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I l l

ABSTRACT

NUMERICAL METHODS FOR THE INTERPOLATION AND 

APPROXIMATION OF DATA BY SPLINE FUNCTIONS

I t  is  often important in  practice to  obtain approximate representations 

o f physical data by re la t iv e ly  simple mathematical functions. The 

approximating functions are usually required to meet certain c r ite r ia  

re la tin g  to  accuracy and smoothness. In the past, polynomials have 

frequently been used fo r  th is task, but i t  has long been recognised that 

there are many types o f data set fo r  which polynomial approximations are 

unsatisfactory in that a very high degree may be required to  achieve the 

required accuracy. Moreover, even i f  such a polynomial can be computed, 

i t  frequently tends to exhibit spurious oscilla tions not present in the 

data i t s e l f .

In an attempt to overcome these d if f ic u lt ie s  attention has turned in 

recent years to the use o f piecewise polynomials or spline functions. A 

spline function, or simply a spline, is  composed o f a set o f polynomial 

arcs, usually o f low degree, joined end to end in such a way as to  form 

a smooth function. Splines tend to  have greater f l e x ib i l i t y  than 

polynomials in  the approximation o f physical data and much attention has 

been devoted in the last decade to the theory o f splines. The development 

o f robust numerical methods fo r computing with splines lias, however, 

lagged somewhat behind the theory. The main objective o f th is work is  

the construction and analysis o f such methods. In order to  obtain 

e ff ic ie n t  and stable metnods a representation o f splines that is  w e ll- 

conditioned and that results in fast computational schemes is  required. 

Representations in terms of B-splines prove to be eminently suitable and



accordingly we study B-splines in  some detain and give various algorithms 

fo r  calculations in  which they are involved.

when B-splines arc used as a basis fo r  interpolation oi’ least-squares 

data f i t t in g  the resulting linear algebraic systems to  be solved fo r  the 

spline coeffic ien ts  have a special structure. Stable numerical methods 

that exploit th is  structure to the fu l l  are presented.

Cur algorithms are used to  obtain spline approximations to a variety  of 

data sets drawn from practical applications. Their performance on these 

problems illu s tra tes  the power o f splines over more conventional 

approximating functions.
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INTRODUCTION

ITany computations with polynomials have been, systematised in the la s t 

two decades by the use o f Chebyshev series. Expressing the approximate 

solution to a wide varie ty  o f problems as a polynomial in it s  Chebyshev- 

series form has often proved extremely b en efic ia l. One of the main 

benefits o f th is approach stems from the fa c t that in many applications 

Chebyshev polynomials form an extremely well-conditioned basis fo r  the 

class o f polynomial functions. Examples o f the application o f Chebyshev 

series abound: in the fie ld s  of function and data approximation, 

interpolation, quadrature, d iffe ren tia l equations and integral equations 

are to be found many in teresting and practical resu lts.

Polynomial splines are a generalization o f polynomials in that a spline 

o f order n includes, as special cases, a l l  polynomials o f degree less 

than n. We treat in some deta il in th is work what we consider to be a

spline counterpart to the Chebyshev polynomials, v iz  the B-splines. The 

B-splines o f a given order defined upon a prescribed set of knots form

fo r  many purposes a well-conditioned basis fo r  the class of splines o f 

that order with che same knots. Moreover, the B-splines too have 

application to many problems in numerical analysis, including those 

referred to above. Considered here are some o f the properties of  

B-splines, many o f which are new, and ways in  which these properties can 

be u tilis ed  to advantage in problems o f interpolation and approximation 

of discrete data.

The theory of splines has made s ign ifican t advances, particu larly in 

the la s t decade (see the bibliography by van Rooij and Schurer, 1973)» 

a fte r  a re la t iv e ly  quiet period fo llow ing the pioneering work of 

Schoenberg (1946), However, the development o f re liab le  and e f f ic ie n t



algorithms fo r  spline compuiaxions has lagged s ign ifican tly  behind the

theoretical development. Accordingly, in order to swing the balance a 

fraction  in favour o f the practical side, our approach is  predominantly 

algorithmic. We concentrate upon the development of what we believe are 

fundamental and useful algorithms fo r  computing with splines expressed 

in the ir B-spline form* Many o f these algorithms are supported by 

practical results as well as by rigorous error analyses, the la tte r  

often indicating the degree o f s ta b ility  o f the algorithms.

Of the ten chapters in th is work the f i r s t  f iv e  constitute "backbone"

chapters upon which the remaining f iv e  depend.

Chapter 1 is  primarily expositors’- and discusses floating-poin t arithmetic 

and basic concepts re la tin g  to the error analysis of computational 

processes. Our approach is  essentia lly that propounded by Wilkinson 

(see, in particular, Wilkinson, 1955; Peters and Wilkinson, i 97l )- We 

also describe the step-by-step manner in  which our algorithms are 

presented and what we understand by the numerical s ta b ility  o f a 

computational process.

The f i r s t  part o f Chapter 2 is  also mainly expository in that methods 

fo r  the numerical solution o f linear algebraic systems in both the 

determined and over-determined cases are surveyed. The work of 

Wilkinson (particu larly Wilkinson, 1965; Peters and Wilkinson, 1970) 

has again strongly influenced our treatment. We then discuss the use 

of both c lassica l and mod -m forms o f plane ( Givens) rotations 

(Gentleman, 1973; Hammarling, 1974) fo r  solving over—determined (lea s t- 

squares) systems and give reasons why we believe that plane rotations 

have advantages over other methods such as Householder transformations 

and modified G-ram-Schmidt. These reasons are reinforced by a comparison,
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based on the timing analysis o f Wichmanu ( 1973) ,  c f the re la tive  

e ffic ien c ies  o f methods fo r  least-squares problems. The second part o f 

Chapter 2 contains detailed descriptions o f some new algorithms fo r  the 

solution o f the structured (stepped-bended) lin ear systems that arise 

in spline interpolation and approximation problems. For the fu lly - 

determined square case (in terpo la tion ) via give algorithms based upon 

G-aussian elimination (GS) and elementary transformations, and for.’ the 

rectangular case algorithms based upon c lass ica l and modern forms o f 

plane rotation (P il). The G-S algorithm can be considered as a 

generalization o f the algorithm of Martin and Wilkinson (1367) fo r  Larded 

systems, and the HI algorithm as a specialisation o f the Givens algorithm 

o f Gentleman (1973)» Our algorithms prove to have advantages in terms 

o f s im p lic ity , speed and storage over those based on Householder 

transformations fo r  stepped-banaed linear systems given by held ( 1967) 

and Lawson and Hanson (1974). F ina lly , i t  is  shown that the powerful 

singular value decomposition may be adapted to analyse stepped-banded 

systems e ff ic ie n t ly .

In  Chapter 3 polynomial splines and the ir properties are discussed and a 

particular form o f fundamental spline, the B~spline, is  introduced. A 

new iden tity  (Cox, 1972) re la tin g  B-splines of consecutive degrees is  

then established. This id en tity , which expresses the value o f a B-spline 

o f order n as a convex combination o f two B-splines o f order n-1 , find 

which proves fundamental to our work, was discovered simultaneously in 

the United States by de Boor (1972). We give algorithms based upon the 

conventional method employing divided differences ana upon convex 

combinations fo r  evaluating B-splines. Detailed error analyses and 

test computations are used to demonstrate conclusively that algorithms 

based upon the use o f convex combinations ore unconditionally stable fo r  

arbitrary (even m ultiple) knots, whereas algorithms employing divided 

differences may give extremely poor resu lts.
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In Chapter 4 a recurrance re lation  due to de Boor (1972) l'or the 

derivatives o f B-splines is  established. A new re lation  o f this type 

is  then obtained that proves to be an extension o f the fundamental 

id en tity  discovered in  Chapter 3 . Two results that prove to be o f 

considerable use in subsequent chapters are then established: the values 

o f a l l  E-spline derivatives at the ends o f the range, as well as certain 

derivatives at the knots, can a l l  be computed in  an unconditionally stable 

manner. A class o f algorithms due to Butterfield  (1975) fo r  E-spline 

derivatives in the general case is  then outlined. F in a lly , some results 

re la tin g  to the d e fin ite  and indefin ite  integration o f B-splines are 

given: these results a l l  appetir apparently fo r  the f i r s t  time, with the 

exception o f one due to B u tterfie ld  (1975)> which is  a further 

generalization o f the iden tity  o f Chapter j>, and one discovered 

independently by Gaffney ( 1 974).

Chapter .5 is  concerned with various computations arising from the 

representation o f splines and polynomials in  terms o f B-splines. Pc 

present a particu larly useful result due to de Boor (1972) which expresses 

a linear combination o f B-splines in  terms o f B-splines o f lower order 

with certain polynomial co e ffic ien ts . This resu lt is  then -used to 

establion a new proof t-ha«, the B-splines form a lin ea rly  independent set 

o f basrs funccions in terms of which an arbitrary spline s (x ) can be 

expressed, and oo esoablxsli loca l lower and upper bounds fo r  s (x ) dn 

terms o f it s  B-spline coe ffic ien ts . Two schemes proposed by de Boor (1972) 

fo r  the evaluation o f s (x ) are described and, fo r  the f i r s t  time, error 

analyses o f these schemes, which demonstrate th e ir unconditional 

s ta b ility , already observed em pirically by de Boor, are given. The 

problem o f representing powers o f x in  terns o f B-splines is  then 

addressed and new algorithms fo r  th is problem are presented and d e ta i l^



error analyses carried  out. Methods fo r representing in th e ir  B-spline

form the derivatives and in tegrals o f r (x ) are then considered.

Chapter 6 is  the f i r s t  o f three "applications” chapters and discusses 

the interpolation of a data set 'ey splines o f arbitrary order with 

arbitrary knot- positions. A new algorithm, together with a detailed 

error analysis, is  presented fo r  this problem. Schumakor (196?) has 

spoken o f the need fo r  such an algorithm. In  particu lar, i t  is  shown 

that i f  B-splines are evaluated as recommended and i f  one o f the algorithms 

proposed fo r  solving stepped-bandod systems is  employed, the computed 

spline is  the exact interpolant o f a neighbouring data set. Choices fo r  

tlie exterior knots ( required in  order to define a fu l l  set o f P-splino

basis functions) and the in te r io r  knots are discussed; in  particular the 

dependence o f a certain condition number upon the positions o f these Imots 

.is investigated using the singular value decomposition (SVD). Some 

informative numerical tests are carried out and a practical problem :ia

solved.

Chapter ]  is  the counterpart o f Chapter 6 in tho case where a least- 

squares approximation rather than an in terpolating function is  required.

A new algorithm io r  testing whether a unique spline approximant exists in  

any given case is  presented. For the least-squares sp lin e -fitt in g  

problem i t s e l f  an algorithm fo r  splines o f arbitrary order with arbitrary 

knot positions is  proposed. This algorithm again u tiliz e s  the convex- 

combinations scheme and the methods fo r  stepped-banded systems and is  a 

generalisation of that given by Cox and Hayes (1973) fo r  cubic splines.

An error analysis o f th is algorithm is  given and, with the aid o f the SVD, 

an extremely encouraging conclusion is  made re la tin g  to i t s  s ta b ility .

The important case o f cubic splines is  discussed ar.d the question o f knot 

placement is  addressed. As well as a test example, a number o f sptjne
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f i t s  to real data sets are presented.

Chapter 8 concentrates on the typo o f problem where more information than 

that contained solely within the data set i t s e l f  is  prescribed. I t  is  

shown that some important types o f continuous constraints upon the 

approximating spline may be enforced by imposing upon the spline a f in it e  

number o f point constraints. A new representation o f cubic splines is  

then used, in  conjunction with sn extension to algorithms due to 

Barrodale and Young (1966) fo r  L.j- and L w -approximation, fo r  spline 

f i t t in g  subject to convexity and concavity constraints. Practical 

examples are given to demonstrate the usefulness o f tho approach.

In Chapter 9 the incorporation o f linear equality constraints in spline 

approximation problems is  discussed. In particular, i t  is  shown that 

boundary conditions may be incorporated read ily  by a simple modification 

to tho basis. For more general constraints, algorithms fo r  linear least- 

squares problems with lin ear equality constraints are discussed.

F in a lly , Chapter 10 discusses b r ie fly  the extension o f some o f the methods 

o f the e a r lie r  chapters to more than one independent variable. The 

interpolation and least-squares approximation to data given at a l l  

vortices o f a rectangular mesh by a tensor product o f univariate functions 

is  f i r s t  discussed. The case wlie.ro the univariate functions tire B-splines 

is  then treated. The general problem o f the least-squares spline 

approximation o f arbitrary multivariate data, fo r  which an algorithm has 

been given in  the cubic case by Hayes and Halliday (1974), is  then

examined.



CHATTER 1

FLOATING-POINT ARITHMETIC ANN ERROR ANALYSIS

This chapter is  one of three "backbone'1 chapters to th is work; i t  serves 

as an introduction to floating-poin t arithmetic, error analysis, algorithm 

and numerical s ta b ility . In Section i.1 vie summarise the rudiments o f 

floating-poin t arithmetic, adhering closely to the concepts developed by 

Wilkinson. In particular, wo deta il those aspects o f floating-point 

arithmetic o f which we shall make considerable usein subsequent chapters, 

where we analyze a number o f computational processes relevant to spline 

approximation. In Section i .2 we illu s tra te  the type o f error analysis 

vie shall be carrying out by os:».mining some simple formulae fo r linear 

transformations and, from the results o f our analyses, make a conjecture 

re la tin g  to the analysis of more general processes. We also discus.: 

running error analysis and the derivation o f a posteriori and a p riori 

error bounds. In Section 1.3 vie g iv e  a b r ie f discussion of algorithms 

and what we understand by numerica l s ta b il ity . We also outline the way 

in which we shall present algorithmic descriptions of our computational 

processes.

1.1 F loating-point arithmstj,c

Many o f the numerical methods described in the fo llow ing chapters w il l  

be analyzed in terms of the ir implementation in  standard binary floa tin g ­

point arithmetic.' In this respect we shall fo llow  closely the approach 

o f Wilkinson (19^3, 19^5) •

A number x is  termed a standard binary floa t in,’- - point number i f  i t  car. 

be represented by an ordered pair (a ,b ) such that x = a2*\ Here b, the 

exponent, is  an in teger, positive or negative, usually restricted  to the
Gy G

range -2  k- n \ 2  , where c is  an in teger, typ ica lly  in the range 7 to 10 :



?

a, the mantissa, is  a binary number, usually satisfying g ^ |a| <  !, 

with no more than t  binary d ig its . Typical values o f t l i e  in the range 

1 6 to 48. The value of 2 “ is  termed the r e la t ive machine precision.

The number aero is  represented in the non-standard form a = b = 0.

A relation  of the form

y = f l ( x 1 * x2 * x^ * . . .  « xn) , ( 1 . 1 . 1)

where ca,ch * denotes any one of the arithmetic operations +, - ,  X or 4 , 

implies that , x0, . . . ,  x and y aro stai', darà binary floating-point 

numbers (or zero ), and that y is  the result o f performing the appropriate 

floating-poin t operations. The multiplication sign w i l l  frequently be 

omitted; thus x^ 2 implies / x? . The division sign (-)) w i l l  frequently 

be replaced by slash (/ ) or a horizontal lin e , in  the usual way. 

Parentheses on the right-hand side o f (1 .1 .1 ) are often necessary to 

remove ambiguity or to  emphasise the order o f the computation. Otherwise 

the sequence o f floating-point operations is  assumed to take place from 

le f t  to  righ t, with the usual rules o f precedence o f X and ~ over + and 

Thus, fo r example, y = fl(x .j X 7 y'* )  implies ( i )  y  ̂ = fl(x ^  X x^ ),

( i i )  y  - flC.vg. t y = f l ( - ^ - ——l i t )  implies ( i )  y  ̂ = f l f r ^ ) ,
5 6

( i i )  y2 = n ^ '3x^  > î i i )  ^  ( i v )  y4 = f i ( x 5-xé) ,

(v ) y = f l ( y y  yif) • hi/idently, any rational arithmetic expression can be 

represented in iioating-poin t arithmetic terms by compounding basic 

operations o f the form y = f l ( x  «x ^ )•

We assume that the rounding errors in the operations are such that

flC * ,* "^ ) = ( - 1 ’!!x2 ) ( l+ e ) , ( 1 . 1 . 2)

where



For m ultiplication and division the value o f s w i l l  bo taken as zero 

i f  either x or is  an in tegra l power o f 2. Y/o assume further that 

relations of the type

fi(xi±:;2) = ( x ^ g V C l+ e ) ,  (1 .1 .4)

where s sa tis fies  (1 .1 .3) ,  also hold. Relations ( l .1 J h) are due to 

Kahan (see Peters and Wilkinson, 1971) and are sometimes more convenient 

than (1 .1 .2 ). In any particular situation we shall use either (1 .1 .2 ) 

or (1.1 J\) as appropriate.

Wilkinson (19^3) states that some computers have less accurate rounding 

procedures than those which give the above results, but we assume (as do 

Peters and Wilkinson (197"1) in a d ifferen t context) that the differences 

are not o f great consequence.

We shall also make use o f the relations

( 1+2 * ) °  <( 1 + 1 .06s2 ^, (1.1.3)

( l - 2- t ) “ S<  1 + .1 . 1282“ *, ( 1 . 1 .6)

where s is  a positive number (o ften  integral 

( 1 . 1 .6) hold as long as s and t  satisfy the

l ) .  Relations (1.1 .5) and 

mild restric tion

s2_t <  0. 1 . (1 .1 .7)

Y/e assume throughout th is work that the inequality ( 1 . 1 .7 ) is  sa tis fied  

fo r a l l  (reasonable) values o f 5 that arise. (On the English E lectric 

XDF9 computer, fo r  which t=39, this means that s can be as large as 

( 0 . 1 ) 2"^ = 5*5 X10 )• Relation (1 .1 .5 ) is  given by Wilkinson ( 1963: 

p1 i 3) ( l . 1 . t ;  by Cox (1972). Following Wilkinson (l965:pH4.) we



shall sometimes use re lation  (1 .1 ,5 ) in the form 

(1+2” t ) s <  1 + s2 ‘1,

where

2 t l  = (1.06)2"*

( 1 . 1 .8)

(1 . 1 .9 ;

We observe that re lation  (1.1.7) is  therefore equivalent to the inequality

52 <  0.106 .

Moreover, (1 .1 ,5 ), (1 .1 .6 ) and (1.1 .7) y ie ld

(1+2 t)s < 1.106

( 1 . 1 . 10)

and

( 1 -2  “) S <  1 .1 1 2  .

(1 . 1 .11)

( 1 . 1 . 12)

Throughout th is work, unless otherwise stated, a (with or without 

subscripts or superscripts) denotes a number satisfy ing

]e| ^  2- t  ( 1 . 1 . 13)

and e (again with or without subscripts cr superscripts) a number 

satisfying

|e) < f  A J J i *\
V  • 1 • ‘W

T/e shall often estimate the arithmetical work r 

computational processes by counting the number 

A long operation is  one floating-poin t m uitipli

d ivis ion .

1.2 Floating-point error analysis

equired by various

o f long operations required.

cation or one floating-poin t

As an illu s tra tion  of the type of floating-poin t error analysis we shall 

be carrying out in subsequent chapters, we examine various formulae fo r 

linear transformations. Linear transformations are required in  Chapters 5



and 6, where i t  is  important that they are carried cut in  a minericaUy 

stable manner. We w i l l  see that the error analyses indicate very ole-'irly 

whether a particular way o f computing the transformation is  stable or 

potentia lly  unstable and, in  the la tte r  case, the reasons for the in s ta ll la t ;

Consider the linear transformation

X = (2x -  a - b)/(b - a ) , ( 1 . 2 . 1 )

which maps the in terva l £ a ,b ] into {̂ -1 , +1J . When implemented in 

floating-poin t arithmetic the computed value X of X w i l l  bo contaminated 

by rounding errors. Our aim is  to produce a bound fo r jb x j, where

SX = X -  X, ( 1. 2 .2)

which holds fo r  a l l  x 6 M .  We seek a function K(a,b) such that

|6X| ^ K (a ,b )2_ t . (1 .2 .3 )

I t  may seem somewhat surprising that v.e employ th is formal approach to 

such an apparently innocuous computation as (1 .2 .1 ). The point we wish 

to stress, which we hope is  brought out ry our analyses, is  that attention 

to d eta il is  o f v it a l  importance in this and in  many other computational 

processes. For instance, the nature o f the error introduced in forming X 

is  dependent upon the precisa ordering of the basic arithmetic operations 

in  ( 1 .2 . 1 ) and, moreover, is  influenced even mora i f  ( 1 .2 . 1 ) is  re-expiessed 

in  certain other mathematically equivalent but computationally d istinct 

forms.

Three possible ways o f carrying out the transformation are given by

(1 .2 .4 )X t-a  5

X = 2x-(a*b)
b-a (1 .2 .5 )

uid
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X = cx -  d, ( 1 . 2 . o)

where

c = 2/ (b-a ) , 

d = (a+h)/(b-a).

A floating-point error analysis o f (1 .2 .4) yie lds

X = { (2 x -a ) ( l+ e 1) - h }  (l+ e2) ( l+ e ^)(1 iK^)/(t>-a).

(1 .2 .7 )

( 1 . 2 .8)

(1 .2 .9 )

where

iSil *̂ 2_ t ( i= i  ,2 ,3 ,4 ), ( 1 .2 . 10)

from which

SX = X-X = (e  (2x-a)+3e (2x-a -b )}/ (b -a ),
 ̂ 1 t—

( 1 . 2 . 11)

where

lell
," t l, , e0] <C 2 (1.2 .12)

Thus

£,X = e. {b / (b -a )+ x } + 3e2X (1.2.13)

and hence

1 cX| <  { jb i/ (b - a )+ t }  f t1 . ( 1 .2 . 1L;

y/e see immediately from (1,2.14) that the error in the computed value of 

X may be appreciable i f  the length b-a o f the original in terva l is  small 

compared with the'magnitude o f b.

Analysis o f (1 .2 .5 ) and (1 .2 .6 ) resu lt in bounds fo r £X similar in form 

to (1 .2 .14). This state o f a ffa irs  is  particu larly unfortunate in the 

case o f the tn ird  form of the transformation equation because the use c f 

( 1 .2 .6) appears to be eminently sensible i f  the transformation is  to be 

used fo r  a large number o f x-values, since the constants c and d can be 

pre-computed from ( 1 .2.7) and ( 1 .2 .8) with ?. consequent saving in arithmetic,
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A fourth fern o f the transformation, which we now study, is  uncord;tionaily 

stable. Consider the use o f the expression

X = { (x - a )- (b - x ) }  / (b-a ) (1.2.15)

to  compute the value of X. An error analysis o f th is "somewhat \;nnatural" 

form gives

{ M i l + e ^ - M C l + e ^ }  (l+ e 5) ( l+ e 4 ) ( l+ e 5) ^ >2 ^

b - a

where

ju . j  ^  2“ t  ( i= 1 , 2 ,3 ,4 , 5) ,

from which

SX =

( n_  ̂ f  v — \ -r - (  - i.N

b - a

(1.2.17)

( 1 .2 . 18)

where

h i»  h l>  h ! <2' t1- (1-2-19)

Thus, since ? a ^ b, i t  follows from (■'.2.18) and ( l .2 . iy )  that

foxj <  (4 )2 "t1 . ( 1. 2 . 20)

Note that the form (1.2.15) is  computational!;.- no mere expensive than 

(1 .2 .A) or (1 .2 .5 ), but unlike them yie lds at worst a very small error.

We now consider b r ie fly  a second stable form, having an error round only 

s ligh tly  in ferio r to (1.2.2C). The approach is  based upon carrying out 

the linear transformation ( I . 2 . 1 ) in two stages, v iz . transformation to 

the in terva l £ o , l j ,  followed by transformation to C~1 , l } .  Error analyses 

o f the "obvious" transformations

r  = f-0“ ci. (* .2 .2 1 )

and
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X = 2X’ -1,

vrhioh carry out inns two—stage pi’ocess, y ie ld

* '  = | r f

( 1- 2 . 22)

( 1 .2 .23)

and

X = (2X '-a )(l+e^ ) = (l+ c 1 ) ( l+ e 9) ( l +e ^ )* i| ( i+e^ ) ,  (1.2.24)

where X' is  the value o f the intermediate variable, computed values are 

denoted by "bars" as usual, and.

| s .| ^ 2' t ( i= 1 ,2 ,3 ,4)

From (1 .2 .24),

6c (x -a )  r
5X = X-X = ----------  + e„<

(1.2.25)

where

b-a

hi- k l <  A

4̂ - 4-

from which

M  <  (7 )s " t l .

( 1 .2 .26)

(1.2.27)

(1.2.26)

The transformations (1.2.21) and (1.2.22) can o f course be combined to 

form the single transformation

2(t-&)
b-c ( 1 . 2 .25)

or, expressed s ligh tly  d iffe ren tly , as 

b-a ( 1 .2 ,30)

I t  is  read ily  established that the use of (1.2.29) also gives an error 

satisfy ing (1.2.23) and that the bound fo r  ( 1 .2 .30) sa tis fies

¡ 6X |<  ( 6) 2" t l .
(1.2.31)
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A much more detailed analysis, which takes in to account the precis's 

nature o f the b it  patterns in the mantissae of the floating-poin t 

representations o f a, b and x, reveals that fo r  nearly a ll  values o f those 

numbers the bound (1.2.1k) is  unduly pessim istic. In particu lar, the 

analysis shows that in these cases the value of e in  ( 1 .2 .9) is  zero, 

with the consequence that in ( i .2 . 1 1 ) is  zero and hence

16x| <  (3)2~t i . (1.2.32)

However, the detailed analysis also shows that there are values o f the 

numbers a, b and x which resu lt in e ̂  being exactly equal in modulus to 

2 . In these cases the bound (1.2.14) proves to be re a lis t ic  and predicts

accurately the magnitude of the actual error in the computed value o f X.

Detailed analyses of ( 1 .2 .3 ) and ( 1 .2 . 6) reveal that the corresponding 

bounds are in fact re a lis t ic  fo r most, rather than a few, values o f a, L 

and x. I  am indebted to Dr J H Wilkinson who suggested the method o f 

approach to these detailed analyses.

The main conclusion to be drawn from the above re la t iv e ly  simple analyses 

is  that fo r  s ta b ility  the transformation should be expressed in a form 

that ensures that the magnitude o f each intermediate computed quantity is  

related as appropriate to the length o f the original or of the transformed 

in terva l. Tie see that the unstable formulae ( 1 .2 .4) ’, ( 1 *2 .3) and ( 1 .2 .6) 

a l l  produce as intermediate quantities numbers related to the absolute 

value of the untransformed variable, a number having no relation  to the 

length of the original in terva l. On the other hand, the intermediate 

quantities produced by the stable formulae ( 1 .2 . 13 ) ,  ( 1 .2 .2 1 ) and 

( 1 .2 .22) ,  ( 1 .2 .29) ,  and ( 1 .2 .30) are a l l  related to the lengths o f the 

orig ina l or transformed range.

Extrapolating this conclusion we conjecture that numerica] processes in

general are more l ik e ly  to be stable i f ,  wherever possible, the intermediat

} ■



10

computed quantities are not allowed to grow too large (o r , in spine 

rather special instances, too small). The principle certain ly holds for 

Gaussian elimination, fo r  i t  is  known (fie ld , 1971) that whatever strategy 

(whether i t  he partia l p ivoting, complete pivoting, pivoting down the 

main diagonal, etc) is  employed, a hound fo r  the departure o f the linear 

system actually solved from that required to he solved is  related d irec tly  

to the largest matrix element at any stage of the reduction. I f  a linear 

system (square or rectangular) is  solved using orthogonalization methods 

then no growth can occur (Peters and Wilkinson, 1970), with the result 

that the process is  stable.

In the numerical methods we discuss we adhere to th is general principle 

wherever possible. Particular instances are the use o f plan0 rotations 

(Chapters 2 and 7 ), elementary stabilised transformations (Chapters 2 and 

6) and the taking o f convex combinations. The la tte r  process is  basic to 

many o f our computations (Chapters k, 9, 6 and 7 in particu lar).

We do not reproduce error analyses o f well-accepted numerically stable 

methods such as the modified Gr'am-Schmidt process, Householder 

transformations and classica l Givens rotations fo r solving linear systems, 

since such analyses abound in the lite ra tu re , the key reference being 

Wilkinson (19 »5 )• However, wherever appropriate, we analyze methods that 

have appeared recently or have been developed during the course of this 

work.

Y.'e shall carry out, in  la ter chapters, floating-poin t error analyses of 

various recurrence relations which arise in the solution of linear systems 

and in  certain computations with splines. In particular we shall sometimes 

( i )  employ a "running" error analysis (Peters and Wilkinson, 1971) to 

enable the computer i t s e l f  to  determine rigorous bounds on the errors i t  

is  making, ( i i )  obtain a posteriori absolute or re la t iv e  error bounds and.
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occasionally, ( i i i )  obtain a p r io r i absolute or re la tive  error bounds.

To give the flavour of the types o f resu lts re obtain we analyse a simple 

example.

Consider the following recurrence re lation  which defines and generates 

the Fibonacci numbers:

f  = f .
•h

fr  “ f r - i  + f r -2  ( r - 2 »3 »«-* ) ^
(1.2.33)

Suppose this computation is  carried out in floating-point arithmetic. 

Let f  denote the computed value o f f^ and b?r = f r ~fr • Then

1 =

r ,  =

f  , 6f = o  o 0

f , ,  f-f. = 0 1 1

and

Thus fo r r ^  2,

(1.2.34)

f r  = f l ( f r _1+ fr_2)= ( f r _ i+ fr _2)/ (l+ e r ) (r = 2 ,3 , . . . ) .  (1.2.35)

( 1+e ) f  = f  + f 0 ' r  r  r - 1  r -2 (1.2.36)

and therefore

f  +6f  +b f  = f  +6f_  ,+ f _+6f  0r r r r r -1  r - 1  r -2  r -2

The use o f (1.2.33) reduces ( 1 .2 .37) to

(1.2.37)

6f  = £ f ,+ t f  c-e f  .r r-1 r -2  r r (1.2.38)

Thus

t f r | S (1.2.39)

where
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Fo = F, -  0..

P = S> r  r-
+P + f ( -1 r -2  r  J

1 .
(■1.2.AO)

So, at the same time as i t  forms the f^ , the computer can form the values

F . Such a process is  called  a running error analysis. However, lik e  the

f  . the values o f F cannot ha formed exactly, since rounding errors are r r

made in computing the error re la tion  (1 .2 .40): This apparent d if f ic u lty  

is  easily  overcome as fo llow s. Let F be the computed value o f F^. Then 

the computational equivalent o f ( 1 .2 .40) 3s

F = f l (F  ,+P 0+ f ) r  r - 1  r -2  r

= f (F  ,+F 0) (  Ue, )+ f  !  ( l+ 2 „ )1/ r - 1  r - 2/v 1 ,r ' r j  v 2 ,r ( 1 .2.41)

Thus, since the F^ and tho f^  are non-negative, the contribution tc  the

error incurred in computing from (1.2.40) is  at most a m ultiplicative 

-t -2factor (1-2 ) . Hence, since 6 fo=6 f)=0,

j f  f r | .< 2“ t ( i - 2"t )2 2rF. 

Notì, by virtue o f ( 1 . 1 . 12 ) ,

( l - 2_ t ) 2_2r <  1 . 1 1 2 .

Hence, since F >  0 fo r  r ^  2 ,

(1.2.42)

(1.2.43)

|of.| <  ( 1 . 112 ) 2" *  Fr . ( r >  2) . ( 1 .2 . V i)

This I’esult is  an a posteriori  absolute error bound. Although such a 

resu lt is  extremely useful in. practice in that it. enables a rigorous 

bound on the absolute error in the computed value to be obtained, i t  t e l ls  

us nothing about the qualitative nature o f the error growth in  the 

computation. In other words i t  does not t o l l  us whether the bound grows, 

fo r example, lin early , quadratically or exponentially etc, with r .  In
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certain -favourable case» the running er.ror analysis approach can give 

r is e  to a posteriori bounds which not only display the ' qualitative nature 

o f the growth but also obviate the need actually to use a running error 

relationship lik e  ( 1 .2 -40) (which, imvi dentally, requires even more 

computational e ffo r t  than the basic recurrence!). For instance, fo r the 

above example we shall show that, fo r r  2 , F^ sa tis fies  the inequality

Fr ^  (l4 2 "t ) r " 2( r - l ) f r , (1-2.45)

and hence that

¡5 fr j ^ 0+2~t ) r " 2(r - l)2 * 't f r  . (1.2.46)

In order to establish this resu lt we f i r s t  assume i t  to be true fo r 

24,, F , ^  Then the substitution of (1.2.45) (with r - i  and then

r -2  replacing r ) into the right-hand side o f ( 1 .2 .40) and the use of 

( 1 .2 .36) gives

Fr < (l+ 2 "t ) r" 3(r - 2 ) f r_1-.(l+2-t ) r ^ ( r - 3 ) f r_2H-fr 

< ( l +2-t ) r " 3 { ( r - 2 ) ( f r_ 1+f ^ 2)+'fp )

^ ( 1+2"t )r " 3 [ ( r - 2) ( l +2‘ ! ) f r+f r ]

< ( i+ 2 " t ) r “ 2( r - l ) f r  . (1.2.47)

But from (1.2 .40), F2 = f^ . Ileneo (1.2.45) is  true for r-2 and by 

induction therefore for a l l  r  2 .

Having established a resu lt of the form (1 .2 .45), i t  may then be possible

to obtain an a priori  re la tive  error bound. F irs t ly  (1.1.11) is  used to
' \

sim plify (1.2.45) s ligh tly  to give

Vr  $  1 . 106( r - l ) f r (1.2.48)

and hence
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Kr-1)

But the re la tive  error in  f  is  simply

f  - f  r r
i f r M / ?r

f X* f r -b fr 1 - i f r / f r

t
\ 4.? iiS -)

f
\

r\«¿1 0)

/ 1.1Q6(r-i)2~'t 

1-1.106(r-l)2“ t

<  1 •I 06( r - l ) 2" t

1-0.1106

<  1.244(r~l)2_t , (1.2.51)

using ( 1 . 1 .7)* V/e can therefore state, before the computation is  started,

that the re la tive  error in the computed value of f  cannot  exceed

1 ,?44 (r-l)2  l’ . This resu lt is  absolute 3.y r i r orov.s; in practice the

s ta t is t ic a l e ffec ts  o f rounding errors are more l ik e ly  to give an actual
JL _j0

error o f the order o f ( r - l ) ‘ 2 . However, the importance of a result of

the type obtained here is  not only that the precise natui’e o f the error 

bound has been obtained, but also that an a p r io ri error bound car. be 

obtained at a i l  and, as we w il l  see in Section i t h a t  the computation 

has he«ii shown to be unconditionally numerl mi? stable.

1 .5 Algorttluas and numerical s ta b ility

An a lgo r ithm is  a procedure (se t o f rules, recipe) fo r obtaining a solution

to a specific  mathematical problem. An algorithm describes in an

unambiguous manner the way in which a required o<4c c f numbers, the

solution , may be computed from a given set of numbers, the data. For

instance, the recurrence re la tion  ( 1 .2 . 35) constitutes an algorithm for

computing the Fibonacci numbers f_ ,  f „ ,  . . .  from the data ( in i t ia l  conditions)
¿ 5  y
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Let the m-vector x denote a set o f data values supplied to an algorithm L, 

Let the n-vcctor f  denote the solution obtained by A u-sing exact 

arithmetic and the n~vector f  the solution obtained by A using standard 

floating-poin t arithmetic.

Every algorithm has a domain of applicab i l i t y  X (R ice, 1971; Cox, 1974), 

defined by the set o f data x fo r which the algorithm can provide the 

desired solution f . For instance, X = j x«£- 0j  for an algorithm which 

computes the positive square root o f a rea l number x; in practice there 

w i l l  be an upper bound M fo r the values o f x fo r which the algorithm is  

designed, in which case X = ^x j 0 $ x ^ Li j .

A w i l l  be termed unconditional l y numerically  stabile i f ,  fo r  a l l  :: G X, 

the implementation of A in standard floating-point arithmetic provides a 

solution f  which in some sense bears a close resemblance to f .  Probablyfv* MM̂**""**** 1~~IT '■ r\t

the most desirable form of closeness is

I lH lU  v ' *  Hill - (1.3.1)

where 2 is  the re la tive  machine precision, as before, and K,, is  relateu

to the particular process employed in  A. jj . jj denotes any convenient

vector norm«. I f  the computed solution is  a single value then || . jj may

be replaced by j . j in  the usual way. Often, fur a particular process,

.is either a constant or depends upon a small number of parameters

re la tin g  to that process. Sometimes an expression fo r  K, can be determined * 1
a p r io r i ; in other cases K, may be the resu lt o f a running error analysis 

or an a posteriori analysis.

I f  K^2 1 then (1.3• 1) may be considered an excellent bound in that the

re la tiv e  error in the computed solution w il l  be small.

Sometimes i t  may oe d if f ic u lt  or impossible to obtain a bound of the form 

( i . 3 . l ) .  However, i t  may be possible to derive a bound o f the form
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fl-i I I  <  V "V ( 1 . 3 . 2 )

where, as before, Kg is  a constant or is  re lated  to the particular 

process, but

M = max // T I/’ .
x 6 X

v t

0 -3 .5 )

L. i then 0  .3.2) may also indicate a stable algorithm. Of course,

( 1 .3 .2 ) is  a somewhat weaker- result than ( 1 .3 . 1 ) in that whereas ( 1 . 3 , 1 )  

gives a bound on the re la tive  error and, consequently, on the absolute 

error, ( 1 »3.,2) merely gives a bound on the absolute error, which may or 

may not imply a satisfactory re la tive  error bound.

An algorithm w ill he termed conditionally numerically stable f f  a result 

o f the form (1 .3 -0  or 0 -3 -2 ) holds fo r an iden tifiab le  subset X' o f X.

For some algorithms i t  is  not easy to  quote a result as straightforward as 

(1-3-1) or (■ -3 -̂ /1, oven i f  such a result can be obtained at a l l .  However, 

we can sometimes say that a particular algorithm is  "good" because i t  

fxb ib tts  Stable behaviour in practice fo r  most, x 6 X, although no theoretica l 

statement o f behaviour is  eas ily  obtained. The values o f x G X fo r which 

the algorithm fa i ls  to produce good results may correspond to pathological 

or extreme situations, eg to data sets unlikely to ¿rise in practical 

applications.

For some algorithms rigorous error bounds can be determined, but the bounds 

are most unlikely to be attained or even approached at a l l  c losely . A good 

example is  the bound associated with Gaussian elimination with partia l 

pivoting fo r  solving linear algebraic systems (Filkinson, 1965:p97) , which 

contains a factor o f 2 , where n is  the order o f the system. I t  might

be thought therefore that fo r systems of quite modest size tbs -- i. 

obtained would have errors so large that the results were meaningless.
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However,- nothing could 'be further from the truth since, apart from

artific ia lly -constru cted  examples ( fo r  an in teresting example see

Wilkinson, 1961), a more r e a lis t ic , though not rigorous, bound for

practical purposes contains a factor of the order of unity rather then

„n-1

Most o f the above discussion re lates to forward error analysis in which 

a measure of the closeness o f the computed solution to the actual solution 

is  sought. Per many algorithms i t  is  more meaningful and relevant to vise 

a baolrward error analysis. In such on analysis the solution obtained is  

interpreted as the exact solution of a problem with data x which is  

(hopefully) only s ligh tly  d ifferen t from x. Bounds upon j |  x~x J | are then 

sought, which again indicate whether the algorithms can be considered as 

being numerically stable.

Many o f the computational processes we discuss ere accompanied by 

commented algorithms. These algorithms ere intended to provide a 

d e fin itive  " 1 nterfo.ee" between a "casual" description of a computational 

process and its  formal implementation in a h igh-level language such as 

A lgol or Fortran. Ve believe that a reader knowledgeable in a. h igh-level 

language would read ily be able to code these algorithms. For commercial 

reasons we are unable to l i s t  actual codes in th is work. However, a l l  the 

algorithms presented here have been programmed in A lgo l 60, Fortran FT or 

Babel, an A lgo l-lik e  language due to Scowen ( 1969) .  Apart from the 

re la t iv e ly  tr iv ia l illu s tra t iv e  algorithms, such as Algorithm 1.3.1 below, 

they have been tested carefu lly on a wide variety o f both model and 

practical problems.

\7e use the algorithms as building blocks, jest as procedures are used in 

A lgo l and subroutines in Fortran. Pul example, the re la t iv e ly  simple 

algorithms in Section 2,1 fo r  solving triangular systems are needed by 

many c f the- more complicated algorithms fo r  solving general linear systems



in  the subsequent sections of Chapter 2 . In turn, the algorithms in 

Chapters 6 and 7 fo r  spline interpolation and least-squares spline 

approximation make use of the algorithms fo r linear systems.

Each algorithm is  described by a sequence o f steps or stages. Most steps 

describe one or more o f the follow ing operations: assign a value to a 

variable; advance or return to a stated step i f  a condition is  sa tis fied , 

execute the stated steps the stated number of times. These three types of 

step occur frequently. Occasionally we need to make use o f a dummy 

statement (or null operation), io a statement whose presence is  necessary 

to describe unambiguously the flow o f a computational process. For this 

null operation wo borrow the term Continue from the Fortran language.

Other types o f step also appear; we believe that most o f these are s e lf-  

explanatory: qualification  w i l l  be given where thought necessary. TThere 

appropriate the algorithmic steps are interspersed by comments or remarks 

which help re la te  the various stages o f the algorithm to those of the 

computational process being implemented. In particu lar, i f  a special 

storage strategy is  employed, such as in the algorithms of Sections 2.12 to

2 .14  fo r stepnod-banded matrices, the algorithmic steps re fe r  to the 

notation appropriate to the special strategy, whereas the comments re fer to 

the natural storage notation.

As a very simple illu stra tion  o f the form of our algorithms, the recurrence 

re la tion  (1.2.337 fo r generating the Fibonacci numbers is  described by 

Algorithm 1.3*1 below.

Algorithm 1.3*1: Generation of the Fibonacci numbers f  . f ........... f  .— —---------------- o 1 n

Comment: In it ia liz a t io n .

Step 1. Set i Q = 1 and f  = 1.

Comment; ilecur the defining re la tion  fo r the Fibonacci numbers.

Step 2. For r= 2 ,3 ,...,n  form f  - f  , + f  * r  r*~ I r —s
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CHAPTER 2

THE NUMERICAL SOLUTION OP LINEAR ALGEBRAIC EQUATIONS

Frequent use is  made throughout this work o f methods fo r  the solution o f 

systems o f linear equations (Chapters 6, 8 arid 10) and also fo r the least- 

squares solution o f systems o f over-determined linear equations (Chapters 7 

and 10). Accordingly, th is chapter is  devoted to the description o f numerical 

stable methods fo r solving such problems. We concentrate particu larly upon 

the linear least-squares problem, since the solution of a system o f linear 

equations can be considered as being included as a special case. The linear 

least-squares problems that arise from the use of polynomial splines as 

approximating functions tend to be highly structured, i f  a suitable basis 

fo r  the spline is  employed. The so-called observation matrix (Section 2.2) 

proves to have special properties in that many o f its  elements are aero and, 

moreover, the disposition o f the non-zero elements can be characterized in 

a straightforward manner. Similar remarks apply to the systems o f linear 

equations arising from spline interpolation problems.

In order to obtain e ff ic ie n t  algorithms fo r solving these problems i t  is  

important to take advantage of the special structure of these matrices. 

F irs t ly , however, we outline a number o f methods currently available fo r 

the solution o f dense linear least-squares problems and consider subsequently 

ways in which they can bo modified so that structured problems can be treated.

There are six methods in current use:

( i )  Choleskv decomposition o f the normal equations ,

( i i )  Gaussian elimination

( i i i )  Gram-Schmidt orthogonalization

( iv )  Householder transformations

(v ) Givens rotations 

(v.i) The singular value decomposition

applied to  the 

observation matrix.
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For our purposes the use of Givens rotations proves to be most appropriate.

In order to establish th is we give a b r ie f description of each approach, 

together with i t s  merits and demerits.

In an attempt to obtain the utmost numerical s ta b ility , the methods applied 

to the observation matrix are sometimes implemented so as to include a 

column-interchange (p ivoting) strategy (see, fo r example, Golub, 1965; 

Businger and Golub, 1965 and Peters and 'Wilkinson, 1970). Unfortunately, 

the interchanging o f columns tends to destroy the nature o f the sero-non- 

sero structure. Since in our work we wish to take fu l l  advantage of 

structure, we would be prepared to  accept a slight loss of numerical 

s ta b ility  i f  the avoidance o f column interchanges led  to s ign ifican tly  more 

e ff ic ie n t  algorithms.

There is  evidence both empirical and theoretica l that the behaviour o f the 

modified Gram-Schmidt method (see Section 2.6) is  not improved by column 

interchanges. For instance, a fter obtaining considerable computational 

evidence, Rice ( 1966) concluded that interchanges resu lt in a perceptible 

but small (even neg lig ib le ) improvement. In a detailed! theoretical floa tin g­

point error analysis Bjftrck ( 1967) concluded that, regardless o f whether or 

not interchanges are made, the errors in the computed solution are less 

than the errors resulting from re la tive  perturbations in the observation 

matrix and right-hand side o f K(m,n)2 \  Here t is  the number of b its  in 

the mantissa o f the floating-poin t word and K is  a modest function o f m and n 

(the respective numbers o f rows and columns in the observation matrix). 

Similar conclusion can be expected to hold in respect of methods ( iv )  end 

(v ) (V/ilkinson, 1974).

Many o f the numerical methods v/e describe are applicable equally to the 

square case (in terpolation ) and to the rectangular or over-determined case 

(leas t squares). However, there are advantages to  be gained in terms o f 

computational, e ffic ien cy  by employing elimination methods in  the square case,
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and in terns o f s ta b ility  and sim plicity by using orthogonalization methods 

in the over-determined case. Accordingly, mo3t o f the algorithms we 

present fo r these methods re fle c t  these considerations.

In Section 2.1 we give algorithms fo r  the solution o f triangular systems, 

since these are required by many o f the subsequent algorithms fo r  more 

general systems. In Section 2.2 we introduce the linear least-squares 

problem and describe in Section 2.3 the norma]-equations approach to i t s  

solution. Elimination methods are discussed in Section 2.4 and in  Section 

2.5 the use of orthogonal transformations is  considered. Particular methods 

fo r orthogonal transformations, v iz  modified Gram-Schmidt, Householder and 

Givens rotations are described in  Sections 2.6, 2.7 and 2.8. Modern 

variants of Givens rotations are presented in  Section 2.9 and a comparison 

o f the various methods fo r  orthogonal triar.gularization is  made in Section 

2.10. In Section 2.11 stepped-banded matrices are defined and in Sections 

2.12, 2.13 and 2.14 methods based upon Gaussian elim ination, elementary 

transformations and orthogonal transformations fo r  solving systems with 

stepped-banded matrices are presented. The powerful singular value 

decomposition is  considered in  Section 2.15 arid, f in a lly ,  in Section 2.16 

perturbation bounds fo r the solution o f linear systems are given.

2.1 The solution o f triangular systems

Most of the numerical methods we describe fo r solving the frequently over­

determined linear system

¿5 = & » (2 .1 .1 )

where A is  a given m by n matrix and b is  a given m-vector, f i r s t ly  reduce 

the system to upper triangular' form. This reduction is  usually carried 

out by pre-multipiying both sides o f ( 2 . 1 . 1 ) by a sequence of transformation 

matrices chosen to have the e ffe c t  o f annihilating in  a systematic manner

the sub-diagonal elements o f A. Triangular systems also arise in  our work 

in various other ways.



We describe algorithms fo r solving three types of triangular system 

that are o f particular importance. We denote the general triangular 

system by

& > = § >  (2 .1 .2 )

where R is  an upper-triangular matrix of order n by n and G an n-vector.

I t  is  assumed henceforth that R is  non-singular, ie  the elements on the 

main diagonal of R are non-zero. Any implementation of our algorithms 

would of course test either im p lic itly  or e x p lic it ly  whether these elements 

were indeed non-zero.

We consider f i r s t  the simplest case where R is  dense, ie  a,ll or most of 

the super-diagonal elements o f R are non-zero. In the t r iv ia l  algorithm 

below, a natural storage strategy is  assumed, ie  that element r.. . ( j  £ i )li- J

o f R is  stored in location ( i , j )  o f an n by n array. Locations ( i , j )

( j  < i )  o f th is array are not used.

Algorithm 2.1.1; Solution o f the dense upper triangular system Rx = g,

in the case where & is  stored in  natural form.

Step 1. For j = n, n-1, . . . ,  1 compute

22

n

In th is and subsequent algorithms we adopt the convention that there is  no 

contribution from a sum having a lower lim it that exceeds the upper lim it.

In order to minimize storage requirements, some o f our algorithms store 

the diagonal and super-diagonal elements o f R sequentially by rows in  a 

vector o f length -gn(n+l). In Algorithm 2.1.2 th is storage strategy is  

assumed. Algorithm 2.1.3 is  sim ilar to  Algorithm 2.1.3 except that R is  

taken to be 'unit upper triangular; in this case only the super-diagonal 

elements are stored, again sequentially by rows, in a vector o f length 

^n (n -l).
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Algorithm 2.1.2: Solution o f the dense upper triangular system 

Rx = e, in  the case where the diagonal end 

super-diagonal elements o f R are stored 

sequentially by rows.

Step 1. For j = n, n-1, 1 execute Steps 2-7.

Step 2. Set 1 = ( j - 1 ) (2n+2-j)/2+1.

Comment: r .. is  stored as the 1 th element of the vector.

Step 3. Set y  - r-j_ and z = Qy

Step 4. For k = j+1, j+2, . . . ,  n execute Steps 5-6.

Step 5. Replace 1 by 1+1.

Step 6. Replace z by z-r-jX^..

Step 7- Set x . = z/y.d

Algorithm 2.1.3: Solution o f the dense unit upper triangular system

Rx = 0, in the case where the super-diagonal elements 

o f R are stored sequentially by rows.

Step 1. For j - n, n-1, . . . ,  1 execute Steps 2-7.

Step 2. Set 1 = ( j - l ) ( 2n -j)/ 2 .

Step 3* Set z = 0 ..
0

Step 4- For k s j+ 1 , j+2y . . . .  n execute oteps 5—6.

Step 5- Repiace 1  by 1+1 .

Step 6. Replace z by z-rpXk.

Step 7* Set X. : 
d

= z.

Particu lar attention w i l l  be paid to the solution o f systems where the 

matrices are stepped-banded in form (fo r  a de fin ition  see Section 2.11).

The resulting triangular systems have matrices that are band unoer 

triangular. Algorithm 2.1.4 solves the system (2 .1 .2 ) in the case where 

R has 1-1 super-diagonals. The strategy employed is  to  store the diagonal 

and super-diagonals of R as the successive columns o f an n by q array. This 

condensed storage strategy is  i l i ustrated in the case n = 6, q = 3 ^
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Fig 2 . 1 .1  (*  denotes an unused storage loca tion ).

r
12 13 r 11 r 12 r l3

r22 23 "24 r 22 r 23 r 24

r33 r 34 r 35 r33 r 34 r 35

r44 r45 r46 r44 r45 r46

r55 r56 r55 r56
*

r 66 r 66
* ❖

Natural storage Condensed storage

Fig 2.1.1 Natural and condensed storage fo r  an upper band 

triangular matrix in the case n = 6, q = 3 *

A lgorithm 2.1 .4; Solution of the upper band triangular system 

Rjc = g, in the case where the diagonal and 

super-diagonals of R are stored successively 

in columns.

Step 1. For i  = n, n-1, . . . ,  1 execute Steps 2-3.

Step 2. Set i = min(n-i-i-1 ,q ) .

Step 3- Form x, = (0. -  r ik\ +i-1 )/ ri1 *

2.2 The linear least-squares problem 

Consider the linear least-squares problem

T
£ £ >

x

7/here

= Ax/v<v b

In (2 .2 .2 ), A, a prescribed observation or design matrix, is  an 

matrix o f rank k (k £  n m), n is  a prescribed right-hand-side 

o f length m, r is  the residual vector and x the solution vector

( 2 . 2 . 1)

( 2 .2 . 2)

m by n 

vector 

In the
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problems to be considered k is  usually, but not always, equal to n.

The follow ing properties o f least-squares solutions are known (see, for 

example, Peters and Wilkinson, 1570):

( i )  /ill least-squares solutions sa tis fy  the so-called

( i i )  I f  k=n then the system (2 .2 .3 ) has a unique solution.

( i i i )  I f  k <  n then o f a l l  solutions satisfy ing (2.2 .3)

there is  only one, known as the minimal norm solution, 

which minimizes z = (x x )2, the Euclidean length of 

the solution vector.

One method fo r the solution o f (2 .2 .1 ) is  based upon the direct solution 

of the system ( 2 .2 .3) .  The other fiv e  methods are a l l  based upon an 

in i t ia l  factorization  o f the form

rank k. Evidently this factorization  is  not unique since we may write

normal eque.lions
T TA Ax = A b .w A/ (2 .2 .3 )

A = OH ( 2 . 2.20

where G is  an m by k matrix, H a k by n matrix and both G and H are of

A = G'H' .A/ ^ ^ (2 .2 .5 )

where

&' = GE“ 1, ( 2 . 2 . 6 )

(2 .2 .7 )

and F is  any k by k matrix of rank k.

The substitution of (2 .2 .4 ) into (2 .2 .3 ) y ie lds

( 2 . 2 . 8)



26

The pre-multiplication o f both sides o f (2 .2 .8 ) by H then yields

T T T Ï
HH G GHx = HH G- b . (2 .2 .9 )

T T
Now both HH and & & are k by k matrices of rank k. sinco G- and H are 

themselves of rani: k. Hence the pre-multiplication o f both sides of 

(2 .2 .9 ) by (CTG)~1 (HhV 1 yie lds

Hx = (GTG)“ 1&Tb . (2.2.10)

Since H is  o f rank k, a particular solution (which may be v e r if ie d  by 

inspection) of the equation

Hx = v ,«  w V ' ( 2 . 2 . 11)

where v is  any given vector o f length k, is

x = H V ) "  v .

Thus a particular solution o f (2.2.10) is

X .  hW ) - W 1» 1*  •- ,  m  ' w o 7  /  '  a * 44 •  r+

( 2 . 2 . 12)

(2.2.13)

Peters and Yfilkinson (1970) show that (2.2.13) j.s in fact the minimal 

least-squares solution. The matrix

A+  = HT(?fflT) " 1(GTG) 1&T
44 44 '  4444 •  '  44 4*t •  +4 (2.2.14)

is  termed the -pseudo-inverse o f A.

In the fu ll-rank case k-n, H is  an n by n matrix of rank n and accordingly 

( 2 .2 .13 ) reduces to

4 T1 - I T
2  = H (s  £) £ s . (2.5.15)
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2.3 Cholesky decomposition of the normal equations

One method of computing the linear least-squares solution in the fu l l -  

rank case k=n is  suggested by equations (2 .2 .3 ). In this approach we 

form the n by n matrix C and the n-vector d, where

£ = ata (2 .3 .1 )

and

d = ATb , (2 .3 .2 )

and then solve

Cx = d .c+ r* (2 .3 .3)

Since A is  o f rani: n, C is  also o f rank n. Moreover, C is  positive defin ite .ig W W

In such a case, Cholesky decomposition (Wilkinson, 19&5: P 229 et seq) may 

be used to give the factor R in

c = rTr , (2 .3 .4 )

where R is  an upper triangular matrix of order n and rank n. The solution 

x may then be obtained by solving the triangular systems

f l  = %  (2-3-5)

and

25 = Z  • ( 2 .3 . 6)

TThe main disadvantage o f this approach is  that in  forming C = A A some
t

of the information contained in A may be lo s t. The fo llow ing example due 

to Lauchli ( 1961) (a lso see Golub, 1965 and Bjorek, 19^7) illu s tra tes  this 

point very w ell. Let
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1 1 1 1 1

6 0 0 0 0

0 6 0 0 0

0 0 6 0 0

0 0 0 6 0

0 0 0 0 6

Then

1+ 6 2 1 1 1 1

1 1+ 6 2 1 1 1

1 1 1+ 6 2 1 1

1 1 1 1+ 6 2 1

1 1 1 1 1+6

(2 .3 .7 )

(2.3.8)

I t  is  easily  v e r ified  that i f  6 / 0 then the rank, o f C is  f iv e ,  since the
2 2 2 2 2

eigenvalues of C are 5+6 , 6 , 6 , 6 and f> . Now consider the computation

of tho elements o f C. Even i f  this computation is  exact, apart from a
2

f in a l rounding to t binary d ig its , then 1+6 w i l l  be rounded to unity for

a l l  6 such that J S{ $ 2  In such cases the exact eigenvalues o f the

computed C w i l l  be 5> C» 0 and 0 and the corresponding rank w il l  be 

unity. Thus, however accurately the Cholcsky decomposition is  carried 

out, i t  is  impossible to solve the system ( 2 . 3 .3) .

There are ?omo proolems, however, where the approach of this section is  

e ffe c t iv e . These problems correspond, at least in  the context o f data 

approximation, to the choice of a 'hearly-orthogonal" set o f basis functions, 

together with an appropriate set o f data points.

2.4 Gaussian elimination

Ytre now outline a method based upon Gaussian elimination fox' the fu ll-ra n i 

case k=n. and TTiUdnson ( 1970) ,  who appear to have been the f i r s t

to use the method, give a more detailed description fo r the general case

k .< n.



29

I t  is  w ell known that in the case m=n the n by n matrix A can be 

factorized  in  the form

A = LU , (2 .4 .1 )

where L is  lower-triangular with unit diagonal elements and. U is  upper 

t riangular. A common way to obtain the factoriza tion  in  a numerically 

stable manner is  to employ Gaussian elimination with partia l pivoting 

(TALlkinson, 19^5: p200 et seq) . The partia l pivoting strategy means that 

in  general we obtain an LU decomposition o f a matrix A ', where A* is  

derived from A by suitably permuting it s  rows, ie

A'rj PA = LU ,A/ A»« ^ (2 .4 .2 )

whore P is  a permutation matrix.

In the case m>n i t  is  also possible to use Gaussian elimination to  obtain 

a factorization  o f the m by n matrix A. Tie s t i l l  obtain a decomposition 

o f the form ( 2 .4 -2) ,  but now 1  is  an m by n unit lower-trapezoidal matrix: 

(Peters and TCilkinson, 1970), ie  L is  o f the form illu stra ted  in Fig 2.4.1 

fo r the case m=6, n=4 .

1 0 0 0

1 0 0

> 132
1 0

^ 1 \ 2 4 3
1

251 152 i r . *54

h i *62 X63 264

Fig 2.4*1 A unit lower-trapezoidal matrix of order 6 by 4.

For notational convenience suppose that the rows o f A have in i t ia l ly  been 

permuted so that no interchanges are subsequently necessary, ie  P = I  

the unit matrix. Then iden tify ing G with L and H with U in (2.2.15) gives
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• x = U_1 (LTL ) " 1d , (2 .4 .3 )

where

d = LTh . ( 2 .4 .4)

The solution vector x in (2.4-3) may then be computed as fo llow s. A fter 

forming the factors L and U, we form the vector d in ( 2 .4 .4) and the n by n 

matrix

M = LTL . (2 .4 .5 )

Since M is  symmetric positive d e fin ite , i t  possesses the Cholesky 

decomposition

M = w T , (2 .4 .6 )

where V is  upper triangular. A fter forming V, the intermediate vectors 

z. v and the solution vector x are obtained from the solutions of the 

triangular sets of equations

Vz = d ,mê** A* 7 (2 .4 .7)

T
= z  » ( 2 .4 .8)

Ux = y . (2.4.9)

In the case where A is  square, ie  m=n, then t5>e steps involving the 

formation and the Cholesky decomposition o f M are unnecessary. The 

solution to ( 2 .2 .1 ) in this case is  also that of

&  = £ > (2 .4 . :o)

which can be found by the use o f ( 2 .4 . 1 ) ,  ie  by solving

»

&  = £ (2.4.11)

and

Ux = y .A/ ( 2 . 4 . 12)
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I t  may be thought that, since th is method forms M = L L and then the

Cholesky decomposition o f M, the s ta b ility  problems associated with the

normal-equations approach are s t i l l  present. However, Peters and

Wilkinson. ( i 970) state that pivoting usually causes L to be vrell-conditicnod

and any ill-con d ition  in A is  wholly re flec ted  in U. Thus the squaring

Tof the condition number, as a result o f forming A A d irec tly , is  avoided.

