)}(x)=0$ for all $x \notin \pi$.

Suppose all interior knots are sinple. Then, since $s(x)$ is composed of iv polynomial ares of degree $<n$, it can evidently be described in terms of at most Nn linear parameters, together of course with the N-1 knots. However, because of condition (iij.), this number of free lineer paremeters js reduced by the number of continuity conditions at the intericr knots, ie by $(N-1)(n-1)$, to a total of at most $N n-(N-1)(n-1)=N+n-1$ linear paramctors. Fie obtain the sanc rosult if some or all cf the linots ano multiple. For, suppose there are $r_{1}$ simple knots, $r_{2}$ knots of multiplicity $2, \ldots, 2_{n}$ knots of multiplicity $n$. Then $r_{1}+2 r_{2}+\ldots+n r_{n}=N-1$, the number of interior knots (including coincidences), and the number of: (non-ampty) intervals is $r_{1}+r_{2}+\ldots r_{n}+1$. The nunder of frec parameters is therefore $n\left(r_{1}+r_{2}+\cdots+r_{n}+1\right)$ less the number of continuity conditions, ie $n\left(r_{1}+r_{2}+\ldots+r_{n}+1\right)-(n-1) r_{1}-(n-2) r_{2}-\ldots-r_{n-1}$ $=r_{1}+2 r_{2}+\cdots+n r_{n}+n=N+n-1$.

### 3.2 The detinition of a E-spline

Let $n$ be a positive integer. Define the trumonted nower function

$$
x^{n+1}= \begin{cases}x^{n-1} & (x \geqslant 0)  \tag{3.2.1}\\ 0 & (x<0)\end{cases}
$$

and

$$
\begin{equation*}
H_{n 1}(y ; x)=(y-x)_{+}^{n-1} . \tag{3.2.2}
\end{equation*}
$$

Supose $x_{i-n}, x_{i-n+1}, \ldots, x_{i}$ are $n+1$ real aumbers (inots) with $x_{i-n} \leqslant x_{i-n+1} \leqslant \cdots \leqslant x_{i}$ and $x_{i-n}<x_{i}$. Such io set of mote forms an
nututenaca partition of the real line (or acction 3.1). Considen the ativice chiffergne of oriter $n$ of the fuaction (3.2.2) with mespoct to the veriable $y$ baseả on the brgunents $y=x_{i-n}, x_{i+n+1}, \ldots, x_{2}$, vating a notation similar to that of Steffonson (1927) we denote thes divsided afference by $M_{y_{i}}\left(x_{i-n}, x_{i-n+1}, \ldots, x_{i} ; x\right)$, which in unamifucue cases var sinell abureviate to ${ }^{\prime \prime} \mathrm{ni}(x)$. If we le't

$$
w_{n i}(x)=\left(x-x_{i-n}\right)\left(x-x_{i-n+i}\right) \ldots\left(x-x_{i}\right),
$$

then in the particalen case of astinet mots, io where

$$
x_{i-n}<x_{i-n+i}<\cdots<x_{i}
$$

an explicit expreusion (Grevjlle, 1969) is

$$
\begin{equation*}
l_{r, \dot{L}}(x)=\sum_{r=i-n}^{i} \frac{\left(x_{r}-x\right)^{n-1}}{w_{n i}^{1}\left(x_{r}\right)} \tag{3.2.1}
\end{equation*}
$$

where the frime denotes differentiation with respect to $x$.
The iruncated power function $\left(x_{x}-x\right)_{*}^{n-1}$ is ovidentity a spline of order a with a singie knot at $x=x_{x}$, since it satisfies the concitions of Section 3.1 (mith $a=-\infty, n=+\infty$ ). Thus, since the taking of dividod difforences is a linear operation, it follows that in the case of aistimet Knots ${ }_{1 \times 1}(x)$ is a Jinear combination of the fanctions $\left(x_{r}-x\right)_{+}^{n-1}$ $(r=1-n, 1-n+1, \ldots$, i) and hence is a spline of order n with hots $x_{j-n}, x_{i-n+1}, \ldots, x_{i}$. This reant can also be secin imedistely fron (3.2.4). For $x>x_{i}$, " $n_{n i}(x)$ is ibentionlly zero, by virtue of (3.2.1), and for $x<x_{i-n}, l_{n i}(x)$ is stmply trie divided difference of orwr n ô a polvomial of degree r-1 sud hence vanisaes identically. For $x_{i-n}<x<x_{j}$,
 1956). This property jes proved by a siapler arewerit in ácotion 3.4

 first introduced for the case of oqually-nadeed knots in Schoenberg (1946), and $\hat{x}$ or the case of arbitrarjy-apuced knots by Curry and schoonbene (1956).

Tie have departed slightly from convention in our definition of B-aplinas in tiro rays. Firstly, our definition has the popery (soc Section 1. 5) that

$$
\begin{equation*}
\int_{-\infty}^{\infty} \operatorname{lin}_{n i}(x) d x=1 / n, \tag{3.2.5}
\end{equation*}
$$

whereas the usual definition (see, for example, Curry and Schoenberg, 1,60) includes a majuplinative factor $n$ so that the values of the integral is normalized to trinity. We find the inclusion of this factor a hindrance: however s particularly when wo come to derive in Section 3.1 a recurrence relation for the values of $M_{n j}(x)$. The factor can always be inserted for computational or other purposes as required. Secondiy, we employ a double subscript in our abbreviated notation for B-splinos, as oppose a to tho single subscript preferred by most authors. Our rotation is necessary since we need to refer to B-splines of various degrees defined on various knot sets.

Recently, a very similar definition has bean introduced independently by de Econ (1972) ; his $\mu_{i k}(x)$ is identical to our $\mu_{k, i+k}(x)$.

The normalized B-spline $N_{n i}(x)$ is defined (de Bor, 1972) by

$$
\begin{align*}
H T_{n i}(x)= & \left(x_{i}-x_{i-n}\right) n_{n i}(x)  \tag{3.2.6}\\
= & N_{n}\left(x_{i-n+1}, x_{i-n+2} ; x_{i} ; x\right) \\
& -n_{n}\left(x_{i-n}, x_{i-n+1}, \ldots, x_{i-1} ; x\right) . \tag{3.2.7}
\end{align*}
$$

If $\left\{x_{i-n}, x_{i-n+1} ; \cdots, x_{i}\right\}$ forms an $(n-1)$-extended partition, ie if
$x_{i}>x_{i-n+1}$ or $x_{i-1}>x_{i-n 2}$, then it is readiny verifiec that $n_{n i}(x)$ and $N_{n i}(x)$ are continuous functions. De Boor (iO72) states (armeously) that $M_{n i}(x)$ and $N_{n i}(x)$ are continuous in $\left\{x_{i-n}, x_{j-n+1}, \ldots, x_{i}\right\}$ form an n-extenaca partition. A counter-examplc to his statement is provided by the case $x_{i-n}=x_{i-n+i}=\ldots=x_{i-1}<x_{i}$ for which $n_{n j}(x)$ and $n_{n j}(x)$ are discontinuous at $x=x_{\text {i-n }}$. However, de Boor's resuit is true for the (open) interval $x_{i-n}<x<x_{i}$.

In the case $n=1, \mu_{n i}(x)$ and $N_{n i}(x)$ are discontinuous at $x=x_{i-1}$ and ut $x=x_{i}$. Wic assume, in accordance with (3.2.1) that

$$
M_{1 i}(x)=\left\{\begin{array}{cl}
\left(x_{i}-x_{i-1}\right)^{-1} & \left(x_{i-1} \leqslant x<x_{i}\right)  \tag{3.2.8}\\
0 & (\text { otherwise })
\end{array}\right.
$$

and hence thet

$$
N_{1 i}(x)= \begin{cases}1 & \left(x_{i-1} \leqslant x<x_{i}\right)  \tag{3.2.9}\\ 0 & \text { (otherwise) }\end{cases}
$$

In Fig. 3.2.1 we illustrate the B-splines $N_{14}(x), N_{214}(x), N_{34}(x)$ ena $N_{4 / 4}(x)$ defined upon the knots $x_{0}=0, x_{1}=0.3, x_{2}=0.45, x_{3}=0.65$ and $x_{4}=1$. In Fig. 3.2.2 We again illustrate $N_{14}(x), N_{24}(x), N_{j 4}(x)$ and $N_{44}(x)$, but with knots $x_{0}=0, x_{1}=x_{2}=x_{3}=0.4$ and $x_{4}=1$.

In Section 3.4 re state and prove a fundamental recurrence that relates B-splines of consecutive degrees. Host of the good orror hounds we obtrin and the nurerioaliy stable algoritinis wo binvelng stem foon this and réläted results.

Nany of the theorems pre prove and the results re obtain for the unnormalized $B-s y l i n e \mu_{n i}(x)$ exterd, in an obvious way, using (3.2.6), to the case of the normalized f-splines $H_{n i}(x)$.


Fig. 3.2.1 The B-sprines $N_{14}(x), N_{24}(x), N_{34}(x)$ and $N_{44}(x)$ with knots $x_{0}=0, x_{i}=0.3, x_{2}=0.45$, $x_{3}=0.65$ and $x_{4}=1$.


Fig. 3.2.2 The B-splines $N_{14}(x), N_{24}(x), N_{34}(x)$ and $N_{44}(x)$ with knots $x_{0}=0, x_{1}=x_{2}=x_{3}=0.4$ and $x_{4}=1$.

### 3.3 The conventionel method of sveluting B-splines

Fior any paiticular value of $x, h_{n i}(x)$ is conventionally evaluatied (sce, eg Schumaker, 1969) by means of the recursive dorinition for aivided differences (Steffensen, 1927). This approach leads to the following algorithn (we need only consider $x_{i-n} \leqslant x\left\langle x_{i}\right.$, otherwisc $h_{n i}(x)=0$ ). Fie assume for the moment that the knots are simple.

Aleorithrn 3.3.1: Dvaluation of an isolatea J-spline value using diviled differences.

Comment: Set the initial conditions.
Step 1. For $j=j-n, i-n+1, \ldots$, i form $D_{o j}=\left(x_{j}-x\right)^{n-1}$.
Comment: The divided differences are formed in Steps $2 \ldots 3$.
Step 2. For $r=1,2, \ldots, n$ execute Step 3.
Step 3. For $j=i-n+r, i-n+r+1, \ldots$, i. corpute

$$
\begin{equation*}
D_{r j}=\left(D_{r-1, j}-D_{r-1, j-1}\right) /\left(x_{j}-x_{j-r}\right) . \tag{3.3.1}
\end{equation*}
$$

Step 4. Set $H_{n i}(x)=D_{n i}$.

For example, ir $n=6$ the elements in the trjancular amray in rig. 3.j.1* are formed.

* The arrcirs in this and subsequent diagrans indicate the "direction of flow" of the process; thus, e\& $]_{3, \sharp-1}$ is conputed from $I_{2}$,i-2 and $D_{2, \dot{1}-1}$.

rig. 3.3.1. Illustration of a computational scheme using divided differences for evaluating a B-spline.

In practice advantage can be taken of the property

$$
\begin{equation*}
D_{o j}=0 \quad\left(x_{j} \leqslant x\right), \tag{3.3.2}
\end{equation*}
$$

in order to reduce the number of applications of (3.3.1). Thus if, for example, $x_{i-j} \leqslant x<x_{i-2}$, the above array takos the form indicated in Hig. 3.3.2.


FiE. 3.3.2. Illustration of a more efficient scheme usine divided differences for evaluating a B-spline.

In general it is necessary to compute and store only a trapezoidal array of non-zers oloments. A vicdifici version of the ilgorithm, taking advantage of (3.3.2) can be stated as follows:

Algorithm 3.3.2: Efficient evaluation of an isolatea B-spline value using divided differences.

Comment: Find the interval containing $x$.
Step 1. Deteraine the unique integer 1 such that $x_{i-1} \leqslant x<x_{1}$. Set $k=i-1$.

Comment: The initiel conditions are set in Steps 2-3.
Step 2. For $r=0,1,2 \ldots, n-k-1$ set $D_{r, I-1}=0$.

Step 3. FOL $j=1,1+1, \ldots$ i form $D_{o j}=\left(x_{j}-x\right)^{n-1}$.
Comment: The divided differences are formed in Steps 4-6.
Stop 1. For $r=1,2, \ldots, n$ execute Steps 5-6.
Step 5. Set $p=\max (i-n+r, l)$.
Btep 6. For $j=i, i-1, \ldots, p$ iompute $D_{r j}=\left(D_{r-1, j} D_{r-1, j-1}\right) /\left(x_{j}-x_{j-r}\right)$.
Step 7. $\operatorname{Set} M_{n i}(x)=D_{n i}$.

It is unnecessary in practice even to store the whole trapezoidal array, since as soon as $D_{r j}$ is computed in Step 6, it may conveniently overwrito $\int_{r-1, j}$, the latter being no longer required. It follows that the number of storage locations required is at most $n+1$.

There are variants of Algorithms 3.3.1 and 3.3.2 in which the elements $D_{r j}$ are computed diafonal by diagoral rather than colum by colian. For example, the elemerts in Fig. 3.3.2 may be generated from relations (3.3.1) and (3.3.2) along upward-sloping diagonals in the order $D_{0, i-2^{3}}$ $D_{1, i-2}, \ldots, D_{4, i-2} ; D_{0, i-1}, D_{1, i-1}, \ldots, D_{5, i-1} ; D_{0 i}, D_{1 i}, \ldots, D_{6 i}$. Alternatively, along dormward-sloping diagonels the successive elements $D_{0 i} ; D_{0, i-1}, D_{1 i} ; D_{0, i-2}, I_{1, i-1}, D_{2 i} ; D_{1, i-2}, D_{2, i-1}, D_{3 i} ; \ldots ; D_{4, i-2}$, $D_{5, i-1}, D_{6 i}$ are eenerated. Computationally, there is little to choose between these various forms of the algorithm. They require sjmilar amounts of computational efifort and passess iadentical exror-prodegation characteristjes.

The elements $D_{r j}$ are all theoretically nou-negative (Greville, 1969) anci. cancellation ziay therefore take place in compuing (3.3.1) if $D_{r-i, j}$ en $D_{r-1, j-1}$ are of similar size. Hence the possibjuity exists of significant urror grorth in the computed values of the $D_{r j}$ and hence of appreciable error in the computed valus of $M_{n i}(x)$.

Ye expect therefore these algoritlims based upon the use of divided differences to be unstable; this expectation is observed in practice,
aven for relatively "simple" exarples (sce Section 3.11). In particular, the aleorithan breaks dum completely in the cese of multiple knots. In such cases the appropiste divided differences can be replaced by their limiting forms as derivativos, but even then very poor results are frequently obtained, as thoy are in cases of noar-coincident knots. In Section 3.7 we use a running error analysis to give a posteriori bounds for the errors in the computed values of $\nu_{r j}$.

### 3.1. A recurrence relation for B-splines

We now state and prove a fundamertal recurrence relation for B-spjines; its use enables B-splines of order $n$ to be evaluated from those of order n-1. The relation gives rise to a method for evaluating B-splines which we shall refor to subsequently as the method of convex combinations. This method and the method based on divided differences are enalyzed in detall in the remainder of this chapter.

The orem 3.4.1
The recurrence relation

$$
\begin{equation*}
M_{n i}(x)=\frac{\left(x-x_{i-n}\right) M_{n-1, i-1}(x)+\left(x_{i}-x_{n-1, i}(x)\right.}{x_{i}-x_{i-n}} \tag{3.4.1}
\end{equation*}
$$

and its equivalent for normalized B-splines,

$$
N_{n i}(x)=\left(\frac{x-x_{i-n}}{x_{i-1}-x_{i-n}}\right) N_{n-1, i-1}(x)+\left(\frac{\bar{x}_{i}-x}{x_{i}-x_{i-n+1}}\right)_{n-1, i}(x) \text {, (j.4.2) }
$$

hold for all vaiues of $x$.

## Froof

A pioni fur the dase of distinct knots, ie $x_{i-n}<x_{i-n+1}<\ldots<x_{i}$, has been obtained (Cox, 1972) by making use of the explicit expression (3.2.4) for a B-spline. For the more general case, where the knots form an m-extended partition, ie $x_{i-n} \leqslant x_{i-n+1} \leqslant \cdots \leqslant x_{i}, x_{i-n}<x_{i}$, the folloring more elegant prouf has been given by de Boor (19?2) who, independently of this rork, also discorercd the relation (3.'t.1).

Leibnitz' formula for the nth divided difference of the function

$$
h(y)=f(y) g(y)
$$

in terms of tho divided differences of $f(y)$ and $g(y)$ is

$$
\begin{equation*}
h\left(y_{0}, y_{1}, \ldots, y_{n}\right)=\sum_{j=0}^{n} f\left(y_{0}, y_{1}, \ldots, y_{j}\right) \varepsilon\left(y_{j}, y_{j+1}, \ldots, y_{n}\right) . \tag{3.4.4}
\end{equation*}
$$

The application of (3.4.4) to the function

$$
\begin{equation*}
h(y) \equiv u_{n}(y ; x)=(y-x) M_{n-1}(y ; x) \tag{3.4.5}
\end{equation*}
$$

yields

$$
\begin{aligned}
& M_{n}\left(x_{i-n}, x_{i-n+1}, \ldots, x_{i} ; x\right)=\left(x_{i-n}-\right)_{n-1}^{M_{n-1}}\left(x_{i-n}, x_{i-n+1}, \ldots, x_{i} ; x\right) \\
&+1 \cdot M_{n-1}\left(x_{i-n+1}, x_{i-n+2}, \ldots, x_{i} ; x\right):
\end{aligned}
$$

since the divided differences of order greater then unity of the function $y-x$ vanish. Thus, employing the properties of divided differences,

$$
\begin{align*}
& M_{n i}(x)=\left(\frac{x_{i-n}-x}{x_{i}-x_{i-n}}\right)\left\{M_{n-1}\left(x_{i-n+1}, x_{i-n+2}, \ldots, x_{i} ; x\right)\right. \\
& \left.-M_{n-1}\left(x_{i-n}, x_{i-n+1}, \ldots, x_{i-1} ; x\right)\right\}+M_{n-1}\left(x_{i-n+1}, x_{i-n+2}, \ldots, x_{i} ; x\right) \\
& =\frac{\left(x-x_{i-n}\right) M_{n-1}\left(x_{i-n}, x_{i-n+1}, \ldots, x_{i-1} ; x\right)+\left(x_{i-x}\right) M_{n-1}\left(x_{i-n+1}, x_{i-n+2}, \ldots, x_{i} ; x\right)}{x_{i}-x_{i-n}} \\
& =\frac{\left(x-x_{i-n}\right) M_{i-1, i-1}(x)_{+1}\left(x_{i}-x_{1} M_{n-1}{ }_{i}(x)\right.}{x_{i}-x_{i-n}}, \tag{3.4.6}
\end{align*}
$$

which establishes (3.4.1). Relation (3.4.2) then follows from (3.4.1) upon using ( 3.2 .5 ). $\square$

Wo observe that (3.4.1) can be written as

$$
\begin{equation*}
M_{n i}(x)=\sigma_{n-1, i-1}(x)+(1-0) M_{n-1, i}(x), \tag{3.1,7}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta=\left(x-x_{i-n}\right) /\left(x_{i}-x_{i-n}\right) . \tag{3.4.8}
\end{equation*}
$$

Now $M_{n i}(x)=0$ for $x<x_{i-n}$ and $x>x_{i}$ (see Section 3.2). Hence, for the range of $x$ over which $H_{n i}(x) \neq 0, \theta$ lies between 0 and. 1. It follows that for $x_{i-n} \leqslant x<x_{i}, M_{n i}(x)$ is a convex combination of $n_{n-1, i-1}(x)$ and $M_{n-1, i}(x)$.

## Theorem 3.4.2

For all $n>0$ and all $i$,

$$
M_{n i}(x), N_{n i}(x) \begin{cases}>0 & \left(x_{i-n}<x<x_{i}\right)  \tag{3.4.9}\\ =0 & \left(x<x_{i-n}, x_{i}<x\right) .\end{cases}
$$

## Proor

Assume the theorem is true for $n=r-1>0$ and E.ll i, ie that $M_{r-1, i}(x)>0$ for all $i$ and. $x_{i-r+1}<x<x_{i}$. Now consider relation (3.4.1) with $n$ replaced by $r$. If $x_{i-r}<x<x_{i-1}$ then the term $\left(x-x_{i-r}\right) M_{r-1, i-1}(x)>0$. If $x_{i-r+1}<x<x_{i}$ then the term $\left(x_{i}-x\right) M_{r-1, i}(x)>0$. If $x_{i-r}<x<x_{i}$ then at least one of these two terms is positive. It follows that $M_{r i}(x)>0$ for $x_{j-r}<x<x_{i}$, ie the theoremis true for $n=r$. But the theorem is evidently true for $n=1$, by virtue of (3.2.8). Hence, by induction, it is true for all n.

Fe refer subsequently to ( 5.4 .9 ) as the restricted or comoach support pronerty of B-splines.

Note that in (3.4.9) we have omitted the end-pcints $x_{i-n}$ and $x_{i}$. Normaily, $u_{n i}(x)$ and $N_{n i}(x)$ are zero there too, but in the case $n=1$ or if $x_{i-n}$ is a knot of multiplicity $n$, it is straightfomera to veriny thet they are non-zero at $x_{i-n}$ as a consequence of (3.2.8), (3.4.1) and (3.2.6).

We noiv give an algorithn based upon (3.2.8) and (3.1.1) for evaluating $M_{n i}(x)$ (again we absurue that $x_{i-n} \leqslant x<x_{i}$, otherwise $\lim _{n i}(x)=0$ ):

A]gorithm 3.4-1: Evaluation of an isclated B-spline value using convex combinations.
fomment: Set the initial conditions.
Step 1. For $j=i-n+1, i-n+2, \ldots$, $i$, set $M_{1 j}=M_{1 j}(x)$.
Comment: B-sp.lines are computed by convex combinations in Steps 2-3.
Step 2. For $r=2,3, \ldots, n$ execute Step 3.
Step 3. For $j=i-n+r, i-n+r+1, \ldots$, i compute

$$
M_{r j}=\frac{\left(x-x_{j-r}\right) M_{r-1}, j-1+\left(x_{j}-x^{\prime}\right) M_{r-1, j}}{x_{j}-x_{j-r}} .
$$

Step 4. $\quad$ Set $M_{n i}(x)=M_{n i}$.

For example, if $n=6$, the elements in the following triangular array are computed:


Fig.3.4.1. Inlustration of a computational soheme using convex combinations for evaluating a E-epline.

As. with the conventional divided difference algorithm, advantage can be taken of zero elements in the array in order to reduce the number of applications of (3.4.1). By making use of the relation (3.2.8) the above array takes, if for example $x_{i-3} \leqslant x<x_{i-2}$, the following form:

0

0


0
Fig. 3.4.2. Jllustration of a more efficient scheme using convex combinations for evaluating a R-spline.

In general it is necessary to compute and store only a rhomboidal array of non-zero elements. A modified version of Algorithr 3.4.1, taking gdvantage of (3.2.8) can ve statitd as folloms:

Algorithm 3.4.2: Efficient evaiuation of an isoiatca B-spline value ising convex combinations.

Comment: Find the interval contrining $x$.
Stop 1. Detemine the unique integer 1 such that $x_{1-1} \leqslant x<x_{1}$. Set $k=\mathrm{i}-1$.

Coment: The initial conditions are set in Steps 2-3.
Stop 2. For $r=1,2, \ldots, n-k-1$ set $M_{r, 1-1}=0$.
Step 3. For $r=1,2, \ldots, k$ set $M_{r, I+r^{\prime}}=0$.
Corment: B-splines are corputed by convex combinations in Steps 4-5.
Step 4. For $j=0,1, \ldots, k$ execute Step 5.
Stop 5. For $r=j+1, j+2, \ldots, j+n-k$ compute

$$
M_{r, I+j}= \begin{cases}\frac{\left(x-x_{1+j-r}\right) M_{r-1, I+j-1}+\left(x_{\left.1+, i^{-x}\right)_{M_{r-1, ~}}}^{x_{1+j}-x_{1+j}}\right.}{} & (r+j \neq 1) \\ \left(x_{1}-x_{1-1}\right)^{-1} & (r+j=1) .\end{cases}
$$

Step 6. $\quad$ Set $M_{n i}(x)=M_{n i}$.

We need not store the complete rhomboidal array since as soon as ${ }^{r} r, 1+j$ has been computed it may overwrite ${ }^{K} r-1, \mathfrak{i}+j-1$. The number of storage locations required is at most $n$.

The value of $\mathrm{N}_{n i}(\mathrm{x})$ may alsc be computcd from variants of Alzorithm 3.4.1 or Al.gorithm 3.4.2. Since $M_{n i}(x)$ and $N_{n i}(x)$ are related by (3.2.6), the only change necessary to Algoritha 3.4 .1 is to omit the finel division, producing

Algorithm 3.4.3: Evaluation of an isolated normalized B-spline value using ecnvex combinations.

Comment: Set the initial conditions.
Step 1. For $j=i-n+1, i-n+2, \ldots, i$, set $M_{i j}=M_{i j}(x)$.
Conmert: B-splines are computed by conver combinations in Steps 2-3.
Step 2. For $r=2,3, \ldots, n-1$ execute Stec 3 .
Step 3. For $j=i-n+r$, $i-n+r+1, \ldots i$ compute

$$
M_{r j}=\frac{\left(x-x_{j-r}\right) M_{r-1, j-1}+\left(x_{j}-x\right) M_{r-1, j}}{x_{j}-x_{j-r}}
$$

Step 4. Compute $N_{n i}(x)=\left(x-x_{i-n}\right) n_{n-1, i-1}+\left(x_{i}-x_{n-1, i}^{M}\right.$.

Algorithm 3.4.2 may also be modified similamly.

Before concluding this section we note that the elements in the array $M_{r j}$ (or $N_{r j}$ ) can be computed column by column ( $a s$ in Alporithms 3.4.1 and 3.4.3) or diugonal by diagonal (the diagonals cither sloping upwards from left to right as in Algorithm 3.4.2, or downwerds from left to right). As with the divided difference method, there is little to choose between these variants of the basic algorithm.

### 3.5 The values of $B$-splines at the ends of the ranpe

At the ends of the range, B-splines defined upon a standard knot sei with coincident end knots assume special values as established in theorem
3.5 .1 below.

## Theorem 3.5.1

For $B$-splines of order $n(n \geqslant 1)$, defined upon a standard knot set with coincident end knots,

$$
N_{n i}(a)=N_{n, N+n-i}(b)= \begin{cases}1 & (i=1) \\ 0 & (i>1)\end{cases}
$$

Proof
The recurrence reletion (3.4.1) yields

$$
\begin{equation*}
n_{n i}(a)-M_{n-1, i}(a) \quad(n>1) \tag{3.5.2}
\end{equation*}
$$

But from (3.2.6), (3.2.8) and (3.2.9),

$$
N_{1 i}(a)=\left(x_{1}-a\right) M_{1 i}(a)= \begin{cases}1 & (i=1)  \tag{3.5.3}\\ 0 & (i>1),\end{cases}
$$

which in eonjunction with (3.5.2) proves the theoren for $N_{n i}(\varepsilon)$. In 2 simjlar uanner me may prove the theorem for $N_{n, i u+n \cdots i}(b) \cdot \square$
3.6 The sun of nortalized B-splines anã bounds for their values

It is important in problens of interpolation ond least-squares approximation by splines (see, in partsoulur, Chapters 6, 7 and 8) to know whether the matrices of basis functions are well-scaled. The value for the sum of normalized B-splines and the bounds for individual B-splines ostablished in this section are particularly useful in such problems.

Let $\left\{\ldots, x_{-1} ; x_{0}, x_{1}, \ldots\right\}$ be an n-extended partition of the real line.

## Theorem 3.6.1

The normalized B-splines $I_{n j}(x)$ defined upon the knots $\ldots, x_{-1}, x_{0}, x_{1}, \ldots$ have the property

$$
\begin{equation*}
\sum_{i} N_{n j}(x)=1 \tag{3.6.1}
\end{equation*}
$$

for all $x$ and all $n \geqslant 1$.
Proof
Sumuing (3.4.2) over i yielōs, for $n>1$,
$\sum_{i} N_{n i}(x)=\sum_{i}\left(\frac{x-x_{i-n}}{x_{i-1}-x_{i-n}}\right) N_{n-1, i-1}(x)+\sum_{i}\left(\frac{x_{i}-x}{x_{i}-x_{i}-n+1}\right) N_{n-1, i}(x) \cdot(3.6 .2)$
Replacing $i$ by $i+1$ in the firsiti sum on the right-hand side or (3.6.2) Ejves

$$
\begin{align*}
\sum_{i} N_{n i}(x) & =\sum_{i}\left(\frac{x-x_{i-n+1}}{x_{i}^{-x_{i-n+1}}}\right) N_{n-1, i}(x)+\sum_{i}\left(\frac{x_{i}-x}{x_{i} x_{i-n+1}}\right) N_{n-1, i}(x) \\
& =\sum_{i} N_{n-1, i}(x) . \tag{3.5.3}
\end{align*}
$$

But from (3.2.9),

$$
\begin{equation*}
\sum_{i} N_{1 i}(x)=1 \tag{3,6,1}
\end{equation*}
$$

Hence by induction the theorem is true for all $x$ and all $n \geqslant 1$.

$\Lambda$ eeneralization of $(3.6 .1)$ is considered in Chapter 5.

## theorem 3.6.2

$$
\begin{equation*}
\frac{1}{\pi} \leqslant \max _{\pi} N_{n i}(x) \leqslant 1 \quad(n \geqslant 1) \tag{3.6.5}
\end{equation*}
$$

## Proof

We need only consider the interval $x_{i-n} \leqslant x \leqslant x_{i}$, since $N_{n i}(x)$ is zero outside this rance. Now the average value of $N_{n i}(x)$ in this interval is, using (3.2.5), (3.2.6) and the compact support property,

$$
\begin{equation*}
\int_{x_{i-n}}^{x_{i}} N_{n i}(x) d x / \int_{x_{i-n}}^{x_{i}} d x=\left(\frac{x_{i}-x_{i-n}}{n}\right) /\left(x_{i} \cdot x_{i-n}\right)=1 / n \tag{3.6.6}
\end{equation*}
$$

But the maximin value of a function over an interval must exceed (or at least be equal to) the average value of the function over the interval.
 negativity of the $B$-splines. Fence the theorem is proved. $\square$ Gorifecture 3.6.1

$$
\begin{equation*}
\frac{1}{n-1} \leqslant \max _{x} N_{n i}(x) \leqslant 1 \quad(n \geqslant 2) \tag{3.6.7}
\end{equation*}
$$

We give proof's of this conjecture for the cases $n=2$ and 3 .

## Theorem 3.6.3

For $n=2$ ind 3 ,

$$
\begin{equation*}
\frac{1}{n-1} \leqslant \max _{x} \operatorname{ly}_{n \dot{j}}(x) \leqslant 1 \tag{3.6.6}
\end{equation*}
$$

## Proof for $n=$ ?

 the identity $\sum_{j i}^{T} N_{2 j}(x)=1$ yields $H_{2 i}\left(x_{i-1}\right)=1 . \quad$ Thus $\max _{x} N_{2 i}(x) \geqslant 1$. But $N_{2 i}(x) \leqslant 1$. Hence max ${ }_{x}{ }_{2 i}(x)=i \cdot \Gamma$

## Prove for $n=3$

The use of the recurrence relation (3.4.2), after setting $i=3$ and transforming linearly the interval $\left(x_{0} x_{3}\right)$ to $(0,1)$ with no loss of generality, yields

$$
N_{33}(x:)=\left\{\begin{array}{cl}
\frac{x^{2}}{x_{1} x_{2}} & \left(0 \leqslant x<x_{1}\right) \\
\frac{x^{\prime}\left(x_{2}-x\right) / x_{2}+(1-x)\left(x-x_{1}\right) /\left(1-x_{1}\right)}{x_{2}-x_{1}} & \left(x_{1} \leqslant x \leqslant x_{2}\right) \cdot(3.6 \cdot 8) \\
\frac{(1-x)^{2}}{\left(1-x_{1}\right)\left(1-x_{2}\right)} & \left(x_{2} \leqslant x<1\right)
\end{array}\right.
$$

Since $N_{33^{\prime}}(x)$ is continuous and increases monotoritully from zero for $0 \leqslant x<x_{1}$, is linear for $x_{1} \leqslant x<x_{2}$ and decreases monotonically to zero for $x_{2} \leqslant x<1$, it follows that $N N_{3 j}(x)$ attains its (unique) maximum between $x_{1}$ and $x_{2}$. The maximising value of $x$ is given by

$$
\begin{equation*}
\frac{x_{2}-2 x}{x_{2}}+\frac{1+x_{1}-2 x}{1-x_{1}}=0, \tag{3.6.9}
\end{equation*}
$$

ie

$$
\begin{equation*}
x=\frac{x_{2}}{1+x_{2}-x_{1}} \tag{3.6.10}
\end{equation*}
$$

Substituting this value into (3.6.8) gives

$$
\begin{equation*}
\max _{x} N_{33}(x)=1 /\left(1+x_{2}-x_{1}\right) . \tag{3.6.11}
\end{equation*}
$$

Thus, since $0 \leqslant x_{1} \leqslant x_{2}<1$, the result

$$
\begin{equation*}
\frac{1}{2} \leqslant \max _{x} \operatorname{Ni}_{33}(x) \leqslant i \tag{3.6.12}
\end{equation*}
$$

follows.

3.7 A posterior error bounds for the values of B-splines
computed from divided differences
We derive in this section a posterior error bounds for the values of B-splines computed from Algorithm 3.3.1 or from Algorithm 3.3.2 using a running error analysis (cf Section 1.2).

Theorem 3.7.1
Let the (simple) snots $x_{i-n}, x_{i-n+1}, \cdots, x_{i}$ aid the argument $x$ be given standard floatingmpoint numbers (in Section 3.10 we return to the implications of this assumption). For the given value of $x$ let $\overline{\mathrm{D}}_{r j}$ denote the computed value of $D_{\text {nj }}$ obtained from (3.3.1) if $r>0$ or from $\left(x_{j}-x\right)_{+}^{n-1}$ if $r=0$. Let

$$
\begin{equation*}
\delta \nu_{r \cdot j}=\vec{च}_{r j}-\ddot{y}_{r j} \tag{3.7.i}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|\delta D_{\Gamma j}\right| \leqslant 2^{-t_{1}}{ }_{r j} \tag{3.7.2}
\end{equation*}
$$

where $F_{x j}$ is defined by the recurrence relation

$$
\begin{align*}
& F_{o j}=\left(r_{i}-1\right) \bar{D}_{c j},  \tag{3.7.3}\\
& F_{r j}=\frac{\left(F_{r-1, j}+\bar{F}_{r-1, j-1}\right)+3 \mid \bar{D}_{r-1, j^{-\bar{B}} 1-i, j-1 \mid}^{x_{j}-x_{j}} \quad(r>0)}{} \tag{1}
\end{align*}
$$

Ir roof
From (3.3.1) ,

$$
\begin{align*}
& \vec{D}_{r \cdot j}=f i\left(\frac{\tilde{D}_{n-1}, j^{-\bar{D}} r-1, j-i}{x_{j}-x_{j}-r}\right) \\
& =\left(\frac{\bar{J}_{1}-1, j^{-D^{n}} x-i, j-i}{x_{j}-x_{j-r}}\right)\left(i+\varepsilon_{1}\right)\left(i+\varepsilon_{2}\right)\left(1+\varepsilon_{3}\right) \\
& =\left(\frac{\bar{D} r-1, j^{-D} i-1, j-1}{x_{j}-x_{j-r}}\right)(1+3 c) \text {, } \tag{3.7.5}
\end{align*}
$$

There $\left|\varepsilon_{i}\right| \leqslant 2^{-t}(i=1,2,3)$ and $|0|<2^{-t_{1}}$ and depend upon $r$ and $j$. Hence, using (3.7.1)

$$
\begin{equation*}
D_{r j}+\delta D_{r j}=\frac{r_{r-1, j} j_{r-1, j-1}+D_{r-1, j}-\delta D_{r-1, j-1}+\overline{j e}\left(\bar{D}_{r-1, j} j_{r-1, j-1}\right)}{x_{j} \cdots \frac{\bar{x}^{2}}{r_{i-r}}} . \tag{3.7.6}
\end{equation*}
$$

Subtroction of (3.3.1) from (3.7.6) Eives

$$
\begin{equation*}
\delta D_{r j}=\frac{\delta D_{r-1, j}-\delta D_{r-1, j-1}+3 e\left(\bar{D}_{2,-1}, \bar{D}_{r-1, j-1}\right)}{x_{j}-x_{j-r}} . \tag{3.7.7}
\end{equation*}
$$

If $F_{r j}(r>0)$ is defined by (3.7.4) and $F_{0 j}$ by (3.7.3), which is obtained by a simple error analysis of the coraputation of $\left(x_{i}-x\right)^{n-1}$, wie theorem then foll. ows.

In proving (3.7.3) it is assuned that $D_{o j}$ is evaluated by forming $x_{j}-x=b$, say, and then computing $h^{\text {ni- }}$ by repeated multinlication. Such on approach is in accordance with the 17 gol 6n report (Ifaur, 1963), ama is theretore appropriate if the method is programed in Aleol 60. If $n$ is sufficientily lerge it mey be more accurate (and faster) to compute $h^{\text {ri-1 }}$ from $\operatorname{cxp}\{(n-1) \ln (h)\}$; we do not consiler this approach here since any effecis the alternative computation have on our general results are insicmiricart.

The computer itself car be made to determine the values of $F_{r}, j$, since thoy depord solely on previous values together with the computed values of $P_{r j}$. Ir particular, $2^{-t_{1}} F_{n i}$ is a bound for the erlor in the computed value of
 (cfisection i.2). However, we see from a simple crion andiysis that the further contribution to the orror incurred from a single computation w (3.7.4) is at most $a$ multiplicative factor of $\left(1-2^{-i}\right)^{-5}$. Since the contribution to the error incurrea in computing foj from (3.7.3) is at most

 $\left(1-2^{-t}\right)^{-5 r-2}<3.112$, by virtue of $(1.1 .12)$. Hence a similer but


These a posteriori bounds prove to be reasonativ realistic (see the eramples in Section 3.11). Hopeover, since advantage fat faken ois coy canceliations that occur during the course of the computation, these bounds are considerably botier than those obtainable from in a priori orror analysis (but sea the speciel case aiscussea in Section 3.11).

### 3.8 A posteriori errer bounds for the values of B-splines computed

## by the methed. of convex combinations

 We derive in this section, again as the resuit of a runnirg orpor nalysis, a nosteriori ercos hounds for B-splines computed from Algorithr 3.4.1 or from Alforithm 3.1.2. As before we assume that the $x_{i-n} \cdot x_{i-n t 1}, \ldots, x_{i}$ and the argument $x$ are given filnting-point numbers, and in section 3.1c return to the consequences of this assumption.
## Theorom 3.8 .1

 Pron recurrences (3.1.1) and (3.2.8). Let

$$
\begin{equation*}
\delta M_{x, j}(x)=M_{r j}(x)-M_{r j}(x) \tag{3.8.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|\lim _{r i}(x)\right| \leqslant 2^{-i_{1_{H}}}, \tag{3.8.2}
\end{equation*}
$$

where $H_{r j}$ is defined by, the recurrence relation

$$
\begin{aligned}
& H_{1 j}=2 \bar{m}_{1 j}(x) \text {, } \\
& \text { (3.8.3) }
\end{aligned}
$$

Froof
Frow (3.4.i),
$\bar{N}_{r j}(x)=\left\{1\left(\frac{\left(x-x_{j-r}\right) \bar{M}_{r-1, j-1}(x)+\left(x_{j}-x\right) \bar{M}_{r-1, j}(x)}{x_{j}-x_{j-r}}\right)\right.$

$$
\begin{align*}
= & \left\{\left(x-x_{j-r}\right)\left(1+\varepsilon_{1}\right) \bar{M}_{r-1, j-1}(x)\left(1+\varepsilon_{2}\right)+\left(x_{j}-x\right)\left(1+\varepsilon_{3}\right) \bar{n}_{r-1, i}(x)\left(1+\varepsilon_{4}\right)\right\} \times \\
& \times\left(1+\varepsilon_{5}\right)\left(1+\varepsilon_{6}\right)\left(1+\varepsilon_{7}\right) /\left(x_{j}-x_{j-r}\right), \tag{3.8.6}
\end{align*}
$$

where $\left|\varepsilon_{i}\right| \leqslant 2^{-t}(i=1,2, \ldots, 7)$ and depend upon $r$ and $j$. Thus $\bar{I}_{r j}(x)=\frac{\left(x-x_{j-r}\right) \overline{M r}_{r-1}, j-1}{} \frac{(x)\left(1+5 e_{1}\right)+\left(x_{j}-x\right) \sum_{r-1},(x)\left(1+5 e_{2}\right)}{x_{j}-x_{i-r}}$,

Where $\left|e_{i}\right| \leqslant 2^{-t_{1}}(i=1,2)$ anà depena upon $r$ and $j$. Upon maring use of (3.8.1) and (3.1.1), equation (3.8.7) gives


The theoren follows from (3.8.8) and a simple error analysis of the evaluation of (3.2.8). $\square$

Once again the computer can be usea to determine tho values of $\mathrm{H}_{r j}$ and in particular the value $2^{\cdots \dot{t}_{1_{n}}}$, which is a bound for the error in the computed value of $\mu_{n i}(x)$. As before the computer makes rounding errons in forming the $H_{r j}$. However, it is straj ghtformard to veriny that the contribution to the error incurcea in computing $H_{r j}$ from (3.8.4) is at nost a facion $\left(1-2^{-t}\right)^{-7}$. Since the errow irscurred in cowputing $H_{1}$ j firuin
 where $\bar{H}_{x j}$ is the computed value of $H_{r g}$, gives a rigorous crror bound for
 Although the above aneiysis gives rise to extremely realistic a posterior bounds for the erioxs in the computed values of the $H_{r j}(x)$, the need to
compute such bounds, which roughly doubles the work involved in computing tha $M_{r j}(x)$ alone, is obviatcd rinen account is taken of the non-negativity of the $\overline{\mathrm{I}}_{\mathrm{r} j}(\mathrm{x})$ (see the orem 3.8 .2 below) Ii is shom in Section 3.9 that realistic a posterioni bounds for the ahsolute errors in tine $\bar{M}_{p j}(x)$ can be deduced immediately from the corputed results. Moreover, a priori bounds for the relative crrors are also dorived in Secticn 3.9.

## Theorem 3.8.?

Even in the presence of rounding erras the values of $M_{r i}(x)(n \geqslant 1$, a.ll $i$, $x_{i-11}<x<x_{i}$ ) computed in floating-point arithnetic from (3.1.1) are strictly positive.

## Proof.

The proof is similn to that of meorem 3.1.2, except that the relovant recurrence is (3.8.7), rather than (3.4.i). Since, in (3.6.7), the terme $1+5 e_{1}$ and $1+5 \mathrm{e}_{2}$ are both strictly positive, the theovem its proved. [] We noted in Section 3.3 that the vriues of $D_{r j}$ in the mothoz cmployine divided differgnces are theoreticaliy non-iegabive, but their compued values may be so inaccurate that they actually take regative values (see the exanples in Section 3.11).
3.9 A priori error bomas for the values of B-splines onmputed by the methou of corver combinations
In this section me estaliish a prioni orrur bounds for the values of B-splines conputed by the method of convex conbinations. Firstiy, hawever, we dorive a. refdiju-comphtable a posteriori erros bound for the computed value of $M_{n i}(x)$.

## The orem 3.9 .1

The values of $H_{r j}$ definge iy rolutions (3.8.3) ance (3.9.!) satiofy the frequality

$$
\begin{equation*}
H_{r j} \leqslant\left(1-2^{-t}\right)^{5(1-r)}(5 r-3) \bar{M}_{r j}(x) \tag{3.9.1}
\end{equation*}
$$

Proof
Me first assumic the thencern to be true for $r=s-1$, where $z>0$, ie that

$$
\begin{equation*}
H_{s-1, j} \leqslant\left(1-2^{-t}\right)^{5(2-s)}(5 s-8) \bar{i}_{s-1, j}(x) . \tag{3.9.2}
\end{equation*}
$$

The substitution of (3.9.2) into the right-hand side of (3.8.4), after roplacing $r$ in the latter relation by $s$, then Gives

Bui it follows froui (3.0.6) and Theurem 3.0.2 that

$$
\begin{equation*}
\bar{u}_{s j}(x) \geqslant\left(1-2^{-t}\right)^{5}\left\{\frac{\left(x-x_{j-s}\right) \bar{M}_{s-1, j-1}(x)+\left(x_{j}-x\right) \bar{m}_{s-1}}{x_{j} \cdots j_{j-s}}(x)\right\} \tag{3.9.}
\end{equation*}
$$

Hence

$$
\begin{align*}
H_{s j} & \leqslant\left\{\left(1-2^{-t}\right)^{5(2-s)}(5 s-8)+5\right\}\left(1-2^{-t},-5 \bar{I}_{s j}(x)\right. \\
& <\left(1-2^{-i}\right)^{5(1-s)}(5 s-3) \bar{H}_{s j}(x) . \tag{3.9.5}
\end{align*}
$$

Thus (3.9.1) is true for $x=5$. Jut it is true for $x=1$ by virtuo 0 : (3.8.3). Hence by induction itt is true fon all $r>0 . \square$

A slifhtly cruder bound, obtained hy means of (1.1.12) is

$$
H_{r j} \leqslant 1.112(5 x-3) M_{r j}(x) .
$$

It follems from (3.8.2) that the computed vilue of in $n i(x)$ differs from the trine value by on amown not erceeding $1.112(5 n-3) 2^{-t i n}$ ns $(x)$, or, cquivalontiy, $1.179(5 n-3) 2^{-t}{ }_{n i}(x)$. We observe that this bound is computable,
wince it involves the value of $\bar{H}_{n i}(x)$, wation than the true (unknown) value $\mathrm{Kn}_{\mathrm{n}}(\mathrm{x})$.

We nor give a bound for the relative ercon in tho computea value of min ( $\overline{\text { n }}$, Theorem 3.9.2
EMni $(x)$ satisities the relativo error bound

$$
\begin{equation*}
\left|\delta M_{n i}(x)\right| / M_{n i}(x) \leqslant 1.337(5 n-3) 2^{-t} . \tag{3.9.7}
\end{equation*}
$$

Proof
NoN

$$
\begin{align*}
\left|\delta M_{n i}(x)\right| & \leqslant 1.179(5 n-3) 2^{-t_{T_{n i}}}(x)  \tag{3.9.8}\\
& =1.179(5 n-3) 2^{-t}\left\{N_{n i}(x)+\delta M_{n i}(x)\right\} \tag{3.7-0}
\end{align*}
$$

gnd. hence

$$
\begin{equation*}
\left|\delta n_{n i}(x)\right| \leqslant \frac{1.179(5 n-3) 2^{-t} H_{n i}(x)}{1-1.179(5 n-3) 2^{-t}} . \tag{3.9.10}
\end{equation*}
$$

But from (1.1.7) it follows that the dencratiatore is bounded frem below wy 1-0.1179 = 0.8821. Hence

$$
\begin{equation*}
\left|\delta H_{n i}(x)\right| \leqslant 1.337(5 n-3) 2^{-t_{M i}} M_{n}(\pi), \tag{3.9.11}
\end{equation*}
$$

from which (3.3.7) follows imediately. $\square$

The a prinni bound ( 3.9 .7 ) is rourkab:e in that it is jumendert or the pasitiors of the knots (but see the comaents in Section 3.10 on the offestis of derimal to bjnary conversjon). It follows for examile what ib-splitues cif orcer 15 or loss can be craluated with a Ioss of accuracy mot exozening 100 unjts in the leasi signinjoant binary piacc. Such a result comparess estremely favourably with the conventional netinod employing diviau differences for which nom-nathslogical eximples of order very mach sminlem
than 15 (see Section 3.11) can be constructed that yield no correct figures (on the KDF9 computer for which $t=39$ ) in the resultis.

The counterparis of (3.9.6) and (3.9.7) in the case of normalized B-splines are, as a consequence of the omission of the final division when forming $N_{n i}(x)$ from $M_{n-1, i-1}(x)$ and $M_{n-1, i}(x)$ (see N1 Corithm 3.4.3),

$$
\begin{equation*}
H_{n i} \leqslant 1.112(5 n-5) N_{n i}(x)=5.56(n-1) \tilde{N}_{n i}(x) \tag{3.9.12}
\end{equation*}
$$

and

$$
\left|\bar{N}_{n j}(x)-N_{n i}(x)\right| \leqslant 1.337(5 n-5) 2^{-t_{N N}}(x)=6.635(n-1) 2^{-t_{N i}}(x)
$$

3.10 The effects of perturbations in the data

Theite is one aspeci of the proviem that our anajyses have so far not covered, viz the sensitivity of the conpute values of $l_{n i}(x)$ with respect to perturbations in the data. By data in this context wo mean the given values of the knots $x_{i-n}, x_{i-n+1}, \ldots, x_{i}$ and the argument $x$. $A$ particular reason why the study of such porturbations is important is that our analyses are rigorous only for data that can be reprosented exactly as standard floating-point numbers. However, wo may be comforted by the fact that our analyses do apply to the problem defined by the data stored in the computer. So it follows that the method of convex combinations solves accurately a problera with data perturbed slightly from that given. for most computers the perturbed (stored) data differs from that given by relative error's bounded in modulus by $2^{-t}$.

A postericri bomas relating to the gipen data, rather than the gyored data, can be found if required hy an exiension of the ruming error enalyses doscribed in Socticn 3.8. The wanner in which this analysis is carricd out is streightforward but tedious and is not given here. One consequence of this analysis is that the bounds are now no longer independent of lice knot spacing. However, unless the knot spacing is
bighly non-uniform, the bounds for the stamle method appery to aepend only mildly upon the positions of the knots, al.thongh it is now no longer possible to quote a priori bounds. On the otror hand the bounds (as weit. as the computed values themselves) for the conventional mathod seem to be very sensitive to small perturbations in the krots, which is a reflection of the inherent instability of that method.

### 3.11 Numerical examples

In order to compare numerjcally the convontional method (based upon divided differences) and the stable methot (based upon conver combinntions) me give a number of examples. For each care wo consider the B-spline of a proserived order $n$ based on a given set of knois $x_{i \ldots n}, y_{i-n+1}, \ldots, x_{i}$. The E-spline is evaluated by both methods (usinf AIgorithms 3.3.2 and 3.4.2) at the positions of the interior knots $x_{i-n+1}, x_{i-n+2}=\ldots, x_{1-1}$. For the conventional method the error bound (i.179) $2^{-i_{\mathrm{F}}} \mathrm{ni}$ fird for the stable method the error bound $1.179(5 n-3) 2^{-t} \bar{u}_{n i}$ are also quotod.

Exannie 3.11.1
Degree 5. Knots 0, 1, 2, 3, 4, 5, 6 (Table 3.11.1). The values produced by the conventional method differ only slightly from thoso given by the stable method.

Degree 5. Knots $0,1,2,3,4,5,6$

x	Conventional method		Stable method	
	Value	Error lound	Veli:c	Error bound
1	$1.3888888892_{10}-3$	$3.5249010^{-10}$	$1.3888888889_{10}{ }^{-3}$	8.04221 $1_{10}-14$
2	$3.61111111 i_{10} 0^{-2}$	$9.18241_{10}-11$	$3.6111111111_{10} 0^{-2}$	$2.0909{ }^{7} 10^{-12}$
3	$9.1666666667_{10}{ }^{-2}$	$1.8193310^{-11}$	$3.1666666667_{10}{ }^{-2}$	5. $30786_{10}-12$
4	$3.6111111111_{10} 0^{-2}$	$2.2270910^{-12}$	$3.6111111111_{10}{ }^{-2}$	$2.00097_{10}-12$
5	$1.388888888910^{-3}$	$6.850777_{10}-14$	$1.388838888910^{-3}$	$8.0422110-1!+$

## Examoie 3.11 .2

Degree 21. Knots $0,1,2, \ldots, 22$ (Table 3.11.2). For values of $x>13$ the conventional method produces results of comparable accurasy to those of the stable method. However, as $x$ is decreased frou 13 to unity the conventional method becomes less and less accurate. Indeed, all valuss for $x<6$ have no correct figures at alj. (INote that since this R-spline is symmetric about $x=11$ the conventional metnca could be used to give relisble results by replacing $x$ by $22-x$ if $x<11$ ).

Table 3.11 .2
Degree 21. Knots $0,1,2, \ldots, 22$

$\mathbf{x}$	Conventional method		Steble method	
	Value	Error vound	Value	Error bound
1	$-2.904^{4} 962704_{10}-4$	$1.0730210^{-1}$	$8.8967913924_{10} 0^{-22}$	$2.04156_{10}-31$
2	$1.708511847710^{-4}$	$2.8756910^{-2}$	$1.8657728133_{10} 0^{-15}$	$4.28141_{10}-25$
3	$-5.0907329585_{10}-5$	$7.22242_{10}-3$	$9.265310806910^{-12}$	$2.12612_{10^{-21}}$
4	$8.7847173001_{10}-6$	$1.69058_{10}-3$	$3.70854135+3_{10}-9$	$8.51003_{10^{-19}}$
5	$5.1808290829_{10}-8$	$3.66527_{10}-1$	$3.402962627110^{-7}$	$7.80881_{10}{ }^{-17}$
6	$1.0709590738_{10}-5$	$7.30865_{10}-5$	$1.1073292030{ }_{10}-5$	$2.54100_{10}-15$
7	$1.597351^{14258}{ }_{10}-4$	$1.32968{ }_{10}-5$	$1.5959580785_{10}-4$	$3.66226{ }_{10} 0^{-14}$
8	$1.1563781534_{10} 0^{-3}$	$2.18684_{10}-6$	$1.1569083302_{10}-3$	$2.65477_{10}-13$
9	$4.5542900755_{10}-3$	$3.21645_{10}-7$	$4.5542859425_{10}-3$	$1.04508_{10}^{-12}$
10	$1.019454944210-2$	$4.97744_{10}-8$	$1.0194549722_{10}-2$	$2.33935{ }_{10}{ }^{-12}$
11	$1.3301031228_{10}-2$	$4.71872_{10}-9$	$1.33010312388_{10}-2$	$3.05220{ }_{10}-12$
12	$1.0194549726_{10}-2$	$4.55067_{10}-10$	$1.0194549722_{10}-2$	$2.33935_{10}-12$
13	$4.5542859^{\prime}+220-3$	$3.66011_{10}{ }^{-11}$	$4.554235842510-3$	$1.04503_{10}-12$
14	$1.1569083302-3$	$2.37665_{10}-12$	$1.1569083302_{10}-3$	$2.654+77_{10}-13$
15	$1.5959580785_{10}-4$	$1.18145_{10}-13$	$1.5959580785_{10}-4$	$3.66226_{10}-14$
16	$1.107329203010-5$	$4.08175_{10}-15$	$1.1073292030_{10}-5$	$2.54100{ }_{10}-15$
17	$3.140296252710_{10}-7$	$8.26650_{10}-17$	$3.4029525271_{10} \cdots 7$	$7.80881_{10}-17$
18	$3.70854135 j_{10}-9$	$7.37998{ }_{10}{ }^{-19}$	3.70834 i3543 $3_{10}-9$	$0^{3.5100310} 0^{-19}$
19	9.265310806810	$1.73796_{10}-21$	9.26531 08069 $10^{-12}$	$2.12612_{10}-21$
20	1.86577 2813 º $^{-15}$	$3.4811910-25$	$1.8657723133_{10}-15$	$1+.2814110^{-25}$
21	8.89679 13924 $_{10}-22$	$1.65996_{10}-31$	$8.8967913924,0^{-22}$	$2.0195610^{-37}$

## Exomple 3.11 .3

Degree 3. Knots $-10000,-9999,0,3999,10000$ (Table 3.11.3). This example is included to illustrate how erroneous the results of the conventional ruthod can be for a degree as low as three, if the knot spacing is highly non-uniform. Such a case is iuportant in practice since it is of'ten of interest to investigate the case of near-coincident knots. We see that at $x=-9999$ the conventional methor produces a negative value. Even at $x=0$, the peak of the $B$-spline, three figures have been lost. At x=9999 the result agrees with that of the stable method.