We present, as Algorithm 2.4.1 below, an algorithmic statement o f the method 

of th is section. In th is implementation A is  overwritten by L and U, with 

the main diagonal and the super-diagonals containing the elements of U and 

the sub-diagonals the sub-diagonal elements o f L (the main diagonal o f L 

is  not stored since a l l  i t s  elements have the value u n ity ). The vector d 

is  overwritten on b. The sub-cLiagonal elements of the symmetric matrix M 

then overwrite the sub-diagonals o f A and the main diagonal o f M is  formed 

in an n-vector £. The intermediate vectors j  and z are stored in the 

locations ultimately used fo r x.

T

Algorithm 2.4.1: LU factorization  and linear least-squares solution

using Gaussian elimination with partia l pivoting. 

Comment: L and U are formed in Steps 1-8.

Step 1. For 1 = 1, 2, . . . ,  n execute Steps 2-6.

Step 2. Determine the smallest value o f k snub that

| ^  = ^+1 1 •••» m) •

Step 3- I f  k = 1 advance to Step 6 .

Slep 4. For j = 1, 2, . . . ,  n interchange the values of a.^ and a _ .  

Step 3. Interchange the values o f b and b^.

Step 6 . For i  = 1+1, 1+2, . . . ,  m execute Steps 7-8.

Step 7. Replace by a^/a .

Sten 8 . For j  = 1+1, 1+2, . . . ,  n reulace a. . by a. .-a a. ..
l j  i f  -+-*3
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Comment : 

Step 9- 

Comment:

Step 10.

Step 11. 

Step 12. 

Step 13»

C omment: 

Step 14. 

Step 15. 

Step 1b. 

Step 17-

Step 18 . 

Comment: 

Step 19- 

Step 20. 

Step 21. 

Step 22.

Step 23 . 

C omment: 

Step 24-

Comment : 

Step 23-

Comment:

Branch according to whether the system is  square or rectangular. 

I f  m >  n advance to Step 12.

In the square case the formation o f M and d and the solution o f

Mv = d are replaced by the solution o f Lv = b.

For i  = 1, 2, . . . ,  n compute x. = b. -  /  , a x  .
3- 1

Advance to Step 26.

TComment: Form d = L b.t-t rv

For j = 1, 2, . . . ,  n replace b. by b. + b.a,
J 3 6 3 + 1 1 1

TM = L L is  formed in Steps 14-18.

For i  = 1, 2, . . . ,  n execute Steps 15-18.

For j = 1, 2, . . . ,  i  execute Steps 16-18.

Set g = a. . ( i f  i  / j )  or 1 (otherwise).
1J m

Replace g by g + 2L j an  a1 (j-

Set a. . = g ( i f  i  / j )  or p . = g (otherw ise). 

V is  formed in Steps 19-23.

For j = 1, 2, . . . ,  n execute Steps 20-23.

For i  = j ,  j+1, . . . ,  n execute Steps 21-23. 

Set g -  a ^  ( i f  i  /  j )  or p. (otherwise) 

Replace £ by g - a .. a., . JK ik

.i- 1

l
Set p. = h = g 2 ( i f  i  = j )  or a. . = hg (otherwise). 

<■' j j
Solve Vjj = d.

i - 1
For i  = 1, 2, . . . ,  r. compute x± = p± (b± -  T ~ l x^ ) .

k=1
Solve V y -  2 .

n
For i  = n, n-1, . . . .  1 replace x by p (x  -  a. . x. )

k=i+1 k l  k

Solve Ux = y.
n

,, 1 replace x. by (x . -  Z Z j XV) A . .  .
1  J- k=i+1 “  *

Step 26. For i  = n, n-1,
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A variant o f the method o f th is section fo r m ^  n, proposed by Cline 

(1973)» avoids the formation o f M in ( 2 .4 .5) .  In C line 's  method L isw /v

decomposed into

(2.4.13)

where Q is  an m by m orthogonal (unitary) matrix (Section 2.5) and L* is  

n by n lower triangular. Cline shows how to construct L' ( i t  is  not 

necessary to form Q ex p lic it ly ) using Householder transfoi'mations 

(Section 2.j ) .  Now, since

lTi . = (l * )T [ l  n ] 0T£ L* = (L ') T. (2.4. 1':)

( 2 .4 -3) reduces to

X/v
~1

d,i*/ (2.4.15)

from which x may be obtained, via  intermediate vectors z and y , from the
W  M

solutions o f the triangular sets o f equations

( L » ) Tz = d, 

L’ y = s , 

Ux = y .MM M

( 2 .4 . 16)

(2.4.17) 

( 2 .4 . 1R)

Cline shows that, i f  terms of order mn and v f  ere ignored compared with
2 3

those o f mn and n , on a m ultiplication count his method is  faster than 

the normal-equations approach i f  m <  4n/ 3  and faster than the use o f 

Householder transformations i f  m <  5n/3.



2.5 The use of orthogonal transformations

That orthogonal transformations can usefu lly be employed in the solution 

o f linear least-squares problems appears to have been f i r s t  proposed by 

Householder (1958). However, i t  was not u n til seven years la ter that Golub 

( 1965) and Golub and Kah&n (19&5) gave detailed expositions of the 

application o f orthogonal (Householder) transformations to least-squares 

problems. The jo in t work was concerned with the more sophisticated 

singular value decomposition (STO); we shall riefer discussion of the SVD 

u n til Section 2.15. A further seven years la ter the work o f Gentleman 

(1972, 1973) showed that Givens rotations could also be used to advantage 

in solving such problems. This and the subsequent work by Hammarling (197k) 

and Moler (1974) gave a new impetus to the use o f Given3 rotations in that 

they showed that the amount o f arithmetic could be reduced to that of the 

method o f Householder transformations, whilst s t i l l  preserving numerical 

s ta b ility . A th ird method, the Gram-Schmidt factoriza tion , can also usefully 

be c la ss ified  with the Householder and Givens methods.

Suppose an orthogonal matrix Q o f order m by k can be found to y ie ld  the 

factoriza tion

where R is  an upper-trapezoidal matrix o f order k by n. The iden tifica tion  

0f  Qwith G and R with H in (2 .2 .4 ) gives, upon using (2 .2 .13),

Now i f  the transformations applied to A to y ie ld  R are also applied to b, 

then

A = ORis/ ^ (2.5.1)

( 2 . 5 . 2 )

b = Qc .

say, where c is  the transformed vector. The substitution o f ( 2 .5 .3) into



(2 .5 .2 ) yie lds

(2 .5 .4 )

We now form the k by k symmetric positive defin ite  matrix

M = HR
A * * *

Ï
(2 .5 .5 )

and, as in  the Gaussian elimination algorithm (Section 2 .4 ), take the 

Cholesky decomposition

M = W T
}

r'

(2 .5 .6 )

where V is  upper triangular. Then intermediate vectors z and £ may be 

obtained from the triangular sets o f equations

and

V3 = c
W A /  (V

TV y = zA/ ^

and f in a lly  the solution x from

T
x = R y~ A/ K.

In the fu ll-rank case k=n, (2 .5 .4 ) reduces to

x = R ĉ ,

a single triangular system.

(2.5 .7)

(2.5 .8)

(2.5.9)

( 2 . 5 . 1 0 )

There are three methods currently available fo r  carrying out the 

iacturisauior ^ 2 .5 .l). These methods are ( i )  modified Gram—Schmidt,

( i i )  Householder transformations and ( i i i )  Givens rotations. Y/e give b r ie f 

descriptions o f these methods fo r  the case of fu l l  rank, ie  k=n. Their 

extension to the general case k ^  n i s straightforward (Peters and 

Wilk inson, 1970); we shall not concern ourselves with the specific  deta ils

here.



I t  w i l l  be noticed that in  the Householder and Givens methods, the matrix

£ is  in  fact m by m rather than m by k. However, in  the product A - £R, 

the last m-k columns o f Q play no part and hence we may write

A/v = (QI , )R , (2.5.11)

where 1 ^  consists o f the f i r s t  k columns o f the m by m unit matrix, which 

is  compatible dimensionally with (2.2.1+) .

Note that the expressions ( 2 .5 .4) and (2.5.10) fo r the solution vector x 

do not involve the orthogonal matrix g. In fact tho Householder and Givens 

methods do not even form £ ex p lic it ly . The Gram-Schmidt method does in 

fact form £ column by column, but as soon as a column has been u tilis ed  i t  

may be discarded before the next column is  formed and hence an extra storage 

space o f only one m-vector is  required.

TNearly always in our discussions £ w i l l  be orthonormal (Q £ = l ) , rather
Tthan merely orthogonal (g £ diagonal). However, in  accordance with custom 

we shall re fe r  to an orthonormal £ as orthogonal; we shall make clear cases 

where Q is  not orthonormal.

2.6 The modified Gram-Schmidt method

In th is method the matrix Q is  determined ex p lic it ly . Let q. denote the

jth  column o f £. The computational process consists o f n major steps in

( l )  (2 '  f 3̂which the matrix A = Av is  transformed successively to Av ' ,  Aw / , . . . ,

A(n+1) _ At the beginning of the 1th step ( l  = i ,  2, . . . ,  n ) ,

,(D -  [a  O O a( X) . (1 ) a( l )
I .. 1 i ' - i  " 1 + i  *

where q ,, q0, .

, ( i )  • M

( 2 .6 .1 )

,(D, Gt are a set o f orthonormalised vectors and aii L 1 1  -----—-...... '

• ••> modified versions o f the corresponding columns .1 n * *

. . . . ,  aV' ; o f the orig ina l matrix Â  u . Sl+l *“n ~
, ( 1 ) ( 1)

¿1+1
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The 1th major step consists o f ( i )  

by replacing a^1  ̂ by

making the 1 th column a unit vector

&  -  ~4aV ( 2 . 6 . 2 )

followed by ( i i )  n- 1  minor steps, the jth  o f which ( j  = 1+1 , 1+2 , . . . ,  n) 

involves the orthogonalization o f the jth  column with respect to the 1 th 

column. I t  is  eas ily  v e r if ie d  that the computation

a (.l+ 1 > r l jS l  ' (2 .6 .3 )

where

r  -  eT J 1)
l j  "  Si 5j » (2.6.4.)

)

y ie lds the required orthogonalization.

The same transformations are applied to the vector b, ie  b is  treated 

just as i f  i t  were another column of A.

A formal statement o f the complete process is  given by Algorithm 2.6.1 

below. During the 1th major step column 3  o f q i s held in the a-vector g. 

In  th is and subsequent algorithms we suppress superscripts and write eg

EepU ce ^ . by ak , -  ( 2 .6 .5 )

(as in Step 6 of Algorithm 2.6 .1 ), rather than

( 1 +1 ) ( l )
dk j “  ^ j  “  r l j Pk * ( 2 .6.6)

Apart from tne advantage o f b revity , the superscript-free notation also 

implies fo rc ib ly  (as we wish to imply) that the old value o f a ^ ,  ie 

aj“̂ ,  is  overwritten by the new value, ie  °
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Algorithm 2.6 .1: Orthogonal triangularization and lineal- least-

squares solution using tho modified Gram-Schmidt 

process.

Comment: The 1th major step is  described by Steps 2-8.

Step 1: For 1 = 1 , 2 ,  . . . ,  n execute Steps 2-8.

Comment: Column 1 is  made a unit vector in  Steps 2-3.

Step 2 : Compute rn  = ^ \ k ) 2*

Step 3: For k = 1, 2, . . . ,  m set pk = a ^ / r ^ .

Comment: Row 1 o f R is  formed and columns 1+1, 1+2, . . . ,  n o f A are

orthogonalized with respect to column 1 in Steps 4-6.

Step 4: For j = 1+1, 1+2, . . . ,  n execute Steps 5-6.
m

Step 5: Fo-m r ^  = g  p ^ . .

Step 6 : For k = 1, 2, . . . ,  m replace by -  r  p .̂.

Comment: Similar operations are applied to  the right-hand side in 

Steps 7-8.
m

Step 7: Form = *7^1 p ^ .

Step 8: For k = 1, 2, . . . ,  m replace bk by b^ -  p ^ .

Step 9: Use Algorithm 2.1.1 to solve Rx = c.

The process described here is  termed the modified Gram-Schmidt process 

to distinguish i t  from the c lassica l procedure. The classica l procedure 

d iffe rs  from the modified method in that a\1  ̂ rather than a ^  is  used to 

determine r-, ., with sim ilar considerations applying to the right-hand side. 

Mathematically, the processes are iden tica l; computationally, they behave 

very d iffe ren tly , the c lassica l method being extremely unstable and the 

modified process a very re liab le  technique. In fa c t , the modified process 

is  more convenient in practice than the classica l procedure, since the 

in i t ia l  columns a. ' do not have to  be preserved but, as in Algorithm 2 . 6. 1 ,

can be overwritten by subsequent columns a:
**11

( 1 )
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In the above description o f the modified Gram-Schmidt process, i t  is  

necessary to compute square roots. Modifications to the method have been 

proposed (Bauer, 19&5; Björck, 19&7) which obviate the necessity to  

compute these square roots. The basic idea is  to form the decomposition

A = 1 ,  ■ (2 .6 .7 )

/a \Ta a
where (Q; 0 is  diagonal, ie  £ is  generally orthogonal rather than

A
orthonormal, and R is  unit upper triangular. Equivalently, th is 

decomposition may bo expressed as

A = O^R , (2 .6 .8 )

where Q is  orthonorraal and D = cliag ^d^, &2, . . . ,  d^j is  the diagonal
.A . T-A

matrix (Q) Q. In terms o f this decomposition the 1th major step consists
I ( l )  2

of ( i )  forming d  ̂ = 2» followed by ( i i )  n- 1  minor steps, the jth

of which ( j  = 1+1 , 1 +2 , . . . ,  n) involves forming â .l+1  ̂ = -  r ,  ,
~J ~J l j-1

where r^ . = CGj) /d^. Algorithm 2 .6.1 is  read ily  modified to use this 

a lternative decomposition.

The modified Gram-Schmidt algorithm and its  square-root free variant are 

extremely satisfactory in  practice. Indeed, in  discussing the basic 

process (upon which Algorithm 2 .6.1 is  based), Peters and Wilkinson ( 1970) 

state that "Evidence is  accumulating that the modified Gram-Schmidt gives 

better results than Householder in  spite o f the fac t that the la tte r  

guarantees almost exact orthogonality o f the columns o f Q while th is is  

by no means true ci the modified Gram-Schmidt procedure when A has i l i -  

conditioned columns. The reasons fo r  th is phenomenum appear not to  have 

been elucidated y e t ."  Despite th is point in it s  favour the modified Gram- 

Schmidt process as not particu larly  appropriate in  spline approximation 

problems. There are two reasons fo r  th is . F ir s t ly , the organisation o f the 

modified Gram-Schmidt process is  usually such that the complete matrix A 5 ,
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required in store at the start of the process; i t  does seem possible, however, 

to  modify the method so that A can be processed stably in a row-by-row manner, 

but i t  is  an open question whether one w il l  s t i l l  have an e ffic ien t 

algorithm. Secondly, and more importantly, even i f  A in i t ia l ly  has a 

high proportion of zero elements, f i l l - i n , ie  the replacement of zero by 

non-zero elements, tends to occur so rapidly that l i t t l e  or no advantage 

can be taken o f the structure o f A.

2.7 The method o f Householder transformations

Like the modified Grara-Schmidt method, the method o f Householder

transformations (Golub, 1965; Businger and Golub, 19&5) consists o f n

( l )major steps in  which the matrix A = A is  transformed successively to 

A<3>, . . . ,  A^n+1  ̂ = R. However, unlike the modified Grarn-Schmidt 

method, i t  is  unnecessary (except in special applications) to  determine 

Q ex p lic it ly .

(k ) (k)At the beginning o f the kth step, Av has the property that a. / n 0
*  «3

( i  = j+ 1 , J+2 , m; j  = 1 , 2 , k-1 ) ,  ie  the f i r s t  k-1  columns o f

, ( k ) are in "upper-triangular form". The kth step consists formally o f

00pre-multiplying A by the matrix

= I - 1| r(k)|2 
II 2 (2 .7 .1)

to  produce A
(k+1 )

Since
f (k ) } Tp(k)
'iv ' ~ ■ { i -

( v ) .  I
¿2  )  / I w(k)

-  I  -  ||*(k ) \ l

(k) w 'rsj
4
2

■ i -  ' « Ck)(w« ) * /  ||5«
2
2 +

. (k)/ (k)vT/ 
^2 (2 ) /

(k )
/V.

- i  > ( 2 .7 .2)

2
2
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i t  follows th is  orthogonal. and symmetric.

The vector is  chosen to annihilate the elements a (k  ̂ ( i  = k+ 1, k+2,
(k )

. . . ,  m). I t  is  eas ily  v e r if ie d  that the vector wv '  defined by
x

0

(k ) jw. = /

( i   ̂ 1 , 2 , . . . ,  k -1 ) 

sgn ( a ^ ) ( ^ k>+ a ^ )  ( i  = k) (2 .7 .3 )

00a'lk ( i  = k+1 , k+2 , . . . ,  m) ,

where

( - (k ))2 --  S (
i=k

a(k ) \2
aik  ] (2 .7 .4 )

an;

- 1  (x  <  0)

sgn(x) = <( 0 (x  = 0)

+1 (x  >  0) ,

possesses the above annihilation property.

(2.7 .5)

Now since

w(k) * = ( a - W ) 2 + 2cr(k)
4 £ } ' + ¿ 3  ( a -k ) ) 2kk j K ik '

. 2 ^ ) ( r (k4

we may write

P«  .  i  -  PW . W ( . W ) T ,^ M 1 A- ' +S *

^kk ) . (2 .7 .6 )

(2 .7 .7 )

where

= { c r ^ ( c r ^ k) .00
\ k )}-1

(2 .7 .8 )

I t  is  both in e ffic ien t and unnecessary to  compute F^k  ̂ e x p lic it ly ;

rather, we compute f i r s t
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(£ (k ) ) T = P(k ) (w(k ))'rA(k) (2.7-9)

and then

A(^> .  AW . ( 2 . 7 . 10)

As with the modified G-ram-Schmidt method, the same transformations are

applied to the vector b = b ^  to y ie ld  successive vectors b ^ ,  b ^ , 

(n+1 )
. . . ,  V = c. The right-triangular system

Rx = c ( 2 .7 . 1 1 )

is  then solved for x.

A lgorith  2.7.1 below is  a statement o f the method o f th is section. The 

in i t ia l  matrix A = A ^  is  successively overwritten by A ‘̂ , •••>A# +*+ fw * t*4

A(n+1 ) _ ( 1 )R. Likewise, the right-hand side b = b is  successivelyrv ^ ^  1

overwritten by b , b(2 ) v (3) , b ' = c.

Algorithm 2.7.1: Orthogonal triangularization and linear least-

squares solution using Householder transformations.

Comment: The kth major step is  described by Steps 2-11.

Step 1. For k = 1, 2, . . . ,  n execute Step3 2-11.
(k)

Comment: The parameters o f P are formed in Steps 2-6.
m p -

Step 2. Form 0~ = ( a., ) 2.
* —v

Step 3» Form a = CT + |a^|.

Step 4. Form = a sgn (a ^ ).

Step 5* For i  = k+1, k+2, . . . ,  m set w. = a .1 ÜC

Step 6 . Form ß = (ao~) 1 and replace a^. by a

Comment: The transformation is  carried out in  Steps 7-9.

Step 1. For j  — k+1, k+ ?, , . n execute Steps 6—9.
m

Step 8 . Compute y  = ß.£_^ w.a. ..
■s - 1- 1 1.1i=k

For i  = k, k+1, . . . ,  m replace a ^  by a_. . -  yw..Step 9*
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Comment: The same transformation is  applied to the right-hand side 

in Steps 10-11,
m

Step 10. Compute y  = p Z J  w .b ..
_v 1 2-

Step 11. For i  = k, k+1, . . . ,  ra replace In "by b^ - yw^.

Step 12. Use Algorithm 2.1.1 to solve Rx = c (R stored in A, c in b ) .

2.8 Classical -plane rotations

In th is section we consider classica l Givens plane rotations and give 

two algorithms based on the ir use fo r the orthogonal triangular!zation 

o f an m by n matrix A o f rank n and fo r the least-squares solution o f the 

over-determined linear system Ax = b. In Section 2.9 we examine variantsA*A* A/

o f the modem form of plane rotations without square roots and again give 

algorithms based on their use fo r  the orthogonal triangularisation o f A.

In Section 2.10 we compare the use o f both c lassica l and modern forms o f 

plane rotations with the more common methods described in Sections 2.6 and 

2.7, and give reasons why we believe that plane rotations are particu larly 

appropriate fo r  solving the types of least-squares systems arising from 

spline approximation problems.

Consider the pre-multiplication o f the m by n matrix A by the orthogonal 

m by m matrix

j

i

c

-s

j

1

( 2 . 8 . 1)

1



where c and s denote cos 6 and sin 9, respectively, and 0 is  chosen 

such that the element in position ( j ,  i )  o f the matrix

( 2 .8 •2)

is  zero. I t  is  straightforward to  v e r ify  that the appropriate values o f 

c and s are given by

c = a. ,/h ,11 (2 .8.3)

s = a . ,/h , (2 .8 .4 )

where

v ( 2 2 h = (a. .  + a . . )  . . xx J l' (2 .8 .5 )

Here we assume that a .. -/ 0, which ensures that h is  non-zeiu. Note that 

i f  a ., is  already zero then no rotation is  needed, in which case we take 

c = 1 and s - 0 (even i f  a .. = 0 ), so that Q .. reduces to the unit matrixv 0-1 ~1J

Only rows i  and j o f A are altered by the transformation, the e ffec t 

being to replace row i by (c x row i  + s x row j )  and row j by (c x row j 

s X row i ) . I t  follows therefore that i f  both rows i  and j have zeros in 

the same column position, then these zeros are undisturbed by the process

The rotation can be described completely by (2 .8 .3 ), (2.8 .4) and (2 .8 .5 ), 

together with the expressions

a%± = h (2 .8 .6 )

a!. = or. + sa xk xk jk

(k = i+1, i+2, . . . ,  n) . (2 .8 .7 )

ajk =•' - sajJc + cajk

Fe term (2.8 .7 ) a 4-m ultjplication ru le , since fo r  each value o f k four

multiplications are required to evaluate a’.v and a* from a.r and a., .xLc Ik UK



Wilkinson (1965: 131 et seg) has shown that the 4 -n iu ltip lica tion  ru le is

unconditionally stable in that i f  a ^  and a (k = i ,  i+1, .. 

specified  then

« ( » k 5 -  °lk aik

£ 6
f l ( a '  ) -  a»., 

v jk ' jk
2

a..Jk

n) are

( 2 . 8 . 8 )

where the factor o f 6 is ,  according to Wilkinson, extremely generous.

Since the Euclidean norm is  invariant with respect to orthogonal 

transformation, the right-hand side o f (2.8 .8) can, apart from a 

m ultiplicative factor o f (1+e)^ (|e|  ̂ 2 ^ ) , be replaced by

2"t . (2 .8 .9 )

2

Thus making the very mild assumption that the factor (1+e)^ can be absorbed 

in to the "generous" factor of 6, the re la tive  error in  the 4-multiplication 

rule is  bounded in  modulus by (6)2

Pre-m ultiplication of A by Q. . is  termed a rotation  in the ( i , j ) - p la n e . - 

We also re fe r to this pre-multiplication as the rotation o f row j into 

row i .

Two variants o f the class o f methods which employ c lassica l plane rotations 

may be described as fo llow s.

In the f i r s t  method, which we term triangularization by columns, there are 

n major steps. The kth major step (k = 1, 2, . . . ,  n) consists o f m-k manor 

steps, the ith  of which ( i  = k+1, k+2, . . . ,  m) has the e ffec t o f reducing 

element a .̂v '¿o zero, whilst preserving zeros established in previous steps.

a!,lk
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In the second method, which we shall re fe r  to  as triangular!zation by rows, 

there are m-1 major steps. The ith  major step ( i  = 2, 3, m) consists

o f at most n minor steps, the kth o f which (k = 1, 2, min (i-1 , n ))

has the e ffec t o f annihilating element a ^ ,  whilst preserving previously- 

established zeros.

In either o f these two methods a minor step consists of a single plane 

rotation . In that the sub-diagonal elements in  successive columns are 

reduced to zero, the f i r s t  method is  analogous to the modified Gram-Schmidt 

and the Householder methods. On the other hand, the second o f the two 

methods, in  which elements to the l e f t  o f the main diagonal in successive 

rows are annihilated, has no natural correspondence with the other 

orthogonalisation methods.

I f ,  in  either o f the two methods, the same sequence o f rotations is  performed 

upon the vector b (by treating i t  essentia lly  as another column o f A ) , then 

the least-squares solution is  given by the solution o f the system Rx *  c, 

where R denotes the triangle ultimately produced in  the f i r s t  n rows of A 

and c the f i r s t  n elements o f the transformed vector b.A#

/
T7e now present algurithms based on these two methods.

Algorithm 2.8 .1: Orthogonal triangularization by columns and linear

least-squares solution using c lassica l plane 

rotations.

Comment: The kth major step is  described by Steos 2-11.

Step 1 . For k = 1, 2, . . . ,  n execute Steps 2- 11.

Comment: The ith  minor step is  described by Steps 3-10.

Step 2. For i  = k+1, k+2, . . . ,  m execute Steps 3-10.

Comment: A rotation is  skipped i f  is  already zero.

Step 3» I f  aik  = 0 advenes to  Step 10.



47

C crament: 

Step 4-

Step 5» 

Step 6. 

Step 7•

C eminent : 

Step 8. 

Step 9» 

Step 10. 

Step 11. 

Step 12.

The plane rotation annihilating a .v is  applied in Steps 4-7- 

Compute h = (a  ̂v + a_^)2. Form c = a^^/h and s = a_^/h. 

Replace a.^ by h.

For j  = k+1, k+2, . . . ,  n execute Steps 6-7.

Set y = a, . and z = a. ..
J i j

Replace a, . by cy + sz and a. . by cz - sy.
J 1J

The same rotation is  applied to the right-hand side in Steps 8-9.

Set y = b, and z = b . .J k l
Replace bfc by cy + sz and bj_ by cz -  sy.

Continue.

Continue.

Use Algorithm 2.1.1 to solve Rx = c (R stored in A, c in b ).

A lgorithm 2.8.2: Orthogonal triangularization by rows and linear

least-squares solution using c lass ica l plane 

rotations.

Comment: The ith  major step is  described by Steps 2-11.

Step 1. For i  = 2, 3, . . . ,  m execute Steps 2-11.

Comment: The kth minor step is  described by Steps 3-10.

Step 2. For k = 1, 2, . . . ,  min ( i-1 ,  n) execute Steps 3-10.

Steps 3-12. As Steps 3-12 o f Algorithm 2.8.1.

The above methods fo r orthogonal triangularization by columns and by rows 

have th e ir analogues when modemforms of plane rotations (Section 2.9) 

are used. The main differences re la te  to the nature of the arithmetic 

operations within individual rotations, the overa ll strategies, ie  the 

orders in which the sub-diagonal elements are annihilated, being unchanged
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2.9 Modern plane rotations 

The more general factorization

(2 .9 .1 )

considered in  Section 2.6 in terms of the modified Gram-Schmidt method, 

can also be formed using a generalization of the method of plane rotations.

As in  Section 2.6, D is  a diagonal matrix with non-negative elements, Q is  

orthogonal and R upper-triangular. The factorization  (2 .9 .1 ) has more 

decrees o f freedom associated with i t  than the usual factorization  A = OR.A*

These degrees of freedom may be used to advantage in a number o f ways. The 

factoriza tion  evidently includes the c lass ica l form as a special case, v iz

when D = I .  R can be made unit upper-triangular by setting the diagonal 

elements o f D equal to the squares of the diagonal elements o f R. OtherA# iv

choices o f D and R enable not only the square roots in the plane rotation 

method to be avoided, but also the number of multiplications to be reduced 

by either 25% or 50% (Gentleman, 1972, 1973? Hammarling, 1974). The 50% 

reduction makes Givens rotations as attractive arithm etically as Householder 

transformations and the modified Gram-Schmidt method fo r solving linear 

least-squares problems.

To examine the generalized class o f rotations, suppose that immediately 

before the rotation ,

A

A

and that a fter the rotation

A’A#

we have

(2 .9 .4 )



49

V

Both D and B’ denote diagonal matrices with non-negative elements. WeA* A>

wish to determine formulae fo r  computing those elements of D’ and G* 

changed hy the transformation in terms of those o f D and G. Now since

and

a = a *g ,,1J 1

I j - ' W  ■

the counterparts of (2 .8 .3 ) to (2 .8 .7 ) are

c = djgi/b >

s -  aI s i i/h ’  

h = <di 4  + 4j « 3 i )4  ’

e i i  = ,

'  ( V i i ^ i k +

(2.9 .5)

(2 .9 .6)

(2 .9.7)

(2 . 9 . 8)

(2 .9 .9)

( 2 . 9 . 1 0 )

^ (k = i+1 , i+2, . . . ,  n ). (2.9.11)

83k = dl 4 Csxis 3k -  V u P 7  {  h(d3)4i

Suppose that D and G are given, and that we have freedom just in our choice 

o f D* .

Gentleman (1972, 1973) chooses

(2.9.12)

(2.9.13)

Then (2 .9.10) and (2.9.11) become

a*. = a ,a /h 2 . 
j  1  j

( 2 .9. 14)
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( \ z i i K +(' d .g .. 
J Ji

" I  .2
\  h k h

= Si i e jk "  e j i gik

'6jk

> (k = i+1j i+2, n ). (2.9.15)

But i f  previous rotations made g ^  = 1 then (2.9.15) reduces to

d.1
3ik 2 ^

\  (k = i+1, i+2, . . . ,  n). ( 2 .9 . 16)

s jk gjk g j i Sik

As a consequence, Gentleman's rotation is  defined by the relations

2d! = d. + d.g.. ,
i  t- j J1 *

d* = d .d/d ' ,
J i  J i

c = d./d!  ̂ ,

s "  doSj / dl  *

Sik = °gik + ^gjk
V (k = i+ 1, i+2 ,

g jk = gJk "  Sj i 6ik
4

This is  a 3-^ultip lication rule»

' • • j n)

( 2 .9. 17 )

( 2 .9. 18)

( 2 .9. 19)

( 2 .9.20)

( 2 .9.2 1 )

Gentleman (1975) has shown that his 5-multiplication rule is  unconditionally 

numerically stable in that

f l { ( d p ^ } f l ( g ! k) -  (d p *s&ik

f i  f ( ¿ 0 2]  f i f e ' . ) -  (a ', )V ;Vl j J j*- tt jk

I 1
I ai gi i

£ 7.5
JL

dj Sjk
2

I

2_t . (2.9.22)
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This resu lt*, which should be compared with (2 .8 .8 ), shows that the

3—multiplication rule and the classical 4—multiplication rule have comparable

s ta b ility .

Golub (private communication -  see Gentleman, 1973) has pointed out that- 

the arithmetic involved in  relations (2.9.21) may be reduced by observing 

that

* ik  = ' « I k  + S<«jk * (2-9-23)

'  %k + SEJk > (2-9.24)

upon using (2 .9 .17 ), ( 2 . 9 . 1 9 ) and (2 .9 .20). Thus Golub's form o f the 

rotation may be defined by the relations

ai  -  di + aA i  - (2.9.25)

a; .  a .a / a i , (2.9.26)

s = d .g . ,/d!
J Ji x ’ (2.9.27)

s jk = gjk "  Sj i Sik

► (k = i+1, i+2, . . . ,  n) . (2.9.28)

glk  = + Sgjk -

This is  a 2-multiplication rule .

Gentleman (1973) has curried out a floating-poin t error analysis o f Golub's 

rule and has shown that

* Gentleman (1970 has subsequently shown that the factor o f 7-5 in

(2.9.22) may be improved to a value o f 4 .5 .
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f l
■ f l ( s 4 >  - ak k

n ( g ' k) -  ( a j ) * ^

$K (d i ,d p

2 d.ic.jt

2_ t , ( 2 .9.29)

where

= (4 .52) 2 + ^4.52 + 8.04(d!/cLi ) 2| ? , (2.3.30)

from which i t  is  clear that the s ta b ility  o f the rule depends upon the

re la tive  magnitudes o f d  ̂ and d± . Gentleman ( 1973) states that th is

2-m ultiplication rule is  "numerically unstable, producing te rr ib le

resu lts fo r least squares problems with very well conditioned design

matrices". Hammarling (1974) gives a simple example to illu s tra te  this

point. Gentleman suggests that since the in s tab ility  can read ily  be

detected, simply by examining the ra tio  dl/d^ then we can cut cost and

preserve s ta b ility  by using the 2-m ultiplication ru le i f  d'/d ^  100,
x i

say, and the 3-multiplication rule otherwise. I f  th is strategy is  

employed then re la tion  ( 2 .9.22) holds with 7.5  replaced by 85.04.

Hammarling (1974) has considered choices o f d̂  and d|. that lead d irectly  

to 2-multiplication ru les. The choice

d!1

d;
■ Ü J  /■ 2

"  ; “ i / n >

ai V i d A 2

reduces (2 .9.11) to

+ t e  )  4

s\

6ik  £ik jk

(
V (k = i+ 1 , i+ 2 , . . . ,  n)

5jk ° jk  i g J Ei ti i

( 2 .9 .3 1 )

(2.9.32)

(2.9.33)

According to  Hammar-ling, the ether choicer, o f d* a
i

are f iv e  in  a l l ,  lead to  sim ilar relations. Hammarling's rotation  ma

[  anà o f which there 
J

orr V>- 
“V —v
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defined by the relations

U ~ Sj / 6i i  »

*s = udj/d .̂ ,

di  = d/̂ 1 + ®") » 

d j  =  d / ^ 1 +  5

«Le = 6ik  + Sgjk

ejk = gjk "  " sik

(k = i+1 , i+2, . . . ,  n)

(2.9*34)

(2.9.35)

(2.9.36)

(2.9.37)

(2.9-38)

Although Hammarling demonstrates the s ta b ility  o f his ru le, he states that

there is  c lea rly  some danger o f underflow in d! and d’. when a sequence of
*  J

rotations is  involved. He suggests, without giving specific  deta ils , that 

th is danger may be avoided by storing the exponents o f jD separately, by 

normalizing occasionally or by performing row interchanges. Moler (1974) 

has recently given details o f a row interchange strategy which reduces 

the danger o f underflow in the 2-multiplication ru le. However, even in 

Holer’ s algorithm underflow can occur and hence periodic testing should be 

incorporated to see whether scaling is  required.

Before we give algorithms fo r the modern G-ivens rules we describe an 

algorithm fo r  orthogonal triangularization by rows using c lass ica l plane 

rotations which has storage requirements independent o f m. The basic idea 

is  due to Gentleman (1972). Now the solutions to the problems of 

minimizing r  r ,  where r is  given by (2 .2 .2 ), or by

T" *
0 "o'

X -
A b

are evidently iden tica l. Thus we can determine the required least-squares 

solution by in it ia liz in g  R and 9 to zero, ana then rotating each successive
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row o f (A J b) into (R J 0). This scheme has the advantage that the only 

storage required, assuming that each row of (A J b) can be input or formed 

when needed, is  4n(n+l) words fo r R, n fo r  G and n+1 fo r  the current row 

o f (A | b ) . Thus the to ta l storage fo r such a scheme is  -gn(n+5) + 0 (1) words. 

This is  to be compared with the storage required fo r the column by column 

process which requires mn+0(m)+0(n) words.

•A worthwhile saving in arithmetic can be made i f  a rotation involving a null 

row is  treated specia lly. Suppose, in  the notation o f Section 2.8, that 

row i  is  null and that a., / 0 ( i f  a .. = 0 a rotation is  not required).

Then from (2 .8 .3 )> (2 .8 .4 ) and (2 .8 .5 ), c = 0 and s = 1, with tho result 

that (2 .8 .6 ) and (2 .8 .7 ) reduce to

f  (k = i+1, i+2, . . . ,  n ).

(2.9-39)

(2.9.40)

Thus, since a'.. = 0, the e ffe c t  o f the rotation  is  to interchange rows i  and 

j .  Note that there is  an ambiguity associated wnth the sign o f s. Here we 

have chosen s = +1. The choice s = -1 could also be made, the only difference 

being that a l l  values in  row i  are negated. In either case no further 

rotations involving row j  are necessary since i t  is  now null. This 

refinement and i t s  counterparts fo r  the modem Givens rules have been 

Incorporated in  Algorithms 2.9.1 to 2 .9.4 below.

In Algorithm 2 .y . 1 

vector ^  ( l  -  1, 2 

formed in  locations 

(o ften  unity) in v.

the uppor-triangular matrix R is  stored by rows in  the 

, . . . ,  -¿n(n-i l ) ) .  The ith  row o f (A | b) is  read in to or 

/. ( j  = 1, 2, . . . ,  n) .and b and the associated weight 

The- minimum sum o f squares is  formed in cr ,
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Algorithm 2.9. I Orthogonal triangularization by rows and linear

least-squares solution using c lass ica l plane 

rotations (vector storage s tra tegy ).

Cornment: R, 9 and cr are in it ia lis e d  to zero./V A*

Step 1. For 1 -  1, 2, -¿n(n+l) set r^ - 0 and fo r  j  = 1, 2, ...>  n

set G. = 0. Set cr = 0.
J

Comment: 

Step 2. 

Comment:

Step 3«

C orament : 

Step 4- 

C omraent: 

Step 5• 

Step 6. 

Step 7« 

Step 8. 

Comment: 

Step 9. 

Comment : 

Step 10. 

Comment:

Step 11.

The ith  major step is  described by Steps 3-30.

For i  ~ 1, 2, . . . ,  m execute Steps 3~30*

The ith  row of (A Jb) and the corresponding weight ere read or 

formed..

Read oi' form the ith  row w. v . , v „. . . . .  v , b.

No operations on row i  are required i f  w is  zero.

I f  w = 0 advance to Step 30.

The weight is  incorporated in row j. in Steps 5-8.

I f  iv = 1 advance to Step 9«
JL

Set z = w2.

For j = 1, 2, . . . ,  n replace v. by zv ..
J J

Replace b by zb.

The jth  minor step is  described by Steps 10-28.

For j  = 1, 2, . . . ,  n execute Steps 10-28.

A rotation is  skipped i f  a . is  already zero.1 J

I f  v . = 0 advance to Step 28.
J

Element r . . is  stored as r  .
■ J 3 ~

Set 1 = ( j-l)(2n+2-j)/2+1.

Comment: The algorithm branches according to whether r .. is  zero cr non-
•j J

Step 12. I f  r^ / 0 advance to Step 19 .

Comment: In the case r _  = 0 rov/ j  of (RjO) is  replaced by row i  o f 

(¿|h) in Steps 13-17.

Step 13- Set r 1 -  v . .— «J
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Step 14. For k = j+1, j+2, . . . ,  n execute Steps 15- 16 .

Step 15* Replace 1 by 1+1.

Step 16. Replace r^ by Vy  

Step 17- Replace 0. by b.

Comment: No further rotations involving row i  o f (A| b) are required.

Step 18. Advance to Step 50-

Comment: In the case r . ,  ■/-' 0 a conventional rotation to annihilate ai j

is  carried out in  Steps 15-28.

Step 19- Sot g = (r?  -i v2) 2.

Step 20. Set c = r j/&> s = v^/g.

Step 21. Set 1*̂  = g.

Step 22. For k = J+1, j+2, . . . ,  n execute Steps 23-25.

Step 23 . Replace 1 by 1+1.

Step 24- Set y  = r.. and z = v .
i  k

1
Step 25- Replace r^ by ey+sz and v^ by cz-sy.

Step 26. Set y  = 0. and z = b.
«3

Step 27. Replace tL by cy+sz and b by cz-sy.

Step 28. Continue.

Comment: The residual sum of squares is  updated.
2

Step 29- Replace Q- by cr +b .

Step 30- Continue.

Step 31* Use Algorithm 2.1.2 to solve Rx = 9.

Although there is  no p oss ib ility  o f "element growth" with crthcgonalization 

methods, another problem may arise. In the classica l Givens method th is 

proo+eiu is  associated with the computation o f the parameters c and 3 frcm

( 2 .8 .3 ) j (2 .8 .4 ) and ( 2 .8 .5) .  Even i f  the values o f a ^  and a., are well 

within the number range of the machine, overflow or underflow may result



when they are squared*. On the KDF? computer, fo r  example, the number
—2.7 2 7 zp ,q

range is  2 to 2 , ie  approximately 10~y to  10 . Thus i f

—20a.. <( 10 ( say) underflow w il l  occur and it
Ji

a. .in or

a. .1?. or a ..
Ji

>  1020

overflow w i l l  resu lt. Overflow is  serious in that the computation w i l l  be
2 2

halted, but underflow is  dangerous (unless both a . . and a underflow) In 

that on many machines the computation w i l l  continue'wi.thout warning and 

erroneous results produced. The situation is  eas ily  remedied, however, by 

using, instead o f (2 .3 .3 ), (2 .8 .4 ) and (2 .8 .3 ),

c = sgn a,

= ca . ./a .. 
Ji i i

. . {1  + (a ../a . , ) 2 }  ~ 2 ,
11 ( j i  a i J (2.3.41)

(2.9.42)

i f a ..¿¡1
< |a.. I , and1 1 I

s = sgn a .0 Ji

c = sa. ./ai i  j i

. f  1 + (a . ./ a . . )2 W -  ,1 (. 11 j i '  J ( 2 .9.43)

( 2 .9 .44)

i f a . 
0i  > i l l

The values o f a*. . is  then formed from 11

f  a../c 11 ( a .. I 
- 1 «

a. . 11
a».. = 1 11

a ../s
L ^

(1 ,
'| j i > a ..13.

(2.9.45)

rather than from (2 .8 .6 ). T/e have assumed o f course that a _  end are

non-zero, since i f  either is  zero special action is  taken anyway.

<- problem is  also present in  the modified Gram-Schmidt and Householder

methods, where the 2-norms c f  certain vectors have to be formed. One way 

of overcoming the problem in these cases is .  before forming the sum o f the 

squares of the vector elements, to search fo r  the element o f largest 

magnitude and to divide each clement by th is value. The 2-norm so obtained 

is  then multiplied by the modulus o f the element c f largest magnitude.
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Algorithm 2.9*1 is  modified accordingly by replacing Steps 19-21 by those 

in Algorithm 2.9.2 below.

Algorithm 2.9.2: Orthogonal triangularization by rows and linear

least-squares solution using classica l plane 

rotations with overflow/underflow prevention 

(vector storage stra tegy ).

Steps 1-18. As Steps 1-18 o f Algorithm 2.9.1.

Step 19- I f l l *
advance to Step 21.1.

Step 20.1. Set g = r V v  .

Step 20.2. Set s = sgn v . (1 + g ) 2.
¿I

Step 20.3. Set c = sg and replace by vy 's . 

Stop 20.H-. Advance to Step 22.

Step 21.1. Set g = v^/r^
2 —-1-

Step 21.2. Set c = sgn r ± (l+g~) 2.

Step 21.3. Set s = eg and replace r^ by r^/c. 

Steps 22-31. As Steps 22-31 o f Algorithm 2.9.1

Further algorithms based on c lass ica l plane rotations, presented in 

subsequent sections, can also be modified in th is way.

In Algorithm 2.9-3j which implements the Gentleman 3-multiplication ru le,
±

successive rows of W2(/Jb), where T7 = diag (w . w , . . . ,  w ) denotes a 

matrix o f non-negative weights, are rotated into b2(G|h). Here h is  

related to the right-hand side Q in the c lassica l Givens method by 0 = t,2h. 

D. the super-diagonals o f G, h and cr ( in  which the minimum sum o f squares
/V 3 Arf A-

is  formed) are a l l  in it ia lis e d  to zero. I> is  stored in d . ( j  = 1, 2, . . . ,  n)
J

and the super-diagonals o f G- by rows in  g / l  = 1 , 2 ,  . . . ,  -¿n(n-l)) . Much 

o f the remaining notation is  sim ilar to that in Algorithm 2.9.1.
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Algorithm 2.9.3: Orthogonal triangularization by rows and linear

least-squares solution using modern plane

rotations (Gentleman*s 3-multiplication ru le)

with vector storage.

Comment: D, h, cr and the super-diagonals o f G are in it ia liz e d  to zero.

Step 1. For 1 = 1, 2, -¿n(n-l) set g^ = 0. For j  = 1, 2, . n

set d. = 0 and h. = 0. Set 0~ = 0. 
J J

Comment: The ith  major step is  described by Steps 3-27.

Step 2. For i  = 1, 2, . . . .  m executt? Steps 3-27»

C omment: The ith  row o f (A ]b) and the corresponding weight are read or formed.

Step 3* Read or form the current ( i th )  row w, v̂  , v?> . . .  ,. v , b.

C ommen b: The jth minor step is  described by Steps 5-25*

Step 4- For j  = 1, 2, n execute Steps 5~25.

Comment : No operations on row i  are required i f  w is  zero.

Step 5* I f  w = 0 advance to Step 27-

C omment: A rotation is  skipped i f  a. . is  already zero.1 J

Step 6. I f  v . = 0 advance to Step 29. 
J

Comment: Element g . .  is  stored as g .
J J ■**

Step 7- Set 1 = ( j-1 ) (2n-j)/2.

Comment: The algorithm branches according to Tihether d. is  zero or non-zero.
d

Step 8. 

Comment:

Step 9*

I f  a. t  0 advance to Step 15*
u j

In the case d. = 0 row j o f D?(&]h) is  replaced by rew i  of
.j d ^

W2(Ajb) in  Steps 9-13*
p

Replace d . by wv~.
d d

Step 10. For k = j+1, j+2, . . . ,  n execute Steps 11-12.

Step 11• Rep]ace 1 by 1+1.

Step ¡2. Replace g1 by v}/ v  ..

Step 1 y. Replace h. by b/v..
«> d

Comment: No further rotations involving row i  o f (A.|b) are required.
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Step 14- Advance to Step 27.

Comment: In the case d. -/ 0 a 3-multiplication rule to annihilate a, .
J

is  carried out in  Steps 13-24.

Step 13« Set y = d. and s = wv_..«J d
Step 16 . Replace d. "by y + z v ..

Step 17- Set "o = y/d. and's = z/d..
J J

Step 18 . Replace w by cw.

Step 19. ï'or k = j+1, j+2, . . . 5 n execute Steps 20-22.

Step 20. Replace 1 by 1+1.

Step 21. Set y = g1  and z = v ^

Step 22. Replace g by cy+sz and v by z-v.y .

Step 23. Set y -  h. and z -  b.

Step 24. Replace h. by cy+sz and b by b-v.y.
d 1

Step 23. Continue.

Comment: The residual sum of squares is  updated.
2

Step 26. Replace or by cr +?ib .

Step 27. Continue.

Step 28. Use Algorithm 2.1.3 to solve Gx = h.

In Algorithm 2 .9.4 the extensions to Algorithm 2 .9.3 to implement the 

hybrid 2- and 3-m ultiplication rule are incorporated.

Algorithm 2,9 .4: Orthogonal triangularization by rows and linear

least-squares solution using modern plane rotations 

(Gentleman’ s hybrid 2- and 3-su ltip lica tion  ru le) 

v/ith vector storage.

Steps 1 - 18 . As Steps 1-18 o f Algorithm 2 .9.3 .

Step 18.1. I f  I0 0 y^  d. advance to Step 24.2.

Steps 19-24. As Steps 19-24 o f Algorithm 2 .9.3 .

Step 24.1. Advance to Step 23.
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Stop 24.2. For k = j+i 5 j+2, n execute Stops 24.3- 24.5 .

Step 24.3. Replace 1 by 1+1.

Step 24.4. Replace v, "by v, -  v g .

Step 24.5. Replace g1  by g-L + sv^.

Step 24.6. Replace b by b - v.h .

Step 24.7 . Replace h. by h. 'sb.
O 1

Steps 25-28. As Steps 25-28 o f Algorithm 2 . 9.3 .

We do not present algorithms fo r the Hamraarling 2-m ultiplication rules, 

since appropriate strategies to overcome the p o ss ib ility  o f underflow ore 

s t i l l  being worked out.

2.1C A comparison of  the plane-.rota.ti.on methods with other methods

based upon orthogona 1  transformations

Classical plane rotations appear to have been litt le -u sed  fo r  solving

linear least-squares problems, despite the fac t that their s ta b ility

properties compare favourably with those o f the modified Gram-Schmidt and

Householder methods. The main reason fo r  th is lack o f use is  tho

unfavourable amount of arithmetic required by classica l rotations compared

with other orthogonalization methods (Wilkinson, 1965: 21-4-247) . For
2

example, i f  m »■  n, classical plane rotations require about 2mn long 

operations to triangularise an m by n matrix, whereas the other two methods
p

each take about rnn‘ long operations (these numbers are to be compared with

2the loss satisfactory method of normal equations which takes about vmrf' 

long operations). As a resu lt, nearly a l l  numerically stable methods fo r 

solving dense linear least-squares problems that have boon developed in 

recent years use either the modified Gram-Schmidt method or Householder 

transformations. Moreover, as a further consequence of the unfavourable

amount of arithmetic required by c lassica l plane rotations, a number of 

authors (eg Reid, 19̂ .7; Hanson and Lawson, 1969) have preferred to develop
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extensions o f Householder’ s method fo r  exploiting structured problems 

or fo r  updating linear least-squares solutions. Cf course, the recent 

appearance o f the modern versions o f plane rotations requiring fewer 

arithmetic operations w i l l  almost certain ly give r is e  to a greater 

concentration upon their use.

Despite the above arguments which, superfic ia lly  a t least, seem quite 

reasonable, we believe there are a number o f reasons (here wo g ive four) 

why the plane-rotation methods (even in  their c lassica l form) discussed in 

Sections 2.8 and 2.9 have advantages over methods such as modified Graia- 

Schmidt or Householder fo r solving either dense or structured linear least- 

suqares problem.

f i r s t ly ,  the matrix can be orthogonally triangular!zed row-by-row, thus 

enabling the complete process (in  the dense case) to  be carried out in a 

storage space o f ¿ i(n + l) words fo r the upper-triangular matrix, n words fo r  

the right-hand side, and n words fo r  the current row o f A, giving a to ta l 

o f ¿ 1(n+5) words (see Algorithms 2.9.1, 2.9.2, 2.9 .3 and 2 .9 .4 ). Note that 

th is storage space is  independent o f m, and thus very large problems can be 

solved, as long as there is  su ffic ien t store available fo r ¿ 1( 11+5) elements 

plus, of course, the program i t s e l f  (on the English E lectric KDF9 computer, 

fo r example, with i t s  32H-word core store, th is implies that m is  unlimited 

and n may be w ell over 200.

Secondly, in performing a single plane rotation (as opposed to a single 

Householder transformation or a step o f the modified Graa-Schmidt method), 

considerable advantage can frequently be taken of the zero-non-zero 

structure of the matrix, ie  unnecessary arithmetic operations upon zero 

elements can be avoided, and further economics in  storage can conaeouenfv 

oado. An important instance, mentioned in Section 2.8, is  when the two 

rows involved in a rotation  have aero elements in  corresponding column



positions, in which case no arithmetic need be performed upon these 

elements.

Thirdly, an aspect of s c ien tific  computation often overlooked is  that when 

many numerical methods are programmed in a h igh-level language such as

A lgol cr fortran , the actual proportion o f time spent in the execution o f
o

purely arithmetic statements is  frequently a small percentage of the to ta l 

time. The bulk of the time is  often spent in referencing (e ith er fetching 

or storing) array variables, fo r -  or DO- loop overheads etc (see, fo r 

example, Wichmann, 1973). fo r  instance, A lgo l 60 implementations of 

orthogonalisation methods (modified Gram-Schmidt, Householder or plane 

rotations) fo r the solution o f linear systems spend typ ica lly  only about 

10% o f the to ta l time executing purely arithmetic statements (see la te r in  

th is sec tion ). Consequently, even a substantial saving in the number of 

multiplications has only a marginal re la tive  e ffe c t  on the to ta l execution 

time. Therefore, the main consideration is  f le x ib i l i t y :  a method such as 

plane rotations that enables structure to be exploited in  a more 

straightforward and e ffic ien t manner is  frequently to be nreferred.

fourth ly, another factor, though not quite so important in  the ligh t of 

the comments in the previous paragraph, is  that the generalized forms of 

plane rotation discussed in Section 2.9 enable the number o f multiplication 

to be reduced by a quarter or even by one-half. In the la tte r  case the 

amount of arithmetic is  about that o f the other orthogonalisation methods.

To reinforce our claims re la tin g to the proportion of time spent on purely 

arithmetic operations and to demonstrate the little-known competitiveness 

of the plane-rotation methods we discuss in detail the "inner loops" of the 

modified frram-Schmidt, Householder and plane rotation methods, fo r  

s im plicity we shall assume that m » n .  fo r  purposes o f comparison we 

present code segments, each written in A lgol ¿0, for these methods. Ye have



6>i-

made a serious attempt to code each o f these computations as e ff ic ie n t ly  

as possible in  order that our comparison shall be a fa ir  one. T’e then 

apply to these code segments the method of Wichmann ( 1973) fo r  estimating 

the execution speed of A lgo l programs. In Hichmann's approach a weight 

(representing a number of computational time units) is  assigned to each 

id e n t if ie r , constant or delimeter in a program. This weight is  independent 

of the computer or the compiler and represents an average based on a number 

of existing A lgo l compilers.

The ’’inner loop" of the modified Gram-Schmidt method (Steps 5 and 6 o f 

Algorithm 2.6.1) is  rea lly  in two parts, code fo r which is  

F irst part: 

r l j  : = 0;

fo r  k := 1 step 1 un til n do 

r l j  := r l j  + p[k] X a [k , j ] ;

Second part:

fo r  k := 1 step 1 un til m do

a [k ,j] := a [k , j ]  -  r l j  X p[k] ;

Note that a further advantage accrues from storing element q in position k 

o f the one-dimensional arr’ay p; one-dimensional array elements can be 

referenced faster than two-dimensional array elements. Also, fo r purposes 

of the summation the values of is  accumulated as the simple variable 

r l j .  We incorporate sim ilar ideas in the codes fo r the ether methods.

The time fo r  the kth cycle (k - 1, 2, . . . ,  m) in  the f i r s t  part is

T, = L + M + A + 27 + V, + V , \ £- • 1̂ « » J

rhere
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L = time fo r loop control ( ie  incrementing and testing 

of counter k ) ,

M = floating-poin t m ultiplication time,

A = floating-poin t addition or subtraction time,

Vi  = time to reference a variable with i  subscripts.

In the ensuing analyses we shall also need

S - time for floating-poin t square root.

The weights obtained by Y'ichmann ( 19755) fo r these parameters were I< = 14, 

M = 2, A - 1 ,V ^  = 1+4i and S = 50 computational units ( l  computational 

unit (c .u .) = 8.3 /isec on KD?9i 0.85 nsec on CDC 6600, e tc ). Using these 

values

T1 = 14 + 2 + 1 + ( 2 ) ( l )  + 5 + 9 = 33 c.u. (k . 10 .2)

Thus the to ta l time fo r  the f i r s t  part is  33m + 0 ( l )  c .u ., the 0 (l )  term 

stemming from loop set-up costs. S im ilarly, fo r the kth cycle (k = 1, 7,

. . . ,  m) o f the second part we obtain a time o f

l!  ̂ = L + M + A + Vq + V + 27  ̂ (2.10.3)

= 14 + 2  + 1 + 1 + 5 + (2 )(9 ) = 41 C.u. (2.10.4)

So the to ta l time fo r the second part is  41 n 0( 1 ) c.u. The to ta l time

spent in the two parts is therefore 74a + 0 ( l )  c.u. Thus, since the abov
i 2

two parts are executed about ¿n times in  a l l ,  the overa ll tine fo r  the
2

modified Gram-2 came, dt method is  37 mn c.u ., ignoring terms of lower orde
2 2 o'

Note that o f these 37 un c.u ., only 3 an (8/0) are purely arithmetical 

2 ©
and only 2 mn (5%) involve m ultiplications.

We now examine the "inner loop" o f the Householder method (Steps 8 and 9 

o f Algorithm 2.?.1)> /gain there are two parts, codes fo r which are
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F irs t part: 

y  := 0;

fo r i  := k step 1 un til m _do 

y  : = y + w [ i ]  X a [ i , j ] ;  

y := beta X y ;

Second part:

fo r i  := k stop 1 until m do

a [ i , j ]  := a [ i ,  j ]  -  y  X w [i ] ;

/We see, by comparison with the code fo r the modified Grara-Schmidt method, 

that the codes are very sim ilar in  form, the main difference being the 

in i t ia l  values o f the for-loop counters. Accordingly, the to ta l time fo r 

the two parts is  74 (m-k) + 0 ( l )  c.u. Now the above code is  executed fo r 

values o f j  from k+1 to n and fo r  values of k from 1 to n (see Steps 7 

and 1 o f Algorithm 2 .7 .1 ). Thus the overa ll time fo r  the method o f 

Householder transformations is

'y ~ 1 *y ’ 74(rn-k) = 37 mn? c .u ., (2.10.5)

k=1 j=k+1

ignoring terms o f lower order. Again, as with the modified Gram-Schmidt 

method, only 8A o f this time is  purely arithmetic and only 5% involves 

m ultip lications.

T'e now turn to c lassica l plane rotations. Code fo r the "inner loop" 

o f the triangularisation by columns method, based on Steps 5, 6 and 7 of 

Algorithm 2.8.1, is

fo r  j  := k+1 step 1 until n do

begin

y := a [k , j ] ;  

z := a [ i ,  j ]  ; 

a[k,ô] := cX y + sXz,* 

a [ i , j ]  := c X z -  sX y

end ,i:
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L + 4M + 2A + 10Vo + (2.10.6)

= 14 + ( ;+ )(2 ) + (2 ) ( i )  + (10 )(1 ) + (4 )(9 ) = 70 c.u. (2.10.7)

The to ta l time fo r the inner loop is  therefore 70 (n-k) + 0 (l )  c.u. This 

innex loop is  executed fo r  values o f i  from kn-1 to  m and values o f k from

1 to  n, giv ing an overa ll time o f
{

n  ̂  ̂m

L -—i i ---- i 70(n-k) = 35 mn2 c .u ., (2.10.8)
k=1 i=k+1 v -

ignoring terms o f lower order. An iden tica l time is  taken by the 

triangularization by rows process. Note that 10/70 = 14% 0f  the to ta l 

time is  spent on purely arithmetic operations and 8//0 = 1 17„ 0f  the to ta l 

time involves multiplications.

F in a lly , we examine the ’’inner loop” o f Gentleman’ s 3-multiplication rule 

( c f  relations (2 .9 .2 1 )), code fo r  which, i f  g j i  denotes the values o f g . . ,

for k := i+1 step 1 until  n do 

begin

y := g [ i ,k j ;

* — 6L-JJk] j

ccap X y + scap x  z; 

g [ j ,k ]  := z - g j i  X y 

end k;

The time for the kth cycle is

L + 3M + 2A + 9VQ 4V? (2.10.9)

- 14 + (3 )(2 ) + ( 2) ( 1 ) + ( 9 ) ( l )  + (4 )(9 ) - 67 c.u. (2.10.10)

Thus the overa ll time is  approximately 33.5 mn2 c.u ., o f which 8/67 n IP 7, 

is  spent on purely arithmetic operations and 6/67 = 9 */. on m ultiplications.
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A l l  the above times, together with those fo r the Golub-IIammarling class 

of rules which are derived in  a sim ilar way, are summarised in Table 

2.10.1. I t  should be emphasized that the values in this table apply to 

the "average" A lgol 60 compiler. Corresponding values fo r other high- 

le v e l languages, such as Fortran, may v^ell be d ifferen t.

Proportion o f time

Method Number o f Time in  
computational 

units

Ratio
o f

times

spent on

multns. purely
arithmetic
operations

multns.

Modifie d 2 2
8%Gram-Schmidt mn 37 mn 1.00 5%

Householder 2mn 37mn2 1.00 8 2 5%

Classical ?
14 %> 11%plane 2mn2 j55nin 0.95

rotations 29mn 0.78 17 2 14%

Modern plane
rotations 

(Gentleman1s 3 2-mn
33*5 mn 0.91 12% 9%

3-multn. 
ru le )

27.5&n 0.74 15% 11%

Modern plane
rotations 2
(Golub- 2 32mn 0.86 9% 6%

Hamnarling . 
2-multn. 26mn2 0.70 12% 8%
rules)

------------- ------- ». — ______ I

Table 2.10.1 A comparison o f the theoretica l computation times o f 

several methods fo r  the orthogonal triangularization  o f an m by n matrix 

(m>>n). For the plane-rotation methods the upper of the two entries in 

Columns 3-6 applies to array storage anà the lower to  vector storage.
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2,11 Stepped-banded Matrices

Matrices o f a special form, which we term stepped-bandcd matrices, are 

introduced in  th is section. These matrices, which are a generalization 

o f band matrices, arise in problems o f interpolation and approximation 

in  one, two or more independent variables by linear combinations o f basis 

functions having restricted  support (see Chapters 6, 7 and 10).

A stepped-ban&ed matrix A is  defined as fo llow s. Let A be an m by n

matrix. Let q be an integer such that 1 £ q ^ n. Let p , p po' *1 * •‘ n-q+l

be a set o f non-negative integers which sa tis fy

o = p0 < p, S p2 $ p • ■ ■ i  p „ _ „ <  Pn..q+1 = ■» ( 2 . 11 . 1)

Suppose A can be subdivided into n-q+1 blocks such that the kth block 

(k  = 1, 2, n-q+1) consists of rows p +1 to p and has non-zeroiC— 1 iv

elements only in columns k to k-q+1 (note that the block is  empty i f  

p̂ _  ̂ = p,̂ ) • Such a matrix is  termed a stepped-banded matrix of bandwidth 

q. F ig. 2.11.1 illu stra tes  a stepped-banded matrix o f order 12 by 8 with

width q 4, having p1

X X X X

i
K

X T

X X X X

X X X X

X X X X

X X X X

V
-A.

V
-A. X X

X A X X

X X X X
.. .

* X X X X

X X X X

X X X X
.T

Fig. 2.11.1 A stepped-banded matrix with m = 12, n = 8 and q ~ A
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Evidently A can be held in  condensed form in a rectangular array o f size

m by q, i f  the n-q values o f the integers Vj[, Ty, p are also

stored. In th is condensed form o f storage a. i f  i t  l ie s  in the kth
l  «3

block, is  stcrod in location ( i ,  j-k + l).

^ ^  .'J r i4_qSu la rizgti°n  o f stepped-ba.nded matrices using Gaussian

elimination

Let A be an m by n stepped-banded matrix as defined in  Section 2.11. T7e 

consider the LJ factorization  (c f  Section 2.4) o f A using Gaussian 

elim ination. The process to be described generalizes the algorithm of 

Martin and T/ilkinson ( 1967) fo r the factorization  o f uniformly-banded 

square matrices.

The algorithm consists o f n-1 major steps, the kth of which (k ~ 1, 2 

. . . ,  n - i ) involves the elimination of the sub-diagonal elements in the 

kth column o f A. Before the start o f the kth major step, the f ir s t  k-1 

rows o f A are in  upper band triangular form with (a t most)q-1 super­

diagonals. The fin a l matrix also takes the form o f an upper banded triangle 

o f bandwidth q.

The configuration at the start o f the kth major step is  illu stra ted  in 

F ig . 2.12.1 fo r  the case m *  12, n = 10, q „ 4 . p., = 2, ?2 = 4 , = 5j

p4 = 7> P5 = Pg = 9, k = 4. In the kth major step there are (a t most)

pk -  k sub-diagonal elements to be eliminated (here we define p = m i f
k

k ? -n -q ).  Tie kth' sajor step consists o f ( i )  determines J, the smallest 

.alue o f i  fo r which |ajfc| £  ja ^ J  ( i  = k, k+1, ^

( i i )  interchanging rows k and j  i f  k / j and ( i i i )  ^ „ r  steps> the

ith  o f which ( i  = k+1, k+2 , p, ) involves forming m -  a /a
K ik  i i f  kk

(N.B. I mik | ^ 1) and replacing row i  by row i_m, *  row kt
j.k
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X

X X

X X

X X

X X X  

X X X  

X X X X

X X X X

X X X X

X X X X

X X X X

P ig . 2.12.1 The configuration at the start o f the 4th major step in the

LU factorization  by Gaussian elimination with partia l pivoting 

o f a stepped-banded matrix with m = l 2 ,  n = 1 0  and q = 4. X 

denotes a (usually) non-zero element, (x) denotes an element 

that has been reduced to zero.

In practice an economized form of storage is  used in which A is  stored as an 

m by q rectangular array as described in Section 2.11* fo r further deta ils 

see Algorithm 2.12.1 below.

Note that, since at any stage o f the reduction there are at most q elements 

in any row, stage ( i i i )  involves at most q(p, -k) long operations and hence 

the to ta l number o f long operations M is  bounded by

M =

I t  is  easily  established that i f  A is  of rank n then an upper bound fo r 

■Ct (k = 1, 2, n-q) is  m-n+q+k-1. Moreover, = m fo r k = n-q+1,

n-q+2, . . . ,  n - i. Thus

n= l

I t
(Pv~k) (2 .12.1)

Rows involved 

in 4th major 

step

X X X X 

0  X X X 

© X X

' © O  x

©  x 

X

X

<
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n-q n-1 n-1f
m <. q Y 2  pv + q 2___ i p]: ~ q /  ■ k

k=1 ' k=n-q+1 k=1

= q
n-q

k=1 k=n-q+1

-¿qn(n-l) (2.12.2)

<qn(m-n+q). (2.12.3)

Note that in  the square case m=:n th is hound reduces to

M< nq2. (2.12.4)

These hounds are somewhat pessimistic however. A more r e a lis t ic  estimate

is  given by assuming that each block has roughly the same number o f rows.

Then p, (k  =-1, 2, . . . ,  n-q) h the approximate-value o f mly/(n-q+1) .  In 
” k

th is case

n-q
M= q J  ’ mk/(n-q+l) + q(q-l)m  -  ^qn(n-l) 

k=1

n(m-n+l)^ (2.12.5)

which fo r  m=n reduces to 

M = iq (q - l)n  .

Those two more r e a lis t ic  bounds are about ha lf of the above rigorous 

bounds.

Another approach to the solution o f stepped-banded systems in the square 

case is  based on the observation that the non—scro elements o f a square 

non-singular stepped-banded matrix can be contained wholly within a 

uniiormly-oun&ou. matiix v itn  q—1 super—diagona3.s and q— 1 sub—diagonals. 

A uniformly-banded matrix with these dimensions requires fo r  i t s
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factorization  about 2n(q-£)(q-1) long operations, ie  about twice as many 

operations as the above rigorous bound or about four times as many as the 

re a lis t ic  bound. Thus the application of a standard algorithm fo r 

uniformly-banded systems could be employed but computationally i t  would 

be probably four times as expensive.

Having reduced A to LU form, the system Ax = b may be solved in  the square 

case m=n by solving two banded triangular sets o f equations, or in the 

least-squares case m >  n by applying the method o f Section 2.4, taking f a l l  

advantage o f the banded nature o f L and U. A lternatively , in the square 

case, i f  the elimination steps performed on A are also performed on b to 

produce a new vector d then i t  is  merely necessary to solve the single band 

triangular system JJx = d. Algorithm 2.12.1 below, fo r  the case m=n, in 

which A is  stored in condensed form, is  based upon th is a lternative approach.

Some features o f the algorithm are as fo llows. Immediately a fter the 

element has been eliminated, the new value o f a . . ( j  >  k) is  stored in 

location ( i ,  j - 1 ) .  This strategy ensures that a l l  non-zero elements remain 

within the confines of the n by q array and, in particu lar, that successive 

diagonals o f the resulting band triangle are stored in successive columns 

o f the rectangular array. During the kth major step at most q blocks are 

involved. Thus, i f  required, the matrix can be brought into store block by 

block as the elimination proceeds. In particu lar, the kth block is  not 

processed u n til the kth major cycle.

' Solution o f a square stepped-bandefi linear system

using Gaussian elimination with partia l pivoting 

(economized storage strategy).

Comment: The kth major step is  described by Steps 2-18.

Step 1. For k — > , 2,  . . . ,  n execute Steps 2—18.

Coinsnt: Set 3 to the uuab« o f the la s t row involved in  tho kth major step.
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Step 2. Set 1 = p, ( i f  k ^ n-q) or n (otherw ise).

Comment: The row number, j ,  o f the element with maximum modulus in 

column k is  determined in Steps 3-5.

Stop 3. Set z = |a^j and j = k.

Step 4. For i  = k+1, k+2, 1 execute Step 5.

Step 5- I f  |a.L1| >  z replace z by ja.^J and j by i .

Comment: A row interchange is  not required i f  j  = k.

Step 6. I f  j  = k advance to Step 14.

Comment: Rows j  and k are interchanged in Steps 7 13.

Step 7« For u = 1, 2, . . . ,  q execute Steps 0-10.

Step 8. Set z = a .

Step 9- Replace by a .

Step 10. Replace a. by z.Ju

Step 11. Set z = b, .

Step 12. Replace b^ by b^.

Step 13. Replace b. by z.

Comment: The ith  minor step is  described by Steps 15-18.

Step 14. For i  = k+1, k+2, 1 execute Steps 15-18.

Step 15. Set z = ai / ak1 *

Step 16. For u - 2, 3, q replace a. . by a. -  za, .

Step 17* Set = 0.

Step 18 . Replace b± by -  zb^.

Step 19- Use Algorithm 2.1.4 to  solve Ux = b (IT stored in  A ).

2.13 Triangule - ication  o f ster-ped-banded matrices using stab ilized  

elementary transformations

Mq now describe a method employing stab ilised  elementary matrices fo r the 

t r i * ” gularization o f a stepped-banded matrix A. As with the Gaussian

elim ination method o f Section 2.12 the method tehee fu l l  advantage o f the 

structure o f A an that only very fa r  arithmetic operations are performed 

on soro elements o f A. The method has the further practica l advantage that
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the rows o f A are processed sequentially, ie  each row I n turn may be 

computed or read from an input device, and then processed fu lly  before 

the next rov? is  so treated. Thus, matrices with an in d e fin ite ly  large 

number of rows may be triangularized. The only res tr ic tion  is  that a 

storage space o f roughly nq locations must be available. A pa ra lle l of 

the method \7hich uses plane rotations to e ffe c t  an orthogonal 

triangularization is  given in  Section 2.14.

The matrix M. ., equal to the iden tity matrix apart from the element in1 J

position ( i ,  j )  ( i  / j )  which is  -m, is  termed an elementary matrix 

(V/ilkinson, 19&5: pl&t- et seq). I f  |m. . | 1 then M. . is  termed a--------4 I J

stab ilized  elementary matrix. The e ffe c t of pro-multiplying the matrix

A by M. . is  to replace row i  by row i  -  m. . X row j  and to leave the ~ ~:ij i j

remaining rows undisturbed. The inverse o f M. . is  easily  v e r ified  to be 

equal to the id e n t ic  matrix apart from the element in position ( i ,  j )

which is  +m..

The triangularization process consists o f m major steps, the ith  of which 

( i  = 2, 3» m) involves the elimination, by employing a sequence of

stab ilised  elementary matrices, o f the elements in row i  of A that l i e  to 

the l e f t  o f the main diagonal. Immediately before the start o f the ith  

major step, the f i r s t  i-1 rows o f A are in upper band triangular form 

with at most q-1 super-diagonals. The configuration at the start o f the 

ith  major step is  illu stra ted  in P ig . 2.13.1 fo r  the case q = 4, p = 3 , 

p2 = 5, P-, 8, i  = 8.

The ith  major step involves in i t ia l ly  the determination o f the smallest

integer k such that i  ^ p^, followed by (a t most) q ninor steps, the

jth  o f which ( j  -  k, kn-1, . . . ,  i-2 j is  executed only i f  a. . ^ 0 end
J

consists o f ( i )  interchanging rows i  and j  i f  Ja± j| >  j a . . j  , (±± ) f crLllsii, 

ni j  = ai j /ai i  and ( i i i )  rePlacin «  row 1 V  row i  -  m, , / row j .  The-L J
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interchange in  stage ( i )  is  necessary i f  |a_j ja.^j to ensure that 

m 1/1 and hence that the elementary transformation defined by stages
i j h

( i i )  and ( i i i )  is  stab ilized . A fu l l  description o f the complete process 

in the case m = n, including the treatment o f a right-hand side b, is  

given as Algorithm 2.13*1 below. In th is algorithm R is  formed in an n by q 

array, the successive diagonals o f R being stored as successive columns 

in the array. The ith  rows o f (Ajb) ( i  = 1, 2, . . . ,  n) are assumed to be 

supplied successively in locations v^, v2, . . . ,  v , u.

Two refinements that result in a worthwhile saving in computation are 

incorporated in  Algorithm 2.13*1* The f i r s t  refinement involves, in  the

vo
elim ination step by a simple strategy which combines these operations and 

thus reduces the overheads associated with loop control and the accessing 

o f array variables (c f  Section 2.10). The second refinement takes 

advantage of any zero elements on the diagonal o f R. I f  v . is  about to be 

eliminated and r .. is  zero then the jth  row o f R ( ie  a null row) is  

interchanged with the current row. The remaining rotations associated with 

the new current (now null) row are then skipped.

^  r . . , replacing the exp lic it  row interchange and the follow ing 
J d

X X X X 

©  X X X I  

(x ) (x )  X X X X 

® ( x )  X X X 

® ® 0  X. X

X X X X

f i g .  2.13*1 The eonfiguration at the start

TjU factoriza tion  by stab ilized  

stepped-banded matrix with q =

X end ©  as in F ig . 2.12.1.

o f the 8th major step in the 

elementary matrices o f a

2f» Pi = 3, P2 = 5, 8.
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Vith very minor changes, plane rotations can Ido used in place of
\

stab ilized  elementary transformations in order to e ffe c t  a Of rather 

than an LU decomposition (See Section 2 . 14 ) .

In the square case iu = n the solution o f Ax -  b then reduces to the 

solution o f the triangular system Hx = 0.

In the general case n ? n  the least-squares solution can be obtained using 

the method described in Section 2.4. I t  is  necessary to form the unit 

lower trapezoidal matrix 1, which has the same sub-diagonal structure as 

that o f A. In fa c t, L is  eas ily  formed as the product o f the inverses o f 

the stab ilized  elementary transformations computed during the reduction.

~k'irn.,-7«.1 3«1: Solution o f a square stepped-banded linear system 

using stab ilized  elementary transformations 

(economized storage strategy).

Comment: k is  the number o f the current block being processed.

Step 1. Set k = 1.

Comment: R and G are in it ia liz e d  to zero in  Steps 2-4.

Step 2. For i  = 1, 2, . . . ,  n execute Steps 3-4.

Step 3* io r  J = 1» 2, . . . ,  q set r . . = 0.

Step 4« Set 0.. = 0,

Comment. The ith  major step, in which row i  is  processed, is  described 

by Steps 6- 3 1 .

Step 5. For i  = 1, 2, n execute Steps 6-31.

Comment: The current block number is  updated in Steps 6-7.

Step 6. I f  i  ^ p,. advance to Step 8.

Step 7. Replace k by k+1 and return to Step 6.

Comment: The ith  row o f (A J b) is  read or formed.

Step 8. Read or form the current ( ith ) row v v v
' 1 * 2’ * ‘ " * Vqy

Comuent: The Jth minor step, ip  which ,  ( v . )  is  eliminated, is
} ‘ *J t)

described by Steps 10-30.
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Step 9* For j  -- 1, 2 , . . . ,  q execute Steps 10-30.

Comment: A transformation is  skipped i f  a. is  already zero.
3* ) J “* 1

Step 10. I f  v . -  0 advance to Step 30.
J

Comment: Special action is  taken i f  r  . ( r  ) is  zero.
IC'I- J— t Jfc+ J — 1 lui I y 1

Step 11. I f  rk(_̂.  ̂ 1 = 0 adva,nce to Step 27.

Comment: A test is  made to see whether a row interchange is  required. 

Step 12. I f  Jv l̂ }r]c+j _1 .][ advance to Step 23.

Comment: A transformation with im p lic it row interchange is  carried out

in Steps 13-21.

Step 13. Compute n = rk+u 1 ^ A y  

Stop 14. Replace rk+j _1 ^1 b7 v .

Step 15. For 1 = j+1, j+2, . . . ,  q execute Steps 16—18 .

Step 16, Set z = v^.

Step 17. Replace ^  by p^ j . ^  t j + , -  d*.

Step 18. Replace rk+j . 1 i l _ j+1 b7 z *

Step 19. Set z = u.

Step 20. Replace u by °k+j_-j ”

Step 21. Replace 0k+._, hy ?..

Step 22. Advance to Step 30.

Comment: A transformation without interchange is  carried cut in

Steps 23-25.

Step 23. Compute p = v^/r^ .j 1.

Step 24. For 1 = j+1, j+2, . q. replace by
^rk + j-1 ,l- j+ 1 .

Step 25. Replace u by u - hSk+J-_1 •

Step 26. Advance to Step 30.

Comment: The (k + j- l)th  row o f (R j 0) is  replaced by the current row in 

Steps 26-27.

Step 2 7 . . For 1  = j ,  j+ 1 , q. replace r. . , , . by v , .k+j-1,1- 1  ̂ 1

Step 28. Replace by u.

Step 25. Advance to  Step 31.
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Step 30. Continue.

Step 31. Continue.

Step 32. Use A lgoritlm  2.1.4 to solve Foe = O.

2.14 Orthogonal trinngularlzation of stepyeJ.-~br.nded matrices using 

plane rotations

17e now consider the triangularization by classica l plane rotations of a 

stepped-banded matrix A.. The method follows very closely the algorithm 

based on stab ilized  elementary transformations treated in Section 2.13 

and shares sim ilar advantages. However, there are two further advantages, 

not enjoyed by the method o f Section 2.13 . The f i r s t  is  that there is  no 

p o ss ib ility  o f severe element growth since the Euclidean norm of each 

column of A remains essentia lly constant. The second is  that, i f  the same 

operations are applied to the right-hand side, i t  is  not necessary to 

store details o f the transformation matrices themselves.

The process is  iden tica l to  that of Section 2.13 except that we allow 

m ^ n rather than m = n and the jth  minor step of the ith  major step 

involves a plane rotation rather than a stab ilized  elementary transformation 

to annihilate a . . !

I f  a. . = 0 do nothing; otherwise

( i i )  Replace row j  by c x row j + sxrow i  and row i  by 

c X row i  -  s X row j .

A fu l l  description of the complete process is  given as Algorithm 2 . 14 .1 

below. Algorithm 2.14.1 can also be viewed as an adaptation o f Algorithm 

2.9.1 to stepped-banded systems. Similar adaptions o f Algorithms 2 .9.3 

and 2.9*4 enable Gentleman’ s rules to be applied to such systems.
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Algorithm 2.14.1: Orthogonal triangularization by ro~s and linear

least-squares solution o f a stepped-banded 

system using c lassica l plane rotations 

(economized storage strategy).

Comment: k is  the number o f the current block being processed.

Step 1. Set k = 1 and cr = 0.

Comment: R and 0 are in it ia liz e d  to zero in  Ste-ns 2-4.

Step 2. For i  -  1, 2, . . . ,  n execute Steps 3-4.

Step 3» fo r  j = 1 , 2 ,  . . . ,  q set r ..  = 0.
1J

Step 4* Set Qj, -  0.
jL

Comment: The ith  major step, in which row i  is  processed, is  described 

by Steps 6-30.

Step 3. fo r  i  = 1, 2, . . . ,  in execute Steps 6-30.

Comment: The current block number is  updated in Steps 6- 7 .

Step 6. I f  i  ^  advance to Step 8.

Step 7. Replace k by k+1 and return to Step 6.

Comment: The ith  row o f (A  J b) and the corresponding weight ere read cr 

formed.

Step 8. Read or form the current ( ith ) row * ,  v , ,  . . . ,

Comment: No operations on row i  are required i f  w is  se"o 

Step 9* I f  vr _ 0 advance to Steu 30.

Comment: The weight, is  incorporated in row i  in St^o^ 10—1̂  

Step 10. I f  w = 1 advance to Step 14.

Step 11. Set z = w2.

Step 12. For j  = 1, 2, q replace v . by zv .
J j

Step 13. Replace u by zu.

Comment: The jth  minor step, in which a. , . „ (v . )  is  eliminated.
i ,k+o- i y  ’

. described by Steps 15-23.

Step 14. fo r  j  = 1, 2, q execute Steps 15-28.

is

Comment: A rotation is  skipped i f  a
j-1 is  already zero.
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Step 15» 

C omment:

Step 16 . 

Comment :

Step 17* 

Step 18. 

C omment: 

Step 19* 

Comment:

Step 20. 

Step 21. 

Step 22. 

Step 23. 

Step 24. 

Step 25- 

Step 26. 

Step 27. 

Step 28. 

Comment : 

Step 29. 

Step 30-

Step 31 •

I f  t . = 0 advance to  Step 28.
J

The algorithm branches according to whether r, . , , . , is
k+ j-1 ,k+ j-l

zero or non-zero.

I f  r, . . , / 0 advance to Step 20. k+J-1 , 1 r

In the case r . = 0  row k+j-1 o f (R | 0) is  replaced

by row i  o f Vf (̂A | b) in Steps 17-18.

For 1 -- j , j + 1 , . . . ,  q s e t  rk+ j_1 A _ .+1 -  vr

Set 0. . . = u.k+j- 1

No further rotations involving row i  o f 172(A j b) are required, 

Advance to  Step 30.

In the case r, . . .  . , 5/ 0 a conventional rotation  toic+j-1 , k+j-1

annihilate a. . . .  is  carried out in  Stops 20-27.

Sct S : ( rL o -1 ,k +j-1 "

Set c z. rk+j - 1 ,/&  and s = v/ 6‘

Set r, . , , = & •  k+ j-1 , 1

For 1 = j+1, j+2, . . . ,  q execute Steps 24-25.

Set y  -  V j - i  8114 2 -  v

Replace TV. j  1 l - j +1 °y+s3 ar>d v-i hy cz-sy,

Set y  - 0, . . and z = u.J k+j- 1
Replace 0V by cy+sz and u by cz-sy.-V+ j — I

Continue.

The residual sum o f squares is  updated.

Replace c~ by cr +u^.

Continue.

Use Algorithm 2.1.4 to solve Rx - 0.

Reid (1967) and Hanson and Lawson ( 1969) have also described methods fc i 

the orthogonal triangularization o f stepped-banded matrices. Tliese 

methods u t i l iz e  a special sequence o f Householder transformations which 

avoid operations involving zero elements wherever reasonably possible.
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However, these mefchods involve more corneli 

described here, with the consequence that

csted strategies than, the 

the resulting codec aro

b

somewhat longer.

2,15 The singular value decomposition

The most powerful too l fo r  analysing linear least-squares problems is  

the singular value decomposition (STD). Golub and Kalian ( 1965) appear to 

have been the f i r s t  to describe- in  deta il a computational scheme fo r the 

SVD, but they re fer to the complicated nature o f the algorithm they

proposed. We confine ourselves to a b r ie f discussion of a modern variant 

o f the algorithm. This variant is  duo to Golub and Reinsch (19/0) and 

constitutes an improvement of an ea rlie r  algorithm, based on the Golub- 

Kahan paper, due to Golub and Businger (1967). We also discuos a refinement 

o f the Goluh-Reinsoh algorithm which demonstrates that the SYD can, in an

important practica l case, be made to  operate in roughly h a lf the number

of m ultiplications. Moreover, the refinement enables structured problems

to he solved very much more e ff ic ie n t ly . I t  is  assumed throughout th is

section that m>n. There is  no loss of generality in  th is assumption

T
since i f  m < n we can work with A rather than A,

I f  A is  an m by n matrix with n there exist matrices P, S and £ such

that

A (2.16.1)

•'■here P and Q are orthonormal with respective dimensions m by m and n by n 

iüid S is  an m by n matrix with non-se.ro elements only on the main diagonal. 

A constructive proof of the existence of the decomposition (2.16.1) is  

given by Golub and Kahan (19^5). The diagonal elements s.. ( i  «  1, 2, . . . .

of s are termed the singular values o f S and, by suitably<v

columns o f F and Q, may be ordered such that

permuting the
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"'1 ^  S2 ^ ^  k > k+1 k+2 -  s„ = 0,n (2.15.2)

where k is  the rank c f A.

A particular advantage o f the decomposition (2.15.1) is  that i t  enables 

the over-determined linear system

Ax = b (2.15*3)r* rsJ 'v

to he de-coupled, ie  to he expressed as the over-determined system

where

5 = &

and

h = Pc  ̂<'v

are orthoncrmal changes o f variables.

(2 . i5.h)

(2.15.5)

(2.15.6)

Now S has the decomposition

S = GH , (2.15.7)

where

& = rj
(2.15.8)

and

H = [ i  0] (2.15.5)«, L /v- "»J

A
are respective ly a hy k and k hy n matrices of rank k .and 3 is  the 

diagonal matrix with non-zero diagonal elements s.. ( i  = 1, 2, . . . ,  k ) .

The use of (2.2.1V) then gives, as the pseudo-inverse o f S,

(2.15.1C)
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yhU3 S'* is  an n by m matrix -.¿hose only non-zero elemonbe arc ¡even by

f*i"1 (« i t  0)
. t  _ .

\_0 (a. = 0 )
(2.15.11)

Ine least-squares solution oi (2,15*3) can then be computed from ( 2 , 15 . 5) 

where

y  = c /9 , r

from (2.15.4) and

£ = £ £  (2.15.13)

from (2 .15 .6 ).

I t  remains to describe the manner in which p, S and Q are commuted. Intsf ' S'* <v* r

the Goluh-Reinsoh algorithm there are two main stages.

In the f i r s t  stage two sequences o f Householder transformations (o f  Section

2.7)

and

„<>-) - 1 -  2 p -4 (k )T  ( * «  1> 2> n)l  "  it ~rv;

( k )  t _ 2 i k )v (k )T  Ck = 1’ 2> ^  *

( 2 . 15 . 14)

( 2 . 15 . 15 )

where
(k) J k ) - 1; are applied to A from the le f t  and from

the righ t in such a way that

P( n ) ... f < * V 1W o a<2> ia-2)
<V

B , (2 .15.16)

an upper bidiagonal matrix. The transformation matrices p (k) and Rre
(k ) "  *

computed so that £ annihilates the sub-diagonal elements in  column k.

ie  the elements a ^ n :) ( i  = k+1, k+2, » ) ,  without destroying

previously established zeros, and Q(k ) annihilates the elements to  the

righ t o f the leading super-diagonal in row k, ie  the elements a ^ +1)
k j

( j  *  k.2, Su}, . . . .  t) ,  again vithout «aatro jing previously ostabltshe; 

oeros. The sopersoripta here re la te  to the order in  which the trnnafornati ons
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are executed. S pecifica lly , 

i ( k+5') _ -Ak) A(k)
(k = 1, 2, . . . ,  n)

and

/ b , i  = A (k+i¥ k) (k =  1, 2, n-2),/•rf ^ />_ ‘ 9 '  • 9

(2.15.17)

( 2 . 15 . 18)

/here A ̂  1 ̂  -  A.where A ' "  = A. Throughout the STD algorithm it  is  convenient to apply 

the same le ft transformations to b. The final vector thus obtained is 

then the vector c in (2.15.12) and (2.15.13).

In the second stage R is  reduced ite ra t iv e ly  to diagonal form using a 

special form of the QR algorithm (Francis, 19S1/ 2) with sh ifts  fo r  computing 

tho eigenvalues and eigenvectors o f a symmetric matrix.

An operation count establishes that about 2mn2 -  -n3 v * -  

h a lf o f which are associated with the l e f t  and h a lf with the right 

transformations, are required to reduce A to bidiagonal form. The precise 

number o f operations for the diagonalization phase cannot bo predicted but, 

because of the extremely rapid convergence o f the QR algorithm with sh ifts, 

can be expected to be roughly An (Lawson and Hanson, 1974). I t  is  usually 

necessary to accumulate the right transformations so that the orthonormal 

change o f variables (2.15.5) is  available e x p lic it ly  fo r  subsequent 

computationj i.his accumulation taker- about ~n3 long onerations. Thus thA 

complete algorithm takes about 2mn + An3 long operations. In particular,

i f  m ^ n , ¡.he S\D w i l l  be roughly twice as expensive as a conventional 

least-squares solution by orthogonalj rati on.

Ve now consider a refinement o f the Golub-Reinsch algorithm. In place of 

the reduction to bidiagonal form using a lternately le f t  and righ t 

transformations, f i r s t ly  reduce A to upper triangular form and then to 

bidiagonal iorm. The f i r s t  of these two stages can be carried out using 

any o f the methods o f orthogonal triangularisation, such as Stops 1 -n  0f

Algormtnm (including these associated with the right-hand side b ) .



&i ¿»cussed carl.'. ?r. The second, stage can be c a j e d  out by applying the 

Golub-Reinsch bidiag'on&lization scheme so le ly  to the n by n matrix 

containing the right triangle. The to ta l work is  eas ily  v e r if ie d  to  be
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2 3 2 1 3 P 7
about mn" + 5n ( is  ran* -  *j n fo r  the triangular!zation, ~n~' fo r the

J ' P
2 3

bidiagonalization, fo r  accumulating the righ t transformations and

about 4n3 fo r  the diagonalization).

The refinement discussed above is  important not only because i t  enables 

the arithmetic work roughly to he halved in the case m n, but also because 

i t  enables structured systems, such as ones with stepped-bended matrices, 

to be solved p cXV 13. cularly e ff ic ie n t ly . I f  the orig ina l Golub-Reinsch 

scheme is  applied to a stcpped-banded system of bandwidth q, there is  

l i t t l e  that can be done without extensive reorganization to save arithmetic 

operations and thus the number of long operations remains essentia lly

2mn" + 4n-'. With the scheme based on the in i t ia l  triangularization the 

to ta l work can he reduced to about mq2 + no  + 4 -  n3 (pe ma2 fo r  the
2 " ? 2

triangu larization , n q fo r  the bidiagonalir,ation, f or accumulate» the
7 3

righ t transformations and about 4n fo r  the S iagonalization ). The term n2q 

is  usually insign ifican t compared with ■— n3 and hence the to ta l work is  

essen tia lly  mq + 5n (say) long operations. This refinement to the SVD 

therefore becomes particu larly sign ifican t i f  m »  n. For instance, consider 

the values (t jp icu l .in cubxc—spline approxxinatD.oii problems) n. = 100, }i = 10 

and q = 4. The Golub-Reinsch algorithm takes about 24,000 long operations, 

whereas the refinement requires about one-quarter o f this number. I f  m is  

extremely large compared with n, the savings are even more substantial, 

lo r  instance, a», m = 1C00, n 10 and q ^ 4 » the Golub-Reinsch algorithm- 

takes about ¿>.<0,000 long operations and the refinement about --- o f th is

number.
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Te do not advocate the general use o f the 5VD in situations where the 

matrix A arises from a well-chosen set o f basis functions and a sensible 

choice o f data. Kather, we view the DVD as a too l to  employ in special 

circumstances, such as when we wish to investigate how "well-posed" is  

a particular formulation of a problem, or sometimes to obtain a re liab le  

estimate o f the rank o f the observation matrix, even i f  the problem i t s e l f  

is  well-posed (Chapter 10).

TTe make use o f the STD in Chapter 7 to establish that the choice of 

B-splines fo r  the basis functions in  spline approximation gives r is e , in 

a wide varie ty  of practical circumstances, to an extremely veil-posed 

formulation o f the problem. In particu lar, we use the STD to estimate the 

se n s it iv ity  o f tho B-spline coe ffic ien ts  and hence the spline i t s e l f  to 

perturbations in the data ( c f  Section 2.16) .

2 , 16 Perturbation bounds fo r the solution of linear systems 

In solving the linear system

Ax = b , ( 2 .16 .1)

where A is  a rea l m by n matrix (m £ n ) , i t  is  frequently of some 

importance to examine the sen sitiv ity  o f the solution x to perturbations 

in A and/or b. This question o f sen s itiv ity  is  of particular relevance 

in  cases where the system (2.16.1) arises from problems o f interpolation 

or least-squares approximation (Chapters 6, 7 and 10). In these problems 

A corresponds to the matrix o f a basis functions evaluated at m data 

points, and b to a set o f m values o f a dependent variable. A w i l l  

inevitab ly contain errors resulting from roundings in the floating-poin t 

oreratior.s needed to evaluate the basis functions, b w i l l  contain errors 

corresponding, in the case o f mathematical data, to the truncation or 

rounding o f non-computer-representable numbers or, in the more common 

case o f experimental data, to the f in ite  precision o f such data. Accordingly,



we '.’ich to examine the a ffec t on x o f replacing A by A.+6A and b by hr'b.r* <> « » V  > si , y • .• -V «V '

•where 6A and 6b denote respectively perturbations in A and b. For the 

square case m - n we fo llow  Wil d i son . (1963, pp 189 et » 00) snd fo r  the 

over-determined caso m ^  n we fo llow  Lawson and H ns on ( 197,7) .

In the case in = n, suppose A is  non-singular, and consider the solution 

x + 6x o f
r~ <v i.-

(A + 6A)(x + &x) - b -!- 6b' .N Aw> A»A*' Vv «V/1/ ' i>< /A. ~

Expanding (2.16.2) and subtracting ( 2 . 16 . 1 ) gives 

6Ax + (A  *r 6A)6x = 6b .
/V /V .V ' />_» .V /» iw A. .V

( 2 .16 .2 )

Thus
- 1.

A( I  + A 6A)6x r: 6b - 6Ax , 

fron which -

6x = ( I  + Ar16A)“ 1A“ 1(6b -  6Ax)
«■ ̂  A. '  /V r v  r\# ' r / a .  <v r v < v 7

r O .* i*' *▼S.a . it’ -y)

( 2 .16 .O

( 2 . 16 .5)

i f  £ ; ï  + M  iB non-singular. The non-singularity of P is  ensured i f

Í !
/  T.A ^Ay  ̂M I ' f1 !! "6. A $ 1 > ( 2 . 16 .6)

a condition we shall assume to apply. Thue

lb 1 (

1 - 1 1 f ’ l 6 A  !'V'V 1

6b! ^a* - l l u  )• ( 2 . 16 .7 )

T6e may express ( 2 .16 .7 ) in  the fern o f the re la t iv e  error bound

6 xA* Ay L  <  * < a  ,
/

! 1 6 bAv Ay I I  ' )

y 1 - « ( ' o J E u r  
h - i i V  !

a !A.’ j

+

I I
~ l T
~ l l R l y  '

( 2 . 16 .8)

where
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* ( £ )  = || 4 1| H i - 1!.

From (2.16.1) we obtain

II2IU llsll/IUII
and hence ( 2 . 16 .8) becomes 

¡8x

(2.16.9)

( 2 . 16 .IO)

<
X-(A)

- * (A )J iM iL
||A||

6 A 8b

ill IE II ( 2 . 16 .1 1 )

In cases whore X (A ) 6 A j/J A I <SC 1 > we see from (2 .16.1 1 ) that the 

re la tive  error J J £ A | /  | j A J in A plus the re la tive  error | £b|| /  b j in 

b is  amplified by a factor o f X ( A.) to produce a bound fo r the re la tive

error I N I / in x. The number x (A )  is  evidently a measure of the 

sen s itiv ity  of the solution o f ( 2 . 16 . 1 ) in the cas'e m = n with respect to 

perturbations in  A and b, and is  commonly known as t he cond ition number o f 

A with respect to inversion. We shall make particular use of the spectral 

condit io n  number or spectral norm of A defined try

* 2(A) = A-1 ( 2 . 16 .12 )

Piere A _ is  the square root of the maximum eigenvalue o f A*A or.£ w w

e cuival ent l y ,

Al = max Ax2 Ik II2 =1 »V» »V
r* >¿. (2.16.13)

where the 2-norm of a. vector x is  defined by

11*11 2 = ( 2 .16 . 14)

I t  fo llow s from the above defin ition  that in terms o f the (ordered) 

singular values o f A (Section 2.15),

A! (A) rr s /s . 2'~ 1 n (2.16.15)



90

Thus, having obtained tho singular value decomposition of we can compt 

ittiaediately the spectral norm of A from (2.16.1,';) and then the required 

sen s itiv ity  of the solution of ( 2 . 16 . 1 ) from (v. ¡6. 1 1 ) .

We now turn to the case m ^  n. Lawson and Hanson (197w-) shew that i f  A
A,'

and A + 6A have the same rank k then the inequality corresoonding to

( 2 .16 .7) is

8x /
b A (.IN IIII ~ll 6b I . bp. A' ! ) ? ( 2 . 16 . I 6)

•rhere A* denotes the pseudo-inverse o f A, r the residual vector

r  -  A>: -  brv /v rvy /v (2.16.17)

and x the minimal least-squares solution. Evidently, (2 .16 . 16) reduces to

( 2 .16 .7 ) i f  ra = n = k.

The resu lt (2.16.16) may be expressed as

6 bI 5x| A. fU

I N

/ .......L .....i
( 6 A<S. »̂

I
!

*  i - * 2( a) M A
|A||

y j \ A
+ i r ¡IT

6 A
»Vi »

Â I
n '- 'A C i)- ill

where X g(A) - 2 |
t

(2.16.18)

• ^ 2^'^ 0211 considered as a condition

number fo r the rectangular matrix A (o f  G-olub and Wilkinson, 1966), i t  

evidently reduces to  the conventional spectral norm in the case m = n = k.

Since A Ax , ( 2 .16 . 18) can be expressed as

+ -
8b

AX
+ iV jr rL' )c (2.16.19)

The resu lt (2.16.19) reduces to (2 . 16 .11) i f  m = n = k.

Nov? suppose that .< 0.1 , a resu lt that w i l l  be true fo r  nearly
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a l l  least-squares solutions of practica l importance (in  any case i t  is  a 

t r iv ia l  matter to check whether this result h o lds ). Then

II ¿ill b+i* >  0.9 ( 2 . 16 .20)

and hence ( 2 . 16 . 19) yields

ôr- iO ób 10 I óa|| " || rii
- + -  J i r d L x p ( a )—5 fell ' ? fe|!

( 2 . 16.2 1 )

\7e make use o f ( 2 . 16 .2 1 ) in  Chapter 7*

1
I



CHAPTER 3
B-SPLINES AND IHEJH MUK.SRICAI EVALUATION

Computations with splines are considered in th is and in  the remaining seven 

chapters oi this work. Ic, is  crucia lly  important that our choice of" 

representation o f splines and the way in which v.c manipulate the 

representation are such that the computations are numerically stable. One 

reason why we make such demands is  that we require a high degree of 

confidence in  our numerical resu lts, life wish to be able to say, fo r  instanc 

that the departures o f an approximating spline from a set o f data points are 

rea l and are not due to deficiencies in  the representation or i t s  use.

In Section 3.1 we define polynomial spline functions and associated concepts 

B—splines and some o f their properties are presented in Section 3.2. 

Algorithms based upon divided differences fo r  the evaluation o f E-splines 

are developed in  Section 3 .3 . A recurrence re lation  fo r  B-splines that is  

fundamental to much o f our work is  established in  Section 3 .4 , where also 

recommended algorithms fo r B-spline evaluation and further properties of 

B-splines are presented. In Section 3-5 the values of the B-splines at the 

ends o f the range are derived. The sum o f and bounds fo r the values of 

normalized B-splines are derived in  Section 3 .0.

Error analyses o f the algorithms o f Sections 3.3 and 3.4 are given in 

Sections 3.7 to 3*9. In Section 3 .10 the e ffec ts  o f perturbations in the 

knots and in the argument o f the B-splines are discussed b r ie f ly . Some 

numerical examples are given in Section 3-11. Algorithms fo r  evaluating 

a l l  non-zero B-splines fo r a given argument are presented in  Section 3 . 12 , 

F ina lly , in Section 3.13  other methods fo r  evaluating B-splines are 

discussed and compared with those recommended.
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3• 1 D efin it ion  ■■■f  a. spline function

F irs t ly , we define an n-extcndcd p a rtit ion . There are many equivalent

defin itions in  the litera tu re ; that given here is  essentia lly that due to 

do Boor and Fix (1973)• Let n and N be proscribed positive integers. Let 

(a , b) be a f in ite  or in fin ite  in terva l on the rea l lin e . \7e say 

( v  V  V i )  is  an n-extended partition of (a , b) i f

( i )  a <  ^  x2 ^ • • • $  XN-1 ^

and

( i i )  i f  cL is  the frequency with which the number x = appears

among the x . ’ s, then d. £ n ( i  = 1, 2, . . . ,  N-1).J i

Condition ( i i )  can be expressed equivalently as 

( i i )  xi_ n <  xi  C1 = nh1j n+2> N~1)-  •
G

For example, i f  N = 8 the values depicted in Fig. 3.1.1 form a 3-extended

partition , whereas those in F ig. 3.1.2 form a 4-extended (but not a 3-

extended) partition . I f  d . = 1 then is  termed a simple knot or a

to o t . oj L ^ ^ p H c i t y  one; i f  d . >  1 then x . is  termed a multiple knot

or, more sp ec ifica lly , a knot o f m u ltip lic ity  A.. T/e term the
J

x. ( i  = 1, 2, . . . ,  N-1) in terio r knots.

I i - i - - II i1 i• 1 r i1 ...................... ................1l ~  H

x.

X

X

5

6

b

3.1 A A 3-extended partition
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3
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X _ x b

Pig. 3-1.2 A A-extended partition

I t  i s  frequently useful, in  cases where (a , b) is  a f in ite  interval, to 

augment the in terio r knots by further knots with the properties that 

xo = a> *N = b’ xi  ^  a fo r  1 < °> \  ^  h fo r  i  >  N, and the complete set

oi knots 1 ora a non-decreasing sequence. Y/e terra x and x. end orQ —

boundary knots and x± ( i  <  0) and x. ( i >  N) exterior knots. Y/e ca ll any

knot set {  x±]  o f th is form a standard knot se t. Any standard knot set

with x1 = a fo r  i  ^ 0 and x± = b fo r  i ^ N w e  ca ll a standard knot set

JEi i Li L P .. Carasso and Laurent (1969) appear to have been

the f i r s t  to suggest the use o f coincident end knots, but they fa ile d  to
>

point out the many practica l advantages accruing from such a choice. Those 

advantages become apparent in  this and in  subsequent chapters.

Let oi. = |X1 ’ X2’ be an n-extended partition  o f the f in it e  or 

in fin ite  in terva l (a , b) = (x  > >,T) - A function s (x ) is  a -polynomial spline 

function (or simply a spline) c f order n ( ie  degree n -l) with the knots 

(o r  .jo in ts ) x. ( i  = 1, 2, . h - l) i i

( i )  s (x ) is  a polynomial of degree less than n in  each o f 

the intervals (x s_^, x_̂ ) ( i  = 1, 2, . . . ,  N ).

( i i )  S(x) <S Cr;̂ - ( X i-1, x . )  i f  X._1 <  x. ( i  = 1, 2, . . . ,  N ),

( i i i )  s( r )  (xo-) -  (x i+ ) (1 = 1 , 2 ,  . . . ,  IT-1: 0 $ r <  n~d,).

Another defin ition  of a spline is  based upon the fact that the (n - l)th  

ebrivative of a spline of order n is  a step function v/ith discontinuities
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at the knots, and, conversely, the (n - l)th  in tegra l of step function is  

a spline of order n.

even more concise defin ition  is  that s (x ) , x «  (a , b ) , is  a spline o f 

order n with knots x , , i f  and only i f  r »  ( x ) = 0 fo r a l l

x ^

Suppose a l l  in terio r knots are simple. Then, since s (x ) is  composed o f N 

polynomial arcs o f degree <  n, i t  can evidently be described in terms of 

at most Nn linear parameters, together o f course with the N-1 knots. 

However, because o f condition ( i i i ) ,  th is number o f free  linear parameters 

is  reduced by the number o f continuity conditions at the in terio r knots, 

ie  by (N -1 )(n -1 ), to a to ta l of at most Nn -  (N - l ) (n - l )  = N+n- 1  linear 

parameters. We obtain the same result i f  some or a l l  o f the knots are 

multiple. For, suppose there are r., simple knots, r  knots o f m u ltip lic ity  

2, . . . ,  r  knots o f m u ltip lic ity  n. Then r  + 2r_ + . . .  + m. = N_1 tho

number o f in terio r knots (including coincidences), and the number o f 

(non-empty) intervals is  + r^ + . . .  r^+1 . The number of free parameters 

is  therefore n (^  + r 2 + . . .  + r + 1 ) less the number o f continuity 

conditions, ie  n (^  + r2 + . . .  + r + 1 ) -  (n -1 ) ^  -  (n -2 ) r 2 -  . . .  - r^

r  r ,  + 2r_ + . . .  + nr + n = N+n-1  1 2  n c -"I+-

3 .? The defin ition  of a ? -spline

Let n be a positive in teger. Define the t runcated -power function 

..n- 1

and

n- 1
x+

n- 1
H (y  .= x) = (y -x )II +

(= ^  o)

(x  <  0)
(5 .2 .1)

(5 .2 .2 )

Suueose x_. n> x.. , . . . ,  x_. are n+1 rea l numbers (lusots) with

v < x , < . . . <  i  and x. <! x . . Such a set o f knots forms an y_i-n  ^ i-n +1  ̂ -  i-n  i
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n-extendcd partition  o f the rea l line (o f  Section 3 . l ) .  Consider the 

divided difference of order n of the function ('¿ ,2 .2 ) with respect to the 

variable y  based on the arguments y >r.; , x. , . . . ,  x . Using a.

notation sim ilar to that o f Steffensen (192*/) ve denote th is divided

difference by M (nv i-n  ' i~n+1 ' . . .  > x. j x ) , which in unambiguous cases v.v

shall abbreviate to lì . ( x ) . I f  wo le t

w . (x ) = (x-x )(x -x . ,) . . .  (x -x .) ,nx x-n x-n+1 x (3.2 .3)

then in the particular case of d istinct knots, ie  where

:i - „  <  xi - «  i <  • <  v

an ex p lic it  expression (G rev ille , 1969) is

M . (x ) =
nx

J

I ~l ( Xr~>: j
\n-1

... i
r=i~n w! . (x  ) nx r

(3 .2 .4 )

where the prime denotes d ifferen tia tion  with respect to x.

The truncated power function ( x - x ) *  ' is  evidently a spline o f or do?: n 

with a single knot at x = x , since i t  sa tis fies  the conditions of 

Section 3.1 (with a = -co, n = + 00) .  Thus, since the taking o f divided 

differences is  a linear operation, i t  follows that in  the case of d istinct 

knots M .(>•) is .a  linear combination of the functions f r  -x )n"1ILL v x> * .j.

(r  - x-n, x-n-i-1, x) and hence is  a spline of order n with knots

1 ? • • • > x.; • i’his result can also be seen immediately from

( 3 .2 .4 ) .  For y >  x± , \ ±( x ) is  id en tica lly  zero, by virtue of ( 3 .2 . 1 ) ,

and fo r x <  x. , l i . (x ) is  sinply the divided difference o f order n of aJ * X1J.

polynomial o f degree n-1 and hence vanishes iden tica lly . For x_. < x <  x . ,

v . (x ) has the proport;/ that i t  is  s t r ic t ly  positive (Curry and Schoenberg-, 
nx *

1966). This property is  proved by a simpler argument in Section 3.4 

(Theorem .¡h';--1)* -'•■p^( 3C) •iS 'conned a ft-s p line or fur.damcntal ire  o f
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order n based on the knots x , . . , ,  x^. The b-splinos were

f i r s t  introduced fo r the case of equally-spaced knots by Schoenberg (1946), 

and fo r  the case of arbitrarily-spaced knots by Curry and Schoenberg ( 19S6) ,

T/e have departed s ligh tly  from convention in  our defin ition  o f B-splines 

in  two ways. F irs t ly , our defin ition  has the property (see Section .1.5) 

that

• oo

Mn i(x)dx = 1/n , (3 .2 .5 ;(3 .2 .5 '

whereas the usual defin ition  (see, fo r example, Curry arid Schoenberg, 1966) 

includes a m ultip licative factor n so that the value o f the in tegra l ±z 

normalized to unity. We find the inclusion c f th is  factor a hindrance, 

however, particu larly when vre come to derive in Section '$.br a recurrence 

re la tion  fo r the values o f l i ^ x ) . The factor can always bo inserted for 

computational or other purposes as required. Secondly, we employ a double 

subscript in our abbreviated notation fo r  B-splines, as opposed to the 

single subscript preferred by most authors. Our notation is  nefce«sar- 

since we need to re fe r to B-splines of various decrees defined on various 

knot sets.

Recently, a very sim ilar defin ition  has been introduced independently by

de Boor (1972); his M., (x ) is  iden tica l to our If . ,(> :).
ik  k.i+k J

The normalised B-spline M . (x ) is  defined (de Boor, 1972) by

N . ( * )  -  (x .-X  )î; . (x )n i x l-n  ni (3.2.6)

-  m (x . , x. 0 x, : x )~ n i-n+1, l-n-f ?, 1  '

-  M (x . , x. ,
n x-n i-n+1 » xi  - ; x) •1 (3.2.7)

I f  r , >r n+^i --•> x..} forms an (n-1)-extended partition ,
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X± >  xi _n+1 or x±_1 ^  x,_n, then i t  is  read ily  ver ified  that li (x ) and

K i (x )  are continuous functions. De Boor (1572) states (ei r oneously)

that Mn i(x ) and Nn i(x ) are continuous i f  x._^ ^  . . . ,  x/J form

an n-extendcd partition . A counter-example to  his statement is  provided

by the case x. = x = . . .  = x <  x fo r which M .(x ) and N .(x )l-n  x-n+i 1 -1  i  ni nx' '

are discontinuous at x = . However, do Boor’ s result is  true fo r

the (open) in terva l x. <  x <  x . .

In the case n = 1, Mn i(x ) and Nn±(x ) are discontinuous at x •_ x.  ̂ and at 

x = x± . Yie assume, in accordance with (3 .2 .1 ) that

( l i  ■ i n 5" 1

0 (otherwise)
i ± w  ■  <

M

and hence that

Nu Cx) =

( otherwise)

(3.2.8)

(3.2.9)

In F ig . 3.2.1 we illu s tra te  the B-sPlines N (x ) ,  N (x ) ,  N (x ) and
J-

N44(x ) defined upon the knots xo = °* xi = c -3, x2 = 0.45, x3 ,  0.65 and 

= 1. In F ig. 3-2.2 we again illu s tra te  N ^ (x ) ,  N ^ (x ) ,  f i^ (x )  and 

NV f(x ) ,  but with knots xo = 0, = x2 = x3 .  0.4 and x, 1.

In Section 3*4 wo state and prove a fundamental recurrence that re lates 

B-splines o f consecutive degrees. Most o f the good error bounds we obVin 

and the numerically stable algorithms we develop stem from this and 

re lated  resu lts.

Many o f the theorems we prove and the results we obtain fo r the un­

normalized B-spline Mn±(x ) extend, in an obvious way, using (3 .2 .6 ), to 

the case o f the normalized B-splines N (x )x r>*i ' ' *
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N14(X)

F ig . 3.2*1 The B~splines N ^ x ) ,  N ^ x ) ,  N ^ (x ) and N ^ (x ) 

with knots xq = 0 , x. = 0 .3 , x2 = 0.43, 

x^ = O.65 and Xj = 1 .
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3<3 The conventional method of evaluating B-splines 

For any particular value o f x, Mn, (x ) is  conventionally evaluated (see, 

eg Schumaker, 1 969) by means o f the recursive defin ition  fo r  divided 

differences (Steffensen, 1927). This approach loads to the follow ing 

algorithm (we need only consider x. ^  x <  x .,  otherwise M (x ) = 0) .  

T7e assume fo r  tho moment that the knots are simple.

Algorithm 3-3-1: Evaluation o f an isolated B-spline value using

divided d ifferences.

Comment: Set the in i t ia l  conditions.

Step 1. For j -  i-n , i-n+1, . . . .  i  form B . = (x  - x )” " 1.
oj j  '+

Comment: The divided differences are formed in Steps 2-3.

Step 2. For r  = 1, 2, . . . ,  n execute Stop 3.

Step 3- For j = i-n-t-r, i-m r+ 1 , . . . ,  i  compute

101

» r j  “  < V l , J  - Dr - 1 , M )/ (B  -  B - r 5 (3 .3 .1 )

Step A. Set M .(x ) = D .. 1 naf / ni

For example, i f  n = 6 the elements in the triangular array in Fig. 3 .3 . 1* 

are formed.

* The arrows in th is and subsequent diagrams indicate the “direction

o f flow " o f the process; thus, eg !)., . is  computed from D
3*1“  1 2 . i -2

and D2,i-1
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X. r V ■ r 1-6 0,1-0

l i s «  3-3-1 ■ Illu stra tion  ox a computational scheme using divided 

differences fo r  evaluating a B-spline.

In practice advantage can be taken o f the property

DoJ = °  ( 3.3.2)

in  order to reduce the number o f applications o f ( 3 .3 . 1 ) .  Thus i f ,  for 

example, < x <  * ±_2, the above array takes the fora indicated in

i ‘i£ . 3-3-2.
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PiC. 3.3.2. Illu stra tion  of a more e ff ic ien t scheme using divided 

differences fo r  evaluating a 3 -sp line.

In general i t  is  necessary to compute and store only a trapezoidal array 

o f non-zero elements. A modified version o f the algorithm, taking 

advantage o f (3 .3 .2 ) can be stated as foilevrs:

E ffic ien t evaluation o f an iso la ted  B-spline value 

using divided differences.

Comment: Find the in terval containing x.

Step 1. Determine the unique integer 1 such that x C x <F x1-1 '  ^  i*

Set k = i-1 .

Comment: The in i t ia l  conditions are set in Steps 2-3.

Step 2. For r  = 0, 1, 2. . . . .  n-k-1 set B = 0 .r ,1-1
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Step 3- 

C eminent: 

Step 4. 

Step 5- 

Step 6. 

Step 7»

Fox* j — 1,1+ i ) • • •, i  1 oi-m 13 , — (x . *~x̂  «
o J J

The divided differences are formed in Steps 4-6.

For r  = 1, 2, n execute Steps 5-6-

Set p = max(i-n+r, l ) .

For j  = i ,  i-1 , . . . .  P compute DpJ = (Dr_1 j " ®r - 1, '  

Set Mn i(x ) = Dn±.

I t  is  unnecessary in practice even to store the whole trapezoidal array.

since as soon as D . i s  computed in Step 6, i t  may conveniently overwrite r ¿)

p , the la tte r  being no longer required. I t  follows that the number 
r - 1  j j

o f storage locations required is  at most n+1 .

There are variants of Algorithms 3-3.1 and 3-3-2 in  which the elements

T) . are computed diagonal by diagonal rather than column by column, fo r  
r j

example, the elements in Fig. 3-3-2 may be generated from relations

( 3 .3 . 1 ) and ( 3 -3 -2) along upward-sloping diagonals in  the order D ..
0 j I**/-

D1 , i - 2 '  * "  \ , i - 25‘ V - 1 ’ \ i - l ’ D5 , i - 1 J Do i ’ D1 i »  • * ' D6i ‘
A lternative ly , along downward-sloping diagonals the successive elements

Do iJ Do , i - 1 * D1i ? Do , i - 2 ’ lJ1 , i - 1 i D2i J D1 , i - 2 * D2 , i - 1 * ° 3i ; D4 , i - 2 ’
D , D .̂ are generated. Computationally, there is  l i t t l e  to choose 

5 , i - 1  ox
between these various forms of the algorithm. They require sim ilar amounts 

o f computational, e ffo r t  ana possess iden tica l error-propagation 

characterist5cs.

The elements are a l l  theoretica lly  non-negative (G-reville, 1969) and r J

cancellation may therefore take place in computing ( 3 -3 . 1 ) i f  D . and
r -  1 , j

D are o f sim ilar size. Hence the p oss ib ility  exists 0^
r - 1 , .i- 1

sign ifican t errox- growth in the computed values o f the . and hence o f 

appreciable error in the computed value o f M ^(x ) .

Tie expect therefore these algoritlims based upon the use of divided 

differences to be unstable■, this expectation is  observed in  practice,



even fo r re la t iv e ly  "simple" examples (see Section 3* 11)- In particu lar,

the algorithm breaks down completely in the case o f multiple knots. In

such cases the appropriate divided differences can be replaced by their

lim iting forms as derivatives, but even then very poor results are

frequently obtained, as they are in cases o f near-coincident knots.

In Section 3.7 we use a running error analysis to give a pos te r io r i

bounds fo r the errors in the computed values o f I) ..
^ J

3-4 A recurrence re lation  fo r  B-splines

T.re now state and prove a fundamental recurrence re lation  fo r B-splines; 

i t s  use enables B-splines of order n to  be evaluated from those o f order 

n-1. The re la tion  gives r is e  to a method fo r evaluating B-splines which 

we shall re fer to subsequently as the method of convex comblnati mu, This 

method and the method based on divided differences are analyzed in deta il 

in  the remainder o f this chapter.

Theorem 3-4.1

The recurrence re la tion

t . (x ) = m

(x-x. )M , . . (x ) + (x.-x)M . ( x)v i.-n7 n-1  , i -1  i  n- 1  , i v '

x. - x. i  a-n
(3.4 .1)

and i t s  equivalent for normalized B-splines,

x-x. .A- . —X

Nn i(x ) = Vxi - r xi - n / Nn- 1» i - l(X ) + ( Xi - Xi-n +l/ n" 1 >i { x ) ’ (3 ‘4 *2)

hold fo r a l l  values o f x.

Proof

A proof fo r the case o f distinct knots, ie  x^ ^ <  x_.  ̂ x . , has

been obtained (Cox, ¡972) by making use of the exp lic it expression ( 3 . 2 .4) 

fo r  a B-sp]ine. For the moi'e general case, where the knots form an 

n-extended partition , ie  x±_n ^  x±_n+1 ^  ^  x±_n <  x , ,  the follow ing

more elegant proof has been given by de Boor (19?2) who', independently of 

this work, also discovered the re la tion  ( 3 .4 . 1 ) .



Leibn itz ' formula fo r the nth divided difference of the function 

h (y) = f(y )g(y )

in terms of the divided differences of f ( y )  and g (y ) is

h(y0.y1. - . , T n) - 5 Z  f ( y 0.y1, - . . , y p E (y J,yJ+1, . . . , y n) .