## Table 3.11.3

Decree 3. Knots $-10000,-9999$, 0, 9999, 10000


## Example 3.11.4

Degree 9. Knots $2^{j}, j=0,1, \ldots, 10$ (Table 3.11.4)
Again the convcitional method produces very ineccurate results (from the wint of view of rclative exrors) for the smali values of $x$. However, in terms of absolute error (measured with respect to the peak height), the conventional methoua appears perfectly adequate. Since in many applications such results would be quite acceptahle we might expect, that, for examples similar to this tie conventional method is satisfactory. Exampie 5 showe that this is not the case.

Table 3.11.1
Degree 9. Knots $1,2,4,8,16,32,64,128,256,512,1024$

x	Conventional method		Stable method	
	Value	Error bound.	Value	Error bound
2	$-1.6002839327_{10}-14$	$9.53785_{10}-13$	$9.601669821: 77_{10}-17$	$9.6780 \gamma_{10}-27$
1	$1.8065427507_{10}{ }^{-12}$	$9.11019_{10}-13$	$1.79167 \mathrm{1F893}_{10}-12$	$1.80593_{10}-22$
8	$1.97471181111_{10}-9$	$8.332800_{10}-13$	1.97471 7822810-9	$1.99043_{10}-19$
16	$3.8122 .49265 i_{10}-7$	$7.03203_{10} 0^{-13}$	$3.812249445310-7$	$3.84258{ }_{10}-17$
32	$1.72139972^{\prime} 10_{10}-5$	$5.14271_{10}-13$	$1.7213997251_{10}-5$	$1.73510_{10}-15$
64	$1.95187 \mathrm{l}^{17159}{ }_{10}-4$	$2.95574_{10} 0^{-13}$	$1.9518717160_{10}-4$	$1.96740_{10}-14$
128	5.17600 $422095_{10}-4$	$1.1407{ }^{1} 4_{10} 0^{-13}$	$5.17060{ }^{1+2095} 5_{10}-4$	$5.21779_{10}-14$
256	$2.1047409004_{10}-4$	$2.19807_{10} 0^{-14}$	$2.1+047409004_{10}-4$	$2.42387_{10}-14$
512	$6.5982172615{ }_{10}-5$	$5.51868{ }_{10}{ }^{-16}$	$6.59821{ }^{72615} 1_{10}-6$	$6.6507210^{-16}$

## Example 3.11 .5

Degree 9. Knots $-2^{10-j}, j=0,1, \ldots, 10$ (Table 3.11.5).
This example js identical to Example 3.11.4, except that the knots have beer reflected about the origin. The stable method gives iaentical results in each case. I'he curiventional method again gives its most inaccurste results for the smaller (i.e. more negative) values oi $x$. However, these values not only have large relative errors, but they also possess large absolute errors.

I'able 3.11.5
Degree 9. Knots $-1024,-512,-256,-128,-64,-32,-16,-8,-4,-2,-1$

x	Conventional method		Stable method	
	Value	Error bound	Value	Error bound
-512	$-1.9654935593_{10}-4$	$2.03640_{10}-2$	$6.5982172 .615_{10}-6$	$6.65072_{10}-16$
-256	$2.4147372045{ }_{10}-4$	$3.80279_{10}-5$	$2.10474{ }^{2} 0900410-4$	$2.12387_{10}-1 / 4$
-128	$5.1765922318_{10}-4$	$6.81279_{10}-8$	$5.1766042895{ }_{10}-4$	$5.21779_{10}-14$
-64	$1.95187 \mathrm{l}^{16988} 8_{10}-4$	$1.13289_{10}-10$	$1.9518717160_{10}-4$	$1.96740_{10}-14$
-32	1.72139 97255 $10-5$	$1.67259_{10}-13$	$1.7213997251_{10}-5$	$1.73510_{10}-15$
-16	$3.81224944522_{10}-7$	$2.18970_{10}-16$	$3.812249445310-7$	$3.8425810-17$
-8	$1.97471{ }^{\prime} 78228_{10}-9$	$2.63580_{10}-19$	$1.97471782288_{10}-9$	$1.99043_{10}-19$
$-4$	$1.7916715893_{10}{ }^{-12}$	$1.54897_{10}{ }^{-22}$	$1.79167 \mathrm{l}^{15893} 3_{10}-12$	$1.80593_{10}-22$
--2	$9.6016698247_{10}-17$	$8.03074_{10}-27$	$9.6016698247_{10}-17$	$9.67807_{1.0}-27$

In ail the above examples the error bounds for the stable method are realistic. For the conventional method they are somewhat pessimistic, but are considerably better than could be achieved using some form of a priori error analysis (but see the special case $x_{1-1} \leqslant x<x_{1}$ considered below).

In every case the accuracy of the conventional method falls off as $x$ ranges from $x_{i}$ to $x_{i-n}$. However, for vilues of $x$ sufficiently close to $x_{1}$, and always for values of $x$ between $x_{1}-1$ and $x_{i}$, values comparable in accuracy to those given by the stable nethod are produced. This result is easily explained by means of a rumine eryor analysis alone the lines of Section 3.8 followed by an inductive proof similar in nature to that in Section 3.9. In fact the a priori bound,

$$
\begin{equation*}
\left|F_{n i}\right| \leq 1.179(4 n-1) 2^{-t} \bar{D}_{n i} \quad\left(x_{i-1} \leqslant x<x_{i}\right) \tag{3.11.1}
\end{equation*}
$$

 ond can be shown to have a maximurn relative orecr of $1.337(4 n-1) 2^{-1}$. (The slightly improved hound with the tem 4n-1 replaced by 3n-: can be obtained iff further aảvantage is taken of the zeros in the $D_{\text {ra }}$ orray in this special case). Note that this bound is even better for $\mu \geqslant 3$ than (3.9.11) for the stable method. However, this bound applies only for $x_{i-1} \leqslant x<x_{i}$, whereas the bound for the stable method rpplios for $x_{i-n}<x<x_{i i}$.

For B-splines of $10 \pi$ degree with reletivaly unform prot spacing the conventional method is adoquate for certain purposes in that tho absolnte errors in the computed values are usually snall (as in tranples 3.11 .1 and 3.11 .4 ). However, in a common siturtion to the examined in Section 3.12 it is seen that the stable method is faster in that forer arituretio operations are required and hence should be prefierred on grounds of both accuracy and speed.
3.12 The evaluation, for a presortbed argument, of all non-:ero

## B-spiines of order n

In many applications, inoluding interpolation (Ghapten 6), least.esqueres Ruvoximation (Chapter 7) and constrained splinc fitting (Chapter 8), io is necessary to evalutite for any prescribed areument $x$ not an inolate? value of $h_{n i}(x)$ (or $N_{n i}(x)$ ) but all those values of $M_{n i}(x)$ that are rinnzero. Since at most $n$ values of $M_{n i}(x)$ are non-zerc for any particu? ?u: $x$, it follows that $n$ applications of either Algorithm 3.3.2 or Algorithm 3.4.2, for example, enaible the required vilues to be computed. However, such an approxet ontails considerable repetition of computation since coninon elenerts in overlepping trapezoiday arrays (or the type illustrator
 riumboical aways (ct the trye illustrated in Tre. 3.4.2), fu the case of fityoritu 3.4 .2 , are fomed. It is sisily verifiod that with sum
approaches the amount of erithmetic is proportionsl to $n^{3}$. It is far less expensive, talring an amourt of arithmetic proporticmar to $n^{2}$, to ompute a single array of elements phioh contains all tho results required. Specificully, let 1 be the unique integer such that $x_{1-1} \leqslant x<x_{1}$. Then the non-zero B-splines of order $n$ ars $h_{n I}(x), M_{n, I+1}(x), \ldots, n_{n, 1+n-1}(x)$. These $n$ values can be computed usine the following algorithm, based on the method of convex combinations, which is written to use rojnimal storage requirements axd also econcmizes somewhat further on the number of. arithetic operations.

Algorithm 3.12.1: The efficient eveluation of all non-zero B-splines ftor a given argument using convex combinations.

Coment: Find the interval containing x .
Siep i. Deierdine the whique integei i such inai $x_{1-1} \leqslant \pi<i_{1}$.
Comment: Initial conditions are set in Steps 2-3.
Step 2. Set $e_{1}=x-x_{1-1}, e_{2}=x_{1}-x$ and $v_{1}=\left(x_{1}-x_{1-1}\right)^{-1}$.
Step 3. For $j=2,3, \ldots, n$ set $v_{i}=e_{1} v_{j-1} /\left(x_{1-1+j}-x_{1-1}\right)$.
Comment: B-splines are computed by recurrence in Stops 4-6.
Step 4. Fror $j=1,2, \ldots, n-1$ execute Steps 5-6.
Step 5. Sct $e_{3}=x-x_{1-1-j}$ and replace $v_{1}$ by $e_{2} y_{1} /\left(x_{1}-x_{1-1-j}\right)$.
Step 6. Foi $r=2,3, \ldots, n-j$ xeplace $v_{r}$ by

$$
\frac{e_{3} v^{v-1}+\left(x_{1-1+1}-x\right) v_{r}}{x_{1-1+r}-x_{1-1-j}} .
$$

Step 7. For $i=1,2, \ldots, n$ eat $i_{i n}, i-1, i(x)=v_{j}$.

An illuctration of the schemo in the case $n=4$ is given in fig. 3.12.1.


Fig. 3.12.1 Illustration of a scheme using convex continations for the evaluation of all non-zero E-splines.

Tn Algorithm 3.12.1 the elements of the $M_{r j}(x)$ array are formed along successive downord-sloping diagonals. As with the algorithos for computing a single value of $l_{n i}(x)$ or $N_{n i}(x)$, minor variarts inay be constructed which form olements along successive upard-sloping diagonals or in succercive colums.
A.gorithm 3.12 .2 below is the counterpart of Algorithm 3.12 .1 in tha case of pormnlized P-splines.

1] gorithan 3.12.2: Efficiont craluation using convox combinations of all normaljzed B-splines that are nom-wero for $\%$ given argiment.

Comant: rind the interval containing $x$.
Siten 1. Determine the unjque integer 1 such that $x_{1-1} \leqslant x<x_{1}$.
Coment: The case $\mathrm{n}=1$ is treated separately.
Step 2. If $n=1$ set $7_{i}=1$ anủ advance to Step 11.
Comnent: Initial conditions aro set Ir Steps 3-5.
Stcp 3. $\quad \operatorname{set} 0_{1}=x-x_{1-1}, e_{0}=x_{1}-x=n d v_{1}=1 /\left(x_{1}-x_{1-1}\right)$.
Step it For $j=2,3, \ldots, n-1$ set $v_{j}=\mu_{1} v_{i-1} /\left(x_{1-1-1} j^{-x_{1-1}}\right)$.
Step 5. Set $v_{r l}=\epsilon_{1}{ }^{v}{ }_{n-1}$.

Coment: B-splines are computed by renurrence in Steps 6-10.
Step 6. For $j=1,2, \ldots, n-2$ execute Stevis 7-9.
Step 7. Set $e_{3}=x-x_{1-1-j}$ and replace $v_{1}$ by $e_{2} v_{1} /\left(x_{1}-x_{1-1-j}\right)$.
Step 8. For $i=2,3, \ldots, n-j-1$ replace $v_{i}$ by

$$
\frac{e_{3} v_{i-1}+\left(i_{1-1+i}-x\right) v_{i}}{x_{1-1+i}-x_{1-1-j}} .
$$

Stop 9. Replace $v_{n-j}$ by $e_{3} v_{n-j-1}+\left(x_{1-1+n-j}-x\right) v_{n-j}$.
Step 10. Replace $\mathrm{v}_{1}$ by $\mathrm{e}_{2}{ }^{\mathrm{T}} \mathrm{A}_{1}$.
Step i1. For $j=1,2, \ldots$, in set $N_{n, l-1+j}(x)=v_{j}$.

Note that with this scheme, as with Algorithun 3.4.2, if the values of the nth-order B-splines are required for a number of arguments $x$ in tho interval $x_{1-1} \leqslant x<x_{1}$, all denominators can be pre-computed, with a consequent saving in arithmotic. Such a strategy is particularly worthwile in the context of data-fitting by splines (see Chaptors 7 and 8) in which there are frequontly many data points betpoen an adjacont pain of hotsots.

A scherc based on diviaed differences for cvaluating all non-zero E-splines can also be derived and this is illustrated for the case $n=4$ ม ) Fig. 3.12.2.


Fig. 3.12.2 Illustration of a scheme usine divided differences for the evaluatjon of all non-zero B-splines

For the case $n=4$ the conventional method requires 32 additions, 8 multiplications and 16 divisions to compute the required velues; the stable mothod requjres 25 adajtions, 12 multiplicatjons und 10 divisions (the muber of edaditions ion the stable method cen be reduced to 19 by careful programing; it does not appear possible to achieve a correaponding reduction for tine method of divided cifferences). Since on any canputing machine multipiteation is at leas'i as fast as division it is ovidert that tho stable method is fastor for cubic B-splines. In fact this result apples in generai f for a E-spline of degree $n-1$ (n>2) the number of additjons, multiplications and divisions are $2 n^{2}, n(n-2)$ ard $r^{2}$, respectively, in the conventional rotinud is used, whereas fior the stable method these numbers are $2 n^{2}-2 n: 1, n(n-1)$ and $\frac{1}{2} n(n+1)$, respectively, wor large $n$ the stable method hes \& saving of $\frac{1}{2} n^{2}$ divjesions over the
conventional method (if tams of order in arc ignored in comparison with those of order $n^{2}$ ).

### 3.13 Other methods for evalustirs B-splines

A number of authors including Loricate and Posen (1970) and Porrell (1970) have suggested the use of formula (3.2.4) wovaluate $H_{n i}(x)$. At first sight this approach seems attractive since it gives $M_{m i}(x)$ in explicit form. Unfortunately this method is also unctaing, as a running error analysis along the lines of those carrica out for the conventional and stable methods indicates. This analysis is not given here, but pro make the following comment. Mac computation of the individual terms of the summation (3.2.4) can be carried out accurately, but the evaluation af tho sum itself frequently involves heavy cancellation between the individual terms, with the result that the computed value of $M_{n i}(x)$ may surfer from appreciable loss of accuracy. In our experience this loss os enouracy is comparable to tint, incurred using divided तifferemoea.

Segethove (1970, 1972) has considered a very different approach for the evaluation of B-splines. He expresses $M_{n i}(x)$ in terms of its $n$ constituent. polynomial arcs:

$$
M_{n i}^{n}(x)= \begin{cases}p_{n, i-n 1 i}(x) & \left(x_{i-n} \leqslant x<x_{i-n+1}\right)  \tag{3.13.1}\\ p_{n, i-n+2}(x) & \left(x_{i \cdots n+1} \leqslant x<x_{i-n+2}\right) \\ \ldots \\ p_{n, i-1}(x) & \left(x_{i-2} \leqslant x<x_{i-1}\right) \\ p_{n i}(x) & \left(x_{i-1} \leqslant x \leqslant x_{i}\right)\end{cases}
$$

There, $b_{j}$ representing each of these ares as i. Legendre series of degree $n-1$ in a ncmelized variable, io

$$
\left.\begin{array}{l}
p_{n, j}(x)=\sum_{i=0}^{n-1} a_{n j u^{P} i u}(x),  \tag{3.3.2}\\
X=\left(x_{-1} x_{j-1}\right) /\left(x_{j-1}-{ }_{j-1}\right)
\end{array}\right\}(j=i-2 l ; i, i-i i+2, \ldots, i),
$$

where $P_{u}(X)$ denotes the Iregenuro polynmial of the first find of degree $u$ in $X$, he ootains recurrence relations from whech the coerciciants anju may be evaluated. Havirg computed those consficients he uses the threetorm recurrence relation for the Legenaro polynomials to ovaluate $P_{u}(x)$ ( $u=0,1, \ldots, n-1$ ) and hence $\mathrm{if}_{n i}(x)$, for any given valun of $x$, having first, of couras, determined. an interval containing $x$.

Scgethora's approach suffers a number of disadiantages compared with the method of convex combinations. Firstly, the mathod, as developed, applies only to the cass of equally-spacea knots, afthough a Eencralization to the unequally-spacea case could prestimably be made. Secondiys the determination of the Legendre coefricients proves to be somsmiat unstable muncrically. Segethova carries out computations in both siñle- and doublc-precision floating-point, aritimetic, using the difforences botroen the results to obtain estimates of the accuracy of his velues. He $\operatorname{tin}$ ds on un TBr $700_{4}$ computer that for $n=21$ somo of the coefficjemits have relative errors as large as $10^{-3}$. Note that errows of this order will then irievittibly he propagated to the computed velue or $M_{n j}(x)$, even if the resuling fogandro series are evaluated exactly. Also note thut Segrthova's antual rolative orrors are as large as $10^{-3}$, whereas our relative aryor bound jis, usinu (3.9.11), $(1.337)(102) 2^{-t}$. Thirdy, the arithnetic worls to evaluate the set of non-zero $h_{n i}(x)$ values, for a prescribed value of $x$, even assuming the Jesemdre coefficients have been pre-computed, is sbout $4 n^{\text {? }}$ additions ana $5 r_{i}^{2}$ multiplications, which aico cospares unfavourably witia the method of convex combinations. Fourthly, a Fortran subroutine (Sogcthova, 1ว\%) for evaluating the Legendre coefficients of the B-spliness up for order $2:$ requires over 18,000 roràs of store:

An approach similar to thut of Begothova's mas develuped at an early stuge of this work; in which Chehysher rather thon Lowendre poljwomial were
utilized. However, a corresponding loss of precision for large $n$ mas observed, although the resulting computational procedure proved to be more efficient in storage and speed. .
$2 n$ this chafter we examine uethoas for wopentiating ond interrating B-splines. In particular, pe develop a number of recurrence relations for performinis those operations. Tho results of this chapter are uece in Chapter 5 to express the derivatives and integrals oif arbitrary splins in their B-spline form, in Cnepter 8 to impose convexity and concevity constraints in spline fitting problems, and in Chapter 9 where a feneral cless of constraint conditions in snline appoximation pronlems is examined.

In Section 4.1 Te derive tho recurrence relations for B-splinc dertivatives. In Section 4.2 the important case of cierjvatives at the rauge end points Is exarined. end a proof is given that these derivatives con be nthanot in a staile maner. In Section 4.3 it j.s establisned that the derivatives required in fitting with convexitioy and concavity constraints can siso be evaluated stably. Alecrithas for evaluating i-spline uerivatives in the goneral case are discussed in Section in. Finally, in Section k.5, stable methoas for eviluating indefinite intecrals of B-splines are presented.

### 4.1 Recurrence rolations for the derivatives of E-splines

We state and prove in this secticn tro recurrence relations for the derivatives of B-3plines; tho first is due to $\dot{d e}$ Boor (1972) ano the second is belicied to be new.

Theorem 1. 1.1
The derivatives of B-splines satisfy the reletion

$$
\left.\begin{array}{rl}
N_{n i}^{(1)}(x) & =\left(x_{i}-x_{i-n}\right) N_{n i}^{(1)}(x)=(n-1)\left\{\sum_{n-1, i-1}^{(1-1)}(x)-n_{n-1, i}^{(1-1)}(x)\right\} \\
& =\left(x_{i-1}\right)\left\{\frac{N_{n-1, i-1}^{(1-1)}(x)}{x_{i-i}-x_{i-n}} \cdots \frac{N(1-1)}{x_{i-1}-x_{j-n+1}}\right\}
\end{array}\right\} .
$$

## Pront

Recalling that $K_{n i}(x)=H_{n}\left(x_{i-n}, x_{i-n+1}, \ldots, x_{i} ; x\right)$ (Section 3.2) and using the properties of divined differencen, we have

$$
\begin{align*}
M_{n i}^{\prime}(x) & =\frac{d}{d x}\left\{M_{n}\left(x_{i-n}, x_{i-n+1}, \cdots, x_{i} ; x\right)\right\}  \tag{2+.1,2}\\
& =\frac{\bar{a}}{d x}\left\{\frac{M_{n}\left(x_{i-n+1}, x_{j-n+2} ; \cdots, x_{i} ; x^{\prime}\right)-M_{n}\left(x_{i-n}, x_{i-n+1}, \cdots, x_{i-1} ; x\right)}{x_{i}-x_{i-n}}\right\} \\
& =(n-1)\left\{-M_{n-1, i}(x)+l_{n-1, i-1}(x)\right\} /\left(x_{i}-x_{i-n}\right)
\end{align*}
$$

Differentiation of ( $4.1 .4_{1}$ ) I-i times with respect to $x$, together with the use of ( 3.2 .5 ), proves the theorem.

## Theorem 2 . 1.2

The ácrivatives of B-splines satisíy the relation

$$
\begin{gathered}
M_{n i}^{(1)}(x)=\left(\frac{n-1}{n-1-1}\right)\left\{\frac{\left(x-x_{i-n}\right) M_{n-1, i-1}^{(1)}(x)+\left(x_{i}-x\right) M_{n-1, i}^{(1)}(x)}{x_{i}-x_{i-n}}\right. \\
(1=0,1, \ldots, n-2)
\end{gathered}
$$

## Proof

Assume tha theorem to be true for $I=s \geqslant 0$. Mirferentiation of ( $4,1,5$ )
after reylaciat I by s then gives
$\left(\frac{n-s-1}{n-1}\right) v_{n i}^{(s+1)}(x)=\frac{\left(x-x_{i-n}\right) M_{n-1, i-1}^{(s+1)}(x)+\left(x_{i}-j^{2} n_{n-1, i}^{(s+1)}(x)\right.}{x_{i}-x_{i-n}}$

$$
\begin{equation*}
+\frac{n_{n-1, i-1}^{(s)}(x)-n_{n-1, i}^{(s)}(x)}{x_{1} \cdots x_{i-n}} \tag{4.1.6}
\end{equation*}
$$

But frun (1.1.1),

$$
\begin{equation*}
\frac{n_{n-1, i-1}^{(s)}(x)-n_{n-1}^{(s)}(x)}{x_{i}-x_{i-n}}=\frac{n_{i}^{(s+1)}(x)}{n-1} \tag{1.01.7}
\end{equation*}
$$

$M_{n i}^{(s+1)}(x)=\left(\frac{n-1}{n-s-2}\right) \frac{\left(x-x_{i-n}\right) m_{n-1, i-1}^{(s+1)}(x)+\left(x_{i}-x\right) n_{n-1, i}^{(s+1)}(x)}{x_{j}-x_{i-n}}$.

So the theoren is true for $\mathcal{I}=s+1$. But the theorem is true for $l=0$ by virtue of (3.4.1). Hence, by inductions, it is true for $1=0,1, \ldots, n-2$. Define the reduced cierivative $m_{n i}^{(I)}(x)$ by

$$
\begin{equation*}
m_{n i}^{(1)}(x)=\frac{(n-1-1)!}{(n-1)!} M_{n i}^{(1)}(x) \tag{1+1.9}
\end{equation*}
$$

Note that

$$
\begin{equation*}
m_{n i}^{(0)}(x)=M_{n i}(x)=m_{n j}(x), \tag{4.1.10}
\end{equation*}
$$

say. In terins of reduced derivatives, (4.1.1) becomen

$$
\begin{equation*}
m_{n i}^{(1)}(x)=\frac{(1-1)}{(1, i-1}(x)-m_{n-1}^{(1-1)}(x) \tag{1.1.11}
\end{equation*}
$$

and (4.1.5) becomes
$m_{n i}^{(1)}(x)=\frac{\left(x-x_{i-n}\right) m_{n-1, i-1}^{(1)}(x)+\left(x_{i}-x\right)_{n-1, i}^{(1)}(x)}{x_{i}-x_{i-n}}$.

It is usually nore convenient to work in temis of the reduced Rerivetives ${ }_{m i}^{(1)}(x)$ rather than the beripetives $f_{n i}^{(1)}(x)$, bocause of the above simplipications in the hasic recumence relations. If the values of the $y_{n i}^{(1)}(x)$ or the $\mathrm{IN}_{\mathrm{ni}}^{(1)}(x)$ are requisen, it is un course a trivial matier to oblair the fofmer by maltiplying m $n_{n i}^{(1)}(x)$ by tre factor ( $n-1$ ) :/(n-1-1) : and tiner by $x_{i}-{ }_{j-i}$ to ontein the lattor. These multiplications introduce
negligible relative errors of the order of at most a small multiple of the relative machine precision.

Note that relation (4.1.12), like (3.4.1), involvos the computation of convex combinations, a process that is numarically stable (of Sections 3.9 and 5.3). Unlike the $H_{n i}(x)$, however, the $n_{n i}^{(1)}(x)$ for $1>0$ may be positive, negative or zero. We expect therufore that a priori relative error bounds aro not obtainable (except in special cases - soe Sections 4. 2 and 4.3) for either of these relations. However, Butterfield (1975) has recently suggested a class of algorithns for B-spline dexivatives based upon both (4.1.11) and (4.1.12) and has presented some convincirg arguments which suggest that a certain meaber of this class is the best possible choice (sco Section 4.4).

Observe that (4.i.12) is in fection interesting generalization of the fundamental relation (3.4.1) for B-splines.

### 4.2 The derivatives of the B-splines at the ends of the range

In many dealings with splines it is necessary to troat acrivative bouidiuy conditions (of Chapter 9). If B-splines are used as the basis, their derivatives at the ends of the range need to be evaluated. We derive in this section soine very satisfactory iesults relating to the numerical evaluation of these derivatives in the case where the B-splines are dofined upon a standario knot set with cuincidont end knots.

## Pheorem 1.?. 1

At the xange empoints $x=a$ and $x=b$ the riti derivativos $(0 \leqslant r<n)$ of the Brospitines posseas tha properties

$$
\operatorname{sign}\left\{m_{n i}^{(x)}(a)\right\}= \begin{cases}(-1)^{r-j+1} & (i \leqslant x+1)  \tag{4.2.1}\\ 0 & (i>x+1)\end{cases}
$$

and

$$
\operatorname{sign}\left\{m_{n i}\left(n^{\prime}\right)(b)\right\}= \begin{cases}(-1)^{N+n-1-i} & (i \geqslant N+n-1-x)  \tag{4.2.2}\\ 0 & \left(i<N+n-1-x^{\prime}\right),\end{cases}
$$

There

$$
\operatorname{sics}(u)=\left\{\begin{array}{cl}
-1 & (u<0)  \tag{4.2.3}\\
0 & (u=0) \\
+1 & (: 2>0)
\end{array}\right.
$$

## Prooin

Wo give the proof for the casa $x=a$; that for $x=b$ is similar. Prow (4.1.11),

$$
\operatorname{sign}\left\{m_{n i}^{(1)}(a)\right\}=\operatorname{sig}\left\{m_{n-1, j-1}^{(1-1)}(a)-m_{n-1, i}^{(1-1)}(a)\right\}
$$

Now suppese the theorem to be true for $x=1-1 \geqslant 0$. The wos of ( 4.2 .1 ) then enables (4.2.4) to be xeduced to

$$
\sin \left\{m_{\mathrm{ni}}^{(1)}(a)\right\}= \begin{cases}(-1)^{1-i+1} & (i \leqslant 1+1)  \tag{4.2.5}\\ 0 & (1>1+1)\end{cases}
$$

Thus the theorem is true for $r=2$. Butirom (3.5.1) it is true for $r=0$. Hence, by induction it is tme for $0 \leqslant r<n$.

## Theorem 4.2.2

kven in the presence of rowing errors the values of $n n i n(x)$ at the rome endpoints $x=a$ and $x=b$ computed $x^{3} r o m(4.1 .11)$ abtisfy the relations ( 4.2 .1 ) anic ( 4.2 .2 ).

## Prooin

```
Only the proof for }x=a\mathrm{ is given since that tor }x=h\mathrm{ is similar,
```

 strajegtionward filoating-point econ analysis of this relation gites

$$
\begin{align*}
& \bar{m}_{n j}(x)(x)= \pm I\left(\frac{\min _{n-1}(x-1),-1(x)-m_{n-1, i}(x)}{x_{i}-x_{i-n}}\right)  \tag{4,2.6}\\
& =\left(\frac{n(x-1)(x)-(n-1)(x)}{x_{i}-x_{i-11}}\right)(1+\varepsilon)^{3}  \tag{4+2.7}\\
& =\left(\frac{\frac{-(n-1)}{n-1, i-1}(x)-\bar{m}_{n-1, i}^{-(n-1)}(x)}{x_{i}-x_{i-n}}\right)(1+3 e), \tag{4.2.8}
\end{align*}
$$

where

$$
\begin{equation*}
|\varepsilon| \leqslant 2^{-i},|e|<2^{-t_{1}} \tag{i+2.5}
\end{equation*}
$$

After setting $x=x_{j-n}=a$ in (4.2.8), the remainder of the prove then follows closely that of meoren 4.2.1 with (2.0.23) used in place of ( 4 . 1.11). The only difference is the factor $1+3$ a in (4.2.8) which, since $3|c|<1$, has no influence on the sign or the term it mitiplies. Thus the theorem is proved.

Theorem 4.2.3
 from (3.5.1) for $x=0$. Let

Then $\ln _{\mathrm{ni}}^{\left(\mathrm{r}^{\prime}\right)}(a)$ satisfies the a posteriori absolute error bound

$$
\begin{align*}
\left|\delta m_{n i}^{(n)}(a)\right| & \leqslant\left(1-2^{-t}\right)^{-2-3 r}(3 r+2) 2^{-t_{1}}|-(n)(a)| \\
& \leqslant 1.179(3 r+2) 2^{-t}\left|\min _{n i}^{(2 n}(a)\right| \tag{4.2.12}
\end{align*}
$$

and the a prion ablative error bound

$$
\begin{equation*}
\left|\delta_{n i}^{(r)}(a)\right| \leqslant 1.337(3 r+2) 2^{-t}\left|m_{n i}^{(r)}(a)\right| \tag{4.2.13}
\end{equation*}
$$

The results $(4.2 .11),(4.2 .12)$ and $(4.2 .13)$ also hold with a replaced by b.

Proof'
Only the proof for $x=a$ is given since that for $x=b$ is similar.

Firstly we note that (4.2.12) follows immediately from (4.2.11) upon using ( 1.1 .9 ) and (1.1.12). Also (4.2.13) follows from (4.2.12), since the latter gives

$$
\left|\delta_{n i}^{(r)}(a)\right| \leqslant 1.179(3 r+2) 2^{-t}\left\{\left|\delta_{m i}^{(r)}(a)\right|+\left|m_{n i}^{\left(r^{0}\right)}(a)\right|\right\} \quad \quad \text { (4.02.14) }
$$

and hence

$$
\begin{equation*}
\left|\delta_{n i}^{(r)}(a)\right| \leqslant \frac{1.179(3 n+2) 2^{-t}\left|m_{n i}^{(2)}(a)\right|}{1-1.179(3 r+2) 2^{-t}} \tag{4-2,45}
\end{equation*}
$$

But, using ( 1.1 .7 ), the denominator in ( 4.2 .15 ) is bounded from below by $1-0.1179=0.8821$; relation ( 4.2 .13 ) then follows. It remains to prove (4.2.11).

We consider initially the case $x=0$. From (3.5.3) and (4.1.10),

$$
n_{n i}(a)= \begin{cases}11\left(x_{i}-a\right) & (i=1) \\ 0 & (i>1)\end{cases}
$$

and so $\bar{m}_{n i}(a)=\pi_{n i}(a)=0$ if $i>1$, which proves the theorem in the trivial case $r=0$ and $i>1$. For $r=0$ and $i=1,(4.2 .16)$ gives

$$
\begin{align*}
\bar{m}_{\mathrm{n} 1}(a) & = \pm 1\left\{1 /\left(x_{1}-a\right)\right\}=(1+\varepsilon)^{2} /\left(x_{1}-a\right) \\
& =(1+\varepsilon)^{2} m_{n \cdot 1}(a)=(1+2 a)_{n n}(a) \tag{4.2.17}
\end{align*}
$$

where $|\varepsilon| \leqslant 2^{-t} 1$ and $|e|<2^{-t_{1}}$. thus

$$
\begin{equation*}
\delta m_{n 1}(a)=\bar{m}_{n j}(a)-m_{n i}(a)=20 m_{n j}(a) \tag{4.2.18}
\end{equation*}
$$

So

$$
\begin{equation*}
\left|\delta m_{n^{\prime}}(a)\right| \leqslant(2) 2^{-t_{1}}{m_{n 1}}(a) \tag{4.2.19}
\end{equation*}
$$

But from (4.2.17),

$$
\begin{equation*}
m_{n 1}(a) \leqslant\left(1-2^{-i}\right)^{-2}{ }_{n 0}(a) \tag{4.2.20}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left|\delta m_{n 1}(a)\right| \leqslant 2\left(1-2^{--t}\right)^{-2} 2^{-t_{1} m_{n 1}}(a) \tag{4.2,21}
\end{equation*}
$$

which proves the theorem for the case $x=0$ and $i=1$.

We now assume the theorem to be true for $x=1-1(1 \geqslant 1)$ and show by induction that this implies it is true $\mathrm{Tom}^{2} \mathrm{y}=\mathrm{l} . \operatorname{From}(4,2,8)$ and ( 4.2 .10 )

$$
\begin{aligned}
m_{n i}^{(1)}(a)+\delta m_{n i}^{(1)}(a)= & \left(\frac{1}{x_{i}-2}\right)\left\{m_{n-1, i-1}^{(1-1)}(a)-m_{n-1, i}^{(1-1)}(a)\right.
\end{aligned} \quad \begin{aligned}
&(1-1) \\
&\left.+\delta m_{n-1, i-1}^{(a)-\delta m_{i}(1-1,1)}(a)\right\}(1 \div 3 e) .
\end{aligned}
$$

The use of $(4.1 .11)$ recuses $(4.2 .22)$ to

$$
\begin{aligned}
& \operatorname{snni}_{n i}^{(1)}(a)=\left(\frac{1}{x_{i}-a}\right)\left[\delta_{n-1, i-1}^{(1-1)}(a)-\delta_{n-1, i}^{(1-1)}(a):\right. \\
&\left.+30\left\{n_{n-1, i-1}^{(1-1)}(a)-m i n-1, i(a)\right\}\right] .
\end{aligned}
$$

Then, using (4.2.11) with $r=1-1,(4.2 .23)$ yields

$$
\begin{align*}
& \left|\delta_{n i}^{(\lambda)}(a)\right| \leqslant\left(\frac{1}{x_{i}-2}\right)\left\{\left(1-2^{-T_{1}}\right)^{1-3 I}(3 I-1)+3\right\} 2^{-t_{1}}\{\mid-(1-1)\{(a) \mid \\
& \left.+\left|\bar{m}_{n-1, i}^{-(1-1)}(a)\right|\right\} . \tag{1+2,2}
\end{align*}
$$

As a consequence of Thenrem 4.2.2,

$$
\begin{equation*}
\left|\frac{-(1-1)}{n-1, i-i}(n)\right|+\left|\frac{-(1-1)}{n-1, i}(a)\right|=\left|\sum_{n-1, i-1}^{(1-1)}(a)-\frac{-(1-1)}{n-1, i}(a)\right| . \tag{1+2,25}
\end{equation*}
$$

Koreover, from (4.2.7),

$$
\begin{equation*}
\left|\bar{n}_{n-1, j-1}^{-(1-1)}(a)-\bar{n}_{n-1, i}^{-(1-1)}(a)\right| \leqslant\left(1-2^{-t}\right)^{-3}\left(x_{i}-a\right)\left|n_{n i}^{(1)}(a)\right| \tag{4.2.26}
\end{equation*}
$$

Relations $(4.2 .24),(4.2 .25)$ and (4.2.26) together yiola

$$
\begin{align*}
& \left|\varepsilon_{m_{n i}}(1)(a)\right| \leqslant\left\{\left(1-2^{-t}\right)^{1-31}(31-1) \div 3\right\}\left(1-2^{-t}\right)^{-3} 2^{-t_{1}}|-(1)(a)| \quad(1.2 .2 .7) \\
& \leqslant\left(1-2^{-t}\right)^{-2-3.1}(31+2) 2^{-t_{1}}\left|-\frac{m_{n i}(1)}{n}(a)\right| . \tag{4.2.28}
\end{align*}
$$

Thus the theorem is true for $r=1$. But we have alrady proved it twe for $x=0$. Hence by induction it, is true for $x \geqslant 0$. $\square$
The numerical evaluation at the rence endpoints of the derivativos of the B-splines deffined upon a standard knot set with coinciēens end kotis in thus mocnditionally stable.

### 4.3 The derivatives of $B$-splines at the knots

In this section we prove firsily (Theorem 4.3.1) an interestores result relaling to the signs of certain B-spline darivaiives at the knots and then show (Theorea 4.3 .2 ) that this result stijl holds in floating wint.
 are evaluated using rejation ( 4.1 .11 ) the computed values satisiy excellont a posteriori absolute and a prioni relative exron bomets. these results inco of particular relevance to the nleniotur derived in Glapter 8 fur rine fijtine with converity and conorvity conytraints.

## Theorem 4.3.1

For $n \geqslant 2$ and ail ithe value of $m_{n i}^{(n-2)}(x)$ et the interiog lanoti $x_{j}$
( $j=i-n+1$, $i-n+2, \ldots i-1$ ) is stricily positive on negative according to whether iti+n is respectively odd or even.

## Proof

Suppose the theorem is true for $n=r-1 \geqslant 2$. It then follows inmeatatoly from relation ( 4.1 .11 ) that the theorern is tme $\tilde{x}$ or $n=r$. But the theorem is evidentily true for $n=2$, since $m_{2 i}^{(0)}\left(x_{i-1}\right)=M_{2 i}\left(x_{i-1}\right)>0$ by virtue of Theorem 3.4.2. Hence by induction the theorem is truse for all $n \geqslant 2$. As a consequence of Theorem 4.3.1, $\mathrm{m}_{\mathrm{ni}}^{(\mathrm{n}-2)}(\mathrm{x})$ is a first degroo spline (ie a piecewise-linear f'unction) with values at the intexior knota which alternate in sign.

## Theorem 4.03 .2

Fiven in the presence of rounding errors, for all $n \geqslant 2$ and al] i, the value of $m_{n i}^{(n-2)}(x)$ at the interior $\operatorname{knot} x_{j}(i=i-n+1, j-n+2, \ldots, i-1)$, when computed in floating point arithmetic from (4.1.11) if n>oretrom (3.2.8) and (3.4.1) if $n=2$, is strictly positive or negative accoving to whether $j \div j+n$ is respectively odd or even.

## Prooi'

We merely hare to shor that $m_{n i i}^{(n-2)}\left(x_{j}\right)$ and the compu'ted value $\bar{n}_{n i}^{(n-2)}\left(x_{j}\right)$ have the same simp. The result will then follow imocdiately from Theorem 4.3.1.

Suppose the theorern is true for $n=r-i$, ie that for all i and for $j=i-r+2, i-n+3, \ldots, i-1, \bar{m}_{r-1, i}^{(r-3)}\left(x_{j}\right)$ und $\frac{(r-3)}{r-1, i}\left(x_{j}\right)$ bave the same sigrn. Iner, usine (it.a.e) (which holds independently of the assumption in Section 1 . 2 that ine end knots are coinciuent) it fullows jumediately thet for $j^{j}=i-x+1$, $i-x+2, \ldots, i-1, m_{r j}^{(r-2)}\left(x_{j}\right)$ aind $m_{r i}^{(r-2)}\left(x_{j} ;\right.$ haro the same sion, since the factor $1+3 e>0$. Herce the thooron is true for $n=2$.

But from Theorem $3.8 .2, \bar{H}_{2 i}\left(x_{j}\right)$ and $m_{2 j}\left(x_{j}\right)$ certain ]y have tile same sign. Hence the theorem is true for $n=2$ and therefore, by induction, for all $n \geqslant 2$ $\square$

## Theorein 4.3 .3

Jot $i$ be any integer, $r$ be any integer $\geqslant$ ? and $j$ take any one of the
 computed from ( $4.1,11$ ) if $r>2$ or from

$$
\begin{equation*}
\mathrm{m}_{2 i}^{(0)}\left(x_{j,-1}\right)=m_{2 i}\left(x_{i-1}\right)=\left(x_{i,}-x_{j,-2}\right)^{-1} \tag{1+3.1}
\end{equation*}
$$

if $r^{n}=2 . \quad$ Let

$$
\begin{equation*}
\delta m_{x^{\prime} i}^{(r-2)}\left(x_{j}\right)=\bar{m}_{L^{\prime} i}^{(r-\%)}\left(x_{j}\right)-n_{r i}^{\left(x^{2}-2\right)}\left(x_{j}\right) \tag{1+3.2}
\end{equation*}
$$

Then $\delta \mathrm{m}_{\mathrm{ri}}^{\left(\mathrm{r}^{-2 .}\right)}\left(x_{j}\right)$ satisfies the a posterior absolute error bound

$$
\begin{align*}
\left|\varepsilon_{x i}^{(r-2)}\left(x_{j}\right)\right| & \left.\leqslant\left(1-2^{-t}\right)^{4-j x}(3 r-4) 2^{-t} \mid{\underset{m}{m}}_{-2}^{(r-2}\right)\left(x_{j}\right) \mid  \tag{1+3.3}\\
& \leqslant 1.179(3 r-4) 2^{-t}\left|-(r-2)\left(x_{j}\right)\right| \tag{4+3.3}
\end{align*}
$$

and tho a priory relative error bound

$$
\begin{equation*}
\left|\delta m_{r i}^{(r-2)}\left(x_{j}\right) / \mu_{r i}^{(r-2)}\left(x_{j}\right)\right| \leqslant 1.3 \leqslant 7(3 r-4) 2^{\cdots i} \tag{4.3.5}
\end{equation*}
$$

## Proof

Now ( 4.3 .4 ) and ( 4.3 .5 ) follow from (4.3.3) in essentially the same way that (4.2.i2) and (4.02.13) follow frown (4.2.11) Hence we only prove (4.3.3). The initial stages of the proof acre very similar to those of Theorem lun2.3. From $(4.2 .8),(4.3 .2)$ and (4. 1.11 ) We obtain

$$
\begin{aligned}
\left|\delta m_{r i}^{(r-2)}\left(x_{j}\right)\right| \leqslant\left(\frac{1}{x_{i}-x_{i-r}}\right) & {\left[\left|\delta m_{r-1, i-1}(x-3)\left(x_{j}\right)\right|+\left|\delta_{n-1, i}\left(x_{j}\right)\right|\right.} \\
& \left.+(3) 2^{-t_{1}}\left|\frac{-(x-3)}{x-1, i-1}\left(x_{j}\right)-m_{r-1, i}^{-(x-3)}\left(x_{j}\right)\right|\right]=
\end{aligned}
$$

Nom assume the theorem to be tine for $r=s-1 \geqslant 2$, ie that

$$
\begin{equation*}
\left|s m_{s-1, i}^{(s-3)}\left(x_{j}\right)\right| \leqslant\left(1-2^{-t}\right)^{7-3 s}(3 s-7) 2^{-t_{1}}\left|\frac{-(s-3)}{m-1, i}\left(x_{j}\right)\right| \tag{4.3.7}
\end{equation*}
$$

Putting $r=s$ in $(4.3 .6)$ and using (4.3.7) then gives

$$
\begin{aligned}
& \left|\delta_{s i}(s-2)\left(x_{j}\right)\right| \leq\left(\frac{1}{x_{j}-x_{i-s}}\right)\left[( 1 - 2 ^ { - t } ) ^ { 7 - 3 s } ( 3 s - 7 ) 2 ^ { - t _ { 1 } } \left\{\left|\frac{-(s-3)}{m_{s-1}, i-1}\left(x_{j}\right)\right|\right.\right. \\
& \left.\left.+\left|-(s-3)\left(x_{j}\right)\right|\right\}+(3) 2^{-t}\left|\frac{-(s-3)}{\operatorname{man}-1, j-1}\left(x_{i}\right)-\operatorname{mi}_{s-1, i}(s-3)\left(x_{j}\right)\right|\right] \quad(1.3 .8)
\end{aligned}
$$

But it follows from Theorem 4.3 .2 and from (4.2.8) that

$$
\begin{align*}
& \leqslant\left(1-2^{-t}\right)^{-3}\left(x_{i}-x_{i-s}\right)\left|\frac{-(s-2)}{m_{s i}}\left(x_{i}\right)\right| . \tag{4.3.10}
\end{align*}
$$

The use of $(4.3 .9)$ and $(403.10)$ reduces $(4.3 .8)$ to

$$
\begin{align*}
& \left|\delta m_{s i}^{(s-2)}\left(x_{j}\right)\right| \leqslant\left\{\left(1-2^{-t}\right)^{7-3 s}(3 s-7) \div 3\right\}\left(1-2^{-t_{j}}\right)^{-3} 2^{-t_{1}}\left|-(s-2)\left(x_{j}\right)\right| \\
& \text { (4.3.3.11) } \\
& \leqslant\left(1-2^{-t}\right)^{4 \cdots 3}(3 s-4) 2^{\cdots+1}\left|\frac{-(s-2)}{5 i}\left(x_{j}\right)\right| . \tag{2+.3.12}
\end{align*}
$$

So the theorem is true for $x=s$. But it is very easily verjaed that the theorem is true for $r=2$. Hence, by induction, it is trio for ali $\geq 2$. We conclude from theorem 4.3 .3 that the computation $n=m_{r i}^{(r-2)}\left(x_{j}\right)$ from the recurrence relation (i, i. it) is unconditional stable.

### 4.4 Al goritinns for the evaluation of B-spline derivatives

Thio racurgence relations for the derivatives of B-eplines have been established. Ono, (4.1.11), relates the lth dexivative of a B-spline nic ordor $n$ to the ( $1-1$ ) st derivatives of B-splines of order $n-1$. the other', (4.1.12), relates the Ith derivative of a $B$-spline of order $n$ to derivatives of the same order of $B$-splines of order n-1.

These two relations, when usce in conjunction with the fundamental reoumence ( 3.4 .1 ) suggest (at leasi) two computational schemes for the numerical evaluation of $m_{n i}^{(1)}(x)$, for any prescriber value of $x$.

One such schene (Scheme A) involves initially the uso of (3.2.8) and ( 3.4 .1 ), as in Aleorithra 3.12 .1 for example, to compute for oll relevent j.
 the values of $m_{n-1+1, i}^{\prime}(x), n_{n-1+2, i}^{\prime \prime}(x), \ldots, m_{n i}^{(I)}(x)$, fox all a poronizite values or $i$.

A second sohere (Scherne B) involves inftiolly the use of (3.2.8) and ( 3.4 .1 ) to comple the values of $m_{2 i}(x)$, followed by the use of (4.i.iti) to cormpute successively the values of $m_{3 i}^{\prime}(x), m_{4 i}^{\prime \prime}(x), \ldots, m_{1+2, i}^{(1)}(x)$ for all appropriato it. This is followea by the appication of (4.i.12) io corpute successively the values of $m_{1+\eta, i}^{(1)}(x), m_{1 \times+, i}^{(I)}(x), \ldots,\left[_{i n i}^{(1)}(x)\right.$, again for all relevant values of $i$.

Eutterficla (1975) has carried out a detailed analysis of a set of solenon, which includes ©chemes in ard B as special cases, for cornputing B-spline derivativcs. A tentative result of his work is that scheme $A c a n$ be cxpected to heve superior stability properties to all the other schemes in the set. Numerical ovidence is accumulating to support this resuli. filgorithm $l_{\text {rote }} 1$ below implements Soheme $A$,

Alporithm 4et 1: The evaluation ot the lith reaneed derivative of all non-zero 3-rplines for a Eiron minguent $x\left(x, x \leqslant x<x_{k}\right)$ using Schene A.

Coment: The B-splines of order n-l aro compated by convex combinations in Step 1.

Step 1. Mopley Aleorithra 3.12 .1 to obtain the rolues of

$$
v_{j}=M_{n-1, k-1+j}(x) \quad(j=1,2, \ldots, n-1)
$$

Coment: The required derivatives are computed by recurrence in steps 2.-5.

Step $3 . \quad$ Shet $v_{x}=\nabla_{x-1} /\left(x_{k+x-1}-x_{k-1}\right)$.
Step 1. For $i=1=+m 2, k+x-3, \ldots, k+1$ raplace $v_{j-k+1}$ by $\left(v_{i-k}{ }^{-v_{i-k+1}}\right) /\left(x_{i}-x_{i-r}\right)$.

Step 6. For $j=1,2, \ldots, n$ set $n_{n, k-1+j}^{(1)}(x)=\nabla_{j}$.

### 4.5 Tr:e definite andindefinite interrals of B-Enlines

In this section sone results relating to the integration of B-spines are estarl i.shed.

## Thenrem 4.5 .1

The inderinite integral of a J-spline is given by

$$
\int_{--\infty}^{x} i_{n i}^{x}(i) d t=\left\{\begin{array}{ll}
0 & \left(x \leqslant x_{i-n}\right) \\
\frac{1}{n} \sum_{j=1+1}^{i+n} & \left(x_{i-n} \leqslant x \leqslant x_{i j}\right) \\
\frac{1}{n} & \left(x_{i+i} \leqslant x\right)
\end{array} \quad(4.0 .1 j)\right.
$$

fond by

$$
\int_{-\infty}^{x} \mu_{n i j}(\forall)_{M}=\frac{i}{n} \sum_{j=i+1}^{k+1 n} N_{n=1, j}(x) \quad\left(x_{n-1} \leqslant x<x_{1 ;} ; \sum_{-i n}<k \leqslant 1\right) .
$$

## Proof

Use of the relationship (4-1.1) yielan

$$
N_{n j}(x)=M_{n, j-1}(x)-\frac{1}{n} N_{n+1, j, j}^{\prime}(x) .
$$

Summing (4.5.3) over all values of $j$ from $i+1$ to $i+n$ giver

$$
\begin{equation*}
M_{n, i-n}(x)=M_{n i}(x)-\frac{1}{n} \sum_{j=i+1}^{i+n} N_{n+1, j}^{\prime}(x) \tag{4.5.54}
\end{equation*}
$$

We concern ourselves with the intivival $x_{i-n} \leqslant x \leqslant x_{i}$, since in $_{n i}(x)=0$ outside this interval. Thus, replacing $x$ by $t$ in (4. 5. \%), integrating with respect to $t$ between the limits $-\infty$ and $x$ and observing that

$$
\begin{align*}
& { }^{M} n, \text { in }(x) \equiv 0 \text { for } x<x_{i} \text {, we obtain } \\
& \left.\int_{-\infty}^{x} i_{n 2 i j}^{\prime}(i) a_{i}=\frac{i}{n} \sum_{j=i+1}^{i+n}, i N_{n+1, j}(t)\right]_{-\infty}^{x} .  \tag{4.5.5}\\
& =\frac{1}{n} \sum_{j=i+1}^{i+n} N_{n+1, j}(x) \text {. } \tag{4+5.6}
\end{align*}
$$

Putting $x=x_{i}$ in (4.5.6) and using the compact support of the B-spilines gives

$$
\begin{equation*}
\int_{-\infty}^{\infty} H_{n i}(t) \bar{\alpha} t=\frac{1}{n} \sum_{j=i+1}^{i+n} N_{n+1, j}\left(x_{i}\right) . \tag{4.5.7}
\end{equation*}
$$

Since $N_{n+1, j}\left(x_{i}\right)=0$ for $j \leqslant i$ and $j>i=n$, the right-band side of (1.5.7) is equal to $\frac{1}{n} \sum_{j} \tilde{r}_{n+1, j}\left(x_{i}\right)$, which by virtue of $(3.6 .1)$ then yields

$$
\begin{equation*}
\int_{-\infty}^{\infty} m_{n i}(t) d t=\frac{1}{n} \tag{4:5,8}
\end{equation*}
$$

(cr Section Sn). The results (4.5.6) anu (4.5.0), together with tine fact that $\mu_{n i l}(x) \equiv 0$ for $x<x_{i-1}$ and $x>x_{i}$, prove ( 4.5 .1 ). Finally, if $x_{k-1} \leqslant x<x_{k}$, where $i-n<k \leqslant i$, then $\pi_{n+1, j}(x) \equiv 0$ for $j>k \cdot n$, from in mich (4.5.2) follows.

We note that the lower linnit in the inticgrala in ( 4 re5.1) ard (4.5.2) may be roplaced by any velue not exceeding $x_{i-n}$ yithout affecting the reaults. Morcover, it follons from (4.5.1) and (3.2.5) that the definite intermi of $N_{n i}(x)$ is given by

$$
\begin{equation*}
\int_{-\infty}^{\infty} F_{n i}(x) c x=\left(x_{i}-x_{i-n}\right) / n \tag{4.5.3}
\end{equation*}
$$

Finally, if the rnots axe uniformly spaced one unic apart. (4.5.9) reduces to

$$
\begin{equation*}
\int_{-\infty}^{\infty} \pi_{n i}(x) d x=1 \tag{4.5.10}
\end{equation*}
$$

If the values of $N_{11+1, j}(x)$ in (4.5.1) or (4.5.2) are computed using the unconditionally stable flegorithrie 3.12.2, the value of $\int_{i-r_{1}}^{x} h_{i=}(t)$ at has a very smail delative error. Aitematively, ono of the schenes discustod in Chapter 5 for craluating a linear cumbination of B-splines can be used; the results of that chapter can be used to establish that the value of the integral computed in this way also has a very small relative error.

IThe following theorem shows that the integral of $M_{n i}(t)$ can alse bo conputed from a reduction formula.

## Theorom 4.5.2

If $x_{i-i n} \leqslant x \leqslant x_{i}$ then

$$
\int_{-\infty}^{x} M_{n i}(t) d t=\frac{1}{n}\left(x-x_{i-n}\right) M_{n i}(x)+\frac{n-1}{2} \int_{-i 0^{12}-1, i}^{x}(i) M_{i} t
$$

Proof
From (4.5.1), (3.4.1) and (3.2.6),

$$
\begin{align*}
& =\frac{1}{n_{i}}\left\{\sum_{j=i}^{i+n-1}\left(x-x_{j-n}\right) M_{n j}(\dot{x})+\sum_{j=i+1}^{i+n}\left(x_{j}-x\right) M_{n j}(x)\right\} \\
& =\frac{1}{n}\left\{\left(x-x_{i-n}\right) M_{n i}(x)+\sum_{j=i+1}^{i+n-1}\left(x_{j}-x_{j-n}\right) M_{n, j}(x j)\right. \\
& \left.+\left(x_{i+n}-x\right) n_{n_{5} i+n}(x)\right\} \\
& =\frac{1}{n}\left\{\left(x-x_{i-n}\right) M_{n i}(x)+\sum_{j=i+1}^{i+n-1} H_{n j}(x)\right\} \text {, }
\end{align*}
$$

since $M_{1, i+n}(x) \equiv 0$ for $x_{j-n} \leqslant x \leqslant x_{i}$. But, by replacing n by ni in (4.5.1),

$$
\sum_{j=i+1}^{i+n-1} N_{n j}(x)=(n-1) \int_{-\infty}^{x} m_{n-1, i}(t) d t \quad\left(x_{i-n+1} \leqslant x \leqslant x_{i}\right) . \quad(1+5 ; 13)
$$

Now (4.5.13) also hilda trivially for $x_{i-n} \leqslant x \leqslant x_{i-n+1}$. Hence (4.2.13) bonds for $x_{i-n} \leqslant x \leqslant x_{i}$. Substitution of (4.5.13) into (4.5.12) then yields (4.5.11). The following theorem establishes another useful form for $\int_{-\infty}^{x} M_{n i}(t) d t$.