The application o f ( 3.4 .4) to the function

(3 .4 .3 )

(3 .4 .4 )

h (y ) S Mn(y  ; x) = (y-x)Mn_1 (y  ; x ) (3 .4 .5 )

y ie ld s

M (x. ,x. .,n ' x-n i-n+1 ’ • 'Xi  ' X) - ........» »>

+ 1. M . (x. , ,x .. Y • -*4n-1 v x-n+1 * i-n+2 ’ ,xi  * x/ j

since the divided differences o f order greater than unity of the function 

y-x  vanish. Thus, employing the properties o f divided differences,

M . (x ) =j
X. -Xx-n

x l - n , r';n-1 X̂i-n+1 5Xi-n+2, , - * ,Xi  5 x )

Mn-1 X̂i-n ,Xi-n+1 , * ' ‘ sXi -1  1 X^1 + \ - 1  *-Xi - n+1 ,xi-n+2 ’ * * * * xi  ; x)

_ x̂~xi-n ^  n-1 X̂i -n ,Xf-n+1 ’ ' ’ ’ ,Xi-1 ? * • >Xi  *
x. -  x.x-n

(x-x . )li v x-n' n-
x.X

(x)+(x..-x)H (x )
1 __  -I. n • 1 , x_
x . x-n

j (3 .4 .6 )

Y .-h ic h  establishes (3 .4 .1 ). Relation (3 .4 .2 ) then follows from ( 3 .4.1) 

upon using ( 3 .2 .6) .  |

XfQ observe that (3-4.1) can bo r,written as
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Hn iW  - 6V l , i - 1 Cl) + (3 .4 .7 )

where

(3 .4 .8 )

liow Mn.(x ) =-- 0 fo r  x <  x ._n and x >  x. (see Section 3 .2 ). nence, fo r  the

range o f x over which Mn i(x ) / 0, G l ie s  between 0 and 1. I t  follows

that fo r  xi _n <$ x <C ^n i(x) 13 a convox combination o f I,I . (x ) and

M . . ( x ) . .n -1 ,i '

Theorem 3»4.2

Por a l l  n y- 0 and a l l  i ,

M . (x ) ,  N .(x ) i  n i ' n i ' ' '

>  o

= 0

(x i-n  <  x <

( X <  Xi_ n> Xi  <  X )
(3 .4 .9 )

Proof

Assume the theorem is  true for n = r-1 >  0 and a l l  i ,  ie  that M . (x ) >  0r - i , i '  '  •

fo r  a l l  i  and x±_ <  x <  x± . Now consider re la tion  (3 .4 .1 ) with n

replaced by r . I f  x <  x < x  then the term (x-x. )?,{ „ . , (x )  >  0.

I f  x i _r+1 <  x <  x± then the t e n a  (^ i -x)Mr_ 1 (x ) >  o. I f  xi _r <  x <  x, 

then at least one o f these two terms is  positive. I t  follows that 

M 4(x ) >  0 fo r xi _r <  x < x ; , ie  the theorem is  true fo r  n = r . But the 

theorem is  evidently true fo r n = 1, by virtue o f (3 .2 .8 ). Hence, by 

induction, i t  is  true fo r  a l l  n.

YJe re fe r subsequently to  (3 .4 .9 ) as the r estricted  or compact support 

property o f B-splines.

Note that in  (3*4-9) we have omitted the end-points x± n and x... Normally, 

M ^(x) and Nn^(x) are zero there too, but in the case n = 1 or i f  x  ̂ f is  a 

knot o f m u ltip lic ity  n, i t  is  straightforward to v e r ify  that they are 

non-zero at xi _n as a consequence o f (3 .2 .8 ), (3 .4 .1 ) and (3 .2 .6 ).
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We now give an algorithm based upon (3.2 .8) and (3 ,/ j.l) fo r  evaluating

IT .(x ) (again wc assume that x. < x < x . ,  otherwise t! . (x ) = 0) : rd i-n   ̂ i  ni '  J

Algorithm 3 .4 .1: Evaluation of an isolated B-spline value using convex 
combinations.

Comment: Set the in i t ia l  conditions.

Step 1. For j  = i-n+1, i-n+2, . . . ,  i ,  sot M . = M ( x ) .
* <3 1J

Comment: B-splines are computed by convex combinations in  Steps 2-3.

Step 2. For r  = 2, 3, n execute Step 3,

Step 3. For j  = i-n+r, i-.n+r+1, . . . ,  i  compute

(x-x . )M + (x.-x)M .
- ,1-r r-1 ,j-1  j r -1 ,.iH

r j x . -  x .
J J-r

Step 4- Set M , (x ) = M .11JL aIJ.

For example, i f  n = 6, the elements in  the follow ing triangular arrajr are 

computed:

l.(~ 1 i
p ig .3 .4 . I .  Illu stra tion  of a computational scheme using convex 

combinations fo r evaluating a B spline.
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As with the conventional divided difference algorithm, advantage can he 

taken o f aero elements in the array in  order to reduce the number o f 

applications of (3-4--i ) * By making use o f the re la tion  (3*2.8) the above 

array takes, i f  fo r example ^ x <  x . t h e  follow ing form:

0

0

0 0

0

0

F ig . 3.4.2. Illu stra tion  o f a more e ff ic ien t scheme using convex 

combinations for evaluating a B-spline.

In general i t  is  necessary to compute and store only a rhomhoidal array 

o f non-zero elements. A modified version o f Algorithm 3.4.1, taking 

advantage o f ( j*2 .8 ) can be stated as follows:

Algorithm 3.4.2: E ffic ien t evaluation of an iso lated B-spline value

using convex combinations.

Comment: Find the in terva l containing x.

Step 1. Determine the unique integer 1 such that x < x <  x1-1 "• 1 *

Set k = i-1 .
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y
Comment: The in i t ia l  conditions are set in Steps 2-3. d

Stop 2. For r  = 1, 2 , . . . ,  n-k- 1  set M . = 0 .
r , l ~1

Step 3- For r  = 1, 2 , . . . , 1c set M , = 0.r , l+ r

Comment: B-splines are computed by convex combinations in Steps 4-5»

Step 4- For j  = 0, 1 , . . . ,  k execute Step 5.

Step 3- For r  = j+1, j+2, . . . ,  j+n-k compute

K  A l  . l +j - 1+(=cl + .r*>Mr- 1  .U .i
(r+ j / 1 )

M 1 . = <r , l+ j  \ Xl+ j "  * 1 +j- r

(r+ j = 1 ).

Step 6. Set Mn±(x ) =

V'e need not store the complete rhomboidal array since as soon as M
r , l+ j

has been computed i t  may overwrite M . The number o f storager— * y -L+ J — 1 ^

locations required is  at most n.

The value o f i’n i( x ) 21120 computed from variants o f Algorithm

3.4.1 or Algorithm 3-4.2. Since M ^ x ) and H (x ) are related by (3 .2 .6 ), 

the only change necessary to Algorithm 3-4.1 is  to omit the f in a l division, 

producing

Algorithm 3-4.3: Evaluation of an iso lated normalized B-spline value

using convex combinations.

Comment: Set the in i t ia l  conditions.

Step 1. For j  = i-n+1, i-n+2, . . . ,  i ,  set M = M ,(x ).
1J 1J

Comment: 3-splines are computed by convex combinations in Steps 2-3.

Step 2. For r = 2, 3, . . . ,  n-1 execute Step 3 .

Step 3- For j  = i-n+r, i-n+r+1, . . .  i  compute

M . = r j x . - x .
J j- r

CouDute N .(x ) = (x-x. )M . . + /'x - x 'jM
nxv v l-n ' n-1, i - l  ' i  '  n -1 ,i*Step 4.



Algorithm 3-4.2 may also be modified sim ilarly.

Before concluding th is section we note that the elements in  the array 

Hr j (o r  N ) can be computed column by column (as in Algorithms 3 .4.1 

and 3 -4 .3) or diagonal by diagonal (the diagonals either sloping upwards 

from le f t  to r igh t as in Algorithm 3-4.2, or downwards from le f t  to r ig h t ).  

As with the divided difference method, there is  l i t t l e  to choose between 

these variants of the basic algorithm.

3• 3 The values o f B-splines at the ends o f the range

At the ends of the range, B-splines defined upon a standard knot set with 

coincident end knots assume special values as established in Theorem 

3.5.1 below.

Theorem 3.3.1

For B-splines o f order n (n 5? 1 ), defined upon a standard knot set with 

coincident end knots,

i i i

n,N+n-i (b) = 1
[ 0  ( i >  1) .

Proof

The recurrence re la tion  (3-4.1) yie lds

M .(a ) -  M (a ) (n >  1 ) .  
m  n—1, x (3 .5 .2 )

But from ( 3 .2 .6) ,  (3*2.8) and (3 .2 .9 ),

( i  -- 1)

( 1 > 1 )  J
(3 .5 .3 )

which in conjunction with ( 3 .5 .2 ) proves the theorem for N . (a ).  In ->
n ix ' w

sim ilar manner we may prove the theorem for N .. . (b ) .  [“1
u,w+n-:L 11nj N+n—x u
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3«6 The sum o f normalized B-splines ana bounds fo r t heir values

I t  is  important in  problems o f interpolation and least-squares 

approximation by splines (see, in particu lar, Chapters 6, 7 and 8) to 

know whether the matrices o f basis functions are well-scaled. The value 

fo r  the sum o f normalized B-spiines and the bounds fo r  individual B-splinss 

established in  th is section are particu larly useful in such problems.

L c t ^ . x  .} xq, . . . }b e  an n-extonded partition  o f the rea l lin e . 

Theorem 3.6.1

The normalized B-splines Nn i(x ) defined upon the knots x ^, x , x , . . .

have the property

2  Nn i(x ) = 1 ( 3 .6 . 1 )

fo r  a l l  x and a l l  n ^  1 .

Proof

Summing ( 3 .4 .2) over i  y ie ld s , fo r  n )>1,

S Nn i(x ) "  ^ i _ r x ._nJ 'n - 1 , i - 1 ( ^  r / L ,  \vV Xi-n +l j Nil" 1 >i (X ) -
i  X X '

Replacing i  by x+1 in the f i r s t  sum on the right-hand side of (3 . 6 . 2 ) gives

x-x.
= V  Lj v

x .-x
*N 1 [t (x ) — /  ( ------X— ) K . (x ) I -------------I k . ( x)

4  ^ \ V xi-n +i/  “- 1 ' 1
•j 1  * • X

''n-1  , i ^ • (3 .6 .3 )

But from ( 3 .2 .5) ,

X X  W  = 1 - (3 .6 .4.)

Hence by induction the theorem is  true fo r a l l  x and a l l  n ^  1 . Q

A generalization o f (3 .6 .l )  is  considered in  Chapter 5 .
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Theorem j.6 .2

"  ^  owe Kn iW  ( n > l ) . (3 .6 .3 )

Proof

We need only consider the in terva l x. < :c  <> x. , since II . (x ) is  zero

outside this range. Now the average value o f (x ) in th is in terva l is ,

using (3 .2 .5 ) }  ( 3 .2 .6) and the compact support property, 
r  X / r  vx.

o.

x.
x-n

N . (x)dx, nxx '  1 x.x-n
dx = ( ~ r - )  / (V xi-n ) = 1/n. (3 .6 .6 )

But the maximum value o f a function over an in terva l must exceed (or at 

least he equal to ) the average value o f the function over the in terva l. 

Hence max ijn i( x ) ^  “ • But Liax Nn i( x ) ^ i because o f (5.6. i) and the non- 

n egativ ity  o f the B-splines. lionce the theorem is  proved. j~ j 

Conjecture 3 .6.1

~ L  £  max Nn i(x ) $ 1 (n ^  2) .
X (3.6 .7 )

We give proofs of th is conjecture fo r the cases n = 2 and 3 .

Theorem 5.6.3 

For n = 2 and 3,

~~r <6 max N . (x ) <( 1 . n- 1 ^ nx ^X ( 3 . 6.8)

Proof fo r  n 2

Since N2i (x ) is  the only first-degree B-spline which is  no"-z-ro at x -/
*~~i . ” "A-1 *

the iden tity  * 2 j (x ) = 1 f ie ld s  ^ . ( x  ) = 1 . Thus max N . ( x ) >  J.
■ J . h-, *1

But N2±( x ) ^ 1. Hence max N̂ .. (x ) =. ¡. j j
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Proof fo r n -- 3

The use o f the recurrence re lation  (3 -4-2 ), a fter setting i  - 3 and 

transforming lin ea rly  the in terval {xqK x ) to (0, 1 ) with no loss o f 

generality , y ie lds
..2

(0 x < x ^x ,x r

k33( x ) = <;
x (x2-x)/x2+(1-x )(x -x 1 )/ ( 1 -x 1 )

x2 -  Xi

( 1-x)

(x 1 N< X < xp) . (3 .6 .8 )

(x 2 -< x < 1 )

Since N' ( z )  is  continuous and increases nonotonisally from sero fo r
yy

0 is  linear fo r  x. x < and decreases monotonically to aero

fo r  x2 <. x < 1 , i t  follows that II3_(x ) attains it s  (unique) maximum between

■y and x . The maximising value o f x is  given by 
] 2

x2- 2x I+x -̂P.x
— :-------------I.

1 -x.
= 0 (3-6-9)

ue

x =
'1+ X2 "X1

( 3 -6 . 10)

Substituting th is value into (.3.6.8) gives

max N-,z(x ) = 1/ ( 1+x2~x_j) . ( 3 .6 .1 1 )

Thus, since Ü 4- x  x2 <  1, the result

-2 ^ max Ii33(x )  ̂ 1 ( 3 - 6 . 12)

r— ?Ufo llow s.
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5*7 A^pos te r io ri error bounds fo r the values of B-splines 

c f rom divided d i f f erences

Tfe derive in th is section a posteriori  error bounds fo r  the values of 

B-splines computed from Algorithm 5*3*1 or from Algorithm 3*5*2 using a 

running cut or analysis ( c f  Section 1 .2 ).

Theorem 3*7*1

Let the (simple) knots x. , x , x. and the argument x be given

standard floating-poin t numbers (in  Section 5*10 we return to the 

implications of th is assumption), For the given value o f x le t  D . denote
 ̂t)

the computed value o f D . obtained from ( 3 *3 *1 ) i f  r  )>• 0 or from•t <J

(x . - x )n ’ i f  r  = 0. Let 
v J +

61) . = 1» . -  l) .r j  r j  r j (3*7 * ¡)

Chen

8D
J

^ 2 1Fr j 7 (3.7*2)

r;here 3? . is  defined by the recurrence re la tion  
i  J

F . = (n-1)D . , 
oj cj

(F .+F „ . )+3 5 „ .-D . I
-  _ * - 1 ; 3 r - 1 , , 1 - 1  r - 1 , . i  j— ■ ». i - l l
r j x . - x .

0 J -r

(3*7*3)

(r  >  0). (3*7 A)

Proof

From (3*3*1), 

D

1 • ' J )

_ f l  ^ r ~1 > J~5r - 1 , j - 1  j 
r j  I x. -  x .  ̂ /J j - r  / 

\

d «  ) (1«  > ( , «  >
0 J-r / ^

/ r': |
i x . -  x 
\ J

(l-:3e) ,
j - r

(3*7*5)
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where e .1 <: 2- t  (± ‘ = 1 , 2 , 3)

Hence, using (3-7>0

D , ,-B , . +6D
IJ . + 6D . r - l . j  r-1 , j-1 r

■¡end upon r  and j .

r j  r j x . ~ x .
J J-r

(3 .7 .6 )

Subtraction o f (3 .3 .1 ) from (3.7*6) giver

KD . =
bT> . ,-bH , . _+3e(D , -D „ . Jr - 1 , j r - 1 ,,1-1 r - 1 , j  r - 1 ; j - 1 y

x . -  x .J J-r
(3-7.7)

I f  Pr j  ( r >  0) is def;lned (3*7.4) and by (3-7-3 ), which is  obtained 

by a simple error analysis o f the computation o f (x , - x )n~1, the theorem
i—i 0

then follows. n
In proving (3*7 '3 ) i t  is  assumed that D . is  evaluated by forming >: ,-x -  h,

oj ' j
__A

say, and then computing h‘L 1 by repeated m ultiplication. Such sn approach 

.is in  accordance with the A lgol 60 report (Naur, 1963) ,  and is  therefore 

appropriate i f  the method is  programmed in A lgo l 60. I f  n :i.3 su ffic ien tly  

large i t  may be more accurate (and faster) to  compute h11""̂  frem 

exp | (n -1 )ln (h ) | ; we do not consider th is approach here since any e ffe c t  

the a lternative computation have on our general results are insign ifican t.

The computer I t s e l f  can be made to determine the values o f F since thoy
i J

depend so le ly  on previous values together with the computed values o f P ..
- t i  , ' * r j

In particu lar, 2 F . is  a bound fo r  the error in the computed value o f

M . ( x ) . In practice the computer makes rounding errors in computing tnc F111 T»

( c f  Section 1 .2 ).- However, we see from a simple error analysis that the

further contribution to the error incurred from a single computation of

(3 .7 .4 ) is  at most a m ultip licative factor o f ( l - 2 - t ) “^. Since the

contribution to the error incurred in computing F . from ( 3 .7 . 3) is  at most

a factor ( l - 2~ ' ) ”  , i t  fo llow s that ( 1--2~t ) _5r “ “ 2~t ‘F ., where F . is  the
r,i (

computed value o f Tr y  gives a rigorous error bound for jgTj^.j , jjow

( l - 2 ” t ) ” 5lW' <  1.112, by virtue o f (1 .1 .12 ). Hence a ’simpler but

marginally cruder bound far ¡63 J is  ( l . 112)2"t l Fr , or (1 . 179) 2" t i?
• "• * r,J “ r i*
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These a poster io r i  bounds prove tc be reasonably realistic; (see the 

examples in  Section 3 • 11)- Moreover, since advantage is  taken o f any 

cancellations that occur during the course o f the computation, those 

bounds aro considerably better than those obtainable from an a p rio r i 

error analysis (but see the special case discussed in Section 3*11)*

3*8 A post e r iori error bounds fo r  the values of B-splineo computed 

by the method o f convex combinations

Vo derive in  th is section, again as the resu lt o f a running error analy s is ,

a posteriori error bounds fo r B-splines computed from Algorithm 3-4.1 or

from Algorithm 3*4*2. As before we assume that the x. , x. . x
l-n  i-n +1 i

and the argument x are given floating-poin t numbers, and in Section"3.10  

return to the consequences c.f this assumption.

Theorem 3*8.1

For the given argument x  le t  .(x ) denote' the value o f M .(* )  computed
* x tj

from recurrences (3*4*1) and (3 .2 .8 ). Let

6M .(x ) =r H .(x ) -  M .(* )•  
r j  r j  r  j  'r j ( 3 *8 . 1)

Then

oM .(x )
r p ^ 2 . , r j  ’ ( 3 *8 . 2)

where . is  defined by the recurrence re la tion  
J

H
1J

. = 2M .(x ), 
] 1 J (3.8 .3 )

(x-x. ) ( I I  . . ,+58 , • , ( x ) \ ( x  .-x)|il , .+5M , .(x)lv .l-ry l r -1  , j - 1  r - 1 ,;!-1 x j r-1 , y  j
Hr j  = -----------  ~  _ ' 1

Proof (3 .8 .4 )

From (3 -4 .l )  ,

(
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K .(x) = f lr i '
( * - * i_ r > nr-1 , ^ , ( ^ ( 1 ^ 1  ..jW

X . -  X .
J J-r

(3 .8 .5 )

.  { ( ^ j J ( ^ ^ ) V , , j - 1 (x )(l+ E 2)+ (V x )( l+ e 3) V l , j (i ' )(1+E4)]  *

X ( 1 +e 5 ) ( 1 +e 6 ) ( 1 +e ? )/ ( x^-x. _r  ) ( 3 . 8 . 6)

where

K .(x ) - r j v '

. - t^ 2 ( i  = 1, 2, . , , ,  7) and depend upon r  and j .  Thus

(x-x )M , . (x ) ( l+ 5e )+ (x  -x)M (x ) ( l+ 5e )
"  1 ? tr 1 _____  1 J____•1 * 9 J  >   r~ y

X . -  X  .
J d~r

(3 .8 .7 )

where
-t-j

s 2 ( i  = 1, 2) and depend upon r and j .  Upon making use

(3 .8 .1 ) and (3-4--1), equation (3-8.7) gives

6M .(x )
J- J

. ■-i( :ç) .531Sr - 1 ^ U ) }  - ( y O Î  5Mr, . ^ ^ 5 ^ , . .  , / 4
X . -  X .

J o-r
( 3 . 8 . 8)

The theorem follows from (3-8.8) and a simple error analysis o f the 

évaluai ion o f ( 3 -2 .8) .  |

Once again the computer can be used to determine the values of H . and in. r j
*• G A

particu lar the value 2 H ., which is  a bound fo r  the error in the

computed vaine o f ]«'n^ (x ) . As before the computer makes rounding errors

in  forming the H .- However, i t  is  straightforward to  v e r ify  that the

contribution to the error incurred in  computing H . from (3.8.4-) is  atJ
~t -7most a factor (1-2 ) . Since the error incurred in  computing H . from

1 J
( 3 .8 .3) is  at most a factor ( l - 2~t )~1 i t  follows that ( i - ? _ t ) 6~7r ?“ t 1il

r 0
where H . is  the computed value of K ., gives a rigorous error bound fo r

1 J — tJ
' ' - - t

&M . r j
. Again the simpler bound. 5M . <( (1.179)2 h may be preferred. /

I J- J X J

Although the above analysis gives r is e  to extremely r e a lis t ic  a posterio r i  

bounds fo r  the errors in the computed values o f the l i^ .(x ), the need to



compute such bounds, which roughly doubles the work involved in  

computing the Mr ^(x) alone, is  obviated when account is  taken o f the 

non-negativity o f the (see Theorem 3-8.2 below). I t  is  shown in

Section 3.9 that re a lis t ic  a posterior i  bounds fo r the absolute errors in 

the Mr .(x ) can be deduced immediately from the computed resu lts. Moreover, 

a p r io r i bounds fo r  the re la tive  errors are also derived in  Section 3 .9.

Theorem 3■ ci.2

Even in the presence o f rounding errors the values o f M . (x ) (n ^  1, a l l  i ,

x±_n <  x <  x±) computed in  floating-poin t arithmetic from ( 3 .4 . 1 ) 

s t r ic t ly  pos itive .

Proof

The proof is  sim ilar to that o f Theorem 3.4.2, except that the relevant 

recurrence is  (3 -8 .? ), rather than (3 -4 .1 ). Since, in ( 3 .8.7 ) ,  the terms 

1+5e.j and 1+5e2 are both s t r ic t ly  pos itive , the theorem is  proved, p

We noted in  Section 3-3 that the values o f 1n the method employing

divided differences are theoretica lly  non-negative, but their- computed 

values may be so inaccurate that they actually take negative values (see 

the examples in  Section 3-11)-

3-9 A p r io r i error bounds fo r  the values o f .0-,splines computed 

by the method o f convex conbinations

In th is section we establish a p riori error bounds fo r  the values o f B-spline

computed by the method o f convex combinations. F irs t ly , however, we derive

a readiJy-computable _a posteriori error bound fo r  the computed value of

M .(>:)- n i

Theorem 3-9■ 1

Th.e values o f H . defined by relations ( 3.8 i ) w  q i\ , . ^r j  vu.u.p; ana v.p.u..1,; sa tis fy  the

inequality

% ^
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HrJ ¿ ( l - 2 ' t ) 5( l ' r ) (5r-3)Kj,.C r).
(3 .5 .1 )

Proof

T7e f i r s t  assume the theorem to he true fo r  r  

Hs-1  w .

= s~1 3 vrhere s >  0, ie  that

(3 .9 .2 )

The substitution o f (3 .9 .2 ) into the right-hand side of (3 .0 .4 ), a fter 

replacing r in  the la tte r  relation  by s, then gives

r + *,f(x-x.. C)M . . .(x)+(x.-x)S .(x)l
II $ { ( l - 2 “ t )- '( “ "*, ) (5fl-8)+5}<------------------------------- -------^ ----} *

l j  j-*G J

(3 .9 .3 )

But i t  fo lio ..s  from (3 .0 .6 ) and Theorem 3.3.2 ■suat

sj

Hence

x. - x.
0 J-s

> • (3-9.4)

Hsj *  {(1 -2 “ V ( 2“ s) (5 s-8 )+5 } ( l-2 ’ t ) ‘ 5fiBj(x ) 

<  ( l - 2 ' ° ) :-'( l ~s ) (5s-3)M .(x ) . (3 .9 .3 )

Thus ( 3 .9. 1 ) is  true fo r  r  = s. But i t  is  true fo r r  = 1 by virtue of 

( 3 .8 .3) .  Hence by induction i t  is  true fo r  a l l  r^> 0. Q

A s lig h t ly  cruder bound, obtained by means o f (1.1.12) is

H . £ 1.112(5r-3)M (x )
* J - O (3-9.3)

I t  ro lle rs  from (3 .8 .2 ) that the compute«, value o f ^ ( x )  d iffe rs  from the 

true value by an amount not exceeding 1 - 112 ( 9n-3) 2- t '!l  (v ) 0..

equivalently, 1 .179(5n-J)2" ^ 0 0 .  17e observe that this bound i i  cmuutable.



since i t  involves the value o f ^ . ( x ) ,  rather thin the true (unknown) 

value M . ( x ) .

\'le now give a bound fo r  the re la tive  error in  the computed value o f M r ■ )"n iv>' '

Theorem. 3»9»2

6M . (x ) sa tis fies  the re la tive  error bound n i ---------- --------------- -—

¡WIn i(x ) | /Mn i(x ) £ 1.337(5a-3)2” t . (3 .9 .7 )

Proof

Now

6M (x ) j  .< 1.179(50-3)2“ %! . ( x )in  ! n i J
(3.9-8)

(3 .9 .5 )

and hence

i . 11
8H .O O I .< ------

1.179(5n-3)2’ t Hn1 (x )

1-1.179(5n-3%'
: r  . (3.9.10)

But from (1 .1 .? ) i t  follows that the denominator is  bounded from below bv 

1- 0 .1179  = 0.8821. Hence

8M ,(x )|  £ 1.337(5n-3)2"tMn, (x )  , (3.9.11)
n i 1

ich ( 3 . 9.7) follows immediately.N ‘ I--from which

The a prio r i  bound ( 5 .9*/) is  remarkable in that i t  is  Independent o f the

pos iti ons o f thg knots(but see the comments in Section 3.10 on the e ffec ts

o f decimal to  binary conversion). I t  follows fo r  example that B-splinea

o f order 15 or less can be evaluated with a loss of accuracy not exceeding

100 units in  the least sign ifican t binary place. Such a resu lt compares

extremely favourably with the conventional method employing divided
\ \

differences fo r  which non-pathological examples o f order very much smaller
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than 15 (see Section 3*1 “0  can be constructed that y ie ld  no correct 

figures (on the EDF9 computer fo r  which t = 39) in the resu lts.

The counterparts of (3.9*6) and (3.9-7) in the case-of normalized B-splines 

are, as a consequence of the omission o f the fin a l division when forming 

Nn i(x ) from and j W  (see Algorithm 3-4.3),

Hn i ^  1-112(5n-5)Nn iU ) = 5-56(n-l)Nn . ( x ) (3-9-12)

and

Nn i(x ) - N ^ x ) !  ^ 1.337(5n-5)2~^n i(x ) a 6 .635(n-1 .

(3-9.13)

3.10 The e ffec ts  o f perturbations .in the data

There is  one aspenl of the problem that our analyses have so fa r not 

covered, v iz  the sen s itiv ity  o f the computed values o f H (y.) with respect 

to  perturbations in  the data. By data in this context wo mean the given 

values o f the knots x±_n, x±_n i and the argument x. A 

particu lar reason why the study of such perturbations is  important is  that 

our analyses are rigorous only fo r data that can be represented exactly as 

standard floating-poin t numbers. However, we may be comforted by the fa c t 

that our analyses _do apply to the problem defined by the data stored in 

the computer. So i t  follows that the method o f convex combinations solves 

accurately a problem with data perturbed s ligh tly  from that given. For 

most computers the perturbed (stored) data d iffe rs  from that given by 

re la t iv e  errors bounded in modulus by 2™̂ .

A posteriori bounds re la tin g  to tho given data, rather than the stored 

data, can be found i f  required by an extension of the running error 

analyses described in  Section 3 .8 . The manner in  which th is analysis is  

carried out is  straightforward bun tedious and is  not given here. One 

consequence of this analysis is that tho bounds sere now no longer 

independent o f the knot spacing. However, unless the knot spacing is
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highly non-uniform, the hounds fo r  the stable method appear to depend 

only m ildly upon the positions o f the knots, although i t  is  now no longer 

possible to quote a p r io r i bounds. On the other hand the bounds (as w ell 

as the computed values themselves) fo r  the conventional method seem to 

be very sensitive to small perturbations in  the knots, vrhieh i 3 a 

re fle c t ion  of the inherent in s tab ility  o f that method.

3.11 Numerics], examples

In order to  compare numerically the conventional method (based upon

divided differences) and the stable method (based upon convex combinations)

we give a number o f examples. For each case- wo consider the B-spline o f a

prescribed order n based on a given set o f knots x. , x. , . . . .  x ,
1 x~n i-n +1 i
The B-spline is  evaluated by both methods (using Algorithms 3.3.2 and 

3 .A .2 ) at the positions of the in te r io r  knots x.. . ., x . , , . . t x.
i —n* Vc.'

— t-For the conventional method the error bound (1.179)2 and fo r  the

stable method the error bound 1 . 179( 5^-3)2 '5^  are also quoted.

Example 3.11.1

Degree 5* Knots 0, 1, 2, 3* 4, 5j 6 (Table 3*11.1). The values produced 

by the conventional method d if fe r  only s ligh tly  from those given by the

stable method.



Table 3,11.1

12/]

Degree 5> Knots 0 ,1 ,2 ,3 ,^ ,5 ,6

Conventional method Stable method

X

Value Error bound
i-

Value Error bound

1 1.38888 88892,0-3 3.52^90^-10 1.38888 88889i()-3 8 .0 ^ 2 2 1 —11*

2 3 .6 1111  11l11l0 -2 9. 1821*1 - 1 1 3 .6 1111 11111-2 i 0 2 .O9O97j0-12

3 9.16666 66667,0-2 1.81933,0-11 9.16666 66667,0-2 5.30786,0-l2

k 3 .6 1111  1 1 1 1 1 l0 -2 2.22799,0-12 3 .61m  1 1 1 1 1 - 2 2.09097,0-12

5 1.38888 8888910-3 6.85077, 0“ it 1.38888 88889, 0-3 8.0U221 -'|J+
.... .  j

example 3 . i1.2

Degree 21 • Knots 0 ,1 ,2 ,... ,22 (Table 8 . i 1 • 2 ). Por values o f x b l  1 the 

conventional method produces results o f comparable accuracy to those o f 

the stable method. However, as x is  decreased from 13 to unity the 

conventional method becomes less and less accurate. Indeed, a l l  values for 

x<6 have no correct figures at a l l .  (Note that since th is B-spline is 

symmetric about x=11 the conventional method could be used to give re liab le  

results by replacing x by 22-x i f  x<11).
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Table  3 .1 1 .2

Degree 21. Knots 0 , 1 , 2 » . . . ,22

X

Conventional method Stable method

Value Error bound Value Error bound

1 -2.901+93 6270)+10- 1+ 1.073021q- 1 8.89679 13921+. .-22 2.01)156,0-31

2 1.70851 18U7Txo_ U 2.87569io-  2 1.86577 2813310-15 1+. 28ll+1 -25 10

3 - 5.09073 2958510"  5 7 .222l+210-  3 9.26531 0806910-12 2 . 12612, -21 1 0

It 8.78U71 73OO1l0- 6 1 .69O58l0 -  3 3 .7Û85I+ 1351+3,fl-  9 8. 51°°3i 0-19

5 5.18082 9082910-  8 3.6652710- )* 3.1+0296 26271,0- 7 7 . 8o88i io -17

6 1.07095 9073810- 5 7.30865,0- 5 1.10732 92030, - 5 2 .51+100 -15

7 1.59735 1^25810- 1+ 1 . 3296810- 5 1.59595 80785, 0- 1+ 3.66226 - 1I+ 10

8 1.15687 8l53lt10- 3 2 . 18681+j o — 6 1.15690 83302, 0- 3 2.651+77,0-13

9 1+.55^29 00755,0" 3 3.2161+5,0~ 7 1+.55)128 59)125,0- 3 1 .0)+508,0~12

10 1 .019^5 J0- 2 1+. 177I+I+! 0 - 8 1 .019)+ 5 1+9722, 0" 2 2.33935,0"12

11 1.33010 3122810- 2 )+.7 l 87210- 9 1.33010 31238, -  2 3 .0 5 2 2 0 -1 2  1 0

12 1 . 019^5 i+972610-  2 It. 55067, o -10 1.0,19)+5 1+9722, - 2 2 .33935, 0 -1 2

13 )t. 55^28 59*22, 0~ 3 3.6601110“ 11 1+.551+28 59)125,0- 3 1.01+508 -12

1U 1.15690 83302, Q-  3 2 .37665,0-12 1.15690 83302,o- 3 2.65l+77,0-13

15 1.59595 80785! 0- *+ 1.1811)5, 0 -13 1.59595 80785,0- 1+ 3.66226, 0~1)+

16 1.10732 9203010- .5 1+.08175, o -15 1.10732 92030, - 5 2.5l+1OO,0-15

17 3 .H0296 26271, 0- 7 8.2665O10 - i7 3.1+0296 26271,0" 7 7 . 8o88l10 -17

18 3 .7085)+ 135):3, 0 - 9 7.3799810-19 3.7085)+ 135)i310 - 9 8.5 1003, 0 -19

19 9.26531 08068,0 -12 1.73796, o -21 9.26531 08069j0-12 2 . 1 2 6 1 2 ,-2 1  10

20 1.86577 28133, 0 -15 3.1+8119,0-25 1.86577 23133,0-15 !+.2811+1 -25 1 0

21 8.89679 139?\ 0 ” 22 1.65996, 0 -31 8.89679 1392)),, -22x 0 0 n'imK - Î 1 
......- 10-
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This example is  included to illu s tra te  how erroneous the ‘results o f the 

conventional method can be for a degree as low as throe, j.f the knot 

spacing is  highly non-uniform. Such a case is  important in practice since 

i t  is  often o f interest to investigate the case o f  near-coincident knots. 

We see that at x=~9999 the conventional method produces a negative value. 

Even at x=0, the peak o f the B-spline, three figures have been lo s t. At 

x=<;999 the result agrees with that o f the stable method.

Example 3 .1 1 .3

Degree 3. Knots -10000, -9999, 0, 9999, 10000 (T ab le  3 .1 1 .3 ) .

Table 3.11.3

Degree 3. Knots -10000, -9999, 0, 9999, 10000

X

Conventional method Stable method

Value Error hound Value Error bound

-9999

0

9999

- I . 5OOI2 05611J0-12

2.50012 h98l 210- 5

2.50012 500631q-13

2 .57^09, Q "11 

3.2186510~12

8.0U261j 0-2k

2.50012 50063. ,-131 0
2.50012 50062 - 510 ?

2.50012 50063lo -13

9.11l»96l 0-2lt 

9. 1 1l+96l( l-16  

9.11«*9610 -21»

Example AmU-lA

Degree 9. Knots 2] , ¿=0 ,1 ,...,10  (Table 3.11.4)

Again the conventional method produces very inaccurate results (from the 

point o f view o f re la t iv e  errors) fo r  the small values o f x. However, 

in 'terns o f absolute error (measured with respect to  the peak height), the 

conventional method appears perfectly  adequate. Since in many applications 

such results would be quite acceptable ve might expect that fo r examples 

sim ilar to th is the conventional method is  satisfactory. Example 5 shown 

that th is is  net the case.
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Table 3 .1 1 .4

Degree 9. Knots 1 ,2 ,1»,8,16,32,61», 128,256,512,1021»

Conventional method Stable method j
X

Value Error bound Val ne Error bound

2 -1.60028 39327, Q-1*» 9.53785,0-13 9.60166 982)17, 0-17 9.67807i0 -27

h 8065k 27507lo -12 9-11019,0—13 1.79167 15693, 0-12 1.80593,0-22

8 1.97*171 1*8111, n-  9 8.33280,0-13 1.97*171 78228, 0~ 9 1.990li3,0~19

16 3 .8l 22h 92651,Q- 7 7-03203,Q-13 3.81221» 9I4I453 - 7 3.81*258, Q-1 7

32 1.72139 97270,Q- 5 5 . 11+2 7 1,0—13 1.72139 97251, 0- 5 1.73510,0-15

6k 1.95187 17159,0 — k 2-9557*4, q-13 1.95187 17160,0~ k 1.967140,0-1 It

128 5 . ¡7660 k?.o9510~ ^ 1.11487*1,0-13 5.17660 -’»2095, 0~ k 5.2177910-' ,4

256 2. kOb 7*t 09001», 0- *» 2.19807, Q —1*4 2.)»0l»7l» 09001», p-  1» 2.1+2387,0-ll*

512 6.59821 72615, 0- 6 5 . 51868,c- 1 6 6.59821 72615,0 — 6 6.65072,0-16 |

Example 3.11.5

Degree 9. Knots - 210“J , j= 0 ,1 ,...,1 0  (Table 3 . 1 1 .5) .

This example is  identical to Example 3.11.2!, except that the knots have been 

re flec ted  about the origin . The stable method gives identical results 

in each case. The conventional method again gives it s  most inaccurate 

results fo r  the smaller ( i . e .  more negative) values o f x. However, 

these values not only have large re la tive  errors, but they also possess 

largo absolute errors.
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Table 3.11.5

Degree 9 -  Knots -102lt, -512, -256, -128 , - 6U, -32 , -16 , - 8, -if, - 2 ,  -1

Conventional method Stable method

X

Value Error bound Value Error bound

-5 12 -1.965^9 3559310- It 2.0361t01Q- 2 6.59821 726151q-  6 6.65072,0-l6

-256 2.1+11+73 720l»510-  *+ 3.8027910- 5 2 . ItOh7I+ 0900^ Q- )| 2 . 1+2387, 0 — 11t

-128 5.17659 22318,0- K 6.8127910- 8 5.17660 1+2895, 0~ It 5.21779l0 -llt

-6U 1.95187 1698810- 1+ 1.13289lo -10 1.95187 1716010- It 1 .9671+0,0- 1U

-32 1.72139 9725510- 5 1.6725910-13 1.72139 972511(1- 5 1 .73510, 0-15

-16 3-81221+ 9I+I+ 52j 0 — 7 2.1897010-16 3-81221+ oltlt53io - 7 3.81(258, 0-1 7

-8 1.97U71 7822810- 9 2.6358010-19 1.97^71 7822010- 9 1.990l+3, Q-19

-It 1.79167 158931q-12 1 . 5l+89710 -22 1.79167 15893, 0-12 1.80593, 0 -22

-2 9.60166 982lt7lp -17 8. 0 3 0 7 ^ -2 7 9.60166 9021+7, 0-17 9.67807, fl -27

In a l l  the above examples the error bounds fo r the stable method are

r e a lis t ic .  For the conventional method they are somewhat pessimistic, but

are considerably better than could be achieved using some form o f a p r io r i

error analysis (but see the special case x  < v < Y . ̂ j _1 * ^  ̂ considered below).

In every case the accuracy o f the conventional method fa l ls  o f f  as 

x ranges from x. to x. _n . However, fo r values o f x su ffic ien tly  close to

*1 ’ and &lways fo r values o f *  betveen *  and x , values comparable 

in accuracy to  those given by the stable method are produced. This result 

is  eas ily  explained by means o f a running error analysis along the lines o f 

Section 3.8 followed by an inductive proof sim ilar in nature to that in 

Section 3.9* In fact the a p r io r i bound,

$ x < x  )1 '
F j  i  1.179(^2-1)2 *5 . (xni 1 ni v l — 1 > (3.11.1)



is  read ily  derived. The computed value of M . (x ) ,  v iz  I) . . is  p o tiiiv e
nx nx ’

and can be shown to have a maximum re la tive  error o f 1 . 337(4n~1 ) 2~''.

(The- s ligh tly  improved bound with the term 4u-1 replaced by 3n~-, can be

obtained i f  further advantage is  taken of the zeros in the D. .̂ array in
•  *1

th is special case) . Note that this bound is  even better fo r n 3 than

(3.9-11) fe r  the stable method. However, th is bound applies only fo r

x. . <  x < x . ,  whereas the bound fo r the stable method applies fo r x—1 i  x
X. < X < X. .
i-n  x

For B-splines o f low degree with re la t iv e ly  uniform knot spacing the 

conventional method is  adequate for certain purposes in that the absolute 

errors in  the computed values are usually small (as in "Examples 3 . 1 1 . 1  

and 3.11.4). However, in  a common situation to be examined in Section

3 .12  i t  is  seen that the stable method is  faster in that fewer arithmetic 

operations are required and hence should bo preferred on grounds o f both 

accuracy and speed.

3.12 The evaluation, fe r  a pre.scribed argument, o f a i l  non-zero 

B-splxnes o f order n

In many applications, including interpolation (Chapter 6) ,  least-squares 

approximation (Chapter 7) and constrained spline f i t t in g  (Chapter 8) ,  i t

i s  neceM“ V  * °  OTal“ ,‘ ‘ ® fo r prescribed argument x not on is o lated

value o f Mn i(jc) (o r H (x ) )  but a l l  those values o f M .(a ) that are non-
nx

zero. Since at most n values o f M ^ x ) are non-zero fo r any particular

x, i t  fo llow s tnat n applications o f either Algorithm 3 .3.2  or .Algorithm

3 .4 .2 , fo r  example, enable the required values to be computed. However,

such an approach entails considerable repetition  o f computation since

common elements in  overlapping t rapezoidal arrays (o f  the type illu s t-a {v , l

in  P ig . 3 0 .2 ),  in  the case o f Algorithm 3 .3 .2 , or those in overlapping

rhomboidal arrays (o f  the type i l lu s t r a t e  -iw .. 5 • o\--------------  xn rhe case o f

Algorithm 3*4-2, are formed. I t  is  eas ily  v e r if ie d  that with such



approaches the amount o f arithmetic i s  proportional to  n" . I t  is  fa r

less expensive, ts tin g  an amount o f arithmetic proportional to  n . to

compute a single array o f elements which contains a l l  the results required

S p ec ifica lly , le t  1 be the unique integer such that X-L 1 ^ x <  x1- Then

the non-zero B-splines o f order n ere M , ( x ) , M (x ) ,  . . . ,  M .
n i n ,i+ i n ,l+n-1 ' '

These n values can be computed using the follow ing algorithm, based on 

the method o f convex combinations, which is  written to use minimal storage 

requirements end also economizes somewhat further on the number of 

arithmetic operations.

A lgorithm 3 .12.1: The e ff ic ie n t  evaluation of a l l  non-zero B-splines

fo r  a given argument using convex combinations.

Comment: Find the in terva l containing x.

Step 1. Belerjuine the unique integer 1 such that  ̂ X <  jc .

Comment: In i t ia l  conditions are set in Steps 2-J>.
A

Step 2. Set e 1 = x - x ^ , eg = x^-x and v  ̂ = ( x ^ - x ^ )  .

Step 3- Par j  = 2, 3, . . . .  n set v̂ . = e1vj „ / ( xl „ 1.l •

Comment: B-splines arc computed by recurrence in Steps 4-6.

Step 4. For j  = 1, 2, . . . ,  n-1 execute Stops 5-6.

Step 5- Set e3 = x - x ^ ^  end replace v, by V Y ^ V ^ - l - j )  *

Step 6. For r = 2, 3, n -j replace by

; v j. (x ~X) V3 r ~1 V 1- 1+r '  r

xl- '!+ r Xl - 1- j

Step 7. i’ or ¿ = 1 ,2 ,  n M , ., ,(x ) = v .Xi p J • J J

An illu s tra tion  cf the scheme an the case n = 4 is  given in F ig. 3.12.1
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M
^  35

M
2 j \ , i + 1

3, j+1
K

2 , 0+1
M
4 ,5+2.

M . „
3> 3+<

^ M . .
•+ ? 3+J

Fig- 3-12.1 Illu stra tion  o f a scheme using convex combinations fo r  

the evaluation o f a l l  non-zero fi-splines.

In Algorithm 3-12.1 the elements o f the MrJ (x ) array are formed along 

successive downward-sloping diagonals. As with the algorithms fo r  

computing a single value of Mn i(x ) or N ^ x ) ,  minor variants may be 

constructed which form elements along successive upward-sloping diagonals 

cr in  successive columns.

Algorithm 3-12.2 below is  the counterpart o f Algorithm 3.12.1 in the case 

o f norma l i sed E-splines.

■Algorithm 5.12,2: E ffic ien t evaluation using convex combinations ct‘

a l l  normalized B-splines that are non-zero fo r  r. 

given argument.

Comment: Find the in terva l containing x.

Step 1. Determine the unique integer 1 such that x, ; <J x  ,
1*" 1 1

Comment: The case n = 1 is  treated separately.

Step 2. I f  n -  1 set v, = 1 and advance to Step 11.

Comment: In it ia l  conditions arc set in Steps 3-3.

Step 3- Set e 1 = x-x^ , ^  -  x ,-x  end v., l / ^ - x ^ . , ) .

For j  2, 3, n- 1  set v . Y \ i - / ^ ± . . 1 .! ) .o oep /f, 

Step 5- Set vn = V n - 1 *
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Comment: 

Step 6. 

Step 7« 

Step 0.

Step 9- 

Step 10. 

Step 11.

B-splines are computed by recurrence in  Steps 6-10.

Por j  = 1 , 2, . . . ,  n-2 execute Steps 7-9-

Set = x-x l _1_ j  and replace v1 by 1) •*

Por i  = 2, 3, . . . ,  n-j-1 replace v.. by

o-,v. . + (:a, . . -x ) v .3 i - 1   ̂ l - 1+ i / x _

l - 1+ i 1 - 1-0

Replace v . by e7v + (x, .-x)r  n -j 3 n - j -1  v 1 - 1+n-j '

Replace v., by e^T^.

For j  = 1 , 2 , a set » n>l. 1+J(x ) .  r }

Vn- - *

j

Note that with th is scheme, as with Algorithm 3.4.2, i f  the values o f the 

nth-order B-splines are required fo r a number o f arguments x in the 

in terva l A £ x <  xn, a l l  denominators can be pre-computed, with a 

consequent saving in arithmetic. Such a strategy is  particu larly worthwh 

in the context o f da ta -fittin g  by splines (see Chapters 7 and 8) in which 

ther.e are frequently many data points between an adjacent pair o f knots.

A scheme based on divided differences fo r evaluating a l l  non-zero 

E-splines can also be derived and this is  illu s tra ted  fo r  the case n = 4 

in P ig . 3-12.2.
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D ,.
- 3o

D

^  2 , 0+1

.D. .
4 j

4iJ+1

^  d_ r :
j T '  3, J+1

D
4,j+2

D1,j+1
D3,j+2

,D2 , o+2 D, . ,' 4,j+3

D . o 1 >0+2 *<*'$> 3+3

D2 ,o+3

D., • z1,0+3

Do, j+3

F ig . 3-12.2 Illu stra tion  o f a scheme using divided differences for 

the evaluation of a l l  non-zero B-splines

fo r  the case n=4 the conventional method requires 32 additions, 8

m ultiplications and 16 divisions to compute the required values; the

stable method requires 25 additions, 12 m ultiplications and 10 divisions

(the number o f additions fo r the stable method can be reduced to 19 by

carefu l programming; i t  does not appear possible to achieve a corresponding

reduction fo r  the method of divided d ifferences). Since on any computing

machine m ultiplication is  at least as fast as d ivision i t  is  evident that

the stable method is  faster fo r cubic B-splineo. In fact this resu lt

applies in general; fo r  a B-spline o f degree n-1 (n > 2 ) the number of

additions, multiplications end divisions are 2n' , n(n-2 ) and n ,

respective ly, i f  the conventional method is  used, whereas fo r  ths stable

2method these numbers are 2n - 2n-i 1 , n (n -l) and §n(n+1 ) ,  respective ly, fo r
2

large n the stable metnod has a saving o f -¿n d ivisions over tho



conventicmal method ( i f  terms o f order n are ignored in comparison with 
2

those o f order n ) .

134

3.13 Other methods fo r evaluating h-splines

A number o f authors including Lc.Fata and Rosen (1970) and Powell ( 1970) 

have suggested the use o f formula (3-2.4) to  evaluate H . ( x ) . At f i r s t  

sight th is approach seems attractive since i t  gives K (x ) in  exp lic it  

form. Unfortunately this mstnou is  also unstable, as a running error 

analysis along the lines of those carried out fo r the conventional and 

stable methods indicates. This analysis is  not given here, but wo make 

the follow ing comment. The computation of the individual terms o f the 

summation (3-2.4) can be carried out accurately, but the evaluation o f the 

sum i t s e l f  frequently involves heavy cancellation between the individual 

terms, with the resu lt that the computed value o f ? '^ (x ) may suffer from 

appreciable loss o f accuracy. In our experience th is loss o f accuracy is  

comparable to that incurred using divided differences.

Sogethova (1970, 1972) has considered a very d ifferen t approach fo r the 

evaluation o f B-splines. He expresses 1!^ .(x ) in  terms o f i t s  n constituent 

polynomial arcs:

11 . (x ) m '

■Pn,i~n¡ 1 ^ (x. < X < X. ) i-n  v N i_ n>1 )

^n,i-n+2 x̂^ X̂i-n +1 ^ X s  Xi-n+2;

pK, i - i (x ) (xi -2  $ x <

PniW

(3.13.1)

(x <c X < X.) .

Then, by representing each o f these arcs as a Legendre series o f degree

n-I in a normalized variable, ie  
n~1

P n jW U—J I
f ( j  -  i-n ; i , i-n+2 , . . . ,  i )  f

X = ( x - z A )/ (x  - x .  )
o * » U d •

(3.13.2)



where P (X) denotes the Legendre polynomial o f the f i r s t  kind o f degree 

u an X, he obtains recurrence relations from which the coe ffic ien ts  a
nju

may be evaluated. Having computed these coe ffic ien ts  he uses the three- 

term recurrence re lation  fo r the Legendre polynomials to evaluate p (X)

(u = 0, 1 , . . . ,  n-1 ) and hence Mn i( x ) , fo r any given value o f x, having 

f i r s t ,  o f course, determined an in terva l containing x.

Scgethova1s approach suffers a number o f disadvantages compared with the

method o f convex combinations. F irs t ly , the method, as developed, applies

only to  the caso o f equally-spaced knots, although a generalization to the

unequally-spaced case could presumably be made. Secondly, the determination

of the Legendre coe ffic ien ts  proves to be somewhat unstable numerically.

Segethova carries out computations in  both single- and double-precision

floa tin g-po in t arithmetic, using the differences between the results to

obtain estimates o f the accuracy c f his values. He finds on. an JBK 70%

computer that fo r  n=2l some o f the coe ffic ien ts  have re la tive  errors as 
-3

large as 10 . Note that errors o f this order w i l l  then inevitably be

propagated to the computed value of M ^ (x ), even, i f  the resulting Legendre

series are evaluated exactl y . Also note that Segothovs.’ s actual re la tive

-3errors are as .Large as 10 , whereas our re la tive  error bound is ,  using

(3 - 9 . i l ) ,  ( l .337)(102)2 . Thirdly, the arithmetic work to  evaluate the

set o f non-zero II .(x ) values, fo r  a prescribed value o f x, even

oassuming the Legendre coe ffic ien ts  have been pre-computed, is  about 4n‘~
2

additions ana 5n m ultiplications, which a i«o  compares unfavourably with 

the method o f convex combinations. Fourthly, a Fortran subroutine 

(Sogcthova, 1270) fo r  evaluating the Legendre coe ffic ien ts  o f the B-splines 

up to order 21 requires over 1 o,000 words of store!

An approach sim ilar to  that o f Segcthova*s was developed at an early ptL 

o f th is  work, in which Chehyshev rather than Legendre polynomials were



u tilized . However, a corresponding loss o f precision fo r large n was 

observed, although the resulting computational procedure proved to be 

more e ff ic ie n t  in storage and speed.
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DIP.FT®ENTXATIOIi AND INTEGRATION OF B-SPLHJES

In th is chapter we examine methods fo r  d ifferen tia tin g  and integrating 

B~splines. In particu lar, we develop a number o f recurrence relations 

fo r  performing these operations. The results o f th is chapter are used 

in  Chapter 5 to  express the derivatives and in tegrals o f arbitrary splines 

in the ir B-splino form, in Chapter 8 to  impose convexity and concavity 

constraints in spline f i t t in g  problems, and in Chapter 9 where a general 

class o f constraint conditions in  spline approximation problems is  

examined.

In Section 4-1 we derive two recurrence relations fo r  3-spline derivatives 

In Section 4.2 the important case o f derivatives at the range end points 

as examined and a proof is  given that these derivatives can be obtajjnpd -in 

a stable manner. In Section 4.3 i t  is  established that the derivatives 

required in  fe lt in g  vi^h convexity and concavity constraints can also be 

evaluated stably. Algorithms fo r  evaluating E-spline derivatives in  the 

general case are discussed in  Section 4-4- F in a lly , in  Section 4 o ,  stable 

methods fo r  evaluating indefin ite  in tegrals o f B-splines are presented.

4 .1 Recurrence r e la t ions f or the derivatives o f B -srlin es 

\7e state and prove in th is section two recurrence relations fo r  the 

derivatives o f B-splines; tho f i r s t  is  due to  de Boor (19/2) and the second 

is  believed to  be new.

Theorem 1

The derivatives o f B-splines satisfy the re lation

-CO , ,
Kn i v*; (x .-x . -  (n -1 ) \ _ v( 1 - 1

f  .(x ) N ^ " 0 (x ) ^

<n- n i  t  ' - ; v{ — 1 i-n  i  a-r.+ 1 Jx.x
(4 .1 .1 )
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Proof

Recalling that M ^ x ) = Mn(xi _ n» xi - n+1* ‘ x) (Section 3 .2) and

using the properties of divided differences, we have

“ k M  '  t o { V xi-n> xi - m 1 ’ ••• ' xi ; * ) } (4 .1 ,2)

. I l l  (x. ,, x. , . . . .  x. :x)-M (x. , x. , . . . .  x :x)^a I n' il- i i i 'T x~nt- 2 __ :l ’ ' nN i-n* i-n + 1 * * i - 1  * 'JL
dx

X .  -  X .  
i  i-n

”  (n -0 {-M a. i ; i W  *

(4.1 .3 )

(4.1.4)

d iffe ren tia tion  o f (4 .1 .4 ) 1-1 tines with respect to x, together with the 

use o f ( 3 .2 .6) ,  proves the theorem.

Theorem 4.1.2

The derivatives of B-splines satisfy the re lation

( 1 = 0, 1 , n-2 ) .

Proof

Assume tho theorem to be true fo r 1 = s >  0. D ifferen tia tion  o f (4 .1 .5 ) 

a fte r replacing 1  by s then gives

(x-x. , ( x )+(x.~:v n-ir n-1 , i - 1 v ' v a
> „ (s+ l),  N j . r  . ' ( x )

X .  -  X .2. i~n

(* )  ~ M(•r>)
£i 1 a

X . i-n
(4 . 1 . 6)

But from (4 .1 .1 ),
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v i* }  -  - i i  * ( x)11— I i -L “ I JinuiL
K( ?'i l ) f.y.)ni

x. -  x.i  x-n
n-1 (4 .1 .7)

Thus

(s+1 )
Hni (* ) ■6n

\ (x~x. ) ' r'' ° ! ' , (x ) + (x .-x )? / ° ,^  (x )_1 \ '  i-n y n- 1 >i- 1 v * v i  ' n-1 , i v 7
n-s-^. x. - x. x î-n

. 1 .8 )

So the theorem is  true fo r 1 = s+1 . But the theorem is  true fo r 1 = 0  

by virtue o f (3 -4 .1 ). Hence, by induction, i t  is  true fo r 1 = 0, 1, ..

Define the reduced derivative m^^(x) by

• y 4.A

”£ i  M  “  Kni { j -J
(4.1.9)

Note that

ei ̂  ? ̂  ( x ) = M .(x ) = m . (x ) , n i v '  n i ni.

say. In  terms o f reduced derivatives, (4 . 1 . 1 ) becomes

(4.1-10)

(J.)/ \mv . W  = -----m

,(1 - 1 ) / N J 1' 1) '  V
n-1 , i - 1- mn-1 , i ^ j

c. - x .i  i-n
(4-1.11)

.jiâ ( 4 . 1 .5 ) "becomes

mc9w = X . -  X .i  i-n
1-.1 . 1 2)

I t  is  usually more convenient to work in  terms o f the reduced derivatives

m( 1 ) (,lV. .

m
1 / (x ) rather than the derivatives k „ (x ) ,  because of the above

sim plifications in the basic recurrence re lations. I f  the values o f the

r ( l ) ( x )  or the I^ P (x )  are required, i t  is  of course a t r i v ia l  matter to 
“ n i v ni . .( *1 )
obtain the former by multiplying m^/(x) by the factor (n -1 ) \f (n -1 - 1 ) 1 and

w  _y to obtain the la tte r . These multiplications introduce tnen u,y --j • j_-A,
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n eglig ib le  re la t iv e  errors o f the order o f at most a small multiple o f 

the re la tive  machine precision.

Note that re lation  (4 ,1 ,12), lik e  (3 .4 .1 ), involves the computation o f 

convex combinations, a process that is  numerically stable (c f  Sections 3.9 

and 3 .3 ). Unlike the Hn i(x ) ,  however, the m^v\x) fo r  1 >  0 may be 

positive , negative or zero. Vie expect therefore th§t a p riori re la tive  

error bounds arc not obtainable (except in special cases -  see Sections

4.2 and 4.3 ) fo r  e ither o f these relations. However, Butterfield  (1975) 

has recently suggested a class of algorithms fo r  B-spline derivatives 

based upon both (4 .1 . 'l l )  and (4.1,12) and has presented some convincing 

arguments which suggest that a certain member o f th is class is  the best 

possible choice (soo Section 4 .4 ).

Observe that ( 4* 'i. 12) is  in fa c t an interesting generalization o f the 

fundamental re la tion  (3 .4 .1 ) fo r  B-splines.

4.2 The derivatives of the B-splines at the- ends o f the 

In many dealings with splines i t  is  necessary to treat derivative bounder, 

conditions (c f  Chapter 9) .  I f  B-splines are used as the basis, their 

derivatives at the ends o f the range need to be evaluated. We derive in

th is section some very satisfactory results re la tin g  to the numerical 

evaluation o f these derivatives in the case where the B-splines are 

defined upon a standard knot set with coincident end knots.

Theorem >: -2.1

At the range endpoints x * a and x _ b the rth derivatives (0 .<: r  < n) 

o f the B~spIinos possess the properties
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sign R (a )

end

sign RM =
where

sign (u )

f u r 1* 1

1 °

( i  £ r+ 1 ) 

( i  >  r+1 )
(4.2..1)

| (_ l)N +n- 1- i

l °

( i  ^  N+n-1-r)

(i. < N+n-1 - r )  ,
( 4 . 2 . 2 )

r*
- 1 (u < 0)

0 (u = 0) (4 .2 .3 )

+1 ( u > 0) .

Proof

V/c give the proof fo r  the case x = a; that fo r  x = b is  s e l l e r .  Proa

(4 , 1 . 1 1 ) ,

sign R’W] = =%' Rfi , (a ) -  „ h - i ) (  jL J  l n -i1“ 1 ' * ' J  * (4 .2 .4 )

Not; suppose the theorem to be true fo r  r  = 1*1 £ 0. The use of (4 . 2 . 1 ) 

then enables (4 .2 .4 ) to be reduced to

sign RR = ( i  £ 1 +1 )

u  >  1+1 ) .
( 4 . 2 . 5 )

Thus the theorem is  true fo r  r  = 2. But from (3 .5 .1 ) i t  is  true fo r  

r  = 0, Hence, by induction i t  is  true fo r  0 £ r  < n.

Theorem 4.2.2

Even in the presence of rounding errors the values o f ' ( x )  at the range( R

endpoints :c = a and x = b computed from (4.1.11) sa tis fy  the relations

( 4 . 2 . 1 ) and ( 4. 2 .2 ).

Proof

Only the proof fee- x = a is  given since that fo r  x = b is  sim ilar



Lot S^'.'-Va) denote the value o f Erl -’ ( a) computed from (4*1.11)«. A 
nx T)-1-

straightforward floating-poin t error analysis o f th is  re la tion  gives 

( ^ 1) ( x )  -  S( r ~1\“ rwl -i ! .
v 1* t; J

nx x. -  x. x x~n

t (r ; f  , w  -  5( f % ) \n~1 ,x™1 v '  _ n-1 ,xv
X. - X.x x-n /

/

( 1+s)3

V X. - X .  x x-n

where

lei -Ci' 1 . |e| <  2' C1

(4<do/)

(4*2. 8)

(4 .2 .S)

A fte r  setting x = x±_n = a in (4 .2 .8 ), the remainder o f the proof then 

fo llow s c lose ly  that o f Theorem 4.2,1 with (4 .2 .8 ) used in  plaoo o f (4.1.11). 

Tho only d ifference is  the fa c to r 1+3a in ( 4. 2 . 8) which, since 3 je  } <  1 , 

has no influence on the sign of the term i t  m ultip lies. Thus the theorem 

is  proved. IZl
Theorem 4.20_3

lo t  4 4 m  t e  the value o f a A f U )  oomputod fr r a  (4.1,11) fo r  r  > 0 and

from (3*5.1) fo r  r  = 0. Let

S in f l a )  = 4 i 5d )  -  4 i ) (a )s 4 >'. nx (4.2.10)

,(*0 ,Then 8m^t\a) sa tis fie s  the a -posteriori absolute error bound

<:N. r-i m (4 .2 . 1 1 )

m( r } (a)  nx ' ! (4 .2 .12 )

and the a p r io r i re la tive  error bound



H*(a) $ 1.337(3rs-2)2 râ 1. ^(a) nx ' ' (¿*-.2.13)

The results (4 .2 .11 ), (4*2*12) and (4.2*13) also hold with a replaced by b.

Proof

Only the proof fo r  x = a is  given since that fo r  x = b is  sim ilar.

F ir s t ly  we note that (4.2.12) follows immediately from (4.2.11) upon 

using (1 .1 .9 ) and (1 .1 .12 ). Also (4.2.13) fo llow s from (4.2 .12), since 

the lattex* gives

5 i/ r \ a )na
íC 1.179(3r+2)2_ 6 r. \ n )El V ' 7 9 ( a )  }  n i w  J (4.2.14)

find hence

6 .7 9 (a )nx
<

1 . 179( 3r+2 )2'- t
nL t ; w i

1 -  1 » 179( 3^+2)2- t (4 * 2 .15 )

jjut using (1 .1 .7 ), the denominator in (4.2.15) is  bounded from below by

1 _ 0.1179 = 0.8821; re la tion  (4.2.13) then fo llow s. I t  remains to prove

( 4. 2 . 1 1 ) .

We consider in i t ia l ly  the case r  - 0. From (3*5.3) and (4 .1 .10),

m . ( a ) nx
•  ‘

( i  = 1 )

( i > 0
(4*2. 16 )

and so 5  . (a )  = m 3(a )  - 0 i f  i  y  1 , which proves the theorem in the
nx'

t r iv ia l  case r  -  0 and i  ^  1. For r  ~ 0 and i  -  1, (4.2.16) gives

m. , ( a )  = f l  {  l / ^ - a ) }  = ( l +c )  / (x^-a )

= ( 1+e)2mr 1 (a ) = ( l+ 2e)mn1 (a ) (4*2 .17 )

j e j 4 ' f  1 and \e| <  2 Thuswhere
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6 nn1 ( a ) = ^ ( a )  -  ^ ( a )  = 2oz„.f(a)

So

5nn i(a )

n1 nl n1

:< ( 2)2 1nn1 (a )

(4.2.18)

(4.2.19)

But from (4 .2 .17 ),

ran1 (a ) ^  ( I - 2 b) T:n i(a ) (4.2.20)

Thus

6mni(a ) $ Z d - Z - ^ - V * ! i n1 (a ) , ( 4 . 2. 2 1 )

which proves the theorem fo r  the case r  - 0 and i  = 1 ,

V7e now assume the theorem to be true fo r  r  = l-|  ( i  ^  i )  and Dhow h y  

induction that th is implies i t  is  true fo r  r  ~ 1 . Prom ( k . 2 . 8 ) °nd 

( 4 . 2 . 10 )

m̂ ( a ) +  S m ^ 'ia ) =nx 7l) {
+ ( 1+3e).

/ » /•. 00 \

The use o f (4.1*11) reduces (4.2.22) to

¡»■•ii’w = (¿5) [*-£s!Lw - Ei&!i(a) v
. 1 ^* r - ( 1- 1 ) / x - ( 1 - 1 ),

[ nn -1 ,5 - l(a) “  mn~1 , i  j *

(4 .2 ,23)

Then, using (4.2.11) with r  = 1-1, (4.2.23) yie lds

< ( ¿ s ) 1 0 - 2’ i ) 1~'51o i - i ) o j  a '* 1 { ¡ s ^ L i ( ‘ ) 

+ k - c i w !  ]  • ( 4 . 2 . 2 4 )



As a consequence o f Theorem 4*2.2,

j n-1 , i - r  ' -  f e l l «  -  5& 1J («)| • (4. 2.25)

Moreover, from ( 4 . 2 ,/ ).

M
nxI ' M  | (4.2.26)

Halations (4*2.24), (4*2.25) and (4*2.26) together y ie ld

k i  'd > ! 0 - 2- h - V t l . ? ,J I no. va'¡  U+.2.2/)

^ i - 2- t r - 3V ^ ) 2- t '  l̂ w (4*2.28)

Thus the theorem is  true fo r  r  = 1. But we have already proved ii. true 

fo r  r 0. Monee by induction i t  is  true fo r  r  ^  0.

The numerical evaluation at the range endpoints o f the derivatives o f the 

B-splines defined upon a standard knot set with coincident end knots is  

thus unconditionally stable.

4.3 The derivatives of B-splines at the knots

In th is  section we prove f i r s t l y  (Theorem 4*3*1) an in teresting result 

re la tin g  to the signs o f certain B-spline derivatives at the knots and 

then show (Theorem 4*3*2) that lid s  resu lt s t i l l  holds in floating-poin t 

computation. F ina lly  wc prove (Theorem 4 .3 *d) that when these derivatives 

are evaluated using re lation  (4 . 1 . 1 1 ) the computed values sa tis fy  excellent 

a posteriori absolute and a p r io r i re la tive  error bounds* These results 

arc o f particu lar relevance to the algorithm derived in  Chapter 8 fo r  

spiine f i t t in g  with convexity and concavity constraints.

Theorem 4» 3•^

For n ^ 2  and a l l  i  the value o f at the inte r io r  knot x .



( j  = i-n+1 , i-n+2 , . . .  i - 1 ) is  s t r ic t ly  positive or negative according 

to whether i+j+n is  respectively odd or oven.

Proof

Suppose the theorem is  true f o r  n = r-1 ^  2. I t  then fo llow s immediately 

from relation  (4.1.11) that the theorem is  fo r  n = r . But the theorem 

is  evidently true fo r  n = 2 , since ®2i^ (xi - 1 ) ~ M2 i^xi~ 1 ) >  0 by virtue o f 

Theorem 3.4.2=, Hence by induction the theorem is  true fo r  a l l  n ^  2«

(n -2 )As a consequence o f Theorem 4.3.1, r f ' ( x )  is  a f i r s t  degree spline 

( i e  a piecewise-linear function) with vallies at the in te r io r  knots which 

alternate in sign.

Theorem 4.3.2

Even in the presence o f rounding errors, fo r  a l l  n ^  2 and a l l  i ,  the 

value o f b^ 1 ' ( x )  at the anterior knot x .  ( j  = i-n+1 , i-n+2 , i - 1 ) ,

when computed in floating-poin t aritlimetic from (4 . 1 . 1 1 ) i f  n >  2 or from

(3 . 2. 8 ) and (3*4*1) i f  n = 2 , is  s t r ic t ly  positive or negative according to 

whether i+j+n is  respectively odd or even.

Proof

¥e merely have to 

have the same sign

show that m^?""^(x.) and the computed value ^
Tux. J  T lx

. The resu lt Trill then fo llow  immediately from

Theorem 4.3*1.

Suppose the theorem is  true fo r  n = r-1 , ie  that fo r  a l l  i  and fo r

j  = i- r+ 2 , i-r+3 , ..•?  i-1 , 4111(1 Hr - 1^ i (xp  ilave "^e Sf!ine sign.

Then, using (4 .2 .8 ) (which holds independently c f the assumption in

Section 4.2 that the end knots are coincident) i t  fo llow s immediately that

fo r  j  = i- r + 1 , i-r+.-j i -  i , m .̂ \ x . )  and ^ ' ( y  ) r> ++~ „ra. j '  i 'i  v-jv the same

sign, since the facto r 1+3e >  0. Hence the theorem is  true f o r  n = r .



147

But from Theorem 3.8.2, ¡^ .. (x ^  endra2;. ( x . )  certainly have the same 

Hence the theorem is  true fo r  n = 2 and therefore, by induction, fo r  a l l
r r

n ^  2. L j

Theorem 4.3-3

Let i  be any in teger, r  be any Integer £  2, and j  take any one o f the 

values i-r+ 1 , i-r+2, i-1 . Let denote the value o f xSr ~2\
J. A . J p ;] \

computed from ( 4*1 * 1 1 ) i f  r  >  2 or from

» 4 - 1  > * "2i<xi-1 ) »  ( V xi-2 )
-1

« .  ' xj

(4*3.1 )

i f  r  = 2» Lei

. ( r - 2 )/ \ - (r~ 2 )/ * (r--2 )* Noxa . ( x . )  = m'. ' ( x  . J -  mv. U x . ) .n  y o '  n  v j '  r i  K y

( r - 2 )
Then 6 ra^._‘ ; (x .) sa tis fies  the a posteriori absolute error bound

(4* 3 « 2 )

6 d ( - 2 ) ( x .) ^ ^  4 r 2 )<xi )I'll. J ( 4 .3 .3 )

^ 1-179 (3r-4)2“ t  ¡ 4 r 2 ) ( y- j ) (4 .3 .4 )

and. the a prior i  re la tive  error bound

Sn^ " 2 ^ xp / ar i " 2 V i ) |  ^ '*337 (33-4)2""“ , (4 .3 .3 )

Proof

Now (4 .3 .4 ) and (4 .3 .5 ) fo llow  from (4 .3 .3 ) in  essentia lly the same way 

that (4 .2 .i2 ) and (4»2o13) fo llow  from (4 .2 .11). Hence we only prove 

(4 .3 .3 ). The in i t ia l  stages o f ‘the proof are very sim ilar to those of 

Theorem 4-„2.3- from (4 .2 .S ), v4»3*2) and (4*1.11) we obtain
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6 n( r-2 ) (x . )rx v
! _  

X .-.'C . J
\  X x-r/ r - 1 , x—1 v j '

+(3)2~ h1

Not» assume the theorem to be true fo r  r  = s~1 ^ 2 ,  ie  that 

5 m3- 1^ i (xj )  ^ ( 1- 2" t )7“ 3s(3s-7)2“ °1 E ^ 0 ( X j)

(4 .3 .6 )

(4 .3 .7 )

Putting r  = s in (4.3*6) and using ( 4 .3 .7 ) then gives

* (s -2 ), v 6 m . (2c.)sx '  a ' ¿ 1 x .-x .
v X X -3 ,

- (s - 3 )/ \IC „ . (x . )s - i , i v y

( l . 2-t )7 -3 a(35_7 ) 2- * l|

} + (3)2'tl|i4;L(̂ ) -
¿ (= -3 ) , ,
“ s -1 , 1- 1 ^ ;

1 (4 .3 .8 )

But i t  fo llow s from Theorem 4*3*2 end from (4 .2 .8 ) that

- (s -3 )m - (s -3 ) (  )
s—1 , X J | ( « - s )

-(s -2 ) / v m). M x.) sx v ,j' (4.3.10)

The use o f (4*3.9 ) and (4.3.10) reduces (4-3-8) to

6 m^~2^(x.)| <( | (l-2 " t )7" 3<3(3 s -7 ):3 } (l~2- 'l') “ 32~ti

(4.3.11)

^ ( l - 2 " t f " 3s(3 s -4 )2 't| ^ r ? ) ( x . )  . (4 . 3 . 1 2 )

So the theorem is  true fo r  r  = s. But ix  is  very easily  v e r if ie d  that the 

theorem is  tine fo r  r  - 2 . Hence, by induction, i t  is true fo r  ¿U r >.2

n/1 \
-p ( . * £ . *  J-1

recurrence re la tion  (4 .¡.1 1 ) is  unconditionally stable.

( y* p \,,o conclude from Theorem 4.3.3 that the computation of nr± from the



Two recurrence relations fo r  the derivatives o f B-splines have been 

established. One, (4 .1 .11 ), relates the 1th derivative o f a B-spline o f 

order n to the (.1-1) st derivatives o f B-splines o f order n-1. The other, 

(4 .1 .12 ), re lates the 1th derivative o f a B-spline o f order n to 

derivatives o f the same order o f B-splines o f order n-1.

These two re lations, when used in conjunction with the fundamental 

recurrence (3 .4 .1 ) suggest (a t lea s t) two computational schemes fo r  the 

numerical evaluation o f m ^^ (x ), fo r  any prescribed value o f x.

One such 3chene (Scheme A) involves in i t ia l ly  the use o f (3 .2 .8 ) and 

(3 .4-1 )» as in Algorithm 3.12.1 fo r  example, to compute fo r  a l l  relevant i  

trie values o f Then (4. i. m j is  employed to compute successj yoly

the values o f _A+5 •••» râ T^(x )? fo r  e l l  appropriate

value3 o f i .

A second scheme (Scheme B) involves in i t ia l ly  the use o f (3 .2 .8 ) and

( to compute the value, o f  « ^ ( x ) ,  foiler,ad by the use o f (4 . 1 . 1 1 )

to compute successively the values o f n ' . ( x ) .  ( l )  / \ „3xv "  4 i '■*•/> u>2+2 V x '  fo r

a l l  appropriate i .  This is  followed by the application o f (4 . l ! l2 )  to

compute successively the values o f m p ] 7 X) m̂ 1) /VI ( l )/  \1+3,x'“ 1 + 4 , • • • »  Kni (x)>
again fo r  a l l  relevant values o f i .

B u tterfie ld  (1373) has carried out a detailed analysis o f a set o f schemes, 

which includes Schemes A and B as special cases, fo r  computing B-spline

derivatives. A tentative result o f his work is  that Scheme A can be 

expected to have superior s ta b ility  properties to a l l  the other schemes 

in the set. Numerical evidence is  accumulating to support this resu lt.

Algorithm 4.4« 1 below implements Scheme .A,
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Algorithm A« 4» 1: The evaluation o f tho 1th reduced derivative o f a l l

non-zero B-splines fo r  a given argument x  (:,l . £  x  x . )
iC*® I  ̂  ̂ iC

using Scheme A,

Comment: The B-splines o f order n-1 arc computed by convex combinations 

in  Step 1 *

Step 1* Employ Algorithm 3»12.1 to obtain the values of

Tj  = Mn - l,k - 1+ j (X) ( j  = 1> 2> '• ' *  n-1)*

Comment: The required derivatives are computed by recurrence in Steps 2-5,

Step 2, For r  -  n-1+1, n-1+2, . n execute Steps 3-5*

Step 3- Set v .  =. v / < 3W -1 - * k -1 ).

Step 4. For i  = k+r-2, k+r-3, . k+1 replace by

( vi-k~vi-k +1 )/^xi " xi - r *̂

Stop 5. Replace v ̂  by -v r ).

, ( DSvep o. For ¿ = 1 , 2 . • • • > n se,t = v

4.5 The defin i t e and indefin ite  integrals o f B-sp'Mr ss

In th is  section some results re la tin g  to  the integration o f B-splines are

establ 5. shed-

Theorem 4 «5«'l

The in defin ite  in tegra l o f a b-spline is  given by

f x
‘ 0

i + n
( x  <  X . ) 
v <  x - i r

wf
ci

H-* H
- c>* cb 1! J,

n
>  * K , . ( x )3.1-f ! s J 
J=X-( 1 ’  ^

( x .  <  X
v x - n  <

-  fO J,
n K  s; * )

(4.5.1)

and by

II ( !■ ' -u- _J-l . t '*> J'-l •“ —m

cc

k-ai

n » a U . j W  i  x < V  i - a < f c  $ ■•).

(4 -5 .2 )



Proof

Use o f the relationship (4* 1.1) yie lds

M .(x ) = M . , (x )  -  -  N’ „ 4(x ).  n jv '  ' n n+ 1 rj v '* (4 .5 .3 )

Summing (4.5*3) over a l l  values o f j  from i+1 to i+n gives
x+n

11 . (x )  = H . (x ) - ~  /  . N’ .(x )n,x+nv '  no.' '  n n+1 , j v- ' (4 .5 .4 )

V7e cone9i7i ourselves with the in terva l x ^ n x.., since ’>'r:j (x )  1  0

outside th is in terva l. Thus}, replacing x by t  in (4 .5 .4 ), integrating

with respect to  t  between the lim its  - oo and x and observing that

M . (x )  = 0 fo r  x <  x . , we obtainn,x+nv ' i  ^
r  x x+n

- 60
.. „ W  I T ’
ian iv° 'au -  n 4-T-4j - i +1 L

>T f  JL \

n+1 , '

x

CO
i+n= ̂ Z2 N

n j= i+1 n- l,J

/i r e\

(4.5 .6)

Putting

gives

x _ x^ in  ( 4<-5«6) and using the compact support o f the B-spline

CO> x+n

M . ( t )d t  -  -• /  i N .. .(x. ) nxv '  n n+1 , j v x '
-co J

(4.5.

Since Nn+1 , j  

is  equal to

t , , ( x . )  = 0 fo r  j  and j  i-:n, tne right-hand side o f ( 4.; n+ • )  ¿i -L
^ Nn+1 ,(x ..), which by virtue o f (3 .6 .1 ) then y ie lds 

1

m . ( t)a+
n i ' ' n (4.:

-CO

(c f  Section 3»2J. The results (4*5*6) and (4 .5 »o ), together with the 

fa c t  that Jin.; (x )  S 0 fo r  x < x^.. and x > x ±, prove ( 4 . 5. 1 ).

F in a lly , i f  x v A $ x  < x_, where i-n  <  k ^ i ,  then N , .(x ) = 0 fo r  

j  "> k+n, fro,-a which ( 4. 5. 2 ) fo llow s. [_ |
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We note that the lower 1  trait .in the integrals in (4 . 5* 1 ) and (4*5.2 ) may 

he replaced hy any value not exceeding x_. _n without a ffec tin g  the resu lts.

Moreover, i t  fo llow s from (4.5*1) and (3 .2 ,6 ) that the d e fin ite  in tegral

o f Nn l(x ) is  given by
r oo

If . ( x ) dx = (x .-x . )/n .nxv ' ' x x-n" (4*5*5)
-  (0

F in a lly , i f  the knot3 are uniformly spaced one unit apart'., ( 4. 5. 9)

reduces toroc

N . (x)dx -- 1 . nx' (4*5*10)
-(O

I f  the values c f  N , .(x ) in (4.5* 0  or (4*5*2) are computed using the
1 1+  1 j  J f

3 . 12 . 2 , the value o f ¡.. Mr . ( t )d t  hasiX. xiA)  x-n
unconditionally stable Algorithm 3 .

8 ve;^  m a 2 1  re la t iv 9  orror‘ A lternatively , one o f the' a i w a discussed 

in  Chapter 5 fo r  evaluating a lin ear combination o f B-splir.es can be used; 

the resu lts o f that chapter can be used to establish that the value o f the 

in tegra l computed in this way also has a very small re la tive  erro r.

'J1he fo llow ing theorem shows that the integral o f . ( t )  can pJrr, bo 

computed from a reduction formula.

Theorem 4*5*2

I f  x . - < x ^ x then x-n s a
r  *
I M
J-cO

M . ( t )d t  = ~ (x -x . )M . (x )+  n iv rr x- n nx' '
n- 1
n

x

M.
-  co n - l J ^ db

Proof

Prom (4*5*0? (3*4. i )  hnd (3 .2 .6 ),

(4*5*11)



•1 C’/•Dj
r  x i+n

v W * ' “ ;  ^ { ( k j^ A , h ( i ) * (i j^ w }
’ (5w

Í  ¿ ¡2=i ^ 7  , . ,,
4 j\

l+n-1

„  ¿  i (x -x .  n)>¡n iM + ( V XJ -» )M' ‘J( z )n 1 n 1 j=i+1»

l+n

i+n~1

n ! x̂-xi - n \ i ( x )+ 2 - j Nn<j ( x ) j ,
j —x+1 J

V « W j

,] (4.5.12)

since M: . (x ) = 0 fo r  x ¿  v <r v r, , ,
IJ>:L+n i-n  ^  ■< xi ‘ But* hy replacing n by n- 1  i

(4 .5 .1 ),

i+n- 1 r x

t :  * » sm  -
j= i+1

Mn- 1  > i( ‘fc) ¿L1; ( xi-n +1 ^  x ^ (4* 5« 15)
-  <8

Now (4 .5 .13 ) also hblds t r iv ia l ly  fo r  x ._n ^ x ^ x . ^ .  Hence (4 o .1 3 ) 

bolds fo r  x ._n .< X ,< x±.  ̂ Substitution o f (4.5.13) into (4.5.12) then 

y ie ld s  (4 .5 .11 ).

The fo llow ing theorem establishos another useful form fo r

Theorem 4« 5°3 

For Xi - r  ^ X £ xi> 

r  *
Mn i( t )d t  = 1  ( • « p j . K i i x ) .

x

■cO

-cs r .-1
(4 .5 .14)

Proof

The repeated application o f (4.5.11) y ie lds
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i-n . 1  ■ *'>.-1 f'O ''-(n--;.Jj | Kn^2 ,i ( t ) d t i

1

X

+(n-3> m ¿ (O a t 
l -¿o -5,x _

j
5 | <X- V „ ) h „ 1  . . .  +(* -V 2 )M2i (x )

+ )
n

V * > dt f -» J /** "V

a >_i K A ( X)+ i  % ( * ) « .
7-2 *

Sat i t  in read ily  established that

I -  oO
(4.5.15)

x

-  &

M1± (t )d t  »

0

(x-x. ,)/ (x .-x . . )  v 1 - 1 "  v 1  i - 1 ' (x l - 1  i  ~ i  * i )

*  (3E-xi - d H1 l t o ( *  ^  X. ) . (4.5.16)

The resu lt (4*5.14) then follow s from (4.5.15) and (4.5,16).

'xhe reduction formula (4.5.11) and the exp lic it  f o a  (4.5.14) have recently

been discovered independently by Gaffney (1974). The value o f f \  . ( f .W
j _ j. ’

can be calculated particu larly e f f ic ie n t ly  from ( 4 . 5 . 1 4 ) since a single 

application o f .Algorithm 3.12.1 y ie ld s  aa by-products a ll  the required 

values o f M ^ fx ) ( r  -  i„ 2 , n )t

tie xaay also express (4.5*1 )> in ~ho case .< v <6 V noi - r  '  v
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H .(t )r li nxv '
NT-----7

, - 1 >  ' 
— i

N , .(>;) + c n+1 , 1 + ° *
j= i+ 1

(4.5.17)

where C is  a constant whose value depends on the lower lim it o f integration, 

The r - fo ld  indefin ite  in tegra l o f J>! .( t )  can sim ilarly be represented as a 

lin ear sum o f B-splines o f order n+r plus an additional term o f the form

G^xr -1 V-'c + Cr (4.5.18)

Yle discuss on deta il in Chapter 5  the representation o f polynomials o f 

degree <  n in terns o f B-splines o f order n„ Hence the complete

expression fo r  the r - fo ld  indefin ite in tegra l o f w ( x )  ^  v<n \> -J  can L>e represented

so le ly  in  terms o f B-splines o f order n+r.

F in a lly , we state and prove an interesting result due to Bu tterfie ld  ( 1 5 /3 ). 

The resu lt is  in fa c t an even broader generalisation than ( 4 . 1 . 3 ) 0f  the 

fundamental recurrence re lation  ( 3 .4 . 1 ).

Theorem 4.5.4

Lot r

M ^ (x )  =m  v ^ n i ' 1̂ (t ) dt ( l  < 0) ,
co

with

, ( 0 ) ,  \ .. / \ h ' . '  (x j  =• Ji .. (x ; .  m  n i '

Then the result (4*1.5) also holds fo r  2 < 0t

(4.5.19)

(4.5.20)

Proof

Suppose the theorem is  true fo r  1 = -1, -2, t . . ,  r  ( r  <  0). Then (4 .1 .5 )

'XV u 3

/ . / . \ i (x -x . ^  , .¡(x )+ (x  ]  (x )

jaui • '  " \ n - r - y  i X. -  T-  x.
2. i-n

(4.5 .21)

the integration c f which (by parts) y ie lds



-i1 .y

'V-Om  v / = (  (x-X. )MVr~1 i (x )+ (x  )\n-r-1/ i - V  n- 1  , i - 1 '  '  K i  '  n-1 , i ( * )

-M(r ; 2? 4(z )+1I( ^ 2?(x ) } / ( x .-x . )n- 1  , i - 1 v n~ i , i  ’ J / i  i~n

But sines (¿..1.1) evidently holds with 1 <  0 »e have 

(n -1 ) -------- *---------------- ------ ---- W  *
X . -  X .3. i-n

The insertion o f ( i f .5. 23) into (4<>3. 22 ) reduces the la t te r  to

> D ( r )  .  (n - j\ /
l4n i '  ~  \ n - r j  ] v „x. -  x.a i-n

(4.5.22)

(4.5.23)

(4.5.24)

Thus the resu lt is  true fo r  1 = r - 1 B y  using integration hy parts i t  l£ 

eas ily  proved true fo r  1 = -1. Hence, by induction, the theorem is  true 

fo r  a ll  1 <  0. [ ]
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CHiV?i!sa 5

3,1.; B-SPLINE REFnFGÎ TAT ION OF 8PLH«8 «TO POLYNOMIALS -

In th is  chaPte r  WB concidor the representation o f s p l i t s  ana poDynomia] s

i.o i>3z*mo o f B-splines. There are at least tin* ee reasons why such 

representations are useful. F ir s t ly , in problems o f interpolation and 

da ta -fit oing by splines, B-spline representations usually prove: to bo woD7- 

conditioned in that the coe ffic ien ts  in  the representations are re la t iv e ly  

inSonuita./o to changes in  uio data. Secondly, as we show in Section 5 .3 , 

the numerical evaluation o f the B-spline representation i t s e l f  can be 

carried out in an unconditionally stable manner. Thirdly, i t  is  convenient 

to  be able co ¿.‘¿present polynomials in  terns o f splines in order that 

repeated indefin ite  integrations o f arbitrary splines can be accomplished 

read ily , in order to impose fa ir ly  general forms of lin e constraint in 

least-squares b ivariate spline approximation, and also to provide an 

"in terface" between mathematical software employing polynomials with that 

employing splines.

In  Section 5-1 we present a particu larly useful resu lt due to  de Boor ( 1972) 

which expresses a linear combination o f B-splines in terms of B-srLines o f 

lower order with certain polynomial coe ffic ien ts . The resu lt is  then used 

to  establish a new proof that the B-splines form a lin ea rly  inf.;- cadent set 

o f basis functions in  terms o f which an arbitrary spline s (x ) car be 

expressed, and to establish lo ca l lower and upper bounds fo r s(x) Tn 

Section 5-2 two schemes fo r  the evaluation o f s (x ) are presented and in 

Section 5.3 rigorous floating-point error analyses o f those schemes are 

given. In Section 5.4 the e ffec ts  o f errors in the B-spline coeffic ien ts 

are examined. In Section 5-5 the problem of representing powers in terms 

o f B-splimes is  addressed and in Section 5 .6  algorithms fo r  obtaining these

ihe extension o f the algorithms’ ofropr0sentations are presented.



Suction 5-6 to  cover f in ite  power series is  treated in  Section 5-7, 

where an interesting result re lating the absolute convergence of a 

Taylor -series representation to the boundedness o f the coe ffic ien ts  in 

a related B-spline representation is  established- Error analyses o f the

algorithms o f Sections 5-6 and 5.7  are given Section 5.8. Sections 5 .7  

and 5 .10  discuss methods fo r  representing in their B~spline form the 

derivatives and indefin ite  integrals o f a(x ) .

Section 5*1 ■> 5c exceptional in that i t  treats the conversion of the 

B-spline representation o f splines (o r , in d irec tly , o f powers or polynomial 

in to the ir equivalent piecev,ise-Chebyshev-series representations. The 

la tte r  representations require considerably more store than the B-spline 

form, but they have the advantage that they are quicker to evaluate.

5 .I The B~spline representation of splines

Given an n-extended partition  fx .j ]  and a sec o f coe ffic ien ts  {c/j- , le t

* (* )  - 2 _, c-iNn i ^  ; (5 .5 .1 )

whore the are the B-splines of order n defined upon the knots

[ x j  • Evidently, any linear combination o f the fora ( 5 . 1 . 1 ) defines a 

spline with knots i x . }  .v X **

Vie now establish a result due to do Boor ( 1972) o f which we make 

considerable use in  th is chapter. Using ( 5 .4 ,2 ) ,  ( 5 . 1 . 1 ) becomes

i



m ,  .
where the r educed r.occarrh :n  cr " (:c; arc g;v.:.n hr.

. "X. ) c . + { x . ~x J c .
^ f j i  /,,>« _ x-fl+v x-*i ' ■' .... i

Ai  i-n  i 1

Clearly th is reduction process nay he repeated; we obtain

r -|i

* w  «  L .  ° i  ( y- K - i , i (x)■

t £ a ! \V.J . I 'h-j

(5 .1 .5 )

where

o ^ ( x )  =

( 1 - 0)

, v f i - i 3 ,  x , x C i-i3, x

X. -  X. _1  x-n+1

(5 .1 .6 )

In particu lar, because o f ( 3 .2 .9) ,

;(x ) D1- 1] (x ) (x i „1 £ :c <  \ ) ( 5 . 1 *7)

that, as a consequence of ( 5 .1.6) ,  for any value of x such that 

£ X < x , c f ( x )  is  a convex combination of the values of c., 

., c.. In particular, s(x) is  a convex combination of the

values of c_. , c +̂^i •••* ci+n~1 *

Note

x. ,X— I

c . , >X'! I

Curry and Schoenberg ( 1966) give a lengthy proof that the B-splines 

[Nn i(x ) }  defined upon an n-extended partition  | r.. ]  are .linearly 

independent and fora  a basis fo r  splines o f order n with knots 

We present simpler proofs, which we believe to be new, o f these resu lts .

Theorem 5.1•1

The B-eplinee {  H ^ x ) }  d e iù ed  upon an /--extended partition  { * . ]  ^  

lin ear ly  in der endent.
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Proof

I f  the N ) are lin ea rly  .independent then no non -triv ia l linear 

combination o f bhe li.,.. (x ) can be iden tica lly  Kero. ¿\ s suite> therefore, 

that there exist values c, , not a l l  zero, such that fo r a l l  x , >

* o o  = 2  = ° (5.1. .8)

We shall show that such an assumption leads to  a contradiction.

Consider values of x in the in terva l x £ x < x . ,  Then, using (5 .1 .7 )»
Cl “* * o

(5.1.5)« M  = o & - h (x )

 ̂ V pQ — -j 1 .
Now, by virtue of ( 5 . 1 ,6) ,  c : " (x ) can he iden tica lly  zero only i f

u
c f -  (x ) and c^ ’ /  '’ (x ) are both iden tica lly  zero. In turn, e^J“ ''“ (x ) ax

c (x ) can he iden tica lly  zero only i f  c. ^ ( x ) ,  c P \ '^ (x ) and 
,1+1 0 J+1 '
f  — 71c ^ ( x )  are a l l  id en tica lly  zero. Continuation of th is argument leads 
J+ ^  ^

to the resu lt that e. ‘ (x ) can be id en tica lly  zero only i f  the values <
U

c. ( i  = j ,  0+1 > • ••> j+n-1 ) are a l l  zero:, which is  the required

contradiction, at least fo r  values of x such that x . f  x < x ..
0~1 j

Consideration o f such in tervals fo r  a l l  j  leads to the required 

contradiction fo r a l l  x.

Theorem 5.1.2

An arb itrary spline s (x ) o f order n defined upon a standard xnot set can 

be represented uniquely as 

N+n- 1

■ W  -  2 .J
i =1

c .N ( x )  (a  .> x s b) .i n i '  '  v • ' (5 .1 . 10;

Proof

Since the B~splines N ^ (x ) ( ±  -  1. 2f . N+n-l )  defined, upon a standard
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knot set arc lin ea rly  independent (by virtue o f Theorem 5 . 1 .1 ) and since 

an arbitrary spline o f order n can be described in terms of N+n~1 i i r;ua.v 

parameters (Section 3-1)» i t  follows that s (x ) takes the form ( 5 . 1 . 10) .  j~j

i»e shall sometimes make use o f the equivalent representation involving the 

un-nornalized E-splines, v iz

II+n-1

» (* ) -  (a  < X £ b ) . (5.1.11)
i —1

Ah a consequence o f (3 .2 .6 ), the coe ffic ien ts  in the two representations 

are re lated  by

cf1 (x .-x  
' 1 i~: ( i  = 1, 2, . . . ,  N+n-1). (5.1.12)

The next theorem establishes lower and upper bounds on a spline in terms 

o f the coe ffic ien ts  o f i t s  B-spline representation.

Theorem 5.1.3

I f  s (x ) has the B-spline representation (5 .1 .1 ), then f  or x . „ .< x <  x .,
fi-i " y

min £ s (x) $ max c^. ( 5 . 1 . 13)

j  ^ i  ^ j+n j  ^  i  < ¿i+n

proof

The proof fo llow s immediately from the observation made ea rlie r

section that fo r  x._ £ x <  x . s (x ) is  a convex, combination o f 
" 0“ • J

in this 

the values



5.2 The numeric1’1 evaluation of_a s-pli.ua from it.-; B-sp llre  repreve- t-’tlcn  

Fo give in this section algorithmic preeentat:' ;h:s o f two scheme.’?, both, 

based upon the use o f convex combinations, fo r evaluating a spline s (x )

0-e> order n from it s  representation as a linear combination of B-splines.

Given a standard knot set and a sat o f coe ffic ien ts  c± ( i  ---- 1, 2,

H+n-1) ,  we wish to  evaluate (5.1.10) fo r a prescribed value o f x

(a  it x b ) . For either scheme le t  j  be the unique integer satisfying

x <C x ( in  the exceptional case x = b, set j  N ). The value of ti 
*'* " J

L.ny be found either by sequential search or, i f  N is  large, more 

e f f ic ie n t ly  by binary search. As a consequence of the compact support 

property o f the B-splines, the sum ( 5 .1.10) reduces to

(x )  = /  C.N . ( x )  ( x .  . g  x < x ) .- / __ j x n i j -1  j (5.2.1)

In the f i r s t  scheme (Scheme A) v/e use re la tion  (5 .1 .6 ) to feria the

j+n-1- 1 ; 1  = 0, i ,  . . . ,  n - l ) ,triangular array o. ' ( i  = j ,  j+1»

ty p if ie d  here by the case n = 4:

. M
J

cpJ

o & ]

j
.E >

j +1 '
DJ

J

c [°3
j +2

c j+'t

o m,J+i

J+3

VO
% 2

c , 
J
d :i ( 5 .2 .2 )

I t  is  convenient to form th is array column by column, the single entry

in the last column being the required value o f s (x ).  Evidently, the

vr.’lue o f c" ’- '(x ), once computed, may overwrite the value o f c?'1“ '^ (x'l 0 i  \-n-/ }

since the la tte r  is  then no longer required. Thus only n storage locations



are required by Scheme A, an algorithmic presentation of which is given

below*

Algorithm 5 ♦ 2.1: The evaluation o f a (x) from i t s  normalized B~spline

representation using Scheme A.

Step 1. Determine j such, that x , jC x <  x . using sequential or
J— ‘ *}

binary search.

Comment: Set the in i t ia l  conditions.

Step 2. 

Comment:

For i   ̂ j ,  j+1, j+n-1 sot = c . .

The value of s(x) is  computed by convex combinations in 

Steps 3-5*

Step 3. For 1 tz 1 * ;• * « • p n-1 execute Step 4 ,

Step 4. For i - j ,  ,j+1, • • • , j+n-1-1 replace d.

x)d._ a .

X . -  X .1  i-n +1

Step 5 . Set r,(x) = cL.

by

I t  has been observed empirically by de Boor (1972) that Scheme A is  stable 

even fo r orders as high as 80. In Section 5.3 we prove rigorously that 

de Boor's observation is  in fact a property o f the method for arbitrary 

coe ffic ien ts  and knots.

The second scheme (Scheme B) is  more appropriate i f  two or more splines 

with the same knots are to be evaluated from th e ir respective B-spline 

coe ffic ien ts  (for-an important application see Chapter 10). Scheme B is  

based upon the in i t ia l  generation o f the non-zero values o f the nth-order 

B-splines, ie  the values of v. = Nn i (x ) {i  = j ,  j+ i, . . . ,  j+n-1) ,  from 

Algorithm j . ' t2 ,2, followed by the direct evaluation of

s (x ) =
vr~N *
xf--- I
i - j

V i - (5.2,3)

An algorithm fo r  th is  scheme is  given below. Again only n storage 

locations are required.



Algorithm 5 -2 .2 : Tho evaluation o f s(x.) from i t s  normalised B-spline

representation using Scheme E.

Step 1. Determine j such that x ,_ x <  , using sequential or

binary search.

Step 2. Use Algorithm 3*12.2 to evaluate v. = N . (x ) for r i  no.' '

i  = j ,  j+ 1 , . * *, j+n-1 .
j+n-1

Step 3* form s (x ) = J c±v±-
i= j

5 2Either scheme takes -̂ n + 0(n) long operations.

5 .3  Error analyses o f algorithm:-; fo r  evaluatin g  a_ spline from 1 1 s

B-spH hue re presentat ion

To carry out a floating-poin t error analysis o f Algorithm 3.2.1 (Scheme A).

- f i l  n  ’le t  3 !*LJ (x ) denote the computed value o f c (x ) and

S c p C x ) -  o p J(x ) -  cp 'J(x )

In accordance with (5 .1 .6 ) we set the in i t ia l  condition: 

^ ( x )  = ¿ ° 'J (x ) = c. , 6c p ( x )  = 0 .

(5.3*1)

(5*3*2)

Por l > 0 , the floating-poin t equivalent o f ( 5 *1 *6) is

- c p  { l )  „  n  [  (x ) -' m )
X ) X. - X.1. x i-n +1 i (5*3.3)

Relation (5*3.3) is  similar in form to  (3*8 .5 ), and the method o f analysis 

o f the la tte r  may he applied to some extent to the former. However, the 

CD3 fy\ rjlg cP '^ (x) may- be positive , negative or zero, whereas the 

M ( -A in ( ‘i.8.5) are always non-negative (Theorem 3.8 .2 ). By analogy 

with (3*8*8)
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+ M  {  « » P " 11 ( * ) r f  (:< )] J / (X. -x. ) ,i  i-n + l;
(5 .3 .4 )

where Je^J, |Ĝ | ^  2 3 and and e0 depend on i  and 1. Using (5 .3*1 ),

( 5 .3 .4 ) becomes

to p 3«  = [ ( - V :v a ) { 6ciĈ i1(x)(ll5e1)+5,,i 0.w l ] w i

" ( x .-x ) j s c f  “ 11 (^ )(l+5 o 2) i5 c 2o p - ,:l( x ) } ]  / ( Y ' i . M l )  •

(5 0 .3 )

DO
Theorem 5.3>1

t -p Y < x <  x .  and the array c^'u (x )  ( i  = j ,  0+1, • ••> j+n-1-1;•Li x j_-| "  3 x

3 o, 1 , . . . ,  n-1 ) is  formed using re lation  ( 5 -1 .6) ,  then the values 

-D J (X) actually computed are such that the errors 6c p  (x ) satisfy

6c p ( x ) iC 5 .86212“  ̂ max jci-j* 

i  $k< i +1
(5 .3 .6 )

Proof

The s lig h t ly  stronger result

6c f^ (x ) $ 5i ( l + 2_ t) ^ '312 “1 max
i$  k 5 i +1

(5 .3 .7 )

is  derived, from which ( 5 .3 .6) follows by virtue o f ( 1 . 1 .9) and ( 1 . 1 . 1 1 ) .

Assume the theorem to be true for 1 = r-1 ^  0, ie  that

E o M 'O O < :5 (r - l ) ( l  + 2' t ) 5 ' 3 (r ' l ) ? i l  max c.
1 i:$ i+r-- .tv (5-3.8)
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Then (5*3*5) yields

S c W (* )  ,< ( 1 - - ! ^  ] ( 5 ( . - - l ) ( l +2-t ) 5 -:<V i
:.-x . j  l 1 x-n+r/

°1 | i
max 0, l

i +1 ^ k< i+ r ' k|

+(5 )2- t l | c ^ w j }

x .-xX
:.-x . j I 
x x-n+r /

i f5 (r -1 ) (1 + 2- t ) 5 * > 2 ^ 1  max
.i £k £ i+ r~1

+(5>2_ t1 ,p-"3 w 1
J
r .

Jr-13
(5 .3 .9 )

But, since c5i u (x ) is  a convex combination o f the values o f 

c (k = i ,  i+1, . . . ,  i+ r - 1 ) (Section 5*1),

X r-1)lur (x ) i
/ max

i  6 k < i+ r -1 k ( 5 o . ¡0)

Thus the expression in the second set o f braces in ( 5 .3 .9) reduces to

, (5.3.11){5 (r~ l)(l+ 2  t ) J ‘ 3r+5 j 2 ' max
i$  k< x+r-1

which is  bounded by

5 r(U 2 ~ t ) 5 ‘^ 2~t i max
i  3̂c ^ i+ r -1 (5.3.12)

S im ilarly, the expression in  the f i r s t  set o f braces in (5.3*9) is  bounded 

by a quantity that is  id en tica l to  (5*3*12), but with i  replaced by i+1.

But from (5.3*9)> 6cP°M is  bounded by a convex combination of

(5.3.12) and i t s  counterpart with i  replaced by i+ 1 . Thus 

&cP^ (x ) I < 5r ( l+ 2" t ) 5*3r? ‘ t l max 
i  ^ k .< i+r k (5.5.13)

Thus (b .3 .7 ) is  true for 1 = r . But (5.3-7) 1« evidently true fo r  1 -  0. 

Hence, by induction, i t  is  true fo r  1 = 0, 1, n-1.



Corollary 5♦5•1

I- -’j ^  0 ( i  = .1+1 > * • • ? j+n-1 ) the elements c i “ (;:) generated by
r-n _ r-j -» a

Scheme A have errors 60^ (x ) = c_|-J(x ) -  c. (x ) sa tis fy !

error bound

$ 6*5491?“

defying the re la tive

f r, .a 1 A 
<.■> • .J • \‘V)

In particu lar, the error 6s (x ) = i ( x )  - s (x ) sa tis fies  the re la t ive err 

bound
< '
6s(x ) I <: 6.549( 11- 1)2  s(x) .

or

(5.3.15)

Proof

F ir s t ly , the a posteriori  bound

5c ^ ( x )i £ 51(1 - 2"t)“ 10,312 (5 .3 .16)

is  established.

Suppose that (5-3.16) is  true fo r  1 = 0, 1 , . r _i  ^  0. Then (5.3.5) 

gives

b o f \ x )
[ ( x-xi - n : r ^ /  (x )+ (x±-x )c p  ^  (x ) j 

" 1  Xi  "  Xi-n+r J
X

X

-t .

5 ( r - l ) ( l - 2 " t ) " 1° ,3 r̂  ^ 2  t l  [ l ^ ( 5)2 t lJ h(5)2_ t1
, «a

(5-3.17)

Now 1+(5 )2" U1 = 1+(5.3)2“ t  <  (1 + 2 ^ )- *3 <  ( l - 2 _ t ) - 5*3. Hence the term in 

square brackets in (5*3*17) is  less than

5 { }  2- 11 <  5 r d - r h 5- 10- ^ - * 1. How the non-negativlty 

o f the c\p (x ) fo llo v ’i; from the non-negativity c f  the ( c f  Theorem 3 .6 .2 ) 

and, as a consequence, ci r j ( x ) ( l -2  ‘ ) 3 is  * bound fo r  the f i r s t  term in 

braces in (5*3*1/)* ( c* v.3.9-4))* Thus
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6 o f - ( x ) U 5K l - 2 't ) “ '">- 3V t l 5 W (x) .
3 > J- ( 5 - 3 . 1 8 )

Thus (5-3-16) is  true fo r 1 = r .  But i t  is  evidently true fo r 1 - 0  and 

hence by induction fo r  1 ^  0. Since from (1.1.12), (l--2“ "t)*" ^

( 5 .3 . 16) may be sim plified to

i“ t -  D-3c c p - ( x )  is 5 .8%.12“ t c p J(x )  , ( 5 o . i ? )

from which the re la tive  error bounds (5.3.14) and (5.3.15) fo llow  read ily . ! j 

YIo now analyze Algorithm 5.2.2, presenting our main resu lt as a theorem.

The orom 5-3.2

The value o f s (x ) generated by Algorithm 5-2.2 (Scheme B) has an error 

6s (x ) = s(x ) -  s(x ) satisfying the bound

6s(x ) I £  7 .745n2_ t max c, I 
« ' j  ̂  k < j+n 1 k|

(5.3.20)

Proof

Summation o f the series ( 5 .2 .3) yields

j+n- 1
s ( x )  r y ._ ,  Oj Ti (l+£i )' ,

i =0

where

^  2 " ( i   ̂ j ,  j+ 1 , j+n-1)

(5.3.21)

(5.3.22)

and v. denotes the computed value o f v, = n . ( x ) . The term ( i +e ) n 3
x ni i '

( 5 .3 . 2 1 ) can in fact be replaced (in  the case o f forward summation) by 

( l +£ . ) "  i t  ± -  i  and by ( l +e.) n+1 +^  i f  3, = ¿+1> J+2# ^

( WilkinSun, 114), out we need only the weaker resu lt here. ;,ov

from ( 3 . 9. 13)3

v. = K . (x.) = N .(x )(l+ Z  .) , x m. nx 7 v nx' * (5.3-23)

where



Hence

6.,(,) . g j

New the tern in  braces in (5 *3 -?5) is  bounded in modulus by 

{ 1+6 .685(n -1 ) 2_ t }  ( 1+2_t)n-1

<  { l + 6.685(n - l )2" t j ( 1+1 .06n2- t ) -1

= £7 745n-6.685+ ( c . <585) ( 1 .06) n ( n - i) 2“ "j  2- ^

< ( 7 .745n-6.685+0.1)2_t = (7.745n-6.585)2_t

<  7.745n2_t .

(5.3.25)

(5.3.26)

Hence
| + J+n-1

Ss(x)j ^  7-745n2"' *2_J

i= j

N .(x ) .ni (5.3.27)

The resu lt (5.3*20) then follows from (5-3.27) since N . ( x ) ^  0 and 
t1+n- 1  |—|
T - 1  Kn, ( C  = 1 . □

x=J

Corollary 5*3*2

I f  ° i 0 (^ -  j-1'1» •••» J+n-1 ) ,  then the value 0f  s (x ) generated by

Scheme B has an error 6s(x ) satisfying the r e la t iv e error bound

8s(x)| ^  7.745n2_ ts (x ) . (5.3*26)

Proof

Since c. ^ 0 t̂ .id H^^(x) 0, one sun in ( 5 .3 *2 /) can be replaced by

c.N . (x ) = s (x ) from ( 5 -2 . 1 ) ,  which then establishes (5 .3-28). N  
i=J

Note that we may also interpret cur result in  the sense o f a backward error 

analysis. For Scheme B, from (5-3-21) and ( 5 .3 .23) ,
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«j+n-1
H-'O = 2 U  , (x )  ,3 nx (5-3.29)

where

4  =
n

(5.3.30)

I t  is  easily  established that

ni <  7.745112- t
( 5.3.31)

Hence the computed value i ( x )  is  the value that would- be obtained using 

exact computation upon a set o f coeffic ien ts  c. perturbed s ligh tly  (in  a 

re la t iv e  sense) from the c... Similar resu lts may be established fo r

Scheme A, the only difference being the magnitude o f the numerical constant 

in  (5 .3 .31 ).

5.4 e r r o r s ^  coe ffic ien ts  on

value o f the soline

Ì7e now consider the numerical evaluation of s (x ) when the coeffic ien ts  ( V j

are subject to  uncertainty. This would be the case i f  the c were the
i

resu lts of a previous computation, as they would be in the determination o f 

spline approximations and spline interpolants (Chapters 6 and 7 ) and also 

in  the representation o f polynomials as splines (Section 5 .7 ) .  Specifically, 

suppose that perturbed coeffic ien ts  f 5 . ]  are tnom and. that a bound tc 

such that

max | c^-cJ $ 6(
(5 .4 .1 )

is  ava ilab le . Let

i ( x ) S f l { S  3i Nn i(x ) ]  •

tie require a bound fo r  | s (x )-s (x )|  in  terms

(5Ì4.2)

o f the known quantities { c .  j

and be.



Por Schemes A and B o f Section [>.2, the use o f ( 5 .3 .6) and (5.3.20) gj.yss’

vr'~f
(x ) = > C.N .(x)+H1  in- / (54 o)

v/hore

E 6. K2 max c . 
i  1 3

and

K =
( 5 «y (n -1 ) (Scheme A)

Thus

/.8n (Scheme B) .

S(x) = e(x )+  2 H  (o3.-°.L)N .(x)+E

(5 .A.A)

(5 .4 .5 )

(5 .A .6)

nd hence

£ .:(x)j -  | s (x )-s (x )|  ^  max j c^-c_. | +K2 ĵnax

oc+K2 \ ax
#±l -

(5.4.7)

(5.4.8)

which demonstrates that the bulk o f the e ffe c t on the computed value of 

any errors in the { c . }  is  at most equal to the largest o f these errors.

There is  a further very mild contribution to the error from the term 

| c. [ in (5 .4 .8 ). From ( 5 .4 .8) ,max
i

8s(x ) o cc+K2 “max Ic . +K2 max c.~ 0
a ;

^ 1.16c+K2 m̂ex jĉ J ,

(5 .4 .9 )

(5.4.10)

under the very weak assumption (in  accordance with (1 .1 .7) )

K2- t  <  0 . 1 .
that



5.5 The B- spline representation of' powers

Since a polynomial o f degree less than n is  a special case o f e. spline o f 

order n, i t  follows from Theorem 5.1.2 that any such polynomial has a 

unique representation on (a ,b ) as a linear combination of the B-splines 

IT i ( x )  ( i  = 1, 2, N+n-1) .  This resu lt w i l l  therefore apply in
Y>

particu lar to the "polynomial" x ( r  ■= 0> 1 , . n-1 ) .

Marsden. (1970) gives a resu lt (see (5 .5 .1 ) below), which enables certain 

powers o f x to be represented ex p lic it ly  in  terms o f the IJ .. ( x ) . Mars dsn’ s 

orig in a l ( unpublished) proof o f (5•3-1 ) was in fact rather complicated, so 

in his 1970 paper he gave a more elegant proof communicated privately to 

him by T N S Grevn.llc . A fa r neater proof, however, is  due to de Boor 

( 1972) and is  based upon the use of iden tity  ( 3 .>+.2) which was unhnc.vn of 

course to the above authors at the time o f the ir work.

T7e show that the Marsden-Greville resu lt, which in fa c t gives representations 

o f x1' in  terms o f the Nn±(x ) fo r r = 0 , 1 and 2 , may be generalised to the 

case o f a l l  r  n. Me establish a simple recurrence re la tion , which enables 

the coefj.icj.ents in these representations to be computed e ff ic ie n t ly  and 

accurately. These results are applied in Section 5-7 to the problem of 

representing an arbitrary polynomial given in i t s  power-series form in 

terms o f E-splincs.

F in a lly  we prove that the coe ffic ien ts  in the B-spline representation o f a 

function f (x )  are bounded i f  the Taylor series expansion of f ( x )  (|x[ < 1 ) 

converges absolutely.

Theoren 3-5-1

pp p and q are xnbogers juwA that

V i <  V - » -1 ’

then the re la tion
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( t - , :) n~1 = . 2

-1
m

{t-x . „ ) ( t - x .
v :l- u + 1 ' • i-rH-2-' t-x . )K . (x )i - l  ni • (3 .5 .1 )

is  valid  for a l l  t  and for x .• <  x <  xq~n+ ■

Proof

The proof is  by induction. Assume the theorem to be true fo r n = r ^  1 ,

ie  that

( t - x )1' ••• ( t ' V l )Nr i (x ) ’ ( 5-5.2)
i=p

where

x <( x3-1 N N q-r-i-1 (5 .5 .3)

Por consider the expression

q
E - /' . (t -x . ) ( t - x .  ) . . .  ( t -x  )H . (x )n - L.—« v i_ r  i - r +1 v i - l  r-f-1 , l  '

i —P
(5 .5 .0

Y,Te wish to  show that E = ( t - x )  i f  x x <  Now, by making use

of the recurrence (3 .4 .2 ), ana the lim ited support o f the B-splines, we

obtain

(5 .5 .5 )
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Sim plification o f (5.5*5) .yields

f 1 , ,
L u ( t - x )  __ I r _,_̂  ) l - >~±-r+2^ *■’ .* ( 5 .5 . 6)

l=p

which by virtue o f ( 5 .5 .2 )*  (5 -5 .3 ), and the lim ited support o f the 

N . ( x ) , is  equal to (t - x ) i f  x <6 x \  x . Thus the theorem is  true
J. p — i Cj—i'

fo r n = r+1. But fo r  n = 1 the right-hand side o f ( 5 .5 . 1 ) is  simply0
Z~..‘ N 1 t (■'’•), which ¿or x v  x »s. x is  equal to unity, by virtue o f 
i=p *
( 3 . 6. 1 ) ;  the left-hand side c f (5-5-1) equals (t~ x )°  = 1 , also. Hence

the theorem is  true fo r n = 1 and therefore, by induction, fo r  a l l  n ^  1 . j" j

Now le t  p = 1 and q «  N+n-i. Then by equating coe ffic ien ts  o f powers o f

t  in  (5 .5 .1 ), and once again u tiliz in g  the f in ite  supoort o f the N (x ) ,n i '

we obtain fo r  xQ <  x <  x^,

N+n-1 N+n-1

^  .m n i ' ' ——1 ni1

H + Xi~ I J'Tli- I

. 2 3  T (0) k . ( x ) .  2 3  1  . M  , (5 .5.7)
i =1 i =1

N+n-1

=  73'/---- ' 0 nx ra '
i =1

(5 .5 .8)

N+n-1

x2 = 7  ^  N .(x )nj- ni (5 .5 .9 )

and, in  general, fo r  0 ^  r  \ x , by 

Nh n-1

= /  J ?  • N . ( x ) .A —r1 0 ni nr
x=1

(5.5.10)

(r )
The coe ffic ien ts  5   ̂ are obtained by equating lik e  powers o f t  in 

( 3 .5 .'0  and hence ere defined by

f i ?  • 1 • (5.5.11)
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1- !

5?<0 = 2  I«> nx ,£~~.—* jlc
k=i-n+1

(5-5.12)

£-(2) _
^ n i ZL .

i - 1  .~j /n-1' *v T / P ̂ b >k 1
k ,l= i-n +1 

k < l

(5-5-13)

and, in general, fo r 0 <. r  < n, by

rr<4 J«.* nx

(r = 0)

V “7

{  i-n < k  < k  < . . . < k  < i  1
• A V .  ( r > 0) .

(5-5-15)
ic

5„6 A lgorithms fo r computing the B-spline coeffic ien ts 

Define

» “ i- 'C 1A ^S( ( } = ■' 'C ^  nx r t2 nx (5-6-1)

Theorem 5-6.1

S( r )  .  S( r ? , . + X, ,S(r _ l )
nx n-1 , i - 1  ' i -1  n-1 , i -1 ( 5 . 6 . 2)

Proof

From (5-6-1) and (5-5.14),

3d - i )  ,
n -1 ,x- i 2 - 1  W  XkI. „ 1 

i-n <  k^\ k2 <  • • - < kr,_1 <  i “  '
(5 .6 .3 )

and

50 0  _ V y
V i , i - i  -  Z - i  \ y

i-n  < k . <  k s  . . .  kl 2 r> '

(5-6.5)

lienee
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.(**) o( t'-i), . H- X. , , «-1,1-1 3.-1 n-1,x--i

1*’’. f C • l'l K2 xCr )  ‘ X. X . . . X,
k— 4 .'1 Jc2 • icr

i -n  < k  <3 kr <  i  i-n  < < k g< . . . <  k£< i

k X i-1T
k = i-1 r

z ( r )x. x. . . .  x, = s'- Xlĉ  ^2 X-j, ni
r~
i

i-n <  k̂ <~ k? <  ■ - •< k^< i
(5 .6 ..5 )

I t  is  eas ily  v e r if ie d  that the elements in the f i r s t  diagonal and the f i r s t  

row o f the array (see f ig s  5*6.1 and 5*6.2 below) are given by

s<°> - = 1j,x~n+j ( j  — 1j 2, n—r ) (5*6.6)

and those in the f i r s t  row by

S(0)
1«i-n+1 = 1 (5 .6 .7 )

and

o( j)
‘ j+1 ,i-n+ j-i-1

3:.l-n-r
g (j-1 )

j j j i-n + j Ü 2, ’ )■ (5*6.8)

Relations (5*6.6) or relations (5*6.7) and (5*6.8) provide a set of 

starting values fo r  recurrence (5 .6 .2 ). Values in  the array may then bo 

generated diagonal by diagonal, row by row or column by column.

I t  fo llow s from Theorem 5.6.1 that a particular value o f S\'; nav benx J

generated by computing the elements o f a rhomboidal array, typ ified  here 

by the case n -  7, i  = 9, r  = 4:
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(0 ) ^ s 0 > . 72) (5 )
55 46

o.
° 5 0

\  \
^cA O j . A d d  4 -a A 2)- *1̂ " | . . T,|, *■ % •*». «-a ..f1# ,, f •;J.O V

24 v
. c>35

57 568

X ( o ) ^ s( i ) _ ^ , ( 2 ) 2 : ^ ( 3 ) X R(4)
“ 3S ^ ^ ' - * * & - * * * & - * * % >

Fig 5.6.1. Schematic illu stra tion  o f the computation of

S'(4 )
79 '

The arrows in Fig .5.6,1 Indicate the dependence of an element in the 

array upon it s  immediate neighbours (predecessors). Thus, fo r  example,

si
(■z) (?.) ( 3)

is  computed from S, /  and f
'57 ------------  46

In the general case the array takes the form:

q (0)
( *\ A 'yS '” ' - ^ S ' '  „ o —**Sv - 7 —»* . . . —>■■• S r̂ )

f ' \
V-J

1,i-n+1 2 ,i-n+2 3,i-n+3
\ \  (•. ON^  ,__

2,i-m 2 3,i-n+3
\

Ns

r+1 ,i-n+ri1

\

S;(o )
n -r ,i - r n-r+1 ,i~r-;-1

\

*-» . n i

F ig  5.6.2. Schematic illu s tra tion  o f the computation o f

the general value o f S^1. \  v nr

In practice i t  is  unnecessary to store the complete 

(column or diagonal) may overwrite the previous row 

the la tte r  being no longer required once the former

array since a new row 

(column or diagonal), 

has been computed. In

Algorithm 5-6,1 below 

formed row by row in

fo r evaluating V
C-7 p

the vector | Vq, V

the elements in the array are



Algor:* thu , 1 : Evaluation of

0omment: Tho initial c onditions

Step i . Set

Step 2 . For k = 1, 2, v  s

Comment: The ( r )value of 3^.' is

Step 3- For ¿ = 2 , 3 ,  . . . ,  n-r

Step t . For j = 1 » 2, . . . ,  r r:

Step Set = v / - b  .^ ni r r

.OX

i-n+k k-1‘

A simple extension o f the array enables bhe values o f (and hencenx '

5T ^ ) to ho computed fo r  a l l  values o f j from 0 to n-1. Tho extended n x '
array fo r  the above example in which n :: 7 and i  = 9 becomes:

P ig •5.6.3. Schematic illu stra tion  o f the computation of 

the values of ( j  = 0, 1, 6 ).