Theorem 4. 50.3
For $x_{i-n} \leqslant x \leqslant x_{j .}$,

$$
\int_{-\infty}^{x} M_{n i}(t) d t=\frac{1}{n} \sum_{i=1}^{n}\left(x-x_{i-2}\right) M_{i j}(x)
$$

Proof
The reseated application of $(4.5 .11)$ yields

$$
\begin{align*}
& \int_{-\infty}^{x} m_{n i}(t) d t=\frac{1}{n}\left\{\left(x-x_{i-n}\right) M_{n i}(x) \div\left(x-x_{i-n+i}\right) m_{n-1, i}(x) \cdot(n-i) \int_{-\infty}^{\pi} \pi n-2, i i n d t\right. \\
& =\frac{1}{n}\left\{\left(x-x_{i-n}\right) M_{n i}(x)+\left(x-x_{i-n+1}\right) M_{n-1, i}(x)+\left(x-x_{i-n+2}\right) M_{n-2, i}(x)\right. \\
& \left.+(n-3) \int \operatorname{lin}_{-\infty}^{x-3, j}(t) d t\right\} \\
& =\frac{i}{n n}\left\{\left(x-x_{i-n}\right) M_{n i}(x)+\left(x-x_{i-n+1}\right)_{n-1, i}(x)+\ldots+\left(x_{\left.n-x_{i-2}\right)} M_{2 i}(x)\right.\right. \\
& \left.+\int-\cos _{i j}^{x}(t) d t\right\} \\
& =\frac{1}{n} \sum_{r=2}^{n}\left(x-x_{i-x}\right) M_{r i}(x)+\frac{1}{n} \int_{-\infty}^{2}{ }_{n i}^{n}(t) d t . \tag{4.5.15}
\end{align*}
$$

Dat it is readily established that

$$
\begin{aligned}
\int_{-\infty}^{x} M_{1 i}(t) d t & =\left\{\begin{array}{cl}
0 & \left(x \leqslant x_{j-1}\right) \\
\left(x-x_{i-1}\right)_{i}^{\prime}\left(x_{i}-x_{i-1}\right) & \left(x_{i-1} \leqslant x_{\left.i-x_{i}\right)}\right. \\
& =\left(x-x_{i-1}\right) p_{i j}(x)
\end{array}\right.
\end{aligned}
$$

The result $(4.5 .14)$ then follows from $(4.5 .15)$ and $(1+5.16)$.



 values ot $\left.H_{m i}(i) i_{i}=i, 2, \ldots, u\right)_{2}$

Til nay also taino (4.501), tia the case $x_{i-\cdots} \leq x \leq x_{i}$, as

$$
\begin{equation*}
\int^{x} \mu_{n i}(t) d t=\frac{1}{n} \sum_{j=i+1}^{i+n} N_{n+1, j}(x)+0, \tag{4.5.17}
\end{equation*}
$$

where $C$ is a constent whose value depends on the lower 7．imit of irtegration． The r－fold indefinite integral of $H_{n j}(t)$ can similarly be represented as a linear sum of $B$－splines of order $n+r$ plus an adititional term of the form

$$
\begin{equation*}
C_{1} x^{r-1}+C_{2} x^{r-2}+\cdots+C_{r} . \tag{4-5.18}
\end{equation*}
$$

We discuss in detail in chapter 5 the representation of porynomials of degree $<n$ in tems of $B$－splines of order $n$ ．Hence the complete expression for the r－fold indefinite intiegral of $x_{n i}(x)$ on to representer solely in terms of B－splines of order n＋r．

Finally，we state and prove an interasting rocult due to Butterfiola（1973）． The resuit is in ract an even broader generalization than（1．1．5）of the fundamental lecurrence retation（3．4．1）．

## Ineorem L．5．\％

Iのて
ritin

$$
\begin{equation*}
M_{n i}^{(1)}(x)=\int_{-\infty}^{x} N_{n i}^{(\tau+1)}(t) d t \quad(I<0) \tag{4.5.19}
\end{equation*}
$$

$$
\begin{equation*}
\sin _{n i}^{(0)}(x)=N_{n i}(x) \tag{4.5.20}
\end{equation*}
$$

Then the result（ $1.4,5$ ）also holds for $1<0$ 。

## Procir

Suprose the theoren is whe for $1=-1,-2, \ldots, r(r<0)$ ．Mhon（4．1．5） civis
the integration of which（by parts）y：elds

$$
\begin{aligned}
& n_{n i}^{(x-1)}(x)=\left(\frac{n-1}{n-1-1}\right)\left\{\left(x-x_{i-n}\right) n_{n-1, i-1}^{(x-1)}(x)+\left(x_{i}-x\right) n_{2 n-1, i}(x-1 ;\right.
\end{aligned}
$$

But since (4.1.1) evidentiy holds witin $1<0$ "e have

$$
(n-1) \frac{\left\{n_{n-1, i-1}^{(n-2)}(x)-n_{n-1}^{(n-2)}(x)\right\}}{x_{i} \cdots x_{i-n}}=n_{n i}^{(n-1)}(x)
$$

The insertion of ( 4.5 .23 ) into ( 405.22 ) reduces the latier to

$$
I_{n i}^{(n-1)}(x)=\left(\frac{n-1}{n-\underline{n}}\right)\left\{\frac{\left(x-x_{i-n}\right) i_{n-1}^{(x-1)}, i-1(x)+\left(x_{i}-x\right) n n(n-1)(x)}{x_{i i}-x_{i-1 n}}\right\} . \quad \text { (1,.5.2i+ }
$$

Thus the result is true for $I=r-i$. By using integration by partis it is easily proved true for $1 .=-1$. Hence, by induction, the theoram is true for all $7<0$.

In thje ohepter we consinom the repocentation of splunes and polynomialis
 roprosentations are useful. pirstly, in pxobjems of interpolation and data-fituing by splines, B-spline represontations usually prove to bo woliconditionnd in that the coerficients in the renuesentations are relatively insuncitive to chamese in the dita. Scocnaly, as mo shom in Soeviom 5.3, the nurbrical eveluation of than B-spline denrosentation itself cma be carriod out in an meonditionaly stable immen. Mhirdiz, it is converiont
 repeated indefinitc intecrations of arbitrary splince can be avcomplisked readily; in order to impose fainly general forms of line constmaint in least-squaxes bivarizte spline approximation, amu also to provicle an Finterface" between mathematical software employirg polynomieis with thet employinc splines.

In Soction 5.1 we presents a particularly usciul result due to de Foor (i972) Whibl expresses a Iinear combination or R-spitnes in toms of B-sylines (w? lowow order with certain polyamial confficionts. who rosult is then waed to establish a new pronf that the B-splines fonn in linearly fudogendent sct of basis functions in terus of which an arbituary splise $s(x)$ cen be expressed: and to establish Iocal Lomer arjupper bounds for $s(x)$. In Section 5.2 two soberes for the evaluation of n(x) are presenter smi in Section 5.3 rigorous filoating noint crioc annlyses of these scharas are
 anc oxmincz. In Section 5.j the roblem of ropresentine nomers Euterms of Buspines is adaressed ans in Soction 5.6 zjegrithns for obteinins there represurivtions ane presentoc, the extencion ot the algorithims a

Buction 5.6 to cover finter pere series is treatod in Section 5.7,
 Paylon ascias romosentation to the bourcecnees of tho coefficients in a rolated $B-$ spline reprosentation is estahlishod. Froi sualyses of the a.gorithras of sections 5.6 and 5.7 are given Section 5.3. Sections 5.3 and 5.10 discuss me'hods for representing in their B-spline tom tion derivatives and inderjnite interrals of $s(x)$.

Sontion 5.11 is caceptional in hatit itreats tine conversion of the B-spline representetion of splines (or, indirectly, of powers or pulyacrials) into thoin ogrivalont piecewise-Ghetryshev-series reprencritations. The
 form, but thoy have the advantage that they are quicker to evalunde.

### 5.1 The P...spline representation of sulint s

Given ria a-extonded partiticn $\left\{x_{i}\right\}$ and a set of coefficiants $\left\{c_{i}\right\}$, lou

$$
\begin{equation*}
s(x)=\sum_{i} c_{i} N_{n i}(x) \tag{5.4.1}
\end{equation*}
$$

Where the $\left\{N_{n i}(x)\right\}$ are the $B-s p$ Lines of onder $n$ def"jned upon the lerots $\left\{x_{i}\right\}$. Dvidently, any linoar combination of the form (f.1.1) deines a spline with sacts $\left\{x_{i}\right\}$.

We new establish a result tue to be Boor (1972) of which we make considerable use in this chnplex: Using (3.4.2), (5.1.1) becomes

$$
s(x)=\sum_{i} c_{i}\left\{\left(\frac{x-x_{i-n}}{x_{i-1}-x_{i-n}}\right) N_{n-1, i-1}(x)+\left(\frac{x_{i}-x}{x_{i}-x_{i-n+1}}\right) N_{n-1, i}(x)\right\}
$$

Thus

$$
\begin{equation*}
s(x)=\sum_{i} c_{i}^{[1]}(x) N_{n-1, i}(x) \tag{5.1.3}
\end{equation*}
$$



$$
\begin{equation*}
o_{i}^{[1]}(x)=\frac{\left(x-x_{i-n+1}\right) o_{j+1}+\left(x_{1}-\cdots\right) c_{i}}{x_{i}-x_{i-n+1}} \tag{5.1.14}
\end{equation*}
$$

Clearly this reductiors process nay he repected; we obtesin

$$
\begin{equation*}
s(x)=\sum_{i} c_{i}^{[]]}(x) N_{n-1, i}(x) \tag{5.1.5}
\end{equation*}
$$

where

$$
c_{i}^{[I]}(x)=\left\{\begin{array}{cc}
c_{i} & (I \ldots 0)  \tag{5.1.6}\\
\frac{\left(x-x_{i-I+1]}\right) c_{j+1}^{[1-1]}(x) i\left(x_{i}-x\right) c_{i-1]}^{[1]}(x)}{x_{i}-x_{i-n+1}} & (1>0)
\end{array}\right.
$$

In particular, because of (3.2.9),

$$
s(x)=c_{i}^{[r-i]}(x) \quad\left(x_{i-1} \leqslant x<x_{i}\right)
$$

Note that, as a consecuence of (5.1.6), for eny vilue of $x$ such thet $x_{i-i} \leqslant x<x_{i}, c_{i}^{[7]}\left(x ;\right.$ is a convex combination of the values or $c_{i}$, $c_{i+1}, \cdots, c_{i+1}$ In particular, s(x) js a convex combjnation of the values of $c_{i}, c_{i+1}, \ldots, c_{i+1 n-1}$.

Curry and Schoenbere (1966) give a lengthar proof that the B-splines $\left\{N_{n i}(x)\right\}$ defined upon an n-cxtended partition $\left\{x_{2}\right\}$ are lineorly independent and form a haris for spines of order $n$ with knots $\left\{x_{i}\right\}$.
We present simpler proofs, thich we believe to be new, or thece results.

## The orem 5.1 .1

The B-splines $\left\{\operatorname{NiN}_{n}(x)\right\}$ agitined upon an A-extended partution $\left\{x_{i}\right\}$ aro linearly ircocendciai.

## Prooin

 comiluation oif the $M_{n i}(x)$ can be identicaliv zero. issume, therefores that there exist values $c_{i}$ : not all zero, such twat for all $x$,

$$
s(x)=\prod_{i} c_{i} \Pi_{n i}(x)=0 .
$$

We shall show that such an assumption leads to a contradiction.

Consider vaiues of 不 in the iriterval $x_{i-1} \leqslant x<x_{j}$. Then, usine (5.1.7),

$$
\begin{equation*}
s(x)=o_{j}^{[n-1]}(x) \tag{5.1.9}
\end{equation*}
$$

lvow, by virture of $(5.1 .6), c_{j}^{[n-1]}(x)$ can be identicatily \%ero orisy itt $c_{j}^{[n-2]}(x)$ anà $c_{j+i}^{[n-2]}(x)$ arc. both identically zero. In turn, $c_{j}^{[r-2]}(x)$ and $c_{j+1}^{j n-2]}(x)$ can be identically zero only iff $c_{j}^{[n-3]}(x), c_{j+1}^{[n-3]}(x)$ arda ${ }_{6}^{[j+2]}(x)$ are all iabentically zero. Contimuation of this arkumat Jeachs to tine result that $0_{3}^{[n-1]}(x)$ can be icienticeliy aero only if the values of $c_{i}(i=j, j+1, \ldots, j+n-1)$ are all zero, which is the required contradiction, at least for values of $x$ such that $x_{j-1} \leqslant x<x_{j}$. Consideration of euch intervals for all $j$ leads to the required contradiction f'oi 0.12 x . $\square$

## Theorem 5.1.2

An urbitrary spline $s(x)$ of order $n$ defined upor a standord thot set can be representod uniguely as

$$
\begin{equation*}
s(x)=\sum_{i=1}^{J+n-n-1} c_{i=1} r_{n i}(x) \quad(a \leqslant x \leqslant b) . \tag{5.1.10}
\end{equation*}
$$

## Prout

Since the B-spines $H_{n i}(x)(i=1,2, \ldots, N+n-1)$ defined upon a standard
font set arc linearly independent (by virtue of Thocen 5.1.1) and since an arbitrary spline of aider a can bs desorthed in terms of Trixn-1 Jivaro parameters (Section 3.1), it t follows that six) takes the form (5.1.10).

Tie shall sornetines make uss of the equivalent representation invojujng the un-nornalized D-splines, viz

$$
\begin{equation*}
s(x)=\sum_{i=1}^{i J+n-i} c_{i}^{*} n n i(x) \quad(a \leqslant x \leqslant n) . \tag{5.1.11}
\end{equation*}
$$

Ais a consequence of (3.2.6), the coefficients in the two representations are related by

$$
\begin{equation*}
c_{i}^{*}=\left(x_{i}-x_{i-n}\right) c_{i} \quad(i=1,2, \ldots, N+n-1) . \tag{5.1.12}
\end{equation*}
$$

The next theorem establishes lower and upper bounds on a spline in term z of the coefficients of its B-splire representation.

## The orem 5.1.3

If $s(x)$ has the $B$-spline representation (5.1.1), then for $x_{j-1} \leqslant x<x_{j}$,

$$
j \leqslant i \leqslant j+n 1 c_{i}^{m i n} \leqslant s(x) \leqslant \max _{j \leqslant i \leqslant j+n}^{c_{i} .}
$$

## Proof

The proof follow i inmediatoly frau the observation made earlier in this section that for $x_{j-1} \leqslant x<x_{j}, s(x)$ is a convex combinaticil of the values of $c_{j}, c_{j+1}, \ldots, c_{j+n-1} . \square$
 based upor the we of convex combinations, for araluating a spino $s(x)$ en owder in from its representation as a jinear eombination of B-splines.

Wiven a standard knot set and a set of coertracients $c_{i}(i=1,2, \ldots$, $N+n-1)$, we wish to evaluats (5.1.10) for a presoribed value on $x$ $(a \leqslant x \leqslant b)$. For either scheme let is be the mictue intefer sutisfying $x_{j-1} \leqslant x<x_{j}$ (in the exceptional case $x=b$, set $j=N$ ). The value of why bo found either by soquential search or, if if is large, Hore officiently hy hinary seaveh. As a monsequence of the conpet supports property of the B-splines, the sum ( 5.1 .10 ) reduces to

$$
\begin{equation*}
s(x)=\sum_{j=j}^{j+n-1} c_{i j} \mathrm{~N}_{n i}(x) \quad\left(x_{j-1} \leqslant x<x_{j}\right) \tag{5.2.1}
\end{equation*}
$$

In the fitst schomo (Scheme A) wo use reation (5.1.6) to form the trianguiar arrey $c_{i}^{[I]}(i=j, j+1, \ldots, j+n-1-1 ; 1=0,1, \ldots, 21-1)$, typiriod here by tho case $n=4$ :


It is convenient to form the array colun by colum, the singlo chiry in the lest colum ieing the regured value of $s(x)$. Windently, the Frive of $c_{i}^{[1]}(x)$, once somputed, mey overmite the value of $c_{i}^{[1-1]}(x)$, since the lattes is then no longor recquired. Thus onjer storage locations
 below.

Algorithm 5.2.1: The evaluation of $:(x)$ from its, nomalired B-spline representation using scheme $A$.

Step 1. Determine $j$ such that $x_{j-1} \leqslant x<x_{j}$ using sequentiel or binary search.

Comment: Set the initjal comditions.
EtGP 2. FCr $\dot{\perp}=\dot{j}, j+1, \ldots, j$ jn-1 net $d_{i}=c_{i}$.
Comment: The value of $s(x)$ is conputed by convex combinations in Steps 3-5.

Step 3. Fox $I=1,2, \ldots, n-i$ execute ittep i:r
Step 4. For $i=j, j+1, \ldots, j+n-1-i$ replace $c_{1}$ by

$$
\frac{\left(x-x_{i-n+1}\right) d_{i+1}+\left(x_{i}-x\right) d_{i}}{x_{i}-x_{j-n+1}}
$$

Step 5. Set. $s(x)=d_{i}$.
It has been observed cmpirically by de Boor (1972) that Scheme A js stitile even for orders as high a,s 80 . In Section 5.3 we prove xigorously that de Boor's observation is in fact a property of the method for arbitary onefricients and mots.

The second scheme (Schere B) is more appropriate jif two or more splines with the same knots ere to be evaluated from their respective R-splino coefficients (ior an important application see Chapter 10). Scheme in is based upon the intial generation of the nom-zero values of the nth-orden B-splinns; is the values of $v_{i}=N_{n i}(x)(i=j, j+i, \ldots, j+n-i)$, ixam Algorithra 3.12 .2 , follomed by the direct ovaluation of

$$
s(x)=\sum_{i=i}^{j+n-1} c_{i} v_{i}
$$

An algorithm this scherme is siven below. Again only $n$ storage Iocations are requirecu.

E1gnjethn 5.2. : The ovaluation of s(x) frow itw nomalized anstine
representation using Scinne B.
Step i. Deiermine $j$ such that $x_{j-1} \leqslant x<x_{j}$ using sequential or binary search.

Step 2. Use Algorithm 3.12.2 to evainate $v_{i}=N_{n j}(x)$ for

$$
i=j, j+1, \ldots, j+n+1 .
$$

Step 3. Fornn $s(x)=\sum_{i=j}^{j+n-1} c_{i} v_{i}$.
Sither scheme takes $\frac{3}{2} n^{2}+O(n)$ long operations.

### 5.3 Frror analyses of algorithms for evaluating, astinc from itis

## B-apline representation

To carry out a floating-point error analysis of Algorithm 5.2.1 (scheme A), Iet $c_{i}^{-[]]}(x)$ denote the computed value of $c_{i}^{[1]}(x)$ and

$$
\begin{equation*}
8 c_{i}^{[1]}(x)=\sigma_{i}^{[I]}(x)-c_{i}^{[I]}(x) . \tag{5.3.1}
\end{equation*}
$$

In accordance with ( 5.1 .6 ) we set the initial conditions

$$
\begin{equation*}
c_{i}^{[, 0]}(x)=c_{i}^{[0]}(x)=c_{i}, \quad \delta c_{i}^{[0]}(x)=0 . \tag{5.3.2}
\end{equation*}
$$

For $1>0$, the floating-point equivalent of (5.1.6) is

$$
\begin{equation*}
c_{i}^{-[1]}(x)=x \perp\left\{\frac{\left(x-x_{i-n+1}\right)^{-[1-1]}(x)+\left(x_{i}-x\right)^{-[1-1]}(x)}{x_{i}-x_{i-n+1}}\right\} \tag{3.3.3}
\end{equation*}
$$

Relation (5.3.3) js similar in form to (3.8.5), and the method of analysja of the latter may be applied to some extent to the former. However, the $e_{i}^{[]]}(x)$ and $c_{i}^{[1]}(i n)$ may be positive, negative or zero, whereas the ${ }^{3} r_{r j}(x)$ in (3.8.5) are alvays non-megative (meorem 3.8.2). By analowy with (3.8.8)

$$
\begin{align*}
\delta c_{i}^{[1]}(x)= & {\left[\left(x-x_{i-n+1}\right)\left\{80_{i+1}^{[1-1]}(x)+5 e_{1} \bar{c}_{i+1}^{[1-1]}(x)\right\}\right.} \\
& \left.+\left(x_{i}-x\right)\left\{\delta c_{i}^{[1-1]}(x)+5 e_{2} \bar{c}_{i}^{[1-1]}(x)\right\}\right] /\left(x_{i}-x_{i-n 1+1}\right) \tag{5.3.4}
\end{align*}
$$

where $\left|e_{1}\right|,\left|o_{2}\right|<2^{-t_{1}}$ and $e_{1}$ and $e_{2}$ depend on $i$ and 1. Using (5.3.1), (5.3.4) becomes

$$
\begin{align*}
\delta c_{i}^{[1]}(x)= & {\left[\left(x-x_{i-1+1}\right)\left\{\delta c_{i+1}^{[1-1]}(x)\left(1+5 e_{1}\right)+5 e_{1} c_{i+1}^{[1-1]}(x)\right\}\right.} \\
& \left.+\left(x_{i}-x\right)\left\{\delta c_{i}^{[1-1]}(x)\left(1+5 e_{2}\right)+5 e_{2} c_{i}^{[1-1]}(x)\right\}\right] /\left(x_{i}-x_{i-n+1}\right) \tag{5.3.5}
\end{align*}
$$

Theorem 5.3.1
If $x_{j-1} \leqslant x<x_{j}$ and the array $c_{i}^{[i]}(x)(i=j, j+1, \ldots, j+n-i-1$;
$I=0,1, \ldots, n-1$ ) is formed using relation (5.1.6), then the values $c_{i}^{[1]}(x)$ actually computed are such that the errors $0 c_{i}^{[0]}(x)$ satisfy

$$
\begin{equation*}
\left|\delta c_{i}^{[1]}(x)\right| \leqslant 5.86212^{-t} \underset{i \leqslant k \leqslant i+1}{\max }\left|c_{k}\right| \tag{5.3.6}
\end{equation*}
$$

## Proof

The slightly stronger result

$$
\begin{equation*}
\left|\delta c_{i}^{[1]}(x)\right| \leqslant 5 I\left(1+2^{-t}\right)^{5 \cdot 3 I_{2}^{-t} 1} \quad i \leqslant k \leqslant i \leq 1|c| \tag{5.3.7}
\end{equation*}
$$

is derive, from which (5.3.6) follows by virtue of (1.1.9) and (1.1.11).

Assume the theorem to be true $f=1=x-1 \geqslant 0$, ie that

$$
\left|\varepsilon c_{i}^{[r-1]}(x)\right| \leqslant 5(r-1)\left(1+2^{-t}\right)^{5 \cdot 3\left(r^{r-1}\right)_{2}^{-t_{1}} \max ^{i} \mid k \leqslant i+r-1}\left|c_{k}\right| .
$$

Thorı (5.3.5) yinids

$$
\begin{align*}
& \left|\delta c_{i}^{[r]}(x)\right| \leqslant\binom{ x-x_{i-n+x}}{x_{i}-x_{i-n+r}}\left\{5(x-1)\left(1+2^{-t}\right)^{5.3 x_{2}-t_{1}} \underset{i+1 \leqslant k \leqslant i+r}{\max } \mid\right. \\
& \left.+(5) 2^{-t_{1}}\left|c_{i+1}^{[r-1]}(x)\right|\right\} \\
& +\left(\frac{x_{i}-x}{x_{i}-x_{i-n+2}}\right)\left\{5\left(r^{-1}\right)\left(1+2^{-t}\right)^{5 \cdot j r_{2}-t_{i}} \max _{i \leqslant k \leqslant i+r-1}\left|c_{k}\right|\right. \\
& \left.+\left.(5) 2^{-t_{1}}\right|_{i} ^{[r-1]}(x) \mid\right\} .
\end{align*}
$$

But, since $c_{i}^{[r-1]}(x)$ is a convex combination of the values of $c_{k}(k=i, j+1, \ldots, j+r-1)$ (Section 5.1 ),

$$
\begin{equation*}
\left|u_{i}^{[r-1]}(x)\right| \leqslant \max _{i \leqslant k \leqslant i+r-1}\left|c_{k}\right| \tag{u}
\end{equation*}
$$

Thus the expression in the second set of braces ir (5.3.9) reduces to

$$
\begin{equation*}
\left\{5(r-1)\left(1+2^{-t}\right)^{5 \cdot 3 r}+5\right\} 2^{-t_{i}} \max _{i \leqslant x \leqslant 1+r-1}\left|c_{k}\right| \tag{5.3.ii}
\end{equation*}
$$

which is bounded by

$$
\begin{equation*}
5 r\left(1+2^{-t}\right)^{5 \cdot 3 r_{2}-t_{1}} \underset{i \leqslant k \leqslant i+r-1}{\operatorname{sinax}}\left|c_{k}\right| . \tag{5.3.12}
\end{equation*}
$$

Similarly, the expression in the first sct of braces in (5.3.9) is bounded by a quentity that is j.denticel to (5.3.12), but with i replaced by i+1. But, from (5.3.9), $\left|\delta c_{i}^{[r]}(x)\right|$ is bounded by a convex combination of (5.3.12) and its countorjeart with i replaced by ity. Thus

$$
\left|\delta c_{i}^{[r]}(x)\right| \leqslant 5 x\left(i+2^{-t}\right)^{5 \cdot 32^{--t} 1} \max _{i \leqslant k \leqslant j+r}\left|a_{k}\right| .
$$

Thus (5.3.7) is true for $]=r$. But (5.3.7) is evidently true for $7=0$. Hence, by induction, it is true for $1=0,1, \ldots, 12-1$.

## Corollery 5.3.1

In $e_{j} \geqslant 0(i=j, j+1, \cdots, j+1-1)$ the alements $j_{i}^{-[1]}(x)$ generatod $b_{j}$
Schome A have exrocs $\delta e_{i}^{[I]}(x)=e_{i}^{[1]}(x)-c_{i}^{[1]}(x)$ sationting the relative crior bound

$$
\left|80_{i}^{[1]}(x)\right| \leqslant 6.54912^{-t} c_{i}^{[I]}(x) .
$$

In particular, the error $\delta s(x)=\bar{s}(x)-s(x)$ satiofies the rejative neror bound

$$
\begin{equation*}
|\delta s(x)| \leqslant 6.549(n-1) 2^{-t} s(x) \tag{5.3.16}
\end{equation*}
$$

## Ercoof

Firstily, the a posterioni bound

$$
\begin{equation*}
\left|5 c_{i}^{[I]}(x)\right| \leqslant 51\left(1-2^{-t}\right)^{-10 \cdot 3]_{2}} 2^{-i_{1}}{\underset{c}{i}}_{[1]}(x) \tag{5.3.16}
\end{equation*}
$$

is established.

Suppose that (5.3.16) is true for $1=0,1, \ldots, r-1 \geqslant 0$. Theri (5.3.5) Gives

$$
\begin{align*}
&\left.\mid \delta c_{i}^{[r}\right] \\
&\mid x) \left\lvert\, \leqslant\left\{\frac{\left(x-x_{i-n+r}\right) c_{i+1}^{-[r-1]}(x)+\left(x_{i}-x\right) c_{i}^{[r-1]}(x)}{x_{i}-x_{i-n+r}}\right\} \times\right.  \tag{5.3.17}\\
& \times\left[5(r-1)\left(1 \ldots 2^{-t}\right)-10.3(r-1) 2^{-t} 1\left\{1+(5) 2^{-t_{1}}\right\}+(5) 2^{-t_{1}}\right]
\end{align*}
$$

NOW $1+(5) 2^{-t_{1}}=1+(5.3) 2^{-t}<\left(1+2^{-t}\right)^{5.3} \leqslant\left(1-2^{-t}\right)^{-5.3}$. Hence the term in square brackets in $(\overline{3} .3 .17)$ is Iess than $5\left\{(r-1)\left(1-2^{-i}, 5-10.3 r+1\right\} 2^{-i} \div 5 r\left(1-2^{-t}\right)^{5 \cdots 10.3 r} 2^{-t_{2}}\right.$. Now the non-negativeity of the $e_{i}^{[7]}(x)$ follows from the non-negativity of the $c_{i}$ (cf theorern 3.8.2) int, as a conscoucnse: $c_{i}^{[r]}(x)\left(1-2^{-t}\right)^{-5}$ is a bawd for the first term in braces in $(5 \cdot 3 \cdot 17)$. (cif(3.9.4)). Thus

$$
\begin{equation*}
\left.\left|8 c_{i}^{[x}(x)\right| \leqslant 5 r\left(1-2^{-t \cdot 1}\right)-10 \cdot 3 r_{2}^{-t} 1-e_{i}\right]_{(x)} \tag{5.3.18}
\end{equation*}
$$

Thus (5.3.16) is wrue for $l=x$. But it is evidently true for $I=0$ and hence by induction for $I \geqslant 0$. Since frors $(1.1 .12),\left(1-2^{-t}\right)^{-10.31}<1.1+2$, (5.3.16) may be siniplified to

$$
\begin{equation*}
\left|\delta c_{i}^{[1]}(x)\right| \leqslant 5.89412^{-t-[1]} c_{i}^{[1]}(x) \tag{5.3.19}
\end{equation*}
$$

from which the relative error bounds (5.3.114) and (5.3.15) folloir readiny.

He now funtlyze filgorithn 5.2.2, presenting own main result as a theorem.

## Theoren 5. je?

The ralue of $\bar{s}(x)$ generated by Algorithm 5.2.2 (Scheme B) has an error $\delta s(x)=\vec{s}(x)-s(x)$ satisfyinn the bound

$$
\begin{equation*}
|\operatorname{ss}(x)| \leqslant 7.74 .5 n ?^{-t} \underset{j \leqslant k<\max }{ }\left|c_{k}\right| . \tag{5.3.20}
\end{equation*}
$$

Proof
Summation of the series $(5.2 .3)$ yields

$$
\begin{equation*}
\bar{s}(x)-\sum_{i=j}^{j+n-1} c_{i} \bar{v}_{i}\left(1+\varepsilon_{i}\right)^{n} \tag{5.3.21}
\end{equation*}
$$

where

$$
\begin{equation*}
\left|\varepsilon_{i}\right| \leqslant 2^{-t} \quad(i=j, j+1, \ldots, j+n-1) \tag{5.3.22}
\end{equation*}
$$

and $\bar{v}_{i}$ derotes the computed value or $v_{i}=H_{n i}(x)$. The term $\left(1+\varepsilon_{i}\right)^{n}$ in (5.3.21) can in fact be replaced (in the sase of forward sumation) by $\left(1+\varepsilon_{j}\right)^{n} j f^{f} i=j$ and hy $\left(1+\varepsilon_{i}\right)^{n+1+j-i}$ in $j=j+i, i+2, \ldots, j+n-1$ (垌luinsuli, 1965: 114), but ne need onty the weaker result hore. Fow, from $(3.9 .13)$,

$$
\begin{equation*}
\bar{v}_{i}=\bar{v}_{n i}(x)=N_{n i}(x)\left(1+z_{n i}\right), \tag{5.3.23}
\end{equation*}
$$

where

$$
\begin{equation*}
\left|E_{n i}\right| \leqslant 6.685(n-1) 2^{-t} . \tag{5.3.2,~}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\delta s(x)=\sum_{i=j^{i}}^{i+n-1} \dot{i}_{i} N_{n i}(x)\left\{\left(1+E_{n i}\right)\left(1+\varepsilon_{j}\right)^{n}-1\right\} . \tag{5.3.25}
\end{equation*}
$$

Now the term in braces in $(5.3 .25)$ is bounded in modulus by

$$
\begin{align*}
& \left\{1+6.685(n-1) 2^{-t}\right\}\left(1+2^{-t}\right)^{n}-1 \\
< & \left\{1+6.685(n-1) 2^{-t}\right\}\left(1+1.06 n 2^{-t}\right)-1 \\
= & \left\{7.74 .5 n-6.685+(6.685)(1.06) n(n-1) 2^{-t}\right\} 2^{-t} \\
< & (7.74 .5 n-6.185+0.1) 2^{-t}=(7.745 n-6.585) 2^{-t} \\
< & 7.74 .5 n 2^{-t} .
\end{align*}
$$

Hence

$$
\begin{equation*}
|\varepsilon s(x)| \leqslant 7.71,5 n^{2}+\sum_{i=j}^{j+n-1}\left|c_{j}\right|\left|N_{n i j}(x)\right| . \tag{5.3.27}
\end{equation*}
$$

The result (5.3.20) then follows from $(5.3 .27)$ since $N_{n i}(x) \geqslant 0$ and
$\sum_{j=j}^{i+n-1} N_{n i j}(x)=1 \cdot \square$

## Conollary 5.3.2

If $c_{j} \geqslant 0(i=j, j+1, \ldots, j+n-1)$, then the value of $\bar{s}(x)$ generated ly
Schene $B$ has an error $\delta s(x)$ satisfying the relative error bound

$$
\begin{equation*}
|\operatorname{sis}(x)| \leqslant 7.74+52^{-t} s(x) \tag{5.3.28}
\end{equation*}
$$

## Procis

Since $c_{i} \geqslant 0$ and $H_{n i}(x) \geqslant 0$, the sum in (5.3.27) can be ropieced by $\sum_{i=j}^{j+n-1} c_{i} \mu_{n i}(x)=s(y)$ frora (5.2.1), which then establishes (5.3.28) . $\quad[$ Note thet ve way elso interpret cur result in the sense of a backrard enror analysis. For scheme $\bar{B}$, from $(5.3 .21)$ and (5.3.23),

$$
\begin{equation*}
\bar{s}(i)=\sum_{i=j}^{j+n-1} \bar{c}_{j} N_{n i}(x) \tag{5.3.29}
\end{equation*}
$$

where

$$
\bar{c}_{i}=c_{i}\left(1+c_{n i}\right)=c_{i}\left(1+E_{n i}\right)\left(1+\varepsilon_{i}\right)^{n} .
$$

İ is asaily established that

$$
\begin{equation*}
\left|G_{n i}\right|<7 \cdot 71+5 n 2^{-t} \tag{5.3.31}
\end{equation*}
$$

Hence the computed value $\bar{s}(x)$ is the value that would be ootrined using; exact; computation upon a sat of coefficients $\bar{c}_{i}$ perturited slightiy (jn a. relative sense) from the $c_{i}$. Similar results may be ostablished for Scheme A, the cnly dirference being the magritude of the numorical conrtant in (5.3.31).

### 5.4 The effect or errors in the B-spline coofficionts on the computed Value of the spline

Te now consiaer the munerical evaluation of $s(x)$ when the corficients $\{0$, are subject to uncertainty. This would be the case in the $c$ wore the results of a previous computation, as they wonld be in the decermination of spline approximations and spline interpolants (Chayters 6 and 7) and also jn the representainon of polymanjals as splines (Section 5.7). Specificalijo suppose that perturbed coofficients $\left\{\bar{c}_{1}\right\}$ are lnown and that a bound ec such that

$$
\begin{equation*}
\operatorname{mix}_{i}\left|\ddot{o}_{\dot{i}}-c_{i}\right| \leq \delta c \tag{5.5,1}
\end{equation*}
$$

is available. Let

$$
\begin{equation*}
\ddot{s}(x)=i^{n}\left\{\sum_{i} \bar{c}_{i} N_{n i}(x)\right\} \tag{5:4.2}
\end{equation*}
$$



For Schemes $A$ and $B$ of Section 5,2 , the use 0 ( 5.3 .6 ) and $(5.3 .20)$ fives

$$
\begin{equation*}
\vec{s}(x)=\sum_{i}^{T} \tilde{c}_{i}{ }^{H} n \underline{i}(x)+\mathbb{T}= \tag{5.i,j}
\end{equation*}
$$

where

$$
\begin{equation*}
|\mathbb{E}| \leqslant \mathbb{K} ?^{-t} \max _{i}\left|\bar{c}_{i}\right| \tag{1}
\end{equation*}
$$

and

$$
K= \begin{cases}5 . v(n-1) & (\text { Scheme } A)  \tag{5.4.5}\\ 7.8 n & (\text { Scheme } B)\end{cases}
$$

Thus:

$$
\begin{equation*}
\bar{s}(x)=s(x)+\sum_{i}\left(\bar{c}_{j}-c_{i}\right) N(x)+w \tag{5.1+5}
\end{equation*}
$$

ana ilene

$$
\begin{align*}
& \leqslant \operatorname{coc}+\mathrm{K}^{-\mathrm{t}_{\operatorname{mex}}} \underset{i}{ }\left|\bar{c}_{i}\right|, \tag{5.1.8}
\end{align*}
$$

which demonstrates that the bulk of the effect on the computed value or any errors in the $\left\{c_{i}\right\}$ is kit most equal to the largest of i these powers. There is it fur then very mite contribution to the error from the torn $\max _{i}\left|\bar{c}_{1}\right|$ in (5.4.8). From (5.4.8),

$$
\begin{align*}
|\delta s(x)| & \leqslant \delta c+K 2^{-t} \underset{i}{\max }\left|c_{i}\right|+\mathrm{K}_{2}^{-t} \underset{i}{\operatorname{mox}}\left|\bar{c}_{i}-c_{i}\right|  \tag{5.4.9}\\
& \leqslant 1.1 \delta \mathrm{c}+\mathrm{K} 2^{-t_{\operatorname{Taxx}}}\left|c_{i}\right| \tag{5.4.10}
\end{align*}
$$

under the very wok assumption (ir accordance with (1.1.7)) that. $\mathrm{K}^{-t}<0.1$.

### 5.5 Tho R-splino revesontation of powers

Since a polymonial of dercee leas than $n$ ia a wociad case of sempint of order $n$, it follors from theorem 5.1.2 thet any such polmominn has 2 unique representation on ( $a, b$ ) as a linear combination of the B-splinos Hin $(x)(i=1,2, \ldots, I f+n-1)$. This reault whil therofore appiy in particular to the "polynomial" $x^{x}(r=0,1, \ldots, n 2-1)$.

Mansden (1970) gives a result (see (5.5.1) beluat), which enables certair powers of $x$ to be represented explicitly in terms of the "f $n i(x)$. Harsden's original (unpublished) proof of (5.5.1) was in fact rather complicated, so ir his 1970 paper he cave a rore elegant proof communated privately to him by T IN Ereville, A far neater foof, honever, is due to de Fonr (1972) and is based upon the use of identity (3.4.2) which was un'uncm of course to the above authors at the time of their work.

Fie show that the harsden-Greville result, wich in fact eives ropresontations of $x^{2}$ in terus of the $N_{n i}(x)$ for $I:=0,1$ and 2, way bo gemoralized to tho case of all $x<n$. Me establish a simple recurrence relation, which cmibles the coefficients in these representations to be computed efficientiy and accurately. These resuitus are applied in Section 5.7 to the problem of representing an arbitrary polynomial given in its porer-serics form in terms of E -splinci.

Finally we prove that the coefficients in the B-spline representration of a functicil $f^{\prime}(x)$ are bounded if the l'aylor series expansion of $f(x)(|x| \leqslant 1)$ converges absolutely.

## Theorem h. 5.1

If $p$ and $q$ are integers such that.

$$
x_{p-1}<x_{q-n+1}
$$

then the reiation

$$
(t-i)^{n-1}=\sum_{i=p}^{1}\left(t-x_{i-I L+1}\right)\left(t-x_{i-n+2}\right)^{i} \cdots\left(t-x_{i-1}\right)_{n i n}(x)
$$

is valid for all t and for $x_{p-1}<x<x_{q-r+1}$.

Proof
The proof is by induction. Assume the theorem to be true for $n=r \geqslant i$, ic that

$$
(t-x)^{r-1}=\sum_{i=p}^{q}\left(t-x_{i-r+1}\right)\left(t-x_{i-r+2}\right) \ldots\left(t-x_{i-1}\right) N_{r i}(x)
$$

where

$$
x_{p-1}<x<x_{q-r+1}
$$

Nom consider the expression

$$
E=\sum_{i=p}^{q}\left(t-x_{i-r}\right)\left(t-x_{i-r+1}\right) \ldots\left(t-x_{i-1}\right) N_{r+1, i}(x) .
$$

We wish to show that $E=(t-x)^{r}$ if $x_{p-1}<x<x_{q-r}$. Now, by making use of the recurrence (3.4.2), and the limited support of the B-splines, Te obtain

$$
\begin{aligned}
& \mathbb{E}=\sum_{i=p}^{q}\left(t-x_{i-r}\right)\left(t-x_{i-r+1}\right) \ldots\left(t-x_{i-1}\right)\left\{\left(\frac{x-x_{i-r-1}}{x_{i-1}-x_{i-1-1}}\right) N_{r, i-1}(x)\right. \\
& \left.+\left(\frac{x_{i}-x}{x_{i}-x_{i-r}}\right) \ln _{\sim_{i}}(x)\right\} \\
& =\sum_{i=p-1}^{q-1}\left(t-x_{i-r+1}\right)\left(t-x_{i-r+2}\right) \ldots\left(t-x_{i}\right)\left(\frac{\left.x_{i-x_{i-r}}^{x_{i}-x_{i-r}}\right) I_{r i}(x), ~(x)}{}\right. \\
& +\sum_{i=p}^{q}\left(i-x_{i-r}\right)\left(t-x_{i-r+1}\right) \ldots\left(i-x_{i-1}\right)\left(\frac{x_{i}-x}{x_{i}-x_{i-r}}\right) N_{r i}(x) \\
& =\sum_{i=p}^{q-1}\left(t-x_{i-r+1}\right)\left(t-x_{j-x+2}\right) \ldots\left(t-x_{i-1}\right)\left\{\frac{\left(t-x_{i}\right)\left(x-x_{i-r}\right)+\left(t-x_{i-r}\right)\left(x_{i}-x\right)}{x_{i}-x_{i-x}}\right\} N_{x i}(x)
\end{aligned}
$$

Simpification of (5.5.5) yduas
$j_{i}=(t-x) \sum_{i=1}^{q-1}\left(t-x_{i-1+1}\right)\left(t-x_{i-1+2}\right) \ldots\left(t-x_{i-1}\right) N_{i+1}(x)$,

Whit cin by virtue of (5.5.2), (5.5.3), and the limited support of the $N_{f i 1}(x)$, is equal to $(t-x)^{r}$ in $x_{p-1}<x<x_{\mathrm{c}_{1}-1}$. Thus the theorem is trus for $n=r+1$. But for $n=1$ the right-hand side of (5.5.1) is simply $\sum_{i=p}^{\frac{1}{2}} N_{1 i}(x)$, which for $x_{p-1} \leqslant x<x_{q}$ is equal tin unity, by wirtue of (3.6.1); the left-hand side of (5.5.1) cquals $(t-x)^{0}=1$, also. Hence the theorem is true for $n=1$ and therefore, by induction, for all $n \geqslant 1$.
 $t$ in (5.5.1), and once again utilizing the finitio support of the $N_{n j}(x)$, we vitain for $x_{0}<x<x_{n s}$,

$$
\begin{align*}
& 1=\sum_{i=1}^{N+n-1} \xi_{n i}^{(0)} N_{n i}(x)=\sum_{i=1}^{N+n-1} N_{n i}(x), \\
& x=\sum_{i=1}^{N+n-1} \xi_{n i j}^{(1)} N_{n i}(x),  \tag{5.5.8}\\
& x^{2}=\sum_{i=1}^{N+n \cdots-1} \xi_{n i}^{(2)} N_{n i}(x) \tag{5.5.9}
\end{align*}
$$

and, in general, for $0 \leqslant r<a$, by

$$
\begin{equation*}
x^{r}=\sum_{i=1}^{N+n-1} \xi_{n i}^{(r)} N_{n i}(x) \tag{5.5.10}
\end{equation*}
$$

The coefficients $\xi_{n i}^{(r)}$ are obtained by equeting like powers of $t$ in (5.5.1) and hence arc derinea ky

$$
\begin{equation*}
\xi_{n i}^{(0)}=1 \tag{5.5.11}
\end{equation*}
$$

$$
\begin{align*}
& \sum_{n i}^{(1)} \sum_{j=-\cdots+1}^{i-1} x_{3} /(n-1)_{y}  \tag{5.5,12}\\
& \xi_{n i}^{(2)}=\sum_{\substack{k, l=i-n+1 \\
k<1}}^{i-1} \sum^{n-1} \mathrm{C}_{2}, \tag{5.5,13}
\end{align*}
$$

and, in general, for $0 \leqslant r<n$, by

$$
\sum_{i n i}(r)=\left\{\begin{array}{cc}
1 & (r=0) \\
\sum_{i-n<i_{1}<k_{2}<\ldots<k_{r}<i}^{1} k_{1} k_{2} \ldots k_{k} /^{n-1} C_{n} & (r>0)
\end{array}\left(5.5 \cdot 11_{1}\right)\right.
$$

5.6 Algorithms for computing the B-spiinc coefficients

Define

$$
\begin{equation*}
S_{n i}^{(I)}={ }^{\bar{n}-1} C_{i}, \zeta_{n i}^{(I)} \tag{5.6.1}
\end{equation*}
$$

Theorem 5.6.1

$$
\begin{equation*}
S_{n i}^{(r)}=S_{n-1, i-1}^{(r)}+x_{i-1} S_{n-1, i-1}^{(r-1)} \tag{5.6.2}
\end{equation*}
$$

Proof
From (5.6.1) and (5.5.14),

$$
\begin{equation*}
s_{n-1, i-1}^{(r-1)}=\sum_{i-n<k_{1}<k_{2}<\cdots<k_{1-1}<x_{k_{1}} x_{k_{2}} \cdots x_{i-1}} \tag{5.5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{n-1, i-1}^{\left(n^{n}\right)}=\sum_{i-n<k_{1}<k_{2}<\ldots<k_{r}<i-1}^{x_{k_{1}} x_{2} \ldots x_{k_{n}}} \tag{5.6.4}
\end{equation*}
$$

Hence
$S_{n-1,1-1}^{(x)}+x_{1,-1} S_{x \cdots-1,1,1}^{(x-1)}=$

$$
\begin{align*}
& \begin{array}{ccc}
\dot{j}-n<k_{1}<k_{2} \\
k_{r} \neq j-1 & \cdots<k_{r}<i \quad i-n<k_{1}<k_{2}<\cdots<k_{r}<i \\
k_{r}=j-1
\end{array} \\
& =\sum_{i-n<k_{1}<k_{2}<\cdots<k_{r_{1}}<i}^{T} x_{k_{2}} \ldots x_{k_{n}}=S_{n i}^{(n)} . \quad \square \tag{5.6.5}
\end{align*}
$$

It is easily verified that the elements in the first diagonal and the first row of the array (see Figs 5.6.1 and 5.6.2 del coin) are given by

$$
S_{j, i-n+j}^{(0)}=1 \quad(j=1,2, \ldots, n-n)
$$

and those in the first rom by

$$
\begin{equation*}
s_{1, i-n+1}^{(0)}=1 \tag{5.6.7}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{j+1, i-n+j+1}^{(j)}=x_{i-n+j} s_{j, i-n+j}^{(j-1)} \quad(j=1,2, \ldots, r) . \tag{5.6.8}
\end{equation*}
$$

Relations (5.6.6) or relations (5.6.7) and (5.6.8) provide a set of starting values for recurrence (5.6.2). Values in the array may then be generated diagonal by diagonal, row by row or colum by column. It follows from Theorem 5.6 .1 that a particular value of $S_{n i}^{(x)}$ may be generated by computing the elements of a rhomboidal array, typified here by the case $\underline{n}_{1}=7, i=9, r=4$ :


Fig 5.6.i. Schematic illustration of the conputation of $S_{79}^{(4)}$

The arrows in Fig 5.6.1 indicate the dependence of an clement in the array upon its immediate nejghbours (predocessors). Thus, for ernmple, $S_{57}^{(3)}$ is computed from $S_{46}^{(?)}$ and $S_{46}^{(3)}$.

In the general case the array takes the form:


Fif 5.6.2. Scheratic illustration of the computation of the general value of $S_{n i}^{(r)}$.

In practice it in unnecesseny to store the conplete array since a new rovt (column or diegonal) may overritite the previous row (column or diagonal), the latter being no longer required once the former has been computed. In Algorithin 5.6.1 Lelow for evahating © $(r)$, the elowents in the array are sormed for by row in the voctor $\left\{v_{0}, v_{p}, \ldots, v_{r}\right\}$.

## 

Coment: rime initien conitions arg sut in Steps 1-2.
Step i. Set $\mathrm{v}_{0}=1$.
Stej 2. For $k=1,2, \ldots$, $r$ set $v_{k}=x_{i-n+i k} v_{k-1}$.
Conment: The value of $s_{n j}^{(r)}$ is computod by recurrence in Steps 3 - $4:=$
Step 3. For $k=2,3, \ldots, n-r$ execute Step $^{2} 4$.
Stop 4. For $j=1,2, \ldots, r$ raplace $v_{j}$ by $v_{j}+x_{i-n+k-1+j^{v}}{ }_{j-1}$. Step 5. Set $\mathcal{E}_{n i}^{(r)}=J_{i} i^{r+-1} C_{r}$.

A simple extension of the arrey enables the values of $S_{n i}^{(j)}$ (and hence $\xi_{n i}^{(i)}$ ) to be co:oputed for all values of $j$ from 0 to rl-1. The extended aryay for the hove example in whion n $: 7$ and $\dot{i}=9$ bocomes:


Fig 5.6.3. Schematic illustration of the computation of the values of $S_{79}^{(j)}(j=0,1, \ldots, 6)$.

The final ocium of such a triangulaw array then yields thie required velues. In gerseral this troneniar array assumes the fom:


Hie 5.6.4. Schematic illustration of the computation of the venues of $S_{n j}^{(j)}(i=0,1, \ldots, n-1)$.

In Algorithm 5.6.2 below the elements are again generated row by row in the vector $\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$, the final values of $v_{k}(k=0,1, \ldots$, ni-1) holding the values oi $\xi_{\text {ni. }}^{(i x)}$.

Algorithm 5.6.2: Evaluation of the B-splino coefficients $\mathcal{S}_{n i}^{(k)}$ for $k=0,1, \ldots, n-1$.

Comment: Initial conditions are set in steps to.
$\operatorname{Step} 1 . \operatorname{Set} r_{0}=1$.

Comment: The values of $S_{n i}^{(i f)}$ ane confuted by rociuruence in Steps $3-4$.
Stor 3. For $k=2,3, \ldots, n-1$ execute Stop 40
Step to For $j=1,2, \ldots, n-k$ replace $v_{i}$ ny $v_{i}+x_{i-n+1)}-1+j_{j} v_{j-1}$
Step 5. For $k=0,1, \ldots, n-1$ set $\delta_{n i}^{n}(k)^{2}=\nabla_{k} / /^{i n-1} c_{k}$.

In Step y o Algomita 5.6.i it is necomary to divice the fimat yalue

 order here. For a prescrived value of m , Iet

$$
\begin{equation*}
u_{K}={ }^{2 n-1} C_{C_{E}} \tag{5.6.9}
\end{equation*}
$$

Then it is readily verified thet

$$
u_{k}=\left\{\begin{array}{cc}
1 & (k=0)  \tag{5.6.10}\\
u_{k-1}(n-k) / k & (k=0)
\end{array}\right.
$$

We recomment that $(5,6,10)$ be used vecursivoly to rorm $r_{0}, u_{1}, \ldots$, $u_{r}={ }^{n-1} G_{r}$. In Alarorithr 5.6 .2 and also in the methods considered inn Bection $5 . ?$ it $i s$ necessary to form हु ni for $k=0,1, \ldots, n-1$ and in such cases it is efficient to form the required values of $u_{k}$ in the abry maner. Since $u_{k}$ is an intager (itu beinc the mumber of wayo of choosing 1. objects from n--if) then, whiess integax uverfluw ocuurs, integex arithmetio can be used throughout to ecmpute eyactlis the values of $u_{k}$ ( $k=0,1, \ldots, n-1$ ). Note that the preciso order of operations is important here, it being necessary to form $u_{k}=\left\{u_{2-1}(n-1)\right\} / x$ rathow ihar $u_{k-1}\{(n-k) / k\}$, since the former oxpression in braces is always intograt whereas the latter way well not be so. If intecer overflow is likely to occur, float:ing-point arithmetic nust be enployed, in whicir case a sitraightforward error analysis of (b.6.10) shows that the computed volue $\bar{u}_{\mathrm{K}}$ natinoies

$$
\begin{equation*}
\bar{u}_{k}=u_{k}\left(1+\varepsilon_{k}\right)^{2 k-1} \quad(k>0) \tag{5.6.1i}
\end{equation*}
$$

There $\left|c_{1}\right| \leqslant 2^{i n t}$, ie $\bar{u}_{15}$ has a relative error bunced in modulus by $(2 k-1) 2^{-t_{1}}=1.06(2 k-1) 2^{-t}$. We assure, for the sake of complete ritgour in our subsentant anajyses, that the ecmputca ratues of $u_{k}$ ao indeed

 be oqual to $u_{\text {for }}$ foll $k=n$ is, $k, n, 1$.

## S. 7 The J-3ntine renmesemation of nolymatis

We now consider the representation of a polvomial of degree less than $n$ (cxpressed explicitiy in its paver-series fom) as a. serion of B-splines of order $n$ defined on a standund knot wet. What $i r$, we wish to detomine the noefficierts $o_{i}(i=1,2, \ldots, N+n-1)$ in the J-Mpline romonentertion or.

$$
\begin{equation*}
r(x)=\sum_{r=0}^{n-1} b_{r} x^{x} \tag{5.7.1}
\end{equation*}
$$

where the coaficionts $b_{r}(x=0,1, \ldots, n-1)$ are presoribeá.
Using (5.5.10),

$$
\begin{align*}
p(x) & =\sum_{r=0}^{n-1} u_{r} \sum_{i=1}^{N+n-1} \sum_{n i}^{N}(r)_{n i}(x) \\
& =\sum_{i=1}^{N+n-1} c_{i} N N_{n i}(x), \tag{5.7.2}
\end{align*}
$$

whore

$$
c_{i}=\sum_{x=0}^{x-i} v_{i} \mathcal{F}_{n i}^{(x)}(i=1,2, \ldots, N+n-1),
$$

To detormine each conficient $i_{i}$ it is merely necessary to jnvoke
 the respective vilues of $b_{r}$ and sum. A slifintly nore efticient appioach,


$$
\begin{equation*}
a_{r}=b_{r} /^{n-1} c_{r} \quad(r=0,1 ; \ldots, n-1) \tag{5.7.4}
\end{equation*}
$$



Pinallif to for: the values of $c_{i}$ from

$$
\begin{equation*}
c_{i}=\sum_{r=0}^{n_{1}-1} a_{r=1}^{a}(n) \quad(i=1,2, \ldots, r+n-1) . \tag{507,0}
\end{equation*}
$$

Alforith 5.7.1: Conversiun a polyngaial power series into its equivalent Buspline ropresentation.
Coment: The values of $d_{i}=b_{i} /{ }^{n-1} C_{i}$ are detemined in stepa $1-i_{t}$
Step 10 Se' $p=1$ and $d_{0}=\bar{D}_{0}$.
Step 2. For i. $=4,2, \ldots, n-1$ excute Step, $3 \cdots 4$.
Step 3. Replace p by p(n-i.)/i.
Stron 4. $S c d_{i}=5 . / \mathrm{pm}$
Conment: The gilues of $c_{i}$ are formed in steps $5-7$.

Stop 6. Use 3 toes $1-4$ of ingerithn 5.6.2 to cvaluate $s_{n i}^{(k)}=v_{2}$ ( $k=0,1, \ldots, n-1$ ) .
Step 7. Fore $o_{i}=\sum_{k=0}^{n-i} d_{k} \nabla_{k}$.