The f in a l column o f such a triangular array then y ie lds the required

values. In general th is triangular array assumes the form:
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a(°)
i ,.x-n+1

0.(1) _ _ s(2) ,(3)
'... J2>i-n+2 " 3»i-n+3 " %,i-xi+lC~

\ \\
X,

\ (0 )
\

— —  - r n  o * ' ____;  - 2 V 7
2, i-n+2 4>i-*n+4‘

\ ( i )

^ r,(n-2) . Q(n-1)
N n -1 ,i- l n i

X\ x.V' X

% (o )  'N'  t, ( i )
J y l***ii*v,P cJr j

\
X

s( ° )
4 , i-n+4

\
X

Xv
'n-1 ,i-1  - n i

■ J - 3 )  , X s(n-2)

(n-4) X . ( « t3)
n-1, i-1 m

S^jJ . -  > , S ^n-1 j, i-1 n i

. \
7 ° )  t t . 7 . swn-1,1-1 ni

\ ( 0) U ,n i

l?ig 3. 6.4 . Schematic illu stra tion  o f the computation o f the 

values o f ( j  = 0, 1 r n-1)..

Iii Algorj. oim 5 * 6 • below the elements are again generator!, row by row in

the vector | "’qj j vn_.| ; , the fin a l valuos o f v. (4 -  0, 1,
/  - \ ■*’w 9

n-1) holding the values o f (k )
ni

Algorithm 5.6 u2: Evalnation o f the 3-epline coeffic ien ts

k = 0, 1, V O ♦ , n-1.

Comment: In i t ia l conditiens are set in  Steps 1-2.

*C G p l Set Yo := 1,0

Step 2. For v - 1, 2, ». a «1 j n-1 set v, -  x. , v, , .  k i-n+k k-1

•U w • The valuer. o f o (k )»Jill
•̂po computed by recurrence in

Step 3* For k = 2, 2J y 0 «* « } n-1 execute Step 4*

Step 4« For .1 “ 1, 2 , * * * > u k replace v . by y
J ’ j x-n+k-1-'

Step 9. For k = 0, -11 3 «. 1» * J n-1 set - v Z1“ 1- se c n± - vk /
+0
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In Step *> o.? Algorithm 5.6.1 i t  ia  necessary to divide the fin a l value 

i  V ^ 'n i  > l,y cr  to obtain % S iru i ,r remarks apply toof

.Algorithm 5.6.2. A few words regarding the evaluation o f 

order here. For a prescribed value o f n, l e t

n—•.t are in

n-1„is -  C, . x k (5 .6 .9 )

Then i t  is  read ily  v e r ified  that

r  i (k = o)

uk = J  (5.6.10)

i uk_.1(n-k)/lc ( k > 0) .

We recommend that (5.6.10) be used recursively to fora  uq> u , .

u =n~1C . In Algorithm 5-6.2 and also in the methods considered in 
' r  r

v .(k )
Section 5»7 i t  is  necessary to form «   ̂ fo r  k = 0, 1. . . . .  n-1 and in 

jjuoh cases i t  is  e ff ic ie n t  to form the required values o f u.(. in  the above 

manner. Since u  ̂ is  an integer ( i t  being the number o f ways o f choosing 

3- objects from n-1 ) then, unless integer overflow occurs, integer' 

arithmetic can be used throughout to compute exac t ly  the values o f Uj,

(j, = n-1 ) .  Note that the precise order o f operations is

( %
Uj.-^n-kJj /k rather than 

v {  (n-k)/k \ , since the former expression in braces is  always in tegral 

whereas the la t te r  may well not be so. I f  in teger overflow is  l ik e ly  to 

occur, floa ting-poin t arithmetic must be employed, in which case a 

straightforward error analysis of ( 5 .6. 10 ) shows that the computed value

u. sa tis fies  
r:

\  = Ut ( 1+ffc)21'" 1 ( *  > (5.6.11)

I in 1* ^
where 2 ", ie  u  ̂ has a re la tive  error bounded in  modulus by

(2k-1)2 ‘ -  1»Co(2k-l)2 . Me assume, fo r  the sake o f complete rirou r

jr. our subsequent analyses, that who computed values c f  u, do indeed



sa tis fy  (5.6.11) rather than being exact, However, fo r  most p ractica lly  

useful values o f n (eg  fo r  n less than about 50 on KISS'S)), u}, v .li l  indeed 

be equal to u.̂ , - or all- — *■', 1, . . » ,  n— 1.

5,7  The B-spllne reprise;:-.tail on o f polynomials

17o now consider the representation o f a polynomial o f degree less than n 

(expressed e x p lic it ly  in it s  power-series form) as a series o f B-splines 

o f order n defined on a standard knot set. That is ,  we wish to determine 

the coe ffic ien ts  c  ̂ ( i  = 1, 2, N+n-1 ) in  the 1-spline representation

of-
n-1

p(=0 = /  , b
/■.in ."'-"'

(5 .7 .1 )
-n

v.-hcre the coe ffic ien ts  b ( r  = 0, 1, n-1 ) are prescribed.

Using (5.5* 16>),

n-1 î<+n~1

r ]
i~1

p (x ) = ¿ _ i  Vr  Z —* ?
r=0

N+n-1
= y c .n . (x ) , (5 .7 .2 )

i=1

where
n-1

{, = / "* t  ( 1 = 1 ,  2, . . . .  N+n-1).

r=0

(5 .7 .3 )

To determine each coe ffic ien t oi  i t  is  merely necessary to Invoke 

Algorithm 5.6.2 fo r  the values of ^  ( r  = 0, 1, c. . ,  n -1 ), multiply by 

the respective values o f br  and sum. A s ligh tly  more e ff ic ie n t  approach- 

given as Algorithm 5.7.1 below, is  to for,a scale d coe ffic ien ts

dr  = b/ n 1° r  ' r  = °» 1j * * * ’ n_1^  (5 «7 .4 )

evaluate ( r  = 0, 1, n-1) from Steps 1-4 o f Algorithm ,5.6.2 ana
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f in a l ly  to fo r : the values o f c.1
n-1

0, = >  1 d S ^  ,'i 1 r  nx
r=0

Algorithm 5.7.1: Conversion o f

 ̂ ' ~ X' i J J— 1 )e .5.7.4)

Comment! 

Stop 1° 

Step 2.

Stop 5* 

Step 4.

equivalent 3-spline representation, 
vi~1

The values o f &. -  tu/" ~ ‘C.. are determined in  Steps 1-4.

Set - -  1 and d = b , o o

For i  = 1, 2, . n-1 execute Stops 3-4. 

Replace p by p (n - i)/ i.

Set d. = n./p.:l x ■

Comment: The values o f c. are formed in Steps 5-7*

Step 5. For x -- 1, ?, K+n—1 execute Steps 6-7•

Step 6. Use Steps 1-4 of Algorithm 5*6.2 to evaluate

(k  = 0, 1, * *. > n-1).
n-1

Step 7- Form c . = 1 T “ 1¿»„1
k=0 dkvk*

3(h )
ni = v.

Now suppose that the x± fom  a standard knot set with coincident end knots 

and that
c*

a = - 1 ’  b = +1 * (5 .7 .6 )

There is  l i t t l e  loss o f generality in this assumption, since any f in ite  

in terva l can, under a linear transformation, be mapped into the in terval 

-1 i x ^ 1  ( fo r  deta ils  on the way in which such a mapping should be 

carried out see Section 1.2). Then, using (5 .5 .14) and ( 5 . 7. 6) (re ca ll that 

~ x- i  ~ Xo<  "1 $ * “  £  ^ -1  <  ^  “ ^ +1 = »*• = h ),C4, — * U I

£  (*0 | £
"  n i s

<

i  1̂., % J.Z~ • m 0 ^ 3c C i1I r

y

I •'> 4- • ‘ ‘ X;,-
V- 1 2 Kr

f -
n-1

/4-1

i-n  < k1 < k2 < . .  .<k_< i  j  J*'

n-1 /n-1
n /
TJ (5 .7 .7 )
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Thus, using (5 .7 .5 ) and (5-7.7) ?

n-1
"r~ (r )i
D i 'i

n-1i=.U'77x N L _J

1
b
r

*  V1 !>■ IL—I | rj ( i - 1; 2, N-in-
1 1 r=0 1

r=0

(5-7-8)

This resu lt is  interesting in  that i f  the b ( r  «  0, I , . . . )  denote the 

coe ffic ien ts  in  the Taylor expansion about the origin  o f a function 

f ( x) ( | * U  then the absoluto convergence o f the Taylor series implies 

the boundedness o f the B-spline coe ffic ien ts  fo r  any order n. Indeed, as 

long as the x± form a standard knot set with coincident end knots, the 

bound ( 5 .7 .8) is  i ndependent o f the number o f knots and o f the ir pos-thi or,n. 

The bound is  sharp in the senso that i t  can be attained a rb itra r ily  c losely 

(see the example below) fo r  certain functions f ( x ) .

As a simple example consider the series expansion
CO

«c-—? 
x /

e = Z_m
r =0

yT/v\ . (5 .7 .9 )

Ve have br = 1/r  '• and therefore, fo r  any standard knot set with coincident

end knots a = -1, b = +1,

CO
I K —7

ci  j ^  Z__j
r=0

l/rl = e (5.7.10)

(c f  Example 6.8.3 in Chapter 6). fo r  the exponential function the bound

( 5 .7 .8) may be approached a rb itra r ily  closely fa r su ffic ien tly  large n 

(see the follow ing numerical example).

As an illustrati.on  0f  the rerar.rk.able numerical st 

de scriba d by Algorithms 5 . 6 . 1, 5.8.2 and 5 .7 . ■], e 

c f the values o f c.̂  corresponding to the troncate 

atout x  =  0  fo r  the in terva l J x j  ^ 1. The error

a b ility  o f the processes 

onsider the computation 

d Taylor expansion o f eX 

in  truncating th is



AHI,

expansion a fter n- terras is  

ç-----% > *p
R = /  , t  / rlxi ¿----1 ' (5.7.11)

fo r  some t in (-1 , i ) .  Thus

CO

Hn | ¿ y jV r !  <  y j  (n+1)
- r  n+l 

nnl (5.7.110)
r=n r=0

Nov; fox’ n )> 14, Rnl X 10 < ” 2 the re la tive  machine precision of

EDS’9“ inns the E-spline representation with n 3>" ¡4 o f the truncated 

Taylor series should (a t least in the absence o f rounding errors) Provid ( 

fu l l  machine accuracy on KDF9. The computed values o f c, in Table 5 . 7 . 1  

correspond to the choice n = 15, N = i, x¿ = - i  ( i  £  0 ), x. = •j(1 >  0) 

and b_. = i/ i. The resa luing B-spline series was computed from the-sc 

values using Algorithm 5.2.1 fo r  x = -1(0.1)1 . These values are given 

in  Column 2 o f Table 5.7.2. In Column 3 c f  Table 5 . 7.2  arc the 

differences between these values and the corresponding values o f eX as 

computed by the lib ra ry  exponential function on KDF9. I n Column 4 are
.»I

the differences between the values o f the power series p (x) = ¿ 2  xA/ i ’

computed by nesting and those o f e ‘ .
i^O

Note that over the 21 points o f evaluation the maximum departure o f the 

computed E-spline series from the value o f eX is  2 X i f f 11 rivch : c 

merely twice that o f the maximum departure o f p (x) from eZ. This 

excellen t agreement occurs in spite o f the fact that there are three nain 

sources o f rounding error contributing to the values in Column 2 of 

Table 5 * 7 the rounding errors in  the computed Taylor coe ffic ien ts  

the evaluation o f the o± from these coe ffic ien ts  and the evaluation of 

the B-spline series from these values o f c
i



° i

1 0.36/87 94411 7

2 0.42043 36470 5

3 0.48107 31153 «

4 0.55114 53898 8

5 O.63224 30222 8

6 0.72625 25737 7

7 0.83541 45060 0

8 0.9623? 66833 3

Q> 1.11038 49869 6

10 1.28319 55777 7

11 1 .48541 47454 2

12 1.72257 41989 9

13 2.00137 23352 4

14 2.32995 58529 7

15 2.71828 18284 6

Table 5 .7-1 Values o f the coeffic ien ts  in the B-spline

Xrepresentation o f e .



A O  /'I OU

1— •' —

X b(x ) 101 1 f s ( x ) - ax } 10 11 [ p W - e X]

- 1.0 O.36787 94411 7 0 0

- 0.9 O.40656 96597 4 0 0

CO•0
1 0.44932 89641 2 0 0

- 0.7 0.49658 53037 9 0 0

- 0.6 0.54881 16361 0 0 0

-0.5 0.60653 O6597 2 +1 0

-0.4 0.67032 00460 5 +1 0

-0.3 0.74081 82206 9 H 0

-0.2 0.81873 07530 9 + 1 0

-0.1 r< r>n) Dz *71 . n o  Cs>• ¡.uy / '-t- JUU v_> O 0

0 . 0 1 .0 0 0 0 0  00000  1 + 1 c

0. I 1.10517 09180 8 0 0

0.2 1,22140 27581 7 + 1 0

0.3 1.34985 88075 9 +2 0

0.4 1.49182 46976 6 +2 0

0.5 1.64872 12707 1 + 1 0

0.6 1.82211 88003 9 0 0

0.7 2.01375 27074 e , -A *1 1 +1

0.8 2.22554 09284 9 0 0

0.9 2.45960 31111 6 0 + 1

1.0 2.71820 18284 6 0 0

fab le 5-7.2 Tabulation o f the values o f the computed B-spline 

representation o f c "  and a comparison of the ir
 ̂ v

departures from 0"  with the departures o f the

Xequivalent truncated Ta ilor series iron  e .



5 .0 brror analyses of tin. algorithms fo r  computing B~spline 

coe ffic ien ts

TTe establish in this section some resu lts re lating to the s ta b ility  of 

the processes described by Algorithms 5.6.1, 5.6.2 and 5.7.1.

~(r 'i O)
lo t  S . denote the computed value o f 6 . and ni nx

m (p.8, 1 J

Then, from (5*6 .2 ),

6 «m s f i  ( s vri . , + x. , s ( r ; 1} )v i-1 n -1 ,i-v

.  { § (r )  . „ x l ’}  f ^ B 1 
1 n-1,i-1 " i-1  n - l p - l ^ ' - f J  v1,c2' (5.S.2)

- n-1 (5*8.3)

where *

h , |e2 i h  , (5*8.4)

h ’ l°2 < 2 _\ (5.8 ,5)

(Actually , e1 ¡^ ( l ) 2 _ t , but we make no use of th is fact here). The

expansion o f (5 *8 .3 ), uith the use o f (5 .5 .1 ), gives

+ x. , ( s i1-;1? . + 6si r - 1) + ?e s ir " h  N a M1 -1  n-1 , 1 -1  0 n~1,i-1 + °2 n-1 , i - 1 ' 1 (5 .0 .6 )

which, using {5 -6 .2), reduces to



1 8 8

6 S ^  = bS(-v) . + x, 6 S ^ 1? T „  .nx n-1  ,x-1 x-1 n-1, x- 1 1 n-1,i-1
~(r.)

+ 2e « v '
r • -  I > i - l .

I t  follows from (5*8.7) that

(5.8 .7 )

3(r )
■J •nx nx ’ (5 .8 .3 )

( )where F . is  defined recursively by nx J •>

( r )  (r^
f V  = p « . , +nx n-1, x-1 i-1 P(I" 1) + 2n-1,i-1 s ( r > . .n-1, x— 1

4 2  l x  o ( r ' “ l )  I /  r- r,
+ | i-1 n-1,x-l| * ^ ,0*9'

Relation (5 .8 .9 ) can be used in a running error analysis with appropriate

starting values obtained from (5.6 .6 ) or from ( 5 .6 .7 ) and ( 5 .6 ,8) to

provide 0tiuo on cne e ii 01 s xn c-ne vuxues of the S .  ̂ as they are computed

However, in at least two important oases we show that ( 5 .8 .9) can bo

solved e x p lic it ly  to  y ie ld  sharp a_ p r io r i bounds fo r  .
nx

The f i r s t  case we consider is  where the are non-negative, 

i l ieorom 5*8.1

I f  the x± are non-negative then 6 S ^  and sa tis fy  the a pr io r i

re la t iv e  error bounds

6 S ^ } £ 2 .6 2 0 (n - i)2 "V I.'; , nx nx ’
*tQ( r ) ( 5 . 8 . 1 0 )

¿ 5 ^ '  £ 5 . 106( 11- 1 ) 2“ ^ ^0 nx  ̂ ^ nx ( 5 . 8 . 11)

Proo f

\:Je f i r s t  establish by induction the result

F ^  £  2 (n - i ) ( l - ? " t ) 2" 2ni ’'nx ^ s x '  nx (5 .8. ¡2)
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The non-negativity of the x± implies from (9 .6.2?) the non-negativity
. (r )

of the S -  and from ( 9.8 .3) of the s t y  . Hence (.9.8 .9) becomeni

, w  = Fw  , + 2s( r > . „ ♦ a*,
n i n-1,i-1 i-1 n-1,i-1 n-1 , 1 - 1  i-1 n-1 , 1- 1 * (5-8.13)

How assume that (3-8.12) holds fo r  n = p-1£1. Then ( 3 .8 . 13 ) y ie lds

f2 (p -2 )(l-2“V '~ 2p+ 2}  (St y  + x. S(r"0  )
P1 <• J P-1,i-1 i-1 p-1,1-1'

<  2 ( p- 1 ) ( 1- 2- 4) 4" 2p ( bW  , + x. . S ^ )  , ) .p-1 ,1 - 1  i-1 p- 1 ,1 - 1 (3.8.1/,.)

But from (5-8 .2 ),

s t y  + x. <  (', ?~t\-2- ( r )
P-1 ,i-1  i-1 p-1,i-1 ^  ^ ‘“2 ) sp:; (5.8.15)

Thus

"sty  .< 2 (p~1 ) ( 1-2  t ) 2_2pp i  \ j  p i (5.8.16)

Hence (5.8.12) holds fo r  n = p. But (5.8.12) is  t r iv ia l ly  true fo r  n = 1. 

Hence by induction i t  is  true fo r a l l  n 1 .

I t  fo llow s from ( 5 .8. 1 ) ,  ( 5 .8.8) and (5.8.12) that

6 S.(r )
n i £ L2 V ?  ^  K2“ t 1(S( C) +n i ^ v ni 6 S ^ j  )n i I 1 ’ (5.8.17)

where

K = 2 (n - l)(i-2 ~ t ) 2-2n ( 5 . 8 . 18)

Thus
B f h

j s s ^ j  ^  .
I nl « 1 - ^ 1

s t y  .ni (5.8.19)
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I t  is  read ily  ve r ified  that the application o f the resu lts o f 

Section 1.1 to  ( 5 .8 .19) than y ie lds ( 5 .8.10).

F in a lly , tho computed value o f is  given by

g (r )

(14 «») ,
Ur

(5-8.20)

where s ’ ^ 2~1'. Thus, using (5 -6 .1 l), (1.1.11) and (1 .1 .12 ),

, v (S ^ + 6 S ^ ) ( l+ e * )  
. i ( r )  _ _ ni_______________
^ n i /„ \2r-1ur d+e )

= ( S ^  -!• 8 S ^ )(1 + B )/ u , v no. ni '  r

where

b  < 2 . 22 -̂vP1 s
- t

Hence
. / \ 6 S ^  E 3 ^

.- (r )  _ t ( r )  , nx ,   n i_
tin! = ‘-n i  + u -  u 

r r

(5.8.21)

( 5 . 8 . 2 2 )

(5.8.23)

(5.8.21)

from which
(r )  ( r )

s t W  _ g M  - f d )  = _ j2 k  ( n E) + _ s i .  ,
0 ^ n i "  t>ni s m  „  5 (5.8.25)

giv ing

b X ^ \  £  2 .620( 15- 1 ) 2'm  l

. s<9-t m

u
(1+0.1) + 2 .224r 2

s ( n )
- t  n i

u
( 5 . 8 . 26)

= | 2 ,882(n-1) + 2 .224r]2 “ t g ^  , (5.8.27)

upon using ( 5 .8 . 10) .  (5 .0 .23) and ( 1 . 1 .7 ) .  

fo llow s from ( 5 .8.27) a fter setting r  to i t s

The hound (5 .8 . f i ) then 

maximum value of n-1. jd



e rro r bound ( 5 .8 . 11)

1Q1

lïote that roughly ha lf o f the contribution to tJ:..

001/ies from the rounding errors made while using the recurrence (5.6. 

and h a lf from the formation of and m ultiplication by u

Wo now examine the ease where the x form a standard knot set with 

coincident end knots and (5.7-6) applies

I t  is  then apparent from (5-5-14), (5 .6 .1 ) and (5-7.7) that

<2 n i $ 1

and

, ( r )
Jr.i < n_1c ,v  r  ’ (

the bounds being attained fo r i  = 1, i  -  N+n-1 and r  -• 0.

We consider the growth o f the numbers F ^  fo r  these knot sets. I f  ■ 

replace computed quantities in (5.8.9) by their exact counterparts 

(subsequently we remove the assumption implied in  th is replacement), 

obtain, upon using (5 .8 .29),

F ^  <  . +  F^r~1' , + 2 n' 2C + 2 n_2Cn i v  n-1, 1 - 1  n-1,i-1 r  r-1

= î t r> . . ♦ . a - h  .n-1,1 -1  n-1,1 - 1  r

( r )If* xre now define quantities Q\ by the recursion

&( r > = c ( r > . . .  G( r :1} „ +2 n- 1c ,n i n-1 ,i-1  n-1,0.-1 r  5 (i

then

«  < .'  r u  s  n i (f

(~ )
oome values o f '  computed from ( i  8 i.,\n i om are given in  the

Fig 5-8.1.

c array in

5 . 8 . 20)

5.8.29)

we

.8.30)

3.0.31)

-8.32)
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r \
1 2 -V 4

5
6

—

•71

0 0 2 4 6
“ .

8 10 12

1 2 8 18 32 50 72

2 4 18 48 100 180

3 6 32 100 to 0

4 8 50 180

5 10 72
.

6 12

MP ig  5.8.1. Some values o f the bound computed from

(5.8 .31).

Note that, at least fo r the values o f n and. r  in Pig 5.8.-|

G ^  = 2 (n -l) n“ 1C , nx v r

and honee from (5 .8 .8 ), ( 5 .8.32) and ( 1 . 1 .9) that

(5.8.33)

l6S(f £  2 .l2 (n - l) n- 1G 2“ *r (5-8.34)

I t  is  now proved rigorously in  Theorem 5.8.2 that ( 5 .8 .% ) is  

qu a lita tive ly  correct and i t  is  also shown that the sole e ffe c t o f there 

being computed rather than exact values in  ( 5 .8 .9) is  to  in fla te  the 

facto r o f 2.12 in  (5.8.34) to  2 ,346.
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The or eg. 5. £.2

I’ or a standard knot set with coincident end knots and
c ( r )  ( r )

L -r i , ' °'‘)0 1 “3ni satisfy  the a p r io r i bounds

&&>| « s . « i ( n - o -  " " V r * ,

a = ~1 and

>r(r)
3 ni ^ 4.821(n - l)2 “ t  .

(3-8.33)

(5.8.36)

Proof

Vfe f i r s t  establish the result

<  2 {  1 + ( 2) 2 ‘ t l  } “ _ i (n - l) n -1 .
(5.8.37)

from which (5-8.35) follows upon using ( 5 .8.8) ,  ( 1 . 1 .9) and (*1 . 1 . 1 1 ).

p (r ) ^  p (r ) 
p i S p-1 , i -1

+ I (r-1)
p-1 , i *-1

1),

+ 2 o W
up-1,i-1 + 2 6S( l '} . j 

p-1 ,i-1 l

+ 2 S(r-1 )
p-1,i-1 -i- 2 ss(r~'‘)p-1,1-1 (5.8.33)

since k  11$1. Thus, using ( 5 .8.8) ,

i ( 5 $ f i +(2 )2 "t l } ( F i r J . ,+F(r : 5  ,) + ?p i ^ L w  J v p -1 ,i-1  p -1 ,i-1 ' + -
s (r)

I p~1 , i - 1 + 2 :j(r “ l )
p -1 , i - 1

(5.8.39)

i  f l  + (2 )2- ‘ l }  * 2

But, using (5 .8 .29),

P~1>i —1 3ir_1 ) I 1
P-1.1-11 '■

.Ar ) I c(r - 0
V i , i -1 <  p' 2c +P

_v> P-1
r-1

(5-8.40)

(5-8.41)

and therefore (5-8.40) y ie lds



Now suppose that (5-8.37; is  true fo r  n = p~ i, whore p >  1. Then ( 5 .8.42) 

¿vivos

[ *  ( l - ( 2 ) * " t l )  ’ ■ " V * )

+ 2 { l i - (2 )2 " l1J P_2(p-2) P "2Cr_ i + 2 P~1Cr ]

£  {n (2 )2 ~ t l )  p" 1{  2(p-2) p’ 1Cr+2 P' ' 1Cr }  

= 2 { l +(2)2"t l } P‘ 1(p-i) P"1c .L v» ( 5 .8 . « )

®ms (5.8.37) is  t a »  fo r  r. .  p. But (5.8.37) is  t r iv ia l ly  tru.- fo r 

n = 1 and hence by induction i t  is  true fo r  a l l  n £  1.

Tl-io remainder o f the proof follows closely the la tte r  part o f Theorem 

5 .8 . 1 . I t  is  read ily  established that (5.S.25) and (5.C.23) hold, from 

which, using ( 5 .8 .35) ,

L * r ( r )
j ^ n i

- t - t ,^ 2.346(n-l)2 ( 1+2 . 24x 2"  ) + 2 .24r 2

^ 2.346(n-i)2” t  (1+0.1) + 2 .24r2~t (5-8.44)

which, since r  <5 n-1 , leads to (5*3.36).

Note, f in a lly ,  that fo r values of n and r  fo r  which u = nC can be
r  r

computed exactly  using integer arithmetic, the numerical constants in 

( 5 .8 . 1 1 ) and. (5*3,36) are reduced by factors o f about one ha lf.



sj.o ‘¿¡ft e derivstives o f a sp line represented in 1 -spline form 

In th is section wc concern ourselves with the detei dr-At ion in  it:;

B-spline form of the via derivative (0 <  r <  n) of an ; rb itrary  spline

s(r.) o f order n defined upon a set o f knots which, apart from one resirrictio/-,

form a standard knot set. The res tric tion  is  that the in te r io r  knots x^

( i  = 1, 2, . N-1)  must form an (n-r)-extended partition  of (a ,b ) . The 

reason fo r  the restric tion  is  simply that the rth derivative o f s (x ) , v is  

:Sr  ̂( x ) , is  evidently a spline o f order n-r and hence can "be meaningfully 

defined only upon an (n-r)-extended partition .

The f i r s t  derivative o f (5.1-10) with respect to >. gives, fo r  n £ x ^ b ,

Ii+n-1
5‘ (X) = Y  ? C--N- (X)a ns. (5-9-1)

1=1

which, upon applying (4 .1 .1 ) and using the restricted  support o f the 

B--splines, becomes

T ~ ; r ' N (x ) n-1,i-1 ■ V n h h  ]

1 x -x  4-~r* 11 2-n i~2 x. -x.L i-1 i-n X.-X.
i  x-n+1 J

+ °N+n-1
Nn-1,N+n-2^"^ 

XK+n-2“Xii-i J

. ^  /> r ° A — V . (x ) .
= (n-1 ) >  l ------------ ) V i , i v '

x . - x .i=1 \ i  ' i-n+1 /
(5-9-2)

Thus
PVn-2

«■ (*> -  Z Ja=1
ci1 N̂ , .(x) i  n-1 ,i • (a  <; b) , (5 .9 .3 )

where
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c .(1) (n - l ) (o 1+1-:c.)
f'j *< 9», . JUn-2) (5 .9 .0

v  - X ,
-‘i  iL-n-i-1

Evident.ly higher derivatives o f s (x ) way he obtained by repeated application 

o f th is process. ¥e state, without proof, this resu lt as a theorem.

Th sor osi 5 .9 .I

Let s (x ) be an arbitrary spline of order n defined xjpon a sot o f knots 

which form a standard knot sot with the exception that the in terio r knots 

form an (n~r)~extended partition  of (a,l>) . Then, fo r  0 £ r  <  n,

N+n-1-r

s ^ ( x )  = 7 c ^ 'N __ _ , (x )  (a $ X £ b) ,/JL,---
Ìr1

:i_ n -r , x

J j  0where the coe ffic ien ts  cf ' are defined recursively' by

c .0. ( r  ,  0)

( r )  \
cV J = E1 .SÇ

, w (r-1 ) (r - l )v
(n" r )(°i,.1  - ci  >

x. -  x.x x-n+r

(
17 f~, f- •«PO-.V,

(5-9.6)

(0 < r  < 11) .

Having obtained the representation (5 -9 .5 ), the ( n-r)th-order spline 

rST\ x )  can then he evaluated as required using either Algorithm 5.2.1 

or Algorithm 5.2.2.

I t  may sometimes he appropriate to  define modified coe ffic ien ts  c£r ) by

N+n-1-rIN-t-iL— I — i. /
r , (x ) = B T ~ ’ H • ( * ) .'  '  nr  ̂ 1 n-r,x (5 .9 .7 )

L= I

where

Bnr
= (n - l)(n -2 ) . . .  (n -r ). (5.9.B)

Then, using (5*9.5) and (5*9 .6 ),
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0M  »  Bi  nr X (5 .5 .9 )

and

~(r)
° i  H

c .
X

~ (r - l )  ~ ( r - l )c ■ ' -  r; : '
.4-1

X. - X. ̂ x x-n+r

(r -, 0)

(O K r  n)

(5.9.10)

Since the factor B can be formed exactly, at leant fo r reasonably sm&: 

values o f n, the la tte r  form has the advantage that smaller roundinr 

errors can be expected in the computation o f the c (T  ̂ from ( 5 ,9. 10) .

To conclude th is section we make some observations re lating to bounds on 

the derivatives o f a spline in the case o f equispaced knots. Consider 

the in terva l x . ^  x < x  . By analogy with (.5.1.13),

( 1)
min ci  $ « ' ( * ) $  max

j  $ 1  j+n-2  j  s< i  N< j+n-2

(1) (5.9.11)

which, using (5 -9 .4 ), gives

(n - l ) (c .  —c )
x+1 x

non $ s '(x )  £ max
(n- h ( %

j £ i  $ j+n-2 "x i~n+1

For lcnots with constant spacing h,

Ò $ i  ^ j+n-2 X:1 y'i-n-f1

mxn

j 4' i  £ j+n-2

(c i + r ci ) £ h a '(x )  <1 max

(5.9.12)

(c i * r ° i b  t5 - - -13)
j  i  i  ^  j+n-2

Evidently, this approach can be extended to higher derivatives. Y'o obtain

mxn  ̂Ci+ 2~2ci+ 14 ci )  h?G ( x) .<
j < i  i  j+n-3

(c i +2-2ci +1+0i>
j £ i  ^ j+n-3

(5.9.14)
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A
¡ 5 )

and, in general, fo r  0 is r  < n,

min A \  4 hr « ( r ) ( * )  s  nix

j ■< i  i  j+n-r- 1  j a $  3« , - r - 1

where A  denotes the usual forward difference oporator.

ne note that the B-spline coeffic ien ts  have an analogy with function 

values, since the ir jif f^ e n o e r , (o r, in  the case o f non-uniformly--spaced 

knots, derived e n t i t i e s  sim ilar to divided differences) giro us knowledge 

related  to the deriva tiv es o f s (x ). In one respect, this information is  

superior to that obtained, from the differences o f an arbitrary function, 

since in that case, without further a ,p r io r i or computable knowledge, no 

useful bounds on the derivatives can bo obtained from the differences.

T7c do not carry out an error analysis o f the recurrence ( 5 . 9 .6) ,  hut 

content ourselves with a simple but informative numerical experiment.

Consider f i r s t ly  the conversion of the polynomial power series ( 5 .7 . 1 )

into i t s  equivalent B-spline representation ( 5 .1.10). For any given

standard knot set th is conversion can be carried out using Algorithm 5 .7 . 1 .

Now suppose that fo r  some value o f r ( 0 < r <  n) the recurrence (.5.9.6)

is  used to obtain the coeffic ien ts  c.(r )  in the B-spline representation

(5 .9 .5 ) o f s 1 (x ) .  The computed coe ffic ien ts  Z(±r )  w i l l  be contaminated

to some extent by the inevitable floating-poin t arithmetical errors made.

The bulk o f the contribution to the error in i f  -  s .  i . u i  ,.i. j f  '> >■ a.u oe one to

loss o f significance when forming the M fferenoes o f previously counted 

B-spline coo ffic icn ts .

Fo «  <*US* values fo r the coeffic ien ts  c ^ n  M10t>lp,. ^  ^

re la t iv e ly  more accurate by using the ex p lic it  fo.m o f p (x ) ( 5 .7 ..;).

Me formally d ifferen tia te  the power series r- times to  obtain
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n~r~î
M )

«  ■ » i' 5* 1 *i=0 (5 .9 .16 )

vîhere the coe ffic ien ts  b t  '  are defined

r »..<». j ■
i  I

f (i+ l)h ^ ~^ 1+1

s ( r )

xnocl recursively by

(r  = 0)

(0 <  r  < u ).

(5.5.17)

Evidently the values of b f  '  computed frcn (5.9.1?) w i l l  have very smell

re la tive  errors. The B-spline coe ffic ien ts  can then he formed fr>o™

these values o f b) ' using Algorithm 1 7 1 t «+ ^ ( r ) •> , ,,x ^  j . f .  i. net o.. denote tin value o f

c .1 ' computed by th is la tte r  process. V;e shall assume that e .^  is  n

re_at. . . l i  6*od — °A vtu.ua c  ̂ I t  is  reacu.i.y established

using the error analyses o f Section 5.8 that this assumption is  r o l l  

ju s t ified .

Let N+n-1--r

ï (r)w  = 7 T  ;.( r )N . (x )—n 1  u - r , iv '
i=1

and N-:-n-1 -r
A ( r ) , v v̂ ~~? A

(5.9.18)

w  - c ir ) ;;
i-1

'n -r ,i(x ) • (5.9.19)

( v )
Thenthe error 6s (x ) :ui the rth deri

+., l ( r )

derivative o f s (x ) due to using the

inaccurate coe ffic ien ts  c: '  isl

6 s(r )(x )  «  s ( r ) (x )- s ( r '(x )  = { s (v )(x )- s ( r ) (x ) ]  + [ c V1' \ x ) - s ( r ) ( r ) J  .

(5.9-80)

In accordance. with the above assumption we ignore the term S  • (x )-s^ ' \ x )

and obtain
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; ( r ) (x) ^ ( r ) ,  ,
-  s (x)

X i i J.A ] A.

,~ (r) .sir)
Z .__1
i — 1

' *H 
i•H n -r, x ( ;x) (5.9.?1)

and hence, as a consequence o f (5 .1 .13 ),

S s ^ ^ x )! ^ max r ( r )  " '(r )  u, /- c v
! i X X (5.9.22)

Thus, by evaluating the c W  and c^1 as described and using (5.9.22) the 

required error bound is  obtained»

Although a bound obtained in  th is way is  o f considerable in terest, i t  is  

more valuable to  compare i t s  value with a bound fo r  a w ell-est - blirhed 

process. Y!e therefore consider a process analogous to the above in which 

we employ Chebyshev polynomials instead o f B-splines.

F ir s t ly  we convert the representation ( 5 .7 . 1 ) into i t s  equivale.

Chebynhev-series form 
n-1

p (x ) ^ ¿ _ i  a T (x ) ,  
i--0 ~ x

em;

(5.9.25)

where T .(x ) is  the Chebyshev polynomial o f the f i r s t  hind o f degree i  in 

x, the prime on the summation symbol denotes that the constant term in

(5.9.23) is  to  be taken with weight one-half and, fo r sim plicity i t  ia  

assumed that the range over which p (x ) and s (x ) arc defined is  [ - 1 , + 11 

Tills conversion can be carried in  an extremely stable manner (sec Cox, 197/,

“ *  alr,°  S“ ti0n 5 -1 b .  with expected errors o f sim ilar magnitude to those 

in obtaining the B~spline fora . The coe ffic ien ts  a (r ) in the> . , ,
i  111 the representation

p M w . f ^ W  .
3 1  . (5.9.24)X=U



;an be determined by the recursion

. «  = j

f
f

s

rX „ (x- = 0)

li

1 (r )
l ai+2 + 2 ( ±+i )4 + i^ (0 < r <  n) ,

(5 .9 .25 )

¿’¿vén by Clcnobaw (19o2) . A ll undefined terms in ( 5 . 9.25) are to  bo

regarded as koto. Let the values of a ; " '  computed in th is manner bo 
- ( x )

denoted by of ,

As v/ith the B-spline coe ffic ien ts  we can obtain good values o f the > ; l 1 

by evaluating the Chobyshev coeffic ien ts  d irec tly  from the form (5 .9 .1b ).

We denote the computed values o f these coe ffic ien ts  by a.W / . Hou le t

5(r)M *  L' sir)Vx> (5 .S .ÏS )

and

P( r ) W

i=0

n-r-1
'V  ~~t l  A [r )  , v

* a. 'T . (x ) .  

1=0
s / (5-9-97)

Then we define

ip ( r ) (x )  = i f r \ x ) - p ( r ) (x) = { r ( r ) (x)~p( r ' ( x) j + { p ' r \ x ) - p ( r \ x ) }  .

A i r )  ( r ) ,
Again we can read ily  ju s tify  that the term pv ' ( * ) - P  1 (:<) may safely ba

ignored and hence essentia lly

6 p ^ ( x) = p^r ^ (x )-p^ -’ (x )

n-r-1  
”7 '

~ 7  . r f r '- a ( r ) )T . (x )  ./----i v i  1 ' 1'
3-0

( ' go  OR\v J • • ‘- -V

lines ¡T±(x )! .< 1 fo r j:: j „< 1, w 
I 1 n-r-1

e obtain

K r ) - * ( r )

1---0

-a.
3. (5-9-99)
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aov/ give a one numerical resu lts. Tie set b_. -  1/ii fo r i

Tr-1 13. Thus p (" ) is  the Taylor expansion of e ' about the origin .

truncated a fter 14 terras. This choice o f coe ffic ien ts  b.. has the

advantage that hi(r ) h. and hence has no further error. Yfe also sot

6 theh i) ( i  <• 0) ana x^ - +1 ( i  ^*>0). ror r  = 1, 2, ..
— ( r ' )  A (r ) — ( r )  Afr‘1

values o f c± ' , cn , a.̂  ' and a± were computed as described above an

the bounds (5.9.22) and (5-9.29) formed. The* bounds are given in  

Table 5 .,9.1.

Polynomial representation

B-spline form Chebyshov series

r The bound (5.9.22) The bound (5«9.29)

1 1.2732910-H 1.3837210~*10

2 1.47338.10~10 8.31460.„-9
‘lO

3 1 .45246iQ-9 2.36133i 0-7

4 1.252471q-8 5.22095i0-6

5 1.0854710-7 7.84445^-5

6 7.50009., 0~7 9.10534i0-4

Table 5-9.1 A comparison o f bounds fo r  the errors in  the rth 

derivative o f a polynomial expressed in it s  

Chebyshev series form and in  it s  b~spline form.

I t  is  seen that the bound (5-9-29) compares favourably with (5 .9 .22 '. 

Other experiments were also carried out, but Table 5.9.1 ty p if ie s  the 

vesv.lt s obtainsu.
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2 « i

She in defin ite  in teg ra l-o f a spline represented in  B-aplina form 

We canai ter  the inverse protest: of that of Section 5.9. vi:: the 

determinatier; .in i t s  B-spline fori: o f the r - fo ld  indefin ite intep:. ;\x 

(:c >  0) o f an arbitrary opline s( •:) o f order n defined upon a standard 

knot set. 5C!hero in no further res tr ic tion  on the knot set, as in 

Section 3*9> however.

Tb c or cm 5 ■’ 10-'»

(x ) be an arbitrary spline o f order n defined upon a standard knot 

set and have the representation (3 .1 .10). Then the r - fo ld  indefin ite

in tegra l rf ~ ' (v ) o f s (x ) is  given by

(S 1 \ x )  = ! i . . .  f  s(y.) dvcb: • « ) * v:_r-r— & w

IJ+n-1+r r
“  7  '  o b r )K . ( ^ V  kJ r ..j.1 n+r#3. ' / j _—  v J

d'--' (-o-.i)ï1

(_ r )
where is  defined recursively by

(m-r-1 )o } 1  ̂ = J
f ( i  $ r )

! ) „ 0 - r )  ( i .
V. -L“  ̂ 2 .-1 i-n~r' i - 1  t-' i r )

and k, ( j  = 1, 2, . . . ,  r )  are arbitrary con-> r* r- —, •- ro luOi

(3.10.1)

(5.10.9)

T~« . .IT-
j .  j. O u i

I t  is  su ffic ien t to  establish that, fo r  arbitrary r  >  0, a single 

d iffe ren tia tion  o f the right-most expression -h fs -o

teoJ” £ion oi' “  M'Mtrary «M l « v e  « « t e l ,  3-ieXâ. an «^ r c e io n  o f 

„ijuUM- ¡- c «  >7if,U r w jOawa by r-1. Aoooraingjy, up„„ eH!J.boytac

Theoren 5-9. ' ,  to (M t o ,  as the f i r s t  derivative o f th is expression,
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(n+r-1 ) /  ,
fc. — ■!
1---1

N-in-2+r , (~ r) (- r ),
*-c..>' / - e ;

N - „ A x ) -f' 1 i -l-

- 1
\  1

i. i-n+1-r
> -------J L _ , xrS M

(r~.i-•i'll
J- i

which, using ( 5 . 1 0 .2 ) ,  reduce: wo

(5.10.//)

N+n-2-i-r
T ’
/»--- \ i  n+r
i =1

r - 1ST
- i . i w  + 2 - i

~-j-i

0="
U (5.10.4;

I t  may be somewhat inconvenient in some applications to  work with the 

expression (5-10.1) since i t  involves both E-splines and powers o f x. 

However, for any particu lar choice of the Constanta k f i  -  ■; ?
j  > • i  i • • * ; *- J 5

the power-series part o f ( 5 . 1 0 . 1 ) may be converted into a lin e .r

combination o f the B-splines N Ax.) ( i  - 1 2. k, «  -i ,̂h 4,n + r ,iv ' v '> •••> n+n-i+r; usnig the

method o f Section 5.7 (and, in particular, Algorithm 5 .7 . 1 ) .  Thua V3 

obtain the representation 

N+n-1 +r
_ ( - r ) „  / v

(5.50.5)
s ( X f /

i=1
. o ' ,

1  n+r,x y J

" hBra the ° i  contributions from the p r a r . s e , i ! l4  tors.s .

In coomb * ith  moot Integration processes involving t a m U e e ,  i t  con bo 

cocpectod that the use o f recurrence ( 5 - 1 0 .2 ) ,  in which the difference

xi-1  -  Xi-n -r  csn bB f °™ ed * “ •> a very snail re la tive  error (o f  Section 1 .

w i l l  g ive r is e  to  a stable algorithm fo r forming the coe ffic ien ts  c ( ~r >
i

*> ° °neludo ih ls  sootion ” lth  «  expression fo r  the d e fin ite ' in tegra l of 

s (x ) ever the range (a , b ) . I f  a (x ) is  a spline o f order n defined upon 

a standard knot set with coincident end tacts then each of She B-s;,lines

h i / J')  ( A - •> . »  •••> e ;n ~ l) as iden tica lly  scro outside o f the interval 

£a, b ] . Consequently,
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ï'T-i n-1

s(x)dx = /
Z.— Í

i —1

c .1

r ü
K ,n i (* )â x

N+n-1
y

= >  C.
/ - i  x

i='i

N .(x )axni
■> co

(3.10.6)

Hence, using (4*5*9 )i

► >> N-in-1
O

s(x)dx =
— 7

L i
a i=1

(x.-x. . )o .x i  n.--xi i (5.10.7)

or, in  terms o f the coe ffic ien ts  o f the un-nom,h lis e  cl B-spline 

representation (5 .1 .11),

-h

•* a

N+n-1

.(x)ax = -  2 _ j  ° i  • 
i —1

( 5 . 10 . 8)

Thus, having obtained the coe ffic ien ts  in  a B~spline representation of s (x ), 

i t  is  a very simple matter to  determine the value of the defin ite  in tegral. 

For example, s (x ) may be an in terpolâtory or a least-squares approximation

to data representative o f a function f (x )  (Chapters 6, 7 and 8 ), in  .vhich

case (5.10.7) or (5.10.8) w il l  then provide an estimate o f f f (x )d x .
J a

5 ..11 Representation in piccewisc-Chcbysh e v - i • ios form

The representation (5.1.10) is  satisfactory fo r many purposes in that only 

N+n-1 coe ffic ien ts  (the smallest possible number in  general) are required 

in i t s  de fin ition , and about Jn* long operations in it s  evaluation fo r a 

prescribed argument x. I f  an increased number o f linear coe ffic ien ts ,

v is  Nn, to define the spline, can be tolerated then, at the expense o f some 

pre-computation, i t s  subsequent evaluation may be carried out fo r  a g iver 

argument in  about r. long operations. In order t o obtain such a representst:: 0 

the fo llow ing approach is  recommended.
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In each in terva l x . ^  x ^ x . (;j = 1, 2, N) fo r  which x v
*r ' J j-1 3

s(x ) .ls a polynomial e eg rc  n—1 and hence iiay he expressed in the-' 

Cheby shev--series form,

where

4 ~ i "

’ <*> a » j W  - Z .X  ° j A w ’
i =0

(5.11.1)

(5.11• ?)

In (5 .11 .1 ), '-^(X) is  the Chebyshev polynomial o f the f i r s t  kind o f degree 

i  in  X, and <iie double prime indicates that in the summation the f i r s t  and 

la s t terms arc to be halved. The linear transformation (b .1 1 .?) mans each 

in te rva l x .^  s< x $  x . in to the in terva l - 1  S< X S< 1 .  This representation 

has also been used in  the a llied  context o f curve f i t t in g  with piecewise 

polynomials (Cox, 1570- For completeness, in  the case x .  „ = x v.e defineI j

a . o = 2s (x y )  and = 0 ( i  = 1 , 2 , n- l ) .

In order to  obtain the values o f the coe ffic ien ts  a... in  ( 5 . 1 1 .1 ', WR -,ay 

u t i l is e  the fa c t that s.(X ) is  a polynomial o f degree n- 1  in x , and hence

(Clenshaw, i 9^2)

a ..Ji n-
...............« >

(5.11.3)

The values 0? Sj i°os ( T l ) )  reqUir'i i  in  are conveniently

calculated naine Algorithm 5 .P.1 or Algorithm 5 .P.2 fo r  computing a rp3:r£! 

from i t s  B-spline representation.

The evaluation c f the o, . ,j i ’ — tLc cub sequent evaluation o f r. ( r )
o ’ '

fo r  a prescribed argument 1, can be carried out using the scheme fo r  

summing a Chebyshev series (very s ligh tly  modified to  accomodate the 

halving o f the la s t tern in  both (¿i. 11.1) and ( 5 .1 1 .3 ))due to  Clenshaw ( ¡952)
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Greater s ta b ility  in the a« computations can be achieved if ' the .Ueinsch- 

Gcntleman Hodi.ficati-.ya o f Glenshaw* & scheme (see Gentleman, 1969) is  used 

or a lternative ly , plane rotations are employed. For fu l l  details see 

Cox ('¡974).

7m important aspect of the computation is  the linear transformation

(9 .11 .2 ). In Section 1.2 i t  was shown that i f  X were computed from :.n

unsatisfactory representation the error in X depends upon the value of

L. \/(x -x  ) .  For highly non-uniformly spaced knots, or i f  both x. ,
r j i  j j - i  ' o-i
and x.  are far-removed from the origin  (compared with the in terva l length 

J
.. _.-r ) , th is  ra tio  nay w ell he very large. Of course, I f  H is  large,

o ;M
there w i l l  inevitab ly be values o f j  fo r which Jx.|^>x,-x.  . I t  fo l ic . ’

It»* 11 J“ * V
that one o f the stable forms, eg

i 'i1 =  { {x -x ._ . , )  - ( x , - x ) ] / ( x . - x ,_P h.r;

should be employed.
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CJIATT3R 6

In m an y problems involving computations with splines the choice o f 

representation o f the spline is  of the utmost importance; the spline- 

in terpolation  problem is  no exception. Evidently there are many possible 

sets o f basis functions in  terms o f which the spline can be expressed.

For any particu lar set there are three main stages in the spline 

in terpolation  problem ( i )  the formation o f the system o f lin ear equations 

defin ing the coe ffic ien ts  o f the basis functions, ( i i )  ,the solution of 

th is lin ear system, read ( i i i )  the numerical evaluation o f the interpolating 

spline at various values o f the argument. In stages ( i )  and ( ü i )  i f  i n  

o f course necessary to compute accurately the values o f the basis functions 

at various points. There are in  existence excellent methods fo r  stage 

( i i )  (see, fo r  example, Wilkinson, 196$ and VtLLkinson and Reinsch. 1 5 7 1 ) ,  

although fo r  maximum e ffic iency  these methods need to be ta ilored  to take 

fu l l  advantage o f the structure o f the lin ear systems. The accuracy to 

which these methods cun deliver the desired coe ffic ien ts  depends upon the 

numerical conditioning o f the system, and therefore upon the choice o f 

basis functions.

In  Section 6.1 the opline interpolation problem is  defined. Section 6.2 

a netted o f forning the lin ear eye t* . defining the coe ffic ien ts  is  £lv3a, 

and the solution o f this system is  discussed ir. Section 6 . 3 . In Section 

a l2 0 i'it-aas ion the solution o f the problem are presented. In Section

6 . 5  I t  is  shorn that one o f these algorithms y ie lds  a solution that ir, ni­

lg a i *  interpolant fo r  data function values closo to those given, arcl 

computable a posteriori measures o f th is closeness a r e
v v'.l«-,.. .1. y v»0 p

Section o . 6  a  b r ie f discussion o f the method when '"nr.l ■’ , -,
u -police, to splinas with

multiple knots is  S i v a  In Sections 6and 6 . 8  the « to is e s  o f exterior
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u-cL in te r io r  are discussed and in Section 6.9 some numeric.'« I

examples are presented. Parts o f th is chapter appear alrc in  cox (l$y f})w

6 * 1  The si-Jinc interpola tion problem

The problem o f concern nay be stated as fo llow s:

Interpolate function values f ‘ (x ) at tho points x = t t +1* 2* Vt a

spline s (x ) o f order n (degree n- 1 ) with prescribed (in te r io r ) knots 

:':1 » x2* * * ‘ J XJi~1'

Jjot c. - t . and o -- t .. I t  is  assured that

t 1 <  t 2 < . . .  <  tffl ( 6 . 1 . 1 )

and that the in te rio r knots form an n-ext ended partition o f ( a , b ) .  Th-. 

choose additional knots x.̂  a ( i  ^  0 ) and x A = b ( i )k  l i )  ar^ord uC 

vr.'.t. i tne de fin ition  o f a standard knot set with coincident end k' rJ" 

(Section 3 * 1 ) -  T h e  N+n-1 free  lin ear parameters of s (x ) arc to bo 

determined such that ’trie conditions

> (t .) — f^ ( j  -  1> 2} n ) , (6 * 1 •'?.)

There f .  .  f ( ' t p ,  ■>« eeCsfied. To suarantoe the poosiMlifry cr ,  

interpolation fo r  arbitrarily-prescribed function values, it ±z manifesto

repaired that

jc - N+r-1 . ( 6 . 1 .

Schoenberg and Whitney (1953) have show that a unique solution exists i f

and only i f  the inequalities
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t . < x < t.
H-n

*2 ^  :t2 ^  ’'2+n ’

(6.1..V)

t T < y . <  t l i -  ! N~ 1 x :u

are sa tis fied . I t  is  therefore assumed henceforth that conditions ( 6. 1 . 3 ) 

ana (6.1,1+) hola, 7a re fe r  to (6*1.4.) subsequent^ as the Schoenberg- 

Ydiitney conditions..

The ra in  in terest in this Interpolation problem is  that no additional

information re la tin g  to end derivatives, such as with a natural

in terpolating spline, is  required. The spline is  treated simply as a

conventional in terpolating function (such as a-polynomial, a rational

function or a- trigonometric ser ies ), but advantage is  taken o f the

particu lar structure o f the problem in order to y ie ld  an e ff ic ie n t  algorithm,

Schunaker (1$6?) remarks that this particular in her no T a h ; ™  , .. .x tuipoiation problem has been
a l l  but neglected.

Taxi, approach to spline interpolation has the additional advantage th 't  It 

has considerable approximating poper since i t  enables arbitrary polyuorifls 

o f degree n-1 to be reproduced exactly, 5Ma property is  not shared by 

aSJSESl =?llnoc »hdeh, i f  o f order n a 2k, oar. reproduce only polyr.or.ial..-, 

o f degree loos than k (S re r t lle , i S55).  neither is  the property chared bj- 

spllne Interpolation Kith derivative end conditions, unless i t  i 0 „ M lM e 

to provide the exact values o f the required derivatives.

6*2 The lin ear svstsr.: formation

Per any given set o f knots, s (x ) can be expressed in the form
l i t

s (x ) = C .tf.(x ) ,

1=1 (6 .2 .1 )



where the (x ) ( i  - 1, 2, <?■) forili <•. linearly independent set o f

basis functions, each of which is  i t s e l f  v, spline function of order n 

with in terio r knots x.., Xg, x,^ . s (x ) cannot in  general be expre:

in  terms o f fewer than m such functions.

Having selected appropriate basis functions y . . ( x ) .  the coe ffic ien ts  c 

are given by the solution of the follow ing system of linear algebraic 

equations,

m

T ,
i —1

c . 0 . ( t .) 
i X xv J ( j  - 1? 2> • » . ,  m) ( 6 . 2.2

The linear independence of the functions together with the

satisfaction  of the Schoenberg-YThitnay conditions (6 .1 .> ), ensures the 

existence o f a unique solution to  (6 .2 .2 ). The system can be expressed
i

in an obvious matrix notation as

A c ~ f  j (6,2 .J.

inhere the element in position ( i , j )  o f the n by n matrix / 1 * •> - ft-• .. 15

The B-splines, which we intend to employ as a basis, are particu larly 

advantageous in  that the linear system defining the spline coe ffic ien ts  

can be formed and solved extremely e f f ic ie n t ly  and, moreover, in a 

numerically stable manner. We give some deta ils of the arithmetic work 

required tc  set up and solve the system at the end o f th is section end in 

Section 6.4. A discussion o f the numerical s ta b ility  is  gi ven ;ln 

Section 6.5.

As shown in Section 5-1, the spline cor. he expressed in the form 

or (5 .1 .11 ). Consequences o f the choice o f coincident end knots are thr* 

the fu l l  set o f ra B-splines is  id en tica lly  zero outside the reiip-e a r  .. g 

and that the defin ite  in tegra l o f s (x ) over the data range (a ,L ) c., b _



compute a very easily  ancL used as an estimate o f { f ( x ) d,r once'the
la.

B-spline coe ffic ien ts  have Been determined (o f  Section i i o ) .

By putting

(x ) 5 2i . (x ) , '3 nx

the system (6 .2 .2 ) becomes

(6.2 .4)

71 c.N .( t .)  .» a. rn. j = 7; ( j  = 1, 2, . . . ,  m) ( 6. 2.60
1 -1

Because of the restric ted  support property o f trie B -splinesit follows that 

the coe ffic ien t matrix defined by equations (6 .2 .6 ) contains at most n non- 

ze.ro Clements in each row> and that the column position o f the f i r s t  non­

zero element in each row is  a non-decreasing function of the r 0vY number. 

Thus A xs a hepped-banded matrix: (Section 2.11) of bandwidth n. For 

instance, i f  N=6 and n=4, the matrix A obtained from data and knots 

sa tis fy ing the conditions,

a re­ b1 <  b2 < X1 <  t 5 < X2 <  X< <  \  <  *5

< t 6 < \  <  6 < *£ <  :t5 <  *9 - (6 .2 .6 )

take s the form

X 0 ■

X X X A

■xr
J i. X X X

X X \ X

t __i— X X X £ • (6 .5 .? )

X X X X

X X X X

X X X X

0 X



In (6 .2 .7 ) non-aero entries ere denoted by X. 1 + •• - str-H - p

ve r ify  that data and knots disputed «3 in (6 .2 .6 ) s a t in y  the Schoenberg- 

1'hit.ney conditions (6 .1 .4) .  The pro nonce o f only one «-»-a ero  c-lument in  

the f i r s t  and last rows o f  A is  a further consequence of  the choice o f  

coincident end knots. As a result o f th is choice and o f ( 3 .6 . 1 ) In  

respective values of“ ĉ  and (= cQ in th is  example) are simply f , end f  .

A further feature o f the matrix A is  that i t  is  n ice ly  balanced for 

computational purposes in the follow ing sense. The maximum e le r<• n '• in 

each row is  bounded from above by unity, as a consequence of re la tion

( 3 .6 . I ) ,  end from below by 1/n, as a resu lt o f Theorem 3.6.2.

6.3 The linear system: solution

The solution of the system (6 .2 .5 ) car. be achieved e f f ic ie n t ly  i f  adv»-> ■! .w : 

is  taken o f the stepped-banded structure o f A. For instance, either 

Algorithm 2 . 1 2 . 1  based upon Gaussian elimination 0r  Algorithm 2.13.1 which 

uses elementary transformations may be used. A lternative ly , since A can
rw

be regarded as a band matrix with n~1 super-diagonals and r -1  sub-diagonals, 

a resu lt which is  a consequence o f the Schoenborg-i/hitney conditions ( 6. 1 .A.), 

a standard algorithm (eg Martin and ïïiikinson, 1967; fo r solving band 

systems can be employed. Vith the last-menticned approach some loss of 

e ff ic ien cy  err be expected, since advantage 5s not taken o f zero elements 

within the band. In fact at least (n -n )(n~ l) o f the to ta l number of 

( 2m-n)(n-1 )+m elements in the band arc xoro.

6.4 Algorithms fo r the spline in ter-no? utxon rroblem

Algorithms 6.4.1 and 6.4*2 are implementations o f the method described in 

the ea rlie r  section*. 0 this 0.1-—p^ez • -.ho algor.*, ohms axlov? cither (iolr,,.ri dent 

or non--coincident end knots to be chosen. The former choice is  usually to 

be preferred fo r  the reasons giver, in  Section 6.2, as well as fo r the 

s ta b il ity  considerations discussed in  Section 6.7 . However, the latter



choice may w ell be more appropriate i l ‘ the knots x. ( i  0 i irl

are at a constant spacing, h, say, since, i f  the exterior knots are 

chosen such that the complete set o f knots is  at the spacing h, the 

23-splinca so defined art simply .'.inear translations o f each other.

214

The f i r s t  i>ive stePs o f either algorithm constitute checks on the data,

the computation being terminated i f  any o f the f iv e  checks is  violated.