Now suppose that the $x_{i}$ fom a standerd hnot set with concjacret und knots and that

$$
\begin{equation*}
a=-1, b=+1 \tag{5.7.6}
\end{equation*}
$$

There is littie loss of generality in this asswition, since any fintite interval can, under a linear transfonation, be mapped into the interval
 cairied out see Section 1.2). Then, using (5.5.14.) and (5.7.6) (recall that $\left.a=\ldots=x_{-1}=x_{0}<x_{1} \leqslant \ldots \leqslant x_{N-1}<x_{N}-x_{1+1}=\ldots=b\right)$,

$$
\begin{equation*}
=a_{n}^{r_{n}-1} / c_{n}=1 \tag{5.7.7}
\end{equation*}
$$

Thne using (5.7.3) anci (5.7.7),

$$
\begin{equation*}
\left|c_{i}\right| \leqslant \sum_{r^{\prime}=0}^{n-1}\left|b_{n}\right|\left|\sum_{n}\left(r^{2}\right)\right| \leqslant\left.\sum_{n=0}^{n-1}\right|_{r} ^{n} \mid \quad(i=1,2, \ldots, N+n-1) . \tag{5.7.8}
\end{equation*}
$$

This result is interesting in that in the $b_{r}(x:=0,1, \ldots)$ denote the coefficients in the Taylor expansion about the origin of a function $f(x)(|x| \leqslant 1)$, then the absolute convorgonce of the Maylor neries impljes the boundedness oi the $\bar{D}-\mathrm{spline}$ coefrituienis for any nrder $n$. Indeed, as long as the $x_{i}$ form a standare knot set with coincidont end knots, tha bound ( 5.7 .8 ) is independent of the number of knots and of their nositrinns. The bouna is sharp in the sonso that it can be attained erbituranily close?y (wee the example below) for cortain functions $f(x)$.

As a simplo example consider the series expansion

$$
\begin{equation*}
e^{x}=\sum_{r=0}^{\infty} x^{r} / r^{n}! \tag{5.7.9}
\end{equation*}
$$

We have $b_{r}=1 / r$ ! and therefore, for any standard knot set with onjorident end knots $a=-1, b=+1$,

$$
\left|c_{i}\right| \leqslant \sum_{r=0}^{\infty} 1 / x_{0}!=e
$$

(of Example 6.8.j jn Chapter 6). For the exponential function the bownd (5.7.8) may be approached arbitramily closoly for sufficiontiz Inyge n (see the folloming numerical example).

As en illustration of the renorknble numerical stebility of the procesous describe by Algoritins $5.5 .1,5.5 .2$ and $5 . \% .1$, consiace the computation
 whout $x=0$ for the interval $|x| \leqslant 1$. The orror in trunceting this


$$
P_{n}=\sum_{r=1}^{\infty} t^{2} / x^{\prime}
$$

tor sore $t$ ins $(-1,1)$. Thus

$$
\begin{equation*}
\left|R_{r 1}\right| \leqslant \sum_{r=n}^{\infty} 1 / r!<\frac{1}{n!} \sum_{r=0}^{n}(n=1)^{-r}=\frac{n+1}{n n!} . \tag{5.7.12}
\end{equation*}
$$

Now for $n>14,\left|\mathrm{~K}_{1}\right|<10^{-12}<2^{-39}$, the relative machino precision of KDF9. Thus the B-spline raprosentation with ri>i4 on the truncated Taylor series should (at last in the absence of lowning asors) frowida full machine accuracy on K0F9. The computed values of $c_{i}$ in lable 5.7.1

 values using Alegorithm 5.2.1 for $x=-1(0.1) \%$ These values fure given in Column 2 of Table 5.7.2. In Column 3 of Table 5.7.2 wre the differences between these values and the composponding ralues of $e^{x}$ es computed by the library exponential function on WDP9. In Colum 4 are the differences between the values of the power sories $p(x)=\sum_{i=0}^{i 4} x^{i} / i$ : corycuted by nesting and those of $e^{x}$.

Note that over the 21 points of evaluation the maxinum departure of the computea B-spiline series from the value of $e^{x}$ is $2 \times 10^{-11}$, which is merely trice that of the maximum departure of $p(x)$ indon $e^{z}$. This excellent afreewent occurs in spite of the fact that there are three nain sources of rownding error contributing to the vilues in coluna 2 of realo 5.7.2: the roundint exors in the computed raylor coefricients, the evaluation of the ${ }_{i}$ from thess coerficients and the evaluaion of the B-spline sexies from those values of $c_{i}$.

i	${ }^{\text {i }}$
1	$0.36187919+117$
2	0.42043364705
3	0.48107311598
4.	0.55114538988
5	0.63224302228
6	0.72625257377
7	0.835414 .50500
8	0.96239608333
9	1.11038498696
10	1.283195 .57777
11	1.4.85; 14.74542
12	1.722 .574 .19899
13	2.0013723352 +
14	2.32995585297
15	2.71828182846

Table 5.7.1 Valuos of the coefficients in the B-splino representation of $e^{x}$.

$x$	$s(x)$	$10^{11}\left\{s(x) \cdot-e^{x}\right\}$	$10^{11}\left\{p(x)-e^{y}\right\}$
$-1.0$	0.3678794117	0	0
-0.9	0.40656965974	0	0
-0.8	0.44932895412	0	0
-0.7	0.49658530379	0	0
-0.6	0.54881163610	0	0
-0.5	0.60653065972	+1	0
-0.4	$0.6703 ? 004605$	$+1$	0
$-0.3$	0.71 .031822069	-1	0
-0.8	0.81873075309	+1	0
. 0.1	0.201.83 $71+1006$	r2	0
0.0	1.00000000001	+1	c
0.1	1.10517091808	0	0
$0 . ?$	1.22440275317	$\because 1$	0
0.3	1.34985 380759	$+2$	0
0.4	1.491821569766	$+2$	0
0.5	1.648872127071	+1	0
0.6	1.8221188003?	0	0
0.7	2.01375 27074 8	i 1	+1
0.8	$2.22554+09284.9$	0	0
0.9	2.4 .5960311116	0	+1
1.0	2.71828182846	0	0

Trible 5.7.2 Tabulation of the veiues of the computad B-apline repreventation or $e^{\pi}$ and a comparison of their depantures tron $e^{x}$ with the deramiures of the


cogfricients
Pe establish in this section some results relating to the stability of the processes described by Aleonithres 5.6.1, 5.6.2 and 5.7.1.

Let $\mathrm{G}(\mathrm{r})$ denote the computed value of $\mathrm{S}_{\mathrm{ni}}^{(\mathrm{r})}$ and

$$
\begin{equation*}
\delta S_{n i}^{(r)}=\bar{S}_{n i}^{(r)}-S_{n i}^{(r)} \tag{5.8.7}
\end{equation*}
$$

Then, from $(5.6 .2)$,

$$
\begin{align*}
& \bar{S}_{n i}^{(r)}= \pm 1 .\left(\bar{S}_{n-1, i-1}^{(x)}+x_{i-1}{\underset{S}{n-1, i-1}(r-1)}_{(r)}^{n}\right. \\
& =\left\{{\underset{n}{n-1, i-1}}_{(x j}^{\left(x_{i-1}\right.} \bar{s}_{n-1, i \cdots 1}^{(x-1)}\left(i \varepsilon_{1}\right)\right\}\left(1+\varepsilon_{2}\right)  \tag{5.8.2}\\
& =\bar{S}_{n-1, i-1}^{(r)}\left(1+2 e_{1}\right)+x_{i-1} \bar{S}_{n-1, i-1}^{(n-1)}\left(1+2 e_{2}\right), \tag{5.8.3}
\end{align*}
$$

where

$$
\begin{align*}
& \left|\varepsilon_{1}\right|,\left|\varepsilon_{2}\right| \leqslant 2^{-t}  \tag{5.8.4}\\
& \left|\theta_{1}\right|,\left|e_{2}\right|<2^{-t_{1}} \tag{5.8.5}
\end{align*}
$$

(Actually, $\left|e_{1}\right| \leqslant\left(\frac{1}{2}\right) 2^{-t}$, but me make no use of this fact here). The expansion of (5.8.3), with the use of (5.3.1), gives

$$
\begin{aligned}
S_{n i}^{(r)}+\delta S_{n i}^{(r)}= & S_{n-1, i-1}^{(r)}+\delta S_{n-1, i-1}^{(r)}+2 e_{1} \bar{S}_{n-1, i-1}^{(r)} \\
& +x_{i-1}\left(S_{n-1, i-1}^{(r-1)}+\delta S_{n-1, i-1}^{(r-1)}+2 e_{2}{ }_{n-1, i-1}^{(r-1)}, \quad\right. \text { (5.8.íc) }
\end{aligned}
$$

which, using $(5.6 .2)$, reuluces to

It follews from (5.8.7) that

$$
\begin{equation*}
\left|\delta B_{n i}^{(r)}\right| \leqslant 2^{-t_{1}}(n i) \tag{5.3.3}
\end{equation*}
$$

Where $F_{n j}(x)$ is ciefoined recursively by

$$
\begin{equation*}
F_{n i}^{(r)}=F_{n-1, i-1}^{(r)}+\left.\left|x_{i-1}\right|\right|_{n-1, i-1}(r-1)+2\left|\ddot{S}_{n-1, i-1}^{(x)}\right|+2\left|x_{i-1} \bar{S}_{n-1, j-1}^{(r-1)}\right| \tag{5.8.9}
\end{equation*}
$$

Relation ( 5.8 .9 ) can be usca in a ruming error analysi.s with apmeropiction startine values obtained from (5.6.6) on from (5.6.7) and (5.6.8) to
 Howner, in at least two important eases we sho! that (5.8.9) cun bo selived explicitly to yicla sharp a rerionj bounds for $\delta \mathrm{S}_{\mathrm{ini}}^{(\mathrm{x})}$.

The rinst case we consider js where the $x_{i}$ are non-negative.

## 5heorem 5.8 .1

If the $x_{i}$ are non-negatjw then $\delta S_{n i}^{(x)}$ and $\delta \xi_{n j}^{(r)}$ satisfy the a priurt relative error jounds

$$
\left.\begin{align*}
& \left|\delta S_{n i}^{(r)}\right| \leqslant 2.620(n-1) 2^{\cdot t_{S i}(r)}  \tag{5.8.10}\\
& \mid \delta_{n i}^{(r}(r)  \tag{5.8.11}\\
& n i
\end{align*} \right\rvert\, \leqslant 5.106(n-1) 2^{-t} S_{n i}^{(r)} .
$$

## proof

We first cstablish $b_{j}$ induction the result

$$
\begin{equation*}
F_{n \dot{L}}^{(r)} \leqslant 2(n-i)\left(i-2^{-t}\right)^{2-2 n_{-}(r)} \tag{5.8.12}
\end{equation*}
$$

The non-negativity of the $x_{i}$ implies trom (5.6.2) the non-negativity of the $S_{n 1}(r)$ and frorl $(5.8 .3)$ of the ${\underset{S i}{n i}}_{(r)}^{(r)}$. Hence (5.3.9) becomen
$F_{n i}^{(x)}=F_{n-1, i-1}^{(n)}+x_{i-1} F_{n-1, i-1}^{(x-1)}+2 \bar{S}_{n-1, i-1}^{(x)}+2 x_{i-1}{ }_{n-1, i-1}^{(x-1)}$.

Now assume that (5.8.12) holds for $n=p-1 \geqslant 1$. Then (5.8.13) yiclds

$$
\begin{aligned}
& { }_{p}{ }_{p i}^{(p)} \leqslant\left\{2(p-2)\left(1-2^{-t}\right)^{4-2 p}+2\right\}\left(\bar{S}_{p-1, i-1}^{\left(p^{p}\right)}+x_{i-1} \bar{s}_{1-1, j,-1}^{(r-1)}\right)
\end{aligned}
$$

But from (5.8.2),

$$
\begin{equation*}
\bar{S}_{p-1, i-1}^{(r)}+\pi_{i-1} \bar{S}_{p-1, i-1}^{(r-1)} \leqslant\left(1-2^{-t_{1},-2_{\tilde{S}}(r)} .\right. \tag{5.8.15}
\end{equation*}
$$

Thus

$$
\begin{equation*}
F_{p i}^{(r)} \leqslant 2(p-1)\left(1-2^{-t}\right)^{2-2 p_{\bar{S}}^{-i}}(r) \tag{5.8.16}
\end{equation*}
$$

Hence (5.8.12) holds for $n=p$. But (5.8.12) is trivially true for $n=1$. Hence by inauction it is true for all $n \geqslant 1$.

It follows from (5.8.1), (5.8.8) and (5.8.12) that

$$
\begin{equation*}
\left|\delta S_{n i}^{(r)}\right| \leqslant k 2^{-t_{1} S_{n i}^{(r)}} \leqslant K 2^{-t_{1}}\left(S_{n i}^{(r)}+\left|\delta S_{n i}^{(r)}\right|\right), \tag{5.8.17}
\end{equation*}
$$

where

$$
\begin{equation*}
K=2(n-1)\left(1-2^{-t}\right)^{2-2 n} \tag{5.6.18}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left|\delta S_{n i}^{(x)}\right| \leqslant \frac{K^{2} e^{-t_{i}}}{1-K 2^{-t_{i}}} S_{n i}^{(x)} \tag{5.8.19}
\end{equation*}
$$

It is readily verified that the ampiostion of the results of
Section 1.1 to $(5.8 .19)$ then yields $(5.8 .10)$.
Finally, the computed value of $\zeta_{n i}^{(x)}$ jus given by

$$
\begin{equation*}
\bar{亏}_{\mathrm{ni}}^{(r)}=\frac{\bar{S}_{n i}^{(r)}}{\bar{u}}\left(1+\varepsilon^{i}\right) \tag{5.8.20}
\end{equation*}
$$

Where $\left|\varepsilon^{9}\right| \leqslant 2^{-\frac{1}{1}}$. Thus, using $(5.6 .11),(1.1 .11)$ and $(1.1 .12)$.

$$
\begin{align*}
\bar{\xi}_{n i}^{(x)} & =\frac{\left(S_{n i}^{(r)}+\delta S_{n i}^{(r)}\right)\left(1+\varepsilon^{\prime}\right)}{v_{r}(1+\varepsilon)^{2 r-1}}  \tag{5.8.21}\\
& =\left(S_{n i}^{(r)}+\delta S_{n i}^{(r)}\right)(1+E) / u_{r} \tag{5.8.22}
\end{align*}
$$

whiners

$$
\begin{equation*}
\left|T_{1}\right| \leqslant 2.224 x^{-t} \tag{5.3.23}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\xi_{n i}^{(r)}=\sum_{n i}^{(r)}+\frac{\delta S_{n i}^{(r)}}{u_{i}}+\frac{\operatorname{HiS}_{n i}^{(r)}}{u_{r}} \tag{5.8.2!}
\end{equation*}
$$

from which

$$
\begin{equation*}
\delta \xi_{n i}^{(r)}=\xi_{n i}^{(r)}-\xi_{n i}^{(r)}=\frac{\delta S_{n i}^{(r)}}{u_{r}}(14 i)+\cdots \frac{n(r)}{{ }_{n i}^{n}}, \tag{5.8.25}
\end{equation*}
$$

$G^{i v i n g}$

$$
\begin{equation*}
\left|\xi_{n i}^{\left(\xi^{n}\right)}\right| \leqslant 2.620(n-1) 2^{-t} \frac{S_{n i}^{(r)}}{u_{r}}(1+0.1)+2.221+2^{-t} \frac{S_{n j}^{(r)}}{u_{r}} \tag{5.8.26}
\end{equation*}
$$

$$
\begin{equation*}
=\{2.882(n-1)+2.224 x\} 2^{-t} \xi_{11}(n) \tag{5.8.27}
\end{equation*}
$$

upon using $(5.8 .10),(5.3 .23)$ and $(1.1 .7)$. The bound $(5.8 .11)$ then follows from (5.8.27) after setting $r$ to its maximum velum of mo.
 cones from tho rounding errors made while usine the roowrance (5.6.2) and half from the fomation of and miluiplication by in,

Fe now examine the case where the $x_{i}$ form a standard knot set with coincident end knots and (5.7.6) applies.

It is then apparent from (5.5.14.), (5.6.1) and (5.7.7) that

$$
\begin{equation*}
\left|\zeta_{n i}^{(x)}\right| \leqslant 1 \tag{5.8.28}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|s_{r i}(r)\right| \leqslant{ }^{n-1} c_{r}, \tag{5.3.29}
\end{equation*}
$$

the bounds heine attainea for $i=1, i=N+n-1$ and $r=0$.
We corisjide: the crowth of the numbers $\mathrm{F}_{\mathrm{ni}}^{(r)}$ for these knot sets. In wo replace computed quantitios in (5.8.9) by their exact counterpats: (subsequently we remove the assumption implieủ in this repiacementi), we obtain, upon using (5.8.29),

$$
\begin{align*}
F_{n i}^{(r)} & \leqslant F_{n-1, i-1}^{(r)}+F_{n-1, i-1}^{(r-1)}+2^{n-2} C_{r}+2^{n-2}{ }_{n}^{n-1} \\
& =F_{n-1, i-1}^{(r)}+Y_{n-1, i-1}^{(r-1)}+2^{n-1}!_{r} . \tag{5.8.30}
\end{align*}
$$

If wo now define quantities $G_{n f}^{(r)}$ by the recursion

$$
\begin{equation*}
G_{n j}^{(r)}=G_{n-1, i-1}^{(r)}+G_{n-1, j, \cdots 1}^{(1)-1)}+2^{n-1} G_{m}, \tag{5.3.3.3}
\end{equation*}
$$

then

$$
\begin{equation*}
F_{n i}^{\left(r^{2}\right)} \leqslant G_{\pi i}^{(r)} . \tag{5.8.32}
\end{equation*}
$$

Sone vaines of $G_{n I}^{(r)}$ computed from (5.8.31) are given in the arrey in Fic 5.8.1.

$r$	1	2	3	4	5	6	7
0	0	2	4	6	8	10	12
1		2	8	18	32	50	72
2			4	18	48	100	180
3				6	32	100	240
4					8	50	180
5						10	72
6							12

Fig 5.8.1. Some values of the bound $G_{n i}^{(r)}$ computed from (5.8.31).

Note that, at least for the values of $n$ and $r$ in Fie 5.8.\%,

$$
\begin{equation*}
G_{n i}^{(r)}=2(n-1)^{n-1} C_{r}, \tag{5.8.33}
\end{equation*}
$$

and hence from $(5.8 .8),(5.8 .32)$ and $(1.1 .9)$ that

$$
\begin{equation*}
\left|\delta S_{n i}^{(r)}\right| \leqslant 2 \cdot 12(n-1)^{n-1} C_{r^{2}} 2^{-t} \tag{5.8.34}
\end{equation*}
$$

It is now propea rigorously in Theorem $5.8 . \dot{2}$ that (5.8.34) is qualitatively correct and it is also shown that the sole effect of theme being compuieu rather than exact yalues in (5.8.9) is to inflate the 2actor of 2.12 in (5.8.34) to 2.346 .
theorem: 5.8
Tor. a strand knot: set, with coincident end knots and $a=-1$ arm


$$
\begin{align*}
& \left|\leqslant S_{n i}^{(r)}\right| \leqslant 2.316(n-1)^{n_{1-1}} C_{n} 2^{-t}  \tag{5.8.35}\\
& \left|\delta \frac{\Sigma_{n i}}{(r)}\right| \leqslant 1.821(n-1) 2^{-t} \tag{5.8.36}
\end{align*}
$$

Proof
We first establish the result

$$
\begin{equation*}
F_{n i}^{(x)} \leqslant 2\left\{1+(2) 2^{-t_{1}}\right\}^{n-1}(n-1)^{n-1} c_{x} \tag{5.8.37}
\end{equation*}
$$

from which (5.8.35) foliows upon using (5.8.8). (1.1.9) and (1.1.11). From (5.8.9) an $(5.8 .1)$,

$$
\begin{align*}
& F_{p j}^{(r)} \leqslant F_{p-1, i-1}^{(r)}+2\left|S_{p-1, j-1}^{(r)}\right|+2\left|\delta S_{p-1, i-1}^{(x)}\right| \\
& +\underset{p-1, i-1+2}{(r-1)}\left|S_{p-1, i-1}^{(r-1)}\right|+2 \mid \delta S_{p-1, ~}^{(r-1)}(1,  \tag{5.8.33}\\
& \text { since }\left|\%_{i-1}\right| \leqslant 1 \text {. Thus, using (5.8.8), } \\
& p_{p i}^{\left(v^{\prime}\right)} \leqslant\left\{1+(2) 2^{-t}\right\}\left(T_{\left.p-1, i-1+F_{p-1, i-1}^{(x)}\right)}^{(x-1)}+2\left|S_{p-1, i-1}^{(r)}\right|+2\left|S_{p-1, i-1}^{(r-1)}\right|\right. \\
& \leq\left\{1+(2) 2^{-t_{i}}\right\}\left(F_{p-1, i-1}^{(r)}{ }_{p-1, i-1}^{(r-1)}+2\left|S_{p-1, j-1}^{(r)}\right|+2\left|{ }_{p-1, i-1}(r-1)\right|\right) . \tag{5.8.39}
\end{align*}
$$

But, using (5.8.29),

$$
\begin{equation*}
\left|S_{p-1, i-1}(x)\right|+\left|S_{p-1, i-1}^{(x-1)}\right| \leqslant{ }^{p-2} C_{x}+p-2 C_{r-1}=p-1 C_{r} \tag{5.8.1+1}
\end{equation*}
$$

and therefore $(5.8 .40)$ yields

$$
\begin{equation*}
p_{p i}^{(x)} \leqslant\left\{1+(2) 2^{-t_{1}}\right\}\left(p_{p-1, i-1}^{(x)}+F_{p-1, i-1}^{(x-1)}+?^{p-1} C_{p}\right) \tag{5.6,42}
\end{equation*}
$$

How suppose that (5.8.37) is true for $n=p-1$, mere $p>1$. Then ( 5.8 .1 ? ) Gives

$$
\begin{align*}
& F_{p i}^{(r)} \leqslant\left\{1+(2) 2^{-t_{1}}\right\}\left[2\left\{1+(2) 2^{-t_{1}}\right\}^{r-2}(p-2)^{p-2} C_{p}\right. \\
&\left.+2\left\{1+(2) 2^{-t_{1}}\right\}^{p-2}(p-2)^{p-2} C_{r-1}+2^{p-1} C_{1}\right] \\
& \leqslant\left\{1+(2) 2^{-i_{1}}\right\}^{p-1}\left\{2(p-2)^{p-1} C_{r}+2^{p-1} C_{p}\right\} \\
&=2\left\{1+(2) 2^{-t_{1}}\right\} p r-1(p-1)^{p-1} C_{r} . \tag{5.8.4.3}
\end{align*}
$$

Thus (5.8.37) is tran for $r=f$ E nt (5.8.37) is trivially thou for $n=1$ and hence by induction it is true for all $n \geqslant 1$.

The remainder of the proof follows closely the latter part of inenom 5.8.1. It is readily established that (5.5.25) and (5. 2.23 ) hold, frow which, using (5.8.35),

$$
\begin{align*}
\left|\delta \xi_{n i}^{-(r)}\right| & \leqslant 2.345(r-1) 2^{-t}\left(1+2.24 r 2^{-t}\right)+2.24 \mathrm{r} 2^{-t} \\
& \leqslant 2.34 .6(n-1) 2^{-t}(1+0.1)+2.24 \mathrm{r}^{-t} \tag{5.8.4}
\end{align*}
$$

which, since 5 Sn -1, leads tu (5.6.35).

Note, finally, that for values of $n$ and $r$ for which ${ }^{u_{1}}={ }^{n} C_{r}$ can be computed exactly using integer aidtrimetic, the numerical constants in (5.8.11) and (5.8.36) are reduced by factors of about on s hale.

In this section we concern ourselves with the detsmantion in th
B-spline foin of the win derivative ( $0<r<n$ ) of an critirapy fine $s(x)$ of order $n$ defined upon a set of hots which, apter from one restriction, form a standard knot set. The restriction is that tho interior knots $x_{i}$ ( $i=1,2, \ldots, N-1$ ) must for on ( $n-r$ )-extended partition of ( $a, 1$, ). Tho reason for the restriction is simply that the $r$ th derivative of $s(x)$, vii ${ }_{B}{ }^{(r)}(x)$, is evidently a spline of order $r-m$ and hence can be meaningfully defined only upon an ( $n-r$ )-extended partitition.


$$
\begin{equation*}
s^{\prime}(x)=\sum_{i=1}^{\sum_{i}+n-1} c_{i}{ }^{\text {PI }} n i(x) \tag{5.9.1}
\end{equation*}
$$

which, upon applying (4.1.i) and using the restricted support of the B-splines, becomes

$$
\begin{align*}
& s^{\prime}(x)=(n-1)\left[-\frac{N_{n-1,1}(x)}{x_{1}-x_{2-n}}+\sum_{i=2}^{N i n-1} c_{i}\left\{\frac{N_{n-1, i-1}(x)}{x_{i-1}-x_{i-n}}-\frac{1 N_{n-1, i}(x)}{x_{i}-x_{i-n+1}}\right\}\right. \\
& \left.+c_{N+n-1} \frac{N_{n-1, N+n-2}(x)}{x_{1+n-2}-x^{n+1}}\right] \\
& =\left(n-1 j \sum_{i=1}^{i N+n-i}\left(\frac{c_{i+1}{ }^{-c} i}{x_{i}-x_{i-n+1}}\right) N_{n-1, i}(x) .\right. \tag{5.9.2}
\end{align*}
$$

Pius
where

$$
c_{i}^{(i)}=\frac{(n-1)\left(c_{i+1}-c_{i}\right)}{x_{i}-z_{i-n+1}} \quad(i=i, 2, \ldots, N+n-2) .
$$

Wridentily higher derivatives or $\mathrm{s}(\mathrm{x})$ may be obtained by mopeateth apportion of this process. We state, without proof, this result ass a theorem.

## Theorem 5.9.1

fee $s(x)$ be an arbitrary spline of order $n$ defined upon a sot of mods which form a standard knot set with the exception that, the interior knots form an ( $n-x$ )-extended partition of $(a, b)$. Then, foin $0 \leqslant s<a$,

$$
\begin{equation*}
s^{(x)}(x)=\sum_{i=1}^{N+n-1-r} c_{i}^{(x)} N_{n-1, i}, i^{(x)} \quad(n \leqslant x \leqslant n) \tag{5.5.5}
\end{equation*}
$$

Where the coefficients $c_{i}^{(r)}$ are defined recursively by

$$
c_{i}^{(r)}=\left\{\begin{array}{cl}
c_{j} & (r=0)  \tag{5.9.6}\\
\frac{(n-r)\left(0_{i+1}^{(r-1)}-c_{i}(x-1)\right.}{x_{i}-x_{i-1+r}} & (0<x<n)
\end{array}\right.
$$

Haring obtained the representation (5.9.5), the (n-r)th-ordor spine $s^{(r)}(x)$ can then be evaluated as required using either Algorithm 5.2.1 or Algorithm 5.2.2.

It may sometimes be appropriate to define modified coefficients ${\underset{\sim}{i}}_{\sim}^{\sim}(r)$ by

$$
\begin{equation*}
{ }_{s}(r)(x)=B_{n r} \sum_{i=1}^{N+n-1-r} \tilde{c}_{i}(r)_{n-r, i}(x), \tag{5.0.7}
\end{equation*}
$$

where

$$
E_{n r}=(n-1)(n-2) \ldots(n-r)
$$

Then, using $(5.9 .5)$ and (5.9.6),

$$
\begin{equation*}
c_{i}^{(r)}=B_{m r}{ }^{\sim} \tilde{c}_{i}^{(I)} \tag{5.9,9}
\end{equation*}
$$

and

$$
\tilde{c}_{i}^{(r)}=\left\{\begin{array}{cl}
c_{i} & (r=0)  \tag{5.9.10}\\
\frac{\tilde{c}_{i+1}^{(r-1)}-\tilde{o}_{i}(r-1)}{x_{i}-x_{i-n+r}} & (0<r<n) .
\end{array}\right.
$$

Since the factor $B_{n r}$ can be formed exactly, at least for reasonably small values of $n$, the latter form has the advantage that samar rounding errors can be expected in the computation of the $\mathrm{c}_{1}^{(r)}$ from (5.9.10).

To conclude this section we make some observations relating to bounces on the derivatives of a spline in the case of equispaced mots. Consider the interval $x_{j-1} \leq x<x_{j}$. By analogy with (5.1.13),

$$
\min _{j \leqslant i \leqslant j+n-2} c_{i}^{(1)} \leqslant s^{\prime}(x) \leqslant \max _{j \leqslant i \leqslant j+n-2}^{c_{i}^{(1)}}
$$

which, using (5.9.4), gives

$$
\min _{1} \frac{(n-1)\left(c_{j+1}-c_{i}\right)}{x_{i}-x_{i-n+1}} \leqslant s^{\prime}(x) \leqslant \max _{j+n-2}^{\max } \quad \frac{(n-1)\left(c_{i+1}-0_{j}\right)}{j \leqslant j \leqslant j+n-2} x_{j}-x_{i-2+1} .
$$

For knots within constant spacing h,

$$
\begin{aligned}
& \text { nix } \quad\left(c_{i+1}-c_{i}\right) \leqslant n s^{2}(x) \leqslant \quad \max \quad\left(c_{i+1}{ }^{-c_{i}}\right) \text {. } \\
& j \leqslant i \leqslant i+n-2 \\
& j \approx i \leqslant j+n-2
\end{aligned}
$$

evidently, this approach can be extended to higher derivatives. To obtain

$$
\min _{j \leqslant i \leqslant j+m-j}\left(c_{j+2}-2 c_{i+1}+c_{i}\right) \leqslant n_{s}^{2}{ }^{\prime \prime}(x) \leqslant \quad \max \quad\left(c_{i+2}-2 c_{i+1}+c_{i}\right)
$$

and, in burceral, for $0 \leqslant x<n$,

$$
\begin{align*}
& \min \quad \Delta^{r} 0_{i} \leqslant h^{r}(r)(x) \leqslant \quad A D_{j} \tag{5,5,5}
\end{align*}
$$

where $\Delta$ denotes the usual formard differemea noratur.

Wis note that the B-spline coefficients have an analogy with function velnos, since theit dipternoes (or, in the case of nch-unformiy-spased knots, derivari (untities simiiar to divided difforencos) give us inoriodge related to the derjvatives of $s(x)$. In ono rospoct, this inforration is suparion to that outained from the differsnces oi an arbitrary functions sincs in that case, witiout further a priori or cenpatablo knowiecti, no useful bounds on the derigatives can be outajned ircin the difforences.

To do mot carry out an creor analysis of the aecurrence (5.9.6), but; content ourse]ves mith a simpe but informative aumericel experniment. Consider fjustyy the convereion of the pojyomial. poiner series (5.7.1) into its equivalent B-spline representation (5.1.10). For any kiven standaud knot set this conversion can be carried out using Mlêorithn 5.7.1. lion suppose that for some value of $r(0<r<n)$ the reaurrence (5.0.5) is used to otain the coefficients $C_{i}^{(r)}$ in the B-splise representation (5.9.5) of $\mathrm{s}^{(r)}(x)$. The computed coefricienits $\overline{\mathrm{E}}_{i}^{(x)}$ will be comiominated to some extent by the inevitable floating-point arithueticad en ors made. The bulk of the contribution to the error in $\vec{c}_{i}^{(x)}$, ir $r>1$, will be dive to loss of simificence when forming the तiffererices of previourly computed p-spline coeníicients.

Ve can obtuin values for the coefficionts $c_{i}^{(r)}$ in smother Nay thet is. relatively nove eccurate by using the oxplicit fon oin $p(x)$ in (5.7.1). We fumally difforentiate the pomer series $r$ times to cistain

$$
\begin{equation*}
p^{\left(x^{\prime}\right)}(x)=\sum_{i=1}^{r_{1}-x^{-1}-1} b_{i}^{\left(x_{n}\right)}, \tag{5.9.10}
\end{equation*}
$$

where the coefficients $o_{i}^{(x)}$ are denned renursively by

$$
b_{i}^{(x)}=\left\{\begin{array}{cl}
b_{i} & (x=0)  \tag{5.9.17}\\
(i+1) n_{i+1}^{(r-1)} & (0<r<n)
\end{array}\right.
$$

 retative errors. The B-sulinc ocefficiantw (i) osm then be forme fron
 $c_{i}^{(r)}$ compatica by this latwer process. Fie shaju assumb that $\mathrm{c}_{i}(0)$ is n relativaly good eutinato of the true vatue $u_{i}^{(x)}$. It is reaur yr estabjished using the erron analyses of Section 2.8 that this assempticia is rell justiffece.

Lét

$$
\begin{equation*}
\bar{s}^{(r)}(x)=\sum_{i=1}^{N+n-1-r} \bar{c}_{i}^{(n\rangle_{M} N_{n-x^{x}, i}}(x) \tag{5.9.18}
\end{equation*}
$$

and.

$$
\begin{equation*}
\hat{s}^{(r)}(x)=\sum_{i=1}^{N+n-1-r} \hat{c}_{i}(r)_{i_{T}}{ }_{n-r}, i(x) . \tag{5.9.19}
\end{equation*}
$$

Thenthe crrns $\delta s^{(r)}(x)$ in the $r^{t h}$ derivaiive of $s(x)$ ghe to usinfe the inercurate coefficients $-(r)$ is

$$
\begin{equation*}
\hat{u s}^{(r)}(x)=i^{(x)}(x)-s^{(r)}(x)=\left\{-(r)(x)-\hat{S}^{(x)}(x)\right\}+\left\{\hat{S}^{(x)}(x)-s^{(x)}(x)\right\} \tag{2}
\end{equation*}
$$

 and obtain

$$
\begin{align*}
\delta s^{(n)}(x) & =i^{-(x)}(x)-\hat{3}^{(r)}(x) \\
& =\sum_{i=1}^{M i n-1-T}\left(\sum_{i}-c_{i}(x) N_{n-r, i}(x)\right. \tag{5.0,24}
\end{align*}
$$

and herce, $2 s$ a consequenco of $(5 \cdot 1.13)$,

$$
\begin{equation*}
|\delta s(x)(x)| \leqslant \operatorname{medx}\left|{\underset{i}{i}}_{i}^{-i}(r)-i(r)\right| \tag{5.3.22}
\end{equation*}
$$

Thus, by evaluating the $\bar{c}_{i}^{(i)}$ and $\hat{c}_{i}^{(r)}$ as desoribed anciusine (5.9.2a) tine required error bounc is obtained.
 more valuable to compare its value with a bound for a mell-ostonifhed process. We therefore consider a procss analacous to the above in whin we enfloy Chebyshev polynomials insteiad of B-spisines.

Firstiy we convert the representation (5.7.1) inio its equivalent Shebynhev-series form

$$
\begin{equation*}
p(x)=\sum_{i=0}^{n-1} a_{i} T_{i}(x), \tag{5.9.93}
\end{equation*}
$$

where $T_{i}(x)$ is the Chebyshev polynomis] of the itrst kind of dogree it in $x$, the prime on the sumation symbol denotes that the constant torn in (5.9.23) is to bo taken with neight onc-hali and, for simplicity, it is assumed himet uns range over which $p(x)$ anid s(x) aro desined ic $[-1,+1]$. This convereion can be camied in an cationtely istablamennor (sec cox, 19\%, funt also Section 5.11), with oxpected errors of similar manjonde to those in obtrining the E-sntine form. The coofficients ${ }_{j}(x)$ in the roprosentationt

$$
\begin{equation*}
F^{(x)}(x)=\sum_{i=0}^{n-x-1} i_{i}^{n}(x)_{I_{i}^{\prime}}(x) \tag{5.9.24}
\end{equation*}
$$

shn be detuminen by the rowursion

$$
a_{i}(r)=\left\{\begin{array}{cl}
a_{i} & (2=0) \\
a_{i+2}^{(r)}+2(i+1) a_{i+1}^{(r-1)} & (0<r<n),
\end{array}, \quad\right. \text { (5.9.25) }
$$

given by Clencbar (1962). All undefined terms in (5.9.25) sire to bo regarled as zsto. Ist the values of $a_{i}^{(r)}$ computei in this wannem be abenoted by $\bar{o}_{i}^{-(x)}$.

As with the B-spine coofficients we can obtaian goon vajues cif the ( $r$ ) by evaluatine the Chobysher cocificients dircotly from tho worm (5.5.16). We denote the cormpted values of these coofficients by $\hat{a_{i}}(1)$. Wuir let

$$
\begin{equation*}
\bar{p}^{(x)}(x)=\sum_{i=0}^{n-x-i} i_{i}(x)_{i}(x) \tag{5.0.26}
\end{equation*}
$$

and

$$
\hat{p}^{(r)}(x)=\sum_{i=0}^{n \cdots-r_{n}} \hat{n}_{i}(x)_{T_{i}}(x)
$$

Tlen we derins
$\int p^{(r)}(x)=\bar{p}^{-(r)}(x)-p^{(r)}(x)=\left\{\bar{p}^{(r)}(x)-\hat{p}^{(r)}(x)\right\}+\left\{\hat{p}^{(x)}(x)-p^{(x)}(x)\right\}$.
 ignored and hence essentially

$$
\begin{align*}
\delta p^{(r)}(x) & =\bar{p}^{(r)}(x)-\hat{p}^{(r)}(x) \\
& =\sum_{j=0}^{n-r-1}\left(\bar{a}_{i}(x)-\hat{a}_{i}^{(r)}\right) \eta_{j}(x) . \tag{5.9.28}
\end{align*}
$$

Eince $\left|T_{i}(x)\right| \leqslant 1$ for $|x| \leqslant 1$, He obtain

$$
\begin{equation*}
|\delta p(x)(x)| \leqslant \sum_{i=0}^{i-x-1}\left|\frac{-(r)}{-\lambda_{i}(r)}\right| \tag{5.9.2y}
\end{equation*}
$$


 truncated after 14 texms. ninjs choion of ecofticiombs $b_{i}$ has the aidvantage thet $h_{i}^{(x)}=b_{i}$, and henco hass no further errox. We ailso sot in $=i, x_{i}=-1(i \leqslant 0)$ and $x_{i}=+1(i>0)$. For $r=1,2, \ldots$, othe values of $\hat{c}_{i}^{-(r)}, \hat{c}_{i}^{(r)}, \hat{a}_{i}^{(n)}$ and $\hat{a}_{i}^{(n)}$ were computed as described nivere aut the bounds (5.9.22) and (5.9.29) Pormed. The bounds are given in Table 5.9.t.

	E-spline form	Chebysinet sories
$r$	The bound ( 5.9 .22 )	The boum ( 5.9 .29 )
1	$1.27329_{10^{-11}}$	$1.38372 .10^{-10}$
2	$1.4733810^{-10}$	8. $314.60{ }^{10} 0^{-9}$
3	$1.4524_{1} 6_{10}{ }^{-9}$	$2.5613310^{-7}$
1.	$1.2524710^{-8}$	$5.2209510^{-6}$
5	1. $\cos 27_{10} 0^{-7}$	$7.84 .44 .510^{-5}$
6	$7.5800910^{-7}$	$9.10534100^{-4}$

Table 5.9.1 A amparisual of bounds for the crions in the rith derivative of a polynomial exprossad in its Chebyshev series foria and in its lo-spline form.

It iss seor that the bound (5.9.29) compares fewourably vi.th (5.9.22). Other exnortmentos rere also corrjed out, lut mable 5.9.1 frpifies the jesults obtained.
5.10



 knol sati. Thero is no rurther restrictuon er, the krot ses, ns in Section 5.9, however.

## Theorom 5.10.1

 sct urd have the represertation (5.1.10). Theathe r-rold inciefonte integral $s^{(-r)}(i)$ of $s(x)$ is given by

Whore $c_{i}^{(-r)}$ i.s deffined recurainveli, by

$$
(n+2-1) c_{i}^{(-r)}\left\{\begin{array}{cl}
0 & (i \leqslant r) \\
c_{i-1}^{(-r)+\left(x_{i-1}-x_{i-n-r}\right) c_{i-1}^{(1-r)}}\left(\begin{array}{cl}
(i-r)
\end{array}\right.
\end{array}\right.
$$

and $k_{j}(i=1,2, \ldots, x)$ ano aribitucuy constantio.
itoun
It is sufficient to estainish that, for rubibrayy $>0$, a sincile differentiation of the richt-most nxproscion in (5.10.1), after tibs inclusion of an furbitrary raditive coustart, viozds an orpresseion of
 Theorem 5.9.1, re ohtuin, as the first derivative of thes axpresmion,

Which, using ( 5.10 .2 ), reduces to

$$
\begin{equation*}
\sum_{i=1}^{N+n-2+x} e_{i}^{(1-x)_{N}}{ }_{n+x-1, i}(x)+\sum_{j=1}^{x-1} \frac{k_{j}}{(x-j-1):} x^{2-j-1} \tag{5.10.4}
\end{equation*}
$$

It my be soraerkat inconvenient in some applications to work with the expression (5.10.1) since it involves both n-spines and pores of $x$. However, for envy particular choice of the constants $k_{j}(j=\{, E, \ldots,=)$,
 combination of the p-splines $\prod_{n+r_{y}}(x)(i \ldots 1,2, \ldots, N+y \cdots 1+r)$ usfne the method on Section 5.7 (ant, in particular, Algorithm 5.7.1). (U res vo obtain the representation

$$
\begin{equation*}
s^{(-r)}(x)=\sum_{i=1}^{N+n-1+r} c_{i}(-r)_{i H_{i+1}, i}(x), \tag{5.10.5}
\end{equation*}
$$

where the $c_{i}^{(-x)}$ now include tho contributions frow the parer-seriens terns.
Ir common with most integration processes involving summation, jut can bo expected that the use of recurrence (5.10.2), in witch the difference $x_{i-1}-x_{i-r_{n}-r^{r}}$ can be formed with a very small relative error (af Section 1.1), will give ria to a stable algorithm for forming the coefficients of $\left(-r^{\prime}\right)$. We conclude wis section with an expression for the definite integral of $s(x)$ ever the range (a, b). If sf (x) its a spline of order $n$ define $\dot{u}$ upon a standard knot set with coincident end knots then bach of he B-spines $N_{n i}(x)(i=1,2, \ldots, N+n-1)$ is identically zero cutajae on the interval $[a, b]$. Consequentiv,

$$
\begin{align*}
\int_{a}^{b} s(x) d i & =\sum_{i=1}^{N i n} c_{i} \int_{a}^{0} n_{n i}(x) d x \\
& =\sum_{i=1}^{n i n} c_{j} \int_{\infty}^{\infty} n_{n i}^{N}(x) d x .
\end{align*}
$$

Hichce, using (4.5.9),

$$
\int_{a}^{b} s(x) a x=\frac{1}{n} \sum_{i=1}^{1 N+1 n-1}\left(x_{i}-\sum_{i, \ldots n}\right) c_{i}
$$

or, in terns of the coefticionts of the manmatired 3-mplime rerrescriation (5.1.11),

$$
\begin{equation*}
\int_{a}^{b} s(x) \overline{a r}=\frac{1}{n} \sum_{i=1}^{\sum_{i}^{N+n-i}} c_{i}^{*} \tag{5,10.8}
\end{equation*}
$$

Whas, having obtained the coefticients in a Desplinc remocentation of s(x), it is a very simple matiter to determine the value of tine deninite intugitu. For examyle, $s(x)$ may be an interpolatory or a least-squares anproy imation to data remesentative of a function $f(x)$ (Chaptors 6.7 sand 8), in which case ( 5.10 .7 ) or $(5 \cdot 10.6)$ winl then frovide an estimate of $\int_{a}^{b}$ ri(xitux.

## 5. 11 Representation in picceri:so-6hobyshev-series fors

The representation (5.1.10) is satisfactory for many purposes in that mity Wirmin coefficients (the smajlest possible nuriotr in eeneral) are required. in its definition, and about $\frac{3}{2} n^{2}$ Jong operationis in its evaluaticr for $\varepsilon_{0}$ prescribed argument: $x$. Tt an increased number of linear corficionts, vir Nn, fo derine the spline, aan be tolerabea then, at the oxnense of some pre-compuation, its subsequent evaluation may be carriez out for a giver
 the following approach is recomumded.

In osch interval $x_{i-1} \leqslant x \leqslant x_{i}\left(j=1,2, \ldots\right.$, iv) for which $z_{j-1}<x_{a}$, $s(x)$ is a poiymomizi of dogree n-1 ard heroe nay be cypressed in the

Chebyshev--series form,

$$
\begin{equation*}
s(x) \equiv s_{j}(x)=\sum_{i=0}^{n-1}{ }^{1} a_{j i}{ }^{T} P_{j .}(x) \tag{5.11.1}
\end{equation*}
$$

where

$$
x=\left(2 x-x_{j-1}-x_{j}\right) /\left(x_{j}-x_{j-1}\right)
$$

In (5.11.i), T $(x)$ is the Chebyshev polynomial of the finst kind or dagroe i. in $x$, and the abiole prime inaicates that in the sumation the first, and last temms are to be halvad. Whe linear transtormation (5.11.2) mats eachi interval $x_{j-1} \leqslant x \leqslant x_{j}$ into the interval $-1 \leqslant x \leqslant 1$. This ropresentution has pilso been used in the ellicd context of curve fitting with fiocewise polynomisls (coz, 1971). For cumpleteness, in the cose $y_{j-1}=x_{j}$, re define $a_{j 0}=2 \mathrm{~s}\left(x_{j}-\right)$ and $a_{j i}=0(i=1,2, \ldots, n-1)$.

In order to obtain the ralues of the coefficionts $\alpha_{j i}$ in (5.11.i) we wy
 (Clenshaw, 1952),

$$
\begin{equation*}
a_{j i}=\frac{2}{n-1} \sum_{k=0}^{n-1}{ }^{\prime} \cos \left(\frac{\pi i k}{n-1}\right) s_{j}\left(\cos \left(\frac{n k}{n-1}\right)\right)\left(i=0,1, \ldots, n_{1}-1\right) \tag{5.11.3}
\end{equation*}
$$

The values of $s_{j}\left(\cos \left(\frac{n y}{n-1}\right)\right)$ required in (5.11.3) are converient?y calculated using Algoritha 5.2.1 or Algorithm 5.2.2 for curputing a rpline from its B-spitine representation.
 for a prescribed angment $x$, can be carried out using the scheme for sumpine a Chehyshey sories (very sliehtly monffed to accomotate the halving of the last term in both (5.11.1) enत (5.11.3)) our to Clenshaw (ige\%).

 or, alternatively, plane rotations are employed. Fox in in totals sue Cox (1974).

An : irmorthnt aspect of the computation is the linear transformation (5.11.2). In section 1.2 it was sham that sf $X$ were computed from in ursatiseftetory representation the error in $X$ depends upon the value of $\left|x_{j}\right|^{\prime}\left(x_{j} \cdot x_{j-1}\right)$. For highly non-uniformly spaced hats, on if both $x_{i-1}$ and $x_{j}$ are far-removed from the origin (compared with the interval Month $x_{j} \cdot x_{j-1}$ ), this ratio mar moll be very large. of course, if if is large, there will inevitably be values of $j$ for which $\left.\right|_{i} \mid \geqslant x_{j}-x_{j-1}$. Ti follows tatar one of the stable forms, eg

$$
\begin{equation*}
x=\left\{\left(x_{-x_{j-1}}\right)-\left(x_{j}-x\right)\right\} /\left(x_{j}-x_{j-1}\right) \tag{4}
\end{equation*}
$$

should be employed.

## Cunctat

## serta irmmeradrun

In many problemis invohving conputations ritin splines tho ohoice of arpresentation of the splina is or the utmost inportenco; the aplineinterpolation probledis no exooption widertjy there aro many proseible sets of hasis functions in torus of which the spline can be expressed. Troir any particuler set there are three naia bisges in the splino interpolation problea: (i) the fomation of the rystem of linem equations defining the cueficicierts of the besis runctions, (ii), the solution or this linoar systen, and (iii) the numerical evalution of the interpolating spline at various ralues of tho arement. In stages (i) and (iii) it in
 at various points. There are in wistence areellent methods for stage (ii) (see, for example, Wilkinson, 1965 and Willeinson and Reinsch, i971),
 full edrantage of the siructure of the linear syoters. The ecouracy to
 numerical conditioning of the system, and therefore upor the choice of basis functions.

In Section 6.1 the spline interpolation projan is defined. Th Section 6.a a fethod of foming the limear yotan certaine the cositicionts is given, and the solution of this system is discuased in Section 6.jo In Jection 6.4 alcorthas for the solution of the proilem are uresented. In Section 6.5 it is shom that one of there olemrithm vielas a solution that is an
 corputahle a posteriori measures of this closaness are derfved. in
 wultiplo mots so siven. In Sections 6.7 and 6.8 the choices of exterion



## 6. 1 The suitu iriternolstion probler:

The problen of concem nay be stated ais follow:
Interpolate function ralues $f(x)$ at the pointis $x=t_{1}, t_{2}, \ldots$, the by spline $s(x)$ of orter $n$ (degree n-1) with presoribod (intixinus) knots $x_{1}, x_{2}, \ldots s x_{j-1} \cdot$

Lot: $\varepsilon=t_{1}$ 日nii $b=t_{f i}$. It is assuried that

$$
\begin{equation*}
i_{1}<t_{2}<\ldots<t_{\text {in }} \tag{6}
\end{equation*}
$$

and that the Enterior knots form an n-axtended pariation of ( $a, b$ ) , Wo
 with the definition of a standaru hon set with coincident and luats
 adtemined such that the conditions

$$
\begin{equation*}
s\left(t_{j}\right)=f_{j} \quad(j=1,2, \ldots, n) \tag{6.1.2}
\end{equation*}
$$

miare $f_{j}=f\left(t_{i}\right)$, are satisfied. To gunrantee ihe possibilitive cin unique
 peouired that

$$
\begin{equation*}
x=1+2-1 \tag{6.1.3}
\end{equation*}
$$

Shuentme ard whitney (1953) have shom that a unfqua solution existe if and only in the inequalities

$$
\left.\begin{array}{l}
t_{1}<x_{1}<t_{i+n},  \tag{6.1.6}\\
t_{2}<x_{2}<t_{2_{n n}} \\
\ldots \ldots \ldots \ldots \ldots \\
t_{N-1}<x_{N-1}<i_{\text {in }}
\end{array}\right\}
$$

are satisfied. It is therefore assumer hencenortin that corditions ( 6.1 .3 )
 Whit:new conditions.

The main interest in inis interpolarion problem is tint no aoditional information relating to end derivatives, such as witill a natural interplatino spline, is roquizo
 function or a tricgometric series, , hat olvantage iss taken on tile particular structura on the problem in order to yield an offaciont aleor than Schumar (1969) remarks that this particular intorpo?ation jwoblen hes bean all but neglected.

Tusi appaachi to spline interpolation has tio additional advariage that it has consicerable approximating poner sinco it enables aritrurs polymonisis of degree nui to be reproduced axacily frits mopenty is not shared by noturan splines which, if of order n =: 2r, can reproduco only poljnomial-
 splice jnterpulabui with derivative end conditions, unless it is possibla to ravide the exact values of the requireal coriyatives.

## S.2 The lingex system: forvation

For any civery zet of knots, $s(x)$ can be expressed in the form

$$
\begin{equation*}
s(i):=\sum_{i=1}^{i \pi} c_{i} \not q_{i}(x), \tag{6.2.1}
\end{equation*}
$$

 hestia remotions, each of which iss jusele a spiting fraction of order a with interior knots $x_{1}, x_{2}, \ldots, x_{1 f}, \quad s(x)$ cannot in sororal be expressed in torus of fewer than ar such whotions.

Having selectoR appropriate basis functions $\phi_{i}(x)$, the cocfficients o are given by the solution of the following system of linear alechicuic equations,

$$
\begin{equation*}
\sum_{j=1}^{m} c_{i} \emptyset_{i}\left(\dot{\tau}_{j}\right)=\hat{i}_{j} \quad(j=1,2, \ldots, r) . \tag{6,2,2}
\end{equation*}
$$

The linear independence of the functions $\phi_{i}(x)$, together with the
 existence of a unique solution to (6.2.2). The system can be expressed in an obvious inatuix notation as

$$
\begin{equation*}
\underset{\sim}{A} \underset{\sim}{C}=\frac{P^{\prime}}{\sim}, \tag{6,2,7}
\end{equation*}
$$

where the element in position $(i, j)$ of the $n$ by matrix in is $a_{i j}=g_{j}\left(t_{j}\right)$.
The B-splines, which we intend to employ es a basis, are particularly advantageous in that the linear system defining the on? jame confinements can be formed and solved extremely eficiciontiy and, moreover, in a numerically stable mazer. Tie, give sone datials of the arithmetic morin required to sot up and solve the system at the end of this section and in Section 6.4. A discussion of the mamerican stability is given in Section 6.5.

An shown in exertion 5.1, the spline as be expressed in tia four (5.1.10) or (5.1.11). Consequences of the choice ar coincident run knots are that
 and that the definite integral on $s(x)$ over the data ranee (a, u) ore be
computea very easily and waed as an estimate of fix)de onco the F-fyline chefficients have hoen determined (os Section s.in).

By putuing

$$
\begin{equation*}
\phi_{i}(x) \equiv M_{n i}(x), \tag{6.2.4}
\end{equation*}
$$

the system (6.2.2) tecomes

$$
\begin{equation*}
\sum_{i=1}^{\mathrm{n}} c_{i} N_{n j}\left(i_{j}\right)=f_{j} \quad(j=1,2, \ldots, w) . \tag{6.2.rj}
\end{equation*}
$$

Becense of the rustricted support property of the 3-aplinesit prllows hat tha coefficiont matrix defjed by equations ( 6.2 .5 ) cortatins at anost nomzero clencrits in each row, ard that the colum position of the firct rono zero elemert in each row is a non-ibecreasing functinn or the nay numiner. Thus $£ 13$ a stopped-banded matrize (Scction 2.11) of berdyiatt, $n$. Fon
 s:atiafyirs the conditions,

$$
\begin{align*}
a=t_{1}<t_{2}<x_{1} & <t_{3}<x_{2}<x_{3}<t_{4}<t_{5} \\
& <t_{5}<x_{4}<t_{7}<t_{8}<x_{5}<t_{9}=b,
\end{align*}
$$

takes the form

$$
A=\left[\begin{array}{llllllll}
x & & & & & & & 0  \tag{6.2.7}\\
x & x & x & x & & & & \\
& x & x & x & x & & & \\
& & x & x & x & x & & \\
& x & x & x & z & & \\
& x & x & x & x & & \\
& & & x & x & x & x & \\
& & & x & y & x & x & \\
& & & & & & & x
\end{array}\right]
$$

 verify that data end lenots dispored as in ( 5.2 .6 ) Betaby tho Sohcraberg Thitney comations (6.14). who presence of ongy ne non-zero elaments in Tine first and last rows of $\underset{\sim}{A}$ is a further conseruence of tae chcice of concident end lnots. As a result of this choice and of (3.6.1) the respective values of $c_{1}$ and $c_{\text {in }}\left(=c_{9}\right.$ in this oramplo) dure singrity $r_{i}$ and $f_{m}$. A further foature of the matrix $f_{\infty}$ is that $j t$ is niceiy hiandeca for computational purposes in the folloving sense. The maximum olernt in wach inow is bounded from above by unity, as comeguence on relation (3.6.1), end from beion by $1 / n$, as a result on rineoren $3.6 . \therefore$.

### 6.3 The lincer system: solution

The solution of the syatom ( 6.2 .1 ) cas he achicved efficientity in adventapes is taken of the stepped-banded strunture of A. For incoranong ajthen A7goritim 2.12.1 based upon faussien elinination caleonith 2.i3.1 rhich
 be rogardea as a banci natrix with n-1 supermidagonal: and r-i suh-iagonels, a result whici is a consoquence of the sohoenber $G$-imitney comations (6.1.1), a standard Elfgurith (eg Kartin and Will:inson, 196i) for solving band systiens can be carioyar. With the lastmentioned approach some ioss of efficiency con Lix axpeted, since advantage is not taken of zero elenemis vithin the bara. In fact at least ( $n-12$ ) (n-1) af the totel number of $(2 n-n)(n-1)+n$ derarents in the dende are zoro.

## 6.ir Aforithms for the spline interronction nroblem

Agorithme 6.4 .1 and 6.4.2 are inilementations of the mathod descrived in the earlier sections of this cinapter. The algorithus ajlun wither voirmident or nonevoincident and knotis to be chosen. the former shoice is usually to We werenved for the reasone eiven in Sention 6.2, as weIl as for the stability considerations ciscussed in Section 6.7. Homever: the latter

 chosen such that the complete set of knots is at tho spacing $h$, tho y-splines 30 defined art sitsply Tinear trunslations of each other.

The fixstitue steps of eithem n] goxithm combitute cinecke on the duta, the computation being temninatcd if ony of the rive ohecks is vionated. (F'or simplicity of prasentation thers is an ejenont of redundmon jn these checks). In hlgorithm 6.\%.1, the steppod-bandoc ayrton (6.2.3) is forned usiné Algoixthn 3.12 .2 to compute the values af tho rowalineâ B...spoliner for each of the $x$ date points. In acocrdance with tho roquiromonts af A-ccrith 2.12.1, rinich is them wsed wo solve the systam using Grusajnm clirairation, the matrix $A$ is stored in comdonsed form as un in by $n$ armin with the vector pholding the row mumers that terminate ench block. Irs Aforithm 6.4.2, which makes direct use of ingorithm 2.13.1 for solving stiepped-barded systems by elementary transformations: the jth yon
 using Alcorithm 3.1..2 to evaluate the ron-2ero B-spijucs at $z=t_{i}$. There is Iittle to choose betreen AIE゚oritim 6.4.1 and A1gorithm 6.4.2 in terme of speed or żtorase requirements and, in cur ciperiemes, in werms of s.tability, An erron andysis of Algorithm 6.1.1 is eviven in Section 6.5.

It is assumed that ralues of $m$ and $n$, data points $\left(t_{i}, f_{i}\right)(i=1,2, \ldots, m)$ and lincts $x_{\perp}(j=i-n, 2-n, \ldots, m=i+\pi-1)$ are supplied to the nlgorithas. The last date point is almaye chosen to lie within the interval $x_{h-1}$ for $x_{N}$. This choice, together with the folloring winor modification to fromitho 3.12.2 for scmputing tho nermalinea D-splines, is necessary to ensure theit,
 Joplase Step o or Algorithw 3.17.? hy

Stion 1 . $\mathfrak{j f} x<\pi$ determine the unique intoger 1 such that

$$
x_{1-1} \leqslant x<x_{1} ; \text { otherwise set, } 1=N
$$

 vaing roxtalizeō B-splinos and Guxesson elinintiont
Comant: Gnodinctuer thare axe sufficiont datn pointis for the proscribud orler of the srifin.

Step 1. Pinish fen the inequality $m \geqslant n$ is violated.
Comment: Check whether the complotn seit of knots is ordorod.
Step 2. Finish it the jnequalitive $x_{1-n} \leqslant x_{2 \rightarrow-r_{i}} \leqslant \cdots \leqslant x_{j n}$ are roty all satisuriod.

Comment: Check whether the completes sst of knotis forms an nwortenàed partition.

Stop 3. Finisi if the inequalitios $x_{i-1}<x_{i} \quad(i=1,2, \ldots, n)$ are not all satiefieñ.
 lie within the ramge $[a, b] \equiv\left[x_{0}, x_{11}\right]$.
Step 4. Finish if the incumatios $x_{0} \leqslant t_{1}<t_{2}<\ldots<t_{\text {inn }}<t_{m} \leqslant J_{M}$ Ere not all satisified.

Comment: Cheok whether the Sohnenvergmontney conditions are satisfod.
Step 5. Finish in the inequelitios $t_{i}<x_{i}<t_{i+1}(i=1,2, \ldots, N-1)$ are not all satisfioñ.

Coment: I denotes the number of the current interval.
Step 6. Sei $\therefore=0$ arde $\mathrm{F}_{\mathrm{N}}=\mathrm{m}$.
Cominent: The ith data point is processed in 3teps 8-12.
Stop 7. For $i=1,2, \ldots$, il ezecuto Steps $8-12$.
Comerit: The interval contrining $t_{i}$ is located in Steps 8-10.
Sten 8. Tf $t_{i}<x_{1}$ or $1=N$ aivance to Step 11.
Step S. Se't $\mathrm{p}_{1}=\mathrm{i}-1$.
Siep 10. Foplace 7 hy J.t1 and return to Step 8.
Stsy it. Use A? Ercrith 3.in.2 with $x=t_{i}$ to fom the valuos of $I i_{11 j}\left(t_{i j}\right)(j=1,1+1, \ldots, 1+1-1)$.


Ooment: The D-sphine coeffinients are conjuted.
Ntop 13. TJE A]gorithe 2.12.1 to eolve tho atepped-bandea systera $A 0=\underset{\sim}{\sim}$.

Arorithm 5.1.2: Data interpolation by a spiling of onder in using normaliased P-splines and elementary transformations.
fomment: Check the data as in Alerorithm b.1.1.
Step 1. As Stope 1-5 of Algorithin S.4.1.
Comment: $k$ is the interval numiler as welle as the rumber of the block cumentig being firocesseci.

Step 1.1 Set $k=1$.
Cowment: Initializo $\underset{\sim}{R}$ and $\theta$ to zero.
 and $q 0,5 n$ ).

Comment: Computations involvias the ith data poini are deseriber by Steps Em31.

Stop 5. For $\mathbf{i}=1,2, \ldots$, execute Stops $6-31$.
Comment: The intemral containine $t_{i}$ is locatod in Steps $6-7$.
Siep 6. If $t_{i}<x_{k}$ or $k=17$ aldvance to Step 8.
Step 7. Replace $k$ by $k+1$ and return to step 6.
Conisent: The $i$ th row of ( $f \mid \hat{n}$ ), as requireci hy Algorjthen ?.13.1, is formed in Steps 8-3.2.

Step 8. Use Aleorithm 3.12.2 rith $x=t_{i}$ to form the values of $N_{n j}\left(t_{i}\right)(i=k, k+1, \ldots, k+n-1)$.

Step E.i. Now $i=1,2, \ldots$, n set $\psi_{j}=\pi_{r, k+j-1}\left(t_{i}\right)$.
Step 8.2. Set $u=f_{i}$.
Gument: Dlementary transformations to anmikilate the olononts in rom $i$ of $\underset{\sim}{A}$ are aprizied in Stops s.3i.

Stops 9-3i, As iters S-31 of Algontha 2.15.1 (rith n intometed as mand q.as n).

Step 32. Use RIgorithm 2.1.4 to solve RG = E.

The conputational bork in Algorithm: 6.4 .1 end 6.1..2 is anoinated hy the fomation of $A$, which takes about $\frac{3}{2}{ }^{2}{ }^{2}$ loap operations, and the solution of $A B= \pm$, which takes about $\tan ^{2}{ }^{2}$ Long operations (or, if it in regarded as a uniformly bandeà matrix, about 2 ma. ${ }^{2}$ long opronticns). Corsequently, the complete process inike about irma (or $\frac{1}{2} \operatorname{man}^{2}$ ) lone operations. In particular, for a given order of splinc, the computitionis roml: is directly proportional to m , the number of points of tirterpolation. Note that, if the hasisfunctions $\oint_{i}(x)$ ir $(6.2 .1)$ are not of enmosci suppert, the number of 1 org pherettions reguived to solvo the Ifrean aroten alone jis proportional to $\mathrm{m}^{3}$.

As regards the wbsequent numerical evaluation of the intionclating mition, the use of Algorithm 5.2.1 or Algorithm 5.2 .2 crables $s(x)$ to be evaluated for ary particular value of $x$ in about $3_{2}^{3} r^{2}$ lone operations. Howover, if a representation of $s(x)$ possessing a greater number of derinine parameters is acceptable then, at the expenso of sowa precomputation, this number of operations can be recured to abou's in by using the equivalent riccemise Cheby shev-scries rapesentrition (Soction 5.11).

### 6.5 Frion analysis

Tie now fite an ecror andysis of the forination and solution of the systela (6.2.5) in the case where the matrax is regarioa as a bund of mieth $2 r-1$ centred upon the main dieconil anc Gaussinn eliminatjon with paitial pivoting is employea. It is assubed that ell counutations are carried on in single-lereth floating-point arithuatic mith a mantissa of $t$ biramy digits and that tile rounding rulos (1.1.2), (1.1.3) end (1.1. $\mathrm{i}_{\mathrm{i}}$ ) apply.

Fonlowite winkitisun (1963: p107) the solution of

$$
\begin{equation*}
A C=I \tag{6,5.1}
\end{equation*}
$$

is reduced, maine Gaussian elintiration with period pivoting, to that of

$$
\begin{equation*}
\underset{\sim}{\text { INTO }}= \tag{6.5.2}
\end{equation*}
$$

where the computed $I$ and

$$
\underset{\sim}{y}=A: B .
$$

The computed solution is then obtained by solving tiro trimeular sets of equations and in practice we obtain ia and of doming by

$$
\begin{align*}
& (\underset{\sim}{I}+\underset{\sim}{i n}) \underset{\sim}{d}=f,  \tag{6.5.1}\\
& \left(\underset{\sim}{U}+\underset{\sim}{d} U_{\sim}^{c} \underset{\sim}{c}=\underset{\sim}{c} .\right. \tag{6.5.j}
\end{align*}
$$

Hence ed satisfies

Note that here and elsewhere in this section $\mathcal{q}$ is used to donate the computed B-spline coefficients. For the case where $d_{i s}$ a full m in in matrix, bounds for $\|\Sigma\|_{\infty}$, $\|\delta\|_{\omega}$ and $\|\delta u\|_{\infty}$ nave been given my rijuinson (1863: y 108). For the case mere A is o handed matrix with $n-1$ super-diagonals and $n-1$ sub-diagonatis, Martin and wilkinson (:96?) give the bound

$$
\begin{equation*}
\|n\|_{\infty} \leqslant E(2 n-1)^{-t}, \tag{6.5.7}
\end{equation*}
$$

* Since the preparation of this monk I have learned in discussion with Jo J H Wilkinson that the bound ( 6.5 .7 ) is not on upper (io rigorous) bound ens stated in limit and Filutinson (1967). Seton, the "hound" is such whet



 (1965: 29 et ged fos the sufution of trianguler systems ins easily
 have. If is lowem band triangulav of baniwiation with all eleagits boundea in modulus ioy unity, as a result of the paridel pivoting stratery. U is upper banc brianculat of handwidth $2 n-1$ as a consequence of the rom siturumuens duming the reduction. The elements of If aro bounded in nodulus by g. It is easjily ostablisned that

$$
\begin{align*}
& \|y\|_{\infty} \leq n,  \tag{6.5.8}\\
& \left\|\|_{\infty} \leq E(2 n-1),\right.  \tag{6.5.0}\\
& \left\|\left\|_{\infty}\right\|_{\infty} \leqslant \frac{1}{2} n(n+1) 2^{-i},\right. \\
& \left\|\left\|_{n=0}\right\|_{00} \leqslant \operatorname{Ex}(2 n-1) 2^{-t_{1}}\right. \text {, }  \tag{6.5.11}\\
& \text { whoxe } 2^{-t_{1}} \text { is aerinteì } \operatorname{byy}^{(1.1 .9)} \text {. }
\end{align*}
$$

Hence, Wiating $(6.506)$ in the form

$$
\begin{equation*}
(A+K) \sum_{n}^{\infty}=\frac{1}{\infty} \tag{6.5.12}
\end{equation*}
$$

we have

$$
\begin{align*}
& \leqslant \varepsilon\left\{(2 n-1)+n^{2}(2 n+1) \div \frac{1}{2 n}(2-1)(2 n-1)+1^{2} 2^{2}(n+1)(2 n-1) ?^{-t_{1}}\right\} ?^{-t_{1}},
\end{align*}
$$

fgain naxint use or (1.1.5) and voumine the tern $n^{2}(n+1)(2 n-1)(1, N) 2^{-t}$ by 0.106 in rocondmee mith (1.i.10) yielus

$$
\|\pi\|_{\infty} \leqslant 5\left(3 n^{3}-\frac{1}{2 n^{2}}+0^{2}-0.804\right) 2^{-6}
$$

 values of D-splines. Tested va have the computed matrix.

$$
\begin{equation*}
\bar{A}=A+\underset{\sim}{A}, \tag{6,5.15}
\end{equation*}
$$

where the elements of $\underset{\sim}{H}$ certainly satiety (see (3.9.13)).

$$
\begin{equation*}
\left|h_{j, j}\right| \leqslant 7(n-1) 2^{-t_{a_{i j}}}, \tag{6.5.16}
\end{equation*}
$$

it Algorition 3.12 .2 has been user l to generate the B-spline values. Thus

$$
\begin{align*}
\|E\|_{i \infty} & \leqslant 7(n-1) 2^{-t} \sum_{i} \sum_{j} a_{i j} \\
& =7(n-1) 2^{-t} \sum_{i n} \sum_{j} N_{n j}\left(x_{i}\right) \\
& =7(n-1) 2^{-t}, \tag{6.5.17}
\end{align*}
$$

is a consequence of $(3.60 i)$. So to complete the analysis we absorb it into tho natick ir in (6.5.12) which yields

$$
\begin{align*}
\left\|\|_{\infty}\right. & \leqslant g\left(3 n^{3}-\frac{1}{2} n^{2}+\frac{17}{2} n \cdot 7.894_{1}\right) 2^{-t_{1}} \\
& <3 E(n+1)^{3} 2^{-t_{1}} \tag{6.5.18}
\end{align*}
$$

equation $(6.5 .12)$ may be put in the form

$$
\begin{equation*}
\underset{\sim}{A} \underset{\sim}{c}=\underset{\sim}{A} \text {, } \tag{6.5.19}
\end{equation*}
$$

where

$$
\begin{align*}
& \overline{f_{j}}:=f_{n}+\varepsilon f_{\sim}  \tag{6.5.20}\\
& \left\|_{i=1}\right\|_{\omega} \leqslant\left\|_{\infty}^{K}\right\|_{\infty}\| \|_{\infty} \|_{\infty} \tag{6.5.2i}
\end{align*}
$$

Consequently our computed solution has the popery tint it corresponds to the exact interpolation of the data points $\left(t_{i}=\overline{3}_{i}\right)(i=i, 2, \ldots, a)$ io a. spline with interior $\ln$ note $x_{j}(i=1,2, \ldots, M-1)$, mere

$$
\begin{equation*}
\|\underline{\sim}-f\|_{\infty} \leqslant 3 g(n+1)^{3}\|c\|_{\infty} 2^{-t_{i}} \tag{6,5.2,2}
\end{equation*}
$$

Accoritirg to Martin an $\begin{gathered}\text { wilkinson (1967) © } \\ \text { is seldom grouter than }\end{gathered}$ $\left.\left.\max _{i, j}\right|_{a_{i, j}}\right\}$ in the original matrix. But $a_{i j}=J_{n j}\left(x_{i}\right)$ and $0 \leqslant N_{n j}(x) \leqslant 1$.
Minus max $\left|a_{i j, i}\right| \leqslant 1$. Consequently, that result

$$
\begin{equation*}
\left\|\frac{\vec{i}}{\sim}-\frac{f}{\sim}\right\|_{\infty} \leqslant 3(n+1)^{3}\|c\|_{10} 2^{-t_{1}} \tag{6.5.23}
\end{equation*}
$$

wii usually hold.

It jas our experience that in mont practical situations the ratio $\|\underset{\sim}{\sim}\|_{\infty} /\left\|_{i}^{n}\right\|_{\infty}$ proves to be close to unity. In such cases (6.5.23) can be replaced by the approximate relative error bound

$$
\begin{equation*}
\frac{\left\|\bar{s}-\frac{\infty}{\sum}\right\|_{\infty}}{\left\|\left\|_{\infty}\right\|_{0}\right.} \leqslant 3(n+1)^{3} 2^{-t_{1}} \tag{6.5n21}
\end{equation*}
$$

The above bound awe very satisfactory in that they depend uni upon the order in of the spline and are therefore independent of the number of date points n. Tote that if a spline basis not havcing a compact support property such as that of the B-spines were employed then $A$ would be as wall Loblrix wii consequently the resulting error bounds would contain a tern in H3 (af rilleinson, 1963: p 108) rather than in $(n+1)^{3}$.

The bounds ( 6.5 .23 ) and ( 6.5 .24 ) are quoted here since wo bel deva they would hold in most circumstances. It is always possible to derive relatively pathological examples jinn which $\|=\|_{\| \infty} \Rightarrow\|f\|_{i w}$ and in these circumstances (6.5.24) will provide an optimistic estinatio or the accuracy of the results. switch cases misally correspond to data minot cones close in sone sense to violating the Schoenberg-initrey conditions ( 6.1 .4 ) and hance could rot te considers m?li-posed interpolation cobbles. It is oi t course trivial in practice to verify wether $\|=\| \omega$ is iniecà or the order or $\left\|\frac{\|}{\sim}\right\|_{\infty}$.

Onily the round ( 0.5 .22 ) is rigorous, hovever, and the cantious user may Weren dinajs to usu it in practice. Its cvaluation reduires a valu: for ewhich in than calls for the montoring of the growh of che chementa as A. is reduceil to $\underset{\sim}{L U}$ forw. Such a monitorine cen bo carricd out etficientid using a method described by Businger (1971).

An analysis, similar to toe above, can be carried out of elinanation algoritios sucin as Alecrithm 2.1n.i thet utilize the apacifio atructure re A. Unfentunately, the ofor homa now depents kpon the precisu mature of
 Ficr a band centred roughly of the inain dingunel. the richi-hund side of (6.5.22) would be roduced by afocton of appoximately 8 . A somewht wermen bound can be obtained for Algorjtinin 2.13 .1 based on elementary franfomations.

Analogous orrox bounds can be obtainad for the methods that ennioy unitary transfomations (eg Algowtim 2.14.1). These lounds are somernat mane safisfactory ir that no factor \& is present, thene being no rossibility of error frowth since the $2-n o m$ of each colurn reasing esentially constant, during the reduction (ialkinson, 1965: p 246), We have found, at least on the basis of some $20-30$ problems considered to date, that wilkinson's contention that $g$ is almost invariably of order unity, vinei usine Gansian elinination with paritial piroting, certainly seems to hold for the linear systems arisine from spline interpolation problens. Corseguently, beeause of the slightly simpler procraming and faster conputation of Gaussiea elinination methods, it appars that elininsiiion methods uffer some ailventages over methods explcying unitary transiomations. Moreover, in the Canes studied, Gaussian eljmination with paris.ol piroting has never given poorer rasulte than unitary trancionations (classical plane iotations) In a nuwer of easec tha maximim emor mes about half that for fivens
 tranaformatione yere employed.

## 6.6 mantin buato

The fact that the algorithouescribed in this chareve oan be used for multuple loncts is ossantially implic: tin ow doscipition. However, it may be emphasjzed thit Algorimins 6.4 .1 and 6 . 4.2 can be used just as officiently to deterino interpolating anlines of a lower continuity cless. For cxample, in order to interjolate hy a splize of degree 5 with continuity up to and ingluding the ascond derivativo, triple krots in piace of simple inots are mrloyed. It may sometines lie advantageous to relax continuity at a single point. For instance, the function $|x|^{\text {p-1 }}$ may be replesenter exactly by a spline of ordaw a hating a singla knot of multiplicity n-1 ot $x=0$.

## 6. 7 The choice of exterior knote

The condition number $\mu$ of the matrix A is dopendent on the ohoior of additional krots, he conjecture thet, as yegards obtaining a reletivoly small value for $k$, a good choice of knots is that alresing fictostad, vis knots $\mathrm{cf}^{\prime}$ multiplicity $n$ at the range end-points $x=a$ and $x=r$. m support this conjecture and to investigate the possible exlont of thes dependence we give a cless of sinpla numorical axamples.

Consider the interpolation of the data points $\left(i_{i}, i_{i}\right)(i=1,2, \ldots$; $n=\mathbb{N}+3$ ) by a cubic spline with interior knois $x_{i}=t_{i+2}(i=1,2, \ldots$, N-1) (if Section 6.8). We have used the sirugher value decomposition (Section 2.15) to determine tine spectral condition numos $\mathcal{k}_{2}$ for throe choices of the exterior knotis. Vie sat

$$
x_{i}= \begin{cases}t_{1}-i h_{1} & (i \leqslant 0)  \tag{6.7.5}\\ t_{n}+i h_{2} & (i \geqslant 1 T)\end{cases}
$$

minese

$$
\begin{equation*}
h_{1}=h_{2}=0 \tag{6.7.2}
\end{equation*}
$$

(anincicent sud lnots)s or

$$
\begin{equation*}
i_{1}=x_{1}-t_{1}, \quad u_{2}=t_{I I}-x_{N-1} \tag{6.7.3}
\end{equation*}
$$

(hot-hand and right-hand end knots at spaning: respectipely equal to the first and last interval length), or

$$
\begin{equation*}
h_{1}=h_{2}=\left(t_{m} \cdots t_{i}\right) / J \tag{6.7.4}
\end{equation*}
$$

(erd knots at a spacing equal to the average interval length)

The velues of $\mathcal{H}_{2}$ for equi-spaced data $t_{i}$ i $(i=1,2, \ldots$, n $)$ and vialues of $n=4,5, \ldots, 20$ for these timee choices of exterion invis are given in frable 6.7.1. To compute the singmar values anu thus whe specitrel condition number of $A$ we first used plane rotations to roduco A to upper band-triangular form. Thon the published procedure 'minnitr, which is one of the AlEOI 60 realizations given by Golub and Reinsch (1970) of the singular value decomposition, was empleyed to diagonalize the band trienele.

In Tabic 6.7.1 are the values of $x_{2}$, coluwn 2 containing the values corrospondine to coincjdent end knots and colums 3 and 4 containinge
*. In frect proceaure 'minrit' failed, because of floatine-point orerflior', in attempting the case $\mathrm{rit}=19$ for the secone choice of knots. This failure was attribu'ed to a division by zero, winch resulted from underflom in attemptire to compute the rotation parameters, After replacing this appert of the computation by the molified mocess recommaded in Scoticu: 2.9, 'roinfit' then worked setiafactorily in all coses. In anses where the m-inodiffed 'minfit' producea resultis, the singular values agreed, apart
 tho modifind varaica.
respectivedy the vancs cormponding tu $(6.7 .3)$ and $\left(6.7 \cdot i_{r}\right)$. Tests carrica cut rith a varioty of mecuality numes dota as well as winh :plines of othex owens generully ruinforse the conclusion that the chojce or cojncident end knots segms to bo a guoa one.

27	Coincident; end luots	Distin   (1)	knots $\left(\begin{array}{c} c \\ ) \end{array}\right.$
4	5.051 1	58.193	58.193
5	5.0526	33.596	33.596
6	4.6119	31.175	23.559
7	4.4 .838	27.772	18.222
$\mathcal{S}$	4.2120	25.826	15.'56
9	4.0715	25.066	14.068
10	3.9935	24.757	13.219
11	3.9498	24.632	12.708
12.	3.9252	24.580	12.320
13	3.9112	24.55?	12.020́
14	3.9032	24.548	11.793
15	3.8985	24.54 .3	11.604
16	3.8959	24.54.	1i.itri
17	3.8943	24.540	11.314
18	3.8933	24.540	11.200
19	3.3928	24.54,0	11.101
80	3.29?!	24.540	11.014.

Table 6.7.1. Talues of the spactral condition number $K_{2}$ on A for in squi.apteed data and timee shoices fow the ond knots.

problain
We make the tollowing conjecturc. Iron the vievyojnt of inhorent swability (je sensitivity of the spline coefricientis with respect to the data), a good choice of interior krots in the cese of even-order splines, ie $n=2 k$, is

$$
\begin{equation*}
x_{i}=t_{k+i} \quad(i=1,2, \ldots, N-1) \tag{6.3.1}
\end{equation*}
$$

For the choice (6.8.1) the interpolating spinc of order ak is composed of fulynomial aros of dearee 2k-1, each of wich spans ono interval betreen adjacent data points, except the first and lest arcs, each of which spans $k$ adigcent intervals. Later in this section we inverticatic the dependence of the conditionting of the cubie spline interpolation problem for the choice ( 0.8 .1 ) upar the value of m. Firstly, homeyer. Fo consider in detail what proves to tee 2 . very pocr choice of knots ent subsecuently compare it with the above choice.

The second choice of knots eriphasises an iaportant observation: the satiss'action of the Schocrberg-Thitnay conditions ( $6.1 . \%_{i}$ ) is no Euarantee in itseff that the coefficients of the foterpolating spire are well dofinet. rats renark is true even if the comotions are "re? Isatioffied", ie even it tho data and knows are such that theres erist apureciabje perturbations in their vaiues which are such that (6.1.4) rentiris sutiaried. Consiase the follomic cramplo. Interpoiste data points $\left(t_{i}, f_{i}\right)(i=1,2, \ldots$, bn $)$ by a cuivic spline with lnots $x_{i}=t_{i}$ $(j \leqslant 0), x_{j}=t_{j+3}(j=i, 2, \ldots, N-1), x_{j}=t_{n}\left(i \geqslant N_{i}\right)$. Here $n=m-j$. The systen of equations defining the f-epline noefticients is

$$
\begin{equation*}
\Delta C=f= \tag{6.8.2}
\end{equation*}
$$

where $A$ babes the fom, illushrated bere fow the cense $m=10$ :

$$
\underset{\sim}{A}=\left[\begin{array}{lllllllll}
x & & & & & & & & \\
x & z & x & x & & & & & \\
\pi & x & x & x & & & & & \\
& x & x & x & & & & & \\
& & x & x & x & & & & \\
& & & x & x & x & & & \\
& & & & x & x & x & & \\
& & & & x & x & \\
0 & & & & & & & & \\
& & & & & x & x & x & \\
& & & & & & x & x & x
\end{array}\right]
$$

Three stabiilizea elementary trenstormetions, inveivime only the secorce, third and fourth rows, onable f to be conves ieat to the Iomer bariso triongular form

If the same transfomations are apylied to fo procuce a vector fin the sciution of the syster

$$
\begin{equation*}
\underset{\sim}{I} \underset{\sim}{C}={\underset{\sim}{x}}^{2} \tag{6.8.5}
\end{equation*}
$$



It is meailily verified that, for it $=7,8, \ldots$, me,

$$
\begin{equation*}
I_{i, i-2}=I_{i i}=\frac{1}{6}, \quad I_{i, i-1}=\frac{2}{3} \tag{6.4.6}
\end{equation*}
$$

No: consider the solution of (6.8.5) using forward substitution. After $c_{i}(i=1,2, \ldots, 5)$ have been detomince then, for $:-7,8, \ldots, 11-1$,

$$
\begin{equation*}
c_{i}=6 c_{i}-\left(L_{i-1} c_{i-2}\right) \tag{5.8.7}
\end{equation*}
$$

If $\bar{c}_{i} \bar{c} e n o t e s$ tine computed values of $c_{i}$, in floatincepoint aritunctic, ( 6.8 .7 ) becomes

$$
\begin{equation*}
\bar{c}_{i}=\frac{\operatorname{Ge}_{i}\left(1+\varepsilon_{1, i}\right)-\left(4_{i-1}+\bar{c}_{i-2}\right)\left(1+\varepsilon_{2}, i\right.}{1+\varepsilon_{3, i}}, \tag{6.0.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\left|\varepsilon_{1, i}\right|,\left|\varepsilon_{z_{2}, i}\right|,\left|\varepsilon_{3, i}\right| \leqslant 2^{-t} . \tag{6.0.9}
\end{equation*}
$$

Suppose that no romaine emos at all are comittiod, ie that $\varepsilon_{1, i}=$ $\varepsilon_{2, i}=\varepsilon_{3, i}=0$. Then, after setting $\bar{c}_{i}=c_{i}+\delta c_{i}$, we obtain from (6.8.8) ansi (6.8.7),

$$
\begin{equation*}
\varepsilon c_{i}=-4 \delta c_{i-1}-\delta c_{i-2} \tag{3.f.10}
\end{equation*}
$$

IV W the solution of the difference equation (0.8.10) is

$$
\begin{equation*}
\delta c_{i}=f\left(-2-z^{\frac{1}{2}}\right)^{i}+B\left(-2+z^{\frac{1}{2}}\right)^{i}, \tag{6.5.11}
\end{equation*}
$$

where $A$ sind $b$ are constants that dopers no tire initial conditions. The term $\left(-2+3^{\frac{1}{2}}\right)^{i}$ is oscillatory and dampen, nisereas the term $\left(-0^{2}-3^{\frac{1}{2}}\right)^{\frac{1}{4}}$ is
 damped tern is regificibie and fou all practical purpenes

$$
\begin{equation*}
\delta c_{i}=-\left(\varepsilon+\frac{1}{3^{2}}\right) 0 c_{i-1} \tag{6.8.12}
\end{equation*}
$$




 sensible condivion muber associated with this problem sincul. themefore srop by such a focitor as the mumber of data points is increasea by one. Ye see shantiy that is $\left\|_{i}\right\|\left\|_{i}\right\|^{-1} \|$ is talen as the moasuru ai concition, Where $\|$ - il derotes the spectral norm, such feruth $\ddagger$ indece obsenved.

It should we emphasised that the reasun for this rejsid frowih in condition rumber is not thet the forward-substitution proosss is juselt instende, but, that the perificular choice of lrots rives.riso to an ill-posed probien. What the pioblen is ill-nosed wan bo soen hempistionily as folloms. The clue js given by the faci thit jn order to reduca A to trianglilan form, guerations un only the finst four rows and required. The irterpretinjoy of thes observation in the sontext on the actual iriterpolation problen is twaf the data pointu $\left(t_{j}, f_{j}\right)(j=1,2,3,4$ ) all lie within the intorval spanned by tho knots $x_{0}$ and $x_{1}$ and herne the cubic are spanning this interval is dofons uniquely by these fum pointis. Becauso of the continuity of a cubic spline, the cubic sro spamine the jntervel $\left(x_{i}\right.$. ${ }^{\prime}$ ) rust take at $x=x_{1}$ the value and first anc sooond leriratives of iho finsto
 four piecer of information fully deffine the seconä cubic erre. Ir a simblar nay a.ll memanine ounic arcs ene hence the cumplete cubic spinue mey he constructed.
 yopageted in one way to the subsecuert cubic rios. proves in the velues
 effests. The sibuation is somuinot akin to tro solution of en iritiol.. value problem, where the soluthon is scmetimes much rove sensitive to tine
 boundrar-valne probiem. Iespite these comments, as a consemence of the analysis of soction 6.5, the resulting computod spline is nevertheless the exact interpalant of a set of dnta pointr close to thuse proscribod. ilcwever, the seline so constructod wial the "true" spifno may be very dinferent, coinciding only at or newn the deita points.

If the knots of the spine are those in (6.8.i) then, in the casc n.4. A takes the scim (of 6.8.3)


By anplying zix stabilizeà elementary transtomatioms the comresponzink system wisy be convertad to trinlemagonal form. The solution then proves reletively insensitive to data portubations, the probicm now beine considerably better-posez. In fact A may well be diarcnolly comjont. Jnie use of the singular value decompostition (Section 2.15) aloo thandayn vory clearly the relatime conditioning of the problems rasociated witn
 value of men from to 20 ma set $i_{i}=i \quad(i=i, \%, \ldots$, m $)$ and made the noor chaice on mots

$$
x_{i}=\left\{\begin{array}{cl}
1 & (i \leqslant 0)  \tag{6.3.815}\\
i+3 & (i=i, 2, \ldots, m+4) \\
1 & (i \geq m-3)
\end{array}\right.
$$

 computed. The sincular value decomposition was uses to compate the
 6.3.1 we give in Columen 2 for each valua of m the velue of $x_{2}(\mathrm{ma})$, as well as the ratios of successive values of $x_{2}(m)$ in Column 3. The exeroise was reperted but with the eond rhojee ois knots

$$
x_{i}=\left\{\begin{array}{cl}
i & (i \leqslant 0)  \tag{6.8,15}\\
i+2 & (i=1,2, \ldots, m-4), \\
n & (i \geqslant m-3)
\end{array}\right.
$$

Which gives rise to a matrix $\underset{\sim}{f}$ of the form (6.8.13). The corrosponding
 successive ratios in Column 5. It is to be roticed thet for the vettor choice of knots the ratio $\mathcal{K}_{2}(\square) / 火_{2}(n-1)$ tends to unity, whereas the for the poorer ahoice tends rapidny to a valuc approvimatire $2 * 3^{\frac{1}{2}}$, minich was derived fron other consiubatiors eariser in this secition.
intorion lnota

	$\mu_{2}(n)$	$\chi_{2}(m) \prime 火_{2}$	$x_{2}(m)$	$x_{2}\left(\pi / / x_{2}(m-1)\right.$
4.	5.054 .0		5.0540	
5	8.0252	1. 583	5.0627	1.002
6	$1.92 .5 \% 10^{1}$	2.599	4.6119	0.911
7	$7.01+53.10^{1}$	3.659	14.4 .98	0.972
8	$2.5356 .10^{2}$	3.744	4.2120	0.939
5	$9.843710^{2}$	3.735	31.0715	0.967
10	$3.6742_{10}{ }^{3}$	3.733	3.9935	0.980
11	$1.3713_{10}{ }^{4}$	3.732	3.9493	0.989
12	$5.11 / 1 / 10^{4}$	3.732	3.9252	$0.9 \%$
13	$1.909910^{5}$	3.732	3.9112	0.996
$1!+$	7.128010 .5	3.75	3.9032	0.998
15	$2.6502 .10^{6}$	3.7 .32	3.8986	0.999
:6	$9.928010^{5}$	3.732	3.8959	0.999
17	$3.7052+1{ }^{7}$	3.732	3.8943	1.000
18	$1.38 .88_{10} 8$	3.732	3.8933	1.000
19	$5.160710^{8}$	3.732	3.8328	1.000
50	$1.926010^{9}$	3.132	3.8924	1.000

Table 6.8.1 Vilues of the srectrai encition muater $x_{2}$ of $A$ for in cout-snaced औatio end tan choinss of the interion prots
$6.9^{\circ}$ Muncracol oxamise

 ani 12 decinale) in the mentissa. Whe results moten correspond to the use of ATyorithm 6.4.?. Virtualy idontical rempts vero ontained
 pointo were chowen fin all casua.

The first firee evmples havo been cibosen to ilfustrate the smericnl stability of the method, rather than to riewonstrate the approxinating fower of splinge. The remaining example arose in a study noloting to the decay of $f$-particles.

Yxañe 6.9 .1 (n-ín, $n=0$ )
A spline $s(x)$ of orden 8 was defined by the arbitrexidy chosen interion kots $x_{i}$ and B-spline coefficients of eiven in columbs 3 wid $1 /$ of
 the representation (5.1.10) ror the vajues $x=i_{i}(i=1,2, \ldots, 16)$ fiven in colum 2 oit I'able 6.9.1. Algorithu 6.t.1 was used to intompalate these values; the dififerences between the resulting coefricients $\underset{\sim}{\underset{\sim}{c}}$ and the rines of $\underset{\sim}{c}$ are given in column 5 of Table 6.9.1.

Teines of six) at $x=t_{j}(j=i, 2, \ldots, 16)$ and wt the helfonity pointis $x=\frac{1}{3}\left(t_{j-1}+t_{j}\right)(i=2,3, \ldots, 16)$ were nntputad using tigorithm 5.2 .1 from the D-apline neprescatition (E.1.10) Eor the Eivon coofficiento eis ma for the somputed voefficienta $\overline{0}$, and fren the pjeceniso-chzkyshcvseries representation (5.11.1). The maximur discrepaney betroen the given anu compute $\bar{b}$-spline representations over these 31 points pas $1 \times 10^{-9}$, sid thet betreen the given B-spline roprezertiotion and the Cheorsher-series funm mas aiso i $\times 10^{-9}$.

rable 6.9.1 Frescribeo and computed E-spline eofficuints for Fzemple 6.9.1.

Exarphe 6.9.2 ( $n=11, n=6$ )
In: werde to inlustrate the pexiomance of the Mgorithm 6.t.2 unon an example with mintipie leots, the follonine case was considaren. Valnes cf the function $f(x)=\left|x+x^{5}\right|$ were computed for the valioes $x=t_{i}$ (deliberately chesen not to lie symetricaly aisposea about $x=0$ ) Eiven in colum s of table 6.9.2. $f(x)$ is essortinlly a spline of order 6

motu giver in culum 3 of Tabie 6.9 .2 wore obesea. tho alforitira
 or (wabe 6.9.2) by tik quativies zivon in wom 5.
The value of $\int_{-1}^{1} s(x) d x$ conrated iron $(5.10 .7)$ was $1.33333333 \%$, widoli agrees to 14 signiricant figures with $\int_{-1}^{1}\left|x+x^{5}\right| d x=\frac{4}{3}$. Values of $s(x)$ more computed at $\pi=i_{j}(i=i, ?, \ldots, 11)$ ond at $x=\frac{1}{i}\left(\ddot{t}_{j-1}+t_{j}\right)(j=2,3, \ldots, 1 i)$ srom the B-spiline ropresontation for the werntac eofficients, from the piecorise-Chebyshev-sexion represultation, and from $\mathcal{L}(x)$. The maximum disorepency over these 21 poirts bcirwon the P-spicine reprosentation and $f(x)$ \#oes $3 \times 10^{-12}$, and that botwoen the Cherusher-sisries form and $f(x)$ was $1 \times 10^{-11}$.

$i$	$i_{i}$	$x_{i}$	$c_{i}$	$\left(c_{i}-c_{i}\right) \times 10^{11}$
1	-1.0	0	2.0	0.00
2	-0.8	0	0.3	+0.36
3	-0.6	0	0.6	-1.82
4	-0.4	0	0.4	+2.18
5	-0.2	0	0.2	-0.91
6	0.1		0	-0.01
7	0.3		0.2	+0.14
8	0.5		0.1	-0.55
9	0.7		0.5	+1.09
10	0.9		0.8	-0.36
11	1.0		2.0	0.00

 Wxamio 6.9.?

Tample 6.9. $3 \quad(m=11, r=11)$
3y :ray of a mpocial test case, this examie jinnstrates the interpolation of 11 cqually-mpaced valuns of $e^{2}$ in the interval -i $\leqslant \leqslant 1$, by a spline cf order 11 with no interior lenots. Ir other moxd the apino defencrates into a single polymomial of degree 10. The function $e^{x}$ over the runge $-1 \leqslant x \leqslant 1$ can in fect be mproximated to 10 decinals by such a polynomion Glensham, 1962). The corputed Chetyshev coofricients (Table 6.9.1) dirfer by at most : $\times 10^{-10}$ from thuse Eitiven by olonshan.

Hote that the computed B-spane cooricicients (Talle 6.9.3) ixe and. positive and display a very systamatio behovinur. Te also observe that to 11 signifficant figuros $\bar{c}_{i}=e^{-1}$ cmod $\bar{c}_{11}=c$ (as a comsequenco of the choice of enfincident ond butsj, the integral of the spline ketween-i and +1 has computed from (5.10.7) as 2.35040 2387.3. Ihis value acreen to 11 significant figures with that of $\int_{-1}^{1} e^{x} d x=0-e^{-1}$.

It is of interest io observe that the functions ivni $(x)$ (or frin $(x)$ in tine case $N=1$, when translated to the rance $0 \leqslant x \leqslant 1$, era simply multiples of the basis functions $x^{i-1}(1-x)^{n-i}(i=1,2, \ldots, n$ ) of the Bernstein polynomials (Davis, 1963).

i	$\bar{c}_{i}$
1	0.3678724 .117
2	0.4, 作5 53279 4
3	0.53138142177
!	0.64.174.52279 \%
5	$0.7773022901+5$
6	0.945364491300
7	1.1563483957
8	1.41954 72052
9	1.7517316123
10	2.17462 54.652
11	2.7182818285

Table 6.9.3 Computed 3-spline cocfficients for Hemple 6.9.3

$i$	11
0	2.5321317555
1	1.1305182031
2	0.77149535956
3	0.0443369499
4	0.00514424045
5	$0.0005 \div 23263$
6	0.00004197732
7	319938
8	19920
9	1099
10	109

Tebie 6.9.4 Computce diehysher-series coefoicionts fion hrangle 6.9.3

2ampe 6.9.4 (mat, $n=4$ axd 5)
This example is concerried with one aspect of a protion that orjegingtoni jn the Divisicm of Radirim Ecienco of the National Physionl Taidoratory. I an indented to this division for permission to inclued thoir aata and the results of sone of the compatations ipon it.

The 24 data points $\left(t_{i}, f_{i}\right)(i=1,2, \ldots, 24)$ in Columan 2 and 3 of fable 6.9.5 reprecent the theoretical munor of alectron in the f-docaly of a radionctive isotope (dependent variabla) rov vaicious vijuen of monentrum (indepenảent variable). Tho determinabion of ewoh vane ar the dependont voriobla involved the munerice? evaintion os an extrencily conjlicated integral ; it is belicvod that the velue is correct to the number of trigures quoted. Tit mes reguired to interpolate those data
 of sogond approximation tho the surber of ejectrons for any valua of nobinturn in the presuribedzange. No estimate of the doristite integral over the range of the unta was also recurred. In the abence of ary further infomation it vas decided to interpolate the data by a cuific spline $s_{4}(x)$ with kots chosea in accorfance with (6.8.1). A further intorpolation was carried out with a quintic spline $s_{0}(x)$, again choosing knots in acorniance with (6.8.1). B-spline soarficjents $c_{j}$ of tive firterpolating splines obtained using Migoritha 6.4.2; and the Entegrens formed from (5.i0.7) are given in Coluns th and 5 of Table 6.9.j. Fiote that the velucs of $c_{i}$, particularly in the cubice case, monic quiso eloscly the values of $t_{i}^{\prime}$ 。

i	${ }^{\text {t }}$ i	$\mathrm{f}_{\text {i }}$	n-4	n:-6
1	0.1	5. 5613	5.56130	5.26130
2	0.2	5.6200	5.53855	5.158526
3	0.3	5.7159	5.66430	5.64 05'
4	0.4	5.0516	5.84435	5.74222
5	0.5	6.0300	6.02289	$5.9301,3$
6	0.6	6.2502	6.214 .11	6.24 .109
7	0.7	5.5069	6.50189	6.49939
3	0.8	6.79 .38	$6.7897!$	6.73771
9	0.9	7.1052	7.10197	7.16291
10	1.0	7.4361	7.514 .13	7.63435
11	1.2	8.1407	8.154 .53	8.20518
12	1.1	8.8837	\&. 58005	8.87827
13	1.6	9.6496	9.64 74.8	9.64 .660
14	1.8	10.429	10.42765	10.42669
15	2.0	¢1.216	11.21593	11.81633
16	2.2	12.005	12.00465	12.001 .06
17	2.4	12.795	12.79548	12.79605
18	2.6	13.583	1.3 .5834 .5	13.5834 ${ }_{4}$
19	2.8	14.368	14.35874	14.36931
20	3.0	15.149	15.14.959	15.1.6459
21	3.2	15.926	15.92590	16.39353
22	3.4	16.598	16.95612	17.15955
23	3.6	17.465	17.72069	17.77176
24	3.8	18.227	18.22700	18.2 .2700
Zstiwates of definito integral			4.1 .46130	4,1.46131

Table 6.9.5 Data and computed B-spline coefrioiorts or orders 4 and 6 for Example 6.9.4

The firnt use mian of tho futcroolating splines was to evaluato fiev
 variable, vie from $x=0.10$ tu $x=3.2 a$ ist in interval no 0.02 in $x$. The resulting table is too bulky to verroace in full; we give part in Table 6.9.6.

It is reassurine to see a strong moasure of agrocment hetween the values os $5_{4}(x)$ and $5_{6}(x)$ that is culmost consiatuent with the supposcd oconurscy
 agreoment tells us nothirg aloouto the closeness of eithor $s_{4}(x)$ ox $s_{6}(x)$ to $f^{\prime}(x)$.

$x$	$5)_{4}(x)$	$s_{6}(\mathrm{x})$	$10^{5}\left\{s_{5}(x)-56(x)\right\}$
0.10	$5.56: 30$	5.56130	0
0.12	5.57018	5.5\%006	+12
0.14	5.5804 .6	5.58033	$+13$
0.16	5.59219	5.59208	+11
0.18	5.60536	5.60531	+5
0.20	5.62000	5.62000	$\bigcirc$
0.22	5.63513	$5.636 \% 5$	-3
0.24.	5.65377	5.65381	4
0.26	5.67293	5.67297	-4.
0.28	5.69363	5.69365	-2.
0.30	5.71590	5.71590	0
1.50	9.26448	9.264 .52	-1
1.52	9.34 .120	9.34 123	-3
1.54	9.4.1807	9.41810	-3
1.56	9.49511	9.45513	--2.
1.58	9.5722 .9	9.57230	-1
1.60	9.64,960	9.64960	0
1.62	9.72704	9.72704	0
1.62	9.30461	9.804 .60	+1
1.66	9.88222	9.88227	+2
1.68	9.96009	9.96007	$+2$
1.70	10.03800	10.03797	+3
3.00	15.14 .900	15.14900	0
3.02	15.22689	15.25689	0
3.04	15.30474	15.30474	0
3.05	15.38255	15.382 .55	+1
3.08	15.1 .6033	15.45032	+1
3.10	15.53306	15.53804	$+2$
3.12	15.61574	15.61573	+1
3.14	15.69338	15.69337	+i
3.16	15.77 .097	15.77096	$\therefore 1$
3.18	15.84251	15.8145:	0
3.20 .	15.92600	15.92500	0
3.22	16.00313	$16.003,44$	-1

 orders 4 and 6 for burmen $6+3.4$

## LEAST-SQUARES SETITE APFROXIMATION

In this chapter me consider the least-squares approzimation of aiscretie data sets and of functions by polynomial splines. We pay consideralily more attention to the discrete problem, where the data is usually ompirical ini nature, since we consider it to be of far ereater prsotical inrortance than the continuous case. In fact, if a spline approximation of o nathematioal function is required, it is usually more appropriato to seek a mjnimax approximation, ie one that minimizes the maximum orror of the approximation (see, for example, Rice, 1969: 145-154). Methods for the determination of such approximations are outside the scope of this rork. Huwever, for completeness, wo show bricfly in the last section of this chater that ir a least-sguares spline approximation is required, it can bo computed efficiently if the spline is first expressed in its B-spline rorm. The oreanjzation of the earlier sections of this chapter follows to some extent that of Chapter 6 on spline interpolation, since laast-squaros approximation by splines can be considered as a generalization of spline interpolation. After all, if the pioblem is properly posed (see Sections 6.2 and 7.1) and if the number of free linear pararaters of the spline is the sane as the nuraber of data points (assumed distinct), thon tho least. squares approximation of this datio set intornolates tho points. Morover, similar numerical methods (Chapter 2) can be applicd to the rosulting iineor systems in both the interpolation acd least-squares cases.

In Section 7.1 we introduce the least--squares spline-fitting problem and in Section 7.2 discuss a method of solution, using B-splines, in the crse where the knots are prescribed. Also in section 7.2 a simplo algoritha is presented for testing whether a unique spline approximant exists in any given case. In Secticn 7.3 an algorithen for the least-scuares splino-fitting
problem is detailed and in Section 7.4. an cron analysis of the algorjthen is given. The sensitivity of the B-spline coeff'icionts to parturbatjons in the data is discussed in Section 7.5 . The important casa of cubje splines is considered in Section 7.6 and in Section 7.7 methods of assessing the acceptability of a cubic spline approximant aro discussed. The choice of knot positions is treated in Section 7.8 and numericaj examples are given in Section 7.9. Previous work on the outonatic placenent of knots is surveyed in Section 7.10. Finslly, in Section $\%$.11, a method is proposed for the least-squares spline approximation of a wathematical function.

### 7.1 The least-squares spl.ine-fititing problem

The least-squares spline-fitting problem may be posed in the following manner.

Suppose a set of values $t=\left\{t_{1}, t_{2}, \ldots, t_{m}\right\}$ of on independent variable $x$ and corresponding function values (ordjnates) $f=\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ are prescribea. These function values may be the computed volues of $a$ mathematical function; they may be the results of a previous omputiation; usually they will be values derived from an experinental situation anc hence be contaminated to a ereater or lesser extent by expexinental error. We assume that the vaiues of the independent variable are ordered such that

$$
\begin{equation*}
t_{1} \leqslant t_{2} \leqslant \cdots \leqslant t_{m} \tag{7.1.1}
\end{equation*}
$$

Note that equalities are permitted in (7.1.1), corresponding in an expcrimental situation to the repetition, or replication, of measurenentis. Suppose also that a set of comesponding fositive weighting factors $w_{1}, w_{2}, \ldots, w_{m}$ is prescribed. In manjr cases or interest all weighting factors shall be sct equal to unity; howerer, the general case is considered here because of its importance in certair situations.

The problem is to compute tho paramiters of a spline function $s(x)$ of
order $n$ (degree $n-1$ ) with interior knots $x_{1}, x_{2}, \ldots, x_{N-1}$ so as to
rininize the residual sum of squares

$$
\|\underset{\sim}{m}\|_{2}^{2}=\left\|W^{\frac{1}{2}}\right\|_{\sim}^{2} \|_{2}^{2}=\sum_{i=1}^{n} w_{i} \varepsilon_{i}^{2}
$$

Fhere

$$
\tilde{\sim}=\operatorname{diag}\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}
$$

ant

$$
\begin{equation*}
\varepsilon_{j}=s\left(t_{i}\right)-f_{i} \quad(i=1,2, \ldots s m) . \tag{7.1.4}
\end{equation*}
$$

Ye assume that the sot of N-1 interior knots is prescribed and, as in the interpolation problem of Chapter 6 , forms an n-extended partition of (a,b) $\equiv\left(t_{1}, t_{m}\right)$. Again, as in Chapter 6 , we introduce additional knots so that the complete set forms a standard knot set with coincidonti and knots. Guidance relating to the choice of the number of knots and their locetions is given in Section 7.8.

Let $\tilde{I n}$ denote the number of distinct values of $t_{i}(i=1,2$, $\ldots, \mathrm{n})$ (for a given set of values of $t_{i}, \tilde{m}$ is one greatel than the number of inequalities in (7.1.1) that can be replaced by strict inequalities). It is assumed henceforth that $m$, $n$ and is satisfy the condition

$$
\tilde{m} \geqslant N+n-1
$$

(cf Section 6.1), otherwise there is no possibility in general of a unique solution to the problem as definea.

### 7.2 Method of solution

For similer reasons to those discussed in Section 6.2 we intend to emp? Cr the B-splines $N_{n i}(x)$ as a basis for $s(x)$. Then $s(x)$ may be expressec in the form

$$
\begin{equation*}
s(x)=\sum_{i=1}^{q} c_{i} N_{n i}(x) \quad(a \leqslant x \leqslant b), \tag{7.2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{q}=\mathrm{N}+\mathrm{n}-1 . \tag{7.2.2}
\end{equation*}
$$

The least-squares problem is solved by detormining $\underset{\sim}{c}=\left\{c_{1}, c_{2}, \ldots, c_{q}\right\}$ such that $\|\underline{I}\|_{2}$ in (7.1.2) is minimized. Firstly, wo observe that in the particular casc $m=\tilde{n}=q$ there is a unique solution if and cmy if the Schoenberg-Fhitney conditions (6.1.4) are satisfied (in which case the sclution interpolates the given function values and $\left\|\|_{2}=0\right.$ ). In this case the paraneters $\underset{\sim}{c}$ are derined uniquely by the system of linear aj.gebraic equations

$$
\begin{equation*}
\underset{\sim N}{A C}=\underset{\sim}{I} \tag{7.2.3}
\end{equation*}
$$

(cf Section E.2), where $A$ is the q by q stepped bandec? matrix of handwiath $n$ and rank $q$ with $a_{i j}=N_{n j}\left(t_{i j}\right)$.

Now consider the general case where $\mathrm{m} \geqslant \tilde{\mathrm{n}} \geqslant \mathrm{q}$. The solution vector thon minimizes $\left\|\sum^{\frac{1}{2}}\left(\underset{\sim}{A}-\tilde{N}_{\sim}^{n}\right)\right\|_{2}$, where $A$ is the in by 4 stepped-bandod matrix of bandwidth $n$ with $a_{i j}=N_{n j}\left(t_{i}\right)$. Again, for $\underset{\sim}{c}$ to be unique, A must havo full rank q. For $\underset{\sim}{A}$ to have this rank there must be ot least one set of $q$ linearly independent rows of $\underset{\sim}{A}$. In other words, there must bo at jeasit one ordered subset $\underset{\sim}{t}=\left\{t_{k_{1}}, t_{k_{2}}, \ldots, t_{k_{q}}\right\}$ of $\underset{\sim}{t}$, where

$$
\begin{equation*}
1 \leqslant k_{1}<k_{2}<\ldots<k_{q} \leqslant m, \tag{1}
\end{equation*}
$$

for which the Schoenberg-Wininey conditions hold. It follows that for any given data set a unique least-squares spline approximation exists if and only if at least one ordered subset of the data satisfying the Schoenberg-Thitney conditions can be identified. We terra the complete set of condjticns


Which must hold for at least one choice of the integers $k_{1}, k_{2}, \ldots, k_{q}$ in order to guarantee the existence of a unique least-squares spline approximation, the generalized Schonherrimitney conditions.

It is to be noted that nearly all "reasonable" data sets arising in practice will satisfy these conditions. Only if there are resiuns where there are too many knots compared with the number of data points are the conditions likely to be violated. We nom show that a simple but efficient algorithm, taking $O(m)$ operations, can be constructed to scan any giver, data set to identify whether such a subset exists. We first re-vrite conditions (6.1.4) as the equivalent set of inequalities

$$
\left.\begin{array}{cl}
t_{j}<x_{j} & (j=1,2, \ldots, n), \\
x_{j-n}<t_{j}<\dot{x}_{j} & (j=n+1, n+2, \ldots, N-i),  \tag{7.2.6}\\
x_{j-n}<t_{j} & (j=n, N+1, \ldots, q) .
\end{array}\right\}
$$

In the interpolation case these inequalities may bo interpreted thus: for each value of $j$ from 1 to $a=N+n-1$ the fth value of the independent variable must lie strictly within the support of the jth B-spline. The sole exceptions to this rule are that in the case of coincident end knots,
$t_{1}=x_{1-n}\left(=x_{0}\right)$ and $t_{M}=x_{q}\left(=x_{N V}\right)$ ane allowed. In the context of the Cata-ritting problem, there must be at least one subset of N+n-1 distinct values of the independent variable, the $j$ th of which lies strictly within the support of the jth B-spline. Algorithin 7.2.1 below, based on this observation, is composed of $q$ steps, the $j$ th of which $(j=1,2, \ldots, q)$ involves the deteraination of the first datia point; ie the value of $t_{i}$ with mellest i, distinct from previously-used points, that lies within the support of the jth B-spline. If, for any of tinese values of $j$, no such point can be found, the least-squares spline approximetion of the data is not unique. Othervise, the approzimation is unique. It is assumed in Algorithm 7.2 .1 that the data points wre ordered accordinf to (7.1.1), that the lnots form a standard knot seit with cojncident end knots and that $x_{0}=t_{1}$ and $x_{N}=t_{m}$. An Algol impJementation of Algori.thr 7.2.1 in the case of cubic splines ( $n=4$ ) appears in Cox und Hayes (1973).

Alporithm 7.2.1: Determination of whether the generelized SchoenbergThitney conditions are satisfied (in which case I is set to zero) or violated (in which case I is set to unity).

Comment: i denotes the data point currently being examined.
Step 1. Set $i=0$.
Comment: The first data point, distinct from previously-used points, vithin the support of the $j$ th D -spline is deterrined in Steps 3-7.