( fo r  s im plicity of presentation there is  an element o f redundancy Sr these

checks). In Algorithm 6.4.1, the stepped-banded system (6 .2 .3 ) is  formed

using Algorithm 3-12.2 to  compute the values o f the normalised B-splines

.tor each Oa the u data points. In accordance with tho requirements c»f

ilgcrithm 2.12.1, which is  then used to solve the system using Gnus, Ian

elim ination, the matrix A is  stored in condensed form as an m by n arrav

with the vector p holding the row numbers that terminate each block. In

AlgoriLlua 6.4.2, which makes direct use of Algorithm 2. H .1 fo r  so'-nm:

stepped-banded systems by elementary transformations; the ith  rev.

( i ,  1 , 2, m) o f A is  formed as required by tho la tte r  algorithm,

using Algorithm 3*12.2 to evaluate the non-aero B-spline a at x -  t  '¡iv-rea
is  l i t t l e  to choose between Algorithm 6.4.1 and Algorithm 6 .4 . 2  in  terns 

o f speed or storage requirements and, in  cur experience, in  terms o f 

s ta b il ity .  An error analysis o f Algorithm 6.4.1 is  given in  Section 6 . c;.

It assumed tnao \alues cn m and n, data points ( t  f  ) ( — 1 p

and knots x^ ( i  = 1 -n, 2 -n, . . . ,  m -  U+n-1 ) are supplied to tho algorithms.

The la s t  data point is  always chosen to l i e  within the in terval * i n  Y
N- 1  'll*

This choice, together with the fo llow ing minor modification to Algorithm

3 , 1 2 . 2  fo r  computing the normalized B-aplinas, is  necessaiy to ensure that

tho appropriate B-spline values are properly defined in the ca*e t  _ v .
»  * ‘II ’

Renlace Step 1 o f Algorithm 3.12.2 by 

Step 1. .¡.i+‘* < >cM determine the unique integer 1 such that

x, , 6  x < X..; otherwise set 1 = H. 
1-1 * J.



Algorithm 6 .4 .1: Dm;a Interpol .tion by a spline; o f order n

using normalized 3-splinos and Gaussian elimination

Comment: Check whether there are su ffic ien t data points fo r  the

prescribed order of the spline.

Step 1. Finish i f  the inequality a $ n is  vio lated.

Comment: Check whether the complete set o f knots is  ordered.

Step 2. Finish i f  the inequalities 2 . < x < < x „T.p
1-n "  2-n '■*' ’ * 4 Jn c

not a l l  sa tis fied .

Comment: Check whether the complete sot o f knots forms an 

n-oxtended partition .

Step 3- Finish i f  the inequalities x. < x ( i  -  1 oa-n i  ' ,J ‘ 5 • • • > /
. are not a l l  sa tis fied .

Comment: Cheek whether the data abscissae arc s t r ic t ly  ordered and 

l i e  within the range [a. b] ~ xrJ .

Stop 4- Finish i f  the inequalities x <  t  <  t, <  . . .  ^  t  > t f  -
0 1 2 m-1 ^  m ■' '

are rot a l l  sa tis fied .

Comment: Check whether the Schoenberg-Whitney conditions are sa tis fied .

Step !). Finish i f  the inequalities t. <  x. <  t  y »■1 ^ 1  ^ i +Jl - 1 > *» • • • >
are not a l l  sa tis fied .

Comment: 1 denotes the number o f the current in terva l.

'N

Step 6. Set 1 .  0 and p̂ T = m.

Comment: The ith  data point Is  proees3e

Step 7. For i  = 1, 2> . . . ,  m execute S

Comment: The in terva l containing t . is  :

Step fi. I f  t^ <C Xj or 1 = ii advance to

Step f>. Set p-j - i - 1 .

Stop 10. Replace 1 by 1+1 and return to

Stop 11. Use Algorithm 3-12.2 with x - 1

W  = 1 ’ 1+1, . . . ,  l+r.-1)
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Comment :

i. * o G p I c

Comment : 

Stop 15 .

Store the. B~spline values fo r - t in row i  o f A.

Por i — I ,  1+1, l+n-1 set a. . . ~ N . i t . ) .
i , j - l +1 n.j o ’

Tho B~spline co effic ients ore computed.

Use Algorithm 2.12.1 to solve the steppe d-handed system 

Ac = f .

A5£ 2£2jhm_6.4^2 : Bata interpolation by a spline o f order n using

normalised B-splines and elementary transformat:

Comment: Check the data as in Algorithm 6.1 1

Step 1 . As Steps 1-5 of Algorithm 6.1 . 1 .

Comments h j-S cho .interval number os w ell as the number o f the 

clock currently being processed.

Step 1.1 Set k = 1.

Comment: In it ia liz e  R and t) to zero.

Stops 2-4.As Steps 2-4 o f Algorithm 2.13.1 (with n interpreted as * 

and q o.s n ) .

Comment: Computations involving the ith  data point are described 

by Steps 6-31.

Step 5. 

Comment:

Per i  . = 1, i, m execute Steps 6-31.

The in terva l containing t.. is  located in Step:: 6- 7 .

I f  or k = N advance to Step. 8*

Replace k by k+1 and return to Step 6 .

The 5th row of (¿ ¡h ),  as required by Algorithm 2.13.1, 

is  formed in Steps 8-0.2.

Use Algorithm 3-12.2 with x .= t.. to  form the values of

^ . ( t )  ( j  = k, k-i 1 , k+n-1 ) .

Sten 8 . 1 . For j = 1 , 2, n set v . = Ti . . A t . ) .
.1 n,k+j- 1  v i '

Step 8.2. Set u = f ..

Comment: Ulenentary transformations to annihilate the elements 

in ro’.T i  o f A arc applied in Stops 5..3 1 .

Step 6

Step 7- 

Comment

Step 8 .

ions.
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Steps 9 -3 i * As Steps 9-31 of Algorithm 2.13.1 (with n interpreted 

as m and. q .as n ) .

Step 32. Use Algorithm 2.1.4 to solve Rc - f*.iV iv rs/

The computational work in Algorithms 6.4.1 and 6.4.2 is  do.’inoted hr

3 2the formation o f A, which takes about ~mn long operations, and the

solution o f Ac = f ,  which takes about -¿mm" long operations (o r, i f  A is

regarded as a uniformly banded matrix, about 2mr. long operations) .

Consequently, the complete process takes about Ann (or ¿rsT) long

operations. In particu lar, fo r a given order o f spline, the computations!

■work is  d irectly  proportional to m, the number of points of interpolation.

Note that, i f  the basis functions ^ (x ) in (6 .2 .1 ) are not o f compact

support, the number o f long operations required to solve the linear erstcm
3

alone is  proportional to m .

As regards the subsequent numerical evaluation o f the interpolating orlino, 

the use o f Algorithm 5*2.1 or Algorithm 5-2.2 enables s (x ) to be 

evaluated fo r any particular value of x in about |r.2  long operations. 

Iiov/over, i i  a representation o f s (x ) possessing a greater number of 

defining parameters is  acceptable then, et the expense o f somo pre- 

computation, th is number o f operations can be reduced to about n by usine 

the equivalent piecewise Chebyshev-scries representation (Section 5 . 1 1 ) .

6.5 Error analysis

Vo no* give on error analysis o f the formation and solution o f the system 

( 6 .2 .:,) in  the oaso where the n o tra  is  regarded as a band o f width 2 r, - 1  

centred upon the main diagonal and Gaussian elimination with p a rtia l 

p ivoting is  employed. I t  is  assumed that a l l  computations are carried out

in single-length floating-poin t arithmetic with a mantissa o f t  binary 

d-I " i t s  and that the roundi.ng rules ( 1 -1 .2 ) ,  ( 1 - 1 -3 )  and ( 1 -1 -4 )  apply.
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iolxowing ison plO/) the solution of*

Ac = f
( 6 .5 .1 )

-5 s reduced, using Gaussian elimination with p a rtia l p ivoting, to that o f 

lUc = f .» fv r.» (6 .5 .2 )

where the computed L and IT satisfy

LU =j A ■: 3./v v
(6 .5 .5 )

The computed solution is  then obtained by solving two triangular sets of 

equations and in  practice we obtain 0. and 0 defined by

(L + 81») d = f  ,

(U + 6U) c s d .

Hence 0 sa tis fies

(L + 6L) a = (L + 6L) (U + 8D) c•s, *v /V A#*»' •/>/ rw*v' f.

(6 .5.5)

(6 .5 .5 )

-  (A + b + LcD + 6LU + '6L 5U) c =- f .'  a. A* *,/-•+ * rr H'V r., a. (6.5*6)

Note that here and elsewhere in this section c is  used to denote the 

computed B-spline coe ffic ien ts . For the case where A. is  a m i  n b 

aa trix , bounds fo r  ||f.I, ||„ and ||8c||„ hava been given by

Vilkinson (1S6.3: p 1C3). For the case «here A is  a handed ¡.-.atrjx v.ith

n- 1  super-diagonals and n- 1  sub-diagonals, Martin and IHlkinoon (liS / ) 

g ive the bound*

||£ | L  4  d
(6 'i A

* Since the preparation o f th is work I  have learned in discussion. :vith

Dr J H TTilkinson that the hound ( 6 .5 .? ) is  not o.n upper ( i e  rigorous) bound

as stated in  Partin and bilkinscn (1967). Hat nor, the ,rbound,; is  such that

i t  is  unlakely 00 be exceeded an practice. The remainder o f th is section 

should be road with tn is qtw-.i.xPicetiou in  mini.
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where g its the largesv ele&ent (giisregarwxjig sign) uhat arise« ill A at 

pj-y stage of its reduction to LjJ foxrx, The analysis of Wilkinson 

(1 9 6 3  s V 59 ;) for the solution of triangular systenis ic easily

crci.-ond.od to band triangular systems. We merely quote the relevant results 

L  is lower band triangular of bandwidth rx with all elements 

bounded in modulus by unity, as a result of the partial pivoting strategy. 

TJ is upper- band triangular of bandwidth 2n-1  as a. consequence of the row
*vf

interchanges during the reduction. The elements cl’ XI are bounded in

laodulus by g. It is easily established that

l i s I L  s  n - (6.5*6)

II2 I I «  i  E fn -D , ( 6 *5 *9 )

l l s i l l .  s  in (n + 1 )2  ' t (6.5* '■&)

I j s t t l L  i  p '< 2n- t |2 1 (6.5*11)

where 2 is  defined by (1 .1 .9 )*

Hence, writing ( 6 . 5 *6 ) in the form

(A  + 5 ) £ = i  >
( 6 .5 .1 2 )

\:o have 
11

A < IIe I! . h 11 ! 6U 1! + !  a -  |i ]! u  || +  j 1 ?.x, |i j | f .u j !
^  H ( 0  />>IV {I I I  < v v  I I  ¿ ( j( i I I  c<> 1» *..*,# 11 fO II «1 >'* i« rO

< e U2n-1) ♦ n2(2i'-1) M » 1 ) (2 a - 1 )  + t6 (n (1  i f6 [(2.-

(6 .5° 12)

, 2-
Again nating vse of (1 . 1 .9) and bounding the tern |-n£(n+1 )(2n-1)(1 . C6 ) 2  ' 

by 0.1 Oo in  accordance with (1.1,10) yie lds

3 . 2  ^
IJlvj| < g ( 3 r/j  -  b \  Tfi -  0 . 6 9 4 )2  ' (6 .5 * ¡ i )



220

Kovrcsvcr, A ia  riot known exactly, since i t s  elements are the coxaputed 

valuea o f B splines. Instead we have the computed matrix

A = A + E«“v *>*

oliere the elements o f H certain ly sa tis fy  (see (3 .9 .1 3 )),

h. . < 7 (n ~ l)2  “a..  ,xj x / x j  *

(6,5.15)

(6.5.16)

i f  Algorithm 3.12.2 has been used to generato the B-spline values. Thus

H ! £ 7(n~l)2 u max /  a. .1JI» ©£>

= 7 (n - !)2 " t max /* , N ,(x  )

-  "/(n-Oz"1- , (6.5.17)

as a consequence o f (3 .6 «1 ). So to complete the analysis ire absorb H
*v

into the matrix X in (6.5.12) which yie lds 

jj K  || ̂  .< g(3 n5 -g n 2 + -~ n  -  7 . 89A )2

<  3g(r+1 ) '>2 ^  .

liquation (6.5.12) may be put in the fora

(6.5.18)

à £ r; l  >

where

f  -  f  + I t  ,
r ,  /V ~ ' J

OXi~ I ‘ cO lis ILIIsL •

(6.5.19)

(6 .5.20) 

(6 .5.21)

Consequently our computed solution has the property that i t  correaponos to

the exact interpolation o f the data point« ( t  T W .  -• r,v V  i '  u  = 1 » 2> • m) by

a spline with in te r io r  knots xJ (.1 = 1, 2, v^ ve
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Iji - f  !! <  ĝ(n-i i)*’ iic ||!i~ ~ i: oo -c • - 11 ¡¡c[j
- t .

CO (6,5.22)

According to Martin and Wilkinson ( l 967) g is  seldom greater than

“  jai j j  in the orieinra natrix ‘ = Kn j(X i) and 0 * ir  (x ) *  n

Thus max Ja^j ^ 1. Consequently, the result

üï-î lL « 5(«-1 J3 II s if „ 2_tl
w ill  usually hold.

j.t is  our experience that in moat practical situations the ratio
I. » '

(6.5.23)

|| c jj / |j f  ¡1^ proves to be close to unity. In such cases ( 6.5.23) can 

be replaced by the approximate re la tive  error bound

III - t 11
lloo

$ 3 (n + l )V i l  .

IUII ( 6. 5. 24)
co

Tho above bounds aro very satisfactory in that they depend only upon the 

order n o f the spline and are therefore independent o f  the number o f data 

points n. note that i f  a spline basis not haveing a compact support 

property such as that o f the B-splines wen, en joyed  then ii0uld be a fu l l

I,ateta an'i  U,s '"faulting error bounds t/ould contain a term in

J (ci* Wilkinson, 1963: p 108) rather than in (n+1 )3.w

rJTno bounds ciud ¿5-) n n ii*-.»«. •
. V 1 * uo LeJ here üir-pe we believo they would

hold in  most circumstances. I t  is  always aoosiMfl •pOoeSiDie to derive re la t iv e ly

pathological examples ia  which lie  II > >  || f  |f
•I" 1; so It -  I ■ oo ar - J-n these circumstances

(i.5 .2 4 ) m i l  provide an optim istic estimate o f the accuracy o f the result.-. 

Such cases usually correspond to data nhioh coaes close in sot» sense to 

v io la tin g  the Schoenberg-Vhitney conditions ( 0. 1 .4 )  and henoo oould not bo 

considered well-posed interpolation problems. I t  is  o f ooaraè ^

practice to v e r ify  whether i c I!¡1 — |i CO

an

i °  tndoed o f the order o f I I . , I
I U L  *
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Only the bound (b .y.22) is  rigorous, 

prefer always to use i t  in  practice*

however, and the cautious user ray 

I t s  evaluation requires a value fo r

2 which in turn ca lls  fo r  the monitoring o f the growth of the elements as 

/• is  reduced to LU form. Such a monitoring ecu he carried out e f f ic ie n t ly

using a method described by Businger (1971).

An analysis, sim ilar to the above, can be carried out o f elimination 

algorithms such as Algorithm 2.12*1 that u t ilis e  the spec ific  structure r.f

A. Unfortunately, the error bound now depends upon the precise nature of'

the stepped-banded structure* However, the bound (6.5.22) certain ly holds.

For a band centred roughly on the main diagonal, the right-hand side of 

(6 .5»22 j  v.'ould be reduced by a factor o f approximately 6. A somewhat worC..0.0 

bound can be obtuineci ror Algorithm 2.1_o.1 based on elementary transformaftor.s.

Analogous error bounds can bo obtained fo r  the methods that employ unitary 

transformations (eg  Algoritlua 2.14.1). These bounds are somewhat mors 

satis factory in  that no fa c to r g is  present, there being no p oss ib ility  o f 

error growth since toe 2-norm o f each column remains essen tia lly  constant 

during the reduction (Wilkinson, 1965: p 2t f ) .  We have found, at least on 

tue basis of some ¿.O-jQ problems considered to date, that Wilkin son1 s 

contention that g is  almost invariably o f order unity, when using Gaussian 

elim ination with partia l p ivoting, certain ly seems to hold fo r  the linear 

systems arising from spline interpolation problems. Consequently, because 

o f the s lig h t ly  simpler programming and fa s te r  computation o f Gausaic,.

lamination methods, i t  appears that elimination methods o ffe r  some

¿vantages over methods employing unitary transformations. Moreover, in the

ases studied, Gaussian elimination with partia l pivoting has never given

oarer resu lts than unitary transformations (c la ss ica l plane ro ta tions),

n a number o f  casco the maximum error was about halt- -t-w fVv%—  l ..(,1  ravens

otations. We also observed comparable behaviour when stab ilised  nlflrc .-1 elementary

ansformati one were employed.
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6 .6  ITllt ip le  knot 3

The fa c t  that the algorittoa .described in  th is chapter can be used fo r  

multiple knots is  essentia lly  im p lic it in  our description. However, i t  

nay be emphasised that Algorithms 6.4*1 and 6.4.2 can be used just as 

e f f ic ie n t ly  to determine interpolating splines o f a lower continuity class. 

For example, in order to interpolate by a spline o f degree 3 with 

continuity up to raid including the second derivative, t r ip le  knots 5m 

place oi toimplo nnooC are employed. I t  may sometimes he advantageous to 

relax continuity ab a single point. For instance, the function jxj ' "*“ 

may be represented exactly by a spline o f order n having a single knot o f 

m u ltip lic ity  n-1 at x -  0.

6.7 The choice o f exterior knots

The condition number It  o f the matrix A is  dependent on the choice of 

additional knots. Y/e conjecture that, as regards obtaining a re la t iv e ly  

small value fo r  X  , a good choice o f knots is  that already suggested, 

v is  knots c f  m u ltip lic ity  n at the range end-points x  = a and x = b. To 

support, th is conjecture and to investigate the possible extent o f this 

dependence we give a class o f simple numerical examples.

Consider the interpolation o f the data saints ( t  f  ) { a _ a 0v ' i  ’ i 1 >■2 ~ ‘ > " i  * * •}

m ~ N+3) by a cubic spline with in te rio r logo' s x -  t  < -i  “  i+2 = *> df

N-1) (c f  Section 6 .3 ). Ve have used the singular value decomposition 

(Section 2.13) to determine the spectral condition number K „ f or throe 

choices o f the exterior knots, be set

t.. -  ih.

x i  = <

, t  + ih..

( i £  o)

( i » N )  ,

(6 «/•”'.)
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where

h. = h2 = 0
(6-7.2)

(coincident end knobs), or

ll1 “  X1 '  ^ * h2 “  * »  "  *H-1 (6 .7 .3 )

(lo ft-liana  one right-hand end t o r t »  at »pacings respectively equal to 

the f i r s t  and last in terval length ), or

(6.7.4)

and

h1 = h2 = ( V * , ) / "

(end knots at a spacing equal to  the average in terva l length)

The values o f K  2 fo r equi- spaced data t  -  i ( i  = i ( 2, .. ,„)

values o f !*• = 4, !>, 20 fo r  these tlu-ee choices o f exterior knots

"  g iv ‘" ‘ ini'aMe 6-7-1- 1,0 * * * * *  the singular value» and thus the

spectral condition number o f A „ »  f i r s t  used plane rotations to rcduco A
•V

to upper hand-triangular form. Then the published procedure ’ ird rfit»*, 

vhich is  one o f the A lgo l 60 realisations given by Golub and Reinsch (1970) 

of the singular value decomposition, was employed to  diagonalize the band 

tr ia n g le .

In Table 6.7.1 are the values o f K 2 icolumn 2 containing the values 

corresponding to coincident end knots and columns 3 and K containing

* In fa c t procedure ’ minfit* fa iled , because o f floating-poin t overflow .

in attempting the case m = 19 fo r  the second choice o f knots. This

fa ilu re  was attributed to a division by zero, which resulted from underflow

in attempting to  compute the rotation parameters. A fter replacing this

aspect o f the computation by the modified process recommended in Sootier. 

2.9, ’ ip in f  it*  then worked sa tis fa c to r ily  in a l l  oases, ‘ in cases where Ihe 

on-modified 'm in fit ' produced resu lts, the singular values agreed, apart 

from fl few m i* *  * * i *  +>e 1?*?* place, with thn?e pnodunen hv



respective ly the values corresponding to  ( 6.7.3) and ( 6 .7 .4) .  Test 

carried cut with a variety of unequally spaced data as v e i l  as with 

splines of other orders generally rein force the conclusion that the 

choice o f coincident end knots seems to he a good one.

in

!

Value

Coincident 
end knots

S of It  ,

D istinct
(1)

end knots 
(2)

»'+ 5.0541 50.193 58.193

3 5 .0b2b 33.596 33.596

6 4.6119 31.175 23.559

7 4.4638 27.772 18.222

O<J 4.2120 25.826 15.456

O's 4.0715 25.066 14.068

10 3-9935 24.757 13.249

11 3.9498 24.632 12.708

12 3.9252 24.580 12.320

13 3-9112 24.557 12.026

14 3.9032 24.548 11.793

15 3.8986 24.543 11.604

16 3*8959 24.541 11•447

17 3-8943 24.540 11.314

10 3.0933 24.540 11.200

19 3.0928 24.540 11.101

20 
l___

3 .O924 24.540 11.014

Tr|,,-;e £.7 . 1 . Values o f the spectral condition number K,} o f A.

fo r 12 equi-spaced data and three choices fo r  the'

end knots.
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6.8 A ooii.iocture relating to the oboice. 

comment a on the »y.-ell'-roscdasss" of

of j :r..trr:i o r knots and 

the sr.lt-;'n 5 :rberpolntlon

problem

'.Vs make the follow ing conjecture. From tha viewpoint o f inherent 

s ta b ility  ( ie  sen s itiv ity  of the spline coe ffic ien ts  with respect to 

the data), a good choice o f in terio r knots in  the case o f even-order 

splines, ie  n = 2k, is

x. = .x k+i
H-1 'l. ( 6 . 8 . •0r J

For the choice (6 .8 .1 ) the in terpolating spline o f order 2k is  composed 

o f polynomial arcs o f degree 2k-1, each o f which spans one in terva l 

between adjacent data points, except the f i r s t  and last arcs, each of 

which spans k adjacent in terva ls. Later in th is section we investigate 

the dependence of the conditioning of the cubic spline interpolation 

problem fo r the choice (6 .8 .1 ) upon the value o f m. F irs t ly , however. 

vc consider in  d eta il what proves to he a very poor choice o f knots and 

subsequently compare i t  with the above choice.

The second choice o f knots emphasises an important observation: the 

satisfaction  o f the Schoohberg-'Whitney conditions (6 .1 .4 ) is  no 

guarantee in i t s e l f  that the coe ffic ien ts  o f the interpolating spline 

are w ell defined. This remark is  true even i f  the conditions are "w ell- 

sa t is fied ” , ie  even i f  the data and knots are such that there ex ist 

•appreciable perturbations in their values which are such that (6 .1 ,4 ) 

remains sa tis fied . Consider the fo llow ing example. Interpolate data 

points ( t ., f . )  ( i  = 8, . . . ,  m) oy a cubic spline v ith  knots x = t
d 1

( j  ( j  = '•> 2> ~ ( j  h ) . Here H = m-p.

The system o f equations defining the B-spline coe ffic ien ts  is

Ac -- f  ,
A» t* • M

(6 .8 .2 )
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where A toLes the form* U lus 'retted here fo r the case it — -i10:

A

A =

X

X X 

X

X X 

X X

X

X

X

X

X

X

X

X

(6.3 .3)

X

X

X X

Three s tab ilized  elementary transformations, involving only the second, 

th ird  and fourth rows, enable A to be converted to the lower hand- 

triangular form

rv

i. =

X X 

X X 

X X

X

X X 

X X 

X

X

X X

X X 

X X X

X

X

(6.8 .4 )

I f  the same transformations are aoplied t -  f  to  „ ' ,• ^ u 1 l  1,0 produce a vector g , the
+■*

solution of tho system

Lc = g
(6 .8 .5 )
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y ie lds  the required coe ffic ien t veov.oi

I t  is  readily verified  that, fo r i  = 7,  8, . . . ,  m-1,

1i .  i-2  "  1i i  "  Ì  * ~ 3
(6 . 8 . 6 )

N077 consider the solution o f (6 .8 .5 ) using forward substitution. A fter 

c. ( i  — 1, 2, . . . ,  6) have been determined then, fo r  i  -  7, 8, . . . ,  n-1,

° i  = "  A - l  + °i-2^ ■ ( 6,8. ? )

I f  c. denotes the computed value o f o ., in  floating-poin t arithmetic, 

(6 .8 .7 ) becomes

c. -1
( 6 . 8 . 8 )

l-fo

where

c, . . , '■ «  .• )1, a 2, .4

3>i

- ?" C-V J (6.8 .9)

Suppose that no rounding errors at a l l  ere committed, ie  that e 

% i  *  *3 ,1  '  ° -  a fte r * * * * * *  5i ' » r  * • * ,  we obtain prosi

(6 .8 .8 ) and ( 6 .8 .7 ) ,

& °i = ~ 46 V i  "  £ci-2  * ( 6. 8. ! O)

Now the solution o f the difforer.es equation (6.8.10) is

±  *  4-, ■?
6c. = ¿ (-2 -3 *) + B(-2+3 " ) ‘  , (6 .8 .11)

where. A and B ere constants that depend on the in i t ia l  conditions. The
i. .p 1 .

term W )  is  osc illa tory  and dearsd, whereas the tern (-?- y  )~  ±s 

oscilla tory and unc.arr.ped. fo r  s;if.iaoiently large values o f i ,  the 

damped term is  neg lig ib le  and fo r  a l l  p ractica l purposes

8c. = - ( i V ) c o i  r (6 .8 .12)
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Thus, although there w i l l  be a alight contain*!;ion o f th is resu lt because 

of the presence o f the rounding errors, i t  may be expected that the errors 

:ln the c, w i l l  eventually grow exponentially with i .  In particular, 

replacing xa by m+1 implies that fc c ^  w i l l  grow by a factor o f 2+3*. ,\r.y

sensible condition number associated with th is problem should therefore 

grow by such a factor as the number o f data points is  increased by one.

y.b see shortly that i f  [¡A j| ¡¡A~11] is  taken as the measure o f condition, 

where |[. j| denotes the spectral norm, such growth os indeed observed.

I t  should in empnasised that the reason for th is rapid growth in  condition 

number is  not thuo the forward-suostitution process is  i t s e l f  unstable, but 

that the particu lar choice o f knots g ives .r ise  to an ill-posed  problem.

That the problem, is  ill-posed  can be seen h eu ris tica lly  as fo llows. The 

clue is  given by the fact that in order to reduce A to triangular form, 

operations on only the f i r s t  four rows arc required. The interpretation of 

th is observation in the context o f the actual interpolation problem is that 

the data points (t^ , f .) ( j  - 1, 2, 3, /,) a l l  l i e  within the in terval 

. spanned by the knots xo and x  ̂ and hence the cubic arc spanning th is 

in terva l is  oeiiuc;d uniquely by chese four points. Because of the 

continuity o f a cubic spline, the cubic arc spanning the in terva l (x . .  :./) 

must take at x=x1 the value and f i r s t  and second derivatives of the f i r s t  

cubic arc constructed. Also i t  must pass through the point ( t r , f „ ) .  bhc-ee 

four pieces of information fu lly  define the second cubic arc. In a

siwUar way a l l  remaining cubic arcs and hence the complete cubic spline 

may be constructed.

Evidently, any errors made in constructing a particu lar cubic arc w ill ne 

propagated in come way to the subsequent cubic arc. Errors in the values 

of the f i r s t  and second derivatives w ill  have particu larly  detrimental 

e ffe c ts . The situation is  somewhat akin to  the solution o f an i r i t i a ] -  

value problem, where the solution is  sometimes much more sensitive  to the



e ffec ts  of build-up 01 error ; tuan tac s dut:* on ■ ’ ■ c orvosp ceding 

"bouncLary-value problem. Despite these commente, as a consequence of 

the analysis ci' Section 6 *3 , the resu lting computed spline is neyertheles:. 

the exact interpolant o f a set o f d-ta points close to those prescribed, 

Hcuevar, the spline so constructed and the "true" spline may be very 

d iffe ren t, coinciding only at or near the data points.

I f  thé knots o f the spline are. those in  (6 .0 .1 ) then, in  the case n.-4,

A takes the fera (o f  6,0.3)
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A ^

0

X X 

X X 

X

X

X X

X X X

X X X

YJ*. *»r X

X X X Vyn

Xmk

(6.8.13)

Ey anplying six stab ilized  elementary transformations the corresponding 

system may be converted to trip le-d iagonal form. The solution then 

proves r e la t iv e ly  insensitive to data perturbations, the problem now 

being considerably better-posed. In fact A may w ell be diagonally dominant.

The use o f the singular value decomposition (Section 2.15)also displays 

verv c lea rly  the re la tive  conditioning o f the problems associated with 

the two choices o f knots. The follow ing test was carried out. Por each 

value o f n from 4 tc 20 we set i ±  ̂ i  ( i  = i ,  2, . . . ,  ir.) and made the

poor choice o f knots



If“ 1 ( i  £  0)

H ! :i+3
~ 1 . 2 ,  . . .  ; ra-4) « ( 6 . 8 . 1<v)

i * ( i  jh m-3)

The matrix A based cn th is data, which tabes the form ( 6 .8 .3)> was then

computed. The singular value decomposition was used to compute the 

spectral norm (spectral condition number) A. -*C (ra) of A. In Tablo

6 .8 .1  wo give in Column 2 for each value of m the value of K 2(m), as 

w ell as the ratios of successive values of > i ( n) in Column 3. The 

exercise was repeated but with the good choice of knots

r  1 d  s< 0)

J i+2 ( i  -  1, 2, m-4), ( 6.8. 13)

m ( i  ^  m-3)

which gives rise to a matrix A of the form (6 . 8 . 13) .  Tho ccrrospending 

values of ^¿2 (m) are given in Column 4  of Table 6 .8 .1  and their 

successive ratios In Column 5. It is to be noticed that for the better 

choice of knots the ratio ) //C 2 (m-l) tends to unity, whereas that

for the poorer choice tends rapidly to a value approximating 

was derived from other considerations earlier in this section.

which



Interior knots

a X. r: -c.
x  . i+3 X. = V.

iL'!- c.

* 2 (m) Ji2 (m)/ ; "2 (m~1) K  2 ( ra) ;cp ( k )/

4 5.0540 5.0540

5 8.0252 1.588 5.0627 1.002

6 1 • 9254.j Q1 2-399 4.6119 0,Q11

7 7.0453101 3.659 4.4838- 0.972

8 2 .6356.J q2 3.741 4.2120 0.939

5 9.8437102 3.735 4.0715 0.967

10 3.6742103 3 «733 3.9935 0.980

11 1.3713104 3.732 3.9493 0.989

12 5-11/7104 3.732 3.9252 0.994

13 1.9099i05 3.732 3.9112 0.996

14 7.1280105 3.752 3.9032 0.998

15 2 . 66021q6 3.732 3.8986 O.999

16 9.92801q6 3.732 3.8959 0.999

17 3 .7052107 3.732 3.8943 1.000

18 1-3S28108 3.732 3.8933 1.000

19 5.160?.. q8 3.732 3.8928 1.000

20 1.92601q9 3.732 3.8924 1 .000

bio 6.8.1 Values of the spectral rendition number o f A

m ccui-spaced data and two choices o f the in terio r

knots



6.9 ‘ Numerical oxanp 1 £

A l l  numerical examples were carried out on tbe Exx.lish E lectric KDP9 

computer, which has a floating-point word with J0 binary h its  (between 11 

and 12 decimals) in the mantissa. The resu lts quoted correspond to 

the use of Algorithm 6.4.2, V irtu a lly  iden tica l results '.ere obtained 

with Algorithm 6.4.1. Coincident end toots at the f i r s t  end last data 

points were chcoon in a l l  cases.

The f i r s t  three examples have been chosen to illu s tra te  the run'erical 

s ta b ility  o f the method, rather than to demonstrate the approximating 

power o f splines. The remaining example arose in  a study re la tin g  to 

the decay of p -partic lcs.

Example 6 .9.1 (tn-16 , n=8)

A spline s (x ) o f order 8 was defined by the arbitrarily-chosen in terior 

toots x.. and B-spline coeffic ien ts  c given in  columns 3 and 4 of 

Table 6.9*1- Function values were computed using Algorithm. 5.2.1 from 

the representation (5.1.10) fo r the values x t i  ( i  -  1, 2, l6)

given in  column 2 o f Table 6.9.1. ALgoritluc. 6.4.1 was used to interpolate 

these values; the differences between the resulting coe ffic ien ts  c andHt

the values o f e are given in  column 5 of Table 6.9.1.

Values o f s (x ) at x = t .  ( j - 1, 2, . . . ,  16) and at the half-way points

x r_ -¿-(t. + t . )  ( j  -  2, 3> 16) were computed using Algorithm 5*2.1

from the B-spline representation (5*1*10) fo r  the given coe ffic ien ts  c

;”'d fo r  the computed coe ffic ien ts  c, and from the piecouise-Chshyshcv-

scries representation (5 .11.1 ). The maximum discrepancy between the

«riven and computed B-spline representations over these 31 points was

.j *  10~9, and that between the given B-spline representation and the
-9

Chebvshev-series form was also 1 x 10



1 x.
V" A c. fo . - c . )  X 10® i 

!.......... .......  --

1 6 8 51 0.00

2 3 10 35 - 0.03

3 5 13 21 + 0.03

4 ? 15 13 + 0.02

5 8 16 14 - 0.10

6 10 17 22 0

1
l 13 18 37 - 0.14

8 15 20 60 0.08

9 16 76 - 0.05

1 io 17 77 + 0.14

1 ,• t t 18 66 1 0 • ij

12 20 54 •I- 1.01

13 22 44 - 1.37

1 4 25 40 + 1.29

15 28 41 - 0.52

16 30 Vf 0.00

nVble 6.9 .1 Prescribed and computed E-spline coe ffic ien ts  fo r

Example 6.9 ,1 ,

Example 6 .9.2 (m.-1 |, n=6)

Iii order to  illu s tra te  the performance o f the Algorithm 6 .1 .2  upon an 

example with multiple knots, the fo llow ing case was considered. Values 

o f the function f (x )  = jx + x J\ were computed fo r  the values x - t i

(d e lib e ra te ly  chosen not to l i e  symmetrically disposed about, x = 0) ¿.ive* 

in  column 2 of* Table 6.9.2 . f ( x )  is  essentia lly  a spline o f order 6 

with a knot o f m u ltip lic ity  9 at the origin . Accordingly, the in te r io r



knots egiven in  column 3 of Table 6.9.2 were chosen. The algorithm 

r.r.-'h'iced values c 'r'o.vb d if fe r  from the tni6 valves a ( viven in  column 

nf Table 6.9.2) by the. quantities given in column 5-

f  1
The v ¡due o f

which agrees to

Value c of s (x ) ’

X - £( t .  ,+t 1)j

the computed co

i’epre 3 (Ì1-1 d .tion,

points bet**»OOV'. » .✓ i V.

that between th

ï ( x )& c computed from (5.10.7) was 1.33333 33333>

, It(lx *

computed at x = !.. ( j  1, 2, i l )  and at

r j 5  i» Xj - i 1 I

o

11that between the Chebyshev-.series form and f (x )  was 1 K 10

Table b.9

i t .a X „ 
1

c.
X (c .-c . )  X 1011X X

0

■1 ~ 1 .0 0 2 .0 0 .00

2 -  0 .8 0 0 .8 + 0 .36

t o CT\ 0 0 .6 - 1.82

4 - 0.4 0 0.4 + 2.18

5 - 0 .2 0 0.2 - 0.91

6 0.1 0 - 0.01

7 0.5 0 .2 4 0.14

8 ' 0.5 0.4 -  0.55

9 0.7 0 .6 + 1.09

10 0.9 0 .8 - O.36

11 •l.O 2 .0 0 .00

9»2 True e.nc. c caput jd B-st.I l  ne c oof f i d  cut 0

Ebcamnlo 6,9.2



y ;"-v.̂ s  6.°.. 3 (?n=11 , r  -• 1 i )

By ray o f a special test case., th is example illu s tra tes  the interpolation 

o f 11 equally-spaced values of e~ in the in terva l - 1  £ *  .< i> 1>y a Spline

o f ordcr 11 7/ith no intei'lo r ]mots* ^  other words the spline degenerates

into a single polynomial of.degree 10 . The function eX over the range

- 1  ^ x <; 1 can in fact be approximated to 10 decimals by such a polynomial

Clenshrw, 1?o2). The computed Checyshev coeffic ien ts  (Table 6.9.4) d if fe r  
— 10

by at most 1 x  10 from those given by Clonshs ,v.

Note that the computed B-spline coe ffic ien ts  (Table 6.9. 3) are a l l

positive  and display a very systematic behaviour. Tfe also observe that

to 11 s ign ifican t figures c. e“1 raid 5 ^  = e (as a consequence of the

choice of coincident end knots). The in tegra l of the spline between -1

and +1 vias computed from (5-10.7 ) as 2.35040 23873. This value agrees to

11 s ign ifican t figures with that o f eXdx = e -  e~1.
. -1

I t  is  of in terest to observe that the functions N . (x ) (or ]« .(>:)) in
nx

the case N = 1, when translated to the range 0 $ x $ 1, £.re simply 

multiples of the basis functions xa'

Bernstein polynomials (Davis, 1963)

multiples of the basis functions xa~ ! ( l - x ) J1*i  ( i  = 1 , 2, .. n) o f the



ï 0.36787

2 0.44145 53279 4

7
J 0.53138 14217 7

4 0.64174 52279 4

.5 0.77730 229C4 5

6 0.94636 49130 0

7 1.15634 83957

8 I .41954 72062

9 1.75173 16123

1C 2.17462 54652

11 2.71820 LAcoC\i
CO

Computed B--spline coe ffic ien ts  fo r Example 6.9.3

1 1l

0 2.53213 17555

1 1.13031 82031

2 0.27149 53395
y0

3 0.04433 68499 0

4 c .00547 42404 5

5 c .00054 23263 .»;

6 0.0000-4 49773 2

7 31983 8

8 1992 0

Qy 109 q

10 10 9
. —

Cexputed Chsbyshev-series c o e f f ic ia01s ^  VxcmvlJ . O t
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Example 6.9.4 (m.--24, n~4 and 6)

'.n,is example is  conoernad with one aspect o f a problm that originated 

in the D ivision o f Radiation Science o f the Rational Physical laboratory .

1 “  iE lebtea t0 tM s iivir.ionfo r  persiission to  inclnde the ir data and 

the resu lts o f some o f the computations upon i t .

i-he 24 data points ( t ± , f . )  ( i  = 1, 2, 24) in Columns 2 and 3 o f

Table 6.9.5 represent the theoretical number o f e le c tron  in the p-decay

of a raduoacta/e isotope (dependent, variable) fo r  various values o f

momentum (independent variab le ). Tho determination of each value o f the

dependent variable involved the numerical evaluation o f an extremely

complicated integral.; i t  is  believed that the value is  correct to tho

number o f figures quoted. I t  was required to interpolate these data

points by a smooth function that would fa c i l ita te  subsequent rapid evaluation

of a good approximation to  the number of electrons fo r any value o f

momentum in  the prescribed range. An estimate o f the de fin ite  in tegra l

over the range o f the data was also required. In the absence o f any

further information i t  was decided to interpolate tho data by a cubic

spline With knots chosen in accordance with (6 .8 .1 ). A further

in terpolation  was carried out with a quintio spline s ^ x ) , again choosing

knots in  accordance with (6 .8 .1 ). B-spline coe ffic ien ts  c o'” the
i

in terpolating splines obtained using Algorithm 6.4.2, and the integrals 

formed from (5.10.7) are given in Columns 4 and 5 o f Table 6.9.5. Not*

that the values o f c ., particu larly in the cubic case, mimic quite closely

the values o f f ..x
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i ‘C . 1 f .

e .:.i
n-4 Ur: 6

1 0.1 5.5613 5.56130 5 .56130
2 0.2 5.6200 5.58655 5.58526

3 0.3 5.7159 5.66430 5.64054

4 0.4 5.0516 5 »84435 5.74222

3 0.5 6.0300 6.02289 5.93043
6 0.6 6.2502 6.24411 6 .24109

7 0.7 6.5069 6.50189 6.49939

8 0.8 6.7938 6.78974 6-78771

9 0-9 7.1052 7.10197 7.16291

10 1.0 7.4361 7.54413 7 .63436
11 1.2 8.1407 8.13453 8.20618
12 1.4 8.8837 8.88005 8.87827

13 1.6 9.6496 9.64748 9.6466O

14 1.8 10.429 10.42765 10.42669

15 2.0 11.2 16 11.21593 11.21633

16 2.2 12.005 12.00465 12.00406

17 2.4 12.795 12.79548 12.79605

18 2.6 13.583 13.58345 13.58344

19 2.8 14.368 14.36074 14.36931
20 3.0 15.149 15.14959 15.46189
21 3.2 15.926 15.92690 16.39353
22 3.4 1 6.698 16.95612 17.15SS5

23 3.6 17.465 17.72069 17.77176

24 3.8 18.227 18.22700 18.22700

Estimates o f 

defin ite  integri 41.4-6130 41.46131

Table 6.9.3 .Data and computed B-spline coe ffic ien ts  o f orders 

4 and 6 fo r Example 6. ? . 4
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Ths f i r s t  use made o f the interpolating spline3 was to  evaluate thorn 

throughout a particu larly important part o f the range o f the 5 ^dependent 

variable, v is  from x s 0.10  to  x 5 3.22 at in in terva l o f 0,02 in  x.

The resu lting table is  too bulky to reproduce in  fu l l ;  re give part in 

Table 6.9.6«

I t  is  reassuring to see a strong measure o f agreement between the values 

o f t (x ) and (■ y that s almost consistent Tilth the supposed acouracy 

of the data. However, without further knowledge or assumptions, this 

agreement t e l ls  us nothing about the closeness of either z} (x ) or s^(x) 

to f ( x ) .
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sii+(x) sg(-')  ̂syi_'.xJ“ sg (::í) ”|

0.10 5.56130 5.56130 0
0.12 5.57018 5 .57OO6 + 12
0. 14 5.58046 5.58033 + 13
0. 1b 5.59219 5.59208 + 11
0.18 5.60536 5.60531 +5
0.20 5.62000 5.62000 0
0.22 5.63613 5.63616 -3

0.24 5.65377 5.65381 -4
0.26 5.67293 5.67297 -4
0.28 5.69363 5.69365 -2

0.30 5.71590 5.71590 0

1 .30 9.26448 9.26452 -4

1.52 9.34120 9.34123 -3

1.54 9.41807 9.41810 -3

1.56 9.49511 9.49513 »2

1.58 9.57229 9.57230 -1

1.60 9.64960 9.6496Û 0

1.62' 9.72704 9.72704 0

1.64 9.80461 9.8O46O +1

1.66 9.88229 9.88227 + 2

1.68 9.96009 9.96007 + 2

1.70 10.03800 10.03797 +3

3.00 15.14900 15 14900 0

C\i0í'~\ 15.22689 15.22689 0

3.04 15.30474 15.30474 c

3.06 15.38256 15.38255 +1

3.08 15.46033 15.46032 + 1

3.10 15.53806 15.53804 +2

3.12 15.61574 15.61573 + 1

3.14 15.69338 15.69337 • * *r »

3.16 15.77097 15.77096 + 1

» —N co 15.84851 15.84851 0
3.20 15 .926OO 15 . 9260c 0
3.2? 16.00343 16.00344 -1

C o r
^  «  y  •  w»

T V .  v > 4  /> 4-U /». r . • - ’1 O  1-. !  .>V\

orders 4 and 6 fo r Ex 'vj
0 J. V A A  C w. J i, W C 7‘Ty 0 ?L.1

h 6*9 *4
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, CHAPTER 7

LEAST-SQUARES SPLINE APPROXD/IATION
In th is chapter we consider the least-squares approximation o f discrete 

data sets and o f functions by polynomial splines. T/e pay considerably more 

attention to the discrete problem, where the data is  usually empirical in 

nature, since we consider i t  to be o f fa r greater practica l importance than 

the continuous case. In fa c t, i f  a spline approximation o f a mathematical 

function is  required, i t  is  usually more appropriate to seek a minimax 

approximation, ie  one that minimizes the maximum error of the approximation 

(soe, fo r  example, E ice, 1969: 145-154). Methods fo r the determination o f 

such approximations are outside the scope o f th is work. However, fo r

completeness, no show b r ie f ly  in the la s t section of th is chapter that i f  a 

a S g h H HBS? sJ,llns approximation is  required, i t  cm bo computed 

e f f ic ie n t ly  i f  the spline is  f i r s t  expressed in i t s  B-spline form.

The organization o f the ea rlie r sections o f th is chapter fo l lo w  to some 

extent that o f Chapter 6 on spline interpolation, since least-squares 

approximation by splines can be considered as a generalization o f spline 

in terpolation . A fter a l l ,  i f  the problem is  properly posed (see Sections

6.2 and 7.1) and i f  the number o f free linear parameters o f the spline is  

the same as the number o f data points (assumed d is t in c t), then the least- 

squares approximation o f th is data sot interpolates the points. Moreover, 

sim ilar numerical methods (Chapter 2) can be applied to the resu lting 

lin ea r systems in  both the interpolation and least-squares cases.

In Section 7.1 ue introduce the least-squares sp lin e - fit  ting problem and 

in Section 7.2 discuss a method o f solution, using B-splines, In the case 

„here the knots are prescribed. Also in Section 7.2 a simple algorithm is  

presented fo r  testing whether a unique spline approximant exists in any e3t6„  

case. In Section 7.3 an algorithm fo r the least-squares spHne-fittinr



problem is  detailed and in Section 7.2). an error analysis o f the algorithm 

is  given. The sen s itiv ity  of the B-spline coeffic ien ts  to  perturbations 

in the data is  discussed in Section 7-5- The important case o f cubic 

splines is  considered in Section 7-6 and in Section 7*7 methods o f assessing 

the acceptability of a cubic spline approximant are discussed. The choice 

of knot positions is  treated in Section 7.8 and numerical examples are 

given in  Section 7•9• Previous work on the automatic placement o f knots 

is  surveyed in Section 7*10. F ina lly , in  Section 7.11, a method is  proposed 

fo r  the least-squares spline approximation o f a mathematical function.

7.1 The least-squarc.s sp lin e -fitt in g  prob3.cm

The least-squares sp lin e -fitt in g  problem may be posed in the follow ing 

manner.

Suppose a set o f values t  = [ t ^ , t^, . . . ,  t ^ j  o f an independent variable

x and corresponding function values (ordinates) f  = { f  ̂ , f,,, . . . ,  f^ ]  are 

prescribed. These function values may be the computed values o f a 

mathematical function; they may be the results o f a previous computation; 

usually they w i l l  be values derived from an. experimental situation and 

hence be contaminated to a greater or lesser extent by experimental error.

17e assume that the values o f the independent variable are ordered such that

t . *  t  t  • (7 .1 .1 )

Note that equalities are permitted in (7 .1 .1 ), corresponding in  an 

experimental situation to the repetition , or rep lication , o f measurements. 

Suppose also that a set o f corresponding positive weighting factors 

W1 1 Vl2 ’ wm iS FrGscribed. In many cases o f in terest a l l  weighting 

factors shall be set equal to  unity; however, the general case is  considered 

here because o f i t s  importance in certain situations.

The problem is  to compute the parameters o f a spline function s (x ) of



order n (degree n-1) with in terior knotS3 X. , Xr

minimise the residual sum of square:
> X-T ,N-1 so as to

r
2 1

2

2 n
Z“— i 2

-j V i  *2 1=1 1 1 ( 7 . 1 . 2 )

where

and

2 = dias {  V  w2’ ***» wrn }

:i  _ s ^ i '  ™ ^i ( i  -  1 j 2,  . . . ,  m)

(7 .1 .3 )

(7 .1 .4 )

T/e assume that the set of N-1 in terio r knots is  prescribed and, as in the 

interpolation problem of Chapter 6 , forms an n-extended partition  o f 

(&* h) = (t^- M . Again, as in Chapter 6, we introduce additional knots 

so that the complete set forms a standard knot set with coincident end 

knots. Guidance re la ting to the choice o f the number o f knots and their 

locations is  given in Section 7.8.

Let m denote the number o f d istinct values o f t f-i -  a o ..\ f *
'  1 i  ^  J • • t 5 Illy  ̂I  GI*

a given set o f values o f t . ,  5 is  one greater than the number o f inoqualitle 

in  (7 .1 .1 ) that can be replaced by .stric t in eq u a lit ie s ). I t  is  assumed 

henceforth that m, n and IJ satis fy  the condition

m N+n-1

(o f  Section 6 .1 ), otherwise there is  no p oss ib ility  in  general of a unique 

solution to the problem as. defined.

7 *2 Method of so lu tion

For sim ilar reasons to those discussed in  Section 6.2 we intend to employ 

the B-splines Nn i(x ) as a basis fo r  s (x ).  Then s (x ) may be expressed in

the form
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» (* ) - 7l — i
i=1

c.N . ( x) i n i '  ' (a  £ x £ b ), (7 .2 .1 )

where

q = N+n-1. ( 7 . 2 . 2)

The least-squares problem is  solver] by determining c = fc^ , c^, . . . ,  j 

such that ¡¡r||2 in (7 .1 .2 ) is  minimized. F irs t ly , wo observe that in 

the particu lar case in=m.-q there is  a unique solution i f  and only i f  the 

Schoonberg-lThitney conditions (6 .1 .4 ) are sa tis fied  (in  which case the 

solution interpolates the given function values and ji £, l| r, = 0) . In th is 

case the parameters c are defined uniquely by the system o f linear 

algebraic equations

Ac = f (7 .2 .5 )

( c f  Section 6 .2 ), where K is  the q by q stepped banded matrix o f 

bandwidth n and rank q with a. . = N . (t  ) .
J **t) -*•

Now consider the general case where m ^  q. The solution vector then

minimizes [| W2 (Ac-£ ) |J2, where A is  the m by q stepped-bandod matrix of

bandwidth n with a± . = Nnj ( ‘l'-L) ■ Again, fo r  c to  be unique, A must have

fu l l  rank q. For A to have th is rank there must be at least one set of

q lin ea rly  independent rows of A. In other words, there must be at least

one ordered subset t  = j t ,  , t , . . . ,  t   ̂ o f t,where~ L 1 *2 q J

1 $ ki < k 2 < * * * < kq $ 111 J (7 .2 .4 )

fo r  which the Schoenberg-TThitney conditions hold. I t  follows that fo r 

any given data set a unique least-squares spline approximation exists i f  

and only i f  at least one ordered subset o f the data satisfy ing the 

Schoenberg-TThitney conditions can be id en tified . We terra the complete

set o f conditions
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tk*1 < X1 < V 1+n

r 2
< X2 <

S +n
I1

I

k N-1 < \ - 1 <
q

r y

*1 <
v - < 4 q

1 ^ < k2 < ' ’ • < k $ m q J

which must hold for at least one choice o f the integers k , , k
1 2

in  order to  guarantee the existence o f a unique least-squares 

approximation, the generalized Schoenberg.--.7hitnov conditions.

(7.2.5)

K

spline

I t  is  to be noted that nearly a ll "reasonable" data sets arising in 

practice will sa tis fy  these conditions. Only i f  there are regions where 

there are too many knots compared with the number o f data points are the 

conditions l iv e ly  to be violated. Fe now show that a simple but e ff ic ie n t  

algorithm, taking 0(m) operations, can be constructed to scan any given 

data set to  id en tify  whether such a subset ex ists. Fe f i r s t  re-write 

conditions (6.1.4) as the equivalent set o f inequalities

■kj < ( « 3 = 1 ,2 ,  . . . ,  n) ,

< 4  < U  = ” +1> n+2, N-1),

X.i-n< t .f ( J . ' i W .  • . • > ! ) .

A

(7.2.6)

In the interpolation case these inequalities my he interpreted thus:

¿sajg&aaas-sU^ jth value o f the.

o f the 1th ^

sole exceptions to th is ru le are that in the case o f coincident end knots,



t 1 = X1-n ^  Xo} and Ki = Xq ( = xlP are allowed. In the context o f the 

oa ta -fitt in g  problem, there must be at least one subset o f N+n-1  d istinct 

va3.ues o f the independent variable, the jth  o f which l ie s  s tr ic t ly  within 

the support o f the jth B-spline. Algorithm 7.2.1 below, based on this 

observation, is  composed o f q steps, the jth  o f which ( j  - 1 , 2 , . . . ,  q) 

involves the determination o f the f i r s t  data point, ie  the value o f t.. 

with smallest i ,  d istinct from previously-used points, that l ie s  within 

the support o f the jth B-spline. I f ,  fo r any o f these values of j ,  no 

such point can he found, the least-squares spline approximation o f the 

data is  not unique. Otherwise, the approximation is  unique. I t  is  

assumed in Algorithm 7*2.1 that the data, points are ordered according to

( 7 . 1 . 1 ) ,  that the knots form a standard knot set.with coincident end knots 

and that xQ = and = t^. An A lgol implementation o f Algorithm 7 .2.1 

in  the case o f cubic splines (n=4) appears in  Cox and Hayes (1973).

Algorithm

Comment: 

Step 1. 

Comment:

Step 2. 

Comment:

Step 3* 

Comment:

7 .2 .1 : Determination o f whether tho generalized Schoenbsrg-

Ahibney conditions are sa tis fied  (in  which case I  is  

set to zero) or v io lated  (in  which case I  is  set to 

u n ity ).

i  denotes the data point currently being examined.

Set i  = 0.

The f i r s t  data point, d istinct from previously-used points, 

within the support of the jth  B-spline is  determined in  Steps 3- 7 . 

Bor j  = 1, 2, . . . ,  N+n-1  execute Steps 3-7.

The f i r s t  data point, d istinct from previously-used points, 

ly ing to tho right o f the left-m ost knot o f the jth  B-spline 

is  found in Steps 3-6.

Replace i  by i+1 .

I f  the test in Step 4 is  v io la ted  the data points have been 

exhausted before a l l  the conditions have been satisfied
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Step 4. I f  i  >  m set 1 = 1  and fin ish .

Step 5- I f  i  > 1  and ^  -  t  return to Step 3.

Step 6. I f  j  >  n and t . <  x . return to Step 3*X ^ j—h

Comment: I f  the point so found does not l i e  to the l e f t  of the 

right-most knot a condition is  vio lated .

I f  j  <  N and t. x . set I  = 1 and fin ish .

A l l  the conditions are sa tis fied  i f  Step 8 is  reached. 

Set 1 = 0 .

Step 7* 

C omment 

Step 8.

The least-squares solution of the system

i X
T,'2Ac = V4-frv r+fs* /V /v (7 .2 .7)

may be solved e ff ic ie n t ly  using one o f the algorithms fo r  stepped-banded 

systems discussed in Chapter 2.

7• 3 An a lgo r ithm fo r least-sciuares spline approximation 

Algorithm /*3*1 is  an implementation o f the method described in Section 

7.2. As with Algorithms 6.4.1 and 6.4.2, either coincident or non­

coincident end knots may be supplied. Again, coincident end knots are 

usually to be preferred. Steps 1.1 to 1.8 o f the algorithm constitute 

checks on the data. As with the algorithms o f Section 6.4 there is  an 

element o f redundancy in these checks. The algorithm employs Algorithm

7.2.1 to check whether the data sa tis fies  the generalized Schoenberg- 

Y.hitney conditions, Algorithm 3-12.2 to compute the values of the 

normalized B-splines fo r  each data point and Algorithm 2 . 14.1 to solve 

the resu lting stepped-banded system using classica l plane rotations.

As with Algorithm 6.4.2 the complete matrix A o f this system is  not

formed in i t ia l ly ,  but rather each row is  constructed as and when required 

by Algorithm 2.14.1.

I t  is  assumed that values o f m, n and N, data points ( t ±, ? . ) and
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corresponding weights wv ( i  = I, 2, . . . ,  m) and knots x^

( i  = 1-n, 2-n, Nt-n-1) are supplied to the algorithm.

Algorithm 7• 3• 'I ‘ Data approximation in the least-squares norm by a

spline o f order n using normalized B~splines and 

classica l plane rotations.

Comment: The number o f d istinct data points is  determined in Steps 

1.1 -  1.3.

Step 1.1. Set m = 1.

Step 1.2. For 1 - 2 , 3 ,  m execute Step 1.3.’

Step 1.3> I f  t^ y- t .  replace m by m+1.

Comment: Check whether there is  a su ffic ien t number of d istinct data 

points consistent with the order o f the spline and the 

number o f knots.

Step 1-4. Finish i f  the inequality m ̂  Km-1 is  vio lated.

Comment: Check whether the complete set o f knots is  ordered.

Step 1.5• Finish i f  the inequalities  ̂ £ xp n ^ ^ X̂ .  ̂ are 

not a l l  sa tis fied .

Comment: Check whether the complete set o f knots forms an n-extended 

partition .

Step 1.6. Finish i f  the inequalities x_.  ̂ <  x ( i  = 1, 2, k+ii-1) 

are not a l l  sa tis fied .

C omment: Check whether the data abscissae are ordered and l i e  within 

the range [a , b ] = jxQ, x^ 'J.

Step 1.7. Finish i f  the inequalities x <  t  < t  ^ . . .  <  t  < x „  are 

not a l l  sa tis fied .

Comment: Check whether the generalized Schoenberg-Whitney conditions 

are sa tis fied .

Step 1.8. Use Algorithm 7-2.1 to determine the value o f I .  fin ish  i f

I  a 1.
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Comment: k is  the in terva l number as w ell as the number o f the block 

currently being processed, a is  the current value o f the 

residual sum of squares.

Step 1.9. Set k - 1 and a = 0.

Comment: In it ia liz e  R and G to zero.

Steps 2-4. As Steps 2-4 of Algorithm 2.14.1.

Comment: Computations involving the ith  data point are described by 

Steps 6-30.

Step 5- For i  = 1, 2, . . . ,  m execute Steps 6-30.

Comment: The in terva l containing t i  is  located in Steps 6- 7 .

Step 6. I f  t i <  x or k = N advance to Step 8.

Step 7. Replace k by k+1 and return to Step 6.

Comment: The ith  row o f (A | b) and the corresponding weight, as required 

by Algorithm 2.14.1, are formed in Steps 8-8.2.

Step 8. Use -Algorithm 3-12.2 (with the minor modification o f Section 6.4)

with x t. to form the values o f ( t . )  ( j  = k, k+1 , . . . ,  k+n-1 )

Step 8.1. For j  = 1 , 2, n set v , = N . . „ ( t . ) .x j  n,k+,T- 1  v x
Step 8.2. Set u = f^  and w = v. .̂

Comment: Classical plans rotations to  annihilate the elements dn row i  o f 

W2A are applied in  Steps 9-30.

Steps 9-30. As Steps 9-30 o f Algorithm 2.14.1 (with q interpreted as n 

and n as Ii+n-l).

Step 31. Use Algorithm 2.1.4 to solve Rc = 6.

7.4 Error analysis

We give an error analysis o f the formation and solution o f the over- 

determined system of equations ( 7 .2 .7) in the case o f unit weights, ie  

TI -  1 . Our results w i l l  also hold approximately in cases where a l l  the 

weights are o f roughly the same magnitude. We cannot derive useful results 

in cases where the weights d if fe r  s ign ifican tly  in size.
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With exact computation we form the m by q matrix A with elements

a = N ( t . ) ,  followed by the factorization  
i j  nj i

(A I f )  = Q(R g) ,
^ rs \ r'j /  /v ^  /y ( 7 .4 . 1 )

where Q is  orthogonal o f order m by q, R is  upper triangular o f order q 

and g is  the transformed ordinate vector. The B-spline coe ffic ien ts  c 

are then defined by the triangular system

(7.4 .2)

There are three sources o f error in  the practica l rea liza tion  of this 

process: in  the formation o f A. in  tho factoriza tion  o f (A f . where A 

is  the computed A, and in the back-substitution process to solve (7 .4 .2 ). 