Step 2. For $\mathbf{j}=1,2, \ldots, N+n-1$ execute Steps 3-7.
Comment: The first data pcint, distinct from previously-used points, lying to the right of the left-most knot of the jth $\overline{\mathrm{j}}$-spline is found in Steps 3-6.

Step 3. Replace i by $i+1$.
Comment: If the test in Step 4 is violated the date points have veon exhausted before all the conditions have been saiisfied.

Step 4. If $i>m$ set $I=1$ and finish.
Step 5. If $i>1$ and $t_{i}:=t_{i-1}$ return to Step 3 .
Step 6. If $j>n$ and $t_{i} \leqslant x_{j-n}$ return to Step 3 .
Comment: If the point so found does not lie to the left of the right-most knot a condition is violated.
Step \%. If $j<N$ ard $t_{i} \geqslant x_{j}$ set $I=1$ and finish.
Comment: All the conditions are satisfied if Step 8 is reached.
Step 8. Set $I=0$.
The least-squares solution of the system

$$
\begin{equation*}
{\underset{\sim}{W^{\frac{1}{2}}} \underset{\sim}{A} \underset{\sim}{c}=V_{\sim}^{\frac{1}{2}} \mathrm{P}}_{\sim} \tag{7.2.7}
\end{equation*}
$$

may be solved efficiently using one of the algorithins for stopped-idnded systems discussed in Chapter 2.

### 7.3 An algorithm for least-squares spline approximation

 Algorithm 7.3.1 is an implementation of the method described in Section 7.2. As with Algorithms 6.4.1 and 6.4.2, either coincident or noncoincident end knots may he supplied. Again, coincident end knots are usually to be preferred. Steps 1.1 to 1.8 of the algorithra constitute checks on the data. As with the algorithms of Section 6.it there is an element of redundancy in these checks. The algorithm employs Algori.thm 7.2.1 to check thether the data satisfies the generalized. SchoenbergWhitney conditions, Algorithin 3.12 .2 to compute the velues on the normalized B-splines for each data point and Algorithm 2.1/. 1 to solve the resulting stepped-banded system using classical plane rotations. As with Algorithm 6.4.2 the complete matrix A of this system is not formed initially, but rather each row is constructed as and when required by Algorithm 2.14.1.It is assumed that values or $m, n$ and $N$, data points $\left(t_{i}, f_{i}\right)$ and
corresponding meight: $w_{i}(i=1,2, \ldots, m)$ and knots $x_{i}$ ( $i=1-n, 2-n, \ldots, N+n-1$ ) are suppiduct to the algorithm.

Mlgorithm 7.3.1: Data approximation in the least-squares norm by a spline of order $n$ using normalized B-splines and classical plane rotations.

Gomment: The number of distinct data points is determined in Steps $1.1-1.3$

Step 1.1. Set $\tilde{m}=1$.
Step 1.2. For $i=2,3, \ldots$, in execute Step 1.3.
Step 1.3. If $t_{i}>t_{i-1}$ replace $\tilde{m}$ by $\tilde{m}+1$.
Corment: Check whether there is a sufficient number of distinct data pointe consistent witin the order of the splino and tho number of knots.
Step 1.4. Finish if "the inequality $\tilde{m} \geqslant \mathbb{N} H-1$ is violated.
Conment: Check Fhether the complete set of knots is ordered.
Step 1.5. Finish if the inequalities $x_{1-n} \leqslant x_{2-n} \leqslant \ldots \leqslant x_{N+n-1}$ are not all satisfied.

Comment: Check whether the completo set of knots forms an n-extonded partition.

Step 1.6. Finish if the jnequalities $x_{i-n}<x_{i}$ (i=1,2, $\left.. . . N+n-1\right)$ are not all satisfied.

Comment: Check whether the data abscissace are ordered and lie within the range $[a, b] \equiv\left[x_{0}, x_{N}\right]$.
Stop 1.7. Pinish if the inequalities $x_{0} \leqslant t_{1} \leqslant t_{2} \leqslant \cdots \leqslant t_{\text {I }} \leqslant x_{N}$ are not all satisficd.

Coment: Check whecher the generalized Schoenberg-mitney conditions are satisfied.

Step 1.8. Use ilgorithm 7.2.i to determine the value of I. Finjsh if $I=1$.

Comment: $k$ is the interval number as well as the number of the block currently being processed. $\sigma$ is the current value of the residual sum of squares.

Step 1.9. Set $k=1 \operatorname{arid} \sigma=0$.
Comrnent: Initialize R and $\underset{\sim}{9}$ to zero.
Steps 2-4. As Steps 2-4 of Algorithm 2.14.1.
Coment: Computations involving the ith data point are describod by Steps 6-30.

Step 5. For $i=1,2, \ldots, m$ exccute Steps 6-30.
Comment: The interval containing $t_{i}$ is located in Steps 6-7.
Step 6. If $t_{i}<x_{k}$ or $k=N$ advance to Step 8.
Step 7. Replace k by $\mathrm{k}+1$ and return to Step 6.
Comment: The ith row of ( $A \mid b)$ and the corresponding weight, as required by Algorithn 2.14.1, are rormed in Steps 8-8.2.

Step 8. Use Algorithm 3.12.2 (with the minor modification of Section 6.4) with $x=t_{i}$ to form the values of $N_{n j}\left(t_{i}\right)(j=k, k+1, \ldots, k+n-1!$.
Step 8.1. For $j=1,2, \ldots, n$ set $v_{j}=N_{n, k+j-1}\left(t_{j}\right)$.
Step 8.2. Set $u=f_{i}$ and $\mathbb{V}=v_{i}$.
Comnent: Classical plans rotations to amihilate the elements in row $i$ of $\mathrm{X}^{\frac{1}{2} A}$ are applied in Steps 9-30.

Steps 9-30. As Steps 9-30 of Algorithm 2.14.1 (with q interpreted as n and $n$ as $\mathrm{N}+\mathrm{n}-1$ ).

Step 31. Use Algorithm 2.1.4 to solve $\underset{\sim}{\mathrm{R}} \mathrm{\sim}=\boldsymbol{\alpha}$.

### 7.4 Error analysis

Te give an error analysis of the formation and solution of the over.determined system of equations (7.2.7) in the case of unit moights, ie $\mathbb{N}=I$. Our results will also hold approximately in cases where all the woights are of roughly the same magnitude. Te cannot derive userul results in cases where the weights differ significantly in size.

With exact computation we form the wh q matrix $\underset{\sim}{A}$ with elements $a_{i j}=N_{n j}\left(t_{i}\right)$, followed by the factorination

$$
\begin{equation*}
(\underset{\sim}{A} \mid \underset{\sim}{f})=\underset{\sim}{Q}(\underset{\sim}{R} \mid \underset{\sim}{g}), \tag{7.4.1}
\end{equation*}
$$

where $\underset{\sim}{\underset{\sim}{~}}$ is orthogonal of order $m$ by $q, \underset{\sim}{R}$ is upper triangular of order $q$ and $g$ is the transformed ordinate vector. The B-spline confficionte of are then defined by the triangular syster

$$
\underset{\sim \sim}{R c}=\underset{\sim}{g} \cdot
$$

There are three sources of error jn the practical realiaation of this process: in the formation of $A$, in the factorization of ( $\bar{A} \mid \mathcal{N})$, where $\bar{A}$ is the computed A, and in the back- substitution process to solve (7.\%.2).
 $\bar{\sim}$ reptaced by $\overline{\mathrm{A}}+\underset{\sim}{E}$ and $\underset{\sim}{f}$ by $\underset{\sim}{f}+\mathrm{k}$. Thus

$$
(\bar{\sim}+\underset{\sim}{E} \mid \underset{\sim}{f}+\underset{\sim}{k})=\bar{Q}(\bar{R}|\overline{\mathbb{R}}| \overline{\mathbb{N}}),
$$

where $\underset{\sim}{\bar{Q}}$ is orthogonal. We shall mako the roalistic assumption that the errors in the back-substitution process arc negligible (cf Gentleman, 1973).

Since the careful use of orthogonal transformations results in an exact factorization of a neighbouring system, any of the mothods of Sections 2.6 to 2.9 ensures that, in a suitable rorm,

$$
\|\mathrm{E}\| \leqslant K_{\sim}\|A\| 2^{-t}
$$

and

$$
\begin{equation*}
\|\underset{\sim}{x}\| \leqslant K_{2}\|\underset{\sim}{f}\| 2^{-t}, \tag{7.4.5}
\end{equation*}
$$

where $K_{1}$ and $K_{2}$ are "modest" functions of" $m$ and $q$ (for precise forms $n x^{n}$ $K_{1}$ and $K_{2}$ in the case of donse rectanguiar matrices see eg joibrok, 1907,

Gentleman, 1973: Jamson and Hanson, 1974.). For all practical velues of ra and $\mu_{1} K_{1} 2^{-t}$ and $\mathrm{K}_{2} 2^{-t} \ll 1$. If the velues of the $B$-splines required in formine $\underset{\sim}{A}$ are computed using Alerithm 3.12.2, the vory small erior §A (see Section 3.9) can conveniently be absorbed into the porturbation matrix ${ }_{\sim}^{\sim}$ (of the error analysis in Section 6.5 of one of our algorithos for spline interpolation), the only effect being to infiato slightly the value of $K_{i}$.

In the errof analysis of Section 6.5 itt was convenient to internut the computed solution as the exact solution of a perturbed system with $f$
 it was possible to state that the corputed solution had the proporty that it corresponded to the exact interpolation of a set of data points with an ordinate vector slightly perturbed (usually in a relative sense) froa that prescribed. In the main, the derivation of the bounds for $\|\underset{\sim}{L}\|$ were streightforward and followed. closely the conventional approach of backward error analysis of linear systems.

We believe it appropriate to seek a sinilar interprotation of our computed least-squares solution. That is, we wish to find bounds for $\|\delta i\|_{\text {in }} \|$ such that the computed least-squares solution of the rectangular sistern (7.2.7) is the exact Jeast-squares solution of a similar syster with a (hopefully slightly) perturbed right-hand side. The deriration of such a bound is somewhat harder than in the square case (interpolation) and $I$ ara indebted to Dr J ll Willinson for suggesting the following metion of appruach, which we specialize to the circumstances of our particular problem.

Suppose that such a $\delta f f^{0}$ exists. Then it satisfies the normal equations

$$
\begin{equation*}
A_{i}^{T} A C_{\sim}=A_{\sim}^{T}\left(f_{\sim}^{T}+\underset{\sim}{f}\right), \tag{7.4.6}
\end{equation*}
$$

where $\underset{\sim}{c} \operatorname{in}(7.4 .6)$ denotes the computeu solution. But the same solution
c. Sutisfies the equatiors

$$
\begin{equation*}
(A+E)^{T}(\underset{\sim}{A}+\mathbb{N}) \underset{\sim}{c}=(A+\mathbb{N})^{T}(\underset{\sim}{f}+k), \tag{7.4.7}
\end{equation*}
$$

where $\underset{\sim}{E}$ and k satisfy (7.4.4) arid (7.4.5). Subtraction of (7.4.6) from (7.4.7) yields
from which

In general (7.4.9) has an infinity of solutions for \&f. Wo aro interested, of course, in that which is sinallest in sore sense; accordingly we select that with minium norm. Now the minjmum-norm solution of the system

$$
\begin{equation*}
{\underset{\sim}{A}}^{\mathrm{T}} \delta \underset{\sim}{\mathrm{f}}=\underset{\sim}{\mathrm{V}}, \tag{7.4.10}
\end{equation*}
$$

for any vector $y$, can be obtained as follows. Let

$$
\begin{equation*}
\Lambda=Q R \tag{7.1.011}
\end{equation*}
$$

be the exact orthogonal triangularization of $\AA$. Then

$$
A^{T}={\underset{\sim}{R}}^{T} Q^{T} .
$$

Ye now assocjate $A^{T},{\underset{\sim}{R}}^{T}$ and $Q^{T}$ of (7.1.12) with $\underset{\sim}{A}, \underset{\sim}{G}$ and $\underset{\sim}{H}$, respectively, of (2.2.4). Then, using (2.2.13), the minimal least-squares solution of (7.4.10) is

$$
\left.\underset{\sim}{\delta} \underset{\sim}{f}=\underset{\sim}{Q}\left(Q_{\sim}^{T} Q_{\sim}^{T}\right)^{-1}\left(\sim_{\sim}^{R R}\right)^{T}\right)_{\sim}{ }_{\sim}^{-1},
$$

which, in the full-rank case, simplifties to

It rollows thet the minimal least－squares solution of（7．4．9）is
using（7．1．12），where

$$
\underset{\sim}{\mathrm{J}}=\underset{\sim}{A c}-\underset{\sim}{\underset{\sim}{f}}
$$

is the vector of residuals．Thus，using 2 －norms，

$$
\begin{align*}
& \left\|\delta_{\sim}^{c}\right\| \leqslant\|\underset{\sim}{x-E c}\|+\left\|R_{\sim}^{-1}\right\|\|\underset{\sim}{E}\|(\|\underset{\sim}{k-E C}\|+\|工\|) \\
& \leqslant\|\underset{\sim}{k-E C}\|+r_{2}(A) \frac{\left\|F_{3}\right\|}{\|A\|}(\|\underset{\sim}{x}-\mathbb{E C}\|+\|r\|) \\
& \leqslant\left(1+x_{2}(A) \frac{\|\Sigma\|}{\|A\|}\right)\left(\|x\|+\|E\|\left\|_{\sim}\right\|\right)+x_{2}(A) \frac{\|x\|}{\|A\|}\|x\| . \tag{7.4.17}
\end{align*}
$$

The main difference between this and the corresponding result fow tho spline interpolation algorithm is that in the least－squares case the perturbation（or，at least，its bound）depends explicitly on the condition number and on the residual vector $\left\|\frac{r}{\sim}\right\|$ ．

Let：

$$
\begin{equation*}
u=\|\underset{\sim}{c}\| /\|\underset{\sim}{c}\| \tag{7.1.18}
\end{equation*}
$$

and

$$
\begin{equation*}
v=火_{2}(A)\left\|_{\tilde{\sim}}\right\| /\left\|_{\sim}^{f}\right\|_{0} \tag{7.4.19}
\end{equation*}
$$

（The trivial case $\sum_{i}=0$ car be ignored；it is casily verified thet A．gorithm 7.3 .1 yields $\underset{\sim}{c}=0$ in this case）．Then，using（7．4．4）and $(7.4 .5),(7.4 .17)$ yields

$$
\begin{align*}
\frac{\|\varepsilon f\|}{\|f\|} & \leqslant\left\{1+K_{1} \mu_{2}(A) 2^{-t}\right\}\left(K_{1} u\|A\|+K_{2}\right) 2^{-t}+K_{1} v 2^{-t} \\
& =\left\{1+K_{1} \mu_{2}(A) 2^{-t}\right\}\left(K_{2}+K_{3}(1) 2^{-t}+K_{1} v 2^{-t}\right.
\end{align*}
$$

where $K_{3}\left(=K_{1}\|A\|\right)$, like $K_{1}$ and $K_{2}$, is a "modest" function of $m$ and $q$. (Note that $\|A\|_{\sim} \leqslant\left\|_{\sim}\right\|_{i j} \leqslant m^{\frac{1}{2}}$, since $a_{i j} \geqslant 0$ and $\sum_{j} a_{i j}=1$ ).

We now make the folloming three assumptions:

$$
\begin{align*}
& \text { (i) } u \sim 1 \text { (or smaller), }  \tag{7.1.21}\\
& \text { (ii) } v \sim 1 \text { (or smaller), } \\
& \text { (iii) } K_{1} \kappa_{2}(A) 2^{\sim t} \ll 1 .
\end{align*}
$$

Then (7.4.20) approximates to

$$
\begin{equation*}
\|\underset{\sim}{f}\| /\|i \underset{\sim}{i}\| \leqslant K_{4} 2^{-\frac{t}{t}} \tag{7.4.24}
\end{equation*}
$$

where $K_{4}$ is a further "modesit function of in and $q$.

If the assumptions (7.4.21), (7.4.22) and (7.4.23) hold, the intorpretation of (7.4.24) is that the computed coefficients are those of the exact leastsquares spline approximation to a sot of data whose ordirate vector differs orily slightly in a relative sense from the actual ordinato vector.

In all practical spline-fitting problems considered to date (some 20 in all) it was found that all three assumptions pere well satisfieci. In particular, $u$ was typically closer to a value of $q / m$ than to unjity, $v$ was usually of order $10^{-1}$ or $10^{-2}$ since $\mathcal{\varkappa}_{2}(\mathrm{~A})$ was always less than 10 and $\|r\| /\left\|_{\sim}\right\|$ was of order $10^{-2}$ or $10^{-3}$, and the value of $K_{1} x_{2}(A) 2^{-t}$ was smaller than unity by several orders of nagnitude. Cases in which the assumptions do not all hold appear to have to be constructed artificially and seem to occur only for badiy-poscd problems.

Although the three conditions cannot of course be guarasteed to hold in all practical circuistances, the first is easy to check once the solution has been obtained, and the remaining two likewise if tho singular value decomposition has been employed on if $\mathcal{K}_{2}(A)$ can be estimated in some other manner. We believe the conditions will hold for all mell-posea spline approximation problems. See Seation 7.5 for some values of $\mathcal{H}_{2}(A)$.
7.5 Sensitivity of the B-mpline coefficients to perturbations in the data

The problem of estimating the offects of errors or perturbations in the deta on the values of the B-spline coefficients and on the approximating spline itself is of considerable practicel importance. We go sorne way towards determining such effects by employing the results of Section 2.16 . In that section the bound (2.16.21) for the relative error in the computed solution of the cver-determined system $\underset{\sim}{A x}=\underset{\sim}{b}$ in terms of bounds for the relative errors in $\underset{\sim}{A}$ and $\underset{\sim}{b}$ was established. For each of some 20 practical data sets (the bulk of which originated at the Netional Fhysical Laboratury and the British Standards Institution), very satisfactory approximations were obtained usint cubic splines, and in every case the conditions assumed in establishing (2.16.21) were well satisfijed. (Note that in using (2.16.21) wo associate respectivoly $f$, $\underset{\sim}{c}$ and $\mathbb{N}^{\frac{1}{2}} \underset{\sim}{c}$ of this chapter with $\underset{\sim}{b}, \underset{\sim}{x}$ and $\underset{\sim}{x}$ ). In particular, (i) $\|\varepsilon\|_{\sim}\|/\|=\|$ and $\left\|i^{\frac{1}{2}} \varepsilon\right\| /\|f\|$ were of order $10^{-2}$ or $10^{-3}$, (ii) $K_{2}(\mathrm{~A})$ was less than 10 in all cases and (iii)

$$
\frac{\|\delta A\|_{E}}{\left\|\left\|_{A}\right\|_{E}\right.}=\frac{\sum_{i, 3} \delta a_{i, j}^{2}}{\sum_{i, j} a_{i, j}^{2}}<7(n-1) 2^{-t}
$$

(cf Section 6.5). It then follows from (2.16.21) that

$$
\frac{\|\delta \varepsilon\|_{2}}{\|s\|_{2}}<\frac{10}{9} \kappa_{2}(\AA) \frac{\|\delta \Sigma\|_{2}}{\|\dot{\sim}\|_{2}},
$$

the terms omitted being negligible for a machine such as KDF 9 with $t=39$. The interpretation of (7.5.2) is that a relative error bounded by $\mu$, say, in the vector of data ordinates is amplified by a factor of about $\chi_{2}(A)$ to produce a relative error of at most $\mu \mathcal{K}_{2}(A)$ in the vector or $B-s p l i n e$ coefficients. Since the B-spline coefficients themselves provide bounds
for the values of $s(x)$ (Theorem 5.1.3), we believe this result implies that (at least for cubic splines) our formlation of the problem of leastsquares data approximation by splines is cenerally extremely woll.
conditioned. Inequality (7.5.2) also follows from the results of Section 7.4 .

In Colum 3 of Table 7.5.1 we give the spectral condition numbers of ${ }_{\sim}^{A}$ for 10 practical cases. These 10 cases ace represertative of the 20-odd cases referreả to earlier in this section, ana include near-uniforn distributions of interior knots, highly nonlinear knot distributions (such as interjor bnots at $x=1,10,100,1000, \ldots$ ) and coses of coincident interior knots. Cojncident end knots were used in canh case. Anong these ten cases is the one with the largest condition number $\left(\kappa_{2}=7.7192\right)$ yet observed. For compartson we give in

		Values of $\kappa_{2}$   $m$		
m	Coincident   end knots	Distinct end knots   $(1)$	$(2)$	
17	5	4.7975	23.178	66.928
25	7	4.5702	26.576	18.242
26	9	$4.944_{4}$	37.986	16.711
28	5	5.3270	33.505	74.305
28	5	7.7192	64.208	171.530
30	6	5.784 .7	28.387	40.341
31	3	5.2595	38.282	62.318
32	4	5.2592	33.628	80.670
36	10	7.5524	34.034	26.861
84	9	6.6674	54.847	33.2142

Table 7.5.1 Values of the spectral condition number $\mu_{2}$. of $A$ for a varicty of duts sets and three choices for the end lnots

Colums 4 and 5 of Table 7.5 .1 the values of $\mathcal{K}_{2}$ correspondine to the choices $(6.7 .3)$ and ( 6.7 .4 ) for the exterjor knots. Ais with the use of B-splines for spline interpolation, the choice of coincident end lmots is evidently to be preferred. The values of $\mu_{2}$ were obtiained from the singular values of A (Section 2.15), which were computed by reducing A to band-triangular form using Algorithm 7.3.1, followed hy the use of the Golub-Reinsch procedure 'minfit' (cf Section 6.7) to diagonalize the band triangle.

It is beyond the scope of this mork to derive and to discuss in detrail statistical estimates of the B-spline coefficients. Howevor, if such estimates are required they can be obtained readily, under appropriate assumptions, as follows (cf Draper and Sinith, 1968: 58 et seq). If it essuned that the values of $t_{i}$ are exact, that the values of $\mathrm{F}_{i}{ }^{\frac{1}{2}}{ }_{i}$ have errors that are uncorrelated with zero mean and (generally uiknown) varience $\sigma^{2}$, and that a spline function with the given knots is the correct model (or in practice a good approximation to the correct model), ie in statistical terms it does not suffer from lack of fit, then the following results hold:
(i) The values of $c_{i}$ couphted by our algorjthm are unbiassea estimates of the true (unknown) coefficients.
(ii) The matrix
$\underset{\sim}{K}=\sigma^{2} \underset{\sim}{G}=\sigma^{2}\left(\underset{\sim}{(\underset{\sim}{R}}{ }^{\text {R }}\right)^{-1}$
provides the variances (diagonal elements) and covariancos (off-diagonal. elements) of the estimates.
(iii) An unbiassed estimate of $\sigma^{2}$ is $\left\|v^{\frac{1}{2}} \varepsilon_{\sim}\right\|_{2}^{2} /(m-q)$.

Note that the bulk of the computation involves the formation of the inversa $\underset{\sim}{G}$ of $\underset{\sim}{R^{T}} \underset{\sim}{R}\left(=A_{\sim}^{T} \Lambda\right)$, which can be computed efficiently by solving the two
band--triangular systems

$$
{\underset{\sim}{R}}^{T} \underset{\sim}{V}=\underset{\sim}{I}
$$

and

$$
\begin{equation*}
\underset{\sim}{I N G}=\underset{\sim}{V} . \tag{7.5.5}
\end{equation*}
$$

## 7.6 the inportant case of cubic splines

There is little doubt that many practical data-fittine prohlems can be treated satisfactorily usine splines as the approximating functions. Particularly useful are cubic splines (order n=4.) which appers to havo much to commend them. The choice of $n=4$ proves to be a good compromise betmeen the efficient computation of tha coefficients of the spline, the subsequent evaluation of $s(x)$, and a degree of approximation and smooching power that seems to be acceptable in many circumstences.

For suffeciently accurate data we can expect, by analogy with the continuous casc (Ahlberg, Nilson and Walsh, 1967: 19 at scq) that the depantiro of $s(x)$ from the data varics essentially os $h_{\max }^{4}$, where

$$
h_{\max }=\max _{1 \leqslant i \leqslant N} h_{i}=\max _{1 \leqslant i \leqslant N}\left(x_{i}-x_{i-1}\right)
$$

is the largest spacing botween adjacent knots. Thus, a new approxjmation with adaitional knots inserted at points half-way betweon ench adjacent pair of current knots, ie at $\frac{1}{2}\left(x_{i-1}+x_{i}\right)(i=1,2, \ldots, N)$, can be expected to have a. maxinum departure from the data of about $1 / 16$ of the previous value. For many sets of practical experimental data, with typically 2 to 3 significant decimal digits in the ordinaties, even if an jnitial approximation has barely any eccurecy at all, the ahove insortion process carried out once or perhaps trice may rell achieve an eccuracy of approxination warrantea by the data. In practice, the insertion of linots will not follom precisely the pattern suggested here. Because the hehaviour
of' a spline approximation in the neighbourloos on any given arcuncut tends to depend prodominantly on data local to that argument, considuroble inprovements in the accuracy of the approximation in regions of: poor pit can ofter be achicved simply by inserting additional knots in those regions. The nature of the new approxination in regions sufficiently removed from ragions where knots have bcon inserted tends to be lijttio changed. Of course, the discussjon lere has benn concerned with accuracy rather than smootiness. In Section 7.8 re describe in alilire a mothod of selecting linots that has worked successíully for many different typen of data set, enabling both smooth and suffjoicntly accurale cubic spline approximations to be obtained.

While discussing smoothuess we think it inpertant to point out that a cubic spline (with simple knots) is the spline of lowest order that visually appears to be smooth. By this rewarls me mean triat, in the fraph of a function, most observers woulr be able to detect, by eyo, discuntimuitijos in value, in slope, and evon in second derivative, but not in higher derivatives. The cubic spline (with simple knots), havirg continuity in value, first and second derivatives, is the spline cf lowest order that is satisfactory from this point of riew. Cur belief is that tho trained eye is sensitive to changes in curvature, mhjeh is of course dopendent: particularly on second as mell as on fiost derivative. A splinc of lover order, such as a quadratic spline, wo:ld have in Eneral a visible change in curvature at each knot.

Although versions, in a high-level langusee, of Algorithr 7.3 .1 for arbitrary values of $n$ have been developed ty the author, the ouso n=l: was consicerec sufficiently important that a code be maie available specifically for it. For any panticular valuo or $\eta(\leqslant j$, siy) it is possible to mixe various conomies by tailoring alenvitira 7.3 .1 specifically to the case in hand. Such a version for $n=4$, progronamed in

Aleol 60, appoars in Cox and Hayes (1973). Iniss vorsjon employ: Gentignan's 3-multiplication rule (as in Algorithen 2.9.3), but an of course tailored (as is flgorithm 2.114.1) to the case of at sumpenthanced system of bandwidth 4. This Aicol code, together with code basen on Algorithm 5.2.1 for evaluating $s(x)$, accompanied by detailed domumation, are available as NPL Algorithras Library Documents E2/03/0/:1gol 6014/74 and $E 2 / 05 / 0 / A 7 \operatorname{gol} 60 / 4 / 74$. ANSI Staniend Fortwan IV versions urw available as IFI Algorithms Libracy Documents E.2/03/0/Fortran TV/ 11/74. and $\mathrm{E} 2 / 05 / 0 /$ J'ortran $\mathrm{IV} / 11 / 74$.

It should not be inferred from the coments of this section that the cubie splino is satisfactory in all situations. We believe that it will be very suitable in the majority of practical data-fitting problems, but lihere will almays be special circumstances in which splines of other order:i wo appropriate. For instance, first-degree eplines (ic nolygonal $\mu^{\circ}$ piecervise-linear functions) are useful if the epproximations arn to lo inplemented on an analogue computer using diode function gencratoris (see Cox, 1971, for a method for approzimating convex furctions hy infu-degree splines, with optimal knot selection; the method described thern u u be extended to the approximation of data havinge a convex hull). Nomover, splines of degree higher than cubic are required if certain derivitives of the approximating runction are thomselves to be smooth. A filllher consideration relates to the anount of information (ie the munber or brots plus the number of b-spline coefficients) necessary to describo $s(x)$, For examplo, Esch and Eastran (196?) show that for the approximation of data representative of a function in the neighbourhood of a singularity, a spline of lon degree is to be preferrean, vinereas for a "very smonth" function such as exp(x), a spline of high degree is more economionl.

### 7.7 Assessine the ecceptabiliti of a least-suuares cubic-spline approximation

Suppose the set of data points ( $\left.\tau_{i}, f_{i}^{\prime}\right)(i=1,2, \ldots$, n $)$ has beer approximated, usine Algorithm 7.3.1, by a cubic spline $s(x)$ defined on a cortain set of knots. It is important to consider whether $s(x)$ is acceptable from a number of points of view:
(i) Is the residual sum of squares $\sum_{i=1}^{m} w_{i} \varepsilon_{i}^{2}$ tolerably synall? (ii) Ara the indiviaual values of $\varepsilon_{i}$ (or of $w_{i}^{\frac{1}{2}} \varepsilon_{i}$ ) tolorably small? It may well be, particularly if $m$ is large, that a poor distribution of knots coujd give rise to some very salall valuas of $\varepsilon_{i}$ at the expense of others beine unaccoptably large (even if account, is taken of the presence of the woights $w_{i}$ ), although the residual sum of squeres is itsolf acceptable.
(iiii) Is $s(x)$ sufficientily "smooth"?
Points (i) and (ii) are usually not difficult to answer, and to treat if necessary, since the insertion of extra knots or the re-distribution of oxisting knots can often rosult in an oscoptable naproximation. The "smoothness" of $s(x)$, however, is scmewnat more difficult to casess añ̊ to correct. Mathematically $s(x)$ is smouth in the sense that it is trice continuously differentiable (assuming here that it is basod upon distinct knots) . However, a mathematically snooth function can of course exhibit't oscillatory behaviour (even $i f$ it is infinitely continuously differentiable), whereas such behaviour may be absolutely unacceptable to those who reauine the approximation. It is important to be able to check quickly and with certainty whether any particular cubic spline approximation does indoca possess spurious oscillations or inflexions. Such oscillations and
inflexions cun aise, for instance, if the dati has a hich noise contont and the choson knot distribution is poor (see Bxample 7.9.3).

Now since the second derivative of the cubic spline $s(x)$ is piecerrise linear, it follows that $s(x)$ has an inflexion between tro (distinct) açacent knots $x_{j-1}$ and $x_{j}$ if and only ir tho values of $s^{\prime \prime}\left(x_{j-1}\right)$ and $s "\left(x_{j}\right)$ have unlike signes (cf Chapter 8, whero properties of this type are used to impose conditions upen the approximating culvic spline). Thus we recommend that any algorithm for least-squares cubic-spline approximation should not only provine (or present rosults in such is form so as to be able to compute easily) values of quantitios such as the residual sum of squares, the individual residuals and the B-spline coetfecients, but alco the values of $s^{\prime \prime}(x)$ at each lnot $x_{j}(j=0,1, \ldots$, li $)$. We now show that it is a trivial matter to corpute the values of $s^{\text {th }}\left(x_{j}\right)$ $(j=0, i, \ldots, N)$, once the $B$-splino coefficients $c_{j}(j=1,2, \ldots$, In 3) have been determined. From (5.1.10),

$$
\begin{equation*}
s(x)=\sum_{i=1}^{N+3} c_{i}{ }_{4 i}(x) \tag{7.7.1}
\end{equation*}
$$

enã thus

$$
\begin{equation*}
s^{\prime \prime}(x)=\sum_{i=1}^{N+3} c_{i=1}^{N+} i^{\prime}(x), \tag{7.7.2}
\end{equation*}
$$

Thich, by viriue of $(4.1 .1)$ and (3.2.6), reduces to

$$
\begin{align*}
s^{\prime \prime}(x) & =3 \sum_{i=1}^{N+3} c_{i}\left\{M_{3 ; i-1}^{\prime}(x)-M_{3 i}^{\prime}(x)\right\} \\
& =6 \sum_{i=1}^{N+3} c_{i}\left\{\frac{x_{2, i-2}(x)-x_{2, i-1}(x)}{x_{j-1}-x_{i-4}}-\frac{u_{2, i-1}(x)-n_{2 i}(x)}{x_{i}-x_{i-3}}\right\} . \tag{7.7.3}
\end{align*}
$$

Noin, soting $x=x_{j}$ and noting from (3.4.1) and (3.2.8) that,

$$
N_{2 i}\left(x_{j}\right)=\left\{\begin{array}{cl}
\left(x_{j+1}-x_{j-1}\right)^{-1} & (i=j+1)  \tag{7.7.4}\\
0 & (\text { otherwise) }
\end{array}\right.
$$

(7.7.3) becomes

$$
\begin{align*}
& =\frac{6}{x_{j+1}^{-x} j-1}\left(\frac{c_{j+3^{-c} j+2}^{x_{j+2^{-x}}^{j-1}}}{x_{j+1}}-\frac{{ }^{c} 2^{-c} j+1}{x_{j+2}}\right) . \tag{7.7.5}
\end{align*}
$$

Note the similarity of the expression (7.7.5) to a second divided difference (of Section 5.9). Also note that if the knotis aro equally spaced, viz $x_{i+1}=x_{i}$ th (for all i), then (7.7.5) reduces to

$$
h^{2}{ }_{s} n\left(x_{j}\right)=c_{j+3}-2 c_{j+2}+c_{j+1},
$$

which is identical in form to the familiar expressjon for a finite difference approximation to the second derjvative of a function. However, here, instead of functional values, the B-spline coofficients thenselves are employed (again of Section 5.9).

Finally, it should be remarked that, at leost for low-accuracy work, somb form of graphical output (as in the examples of Section 7.9) is of consiõerable value.

### 7.8 The choice of knots

Sensible choices for the number and positiors of the interior knots of $s(x)$ may often be estimated in any partioular instance by examining the shape of the required curve. In general, more knots will be required in regions where the behaviour of the curve is severe and fewer where it j. relatively swocth. In the experience of the writer, a sensible strategy for ontaining an approxiuation is as follows:

Step 1. Fosition an initial set of mots in accordance with the above "criterion".

Step 2. Obtain the approximatine spline based on these lenots.
Step 3. Reamine key parameters and other reatures of the approximation, such as the residual swo of squares or root mean squere resiảual, the individual residuals, the ralucs of the second derivatives at the knots, and the behaviour of the epyroximation in regions where there are fer data poirts or in the neighbourhociō of special features such as discontinuitios (in function or derivatives), inflexion points, maxina and minimn. A graphjoal form of output, in pinich the date points, the approximatine spline and the knot positions are displayed, is particularly useful at this stage.

Step 4. In recions there the approximation is inadequate, introduce adaitional knots, perhaps after adjusting the positions of existing ones, and in regions where the approximation is "too good", ie where the approximation follows the data valuas so closely that the splino has oscillations with amplitudes of the order of the noise level of the data, or oven eroater, remove a number of knots, adjusting the positions of the remaining ones if necessary.

Step 5. Repeat as necessnry from Step 2.

With a little experience in applying the above proonss, the veiter contends that very many data sets can be approximated satjofactorily after having made typically two or perinps thice passes through the process. Some of the examples in Section 7.9 are intended to be illustrative of the approach.

If the required approximation is to have special features such as a
discontinujty in slope or a very sharp peak, thjs knowledge in itself' gives a good guide to the choice of at least some of the knots. For contiruity in $s^{(r-1)}(x)$, but not in $s^{(r)}(x)(0 \leqslant r<n)$ a.t $x=t$, a knoti of multiplicity $n-r$ should be introduced at this point. Note that the cuse $r=0$ corresponds to a discontinuity in $s(x)$ jtself at $x=t$; such a case could be treated, but no more erficiently in fact, by computing separately spline approxinatione to the data to the lefte and to the right of $x=t$. Two of the cxamples in Section 7.9 illustrate the jmposition of discontinuities.

### 7.9 Numerical examples

As for the spline interpolation algorithm of Chapter 6 we consider two types of numerical oxemple for Algorithan ?.3.1. The first tiype (rxamp)?e 7.9.1) j.s intended to demonstrate the eivility of the algorithm to reproduce a cubic spline from data that itself is taleen from a cubic spline, and therefore constitutes a partial test of the stability of the algorithm. The second type (texamples 7.9.2, 7.9.3 and 7.9.4) is intended to demonstrate the measure of success of cubic splines in providing approximations to data drawn from practical experinental simations. Nl examples were camried out on the KDF9 computer, for which $t=39$.

## Exanple 7.9.1

Data points $\left(t_{i}, f_{i}\right)(i=1,2, \ldots, \pi=41)$ with $t_{i}=(i-1) / 8, f_{i}=f\left(t_{i}\right)$, where

$$
f(x)=: 4-(x-1)_{+}^{0}+(x-2)+4(x-3)_{+}^{2}+16(x-4)_{+}^{3}
$$

were selected. Since $f(x)$ is a cubic spline with knots of multiplicity 4, 3, 2 and 1 at $x=1,2,3$ and 4, respoctively, the data should to representable exactly, if the above knots are selected, by A]eorithra \%.3.1. To measure the degree of success of the algorithm in reproducince a spline
from sucil data, the B-spline confficints mere ovaiuatod and ompered with the exact values, which are reāily verified io bo those in colum 3 of Table 7.9.1. Note that the valmes of $t_{i}=f_{i}$ and $x_{i}$ can ant he held exactily on the machine and hemce any errocs in the computed results are due solely to roundine errors.
fable 7.2.1 gives sone the results for this axamie. In particular, in Column 4 are the errors in the computed velues $\bar{c}_{j}$ of the B-spline coefficients; in Column 5 are the true values or $s^{\prime \prime}\left(x_{j}\right)$ nad in Column 6 the departures from these of the values conputod form (7.7.5) using tho computed values $\bar{c}_{j}$. Note that the maximun value of $\mid\left(\bar{c}_{j}-c_{j} y_{j} c_{j} \mid\right.$ was $10^{-11}$, which is a factor of only about: 6 greater than the possible velative
 equivalents. The maximum departure over the 41 deta points of the conputad spine froin the function $f(x)$ was $2.9 \times 10^{-11}$.

A graph of $s(x)$, together with the data points, is giver in Fig 7.9.1. In ihis and subsequent figures, the knots are denoted by vertical linas and the data points thus: 6

In subsequent examples, $c_{j}$ and $s "\left(x_{j}\right)$ denote the computod values of the B-spline coefficients and of the second derivative of the spline at tho knots.


Table 7.9.1 Departures of the computed values $\overline{\mathrm{B}}_{\mathrm{j}}$ from the exact B-spline coefficients $c_{j}$ and those of the cunputo values $\bar{s}$ " $\left(x_{j}\right)$ from the exact values of $s "\left(x_{j}\right)$ for Example 7.9.i.


Fig. 7.9.1 Test example with knots of multiplicity $4,3,2$ and 1

This exarple is jntended to illustrate the strategy of section 7.8 roc estimatine knot positions. Data pointis $\left(t_{i}, f_{i}\right)(i=1,2, \ldots, m=23)$ vere read from a ereph on p 78 of British Standard Code of Practjoe cpl18 (1969) on the structural use of aluninium. The groph relates muxinum stress tensile to stress ratio in structures subjected to fluctuatine loading. As part of a larger study to assess the feasibility of representing a varicty of eraphs and tables in British Standards documents in terms of polyrooizis and splines, the data points road from this Eroph were approximated by a cubic spline. I am indebted to the Dritish Standards Institution for pernission to reproduce this examplo here.

Gince the graph is bendinc more sharply in the approximate recion $-0.1 \leqslant x \leqslant 0.1$ than elscwhere, it yas decided to choose initially a prair of interior knots at $x=-0.1$ and 0.1 . The resultinc approxinition (Tahles 7.9.2 and 7.9.3 and Fig 7.9.2) was smooth, hat there viere some departures from the data that were ereater then warjented by the accuracy of the data. Moreover, the residuals displayed a strong systematic tendency, viz 5 adjacent posj.tive values, neighboured on either sida by 5 adjacent negative values. Furthermore, the approximating spline had negative curvature for $x$ near -1 , which was urressonable because the data had a convex hull, as a result of the originel groph being convex.

Because the larger residual errors were in or near the region of the "elbow", a second approxination with an additional knot at $x=0$ was computed. The resulting spline (Tables $7.9 .2,7.9 .4$ and Fig 7.9.3) was convex throughout, was as cluse to the data points as could be justified by their accuracy, had residual errors which displayed a less systematic tendency nnd was therefore considered acceptable. Note that altiough the refidual errors for $x \geqslant 0.1$ are in the main ereater than the remander, this ras considered
acoeptable bocause of the greater diffeiculty in roading accurately data values on the steoper parts of agraph than elsewhere. A userul refineuent, not considered here, mould be to incorporate weighting factors which are estimated to reflect this varibible reading accuracy.


Table 7.9.2 Data points and values of tro approxjrating splines for Example ?.9.?.

j	$\mathrm{x}^{3}$	${ }^{\text {c }}$ j	$s "(x)$
0	$-1.0$		$-5.505$
1	-0.1	5.247	8.805
2.	0.1	6.014	$34.54+3$
3	0.5	6.043	53.4 .76
4		8.505	
5		11.562	
6		15.026	
Resiciual sum of squares $=0.0804$			

Table 7.9 .3 B-spline cosfricients and values of $s^{\prime \prime}(x)$ at the knots for the first approxiration of Inxemple 7.9.2.

$j$	$x_{j}$	$c_{i}$	$s^{\prime \prime}\left(x_{j}\right)$
0	-1.0		0.670
1	-0.1	5.292	2.307
2	0.0	5.764	64.103
3	0.1	6.390	7.371
4	0.5	7.501	85.617
5		9.390	
6		11.270	
7		15.085	
Residual sum of squares $=0.0061$			

Table 7.9 .4 B-spline coefficients and values of $s^{n}(x)$ at the knots for the second approzination oi Example 7.9.2.


Fig 7.9.2 Maximum stress tansila distribution: 2 intorior knots


Fig 7.9.3 Maximum stress tonsile distribution: 3 interior knots

## Erample 7.9 .3

This example relates to one aspect of the procrarme of reseurch worle currently being underiaken by the Quantum Netrology Division of tha National Physical Laboratory. I an indebted to this division foro permission to include data and results relating to thejr programme. A high-resolution photoelectric echelle apectrograph is beine usan to study the way the shape of a spectral line varies as a fumetion of the source excitation conditions. For any particular sot os conditions, the data comprises the count, in onemsecond time blocks, of the number of photons arriving at the piotonultiplies, as the exit slit is stopped through the spectral line. The orlinates (nuabens of flotons) contain appreciable noise, phrsical considerations indicating that; the prohable error in an ordinate $y$ is proportional to $y^{\frac{1}{2}}$.

The main requirement is to obtain a smooth unimodal approximation to the data for usc in subsequent computations. In particular, it is of jrportance to study the effect of the exostation conditions upon various parameters of physical significance. These parameters inclucio tho peak height and its position, and the "centre of gravi.ty" G of tho curve f"or a given height h. $G$ is defined, if a line parallel to the x-uxis and a distance $h$ from it intersects the curve at exacily two points, $\Lambda$ ard $B$, say, as the mid-point of AB. The parameters were deterntned, having first computed an acceptable cubic splire approximation $s(x)$, using a procedure based upon Algoritinn 5.2.1 for evaluating $s(x)$ from its B-spitine representation, a firther procedure based upon the recurrence relations of Section 5.9 for evaluating $s^{\prime}(x)$, together with a routine for computing a zero of a function (NPL AIgoritings Library Document C5/01/0/Algol 60/1/73).
mo domonstrate tho point made in Section 7.8 that it is benoficiel to introduce more knots in regions where the behaviour of the undoriying
function is severe than elsewhere, two cubic spline approximations to onls of the data sets were computed. In both cases wej.ghtis $w_{i}=y_{i}^{-\frac{1}{2}}$ were incorporated to reflect the knowlede of the errors in the values of $y_{i}$. The first approximation was based upon choosing 19 uniformyspaced interior knots at $x=10,20,30, \ldots, 190$ and the second upon the choice of 7 nonmiformly-spaced interior buts at $x=30,60,80,90$, 100, 120, 150. The second set of knots was chesen to clustex arourd the sharp peak of the curve and to be widely disriaced in the trilis. Sumaries of the two approzimations are given in Tables 7.9 .5 and 7.9 .6 and grapha depioting the data points, the approxinatine spines and the knot lines are presented as Figs 7.9.4 and 70.0.5.

The first approxination, ajthough being adoquato for the bulle of the range of the data, possesses spurious oscillations in both tails, due to the spline following the data too closely, as a rowult of there being on excessive number of knots in these regions. The uscillations in the lefthand taill are visually evidert; that those in the ljght-hand tail oxist follows from the sign changes in the second dexivative (see Traio 7.9.5).

Because of the better distribution of knots, the second approxination is satisfactory throughout the complete data range, despite the rosidual sum of squares being about $20 \%$ greater. Moreover, as a reault of there boing a swaller number of parareters as well as the knots beirig bettor placed, the anproximation possesses no spurious csoillations. It could be argied that the second aproximation is superion to tho first in the neighbourhood of the physicaily-iaportant: peak (compare Fies 7.9.4 and 7.9.5).

j	$x_{j}$	${ }^{c}{ }_{j}$	$s^{\prime \prime}\left(x_{j}\right)$
0	1		-0.578
1	10	57.78	-0.232
2	20	67.4 .1	0.568
3	30	71.27	-0.032
4.	4.0	55.88	1.342
5	50	96.79	1.400
6	60	134.4.8	4.000
7	70	306.31	0.549
8	80	617.82	-3.256
9	90	1329.80	-8.94.3
10	100	2096.72	-3.966
11	110	2538.09	1.891
12	120	2085.19	3.64 .1
13	130	1235.68	1.505
14	140	575.31	1.178
1.5	150	2.79 .01	0.163
16	160	133.25	0.04 .7
17	170	95.25	0.069
18	180	73.59	0.039
19	190	56.61	-0.030
20	200	45.57	0.095
21		40.41	
22		34.30	
23		32.82	
Residual swar squares $=200.1$			

Table 7.9.5 B-spline coefficients and values of $s^{\prime \prime}(x)$ at the knots for the first apprcximation of Ixample 7.9.j.

$i$	$x_{j}$	$c_{j}$	$s^{n}\left(x_{j}\right)$
0	1		0.069
1	30	65.60	0.206
2	60	59.10	2.993
3	80	65.66	-1.592
4	90	234.61	-12.019
5	100	1859.31	-1.134.
6	120	2624.14	3.04 .0
7	150	1786.46	0.076
8	200	189.71	0.014
9		61.77	
10		40.98	
11		33.74	
Residual sum of squares $=238.4$			

Wable 7.9.6 Empline coefficients and values of $s^{n}(x)$ at the lnots for the second approximation of Examula 7.9.3.


Fig 7.9.4 Photon count data: poor knot distribution


Fig 7.9.5 Photon count data: good knot distribution

Infis eramplo relates to some data from a rescanch project frvolvine e Tokker-Fleack reastbility stuay carried out at Culhan Liboratory, io whon I an indebted for pormission to incluce hera the aute and certala results. The problen was to dedomine an approximation, to arn accorinay of $0.5 \%$ of the peak value, to the set of 70 data priniss depiotors in Fig 7.9.6. Freviodis attempts at Culhain to obtain satafrectoxy foits
 failed, mairly duc to the presence of the slops discontirudty at: $y=14.3188$.

The nature of this djscontinuty sucsesten that an aproxinabion
 simple inots elsewhors) should be attempted. ficcordingly. a spitine with a triple knot at this point, 5 unipormy-ispaced inots betreen the left-
 betreen $x=14.3188$ and the right-hana and point was conratod. Tho xesulting aproximation was considered very acceptable in that the ruquired aucuracy was echieved and is depicted in fig 7.9.6. Morerver. its sucotiness either side of the point of discontuity ja fupterent fron the Eraph and from Table 7.9.7. Part of a taburation of tho data ario the errors jn the approximatirg aplino (inclujine a region contas ing the discontinuity) is given in toble 7.9.3. The choice or 9 simplo knois was quite arbitrary and, in Sact, accopteble approximaticsan can ilso be obtained with differont numbers of sinpe knots.

j	${ }^{j}{ }_{j}$	${ }^{\circ}{ }_{j}$	$s^{\prime \prime}\left(x_{j}\right)$
0	0.0000		0.0844
1	2.3865	$0.0 \times 00$	0.0916
2.	4.7729	0.0007	0.0879
3	7.1594	0.1625	0.05 .33
4.	9.5459	0.9268	-0.0.095
5	11.9323	2.1918	-0.105.5
6	14.3188	3.7601	-0.1618
7	14.3188	5.2175	-
8	14.3188	5.7962	0.0263
Y	15.7053	5.9320	$0.14+34$
10	19.09106	5.0095	0.1637
11	21.4782	3.2146	0.1076
12	23.864 .7	1.3388	0.0164
13	26.2512	0.3953	0.0035
14		0.0646	
15		0.02 .03	

Table 7.9.7 B-spline coerficients end velues or $s^{n}(x)$ at the krots for Example 7.9.4.

i	$t_{i}$	$\mathrm{f}_{\mathrm{i}}$	$10^{4}\left\{s\left(t_{i}\right)-r_{i}\right\}$
1	. 0.0000	0.0000	0
2.	1.0696	0.04 .97	+1
3	1.5162	0.1002	0
4	1.8617	0.1514	-1
5	2.2887	0.2294	-2
6	2.8726	0.3627	$+1$
7	3.3672	0.5000	+1
8	3.8078	0.6409	$+1$
9	4.2111	0.7853	0
36	12.654 .2	5.4426	-1
37	13.0969	$5.610^{4}$	-3
38	13.5362	5.7507	$+1$
39	13.9721	5.8531	+2
40	14.3188	5.9319	+1
41	14.5348	5.6826	$-4$
42	14.964 .3	5.1911	$+1$
43	15.3912	4.7133	+4
4	15.8161	4.2525	+2
62	23.2215	0.1723	+1
63	23.5241	0.1303	-2
64	24.0260	0.0963	-5
65	24.4274	0.0580	$+7$
65	24.8284	0.0265	+8
67	25.2287	0.0304	$+3$
68	25.6285	0.0183	-6
69	26.0279	0.0087	-18
70	26.2512	0.0000	+15

Table 7.9.8 Pant of the tabulation of the data anil the errors in thie approximating spline for Example 7.9.4.


Fig 7.9.6 Fokker-Planck feasibility study date

It should be atressed that in ixampes $7.9 .2,7.9 .3$ and 7.9.4. further experimentation with the choice of knots would almost certainly desult in improved approximations. However, since the fits obtained were close to being as good as possible with respect to the accuracy of the data, such innmovenents wuld only be marginal.

### 7.10 Autonatic knot seiestion

Rather than the user having to select a suitabie sot of lrnots, it would clearly be desirable to have an automatic method. which in sone sense chose optimum or ai least "cood" knot positions in any particular instance. A number of workers have examined this importint problem.

Powell (1970) describes an algoritha for detornining Joast-squares cubiospline aporoxisations in which the choice of knot posjtions is hesed upon a "trend" test. His approach involves initially the approximation of the data by a spline with a small number of oquaily yapaced kaotio. The residuals $\varepsilon_{i}(i=1,2, \ldots$, in $)$ are then exanined and if thene are regions where a trend is indicated, io the ralucs of ${ }^{\varepsilon}{ }_{i}$ are not; distributed in a raniom manner about zero, further knots are inserted in the regions indicated by the test. The process is then repeated untin hopefully an acceptable approximation is obtained. The wethod seems particularly suited to cases where there js an aburdance of data points (say several hundred) and the underlying curve is complicated, perhaps witin many pouks, and has similar behrviour throughout the range. However, oven in such cases, rather more knots than are strictily necessary are often introduced by the method. In some other cases, particularly where the behaviour in one part of the range differs radically from that in enother, somewhat unsatisfactory results may be producca. Whis difficulty is due sainly to the restriction the algoijtim places on the rate of change of knot spacines throughout the renge. It should be noted that Fowell's algoritius is noti
baseā solely upon the least-squares criterion, but contains adiditionez Smoothing terms which tend to reduce tho discontinutios in tho thind derivatives at the intexior knots.

De Boor and Rice (1968) have developed an aleurithen which attempto to determine a spline $s(x)$ with as feem knots as possible so that

$$
\begin{equation*}
\|\varepsilon\|_{2}<\delta \tag{7.10.1}
\end{equation*}
$$

where $\delta$ jis a prescribed positive number. They attack this problen by solving successively for $\mathbb{N}=1,2$, ... the lasst-squares nonlinear spline approximation problen: minimize $\|\varepsilon\|_{2}^{2}$ vith respect to both the linoar parameters and the interior knots of $s(x)$. Since the value of $\|\approx\|_{2}$ either Cecreasen strictly with increasing IN (Kice, is69: 143) or, for some value of $N$, is equal to zero, f.t follows that in theoryr at least, ir can be increased until condition (7.10.1) is satisicio $d_{\text {. }}$

The algoritho employed by de Boor and Rice is a method of descent. Giver. an initial sot of $\mathrm{N}-1$ interior lanots ( $N$ fixed), they are improred cyclionjly to minimize $\|\&\|_{2}^{2}$. The cycle starts with the right-most knot and, vorlinge to the left, each knot is varioe so as to reauce $\|\varepsilon\|_{2}^{2}$ as a function of this single lnot. This cyclic process is continued until some ariterion of convergenca is met. Such a process can, of course, hope to f"ind only local minima of $\|\varepsilon\|_{2^{\circ}}^{2}$ There may be many local minima (Cox, 1971) and, consequently, it is unlikely that the global minimum is obtained, unless the initial knots are sufficiently close to those corresponiing to this minimur. Additional knots are introciuced one at a time. A point is detemined where the approxination for $\mathrm{N}-1$ knots is poorest and the Nth lnot is introducca midray between the two knots which bracket this point. The method has been implemented in Fortern by de Boor and Rice (1968) for the cubio-spline case $n=4$.

Alhough the mathod can sometimes yiela very satisfactory approximaifons, the whole process is fraught mith difriculties. Pirstly, there is the problem of determining whother convergence has taken place. This problem appears on three levels, nane.ly, for the whole algorithn, for the leastsquares nonlinear spline approxination problen for any particular value of N and for the adjustment of knots within this latter problem. The decisions that convergence has taken place are made on the basjos of jather dolicate ad hoc numerical tests which aro not infollible. Secondly, the resulting ajproximation may correspond to a Local minimurn of $\|\in\|_{2}$. As indicated in Cox (1971) there may be many local minima, many of which are far inferior to the Elobal mininurn. An example is eiven by cox in which the global minimum is relaively infinitely superior to a local minimua in the sense that the former has a zero value of $\|\varepsilon\|_{2}$, whereas the Iater takes a finite valus. In fact the difforences between tho two approxinations, when dram to typical graphical accurncy, are easily discernible by eye. Thirdly, the nethod can easily consume enormous amounts of computation time. For instance, de Boor and Rice quote an example with a final value of $N$ of about 30 which takes some 20 minutes computation time on the powerful IBlf 7090 computer. This time is to be compared witin a one of a fraction of a second for 30 fojxed knots.

A somewhat aifferent approach has been suggestec more recently by de Buor (1973) (also see Dodson, 1972), in mhich initial estimates of the nth derivative of the function underlying the data are made. Then, using the fact that, at least for a mathematical function, the local error in an approximation by a spline of order $n$ is proportional to the $n$th power of the local knot spacing and directly to the magnitude of the nth derivative of the function, he describes an Elgorithin for ostimeting "good" knot positions. He outlines a rey of iterating the procese in an attempt io improve furthex the epproximation so obtained. The current vriter has
compred an inplementation of this method with the appioach discussed in Section 7.8; starting with the approximations produced by the process described in Seotion 7.8, in only two casos out of 20 did de Boor's approach produce a superior approxination, and even thoso two were only marginaliy better. However, de Boor's suggestion appears to ve worth exploring further. It may be that cerlain refinements would enable a good algorithm to be developed. The main adventage compared with, say, the de Boor-Rice approach, is its speed. A major diffoiculty is the initial estimation of the nth dorivative of the under lying function. Artor all, the nth derivative (even for a cubic spline, $17=4$ ) is surely ruch harder to estimate than the function itsalf, and the latotor problom of course is essentially the one we wish to solve!

### 7.11 Least-squares spline-approximation of a mathomntical fumction

 This section is exceptional in that we consider the approximation by spJines of functions rather than data. The main reason for incorporating this digression is to demonstrate that B-splines are a powerful tool in this area also, and that their use compares vory pavourably wjeth other approaches (eg Bellman, Kashef and Vasudevan, 1974) that have been proposed recently.Consjder the problem of approximating in the least-squares norm the runetion $f(x)$ over the range $a \leqslant x \leqslant b$ by a spline $s(x)$. As usual we introduce a set of interior knots $x_{i}(j=1,2, \ldots, N-i)$ and augment this ry aduitional knots at $x=a$ an $x=0$ so that tbe complete knot set $\left\{x_{i}\right\}$ forms a standard knot set with coincident end knots. Our approximation problem can be posed in the folloming way.

Detiermine coefficients $c_{i}(\dot{i}=1,2, \ldots, q=N+n-i)$ mhich mininize

$$
\begin{equation*}
\left\{\sum_{i}^{b} \sum_{i=1}^{q} c_{i} N n i(x)-f(x)\right\}^{2} d x \tag{7.11.1}
\end{equation*}
$$

The minimizing values of $c_{i}$ are defined by the equations

$$
\begin{equation*}
\int_{a}^{b} N_{n j}(x)\left\{\sum_{i=1}^{q} c_{j .} H_{n i}(x)-f(x)\right\} d x=0 \quad(j=1,2, \ldots, q), \tag{7.11.2}
\end{equation*}
$$

that is, by

$$
\sum_{i=1}^{q} c_{i} \int_{a}^{b} N_{n i}(x) N_{n j}(x) d x=\int_{a}^{b} N_{n j}(x) r(x) d x(j=1,2, \ldots, q)
$$

Because of the compact support property of the E-splines, the equations $(7.11 .3)$ reduce to
$\sum_{i=j-n+1}^{j+n-1} c_{i} \int_{a}^{b} N_{r_{1 i} i}(x) N_{n j}(x) d x=\int_{a}^{b} N_{n j}(x) f(x) d x \quad(j=1,2, \ldots, q)$.

Equations (7.11.4) constitute a system of $q$ linear equations of bandwidth $2 n-1$; symmetric about the main diagonal, which may be solved efficiently in $O\left(q_{n}{ }^{2}\right)$ operations. To determine the elements of tine system it is necessary to compute the values of

$$
\begin{equation*}
a_{i, j}=\int_{a}^{b} N_{n i}(x) N_{n j}(x) d x \quad(|i-j|<n) \tag{7.11.5}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{i}=\int_{a}^{b} H_{n i}(x) f(x) d x \tag{7.11.6}
\end{equation*}
$$

Further use of the compact support of the B-splines enables (7.11.5) and (7.11.6) to be reduced to

$$
\begin{equation*}
\varepsilon_{i j}=a_{j j i}=\int_{x_{j i-n}}^{x_{i}} N_{n i}(x)_{N_{n j}}(x) d x \quad(i \leqslant j<i+n) \tag{7.11.7}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{i}=\int_{x_{i-n}}^{x_{i}} N_{n i}(x) f(x) d x x_{i} \tag{7.11.8}
\end{equation*}
$$

There are many ways in which the integrals $(7.11 .7)$ ana (7.11.8) yay bo evaluated. The folloring approach is recominended. Express (7.11.7) in the form

$$
\begin{equation*}
a_{i j}=\sum_{k=j-n+1}^{i} \int_{x_{k-1}}^{x_{k}} N_{n i}(x) N_{n j}(x) d x_{0} \tag{7.11.9}
\end{equation*}
$$

In each of the intervals $\left(x_{k-1}, x_{k}\right)(k=j-n+1, j-n+2, \ldots, i)$ the integrand in (7.11.9) is a polynomial of degree $2 n-1$ and hence tho corresponding integral may be evaluatod oxactly by any quadratura rule that is exact for polynomials of degrec $2 n-1$. The values of tho integrand required by the quadrature rule are products of the values of $B-s p l i n e s$ of order $n$ which may be calculated using filgorithm 3.12.?. It winl not Do possible in general to compute the values of $l_{i}$ exaotily. However, their values may be approximated by expressing $b_{i}$ as

$$
\begin{equation*}
b_{j}=\sum_{k=i-n+1}^{i} \int_{x_{k-1}}^{x_{k i}} N_{n i}(x) f(x) \dot{a} x \tag{7.11.10}
\end{equation*}
$$

and applying an appropriate quadrature rule to each of the intagrals in (7.11.10).

In cases where the mots are equally spaced, explicit expressions for the $a_{i j}$ in terms of B-splines of order $2 n$ are available (see Schoonberg, 1069). The approach we have cutlined in this section is a natural use of the B-spline basis. Bellman, Kashef and Vasudevan (1974) have also consiäored mhat they term "mean square spline anproximation" and have iescribed an algorithm based on dynmic programing for the case n=4. Becauso they do
not use a sutable busis and because they erploy dyamic promormaing urnccessarily (in a situation where noro dixect methods suffice), their approach is relatively unvielay horeover, we believo their approachi is comparitively inefficient and also suffers from a considurablo degreo of inl-conditioningo. It is necessory in tionir method to cratuate integrals of the fom

$$
\begin{equation*}
\int_{x_{k-1}}^{x_{k}} x^{i} f(x) d x \quad(i=0,1,2,3) \tag{7.11.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{x_{k-1}}^{x_{k}} f^{2}(x) d x \tag{7.11.12}
\end{equation*}
$$

## GILIPTA? 8


In this chatuen a stwaichticmat extensjor of acme aisorithers for solvias unconsimained liusen approzimsijon problems in tho in and $I_{1}$ os nomis is given. The extondea eigarithans allon. Iower or ippux botaid ion
 zetainjng the computational efficioncy of the uncusntrainer. angorith.

A representation of a cubic spline in toms uf the vanucs or ith soocrut derivatives at the lriots and ita values at the ords of tine rorge is deruved. 5y placing simple non-negativity or ron-positivitiv constrointy upor tre values of thess तepivatives the spline cen bo rorred to satinfy poseribed poperties such as local convexity ur goncavity.

Tins aintenteit linear appoximation alcurithas, wher used in conjunction with this renresenietion of a cubic splino, enable approximations to discrete data sets to be obtained which are frer firom undesirahjo jnflexjons or oscillations.

Ir Section $\delta_{0} i$ ve discuss the need for constrainod appowination und indicate how some jmportant types of costrinums constraints may wo coforced by imposing upon a cubic spline a stinitie mumber of point constreinhs. In Section 8.? we consider the formulation as Iinear programs of the Gencxal discrete linear $\dot{d}_{1}$ and $L_{\text {ca }}$ approrimation problems with simple constraints upon the parametors, In Section 8.3 we derive a repmesentation of a cobje spline in tems of the valuen of its secna dorivatives at the knotis and its rajues at the onde win the range. In section 8 . $k$ ititit shom that the Ijncar prosicons obtained in Section So can bo usad in comjunction with tho mprosentation deniped in Section 8.3 to obtain cubic-syine aporoxinatiors which satisfy locol comority ard conemvity
constrejnts. Also in Boction 8.4 ve disouss briefly the nucorica? stanility of tho process. In Sowion 3.5 some numerical oramplas axe given.
8. 1 The need for coristrained annozimations

In problons of abte approximation it is often important that the approximating function employea should zeflect cejtain propertios ct thr fimetion underlying the data. For instance, if it is lincmath the underlying function is conver, then it is usurlily denirente trat the approximating tinction is also convex.

Ir mary circunstances it is found that cubje splines form food approxinating functions (see, for instance, the examples in Chantar 7). Unfortunately, the alcoritha discussed in Cnstptor 7 is not gusemtend to pioduce approwimations that are free from spurious oscilletions, although very frequently the approximations are indsed oscillation-froe. Howerer, if cubic splines are representeai in en appropriate riay, they con be corced to uisplay desired local hehaviour by the imposition of a finite number of very simple point constraints. In fact, many aspects of the local beheviour of a cubio spline depend umon the values of its second derivative at the hots. In particular, sinee the second derivative of a cubic spline $s(x)$ with sirole knots is linear batreen any pais of adjacont lrots $x_{j-1}$ and $x_{j}$, the following types of hensviour can he foronci:
(i) conrexity $j$ n the interval $x_{j-1} \leqslant x \leqslant x_{j}$ is achieved by ensuring that both $s^{n}\left(x_{j-1}\right)$ end $s^{\prime \prime}\left(x_{j}\right)$ are non-negative.
(ii) coneavity in the interval $x_{j-1} \leqslant x \leqslant x_{j}$ is achievod ${ }_{j}$ ensuring that buth $s^{\prime \prime}\left(x_{j-1}\right)$ and $s^{\prime \prime}\left(x_{i}\right)$ cire non-positive,
( $i=1 i$ ) the requirements thet $s(x)$ be convex for $x \leqslant x_{j-1}$, possess a single juflexion point in the interval $x_{j-1} \leqslant x_{j} \leqslant x_{j}$ and be ecnceve por $x \geqslant x_{j}$ cart be achioved by onsuning that $s^{\prime \prime}\left(x_{i}\right) \geqslant 0$ for $i \leqslant j-1$ mad $s^{\prime \prime}\left(x_{i}\right) \leqslant$ for $i \geqslant i$.

 Dj the Puncition

$$
\begin{equation*}
P(\underset{\sim}{g}, x)=\sum_{j=1}^{4} \xi_{j} \phi_{j}(x) \tag{8.2.1}
\end{equation*}
$$

Whewe the unkncyr coefficiente $\underset{\sim}{g}=\left\{g_{1}: B_{2}, \ldots, E_{g}\right\}$ aro to butisty tho consturajnts

$$
\left.\begin{array}{ll}
g_{j} \leq a_{j} & \left(j \in i_{j}\right)  \tag{3.2.2}\\
E_{j} \geqslant a_{j} & \left(j \in J_{2}\right) \\
g_{j} \text { uncostricted } & \left(j \in \tilde{u}_{3}\right)
\end{array}\right\}
$$

In (8.2.2), $J_{1}, J_{2}$ and $J_{j}$ ture distinot sots, the union or which contans precisely q elements. Define

$$
\begin{equation*}
e\left(\underset{\sim}{g}, t_{i}\right)=F\left(\underset{\sim}{E}, t_{i}\right) \cdots r_{i}(j=1,2, \ldots, m) . \tag{3,2.3}
\end{equation*}
$$

The $L_{f}$ approxination problem is to detormjene ${\underset{\sim}{\sim}}^{*}$ such that

$$
\begin{equation*}
\sum_{i=1}^{n}\left|e\left({\underset{\sim}{*}}^{n}, t_{i}\right)\right| \leqslant \sum_{i=1}^{m}\left|e\left(\underset{\sim}{m}, t_{i}\right)\right| \tag{8.7.i.}
\end{equation*}
$$

for all ${ }_{c}{ }^{8}{\underset{\sim}{8}}^{*}$ satisfying (3.2.2).

Tho I ar epporimation problen is to determine $\underset{\sim}{\underset{\sim}{c} \text { en such that }}$

$$
\begin{equation*}
\max _{1 \leqslant \pm \leqslant m}\left|e\left(\tilde{e}^{*}, t_{i}\right)\right| \leqslant \max _{1 \leqslant i \leqslant m}\left|\theta\left(\underset{N}{\operatorname{man}}, t_{i}\right)\right| \tag{8.2.5}
\end{equation*}
$$

fom ent E: en * satisfying (8.2.2).

If re le̛

$$
c_{j}= \begin{cases}a_{j} \cdots j_{j} & \left(j \in J_{1}\right)  \tag{8.2.6}\\ 5_{j}-a_{j} & \left(j \in J_{2}\right) \\ \ddot{z}_{j}+\alpha_{q+1} & \left(j \in J_{3}\right),\end{cases}
$$

73 th

$$
c_{n \rightarrow 1}=\max \left\{\begin{array}{l}
0,  \tag{8.7.7}\\
\left.\max _{j \in J_{3}}\left(-E_{j}\right)\right\}
\end{array}\right.
$$

the constraints (8.2.2) are equivalent to

$$
\begin{equation*}
a \geqslant 0, \tag{8.2.3}
\end{equation*}
$$

where $a=\left\{e_{1}, a_{2}, \ldots, a_{a+1}\right\}$. then, putting

$$
\begin{equation*}
a_{i, j}=\varnothing_{j}\left(x_{i}\right) \tag{8.2.3}
\end{equation*}
$$

gives

$$
\begin{aligned}
& e\left(E_{N}, t_{j}\right) \equiv \varepsilon\left(a_{\sim}, t_{i}\right)=\sum_{j \in J_{1}} a_{i j}\left(a_{j}-a_{j}\right) \\
& +\sum_{j \in \mathbb{T}_{2}}^{1} a_{i j}\left(a_{j}+a_{j}\right)+\sum_{j \in J_{3}} a_{i, j}\left(a_{j}-a_{n+1}\right)-r_{i}(\varepsilon, \ldots, 10) \\
& =\sum_{j \in J_{1}}\left(-a_{i j}\right) c_{j}+\sum_{j \in J_{2}\left[J J_{3}\right.} a_{i j} a_{j} \\
& +\left(-\sum_{j \in J_{3}} a_{j j}\right) a_{n+1}-\left(f_{i}-\sum_{j \in J_{1} U_{2}} a_{i j} a_{j}\right) \quad(8 \cdot 2 \cdot 11) \\
& (i=1,2, \ldots, n) .
\end{aligned}
$$

Vic define, for $i=1,2, \ldots, m$,

$$
\hat{a}_{i j}=\left\{\begin{array}{cl}
-a_{i j} & \left(j \in J_{1}\right)  \tag{8.?.12}\\
a_{i j} & \left(j \in J_{2} v J_{3}\right) \\
-\sum_{k \in J_{3}} & n_{i k} \\
\left(j=I_{1}+i\right)
\end{array}\right.
$$

und

$$
\begin{equation*}
\hat{f}_{i}=f_{i}-\sum_{i \in J_{1} \mathbb{V J}_{2}} a_{i j} d_{j} . \tag{8.2.13}
\end{equation*}
$$

The $L_{1}$ approximation problem is then to dotomaino $\mathbb{g}^{*} \geqslant 0$ such that

$$
\begin{equation*}
\sum_{i=1}^{m}\left|\sum_{j=1}^{q+1} \hat{a}_{i, j} \alpha_{j}^{*}-\hat{x}_{i}\right| \leqslant \sum_{i=1}^{2 n}\left|\sum_{j=1}^{n+1} \hat{a}_{i, j} a_{j}-\hat{f}_{i}\right| \tag{8.2.14}
\end{equation*}
$$

for all $\underset{\sim}{c} \geqslant 0$.

The $I_{\text {as }}$ approrimetion problem bacomes the determination of $a^{*} \geqslant 0$ such thiat

$$
\begin{equation*}
\max _{1 \leqslant i \leqslant n}\left|\sum_{j=1}^{q+1} \hat{a}_{i j} a_{j}^{*}-\hat{f}_{i}\right| \leqslant \max _{1 \leqslant i \leqslant m}\left|\sum_{j=1}^{q+1} \hat{a}_{i j j} \omega_{j}-\hat{f}_{i \cdot}\right| \tag{8.2.1j}
\end{equation*}
$$

for all $\underset{\sim}{a} \geqslant 0$.

The problems are now in the fom considered by marrodalo ne Young (i956), except that in our formulation the pirameters © ero already non-negative (the first stage of Barrodale end Yourg's aleorithur reduces the problon to contain just non-necative parameters). Barrodale and Youne sho: that the problems can be reduced to linear prograns as follows. For the $\mathrm{L}_{1}$ apmoxination problea fut

$$
\varepsilon\left(c, t_{i}\right)=u_{i}-v_{i},
$$

where $u_{i}, v_{i} \geqslant 0$, to fitw tile following n equality constuaints in nomnegrtive variados,

$$
\sum_{i=1}^{(i+1} \hat{B}_{i j} \sigma_{j}-v_{i}: v_{i}=\hat{r}_{i}(j=i, 2, \ldots, n i) .
$$

The probem is then solved by unimiring $\sum_{j=1}^{m}\left(u_{j}+v_{j}\right)$ wivect to $(8.2 .17), \& \geqslant 0$ and $u_{i}, v_{i} \geqslant 0(j=1,2, \ldots, m)$.
For the $I_{\infty}$ epproximation problem put $u=\begin{gathered}\text { misy } \\ 1 \leqslant i \leqslant m\end{gathered}\left|s\left(s_{3}, b_{j}\right)\right| \quad$ to obain tine 2 n constraints

$$
\left.\begin{array}{l}
\sum_{j=1}^{n+1} \hat{a}_{i, j} a_{j}-\hat{f}_{i}+u \geqslant 0  \tag{8.2.18}\\
\sum_{j=1}^{i+1} \hat{a}_{i j} a_{j} \cdots_{i}-u \leqslant 0
\end{array}\right\}(i=1,2, \ldots, n) .
$$

This grives the linctar procramine problem of minimiaing u subject to $(3.2 .18), \underset{\sim}{2} \geqslant 0$ and $u \geqslant 0$.

Efificient algorithes which exploit the specirice structure of those formulations are eiven in Barrolale and Young (1966). Other versions of these olgorithms are given by Barrodale (1967) anả Barrodale anu roborts (1971).

### 8.3 A remresentation of' cubic splines

Wo derive in this section an explicit representation of a cubic spline, which exhibits as parameters the values of the second deriyative of the spline ot the knots.
A. cubic spline $s(x)$ with straciny increasing krotis $x_{0}, x_{1}, \ldots, x_{N}$ (if adational exterion knots eye introduced in the ustal may) can bo exprossea (thooren 5.1.2) as

$$
\begin{equation*}
s(x)=\sum_{i=1}^{1 r+3} c_{i_{i} i j_{i} j}(x) \tag{8.3.1}
\end{equation*}
$$

for $x \in[a, b]=\left[x_{0}, x_{1 N}\right]$. Fie intend to express the values of $c_{i}(i=2,3, \ldots, I N+2)$ in terms of those of $c_{1}, c_{j-1}$, and $s_{j}^{\prime \prime}(j=0,1$, $\ldots$..., Hi). Here $s_{j}^{\prime \prime}$ denotics the values of $s^{\prime \prime}\left(x_{j}\right)$. Now

$$
\begin{equation*}
s_{j}^{n}=\sum_{i=1}^{N=3} c_{i} N_{4 i}^{\prime \prime}\left(x_{j}\right)(j=0,1, \ldots, N) \tag{8.3.2}
\end{equation*}
$$

which, because of the compact support property of tho B-spinises, loâuces to

$$
\begin{equation*}
s_{j}^{H}=\sum_{i=j+1}^{i+3} c_{i} \mathbb{N}_{1+i}^{H}\left(x_{j}\right) \quad(j=0,1, \ldots, N) . \tag{8.3.3}
\end{equation*}
$$

We ru-write equations (3.3.3) as follows:


The use of relations (4.1.1), (3.4.2) and (3.2.9) gives

$$
\left.\begin{array}{l}
N_{4, j+1}^{\prime \prime}\left(x_{j}\right)=6\left(x_{j+1}-x_{j-2}\right)^{-1}\left(x_{j+1}-x_{j-1}\right)^{-1} \\
H_{l}^{n}, j+3  \tag{8.3.5}\\
\left(x_{j}\right)=6\left(x_{j+2}-x_{j-1}\right)^{-1}\left(x_{j+1}-x_{j-1}\right)^{-1} \\
N_{4, j+2}^{\prime \prime}\left(x_{j}\right)=-\mathbb{N}_{4, j+1}^{\prime \prime}\left(x_{j}\right)-N_{4, j+3}^{\prime \prime}\left(x_{j}\right)
\end{array}\right\}
$$

Insertion of the relations (8.3.5) in (8.3.4) and the multipitication of row $j+1(j=0, i, \ldots, N)$ by the factor $-\frac{1}{6}\left(x_{j+1}-x_{j-1}\right)$ and putting
$y_{d}=\left(r_{2} \cdot x_{j-3}\right)^{-i}$ yielde the systen

$$
\begin{equation*}
A_{\sim}^{A C}=B_{i}, \tag{8.3.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\underline{g}=\left\{c_{2}, c_{3} ; \ldots, c_{N+2}\right\} \tag{8.3.7}
\end{equation*}
$$

asd

$$
\begin{equation*}
E_{\sim}^{E}=\left\{c_{1}, s_{0}^{\prime \prime}, s_{1}^{n}, \ldots, s_{N}^{n}, c_{1+3}\right\}, \tag{8.3.4}
\end{equation*}
$$



$$
\left.\begin{array}{l}
a_{j+1, j+1}=k_{j+1}+k_{j+2}(j=0,1, \ldots, N),  \tag{0.3.9}\\
a_{j, 2+1}=a_{j+1, j}=-k_{j+1}(j=1,2, \ldots, n j
\end{array}\right\}
$$

ard E ju the $(\mathrm{N}+1)$ by $(\mathrm{N}+3)$ matrix whose only non-2ero co.

$$
\left.\begin{array}{l}
b_{11}=k_{1}, \quad b_{N+i, N+3}=k_{N+2} \\
b_{i+1, j+2}=-\frac{1}{6}\left(x_{j+1}-x_{j-1}\right)(j=0,1, \ldots, N) \tag{8.3.90}
\end{array}\right\}
$$

Sinne A tas e duninant main diagonal it is nositive derinito and of funt rard: Hence

$$
\begin{equation*}
\mathrm{c}=\mathrm{H}= \tag{8.3.11}
\end{equation*}
$$

Where $\underset{\sim}{I I}$ is der̃ined unicuey dy

$$
\underset{\sim}{A} \underset{\sim}{A}=3 .
$$

 stable menner by foraing the Cholasiy actorization

$$
\begin{equation*}
A=I_{\sim} . I_{I}^{I T}, \tag{0.3.13}
\end{equation*}
$$





$$
\begin{equation*}
c_{j+2}=\sum_{r=1}^{N+3}{ }^{n+1+1, r} \varepsilon_{r^{*}} \quad(j:=0,1, \ldots, \text { IV }) . \tag{8.3.14}
\end{equation*}
$$

Thus

So, recalling that $c_{1}=E_{1}$ and $c_{N+3}=E_{N+3}$, wo obtain

$$
\begin{align*}
& s(x)=E_{i}\left\{H_{4 i}(x)+\sum_{i=2}^{j+2} h_{i-1,1^{N} h_{i}(x)}\right\}+\sum_{i=2}^{N+2} E_{r}\left\{\sum_{i=2}^{N+2} h_{i-1, r^{N}, i, i}^{N}(x)\right\} \\
& +\varepsilon_{i T+i}\left\{\sum_{i=2}^{N_{i} \cdot 2} n_{i-i, 3} N+33_{4 i}(x)+\pi_{4}, N+3(x)\right\} \text {. } \tag{8.3.15}
\end{align*}
$$

Thus, defining,

$$
\left.\begin{array}{l}
\mathrm{m}_{01}=h_{N+2, N+3}=1  \tag{3.3.17}\\
h_{0, r+1}=h_{N+2, r}=0 \quad(r=1,2, \ldots, N+2),
\end{array}\right\}
$$

we have

$$
\begin{equation*}
s(x)=\sum_{r=1}^{1 N+3} \varepsilon_{r} \sigma_{r}(x), \tag{8.3.18}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi_{x}(x)=\sum_{i=1}^{N+3} n_{i-1, x^{-1} H_{4 i}(x), ~}^{x} \tag{8.3.19}
\end{equation*}
$$

 bast s functions $\rho_{r}^{\prime}(x)(r=1,2, \ldots, N+3)$.


 apjeied for $x_{j-1} \leqslant x_{j} \leqslant x_{j}$ and was herined in torms of the viluas or $s(x)$ ard. $\sin (x)$ at $x=x_{j-1}$ and at $x=x_{j}$. Fogether whth oppropriate comations to ensure the sontinuity of $s^{\prime}(\pi)$, the use of this sejmesertation, mintw is given in Ahlberg, Nilson and Walsh (1967), alse eave liss to a mymerric positive definite triple-diagoan syntcm, but of order fl-1 wether tron:
wit1. The main reason for using the B-spline apprach hore is ther its generality enables $i t$ to be extendod more roajshy then shor apronches to constrained splinu-apmoximation problems of arbitrary uepree. Specificaily, a spline of order $n$, expressed in torns of i3-iplinees, cur be represented in a form which oxhibits as parcueters tine vajues of tith derivatives of ofacr $n-2$ at the mots. Thms appoxinatine finctions ous be onstructed wich enabla conditions on perlichiay darivalives to he inpused. For cxample, the use of a quadratic spline encbles conditions to be placed on the finst derivative (monotonicity); the use of a quartic spline enables conditions to he placed on the third deravelive. Anothor irpontant reason for using the B-spline bnsia rolates to the ovaluntion of the derivatives in the generalization an anntions (8.3.4) to the wase of splines of older $n$. In this ceneraliwation all non-zero values of $N_{n i}^{(n-2)}\left(x_{j}\right)$ have to be evaluatod; it was eistobistaed in Sectuon 4.3 (Iheoren 4.3.3) that these values can be formea in an unconditionally stable mamer.

### 8.4 Constrained cubic-spline anproxination

Fe now return to the wablem of apmoxinating discrete data sotis jun tho $I_{1}$ or $L_{6}$ norms by cubic splines setisfyine certain pescrited properiono.

Suppose a sct if data points $\left(t_{i}, f_{i}\right)(i=1,2, \ldots$, m $)$ is ejven, together with a strictly increasing set of knots $x_{0}, x_{1}, \ldots, x_{\text {IN }}$, such that $z_{0} \leqslant \frac{m i n}{i} t_{i}$ and $z_{I V} \geqslant \frac{\text { nare }}{i} t_{i}$. Adcitional oxtorior lacols ano added in the usual way such that the complete set forms a stannora knot sot. At the position of each knoti $x_{j}(j=0,1, \ldots, N)$ the approx inating spline $s(x)$ is to be
(i) locally convex (ie to posseas a non-raegutive second derivative),
(ii) locally coneave (ie to poseess a non-positivo socond ierivative), 0
(tiif) unrestricted.
In temins of the representation $(8.3 .18)$ and $(8.3 .19)$ and reciling (8.3.8) this requirement is equivalent to
(i) $E_{j+2} \geqslant 0$,
(ii) $E_{j+2} \leqslant 0$, OI
(iii) $g_{j+2}$ unrestricted.

But this formulation is just that iiscussed in Soction 8.2, and, honce cau be solved by the method describod there.

In soule probleas, it may be inpontrant that the value of the seconc. derivative does not fall below (or above) a proscribed critical value. Trisuch cases conitions (i) and (ii) are replnced by $\varepsilon_{j+2} \geqslant \alpha_{j+2}$ or $\varepsilon_{j+2} \leqslant a_{j+2}$ as apmopriate, where $a_{j+2}$ denotes the critical value. Otiner nethods for finding constrained cubic-spline approacimations have been proposed by a number of authors including Rabinowitu (1953), Anos and Slater (1969) and Larata and Rosen (1970). All these methods introduce adaitional equations lo descrote the constraints, rather than use an explicit representation of the spline which enables the constraints to be dealt vith at wirtually no extre cost, as we have suggesteri here is a
consonvence their mathods empear to he somemiat inefinciont as rejucen both stomage anà computor time. Some of those methods also appesme to suffer fron a cevorin degree of ill-conditioujng. Ancos and slater (igég) use the $I_{2}$ rom and solve the reaulting guacinatic progren using the Theil-Ven de Pame procedure, a mothod witich is known to be veng inexffisicut (Boct, 1964). Turthermoze, they cmuloy the reprosombaron

$$
\begin{equation*}
s(x)=\varepsilon_{i}+\varepsilon_{2} x+\varepsilon_{3} x^{2}+g_{4} x^{3}+\sum_{j-5}^{q} \varepsilon_{j}\left(x-x_{j-1}\right)^{3} \tag{8.4.1}
\end{equation*}
$$

for the spline, which is a particularly poorly-conditioncd forin fin"
 use of this ill-aonditioned xemmenentation in the solution of such probleins in the $I_{1}$ norm. LeTrata and rosen (i970) use the $\mathrm{L}_{\text {, }}$ and Ito noms and, 2.5 besis for $s(x)$, they employ 3-splines, wut consicior only equally-speced lmots. Morouver they compute the requined values os the B-splines from tho unstahle explicit formin (3.2.4), rather than from the numericality stable reourrence relation (3.1.4) or (3.4.2).

The mothod we employ eppears to comparo favcurably hist the above motilnts. It results in a relatively short computer code; for oither the $L_{1}$ or the I \& nonm, the complete procedire, includime the code for the solution of the linear procram, and for the monitoring of tho groith factor (sea below), contains only eibout 250 Algol statements.

It is now becoming widely recognized that, because the Gauss-atordan ejimination procsss mithout a pirotal strategy is emplayed, many of the existing linear programing codes (ineluring those of Rarrodele and Young (1356), Barrodale (1967) and Barruale and Koberts (1971) for solvira
 unstable in that severe exwon growth (minch jn certuin casss conla suriny

Gin rive solution j may bour. Li is to be expected, by aloft pritid
 indiowiten of the loss of accuracy in shivah an implementation of tho simplex method is given by time growth of the magnitudes of the nlament:a
 10 to 100 data potivis, 2 to 10 knots and knot, spacing rotioshe arson 1 to 20, Were solved on an Fmglish Electric JIg computer. In each otto the "growth factor" g, aerinod by

$$
E=\max _{i, j, j}\left|e_{i j}(k)\right| / \begin{align*}
& \max  \tag{8.4.2}\\
& i, j
\end{align*}\left|a_{i, j}(0)\right|
$$

was computed. In (8.4.2), a id $^{(k)}$ denotes the value of $a_{i j}$ after k j.torations of the simplex method. The largest value of $G$ observed wees approximately $10^{4}$, indicating a loss of about four decimal figures (out of the 39 binary, or about 12 decimal, figures available or KDFg) in the computation. In many cases the value of es was less than 10 , incubating a loss of at mast me decimal digit; in some case en was unity, indicating essentially no error growth at all. The size of $c$ seemed to be unrelated to $\mathrm{m}, \mathrm{N}$ or the knot spacing ratio. This reasonably encouraging aviasnce. does not of course imply that we can preclude the possibility that, in some applications; completely unreliable results may be obtained. It jas recommended therefore that the growth factor be computed and oxaminca before the results are accepted. An efficient method for computing the frowtin factor has been giver by businger (1971).

In recent years, numerically stable algorithms for the simplex inctinod, based upon triangular decomposition (Barbels and Golub, 1969) and upon

$$
\text { *The knot spacing ratio is abinod by } \max _{1 \leqslant i \leqslant n}\left(x_{j}-x_{j-1}\right) / \min _{1 \leqslant i s \pi}\left(x_{j}-x_{j-1}\right) \text {. }
$$

orthogonal decomposition (Gijl and furray, 1973), have appowed, which avoid the difficultias associated with the possibility of severe orror Erowth. It is hoped that future variants of the spline-ffiting alronithms aiscussea here will incorporate versions of one of thaze stable ginglex methods, tailored to take advantage of the reatures of the approximation problem.

## 8. 5 Inumerical. examples

He present tho exsmples which, for the purpose of concise prosentation, are suall, but nevertheless inlustrate some of tive adiabtage of constrained approxination. The $\bar{u}_{j}$ norin was concidered appropriste in both cases. The results were obtained usiag the kDFg computer, which has a floutino-point word containing 39 binsxy digito in the mantisse.

For each example we give firstly an unconstraineä approximation based on a prescribea sct of knots, and recondy an approxination, bised on the same set of knots, constrained to possess cortain properties of the underlying function. 'lhe growth fitctors and the mean absolute rosiduals $\sum_{i=1}^{m}\left|s\left(t_{i}\right)-f_{i}\right| / m$ are also quoted.

## Fxample 8.5.1

Data: Temperature distribution (Anos and Slater, 1969) - Table 8.5.1.

$i$	$t_{i}$	$f_{i}$
1	0.25	17.0
2	0.50	15.2
3	0.75	13.8
1	1.25	12.2
5	1.75	11.0
7	2.25	10.1
8	2.75	9.25
10	6.25	6.6
	12.25	3.1

Table 8.5.1 Pemperature distributjon data

Property required: Convsxity.
Interio knots: Those chosen by Anos and Sleter, viz $x=1,6,2,5,6,0$. ApIroximation 1: Unconstmained - Tables 8.5.2 and 8.5.3 and Fitg 8.5.1. Growth factor: 104.

Comment: The appromimation is unaceptable since $s(x)$ is concave for $8.08 \leqslant x \leqslant 12.75$ (Ticble 8.5.2 anù Fig 8.5.1).

$j$	${ }_{j}{ }_{j}$	$c_{j}$	$s_{j}^{\prime \prime}$
0	0.25		8.53235
1	1.60	17.0000	0.62750
2	2.50	13.3075	0.54528
3	6.00	11.4728	0.314 .93
4	12.25	3.1373	-0.63193
6		4.6560	
7		6.4 .586	

Tabie 8.5.2 B-spine cofficients ari values of the scoma derivative ai tho lnctis 10 tho wicunstrainea splino approximetion to the temperaturo distribution cista ait Examjo i3.5.1.

$i$	$s\left(t_{i}\right)$	$s\left(t_{i}\right)-r_{i}$
1	17.0000	0.0000
2	15.2000	0.0000
3	13.84 .18	0.04 .98
4	12.0347	$\ldots 0.1153$
5	11.0000	0.0000
6	10.1000	0.0000
7	9.3067	0.0933
8	6.6000	0.0000
9	6.1000	0.0000
10	3.5000	0.0000
Hean ibsolutio residual	0.0250	

Table 8.5.3 Unconscrained splinc approximation to the bempenature distribution data of Example 8.5.1.


Fig 8.5.1 Temperature distribution: unconstrained spline


Fig 8.5.2 Temperature distribution : convex spline approximation
 $\$ 3.5$ and Pj. 8.5 .2.

Gronth fectur: 12.5.
Coment: The corstrained spline has a mean absolute residual which is about $10 \%$ greater than that of the unconstrained spline.

$j$	${ }_{j}$		$c_{j}$
$s_{j}{ }^{11}$			
0	0.25		8.72185
1	1.60	17.0000	0.42650
2	2.50	13.2971	0.50928
3	6.00	11.5513	0.07516
4	12.25	8.0092	0.00000
5		5.4263	
6		4.2525	
7		3.5000	

Table 3.5.4 B-spline coefficients and velues of the second derivative at the lnote for the conatroined spline approximation to the temperature jistribution data of Example 8.5.1.

$i$	$s\left(t_{i}\right)$	$s\left(t_{j}\right)-f_{i}$
1	17.0000	0.0000
2	15.2000	0.0000
3	13.8501	0.0501
4	12.1158	$-0.034_{4} 2$
5	11.0305	0.0305
6	10.1000	0.0000
7	9.2905	-0.1095
8	8.6000	0.0000
9	6.1000	0.0000
10	3.5000	0.0000
Mean arisointee residual $=$	$0.0 \% 71$	

Table 3.5 .5 Constraine spline anproxination to the temperature 2istritution datu of Example 8.5.1.

## Example 3.5.?

Data: Sturess distribution Sor axienty Tonded aluminiun strut: (Brivion Standaral Code of Practice CPi!3, 1969) - Ttoble 8.5.5.

$i$	$t_{i}$	$f_{i}$
1	1.05	19.9
2	1.1	17.8
3	1.2	14.8
4	1.3	13.0
5	1.4	12.1
6	1.5	11.4
7	1.6	10.7
8	1.7	10.0
9	1.8	9.4
10	1.9	8.6
11	2.0	7.9
12	2.1	7.1
13	2.2	6.4
14	2.3	5.6
15	2.4	4.3
16	2.5	2.3
17	2.588	0.0

Table 8.5.6 Stress distribution data

Property reguirud: S-shapeà (ie exactly one inflexion point). Interior knots: $x=1.2,1.5,2.1,2.4$.

Appreximation 1: Themstreinod - Fables 8.5.7 and 8.5.6 and Tig 8.5.3. firomblifoctoi: $75 . \%^{\prime}$.

Coment: The arprorination is unacoeptablo since s(x) has fruee points
 he sear alearly by sighting fig 8.5.3 in the piane ois the paper and Jooking along the citcre.

$j$	$x_{j}$	$c_{j}$	$s_{j}{ }^{11}$
0	1.05		190.403
1	1.2	19.9000	121.991
2	1.5	17.5715	-7.858
3	2.1	12.7230	5.139
4	2.4	11.0338	-69.156
5	2.588	7.6331	-66.965
6		5.5328	
7		1.8235	
8		0.0000	

Table 8.5.7 B-spline coefficionts and values of the second derivative at the knots for the unonstrained spline appeximation to the stress cistevbution data of Fxample 3.5.2.

$i$	$s\left(t_{i}\right)$	$s\left(t_{i}\right)-f_{i}$
$i$	19.9000	0.0000
2	17.8000	0.0000
3	14.8000	0.0000
4	13.0238	0.0238
5	$12.031,8$	-0.0652
6	11.4000	0.0000
7	10.7625	0.0625
8	10.0685	0.0585
9	9.34 .03	-0.0597
10	8.6000	0.0000
11	7.8598	-0.0302
12	7.1718	0.0718
13	6.4 .830	0.0830
14	5.6000	0.0000
15	$4.27 i+1$	-0.0259
10	$2 . j 000$	0.0000
17	0.0000	0.0000
Yean abso!utie resian21 $=$	0.0289	

Teble 8.5.8 Unconstrained spline apuroxirition to the atress
dswibution daia of Bxamin 8.5\%.


Fig 8.5.3 Stress distribution : unconstrained splino approximation


Fig 8.5.4 Stress distribution: $S$ - shaped sp!ine approwination
finmoximation 2: Gonvexity sonstraints at $x=1.05,1.2, i .5 ;$ concavity constrainti at $x=2.1,2.4,2.588$ - Tablea 0.5 .9 and 8.5 .10 end FíE 8.5.4.

Growth factor: 14.0 .
Comuents: The mean absolute resicual of 0.0459 for the constrained spise is about $70 \%$ greater than the value 0.0289 of the unconstrained spline.

If such a valne rere considersd unaccoptably laree, a constrained spproximation with resjeduals comprable to those of the above unconstrained apreximation can be obteinea by using moro lnots. For oxomple, for the
 resicuisl of the constrained spling is 0.0208 . The unconstrained splino for those lrots has a slightly bettor mean absolute residual of $0.019 \%_{3}$ but agein vicolates the recuirement that the approximation is S -shapod.

$j$	$i_{j}$	$c_{j}$	$s_{j}^{\prime \prime}$
0	1.05		237.985
1	1.2	19.9000	101.890
2	1.5	17.5214	0.000
3	2.1	13.0530	-1.870
4	2.4	10.6839	-51.194
5	2.588	7.9649	-111.802
6		5.1960	
7		1.9201	
8		0.0000	

dish7e 8.5.9 B-spline cuefficients ard values of the second derivative at the knots for the constrained spline approximelion to the stress distribution data of Evample 3. ᄃ.2.

i	$s\left(t_{i}\right)$	$s\left(t_{i 1}\right)-f_{i}$
1	19.9000	0.0000
2	17.3000	0.0000
3	1\%.9312	$0.131 ?$
4.	13.1760	0.1700
5	12.1000	0.0000
5	11.3636	.0.0354
7	10.6834	-0.0166
8	10.0000	0.1000
9	9.3104	-0.0896
10	8.6114	0.0114
11	7.9000	0.0000
12	7.1730	0.0730
13	6.4004	0.0004
14	5.424 ?	-0.15.53
15	4. $11+13$	-0.1585
16	2.3000	0.0000
17	0.0000	0.0000
kean absolute residual =		0.0495

Table 8.5.10 Constraines syline appoximation to the stress distribution data of Example 8.5.2.

Discrete linear $I_{1}$ approximation theory informs us (Rice, 1964) that, in the unconstrained cose, the best $J_{1}$ approximation intorpolates (ut least) $N+3$ of the detia puints. Te see that in the firste example ir=4. ans the nurber of interpolated points is 7, as predicted by the theory. In ihe cunctrained case cnly 6 data points are intervolated, but one value of $s^{\prime \prime}{ }_{j}$ takes the value zero. In other words an interpolation condition has bean treded for an aetive constraint.

Stmilar rewarks apply to the scoand exanple in which $N=5$. The number of interpolated pojuts is 8 in tio unconstrained case, whereas in the onstrumed cane the number of interpolatod points is ? and one value of $\varepsilon^{\prime \prime}{ }_{j}$ tovas the value sicro.

## CHSPIEP 9

 It is sometimes necessary in problems of spline approximation lo force the nthoorder spline $s(x)$ to havo the propurty that at tho beruncarios of, or within, the interval of interest; $s(x)$ or some of itis denivntives are to take prescribod values. for instance, in srinino interrolution itu is ofter required that $\delta(x)$ satinfies given darivativa conditions at the bounduries; in least-souares spline approximation if is sometines recuined that ejther prescribed boundory conditions, as in the interpolation problem, tre to be satisfies, or that $s(x)$ and possibly itis dorivatives are to take given values at certain intoriox points.

Because of their relative simplicity, ve treat bourdary conditions separately from the more general conditions. Thus, in Section 9.1 we discuss the juposition of a single derivative boundary coridition. In Section 9.2 me treat the imposition of a sot of derivative boundary conditions. Both of those types of conditions are incorpornted by a simple change of vasis. Jr Section 9.3 we considez simplo point constraints and in Section 9.4 the most general type of linear edualjiy point constiaint. Einglyys in Section 9.5 me outinnc algorithms for luastsquares problems with linear constraints, and iriticato now these algorithms can bo awplied to the general conslrained spline approximation problem.

### 3.1 The imposition of a single derivativo boundary condition

Let the nth-order spline $s(x)$ be expressed in itw B-spitine iorn (5.1.10), where the knots upon which $s(x)$ and the $B-s p$ lines are dofincd form a stancard lnot set with coincident end knots. Suppose that in an interpolation or Lesty-squases approximation problem it is required that $s(x)$ or one ois its cerivatives is to toke a proscrihed valuo at oro or othei of tiae range end-poinis a and $n$. In the caso of interpolation the end conaition would
nearly always involve a derivative, since $s(x)$ in uisually anceady required to take specific function values at a and $b$; morcover, in order that the number of free linear parameters of $s(x)$ matiches the total number of conditions to be satisfied, the ond condition would be tradod for a conventional interpolation condition. For least-squseres spline approximations, homever, the end condilion may involve either $s(x)$ or its dorivatives; further, it will not usually be appropriate or necossary to trade the ond condition for une of the data points.

We shall treat solely a condition at the left-hand ond-point $x=$, , sirce the right-hand end-point $x=b$ is handled analogousily.

Let $x(0 \leqslant r<n)$ and the value of $x^{(r)}(a)$ be prescribed. It is required that $s(x)$ satisfy

$$
\begin{equation*}
s^{(r)}(a)=f^{(r)}(a) . \tag{9.1.1}
\end{equation*}
$$

We shall show that condition $(9.1 .1)$ can be enforced by a simplu modification of tho data and of the basis functions.

Y'e examine first the case $r=1$. From (5.1.10), (9.1.1) and using Theorem 4.2.1 we obtain

$$
\begin{equation*}
c_{1} N_{n 1}^{\prime}(a)+c_{2} N_{n 2}^{\prime}(a)=f^{\prime}(a) . \tag{9.1.2}
\end{equation*}
$$

But from (4.2.1), $N_{n 1}^{1}(a) \neq 0$. Hence, by eliminating $c_{1}$ between (5.1.10) and (9.1.2) and setting $q=N+n-1$, we cutain

$$
\begin{equation*}
s(x)=\left(\frac{f^{\prime}(a) \cdot c_{2} N_{n 2}^{\prime}(a)}{N_{n 1}^{\prime}(a)}\right) N_{n 1}(x)+\sum_{i=2}^{q} c_{i} N_{n i}(x) \text {, } \tag{9.1.3}
\end{equation*}
$$

a simple re-arrangement of which yields

$$
\begin{equation*}
\tilde{s}(x)=s(x)-\frac{f^{\prime}(a)}{N_{n 1}^{\prime}(a)} N_{n 1}(x)=\sum_{i=?}^{q} c_{i} \tilde{N}_{n i}(x), \tag{4}
\end{equation*}
$$

where

$$
\tilde{N}_{n i}(x)=\left\{\begin{array}{l}
\min _{n i}(x)-\frac{m_{2}(a)}{M_{n i}(a)} N_{n i}(x) \quad(i=2) \\
N_{n i}(x) \quad(i-3,4, \ldots, q) .
\end{array}\right.
$$

But, by differentiatine $(3.6 .1)$ aud using $(4.2 .1)$, $W_{i 11}^{\prime}(\Omega)+N_{n 2}(a)=0$. Hence (9.1.5) simplifies to

$$
\tilde{N}_{n i}(x)= \begin{cases}N_{n i}(x)+N_{n 2}(x) & (i=?)  \tag{9.1.6}\\ N_{n i}(x) & (i=3,4, \ldots, q)\end{cases}
$$

Consequently, if apmopriate values of the expression $\left\{f^{\prime}(a) / N_{n 1}^{+}(a)\right\} N_{n 1}(x)$ are subtracted from the data to be approximated, the use of the modiried representation $\tilde{s}(x)$ enables, in the case $r=1$, the condition ( 9.1 .1 ) to be jncorporated automatically. Note that, since $N_{n i}(x)=0$ for $x \geqslant x_{j}$, the term $\left\{f^{\prime}(a) / \Psi_{n 1}^{\prime}(a)\right\} N_{n 1}(x)$ involves modiliaation only of data valnes ix the interval $a \leqslant x<x_{1}$. Also observe that the function $\tilde{N}_{n 2}(x)$ has the same support as $N_{n 2}(x)$ and is non-nogative. Moreover, $\tilde{N}_{n 2}(x)$ is formed stably, since it is simply the sum of two non-negative quantitios, each of which can be computed stably (Section 3.9).

We now consider the generalization of the above approach to the enforcement; of the boundary condition (2.1.1) for a efoneral value of $r(0 \leqslant r<m)$. Procerding alone lines similar to the abcue wo obtain the modifien represenfation

$$
\begin{equation*}
\tilde{s}(x)=s(x)-\frac{f^{(r)}(a)}{N_{n i}^{(r)}(a)} N_{n i}(x)=\sum_{i=2}^{q} c_{i} \tilde{N}_{n i}(x) \tag{9.1.7}
\end{equation*}
$$

where

$$
\tilde{I}_{n i j}(x)=\left\{\begin{align*}
I_{n i}(x)-\frac{N_{n i}(r)}{(a)} & N_{n 1}(x)  \tag{9.1.8}\\
N_{n i}^{(x)}(a) & (i=2,3, \ldots, r+i) \\
& (i=r+2, n+3, \ldots,(g) .
\end{align*}\right.
$$

Uhîortunately, no louger do all the basje runctions $N_{n i}(x)$ have the property that they are formed as positive linear combinations of nonnegative quantities, and hence there is no guarantee that the $N_{n j .}(x)$ call be computed with small relative evrors. However, their valuas will. certainly possess swall ahsolute errors compased with unity, the meximum possible value of $N_{n i}(x)$. In order to obtain basis functions which have small relative errors we proceed as follows.

Consider the rerresentation ( 0.1 .7 ) with the $\tilde{N}_{n i}(x)$ derined ly

$$
\tilde{N}_{n i}(x)=\left\{\begin{align*}
N_{n i}(x)-\frac{N_{n j}^{(r)}(a)}{N_{n, j-1}^{(r)}(a)} & N_{n, i-1}(x)  \tag{9.1.9}\\
& (i=2,3, \ldots, r+1) \\
N_{n i}(x) \quad & (i=r+2, x+3, \ldots, q),
\end{align*}\right.
$$

rather than by (9.1.8). As with the representation (9.1.7) and (9.1.8) it is easily verified thet $\tilde{\mathrm{S}}^{(r)}(\mathrm{a})=0$ and $s^{(r)}(a)=f^{(r)}(a)$, as required. Loreover, both representations onjoy the property theit for $i=2,3, \ldots, q$, the basis functions $\tilde{N}_{n i}(x)$ have the same support as the functions $N_{n!}(x)$. However, the representation (9.1.7) and (9.1.9) has the distinct advantage that the foctors $N_{n i}^{(r)}(a) / N_{n, i-1}^{(r)}(a)$ are all negative, by virtue of (4.2.1), and hence that the $\tilde{N}_{n i}(x)$ are formed as positive linear combinations of non-negative crantities, with the consequence that the computed values have small relative errors.

### 9.2 Imposition of a set of boundary conditions

In the previous section a method was given for forcing the nth-ordor spline $s(x)$ to have the property that $s^{(r)}(a)$ takes a prescribed value $f^{(r)}(a)$. We now consider the case where, for some $k(0 \leqslant k<n)$, the values of $s^{(I)}(a)$ are to take presoribed values $f^{(r)}(a)$ for $s=0,1, \ldots, k$. Thus the conditions

$$
\begin{equation*}
\sum_{i=1}^{q} c_{i i^{i n i}}^{(r)}(a)=f^{(x)}(a) \tag{9.2.1}
\end{equation*}
$$

are to be satisfied for $r=0,1, \ldots$, .. Bocause of (4.2.1), conditions (9.2.1) reduce to

$$
\begin{equation*}
\sum_{i=1}^{r+1} c_{i}{ }^{\text {IT }}(r i)(a)=f^{(r)}(a) \quad(r=0,1, \ldots, k), \tag{9.2.2}
\end{equation*}
$$

ie to

$$
\begin{equation*}
\operatorname{La}_{\sim}^{(0)}=d, \tag{2.2.3}
\end{equation*}
$$

where If is the Iower-iriangular matrix of order $k+1$ with non-woro elements $I_{i j}=N_{n j}^{(i-1)}(a),{\underset{\sim}{c}}^{(0)}=\left\{c_{1}, c_{2}, \ldots, c_{k+1}\right\}$ and $\underset{\sim}{d}=\left\{f(a), f^{\prime}(a), \ldots\right.$, $\left.f^{(k)}(a)\right\}$. The values of the B-spline derivatives required in $\underset{\sim}{\mathrm{L}}$ aro computed from algorithm $4 . i_{1} 1$ in an unconditionally stavile manner (Theorem 4.2.3). The triangular system possessos a unique solution since its diagonal elements $N_{n, r+1}^{(r)}(a)(r=0,1, \ldots, k)$ are all non-zero, by virtue of (4.2.1). The system is easily solved by the usual process of forkard substititution.

Heving obtained the values of $c_{1}, c_{2}$ : ...., $c_{k+1}$, we mrite

$$
\begin{equation*}
\tilde{s}(x)=s(x)-\sum_{i=1}^{k+1} c_{i} N_{n i .}(x)=\sum_{i=k+2}^{q} c_{i} N_{n i}(x) \tag{9.2.4}
\end{equation*}
$$

Then, for each data abscissa $x$ we subtract from the corresponding ordinate the value of $\sum_{i=1}^{k+1} c_{i} N_{n i}(x)$. The modirice dita is then approzimated by $\tilde{s}(x)$. Note trat onily data in the interval $a \leqslant x<x_{k+1}$ is affoctod by the subtraction. Boundary conditions at $x=b$ are treated in a similar fashion.

The method of this section has been used succersfully in conjunction with
a variant of Algorithm 7.3.1 in a number of applications. In particular, it has been applied to the fitting of various sets of dota representative of modes of vibration of a clamped plate where, as a consequence of ine clarining, values of $3^{(x)}(x)$ for $x=0,1,2$ were presoribed at each ord of the data range.

### 9.3 Simple point constraints

In some spline approximation problems it is nocossary to imposo restrictions on $s(x)$ or its derivatives at various points in the range of interost. Fo hsve olready treated cases where a singlo boundary constraint or a cortain set of boundary constraints is to be imposed. We now consider more ecneral constraints. We deal in this section with simple point constraints, io constraints involving a single value of the function or ono of its derivativos, and in Section 9.4 with compound point constraints, which nay involve the function value and the values of a number or derivativos.

Suppose $s^{(r)}(x)$ is to take the value $f^{(r)}\left(t_{0}\right)$ at $x=t_{0}$. Herer $(0 \leqslant x<n)$, $t_{0}\left(a \leqslant t_{0} \leqslant b\right)$ and $f^{(r)}\left(t_{0}\right)$ are prescribed. Thus we require $s(x)$ to satisfy

$$
\begin{equation*}
s^{(r)}\left(t_{0}\right)=\sum_{i=1}^{q} c_{i} N_{n i}^{(r)}\left(t_{0}\right)=f^{(r)}\left(t_{0}\right) \tag{9.3.1}
\end{equation*}
$$

Relation (9.3.1) is evidently a linear equelity in the B-spline coafficionts $c_{i}$. In fract, because of the compact support of the B-splines, at most $n$ of the values of the $M_{n i}^{(r)}\left(t_{0}\right)$ are non-zero. Horeover, (9.3.1) has precisely the same struiture as the usual interpolation condition or "observational equation".

### 9.4 Compound point constraints

We now consider a more general form of linear equality constraint which we temin a compound point corstraint. Let I be a linear oparator of the form

$$
\begin{equation*}
J_{2}=\sum_{i=0}^{n-1} e_{x^{n}} D^{r} \tag{9.1.1}
\end{equation*}
$$

where $D^{r}$ eenotes r-fold dipferentintion with respect, to $x$, and the os wre prescribed constants, not all of winch are zero. Let $\delta$ be a tiven number (possibly zero). It is required that at a prescribed value of $x, t_{0}$ sey, $L s(x)$ is to take the value $g$, ie

$$
\left\{I_{i} \sum_{i=1}^{q} o_{i-} N_{n i}(x)\right\}_{x=t_{0}}=g
$$

Thus

$$
\begin{equation*}
\sum_{i=1}^{q} c_{i}\left\{\operatorname{IN}_{n i .}(x)\right\}_{x=t_{0}}=c \tag{9.4.3}
\end{equation*}
$$

ie $\sum_{i=1}^{q} c_{i}\left\{\sum_{r=0}^{n-1} e_{r}^{N N i}(x)\left(t_{0}\right)\right\}=g$.

Again, (9.4.4) is a linear equality relationship in the coefficients $c_{i}$ with the same structure as a relation of the form

$$
\begin{equation*}
\sum_{i=1}^{q} c_{i} N_{n i}\left(t_{0}\right)=\varepsilon \tag{9.1,5}
\end{equation*}
$$

In imposing constraints of the form (9.3.1) and (9.4.4) it is neconsary to evaluate the appropriate values and derivatives of $N_{n i}(x)$. such evaluations can be escomplished using Algorithus 3.12 .2 and 4.4.1. Yhen used in least-squares data fitting by splines these constraints may be incorporated by the nethods of Section 9.5.

### 9.5 Stable methods for the imposition of general Unear constraints

 It remains to discuss methoās for imposing constraints of the form discussed in Sections 9.3 mat 9.4. In the case of interpulation, by ordering the interpolation conditions and consteaints (assumeà consistenti) apmopriately,the resulting linear syster, which is stepped-bajucid, can be solved by A] gorithm 2.12.1 on Algorithn 2.13.1. In the case oí least-squares approximation it is necessary to solve a problen of the form

$$
\begin{equation*}
\min _{x}\|\underset{\sim}{A x}-\underset{\sim}{b}\|_{2} \tag{9.5.1}
\end{equation*}
$$

subject to the equality constraints (assurued consistent)

$$
\begin{equation*}
\underset{\sim}{C x}=\underset{\sim}{E} \tag{9.5.2}
\end{equation*}
$$

Where $A$ is an m by $n$ matrix of (possibly unknown) rank $k(\leqslant n)$ and $\underset{\sim}{C}$ is a $p$ by in matrix of (again possibjy unknom) rank $l(\leqslant p)$. Tho notation used jn this section is chosen to be simitar to that of Chapter 2.

We firet rention two numerically stable methods for solving the above problem. One of these methods is due to foluh (1965) and applies only in the case whero both $A$ and $\underset{\sim}{C}$ have maximum rank. However, thic mothod can be made very efficient for steapped-banded $\underset{\sim}{A}$ and $\underset{\sim}{C}$. The other method is given by Hayes and Halliday (1974) End allows either or both of A and $\underset{\sim}{C}$ to be rank deficient. However, because of the need to cariy out column intorchanges in their method, little or no advantafe can bo taken of the structure oi A and $\underset{\sim}{C}$. Finally, we present an enhancernent of Golub's retincol triat allows cases of rank dericjency to bo treated in a stable manner, whilst taking advantage of structure such as stemped-bandedness in $A$ ond $\mathbb{A}$.

Goluo's method is based upon the use of Lagrange multipliers $\lambda_{\sim}^{\lambda}$ to express the sojution of $(9.5 .1)$ and (9.5.2) as that of the "augmented normn equations"

Householder transformations are applied to solve (9.5.3), without of course
forming these equations explicitly ana incurrine the possinle lons of infomation associated with such a formation (of nection 2.3). In Golub's description, colum interchanges are carried out but, as we indicated in
 where $u$ denotes the unconstreaned solution (obtained in prectace ria the OR alecomposition of $A$ ) satisfying $A^{T} A A_{1}=A^{T} A^{2}$, it is seen from ( 0.5 .3 ) that $\underset{\sim}{\mathcal{E}}$, the "correction terra", satisfies

$$
\begin{equation*}
A_{\sim}^{T}{ }_{\sim}^{T} \delta_{\sim}+{\underset{\sim}{c}}^{T} \lambda=0 \tag{9.5.14}
\end{equation*}
$$

$\operatorname{an} \bar{a}$

$$
\underset{\sim}{C}(\underset{\sim}{u}+\underline{\underline{g}})=\underset{\sim}{g} .
$$

Eliminating \& from (9.5.4) and (9.5.5) yiclds

$$
\underset{\sim}{C}\left(A_{\sim}^{T} A\right)^{-1}{\underset{\sim}{T}}^{T} \lambda=\underset{\sim}{C} \underset{\sim}{u}-\underset{\sim}{G}
$$

as an equation defining the lagrange multipliers. Havinc solved (9.5.6) for $\underset{\sim}{\lambda}, \underset{\sim}{\delta}$ is found from (9.5.4) and then $\underset{\sim}{x}=\underset{\sim}{u}+\underbrace{x}_{\sim}$. In actual computation advantage is taken of the factorization $A=A R$ to simplify tho procoss. In particular, ( 9.5 .6 ) reduces to

$$
\underline{V}^{T} \mathrm{~V} \lambda=\underset{\sim}{c} u-g
$$

 solved by carryine out an orthogonal decomposition of $\underset{\sim}{y}$. Finally, \& is formed from (9.5.4) by taking further advantage of the already-factorized A. Of course, plane rotations can be used in nlace of Householder transformations. Since the bulk of the work (assuming the usual case in which p is sinall. compared with m) is involved in the factorizatiou of $A$, and since advantago can be taken of the structure of A during its Qu decomposition, the convleto process can bo carried out in little more time than that taken by the coraputation of the unconstraince solution $\underset{\sim}{i}$.

The metionod of liayes trid Haliaisy provides essenticilly a means of eliminating in a stable menner 1 of the $n$ unknows and thus rocuring the serstom to one of order $2-1$, wather than hevine to treat; ono of order $n+p$ as in ( 9.5 .3 ) . Specifically, theji uppronch, vinich work with an orthogonal transformation $\underset{\sim}{2}$, say, of the solution vector, firwi reducei the coistraint egaztions to a triangular bystem of order 1 , wihich is then solved for tia fjerst 1 components of $\underset{\sim}{\sim}$. They then show thnt; the remaining n-I components of $y$ can be found by solving an unconstrafned Ieast-squarna problem. Hinally, $\underset{\sim}{z}$ is recovered from an orthogonal transformation of $y$ Te neve described their approach only in very hroad outline fun two roasins. Firstly, it is given in considerajle dotaij. in their papor and, sccondly, for stability, it is crucial to carry out colum interchanges in thoir methol: consequently, we cen see no way of adapting ticir algurithr to solving stepped-banded systems efficiently without destroying structuro.

We now propose an adaptation of Golub's method thet permits riunk duficiency in $\underset{\sim}{A}$ or $\underset{\sim}{C}$ or both and, moreover, allors comsiderable advantage to bo token of the structure of these matrices.

Firstly, we consiaer the constraint cquations. Frequently, in practicai spl.ine-approxination moblems, $C$ will be of full rank. However, whethor or not this is true, we recominend the folloving apprach. Carry out an orthogonei decaposition of ${\underset{\sim}{C}}^{T}$ using, say, plane rotations. The resulting upfer-trapezoidal matrix, $U$, say, will have precisely p-l zoro diagonal elements (in the absence of errors in the elements of $\underset{\sim}{C}$ and in tho nrithmetic operations on $\underset{\sim}{C}$ ). In practice, $p-1$ diagonal elements will be "small" (relative to some norm of $\underset{\sim}{c}$ ), and a suitabic threshold value should be selected to decide which diagonal olements are to ho regarded as uero. By
 equatioms are roduced to a total of $l$ eouations whose coefficient matrix
is of fill rant. Ronceforth, we shaill assume that the conctraint equations have, if necessary: been so treated and let (9.5.?), with p-1 replacine $p$, demote the reduced system:

It remajns to treat the rank dericiency, if any, in f. Fie observe that the solution to $(9.5 .1)$ and (9.5.2) is ideaticul to that of

$$
\begin{equation*}
\min _{x}\left\|A^{\prime} x_{i}-n^{\prime}\right\| \|_{2} \tag{9.5.8}
\end{equation*}
$$

sut juct to (9.5.2), where

$$
{\underset{\sim}{A}}^{\prime}=\left(\begin{array}{c}
A  \tag{9.5.9}\\
C \\
\underset{\sim}{n}
\end{array}\right)
$$

and

$$
\begin{equation*}
{\underset{\sim}{b}}^{\prime}=\binom{\underset{\sim}{b}}{\underset{\sim}{g}} \text {. } \tag{9.5.10}
\end{equation*}
$$

In the case of stepped-bandea $\underset{\sim}{A}$ and $\underset{\sim}{~}$ jit is desirable to interleave the rows of ( $(\underset{\sim}{C} \mid \underset{\sim}{\text { Con }}$ ) with those of ( $A \mid \underset{\sim}{A}$ ) so that the resulting system is similarly stepped banded. I't is advisable, if necessary, to introduce suitable scaling factors so that the rows of $A^{\prime \prime}$ have norms of similar moenitude. Such a scaling is particularly appropriato if, for irstance, $\underset{\sim}{A}$ is a matrix of B-spiine values and $\underset{\sim}{C}$ contains values of b-spline derivatives (perhaps of various orders).

It should now be apparent that if $A^{\prime}$ is of rank $n$, Golub's mothod may be applied inmediately to the solution of (9.5.8) and (9.5.2). If At is rank deficient we recomend that, after having computed the RR factors of $A^{\prime}$ : elements of the solution vector corresponding to colunns of $A^{\prime}$ containing "small" diagonal alements be maie zero by using the "rosolving constrajnt" concept due to Gentleman (1973). The resolvjng constraint is treaied as an acditional row on ( $\mathcal{c i}^{\prime} \mid g^{\prime}$ ) and consists of the zow vector $(0 \ldots 010 \ldots 0 \mid 0)$, where the non-zero elenent lios in the column
containjug the diagonal element to be regarded as zoro．My rotatimg tilis row 三nto the current triorgular factor（只｜ incrersed hy one and the residual fin of squares is unaltered．All such むiagonal elements aree so treatod．（nhis method of tranting rank deficiency is ilso of consideratio use in unomstrainod probloms）． A pilot computer program based upon the above jideas has beer constructen and．lested oir eases containing rank：deficiency in $\underset{\sim}{\circ}$ but unt $A$ ，in A but not $\underset{\sim}{C}$ ，and in both And $\underset{\sim}{c}$ ．Cases in mbich A．was and was rot inank daficiont were also testeci．The results achieved to late imply that the process Eppears to function extremely sitisfnctorily．

It should be nolad that the tests for zero diagonal clements rare not infallible since examples can be constructed（J II Tilkinson，proivato commication）for which a matrix is close to being rank deficient but for which the resulting diagonal elements in the triangular or trapezoidal factor are in no sense small even if arjthmetic is carriad out exactly． Howevor，such examples are somewhat artifical and in practice aro most unlikely to arise．In cases of doubt the singular value docomposition （Section 2．15）should be employed．

## MUJITVIRIATE SPLINES

In this chapter we consiam the extension to higher dimensicus of the methods for one-dimensional interpolation and loast-squares approximation by splines discussed in Chapters 6 and 7. In pactionular, wa crane problems in tiro independent variables, a natural (but notationally complex) extension of which enables higher-dimensjoral problems to bo treated.

Firstly, we consider in Sections 10.1 and 10.2 the interpolation and Jeast-squeres approximation to data given at all the vertioce of a finite rectangular mesh by a tensor product of general univariate functions. This treatment is then specialized in Section 10.3 to tho cone where the univariate functions are B-splines. In Section $10.1_{4}$ the important problem of least-sguares spline approzimainon to arbitrarily-placed bivarjate data is considered. The imposition of constraints is discussed uricfily in Section 10.5. Finally, in Section 10.6, the evaluation of a multivariate spline from its B-spline representation is oxaninci.
10.1 Interpolation of data on a rectangular mesh by a tensor product of univariste functions

Let

$$
\begin{equation*}
I(\dot{x}, y)=\sum_{i=1}^{n_{x}} \sum_{j=1}^{n} e_{i j}^{n_{j} j_{i}}(x) h_{j}(y) \tag{10.1.1}
\end{equation*}
$$

denote the space of functions obtained by taking the tensor product of the two linearly indepenảents sets of basis functions

$$
\begin{equation*}
\check{o}_{i}(x) \quad\left(i=1,2, \ldots, n_{x}\right), h_{j}(y) \quad\left(j=1,2, \ldots, n_{y}\right) . \tag{10.1.2}
\end{equation*}
$$

Suppose data values $\pi_{r s}$ are prescribed at. $\varepsilon$ Il the vertices nil the rectangular meat define a by the lines $x=t_{r}\left(r=i, 2, \ldots, n_{x}\right)$ and

$$
y=u_{s}\left(s=1,2, \ldots, n_{y}\right)
$$

The problen is to determine the coofficients $c_{i j}$ in (10.1.1) Euch that $f(x, y)$ interpolates the given data values, ie to compute valuas of $c_{i j}$ which satisis the $n_{x} n_{y}$ equations

$$
\begin{align*}
& n_{r s}=\left.I_{i} t_{r, u}\right)= \\
& \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j}^{n} i_{j}\left(t_{r}\right) h_{j}\left(u_{s}\right)  \tag{10.1.3}\\
&\left(r=1,2, \ldots, n_{x} ; B=1,2, \ldots, n_{y}\right) .
\end{align*}
$$

The s.jatem (10.i.3), once formed, could be solved directly, since it is a square systom of linear algebraic equations of order $n_{x} n_{y}$. For extuppe. Gaussian elinination with partial pitoting could bo used, in which case the solution would be obtaincd in about $n_{x}^{3} n^{3} / 3$ lone operations. However, with such an approach no adivantage, aprurt perhaps in the formation of the sysfem, is taken of the tensor-prodnet representation of the approxinatine function $f(x, y)$. Por instance, for a problem of modest sizo in which $n_{x}=n_{y}=30$, tabut $2 \times 10^{8}$ long operations are required. A second approuch is therefore nomally used (see eg Greville, 1961) and discussed briefly here in which full eonvantage is taken or the tensor-product form, with the consequence that culy about $\left(n_{x}+n_{y}\right)^{3} / 3$ long operations are nocossary. For the case $n_{x}=n_{y}=30$ this number is about $7 \times 10^{1+}$. In the case of Buspline basis functions, further econmies are achioved (Section 10.3).

The system (10.1.3) may be expressed in matrix form as

$$
\begin{equation*}
\mathrm{ECH}^{T}=\underset{\sim}{Z} \tag{10.1.1:}
\end{equation*}
$$

or, equivalentiv,

Thers

$$
\begin{aligned}
& \underset{\sim}{c} \text { is the } n_{x} \text { by } n_{y} \text { matione of elcments } c_{i, j}
\end{aligned}
$$

and
$\underset{\sim}{Z}$ is the $n_{z}$ by $x^{2}$ matrix of elemerits $z_{i j}$.
So, defining

$$
\begin{equation*}
\mathrm{E}=\mathrm{CH} \mathrm{H}^{\mathrm{T}} \tag{10.1.6}
\end{equation*}
$$

the matrix $\mathrm{E}_{\mathrm{S}}$ cen be foun by sclvine

$$
\begin{equation*}
\mathrm{CD}=\underset{\mathrm{E}}{\mathrm{Z}} \tag{10.1.7}
\end{equation*}
$$

Then 8 can be obtained by solving

$$
\begin{equation*}
\operatorname{HC}^{T}=3^{T} \tag{10.1.8}
\end{equation*}
$$

Fquations (10.1.7) jnvolve an $n_{i x}$ iy $n_{x}$ metriv with $n_{y}$ richt-hand sides, the solution of which using Gaussian elimination with partial pivotims takes about $\frac{1}{3} n_{x}^{3}$ long operations for the docomposition flus about $n_{z}^{2}{ }^{2} y$ long oporations for the solution of the aesulting trianguler syations. Equations (10.1.8) involvo on $n_{y}$ by $r_{y} y$ matriz with $n_{x}$ rieht-hank sides, the solution of which requires eboui $\frac{1}{3} n^{3}+n_{x} n^{2} y$ Ieng orerntions. Thus the total amount of work involved in the solutions of (10.1.7) and (10.1.8) is ebout $\frac{1}{3} n_{x}^{3}+n_{x}^{2} n_{y}+n_{x} n_{y}^{2}+\frac{1}{3} \frac{3}{y}=\frac{1}{3}\left(n_{2 x}+n_{y}\right)^{3}$ Joret operations. From the symotry of this result it is inmaterial mon the point of vien os computational effort whether we treat the systen (10.1. . $)$, as we have done here, or the systern (10.1.5).

Equations (10.1.7) and (10.1.8) shom that the problem degenerates into two sub-problems, each of which is essentiany a set: of wirariate interpolation problens: ank may be interpreted as fuluors. Along each mesin line $y=u_{5}$ $\left(a=1,2, \ldots, n_{y}\right)$ delainine the corfficionts $\varepsilon_{r B}\left(r=1,2, \ldots, n_{x}\right)$ of

$\left(r=1,2, \ldots, n_{2}\right)$. Minen for cach valuo of $x^{\prime}=1,2, \ldots, n_{x}$ detornine
 which interpulates the cata $\left(u_{s} s^{\prime} e_{s}\right)\left(s=1,2, \ldots, n_{y}\right)$. 10.2 Least-squares approximation to data on a rectangular meth by a tensor rooduct of univariate frunctions

We treat in this section the extension of the intarpolation problem considered in Section 10.1 to the fase whare the datia values $z_{2, s}$ ero presoribed at all the verticos of the rectangular mesh definod by the $\operatorname{lines} x=t_{y}\left(x^{r}-1,2, \ldots, n_{x}\right)$ and $y=u_{s}\left(s=1,2, \ldots, m_{y}\right)$ and are to be approximated in the inati-sguares sense by a function of the form (10.1.1). Hera $m_{x} \geqslant r_{x}$ and $r_{y} \geqslant n_{y}$ ard $i t$ is required to determine the coefficients $c_{i j}$ in (10.1.1) such that the residual sum of squares

$$
\begin{equation*}
\sum_{r=1}^{m} \sum_{s=1}^{n+}\left\{f\left(t_{x}, u_{s}\right)-z_{r s}\right\}^{2} \tag{10.2.1}
\end{equation*}
$$

j.s minimized.

Note that arcitrairy weigining factors cemnot ba incorporated in (10.2.1) as they cen in the one-cimensionel case and, ot the same timo, full advantage taken of the tensur-product representation. For splinie anprozimation, ceses of unequal weight may be tackled using the more general but complationally relatively expensive method of section 10.4 .
 by $n_{x}$, $\mu_{\sim}^{\text {is }} m_{y}$ by $n_{y}$ and 云 is $m_{x}$ by $n_{y}$ ( $C$ is $n_{x}$ by $n_{y}$ as before). Greville (1361) has shom that the solution to this least-squares problem is the natural extension of that for the interpolation problem discussod in Section 10.1. In rect, in place of the interpolatory solution

$$
\begin{equation*}
\underset{\sim}{c}={\underset{\sim}{G}}^{-1} \underset{\sim}{Z}\left({\underset{\sim}{H}}^{-1}\right)^{T}, \tag{10.2.2}
\end{equation*}
$$

obtaineä from (10.1.4), one usos

$$
\begin{equation*}
\left.\underset{\sim}{C}={\underset{\sim}{c}}^{\dagger} \underset{\sim}{\underset{\sim}{2}} \underset{\sim}{+}\right)^{T}, \tag{10.2.3}
\end{equation*}
$$

 course it is umecessaxy to corapute explicitly these pseudo-jnversos. Rather, by analogy with (10.1.7) and (10.1.5), $\underset{\sim}{C}$ may bo formed by determining the leastmsquares solution of
folloned by that of

$$
\begin{equation*}
H_{D C H}^{T}=F_{N}^{T} . \tag{10.2.5}
\end{equation*}
$$

Assuming that one of the faster orthogenilization nothods of Chapler ? is employed and that $n_{X}, m_{y} \gg n_{x}, n_{y}$, an operation count reveals that tine solution of (10.2.4) requires about in $n_{x}^{2}$ long operations for the decomposition of $G$ ard about $\pi_{x} H^{n} y^{n} x$ for the operations involving ${\underset{\sim}{2}}^{n}$. Similarly, the count for the solution of (10.2.5) is about $m^{n} y^{2} y+m_{y}^{n n} x^{n} y$. Thus the total amount of work in detemining $\underset{\sim}{C}$ is dominated by tho computations involviris the multiple richt-hard sides in the first loastsquares system (10.2.4), and is approximately equal to $m_{x} y^{m} y_{x}$ long operations. Unlike that for the interpolation probler of Section 10.1, this count is not symmetric in its parameters. Note, therefore, that it may de cheaper to form \& from the transpose of (10.2.3), ie by computing the least-squares solutions of

$$
\begin{equation*}
\underset{\sim}{\mathrm{HIN}}={\underset{\sim}{2}}_{T}^{T} \tag{10.2.6}
\end{equation*}
$$

ans

$$
\begin{equation*}
\underset{\sim}{C} C=\underset{\sim}{F^{2}}, \tag{10.2.7}
\end{equation*}
$$

rather than those of (i0.2.it) and (i0.2.5). The rosulting oporation count is then aboai $\mathrm{n}_{\mathrm{x}} \mathrm{y}_{\mathrm{y}}^{\mathrm{n}} \mathrm{y}^{\mathrm{J}}$ lone operations.

By analocy with our interpretixijion oi' equations (10.1.7) and (10.1.8) in the interpolation problem, we may interpset the least-squares solution of (10.2. $\mathrm{H}_{\mathrm{r}}$ ) and (10.2.5) as follors. Sitang each mesh line $y=u_{\text {it }}$ $\left(s=1,2, \ldots, m_{y}\right)$ determine the cocffiscients $e_{x S}\left(r=1,2, \ldots, n_{x}\right)$ of the function $\sum_{r=1}^{n} e_{r s} g_{r}(x)$ which provide the least-squares aproximation to the data $\left(t_{r}, z_{r s}\right)\left(r=1,2, \ldots, m_{x}\right)$. Then for each value of $x=1,2, \ldots, n_{x}{ }_{n}$ determine the coefficients $o_{r s}\left(s=1,2, \ldots, n_{y}\right)$ of the fiunction $\sum_{s=1}^{n y} c_{r s s_{s}}(y)$ which provide the Ieast-squeres apprexination to the ditita $\left(u_{s}: e_{r s}\right)\left(s=1,2, \ldots, M_{y}\right)$. Clenshaw and Hayes (1965) discuss the case where the $\mathrm{c}_{\mathrm{r}}(\mathrm{x})$ and $\mathrm{h}_{\mathrm{s}}(\mathrm{y})$ form polynomial bases.
10.3 Interpolation and Laest-squares approxinition to data on $n$
rectanturax mesh by biveriate splines
The now specialize tho approaches of Sections 10.1 and 10.2 to the ouse Where in (10.1.1) the functions $E_{i}(x)$ are 13-splines of order $n$ in $x$ (defined upon an appropizate set of $x$-knots) and the $h_{j}(y)$ are B-syjinos of the same order* in $y$ (derined upon an appropriate sot or $y$-knots), and ve wish to interpoiate or obtain least-squares epproxinations to cata yrs prescribed at all vertices of the rectangulay mesh $x=t_{r}\left(x=1,2, \ldots, m_{x}\right)$, $y=u_{s}\left(s=1,2, \ldots, M_{y}\right)$, TTe shall assume that $t_{1} \leqslant t_{2} \leqslant \ldots \leqslant t_{\mathbb{R}_{x}}$ and $u_{1} \leqslant u_{2} \leqslant \ldots \leqslant u_{n_{y}}$, that in the ease of interpolation $n_{x}=n_{x}$ and in $y=n_{y}$, and that in tho least-squares case $n_{x} \geqslant r_{x}$ and $n_{y} \geqslant n_{y}$.

* The ucthećs given in this and Section 10.4 may without difficurly be extended to tho case where the B-splines are of different ordons in $x$ and in $y$.

In orden to define our $B-s p l i n e$ bases let $x_{i}\left(i=1,2, \ldots, N_{x}-1\right)$ and $y_{j}\left(\dot{B}=1,2, \ldots, N_{y}-1\right)$, where $I_{x}=n_{x}-n+1$ and $N_{y}=n_{y}-n+1$, ho two prescribed sets of interior knots which form rospectively n-oxtondoa partitions (Section $\bar{j}$, 1 ) of the $x$ - and $y$-aros witin $t_{1}<x_{1}, x_{N_{x}}-1<t_{m_{x}}$ and $u_{1}<y_{1}, y_{N_{y}-1}<u_{\mathrm{m}_{\mathrm{y}}}$. Te intruduce adititional coincident end knots in the usual way by augmenting those prescrinoa by $x$-kots of multiplicity $n$ at $x=t_{1}$, and at $x=t_{m_{x}}$, and $y$-inotis of multiplicity $n$ at $y=n_{1}$ and a.t $y=u_{\mathrm{m}}$.

Let

$$
\begin{equation*}
a=x_{0}, b=x_{N_{1}}, c=y_{0}, a=y_{N_{2}} \tag{10.3.1}
\end{equation*}
$$

The knot-Itines $x=x_{i}\left(i=0,1, \ldots, N_{x}\right)$ and $y=y_{j}\left(j=0,1, \ldots, N_{y}\right)$ form a rectangular mesh, the boundary (formed by the linos $x=a, x=b$, $y=c, y=$ ) of which contains all the datio points. Wo dof"me patol ( $i, j$ ) as the rectangular region bounded by tho $x$-knot lines $x=x_{j-1}$ and $x=x_{j}$ and the $y$-imot lines $y=y_{j-1}$ and $y=y_{j}$. A yancl majy be mill in the sense that it has zero arna, in which case $x_{i-1}=x_{i}$ or $y_{j-1}=y_{j}$. We say that a point $(x, y)(a \leqslant x<b, c \leqslant y<d)$ lies in panol (i, j) jf $x_{i-1} \leqslant x<x_{i}$ and $y_{j-1} \leqslant y<y_{j}\left(i n x=b\right.$ wo sot $i=H_{x}$ and if $y=d$ roo set $j=I_{y}$ ). Note that as a consequence of the abovo dofinitions, anulu panel contains no points.

Upon the augmented set of $x$-kiots we define the B-slina basis In $n$ ( $x$ ) $\left(i=1,2, \ldots, n_{x}\right)$ and upon the augmented set of $y$-knots tho B-spline basis $P_{n j}(y)\left(j=1,2, \ldots, n_{y}\right) . P_{I_{i} j}(y)$ derotes the normalized B-spline of order $n$ in $y$ based on the kncts $y_{j-n}, y_{j-n+1}, \cdots, y_{j}$. The tensor product

$$
\left\{N_{n 1}(x) N_{n 2}(x) \ldots N_{n n_{x}}(x)\right\} 区\left\{P_{n 1}(y) P_{n 2}(y) \ldots p_{n m}(y)\right\}(10.3 .2)
$$

forms a basis for the set of bivariate splines of order a in an and in $y$. Thus our representation of the bivariato spline $s(x, y)$ is simply

$$
\begin{equation*}
s(x, y)=\sum_{i=1}^{n_{x}} \sum_{j=1}^{n_{n}^{y}} c_{i j i}^{N_{n i}}(x) P_{n j}(y), \tag{10.3.3}
\end{equation*}
$$

in accordance with (10.1.1).

Fridently the interpolatory solvtion exists and is unicue if turd only if tra Schoenberg-Tintinay conations ( 6.1 .4 ) are satisfied itom the $x$-knots $x_{i}$ and the $x$-values $t_{x}$, and also for the $y$-lmots $y_{j}$ and the $y$-valuos $u_{B}$. Th finc least-squares cose, the solution is unique ir the conditions aro shtiafied for the $x$-knots $x_{i}$ and at least one subset of the values of $t_{x}$, a: woll. os f'or the $y$-knots $y_{j}$ and at least one cubset of tine values of $u_{i s}$.

It is apparent that the matrices $\underset{\sim}{G}$ and H in (10.1.7), (10.1.8), (10.2.1) and (10.2.5) are all stepped-banded of handwidth $n$, and timet an cbvicus extension (to $\begin{aligned} & \text { allow for multiple right-hend sides) of the nethods develomed }\end{aligned}$ in Chapter 2 for systems with such matrices can bo applicd.
operation counts reveal that for interpolation about $n_{x} n^{n} y^{n}+\left(n_{x}+y_{y}\right)_{n} n^{2}$ Jong operations are required and that for least squares (again assuming thet $n_{x},{ }^{n} y \geqslant H_{x}, n_{y}$ ) the dominant torm is $n_{x} x^{n} y^{n}$. Thus for a fijxed ordor of spline the computationel effort is essentially proportional to the total mumer of datia points (even takine into occount the formation of $\underset{\sim}{c}$ and 1 ), a zesult that nolds also in one dinension (sce Chapters 6 and. 7). Such a desirable situation would fail to hold if a basis not heving tho compact support property were employed.

Note An excellent reviow (Itartley, 1976) of methods for tensor producs approximations to data derined on rectangular meshes, is shortiy to appear. Fiartley also shoms huw the computations may be oceanised to
solve such problems in an arbitrary number of dinonsions. Reforence is made by Hartley to the gains in efficioncy achioved by usine Bowplines as a basis in the case where the approximating fuction is a multiveriato spline.
10.4 The feneral least-squares multivariate solino apmoximation problem line approach considered hore is a generalization of that of Chaptoa 7 to two independent variables. A further fencraligation to mone than tivo independent variables is in principle seraightfomad but notationally complex and is not given hers.

We consiter only least-squares multivariate spline approximations sinco it is rarely of practical interest to interpolato malivarieble data urilesa the data values are specially distributed such as at all vertices of $c$ rectanguiar mesh (Section j0.3). However, if it is requirod to investifate whether a spline interpolant to an entbitrary set of date exisits and is unique and, if so, to determine it, a sinple extension of the method of this section can jindeed be spplied to sueh a problem.

Suppose valuos $z_{r}$ of the dependent variable $z$ are given at points ( $t_{r}, u_{r}$ ) $(r=1,2, \ldots, n)$ in the $(x, y)$ plano. The problem is to abternuno a bivariate spline $s(x, y)$ of nrder $n$ (deeree $r-1$ ) in $x$ and of the seme oriver in $y$ such thet the residual sum of squares

$$
\begin{equation*}
\|\underset{\sim}{r}\|_{2}^{2}=\| \|_{\sim}^{w^{\frac{1}{2}} \varepsilon} \|_{2}^{2}=\sum_{r=1}^{m} r_{r} \varepsilon_{r}^{2}, \tag{10.4.1}
\end{equation*}
$$

where

$$
\underset{\sim}{W}=\operatorname{diag}\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}
$$

anc

$$
\varepsilon_{r^{r}}=s\left(t_{r}, u_{r}\right)-z_{r}(r=1,2, \ldots, 1 i,
$$

is mininized with respect to the free parameters of $s(x, y)$. It is assumed that interior $x$-knots $x_{j}\left(i=1,2, \ldots, N_{x}-1\right)$ and intertor $y$-knots $\mathrm{y}_{j}\left(j=1,2, \ldots, N_{y}-1\right)$ are prescribed. A detailod troatront of the case $n=4$ is given by Hayes and Hilliday (1971).

Just as in Section 10.3 we introduce additional end knots, define B-splines in $x$ and in $y$, and empoy the representation (10.3.3). Unfortunately, there is no analogur of the generalimed. Schoonborg-防itroy condioions (7.2.5) in the general multivariable situation (miless for instance, the data lies at all vertices of a rectangular mesh of Section 10.3). Thus itt will not usually bo possible to say, as the result of a simple test on the data and knots, whether the least-squares multivariato spline approximation problen hass a unique solution. However, Dy analogy with the considerations of Section 7.2, we make the folloving conjecture.

Con:iecture 10.1. 1
In order for the Least-squares bivariate spline approximation to be uniqua there must exist at least one subset of $n_{x} n_{y}$ distinct data points with the follofing property. It must be possible to find an "ordering" of these points such that the $k t h$ point $\left(k=1,2, \ldots, n_{z}^{n y}\right)$ lies strictiy vithin the support of the kth bivariate B-spline. (lhe kth bivariate B-sipline is defined as the kth member of tho tonscr-product set (10.3.2) , the sumporti of $N_{n i}(x) y_{n j}(y)$ being the rectangle $\left.x_{i-1} \leqslant x<x_{i}, y_{j-n} \leqslant y<y_{j}\right)$.

A proor of this conjecture has not yet boen attempted. Rather, efforts have been made to construct an algoritim (a bivariate counterpart of Algorithn 7.2.1) to test whether any given data ard knot sets saivisfy the property referred to in the conjecture. These efforts have so far provod unzuccessful for the following reason. In one dimension the data set has a natural ordoring in the sense that it is possible to examine sequentially
the relativo positions of the points and the linote. In two (or more) önensions, at least for smbitrorily-placed data, wo such orderinc exists. Accordingly, wher an ulgorithn associates o particular point with the support of one of the bivariate Busplines, tris decision affects subsequent decisions or the save nature. As arcsul.t, the alegorithm may weli concluaje insorrectly that the conditions are noti satisfied. Solie form of back-tracking therefore seems to be required, but no satisfactory solution along these lines has yet been vorleed ont.

The solution to the problen of ninimisine $(10.4 .1)$ with rospocti to the $c_{i j}$ is given by the least-squares solution of tho system

$$
\begin{equation*}
{\underset{\sim}{W}}^{\frac{1}{2} A} A C=W_{\sim}^{\frac{1}{2}} Z, \tag{10.4.4}
\end{equation*}
$$

where $A$ is of order m by $n_{x} n_{y}$. Normally, m $\#_{x} n_{y} y^{\prime}$, but this need not be the case; indeed, least-squares solutions (though not necoscarily uninuc) a.jways exist (Peters and wilkinsen, 1970), even if $m<n_{x_{2}} y^{\text {. Tha }}$, rth wow of $\underset{\sim}{A}$ contains the values
$N_{n 1}\left(t_{r}\right) P_{n 1}\left(u_{r}\right), N_{n 1}\left(t_{r}\right) P_{n 2}\left(u_{r}\right), \ldots, N_{n 1}\left(t_{r}\right) P_{n n}^{y}\left(u_{r}\right) ;$
$N_{n 2}\left(t_{r}\right) P_{n 1}\left(u_{r}\right), N_{n 2}\left(t_{r}\right) P_{n 2}\left(u_{r}\right), \ldots, N_{n 2}\left(t_{r}\right) P_{n n_{y}}\left(u_{r}\right) ;$
$N_{n n_{x}}\left(t_{r}\right) P_{n 1}\left(u_{r}\right), N_{n n_{x}}\left(t_{r}\right) P_{n 2}\left(u_{r}\right), \ldots, N_{n n_{x}}\left(t_{r}\right) P_{n n_{y}}\left(u_{r}\right)$,
and the vector $\underset{\sim}{c}$ contains the coefficients
$c_{11}, c_{12}, \ldots, c_{1 n_{y}} ; c_{21}, c_{22}, \ldots, c_{2 n_{y}} ; \ldots ;$
$c_{n_{x} 1}, c_{n_{x} 2}, \ldots, c_{n_{x} n_{y}}$.

As a result of the compact support of the $1-$ spinines, $A$ takes the hlock stepped-banmed form


- (10.4.5)

In order to achieve this form for $\Lambda$ it is necessary to onder tho vnlues of the independerit variable so that they lie in the succossive panols $(1,1)$, $(1,2), \ldots,\left(1, n_{y}\right) ;(2,1),(2,2), \ldots,\left(2, n_{y}\right) ; \ldots ;\left(n_{x}, 1\right),\left(n_{x}, 2\right), \ldots$, ( $n_{x}, n_{y}$ ). Fie assume henceforth that such an ondering has heen cerroiod out.

Each sub-matrix $A_{i-1}$ is itself a stepped-banced ratioix of handujauh $n$. The complete matrix $A$ is a sterped-banded matrix of bendwiath $\left(N y^{-1}\right)(n-1)+n^{2}$. Sjnce the computational effort required to triongularize a sitopjed-bended matrix with m roms and bandwidti $q$ is essentially proportional to nq ${ }^{2}$ (Sections $2.12-2.14$ ), it is mare conomical to interchenge tho roles of the independent variables $x$ and $y$ if $N_{x}<N_{y}$.

The computational effort to triancularize $A$ usine one of the methods of Sections 2.12-2.14 is proportional to $m\left\{\left(N_{y}-1\right)(n-1)+n^{2}\right\}^{2}$. This number is to be compared with a value of $m\left(N_{x}+n-1\right)^{2}\left(N^{+}+n-1\right)^{2}$ if $A$ is regarded as full. ?hus for a modest problem in which $n=4$ (bjcubic spline), $N_{x}=8$ and $N_{y}=5$, the above numbers are respectively about 800 m and EOOOm; consequantly the algorithons that take advantage of the etcppod-banded form are roughly an order of magnitude faster for this oxamplo.

Because of the remarks made earljer in this scetion relating to tho difficulty of tissessing in advance whener the least--squares solution is
mique, and tocause we contend that many, prowably rost, practical data sets for which a multivariate spline approximation is roquired will give rise to a non-unique solution, the factorization method itsolf must bo able to detect rand deficiency in A. The reason why wo belivo non-uniquo solutions are commonplace can be seen by the followine illustration.

Suppose data covering a rughly elliptical region is frescridued, then, if two sets of orthogonal knot lines are laid down over this date so ow to contain it, there are very likely to be single panols void of data, ar a number of adjacent panels with fer data. In particular, a cornor panel is iikeiy to contain no datia puints, with the consequenco that one of the basis runctions will be zero at all data pointe, io the corraspondinf; colurm of $A$ will contain only zeros and hence $A$ will bo ranle doficient. Such a case is easily detected and remedied by setting tho appropinte B-spline coerficient to zro and delating the nuth colum from tho inatrity before $\underset{\sim}{A}$ is triengularizod. However, a less obvious form of def'icioncy may occur in which mo colums of A are identicaly rorn. As a simple examplo, consider a case in which each parel contains precisely one data point. Ihen adt colums of $A$ contajn non-zeros, yot the rank of $A$ is at most cqual to ${ }^{2} x^{2} y$, the number of date points in this casc, which is less than tho number of columns of $A$ by $(n-1)\left(N_{x}+N_{y}+n-1\right)$. For a further informative discussion, see Hayes and Halliday (1974).

Juy rank deficiency in $A$ is conveniently bandled, after having computed the upper triangular factor, using the "resolving constraint" concept (Section 9.5).

### 10.5 The inposition of constraints

Many of the ideas of Sections 9.1 - 9.4 curry over to the multivasiate case. He mention just two simple extcrasions. Nhe first is the simple point constraint in which $s^{(r)}(x, y)$ is to take the value $f^{(r)}\left({ }_{(1}, u_{0}\right)$ at
$(x, y)=\left(t_{0}, u_{0}\right)$. Herer $(0 \leqslant r<n), t_{0}\left(a \leqslant t_{0} \leqslant b\right), u_{0}\left(c \leqslant u_{0} \leqslant a\right)$ and $f^{(r)}\left(t_{0}, u_{0}\right)$ are all prescribed. By analogy with tho discussion of Section 9.3 , wuch a constraint can be fomed very readily and imposed using the raethods of Section 9.5.

As an instance oí a line constraint wo corsider the collowine exarnle. Suppose $s(x, y)$ j.s to satisfly the line constraint

$$
\begin{equation*}
\left(\frac{\partial s}{\partial x}\right)_{x=a}=g(y) \tag{10.5.1}
\end{equation*}
$$

where $E(y)$ is a prescribed function of $y$. Now

$$
\begin{equation*}
\left(\frac{\partial_{s}}{\partial x}\right)_{x=a}=\sum_{i=1}^{n_{x}} \sum_{j=1}^{n_{y}} c_{i j} N_{n ; i}^{\prime}(a) p_{n j}(y) \tag{10.5.2}
\end{equation*}
$$

and hence

$$
\sum_{j=1}^{n_{y}} a_{j} P_{n j}(y)=f(y),
$$

rhere

$$
\begin{align*}
d_{j} & =\sum_{i=1}^{n_{x}} c_{i j}{ }^{N n i}(a) \\
& =\sum_{i=1}^{2} c_{i j} N_{m i}^{\prime}(a), \tag{10.5.4}
\end{align*}
$$

using the compact support prorerty.

Evidently, such a constraint can be imposed exactly only if $g(y)$ is e. spline of order $n$ in $y$ with the same $y$-lnots as $s(x, y)$, or if $k(y)$ is a polynomial oi degree less than $a$ in $y$ (which is of course a special case of a syline of order $n$ ). In the former case, if $\mathbb{G}(y)$ is erpressed in its nornalized B-spline form its coetricients are simply the values of $d_{y}$.

In the lattex case, if $f(y)$ is exprossed in its power-series form, Algorithn 5.7 .1 can be used to determino the $i_{j}$. If $g(y)$ falls jinto neither of these categories it is recommended that it is first appoximated, perhaps by using one of tho interpolation algorithms of Soction 6.4, by a spline of order a havine the same v-knots as $u(x, y)$.

In any ease the $d_{j}$ are usually readily found. The renaining step is the japosition of the $n_{y}$ linear constraints (10.5.4), which nay bo cem.ied out as in Section 9.5 or by a suituble modiffication of the basis as in Section 9.1.
10.6 E'veluation of a multivariato spline from its B-spline ranpasentation

Consider the evaluation of the bivariate splino (10.3.3) for given valuos of $x$ and $y(a \leqslant x \leqslant b, c \leqslant y \leqslant d)$. Since

$$
\begin{equation*}
s(x, y)=\sum_{j=1}^{n_{y}} a_{j}(x) P_{n j}(y) \tag{10.6.6}
\end{equation*}
$$

where

5 can evidentiy be evaluated by foming each of the (at most) n valuos of $a_{j}(x)$ in (10.6.2) corresponding to the non-zero values of $P_{n j}(y)$, followou by the evaluation of (10.6.2). A total of nt1 spline evaluations is required and if either 11 gorithm 5.2.1 or Algorithm 5.2.2 were employod Vould take a total of $\left.z_{2}^{3}+\mathrm{n}^{3} \mathrm{n}^{2}\right)$ lone operations. Note, however, that edvantage can l:e taken of the fact that for $n$ of these ovaluatjons, the same kot set; is employed. The following minor nodification of Aleorithm 5.2.a uccomplishes this imprevement.

## Alinorithm 10.6.1: The evaluation of $s\left(x_{s} y\right)$ from its normalinod

 B-spline representation.Step 1. Determine $k$ and 1 such that $x_{k-1} \leqslant x<x_{k}$ and $y_{1-1} \leqslant y<y_{2}$ using sequential or binary search.

Step 2. Use Algorithm 3.12.2 to evaluate $v_{i}=N_{n i}(x)$ for $i=k$, lit is $\ldots, k+n-1$.
Step 3. For $j=1,1+1, \ldots, l+n-1$ form $a_{j}=\sum_{i=k}^{k+n-1} \nabla_{i} c_{i j}$.
Step 4. Use either Algorithm 5.2.1 or Algorithm 5.2.2 to ovaluate $\sum_{i=1}^{n_{y}} a_{j,} p_{r, i}(y)$.

The total number of long operations taken by Algorithm 10.6 .1 is $1+1^{2}+0(n)$. An error analysis of Algorithm 10.6.1, carried out in a similar fashion to those of Algorithms 5.2.1 and 5.2.2 reveals that the computed venite $\bar{s}(x, y)$ satisfies

$$
|s(x, y)-s(x, y)| \leqslant 15.59 n 2^{-t} \max _{k \leqslant j<k+n} \quad \operatorname{mex}\left|j<j+n<1 c_{j j}\right| . \quad \text { (10.6.3) }
$$

Algorithm 10.6 .1 and the amor analysis may be extended in an obvious way to multivariate splines in $p$ dimensions. The form of the error bound is the natural extension of (10.6.3), the constant 15.59 being replaced by 7.745 p.
 Their Applications. New York: Academic Press, 1967.

AIfOS, D E and SLATPR, M I. Polynomial and spline approximation by quadratic procramming. Commun. Assoc. Comput. Mach., 1969, 12. 379-381.

BAUKR, $F$ J. Blisination with weighted ror combirations for anliving linear equations ans least squares problems. Numerische lich., 1965, 7, 338-352.

EARNODALE, I. Approximation in the $L_{1}$ and $I_{\infty}$ norms by linear programning. University of Jiverpool, WhD Thesis, 1967.

BARRODALE, I and ROBERTS, F D K. An improved algorithm for discrete $]_{1}$ linear approximation. University of Victoria, Departnent of Matheratics Report (un-numberea), British Columbia, Canada, 1971.

BRERODLIE, I and YOUNG, A. Algoxithms for best $I_{1}$ add $L_{\text {on }}$ approximations on a discrete set. Numorischo fath., 1966, 8, 295-306.

BARTELS, $R$ H and GOITH, ${ }^{\prime}$ li. The simplex method of linear programine using LI! decomposition. Commen. Assoc. Comput. Mach., 1969, 12, 266-268.

IEISHAN, R, KARME, B and VABDETVAN, R. Mean square splize approximation. J. Math. Anol. Applics., 1974, 4.5, 47-53.
fobleck, A. Solving linear least squares problens by Gram-Sclumidt orthogonalization, BTI, 1967, I, 1-21.

BOOR, C DE. On calculating with B-splines. J.Approximafion Mreory, 1972, 6, 50-62.

HOOR, C D ${ }^{\text {I }}$. Good approximation by splines with varjable knoti. In A leir and A Sharma (Eds), Spline Functions and Apuroximation Theory, ISNM 21, 57-72. Basel: Birkhauser Verlag, 1973.

BOOR, C DE and F[X, G J. Spline approximation by quasijnterpolants. 3. Approxination Theory, 1973: 8, 19-45.

BOOR, C DN and RICE, J R. Least squares cubic spline approximation I Fixed knots. Purdue University. Keport CSD IR20, 1963.

EOCR, C DE and RICE, JR. Least squares cubic spline approximation IJ Varialile knots. Purdue University. Report CSD IR21, 1963.

B00T, J C G. Quajatic Programing. Chicago: Rand McNelly, $196!$.
BRITISH STATDARD CODR OF FRiCTICR. CP118. The Structural Use of Aluminjun. London: British Standards Institution, 1969.

BUSINGR, $F$ A. Konitoring the numericil stabiljty of Gaussian elimination. Numerische Math., $1971,16,360-361$.


 derivaifive of a B-sptine basis of order $k$ associatse with numeriodi ovaluations. To Rppers in J. Inst. Marhe. Applics. 19\%.

GARABSO, C. Móthodes murnériques pour I. obtertion de fonctions-spline. These de zome Cycle, Universite de Gremoble, 1966.

CARAESO, C and TAURENT, Y J. On the nianorical vonstruotion uno practical use of tnterpolating spitine-furutions. In A if Morrodit (Fd.), Informaticn Processing 68. Ansterdan: Moviboitolinum, 1969.

CIMNSHAN, CW. Chebyshey scxjes fox matnematioal fumctions. Triciomal Fhysical Iraboratory Methematical liablos 2. Jomdon: Mor Majosty'o Stationory Office, 1962.
 Arplics. $1965,1,16!-183$.
 squares problens. STAM J. IJumer, Anal., 1973, 10, 284...283.
 first decpec splines Comput. J. $1971,11,272-215$.
coy, M6. Curve pitting with pjecenise polynomials. I. Inst. Matlas. Applice: $1971,8,36-52$.

GOX, M G. Tine mamerical evaluation of B-splines. J. Inst. Matis. Applicia, 1916: 10. 134-149.

COX, NG. Cubie-splime sitting with convexity arc concavity constraintis. Hational Pnysical Teboratery, Tedangton, Midalesex, Moport MACZう, 1973.
 of a real continuous function, fiven lower snal upper bounds on tinc \%oxo. Netional Finsical Laboratory, Todineton, nidalesex. NPL Algorithms Libwary Document C5/01/0/A1gol $50 / \mathrm{i} / 73$, Jamary 1373.

Cox, N G. A data-fitting package for the nou-spooiftist usex. In D J Evers (Ed.), Sof ware for liumexical liathematies, yp 235-25i. Jondon: Acadenice Eress, 1974 .
 squares approxinadion to are arbitramy set of data points by a curde splina mith prescribed knots, and to perform cubic spline interpolation. Natiomal Miysical Laboratory, 'leddington, Mddex.


GOX, UG Procedure 'spdegj': to evaluate a cubic spline from its B-spline representotion. National Physical Laboratory, Jed
 Arwii 1974.

COX, MG. Numerical computations associated vith Chebysinev polynouinis. Presented at Royai Irjsh Acadeny Conference on Numerical Aralysis, Dublin. , whuct, 1974.

COX, M G. Subroutine 'SP3FIT' : to conpute a meighticd least-squares approximation to an arbitrary sot of data points by a cubic spline with prescribed knots, and to perform cubic spline interpolation. National Physical Laboratury, Fieddington, Midalesex. MPI Alegorithros Library Document E2/03/0/10irtran IV/11/74, November 1974 .

COK, MG. Subroutine 'SPDEG3': to evaluato a cubic spline from its B-spline representation. National. Physical Iahoratory, leadington, Midülesox. NPL Aleorithms Library Docurant w $2 / 05 / 0 /$ Fortran IV/ $11 / 74$, November 1974.

Cox, MG. An algorithm for spline interpolation. J. Irst. Maths. Applics., 1975, 15, 95-103.

COK, M G and IIAYES, J G. Curve fitting: a guide and suite of nlgorithms for the non-specielist user. National Physical Laboratory, 'Nodineton, liadalesex.Report NAC 26, Decenher 1973.

CURRY, $H$ B and SCHONBERG, I $J$. On Pólya frequency functions $\pi V$ the fundanental spline functions and their linits. J. Analyse lonth., 1966, 17, 71-107.

DAVIS, P J. Interpolation and Approximation. New York, Blaisdell, 1963.
DODSON, D S. Opitmal order approximation by polynomial spline functions. Fhin Thesis. Computer Scienco Department, Purdue University, Laf'ayette, USA, 1972.

DRAPER, N R end SMITH, H. Aprlicd Rearession Analvsis. New York: Wiley, 1968.

FSCH, R E and EASTMAN, VI I. Computational methods for best spline function approximation. J. Approximation Theory, 1969, 2, 85-96.

FRANCIS, $J$ GH. The QR transtomation, Parts I and II. Comput. I., 1961/2, 4, 265-271, 332-34.5.

GAFPET, $P$. The calculation of indefinito integrals of B-splines. Atomic Energy Research Estrablishment, Harvell. Report CESil, 1974.

GHNLMEAT, $W M$. An ersor analysis of Goertrol's (Fintt's) nethod for computing Fourier coefficients. Computer J., 1969, 12, 160-165.

GENLEMN, M. Basic procecures for large, ayarse, or veighted lincar leasts squares problems. University of Materloo, Ontario, Canada, Research Report CSRil-2068, 1972.

GTMTLMAN, W H. Least squares computations by Givens transformations rithout square roots. J. Jnst. \%aths. Applics., 1973, 12, 32.3-336.

GRYTHEAN, TM. Iriterface between numerical analysis and symbolic computation. Paper mesented at the ACM/SIMB conference "Mathenaticsl Software II", July 1974, Furdue University, Larayette, Indiana.

GILL, $P$ h and MTRRAY; H. A nunerically stable form of the simplex algorithra. Irinear Alpehra and it Applns., 1973, I, 99-138.

GOLUB, GH. Numerical methods for sclving Jinear least squares problems. Numerische Meth., 1965, I, 206-216:

GOLDB, G H and BUSIMGrik, F. Least-squares, singular values and mitrix approximations. An ALGOL procodure for computing the sincular value decomposition. Technical Report No. CS73, Stanford University, California, USA, 1967.

GOLUB, $G H$ and KAHAV, Ci. Calculating the singular values and pseudoinverse of a matrit. J. STAM Numer. Aral., 1965, 2, 205-2.24.

GOLUB, $G H$ and REDNSCH, $C$. Singular value decomposition nnd least squeres solutions. Numerische Math., 1970, 14, 1403-4 20.

GOLUP, $G \mathrm{H}$ and MILKDNSON: $J \mathrm{H}$. Note on the iterative xeifincment of least; squares solution. Nurnerische \%ath., 1966, 2, 139-14, 2 .

GREVILLE, TN N. Note on fittine of functions of several independent variabies. J. Soc. Indust. Appl. Math., 1961, 2, 109-115.

GRIVILLAR, $T \mathbb{N}$ F. Introduction to sritine functions. In $T \mathbb{N} f$ Greville (Ed), Theory and. Anplication of Spline Functions, pp 1-35. Now York: hoedemic Fress, 1969.

HAMARLIIFG, S. A rote on modifications to the Civens p:lane rotation. J. Inst. Llaths. Anplios., 1974, 13, 215-218.

HANSON, R J and LATSON, C I. Fxtensions and applications of tho Householder algoritim for solving linear least-squares problems. Math. Corput., 1969, 23, 787-812.

HARTLEF, P. Tensor product approximations to data defined on rectangular meshes in n-space. J. Inst. Maths. Applics., 1976. To appear.

HAYES, J G and FALLDAY, J. Whe least-squares fitting of cubic spline surfaces to general data sets. J. Inst. Maths. Applics., 1971, 14, 89-103.

HOUSFHOIDER, AS. Unitaxy tringgulerization of a nonsymmetric matrix. I. Assoc. Comput. Marh., 1958, 2, 339-34.

IARATA, $P$ and ROSEN, J B. An intcrective display for approximation by linear programing. Commun. Asson. Comput. Mach., 1970, 13, 651-659.

Lï̈ChLI, $P$. Jordan oliaination und Auscleichung nach kileinsten Quadraten. Numerische Yatri.; 1901, 2, 226-21,0.

JAEMSOR, $C I$ and HANSOH, $R J$. Solving least squares problems. Enelewood Cliffes, New Jorsey: Prentice-Hall, Inc. 1971.

Whisnw, $\mathcal{Z}$. An identity for spline functions with applications to variation-diminishine spline appoximation. J. Appoximetion Theory, $1970,2,7-49$.

MARYIN, $R$ S and WINKINSON, J H. Solution of symmetric and unsymmetric band equations and the celculation of the eigenvectors of band matrices. Nuncrische Math., 1967, 2, 279-301.
HOLFR, C. Fast Givens. In informal proceedings of ACH/SIAN conference Mathematical Software II, PF 313-313. Purdue University, Lafayotte, Ind̉iana, May 1974.

NAUR, P. (Rd.). Revised report on the algorithmic language ALGOL 60. Comput. J., 1963, 2, 349-367.

FEIERS, G and WILKINSON, J H. Ihe least squares problem and pscudoinverses. Comput. J., 1970, 13, 309-316.
Pricids, $G$ and VMKDFSON, J H. Practical problems arising in tho solution of polynomial equations. J. Tnst. Maths. Applics., 1971, 8, 16-35.

POHELL, M J D. Curve fitting by splines in one variable. In J C Haves (Ed.), Numerical Approximation to Functions and Nats, pp 65-.83. London: Athlone Press, 1970.

RABINOWITA, P. Applications of linear programming to numerical enalysja. SIAM Rev., 1968, 10, 121-159.

REID, J K. A note on the least squares solution of a band system of linesr equations by Housciolder reductions. Comput. J., 1967, 10, 188-189.

REID, J K. A. note on the stability of Gaussian olimination. J. Inst. Meths. Applics., $1971,8,374-375$.

RICR, JR. The Approximation on Functions, Vol 1. Readine Mossachusetts: Addison-Wesley, 1964.

RICE, J R. Feperinents on Gram-Schnidt orthogonelization. Math. Comput., 1966, 20, 325-328.

RIEE, JR. The Approximation of Functions, Vol 2. Reading, Massachusetts: Ad̉ison-Hieslcy, 1969.

ROOIJ, F'L J VAN and SCHURER, F. A bibliceraphy on spline functions II. Technolesical University Eindhoven, Netherlands. Report 73-MER-01, 1973.

SCHOEATBERG, I J. Contributions to the problem of approximation of equidistant data by analytic functions. quart. Appl. Naths., 191+6, its, 4.5-99, 112-14.1.

SCHOFIBERG, I J and MInNEY, Annc. On Polya frequency functions IJ. theans. Amer. Math. Sos., 1953, 74, 246-259.

SGHOMKYR, L T. Some algorithms for the computation of interpolating and approximating spline functions. In TNS Greville (Pd.). Thoory and Aprlication of Srline Wunctions, pp 87-102. New, York: Academic Fress,

SoDHEN, R S. BABEL, a new programing language, National Physibal Iảaratory, Teditiston, HjAhlosex. Report CCU 7, 1969.

SEGMHOVA, J. Numerical construction of the hill functions. 'Technical Report 70-110, NGL-21-002-008. University of Maryland.

SEGEMOVA, J. Nunerical construction of the hill functions. SIMM J. Numer. Anal., 1972, 2, 199-204.

SIEFFBINSN, J F. Interpolation. New York: Cholsea Publishirg Company, 1927.

WICHMANJ, B A. Estimating the execution speed of an Algol progran. Report NAC 38. National Physical Laboratory, Teddinetor, Jiddlesox, 1973.

MIKINSON, of Fil. Frror analysis of direct methoãs on matrix inversion. T. Assoc. Comput. Mach., 1961, 8, 281.330.

IPILKTNSON, J H. Rounding Frrors in Algehraic Processos. Notes on Applied Science No 32 . Londorn: Her Majesty's Stationery offic, 1963.

WIKTNGON, TH. The Algebraic Eigenvalue Froblom. Oxford: Viarcndca fross, 1955.

THIKINSOM, J H. Private discussions. 197\%.
FILKNISON, J H and REINSCH, C. (Fds). Handbook for Automatice Computadion, Volume II, Linear Alrebra. New York: Springer-Verlé, 1971.