Lot A = Ah-6A be the matrix, actually formed, and the computed B and. k .

R and g, say, the exact factors in  a s ligh tly  modified system with A 

replaced by A+3 and f  by f+k. Thus

(Â + B f  + k) = Q(R | i ) (7 .4 .3 )

where Q is  orthogonal. We shall make the re a lis t ic  assumption that the 

errors in  the back-substitution process arc neg lig ib le  ( c f  Gentleman, 1975) .

Since the careful use of orthogonal transformations resu lts in  an exact 

factorisation  oî  a neighbouring system, any o f the methods o f Sections

2.6 to  2.9  ensures that, in  a suitable norm,

(7 .4 .4 )

and

I i l l

where 

K1 and K£

i  k2||

and

in the

f (7-4.5)

are "modest" functions of m and q ( fo r  precise forms o f 

case o f dense rectangular matrices see eg Bj&rck, 1967,
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Gentleman, 1973,- Lawson and Hanson, 1974). For a l l  practica l values 
~*"b "“"t

o f  m and q, 2 and hp2 1. I f  the values of the B~splines required 

in forming A are computed using Algorithm 3.12.2, the very small error 

£A (see Section 3-9) can conveniently be absorbed into the perturbation 

matrix E (c f  the error analysis in Section 6.5 o f one o f our algorithms 

fo r  spline in terpolation ), the only e ffe c t  being to in fla te  s ligh tly  the 

value o f K.| •

In the error analysis of Section 6.5 i t  was convenient to interpret the 

computed solution as the exact solution of a perturbed system with f  

replaced by f  = £+££. Bounds fo r  |jf>f |j were then derived, from which 

i t  was possible to state that the computed .solution had the property that 

i t  corresponded to the exact interpolation o f a set o f data points with 

an ordinate vector s ligh tly  perturbed (usually in a re la tive  sense) from 

that prescribed. In the main, the derivation o f the bounds fo r  jjfcf |j 

were straightforward and followed closely the conventional approach of 

backward error analysis o f linear systems.

Vie believe i t  appropriate to seek a sim ilar interpretation o f our computed 

least-squares solution. That is ,  we wish to find  bounds fo r  Jjòf || such 

that the computed least-squares solution o f the rectangular system (7.2.7) 

is  the exact least-squares solution o f a sim ilar system with a (hopefully 

s lig h t ly ) perturbod right-hand side. The derivation of such a bound is  

somewhat harder than in the square case (in terpolation ) and I  am indebted

to Dr J H Y/ilkinson fo r suggesting the follow ing method o f approach, which 

we specia lise to the circumstances o f our particular problem.

Suppose that such a bf  ex ists. Then i t  sa tis fies  the normal equations

ATAc = AT(f+S f)•v iv /v A/ fy (7 .4 .6 )

where c in (7-4-6) denotes the computed solution. But the same solution



253

c sa tis fies  the equationse'*

(A+E)T(A+E )c = (A+E)T( f +k) (7 .4 .7 )

where E and k satisfy (7-4-4) and (7-4 .5 )- Subtraction o f ( 7 .4 .6) from 

(7-4-7) y ie lds

Ej (A+E)c + ATEo = E1 (f+k ) + AJ'k -  AX6 f ,T.

f l ’ora which

AT6 f = ATk - ATEc + Ei (f+k ) -  Ei (A+E)c

(7-4-3)

(7 .4 .9 )

In general (7.4-9) has an in fin ity  of solutions fo r 6£. Wo arc interested, 

o f course, in  that which is  smallest in  some sense; accordingly we select 

that with minimum norm. Now the minimum-norm solution o f the system

Ù £  = z> ( 7 .4 . 10 )

fo r  any vector v, can be obtained as fo llow s. Let

A = OR (-71 - a~ —  (.7-4.11)

be the exact orthogonal triangularization o f A. Then

T T RQ (7-4-12)

We now associate AT, RT and £T o f (7-4-12) with A, & and H, respectively, 

o f ( 2 , 2 .47. fhon, using (2 .2 .13 ), the minimal least-squares solution of 

(7-4-10) is

(7.4.13)

which, in  the fu ll-rank case, sim plifies to

6 f = QR v . (7.4.14)
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I t  follows that the minimal least-squares solution o f ( 7 .4 .9)

- rP f T rP rP rn
6f  = QR A k -  A1?Jo + E (f+k ) -  EI (A+E)c/v» A * l /N’ ** ^  |V /V v r *  * r\, v ̂  * rv J

= k -  Sc + QR~TET(k-Ec-r) , (7 .4 .15)

using ( 7 .4 . 12) ,  where

r  = Ac - f (7.4.16)

is  the vector of residuals. Thus, using 2-norms,

The main difference between this and the corresponding resu lt fo r  the 

spline interpolation algorithm is  that in  the least-squares case the 

perturbation (o r, at least, i t s  bound) depends ex p lic it ly  on the condition 

number and on the residual vector j j  r  Jj .

(7.4.18)

(7.4.19)

(The t r iv ia l  case f  = 0 can be ignored; i t  is  eas ily  v e r ified  that 

Algorithm 7.3.1 y ie lds c = 0 in  th is case). Then, using ( 7 .4 .4 ) ^

(7 .4 .5 )»  (7.4.17) yie lds

- I f f -  i  {1 ♦ + v s - *

= {  1 - K1 Ji2h-)2"t ]  (V K jU ja -*  t r ^ 2 ~ \  (7.4.20)
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where K^(= K. |( A || ) ,  lik e  ^  and K , 

(Note that ||A || s< ||a  ||s

:ls a "modest" function of m and q.

m ' since ai j ^  0 Z j a . .  = i ) .
J J

¥e cow make the following three assumptions:

( i )  u 1 (or smaller),

( i i )  v 1 (or sm aller),

( i i i )  K1 A:2 (A )2 ” t«  1 .

(7.4.21)

(7.4.22)

(7.4.23)

Then (7.4.20) approximates to

where is  a further "modest" function of m and q.

(7-4.24)

I f  the assumptions (7-4.21), (7.4.22) and (7.4.23) hold, the interpretation 

o f (7.4.24) is  that the computed coeffic ien ts are those of the exact least- 

squares spline approximation to a sot o f data whose ordinate vector d iffe rs  

only s ligh tly  in a re la tive  sense from the actual ordinato vector.

In a l l  practica l sp lin e-fitt in g  problems considered to date (some 20 in 

a l l )  i t  was found that a l l  three assumptions were w ell sa tis fied . In 

particu lar, u was typ ica lly  closer to a value o f q/m than to  unity, v was 

usually o f order 1 < f 1 or 1 Cf2 since *  2 (A) was always loss than 1 0  and

I4H/Hi II KB3 °f °rto 1 ° " 2  o f 10 " 3, and the value o f x X . was

smaller than unity hy several orders o f magnitude. Cases in  which the 

assumptions do not a l l  hold appear to have to be constructed .a r t if ic ia lly  

and seem to occur only fo r  badly-posed problems.

Although the three conditions cannot o f course be guaranteed to hold in 

a l l  p ractica l circumstances, the f i r s t  is  easy to check once the solution 

has been obtained, and the remaining two likewise i f  the singular value 

decomposition has been employed or i f  ^ ( A )  can be estimated in some other 

manner. We believe the conditions w i l l  hold fo r  a l l  well-posed spline 

approximation problems. See Section ? . 5  fo r  some values of
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7•5 Sensitiv ity  of the B-spline coe ffic ien ts  to perturbations in the 

data

The problem of estimating the effects q f errors or perturbations in the 

data on the values of the B-spline coe ffic ien ts  and on the approximating 

spline i t s e l f  is  o f considerable practica l importance. We go some way

towards determining such e ffects  by employing the results o f Section 2 . 16 .

In that section the bound (2.16.21) fo r  the re la tive  error In the 

computed solution o f the over-determined system Ax = b in terms o f bounds 

fo r  the re la t iv e  errors in  A and b was established. For each of some 

20 practica l data sets (the bulb o f which originated at the National 

Physical Laboratory and the British  Standards In stitu tion ), very 

satisfactory approximations were obtained using cubic splinos, and in 

every case the conditions assumed in establishing ( 2 . 16 .2 1 ) were well 

sa tis fied . (Note that in using (2.16.21) we associate respectively f ,  

c and W2e o f th is chapter with b, x and r ) .  In particu lar, ( i )  pgf |j/ |jf |j 

ajid ||w% ||/||f || were o f order 1Cf? or 10~3, ( i i )  * 2(A) was less than 10 

in  a l l  cases and ( i i i )  *

2  K ,a •

2
i> 0

<

3-J

7 (n -l)2_t (7 .5 .1 )

(o f  Section 6.5 ). I t  then follows from (2.16.21; that

M r  I k1UII2 (7 .5.2)

the terms omitted being neglig ib le  fo r  a machine such as KJDF9 with t = 39. 

The interpretation  of ( 7 .5 .2) is  that a re la tive  error bounded by p, say, 

in  the vector o f data ordinates is  amplified by a factor o f about X . (A) 

to produce a re la tive  error o f at moot „  X ^ A )  i „  the vector o f B-splino 

coe ffic ien ts . Since the B-spline coe ffic ien ts  themselves provide hounds
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fo r  the values o f s(x) (Theorem 5 .1 .3 ), we believe th is result implies 

that (a t least fo r  cubic splines) our formulation of the problem of least- 

squares data approximation by splines is  generally extremely w ell 

conditioned. Inequality (7-5.2) also follows from the results o f Section 7.4

In Column 3 o f Table 7-5.1 we give the spectral condition numbers o f A 

fo r  10 practical cases. These 10 cases are representative o f the 20-odd 

cases referred  to ea r lie r  in this section, and include near-uniform 

distributions o f in terio r knots, highly nonlinear knot distributions 

(such as in te rio r knots at x - 1 , 10 , 100, 1000, . . . )  and cases of 

coincident in terio r knots. Coincident end knots were used in each case.

Among these ten cases is  the one with the largest condition number 

( = 7* 7192) je t  observed, lo r  comparison we give in

m N

Value

Coincident 
end knots

s o f K nc.

Distinct
( 1 )

end knots 
( 2 )

17 5 4.7975 23.178 66.928

25 7 4.5702 26.576 18.242

26 9 4.9444 37.986 16.711

28 5 5.3270 33.505 74.305

28 5 7.7192 64.208 171.530

30 6 5.7847 28.387 40.341

31 3 5.2555 38.282 62.318

32 4 5.2592 33-628 80.670

36 . 10 7.5524 34.084 26.861

84 9 6 .6674 54.847 33.242

Table 7.5.1 Values o f the spectral condition number K   ̂

o f A fo r  a varie ty  o f data sets and threeiV

choices fo r the end knots
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Columns 4 and 5 of Table 7-5.1 the values o f * 2 corresponding to the 

choices ( 6 .7 .3) and ( 6.7 .4 ) fo r  the exterior knots. As with the use 

oi B-splines fo r  spline interpolation,, the choice of coincident end 

knots is  evidently to be preferred. The values o f * 2 were obtained 

from the singular values o f A (Section 2.15), which were computed by 

reducing A to band-triangular form using Algorithm 7-3.1, followed by 

the use o f the Golub-Eeinsch procedure 'm infit* ( c f  Section 6.7 ) to 

diagonalize the band triangle.

I t  is  beyond the scope o f this work to derive and to discuss in  deta il

s ta t is t ic a l estimates of the B-spline coe ffic ien ts . However, i f  such

estimates are required they can be obtained read ily , under appropriate

assumptions, as follows (c f  Draper arid Smith, 1968: 58 et seq) . I f  i t

assumed that the values of t ± are exact, that the values c f w K' have
i  i

errors that are uncorrelated with zero mean and (generally unknown)
2 “

variance o , and that a spline function with the given knots is  the 

correct model (or in  practice a good approximation to the correct model), 

ie  in  s ta t is t ic a l terms i t  does not suffer from lack of f i t ,  then the 

fo llow ing results hold:

( i )  The values of c± computed by our algorithm are unbiassed 

estimates o f the true (unknown) coe ffic ien ts .

( i i )  The matrix
9 9 fn _  A

H = a G = o (li R) /» . .I~ ~ ~ (7 .5 .3 )

provides the variances (diagonal elements) and covariances

(off-d iagonal elements) of the estimates.

( i i i )  An unbiassed estimate o f a2 is

Note that the bulk o f the computation involves the formation o f the inverse 

£ o f £ T2 (=£TA)* *hich can computed e f f ic ie n t ly  by solving the two
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band-triangular system

and

RT = I

RCr = V

(7 .5 .4 )

(7 .5 .5 )

7•6 The important case o f cubic splines

There .is l i t t l e  doubt that many practica l da ta -fittin g  problems can bo 

treated sa tis fa c to r ily  using splines as the approximating functions. 

Particu larly  useful are cubic splines (order n=4) which appear to have 

much to commend thorn. rhe choice o f n~4 proves to be a good compromise 

between the e ff ic ien t computation of the coeffic ien ts o f the spline, the 

subsequent evaluation of s (x ) , and a degree o f approximation and smoothing 

power that seems to be acceptable in many circumstances.

For su ffic ien tly  accurate data we can expect, by analogy with the 

continuous case (Ahlberg, Wilson and Walsh, 1967: 19 ot seq) that the doparti 

o f s (x ) from the data varies essentia lly as , where

hmax = max h . = 
1 $ i $ N  1

max
1 $ i$ N Xi-1 ) (7 .6 .1 )

is  the largest spacing between adjacent knots. Thus, a new approximation 

with additional knots inserted at points half-way between each adjacent 

pair o f current knots, ie  at -¿ (x .^+x .) ( i  = 1, 2, . . . ,  N ), can be 

expected to  have a maximum departure from the data of about 1/16  o f the 

previous value. For many sets o f practica l experimental data, with 

typ ica lly  2 to 3 sign ificant decimal d ig its  in the ordinates, even i f  an 

in i t ia l  approximation has barely any accuracy at a l l ,  the above insertion 

process carried out once or perhaps twice may w ell achieve an accuracy of 

approximation warranted by the data. In practice, the insertion o f knots 

w i l l  not fo llow  precisely the pattern suggested here. Because the behaviour



of a spline .approximation in the neighbourhood o f any given argmnont 

tends to depend predominantly on data lo ca l to  that argument, oonaidarabla 

improvements an the accuracy o f tho approximation in regions o f poor f i t  

can oftor. be achieved simply by inserting additional knots in those 

regions. The nature o f the men approximation in regions su ffic ien tly  

removed from regions where knots have boon inserted tends to be l i t t l e  

changed. Of course, the discussion here has been concerned with accuracy 

rather than smoothness. In Section 7.8 we describe in  outline a method 

o f selecting knots that has worked successfully fo r  many d iffe ren t types

o f data sot, enabling both smooth and su ffic ien tly  accurate cubic spline 

approximations to be obtained.

Y/hile discussing smoothness we think i t  important to point out that a 

cubic spline (with simple knots) is  the spline of lowest order that 

v is u a l^  appears to be smooth. By this remark we mean that, in the graph 

o f a function, most observers would be able to detect, by eyo, discontinuities 

in value, in slope, and evon in second derivative, but not in higher 

derivatives. The cubic spline (with simple knots), having continuity in 

value, f i r s t  and second derivatives, is  the spline o f lowest order that 

is  satisfactory from this point o f view. Our b e lie f  is  that tho trained 

eye is  sensitive to changes in curvature, which is  o f course dependent 

particu larly  on second as well as on f i r s t  derivative. A spline o f lower 

order, such as a quadratic spline, would have in general a v is ib le  change 

in  curvature at each knot.

Although versions, in a h igh-level language, of Algorithm 7 .3.1 fo r

arb itrary values of n have been developed by the author, the case n-J, was

considered su ffic ien tly  important that a code be made available

sp ec ifica lly  fo r i t .  For any particular value o f n ( ^ 3 , say) ± t j£

possible to  make various economies by ta ilo r in g  Algorithm 7 .3.1

sp ec ifica lly  to the case in hand. Such a version• u.i „o. n_4 , pi ogramined in
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TTLgol 60, appears in Cox and Hayes (1973). This version employs 

Gentleman s 3-niultiplication rule (as in  Algorithm 2 .9.3) .  hut if p 

course ta ilo red  (as is  Algorithm 2.14.1) to the case o f a rteppe,l.banaed 

system o f bandwidth 4 . This A lgol code, together with code based on 

Algorithm 3.2.1 fo r evaluating s (x ), accompanied by detailed documentation 

are availab le as NPL Algorithms Library Documents E2/03/0/Algol U]/h/~/k 

and E2/05/0/Ai.gol CO/k/lK. ANSI Standard fortran 17 versions aro 

available as HHL Algorithms Library Documents E2/03/0/Fortran 17/11/7; 

and E2/05/O/fortran 17/11/74.

I t  should not be in ferred from the comments of this section that U10 cubic 

spline is  satisfactory in a l l  situations. Ve believe that i t  wi |, bo very 

suitable in  the majority of practical d a ta -fittin g  problems, but there w i l l  

always be special circumstances in which splines o f other orders „re 

appropriate. Por instance, first-degree splines ( i e  polygonal or 

piecew ise-lihear functions) are useful i f  the approximations aro to bo 

implemented on an analogue computer using diode function generators (see 

Cox, 1971, fo r  a method fo r  approximating convex functions by f i n , (.-degree 

splines, with optimal knot selection; the method described there u.m be 

extended to the approximation o f data having a convex h u ll). Mot-..over 

splines o f degree higher than cubic are required i f  certain derive lives  

o f the approximating function are themselves to be smooth. A furthor 

consideration relates to the amount o f information ( i e  the number 0f  knots 

plus the number of B-spline coe ffic ien ts ) necessary to describe » ( x) Pf>(,

example, Esch and Eastman ( 1969) show that fo r  the approximation of data 

representative o f a function in the neighbourhood of a singular:! t v 

spline o f low degree is  to be preferred, whereas fo r  a "very smooth" 

function such as exp(x), a spline o f high degree is  more economical.



Suppose the set o f data points ( t . ,  f\ ) ( i  - 1, 2, . . m) has been 

approximated, using Algorithm 7 • 3 • i > by a cubic spline s (x ) defined on 

a certain set o f knots. I t  is  important to  consider whether s(x ) is  

acceptable from a number o f points o f view:

HI o—i 2
Is  the residual sum of squares to lerab ly small?

i=1  1 1
.1

( i i )  Are the individual values o f (or o f v.'tb .) tolerably small? 

I t  may well be, particu larly i f  m is  largo, that a poor 

distribution of knots could give r is e  to some very small 

values o f at the expense o f others being unacceptably

large (oven i f  account is  taken o f the presence o f the 

weights va) ,  although the residual sum o f squares is  i t s e l f

acceptable.

7• 7 Assessing the accep tab ility- o f a I  east-squares cubic-r.p3.inn

( i )

( i i i )  Is  s (x ) su ffic ien tly  "smooth”?

Points ( i )  and ( i i )  are usually not d if f ic u lt  to answer, and to treat 

i f  necessary, since the insertion of extra knots or the re-distribution  

o f ex isting knots can often resu lt in an acceptable approximation. The 

"smoothness" of s (x ) , however, is  somewhat more d i f f ic u lt  to assess and 

to correct. Mathematically s(x) is  smooth in the sense that i t  is  tv,’ice 

continuously d ifferen tiab le (assuming here that i t  is  based upon d istinct 

knots). However,' a mathematically smooth function can o f course exhibit 

o sc illa to ry  behaviour (even i f  i t  is  in fin ite ly  continuously d iffe ren tiab le )

whereas such behaviour may be absolutely unacceptable to  those who require 

the approximation. I t  is  important to  be able to  check quickly and with 

certain ty whether any particu lar cubic spline approximation does indeed 

possess spurious oscilla tions or in flex ions.' Such oscilla tions and
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in flexions can arise, fo r  instance, i f  the data has a high noise content 

and the chosen knot distribution is  poor (see Example 7 ,5 .3)

Now slnce the second derivative o f the cubic spline s (x ) is  piecewise 

lin ea r, i t  follows that s (x ) has an in flex ion  between two (d is tin c t) 

adjacent toots x._^ and x . i f  end only i f  the values of s ” ( x . ) and

s" '̂cj ) have m lik e  ( c f Chapter 8, where properties o f th is type

are used to impose conditions upon the approximating cubic sp lin e ). This 

we recommend that any algorithm fo r least-squares cubio-splinn 

approximation should not only provide (or present results an such a form 

so as to  be able to compute easily ) values o f quantities such as the 

residual sum of squares, the individual residuals and the B-spline 

co e ffic ien ts , but also the values o f s" (x ) at each knot x . j -  0 w\‘ J ; i; • ♦ j XIJ

We now show that i t  is  a t r iv ia l  matter to  compute the values o f s’" (x )
'  y.

( j  - C, i, • * . , !> ) ,  once the B-spline coeffic ien ts c. ( j  = ■]} 2 , Ni 3) 

have been determined. Prom ( 5 . 1 . 10) ,

S(x ) = c ^ . M  (7 .7 .1 )
i -1

and thus

N+J 

i-1
■  w  ■  Z J  - a t m  ■ (7. •> o N I »2 )

which, by virtue o f (4 . 1 . 1 ) and ( 3 .2 .6) ,  reduces to 

. N+5 r
S" W  -  3 \  -  !Ik « }

i=1

= 6
N+3

z : v
x.. .i - x . . a-1 i-4 X* -  X. ,1  1-3 I

Now, setting x «  x . and noting from (3-4.1) and (3 .2 .8 ) that

(7.7 .3)
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H2. ( x .) =

( 7 .7 *3) ' becomes

6
s (x  .) = 

v J X . .-X .
J+1 J-1

—x . ) “ '
j+1 j - r ( i  = j + l )

y (7 .7 .4 )
0 (o th erw ise )

1 ° 'i+1 .  (  1 , 1 N • * ,  1

. x j + r x j-2
j+2 +

\Xj  + r\ - j-2  *J+2"Xj-1  /
1+ -------L—‘---

X . _—X .
J+2 j-1  J

n,i-i3~C,iJ-2 _ C.i+2~C.ii-1

x. ,-x . \ x. 0-x . x . -x . _
J+1 J-1 \ J+2 j-1 j+ i o -2 ,

(7*7*5)

Note mhe s im ila rity  of the expression (7 .7 .5 ) to  a second divided 

difference ( c f  Section 5 .? ). Also note that i f  the knots are equally 

spaced, v iz  x j+ 1  = x±+h (fo r  a l l  i ) , then ( 7 -7 *5 ) reduces to

h "s ,} (x .) = c . -  2c . + c .
v y  0+3 J+2 J+1

which is  iden tica l in form to the fam iliar expression fo r a f in it e  

d ifference approximation to the second derivative of a function. However, 

here, instead o f functional values, the B-spline coe ffic ien ts  themselves 

are employed (again c f Section 5 .9 ).

f in a l ly ,  i t  should be remarked that, at least fo r  low-accuracy work, some 

form o f graphical output (as in the examples o f Section 7 . 9) i s of 

considerable value.

7.8 The choice of knots

Sensible choices fo r the number and positions of the in te r io r  knots of 

s (x ) may often be estimated in any particular instance by examining the 

shape o f the required curve. In general, more knots w in  be required 5n 

regions where the behaviour o f the curve is  severe and fewer where i t  

is  re la t iv e ly  smooth. In the experience o f the w riter, 

fo r  obtaining an approximation is  as follows:

a sensible strategy
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Step 1.

Step 2. 

Step 3-

Step t̂-.

Step 5*

Position an in it ia l  set o f knots in accordance with the 

above "criter ion 1'.

Obtain the approximating spline based on these knots.

Examine key parameters and other features o f the approximation, 

such as the residual sum o f squares' or root mean square residual, 

the individual residuals, the values o f the second derivatives 

at the knots, and the behaviour o f the approximation in regions 

where there are few data points or in the neighbourhood of 

special features such as discontinuities (in  function or 

derivatives), in flex ion  points, maxima and minima. A graphical 

form o f output, in which the data points, the approximating 

spline and the knot positions are displayed, is  particu larly 

useful at this stage.

In regions where the approximation is  inadequate, Introduce 

additional knots, perhaps a fter adjusting the positions of 

existing ones, and in regions where the approximation is  

"too good", ie  where the approximation follows the data value., 

so closely that the spline has oscilla tions with amplitudes 

o f the order of the noise le v e l o f the data, or oven greater, 

remove a number of knots, adjusting the positions o f the 

remaining ones i f  necessary.

Repeat as necessary from Step 2.

With a l i t t l e  experience in  applying the above process, the w rite r contends 

that very many data sets can be approximated sa tis fa c to r ily  a fte r  having 

made typ ica lly  two or perhaps three passes through the process. Some o f 

the examples in  Section 7*9 are intended to be illu s tra t iv e  o f the 

approach.

I f  the required approximation is  to  have special features such as a
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discontinuity in slope or a very sharp peal, this knowledge in i t s e l f  

fiv e s  a good guide to the choice o f at least some of the boots. For 

continuity in  ^ “ ^ (x ) ,  hut not in. s( ^ ( x )  (0 $ r <  n) at x = t ,  a knot 

oi m u ltip lic ity  n-i should be introduced at th is point. Note that the 

case r  = 0 corresponds to a discontinuity in s(x ) i t s e l f  at x = t ;  such 

a caso could be treated, but no more e f f ic ie n t ly  in fa c t, by computing 

separately spline approximations to the data to the l e f t  and to the 

righ t o f x = t .  Two o f the examples in  Section 7-9 illu s tra te  the

imposition o f discontinuities, - 

7*9 Numerical examples

As fo r  the spline interpolation algorithm of Chapter 6 we consider two 

types o f numerical example fo r  Algorithm 7-3.1. The f i r s t  type (Sample 

7 .9 . l )  is  intended to demonstrate the a b ility  o f the algorithm to 

reproduce a cubic spline from data that i t s e l f  is  taken from a cubic 

spline, and therefore constitutes a partia l test o f the s ta b ility  o f the 

algorithm. The second type (Examples 7-9.2, 7-9-3 and 7 .9 .4) is  intended 

to  demonstrate the measure o f success o f cubic splines in  providing 

approximations to data drawn from practical experimental situations. A ll  

examples were carried out on the KDF9 computer, fo r  which t = 39.

'Example 7-9-1

Data points (t^ , f^ ) ( 1  = 1, •••» m = ^1) with b  = (r - l )/ 8 , f .  = ^O -j),
/

where

f (x ) *  4 -  ( x- 1 )° .+ (x -2 )+ - 4 (x -3 )f + l6 (x-4 )^  , (7-9.1)

were selected. Since f (x )  -is a cubic spline with knots o f m u ltip lic ity  

1 * 2 and 1 at x = 1, 2, 3 and 4, respective ly, the data should bo 

representable exactly, i f  the above knots are selected, by Algorithm 7.3-1. 

To measure the degree of success o f the algorithm in  reproducing a. spline
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from such data, the B-spline coe ffic ien ts  were evaluated and compared with 

th'j exacv /alueo, ffhich are reao ily  v e r ified  to be those .in Coluinn 3  o f 

Table 7.9.1. Note that the values o f f_. and x can a l l  be held 

exactly on the machine and hence any errors in the computed results art* 

due so le ly  to  rounding err or s.

Table 7-9.1 gives some o f the results fo r  th is example. In particu lar, 

ju Column 4 are the errors in the computed values c . o f the B-spl:ine

c o e f f ic ie n t s ;  in  Column 5 are the true values o f 3 " ( x . )  and in Column 6
J

the departures from these of the values computed from ( 7 .7 .5 ) using the 

computed values ĉ .. Note that the maximum value of
.... 'j ']

10  , which is  a factor o f only about 6 greater than the possible re la tive

e rro r  in  rounding che true c .—values oo to. e rr  wachine^r cure senta'bT e }v*narvj •*

equivalents. The maximum departure over the 41 data points of the computed 

spline from the function f ( x )  was 2 . 9  x 1 Q ~ ' \

(c  .-c .Vc , 
J J / j

was

A graph o f s (x ),  together with the data points, is  given in f i g  7 .9 . 1 . 

In  th is and subsequent figures, the knots are denoted by v e r t ica l liner- 

and the data points thus: 0

In subsequent examples, c . and s ” (x .)
0 v y

denote values of the

B-spline coeffic ien ts  and. o f the second derivative o f the spline at tho

knots.
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j X .
J

c . 
0

1011(c .- c . )  
J J

s" ( x .) 
J

1ûin { à ” (x . )~ s "  (x

0 0 0 -•1.3
1 1 4 -1 0 -3.9
2 1 4 0 - -

3 1 4 +3 - . _

4 1 4 A~ 1 0 -0.4

5 2 3 0 0 +3.5
6 2 3 -1 - -

7 2 3 -2 0 +5.7
8 3 3 +2 0 -4.8

9 3 3l -2 -8 -2.5

10 4 4 i +4 -8 -0.9

11 5 5è- -1 88 +2.0

12 4è- +3

13. -23- -2

14 3 +3 *

Table 7*9-1 Departures o f the computed values c . from the exact
J

B-spline coe ffic ien ts  c. and those o f the computed
o

values s *' (x . )  from the exact values o f s " (x . )  fo r 
J J

Example 7•9•1•
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Fig. 7.9.1 Test example with knots of multipl icity 4, 3, 2 and 1
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Example 7 .9 .2

Ih i .  example is  intended to illu s tra te  the strategy o f Section 7 . 8  fo r  

estimating knot positions. Data points ( t ^ f . )  ( i  _ . . . ,  m = 2 3 )

were read from a graph on p 78  o f B ritish  Standard Code o f Praoti.ee CP118 

(1963) on the structural use o f aluminium. The graph re lates maximum 

stress tensile  to  stress ra tio  in structures subjected to fluctuating 

loading. As part o f a larger study to assess the' fe a s ib ilit y  o f 

representing a variety o f graphs and tables in British  Standards documents 

in terms o f polynomials and splines, the data points read from this graph 

were approximated by a cubic spline. I  am indebted to the B ritish  

Standards Institu tion  fo r permission to  reproduce th is example here.

Since the graph is  bonding more sharply in the approximate region 

- 0.1 .< x *  0.1 than elsewhere, i t  was decided to choose in i t ia l ly  a pair 

o f in te r io r  knots at x = - 0.1 and 0. 1 . The resulting approximation 

(Tables 7*9.2 and 7-9.3 and. Pig 7-.9.2) was smooth, but there were some 

departures from the data that were greater than warranted by the accuracy 

o f the data. Moreover, the residuals displayed a strong systematic 

tendency, v iz  5 adjacent positive values, neighboured on either side by 

3 adjacent negative values. .Furthermore, the approximating spline had. 

negative curvature fo r x near - 1 , which was unreasonable because the data 

had a convex hull, as a resu lt o f the orig ina l graph being convex.

Because the larger residual errors were in or near the region o f the -elbow" 

a second approximation with an additional knot at x = 0 was computed. Th« 

resu lting spline (Tables 7.9.2, 7-9-4 and P ig 7 .9 .3 ) w„  00nTOt 

tfac as close to the data points as could be ju s t ified  by the ir accuracy, 

had residual errors which displayed a less systematic tendency and »as 

therefore considered acceptable. Note that although the residual errors 

fo r  x *  0.1 are in the main greater than the remainder, th is »as considered
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acceptable because of the greater d if f ic u lty  in reading accurately data 

values on the steeper parts of a graph than elsewhere. A useful 

refinement, not considered here, would.be to incorporate weighting factors 

which are estimated to re fle c t  this variable reading accuracy.

i -<•
X

Values o f 100 
f .

2 knots

{ - ( t i ) - f . }  fo r

3 knots

1 -1.00 5.30 -5 -1
2 - 0.90 5.44 +4 4 1
3 -0.80 5.62 +5 0
4 - 0.70 5.30 +4 0
5 -0.60 6.01 -1 -1
6 - 0.50 6.20 -3 0

7 -0.40 6.42 -6 0
8 -0.30 6.67 -7 -1

9 -0.20 6.91 -2 4 1
10 -0.15 7.05 4 1 41
11 -0.10 7.20 +5 0
12 -0.05 7-38 +9 -2

13 0.00 7.63 +9 -2

14 0.05 7-98 +5 + 1

15 0.10 8.42 -1 44
1 6 0.15 8.95 -8 4 1

17 0.20 9.52 -9 -1
18 0.25 10.16 -8 -4
19 0.30' 10.85 -1 -2
20 0.35 11.64 +6 4-2
21 0.40 • 12.60 +9 4-2
22 0.45 13-75 44 41
23 0.50 15.10 -7 -2

Table 7.9.2 Data points and values o f two approximating splines 

fo r Example 7-9.2.
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j x .
¿I

c . b" ( x .) 
v .r

0 - 1.0 -5*505

1 - 0.1 5*247 808QS

2 0.1 6.014 34*543

3 0.5 6.043 53*476

4 8.505

5 11.562
6 15.026

Resiclual sum of squares - 0.0804

Table 7-9*5 B-spline coe ffic ien ts  and values o f s -1 (x )  at the 

knots fo r  the f i r s t  approximation o f I'kample 7*9-2-

j x .
J

c .
J 3“ ( . , )

0 - 1.0 0.670
1 - 0.1 5.292 2.307

2 0-0 5.764 64.108

0.1 6.390 7.371

4 0.5 7.501 86.617

5 9.390

6 11.270

7 15.085

Residual sun of squares = 0.0061

Table 7*9,4 B-spline coe ffic ien ts  and values o f s "  (x ) at the

knots fo r  the second approximation o f Example 7. 9, 2 .
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Fig 7.9.2 Maximum stress tensile distribution t 2 interior knots

Fig 7.9.3 Maximum stress tonsile distribution t 3 interior knots
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Example 7.9« 3

This example re lates to one aspect o f the programme o f research work 

currently being undertaken by the Quantum Metrology Division o f the 

National Physical Laboratory. I  am indebted to th is d ivis ion  fo r  

permission to include data and results re la tin g  to th e ir programme.

A high-resolution photoelectric ecbelle spectrograph is  being used to 

study the way the shape o f a spectral lin e  varies as a function o f the 

source excitation conditions. For any particu lar set o f conditions, the 

data comprises the count, in one-second time blocks, o f the number o f 

photons arriving at the photomultiplier, as the ex it  s l i t  is  slopped 

through the spectral lin e . The ordinates (numbers o f photons) contain 

appreciable noise, physical considerations indicating that the probable 

error in an ordinate y is  proportional to y’̂ .

The main requirement is  to obtain a smooth unimodal approximation to the 

data fo r  use in subsequent computations. In particular, i t  is  o f 

importance to study the e ffe c t  of the excitation conditions upon various 

parameters o f physical significance. These parameters include tho peak 

height and i t s  position, and the "centre o f gravity" G 0f  tho curve fo r  

a given height h. & is  defined, i f  a lin e  para lle l to the x-axis and a 

distance h from i t  intersects the curve at exactly two points, A and B, 

say, as the aid-point o f AB. The parameters were detemnined, having f i r s t  

computed an acceptable cubic spline approximation s (x ),  using a procedure 

based upon Algorithm 5.2.1 fo r  evaluating s (x ) from it s  B~spline 

representation, a further procedure based upon the recurrence relations 

o f Section 5-9 fo r  evaluating s ' ( x ) ,  together with a routine fo r  computing 

a aero oi a function (NPL Algorithms Library Document C5/01/0/Algol 60/ 1/73)

To demonstrate the point made in  Section 7.8 that i t  is  beneficial to 

introduce more knots in regions where the behaviour o f the underlying
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function in severe than elsewhere, two cubic spline approximations to 

one o f the data sets were computed. In both cases weights w -  v~¥ 

were incorporated to re fle c t  the knowledge o f the errors in the values 

of y^* The f i r s t  approximation was based upon choosing 19 uniformly- 

spaced in te r io r  knots at x -  10, 20, 30, c. , ,  190 and the second upon the 

choice o f 7 non-uniformly-spaced in te r io r  knots at x ~ 30, 60, 80, 90,

100, 120, 150. The second set of knots was chosen to cluster around the 

sharp peak o f the curve and to be widely displaced in the ta i ls .  Summaries 

o f the two approximations are given in Tables 7.3.5 and 7. 9.6 and graphs 

depicting the data points, the approximating splines and the knot lines 

are presented as Pigs 7*3-4 and 7*9*5*

The f i r s t  approximation, although being adequate fo r  the bulk o f the range 

o f the data, possesses spurious osc illa tions in both ta i ls ,  due to the 

spline fo llow ing the data too closely, a3 a result o f there being an 

excessive number o f knots in these regions. The osc illa tion s in the l e f t -  

hand t a i l  are visually evident; that those in the right-hand t a i l  ex ist 

fo llow s from the sign changes in the second derivative (see Table 7.9*5).

Because oi the better discrabution o f xnots, the second approximation is  

satisfactory throughout the complete data range, despite the residual 

sum o f squares being about ?.<$> greater. Moreover, as a resu lt o f there 

being a smaller pumber c f parameters as well as the knots being bettor 

placed, the approximation possesses no spurious osc illa tion s . I t  could 

be argued that the second approximation is  superior to the f i r s t  in the 

neighbourhood of the physically-important peak (compare P igs 7. 9.4 and

7*9*5).
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a x . 
J

c . 
J

s" (:<,)
tJ

0 1 -0.578
1 10 57.78 -0.232

2 20 67.41 0.568

3 30 71.27 - 0.032
4 2,0 55.88 1.342

5 50 96.79 1.400

6 60 134.2,8 2,. 000
7 70 306.31 0.549

8 80 617.82

*CM•1

Q✓ 90 1329.80 - 8.943
10 100 2096.72 - 3.966
11 110 2538.09 1.891
12 120 2085.19 3.641
13 130 1235.68 1.505
14 12,0 575.31 1.078

1-5 150 279.OI 0.163
16 160 133.25 0.047

17 170 95.25 0.069
18 _>w CD O 73.59 0.039
19 190 56.61 - 0.030
20 200 46.57 0.095
21 40.41

22 34.30

23 32.82

Residual sum of 
l

squares - 200.1

Table 7*5.5 E-spline coe ffic ien ts  and values of s " (x ) at the 

knots fo r  the f i r s t  approximation o f Example 7.9.3.
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ô X .
J

c . 
J -  ‘ (- j>

0 1 O.O69
1 30 65.60 0.206
2 60 59.10 2.993
3 80 65.66 - 1.592
4 90 234.61 - 12.019
5 100 1859.31 -1.134
6 120 2624.14 3.040
7 ISO 1786.46 0.076
8 200 189.71 c • C v”

9 61.77
10 40.98
11 33.74

Residual sum of squares = 238.4

Toï'le 7.9.6 B-spline coe ffic ien ts  and values o f s " (x )  at the

knots fo r  the second approximation o f Üxample 7« 9*3«
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jBbcsmpls 7« 9*4

35118 eX8° ple relateS to some data fro »  a research project involving a 

Fofcker-Planck fe a s ib ility  study carried out at Culhsn laboratory, to 

Tvhon I  am indebted fo r  permission to include hero the data, and certain 

results. The problem was to determine an approximation, to an accuracy 

o f 0 . *  o f the peak value, to the sa l o f 70 data points depicted in 

F ig  7.9.6. Previous attempts at Culham to obtain satisfactory f i t s  

using a variety o f t r ia l  forms fo r  the approximating function had a l l  

fa ile d , mainly due to the presence o f the slops discontinuity at 

x = 14.3188,

The nature o f this discontinuity suggested that en «H eertea tlon  

consisting o f a cubic spline with a t r ip le  lo o t at. x -•= 14.3188 

simple toots elsewhere) should be attempted. Accordingly, a spline with 

a t r ip le  toot at this point, 5 uniformly-spaced toots betwoen the le f t -  

hand end point and x ,  14.5188, and a further 4 uniformly-spaced toots 

bo tween x .  14.3(88 and the right-hand end point was computed. ¡The 

resu lting approximation was considered very acceptable .In that the 

required accuracy was achieved and is  depicted in f i g  7 . 9. 5. Moreover, 

i t s  smoothness e ither side o f the point o f discontuity is  apparent from 

the graph and from Table 7.9-7. Part o f a tabulation o f the data and the 

errors in the approximating spline (including .  region containing the 

discontinuity) is  given in  Table 7.9.0. The choice o f 9 simple knots 

was quite arbitrary and, to fa c t , acceptable approximations cm also bo 

obtained v/ith d iffe ren t numbers o f  simple knots.
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j x . 
J

c . 
j ( * , )J

0 0.0000 0.0844
1 2.3805 0.0000 0.0916
2 4.7729 0.0007 0.0879

3 7.1594 0.1625 0.0533

4- 9.5459 0.9268 -0,0195

5 I I .9323 2 . 1918 -0,1035
6 14.3188 3.7601 - 0.1618

7 14.3188 5.2175 -

8 14.3188 5.7962 0.0263

9 16.7053 5.93 20 0.1434

10 19.0918 5.0095 0.1637

.11 21.4782 3.2146 0.1076
12 23.8647 1.3388 0.C464

13 26.2512 0.3953 0,0035

14 0.0646

15 0.0203

M, ̂
Residual sum. o f squares - 8.7 x 10

Table 7.9.7 B-spline coeffic ien ts paid velues o f s '1 (>:) at the

knots fo r  Example 7 «9*4
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i t .
i f .X

1 0.0000 0.0000 0
2 1.0696 0. 04.97 +1
3 1.5162 0.1002 0

4 1.6617 Co 1514 - 1
5 2.2887 0.2294
6 2.8726 0.3627 +1
7 3.3672 0.5000 +1
8 3.8078 0.6409 •1-1
9 4 .2 111 0.7853 0

36 12.6542 5.4426 -1

37 13.0969 5.6104 -3
38 13.5362 5.7507 +1

39 13.9721 5.8631 +2

40 14.3188 5.9319 +1

41 14.5348 5.6826 “ 4
42 14.9643 5.1911 +1

43 15.3912 4.7133

44 15*8161 4.2525 +2

62 23.2215 O.1723 +1

63 23.6241 0.1303 -2

64 24.0260 0.0963 -5

63 24.4274 0.0630 +7
66 24.8284 0.0465 +8

67 25.2267 0.0304 +3
68 25.6285 0.0183 -6

69 26.0279 0.0087 -18

70 26.2512 0.0000 +15

Table 7.9.8 Part o f the tabulation o f the data arid the errors in 

the approximating spline fo r  Example 7*9*4.
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Fig 7.9.6 Fokker-Planck feasibility study data

•Sû*>_
26



I t  should bo stressed that in Ecanpiea 7.9.2, 7.9.3 m i  7 . 9,4 further 

experimentation with the choice o f knots would ahnoot certa in ly  result 

in improved approximations. Iiowovor, since the f i t s  obtained were close 

to being as good as possible with respect to the accuracy o f the data, 

such improvements could only be marginal!.

7c10 Automatic knot selection

Rather than the user having to select a suitable set o f knots, i t  would 

c lea r ly  be desirable to have an automatic method which in some sense 

chose optimum or at least "good" knot positions in any particu lar instance. 

A number o f workers have examined this important problem.

Powell (1970) describes an algorithm fo r  determining least-squares cubic- 

spline approximations in which the choice o f knot positions is  based upon 

a "trend" tes t. His approach involves in i t ia l ly  the approximation o f the 

data by a spline with a small number o f equally-spaced knots.■ The 

residuals e± ( i  =.- 1, 2, . . . ,  m) are then examined and i f  there are regions 

where a trend is  indicated, ie  the yaluesof are not distributed in a 

random manner about zero, further knots are inserted in  the regions 

indicated by the test. The process is  then repeated un til hopefully an 

acceptable approximation is  obtained. The method seems particu larly 

suited to cases where there is  an abundance o f data points (say several 

hundred) and the underlying curve is  complicated, perhaps with many pedes, 

and has sim ilar behaviour throughout the range. However, even in such 

cases, rather more knots than are s t r ic t ly  neoessaiy are often introduced 

by the method. In some other cases, particu larly where the behaviour in 

one part o f the range d iffe rs  rad ically from that in another, somewhat 

unsatisfactory results may be produced. This d if f ic u lty  is  due mainly to 

the res tr ic tion  the algorithm places on the rate o f change o f knot spacing 

throughout the range. I t  should be noted that Pow ell's  algorithm 4-
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based so le ly  upon the least-squares c r ite r ion , but TCntains ad(Utionill

smoothing terns which tend to reduce the discontinuities in  tho th ird  

derivatives at the in terio r knots.

Be Boor end Bice (1968) have developed an algorithm which attempts to 

determine a spline s (x ) witlr as few knots as possible so that

i y 2 < 6  , ,
2 ( a  io .i)

where 6 13 a presc'r:,;bed posltive number. They attack tills  problem by 

solving successivoly fo r  N = 1, 2, ... the least-squares nonlinear spline 

approximation problem: minimise j|c|j| with respect to both the linear 

parameters .and the in terio r knots o f s (x ).  Since the value o f |jc \jr> 

e ith er decreases s t r ic t ly  with increasing N (R ice, 1569: 143) or>i f or

some value o f hi, is  equal to sere, i t  fo llow s that in theory at lea s t, If 

can be increased until condition ( 7. 10. 1 ) is  sa tis fied .

Eie algorithm employed by de Boor and Rice is  a method o f descent. Given

an in i t ia l  set o f N-1 in te r io r  knots (N f ix e d ),  they are improved cy c lica lly

•to minimise || £ j| The cycle starts with the right-most knot and, working

to tho l e f t ,  each knot is  varied so as to reduce ||£ ¡2  as a function o f

th is single knot. This cyc lic  process is  continued un til some criterion

o f convergence is  met. Such a process can, o f course, hope to find  on.lv 
11 i.2

lo ca l minima o f ||e |||. There may be many lo ca l minima (Cox, 1 9 7 1 ) 

consequently, i t  is  unlikely that the global minimum is  obtained, unlesl 

the in i t ia l  knots are su ffic ien tly  close to those corresponding to this 

minimum. Additional knots are introduced one at a time. A point jo  

determined where the approximation fo r  N-1 knots is  poorest and the Nth 

imot is  introduced midway between the two knots which bracket this point.

The method has been implemented in Forte*, by de Boor and Rico ( 1968) fo r  

the cubic-spline case n=4.
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Although the method can sometimes y ie ld  very satisfactory approximations, 

the whole process is  fraught with d if f ic u lt ie s . F irs t ly , there is  the 

problem o f determining whether convergence has taken place. This problem 

appears on three leve ls , namely, fo r the whole algorithm, fo r the least- 

squares nonlinear spline approximation problem fo r any particu lar value 

o f N and fo r the adjustment o f knots within th is la tte r  problem. The 

decisions that convergence has taken place arc made on the basis of rather 

delicate ad hoc numerical tests which arc not in fa l l ib le . Secondly, the 

resu lting approximation may correspond to a local  minimum o f [jo |j^. As 

indicated in  Cox (1971) there may be many loca l minima, many o f which are 

fa r  in fe r io r  to the global minimum. An example is  given by Cox in which 

the global minimum is  re la t iv e ly  in f in ite ly  superior to a loca l minimum 

in the sense that the former has a zero value o f j| e || whereas the 

la t te r  takes a f in ite  value. In fact the differences between the two 

approximations, when drawn to typ ica l graphical accuracy, are easily  

aiscernible by eye. Thirdly, the method can easily  consume enormous 

amounts o f computation time. For instance, de Boor and Rico quote an 

example with a f in a l value o f N o f about 30 which takes some 20 minutes 

computation time on the powerful IBM 7090 computer. This time is  to be 

compared with a one o f a fraction  o f a second fo r 30 fixed  knots.

A somewhat d ifferen t approach has been suggested more recently by de Boor 

(1973) (a lso see Dodson, 1972), in  which in i t ia l  estimates o f the nth 

derivative of the function underlying the data are made. Then, using the 

fa c t that, at least fo r a mathematical function, the lo ca l error in on 

approximation by a spline o f order n is  proportional to the nth power of 

the lo ca l knot spacing and d irectly  to  the magnitude of the nth derivative 

o f the function, he describes an algorithm fo r estimating "good" knot 

positions. He outlines a way o f ite ra tin g  the process in an attempt to 

improve further the approximation so obtained. The current w riter has
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compered an implementation of this method with the approach discussed 

in Section 7.8; starting with the approximations produced by the process 

described in Section 7.8, in only two cases out o f 20 did de Boor’ s 

approach produce a superior approximation, and even these two wore only 

marginally better. However, de Boor’ s suggestion appears to be worth 

exploring further. I t  may be that certain refinements would enable a 

good algorithm to be developed. The main advantage compared with, say, 

the de Boor-Rice approach, is  it s  speed. A major d iff ic u lty  is  the 

in i t ia l  estimation o f the nth derivative o f the underlying function. A ftor 

a l l ,  the nth derivative (even fo r  a cubic spline, n=4) is  surely much 

harder to estimate than the function i t s e l f ,  and the la tte r  problem of 

course is  essentia lly the one we wish to solve'.

7*  ̂ 1 spline-approximation of a mathematical f unction

This section is  exceptional in that we consider the approximation by 

splines of functions rather than data. The main reason fo r  incorporating 

th is  digression is  to demonstrate that B-cplines are a powerful too l in 

th is area also, and that their use compares very favourably with other 

approaches (eg Bellman, Kashef and Vasudevan, 1974) that have been proposed 

recen tly .

Consider the problem o f approxim ate in the least-squares norm the funetion 

f ( x ) over the range a ? *  ÿ b by a spline s (x ).  I s  usual me introduce a 

set o f in te r io r  knots * . ( i  = 1, 2, t f . , )  augBent thts ,,y  ^ t l o n z l

knots at and x=b so that the complete knot set f  x j  forms a ska.,dard 

knot set with coincident end knots. Our approximation problem can bo 

loosed in  the follow ing way.

Determine coefficients 0j ( i  = 1, 2, . . . .  q=K+n-i) which minimise

fb

{  7 2  CiNn i(x ) "  1  âx
J a l  i=1 J

(7.11.1)
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The minimizing values o f (■_. are defined by the equations

i  "no(i0 .

r ‘i h ^ — 1 , v
/  .1° A i W  -  f w

Ja . i=1

that is ,  by 

q

22 ci
±=i

ib
N .. (x )N  .(x)cbc = nx' '

a

r b

a
Nn .(x)f(x)cb: (J = 1, 2, q).

(7.11.3)

Because o f the compact support property of the E-splines, the equations 

( 7 . H . 3) reduce to

fbj+n-1

Z 2  °
i=j-n+1

wr , (x)N .(x)dx =
iax nj N ,(x )f(x )fix . ( j  = 1, 2, . . . ,  q)n j

( 7 . 1 1 .4 )

Equations (7-11-4) constitute a system o f q linear equations o f bandwidth

2n-1, symmetric about the main diagonal, which may bo solved e ff ic ie n t ly  
2

in  0(qn ) operations. To determine the elements o f the system i t  in 

necessary to compute the values of 

f b

Nn iM N„ j W fa ( M < n )  (7.11.5)a. . -

and

b.x J a
Nn i(x)f (x)a* .

(7.11.6)

Further use o f the compact support o f the B-splines enables (7.11.5) and 

(7 .11.6) to be reduced to

a. . = a .. n 
i j  11 H ^W K n^xJ to  ( i  £ j < i+n)

(7.11.7)
x .

-n

• and
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b. =

rx i

Jx.

Nn.(.x )f(x )dx

i-n

There are many ways in which the integrals (7.11.7) and (7.11.8) may he 

evaluated. The fo llow ing approach is  recommended. Express (7.11.7) in 

the form

a. .aj ■ z:
k=j-n-f-1

r*k

j
(7.11.9)

In  each o f the in tervals ( x ^ ,  y^) (k = j - n+1, j_ n+2, ± ) the

integrali! in (7.11.9) is  a polynomial o f degree 2n-1 and hence the

corresponding in tegral may he evaluated exactly hy any quadrature rule

that is  exact fo r  polynomials o f degree 2n-1. The values o f the integrand

required hy the quadrature rule are products o f the values o f B-splines

o f order n which may be calculated using Algorithm 3. 12.2. i t  wlll not

be possible in  general to compute the values o f Ik  exactly. However.

th e ir  values may be approximated by expressing b. as°  i
r x

„  7 " ’
1  k=i-n+1

N . (x )f (x )d x  nxv ' '  ' (7.11.10)

V i

and applying an appropriate quadrature rule to each o f the integrals in

(7. 11. 10).

Ili oases «tore the tacts are equally spaced, explicit expressions for the 

ai j  * »  te- " S of B' splineB oi' order 2»  0«  available (see Schoenberg, 1569).

The approach ve have outlined in th is section is  a natural use of the 

B-spline basis. Bellman, Kashef and VasuSevan ( 19 /4 ) have also considered 

what they term "mean square spline approximation" arid have describ' d m, 

algorithm based on dynamic programming fo r  the case n=4. Because they do
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iio'c use a suitable basis and because they employ dynamic proguc-raoinc­

ur necessarily (in  a situation where more direct methods su ffic e ), the ir 

approach is  re la t iv e ly  unwieldy. Moreover, we believe their approach 

is  comparatively in e ffic ien t and also suffers from a considerable degree 

o f ill-cond ition ing. .It is  necessary in  the ir method to evaluate

in tegra ls o f the fom

xXf ( x ) 0x

)  xk-1

(7-11.11)

and

' * k  2
f  ' (x)clx.

-
(7.11.12)



mem

® s a a  w * ® »  r a j  c w m m  AMD cokcatot e w s m o m  

In this chapter a straightforward extension of acme algorithms for 

solving unconstrained linear approximation problems In the 1., and I,(„ 

norms is given. The extended algorithms alio,, lever or upper bounJto  

bo placed on the parameters of the approximating function, whilst s t il l  

retaining the computational efficiency of the unconstrained algorith, .

A representation of a cubic spline in te a ,, of the values of its second 

derivatives at the knots and its  value,, at the ends of the range is 

derived. By placing simple non-negativity or non-positivity constraints 

upon the values of these derivatives the spline can bo forced to satisfy 

proscribed properties such as local convexity or concavity.

The extended linear approximation algorithms, when used ip, conjunction 

with this representation of a cubic spline, enable approximations to

discrete data sets to be obtained which are free from undesirable 
inflexions or oscillations.

In Section 8 .1  v,e discuss the need for constrained approximation and 

indicate he» some important types of continuous constraints may be 

enforced by imposing upon a cubic spline a finite number of point .„„stra­

in Section 8..? us consider the formulation as linear programs of the 

general Discrete linear I., and l #  approximation problems with simple 

constraints upon the parameters. In Section 8.3 „  derive a ropresentatio, 

of a cubic spline in torus of the values of its  second derivatives at the 

knots and its values at the ends of the range. In Section 8.2, it  ; ■; 

shown that the linear programs obtained in Section 8,2 can be us-d <„

conjunction vith the representation derived ir c n ,  .•u* •3-oT'~on up -uo obtain
cubic-spline approximations which satisfy l 0Cri c-i-o-War

J Ut-  con-inxaty and concavit»-

:i.n
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constraints. -Also in Section 8 .4 we discuss b r ie f ly  the nu-oricej

a ta r i ] ity  of the process. In Section 8.5 some numerical examples are 

given.

1 frie need fo r constrained a opr ox irnat j.on ,s 

In problems o f data approximation i t  is  often important that the 

approximating function employed should r e fle c t  certain properties cf the 

f,motion underlying the data. Per instance., i f  i t  is  known that the 

underlying function is  convex, then i t  is  usually desirable that the 

approximating function is  also convex.

In  many circumstances i t  is  iound that cubic splines form good

approximating functions (see, fo r instance, the examples in Chapter /).

Unfortunately, the algorithm discussed in Chapter 7 is  not gura-anteed to

produce approximations that ore free from spurious o sc illa t X

very frequently the approximations aro indeed o so illa tion -froo . nowevor.

i f  cubic splines are represented in an appropriate ray, they can he

forced to  display desired loca l behaviour by the imposition of a f in ite

number o f very simple point constraints. In fa c t, many aspects o f the

loca l behaviour c f a cubic spline depend upon the values o f i t s  second

derivative at the to o t« . In particular, since the second derivative o f

a cubic spline s (x ) with simple knots is  lin ear between any pair of

adjacent toots x ^  tod x . ,  the follow ing typos o f behaviour- can be forced

( i )  convexity in the in terva l x j _1 i  x «  X} is  achieved by-

ensuring that both s" and s” (x,) are non-negative.

( i i )  concavity in the in terva l x ^ ,  S x *  x , is  achieved by

ensuring that both s" ( ^ J  and s” ( * , )  are non-positivo,

( i i i )  the requir-emsnts that s (x ) bo convex fo r  x J x, f . . . ___a

single in flex ion  point in the in terva l x.  < x < x  Pni I p ...j - 1   ̂ j  wuu 1 e ccr.Oi for

x <> xj  can be achiGved ^  e n d in g  that 8» (x . )  ^  0 fo r  i  $ j - i  

d” ( x.. ) o fo r  i  2 - j -
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2-2 linear appro.yjnation orobler..-

Consider the approximation o f the set c-f points ( t , f  ) (■■
v "i '

by the function

<1

x' = 2  ^  > 
¿=1

1 .• 2, • . . ,  m)

(8 .2 . 1)

\,hcre the unknown coeffic ien ts  g jg ,  , g, ,, 

constraints

* i  ̂ are ¿o sa tis fy  the

O • O *J J

g.i »  dj

g. unrestricted 
J

( j  ^  >T,)

( j  e  j2) 

( j e  j -,)

(3 .2 .2 )

In  (8 .2 ,2 ), J^, J2 and J.. are distinct sets, the union o f which coat , 

p rec ise ly  q elements. Define

nns

Kg> t i ) = K g , t j )  - ^  ( i  = 1, 2, . . . ,  m). (8 .2 .3 )

The L. approximation problem is  to determine g‘;: such that* /v

m

(8.2./,)

fo r  a l l  g, g* satisfying ( 8.2.2) ,

The L ^  approximation problem is  to determine g’" such that

max e (g *, t , ) ^ max e(g , t )
r  i  $ n 1 £ i  $ E IL

fo r  a l l  g, g* satisfying ( 8.2 .2) .
r» *v

(8 . 2 .5)

I f  re le t
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1ra . - g.
<j <j 0<= J.,)

ttJ ‘  j s i ~ di i j j
(d £  J2) (8 .2 .6 )

l g . + a .
1 j  q+1

( j  G J3) ,

r
o\ - max 0. max ( -  g . )  ")• ,

j e j ,  J JV i  ~ -  1

the constraints (8.2 .2) are equivalent to

^  0 y

where a -  { a,,, °-2’ aa+ l} ’ Then> PwttinS

(8.2 .7)

(8 .2 .;>)

“ i j  = (8.2 .9 )

gives

♦  2

'5~> '
o., t . ) = x  _j a . . ( d . - a .)
- " 'J-J J

( di + a j  + 2 I j a. (a -

e (g , t . )  = e (a , t ; = — , a .
~ 1  j  €  J1 0 J

j e  j 4 £ J  1J " o  “ m i )  “ h  (8.X.10)

'my ~ ' # o •) + ni3 <lj
= -^HL t j-3 0 j<= J2TL’53 e  M

+ ( -  ¿ r 1.. &i j )  ^  l  1 3 £  J1UJ2 '\  o ^ J3 / ^

( i  =  1j 2 , . . . ,  m).

(8 .2 .11)

Tie define, for i — > n,



p or.

r .

a. . 
i j 1

a. .

a. .i.i

U e  j ji

(,i «T u j , )

Z l. j 0  = q + i )1-  /— T  -*-K

(8.?.12)

l  ke j 1

and

f .  = f .  - r : a. . d. 
¿6: J.UJ0 1J J (8 .2 .13 )

The L1 approximation problem is  then to determine a* 0 such that 

q+1
y  i

i=1

7 “ > a.
Z - j  io  o
0-1

la

i-1

q+1
$ V  V a . - f .Z-J Z~_4 10 J i

j=i
(8.2.1h)

fo r  a l l  a 7, 0./v /

The jJa> appi o-cim.c..uion proolem becomes the determination o f a’:< ^  0 s

that

max 
1 $ i

q+1
V i . ,  a .*  -

1J 0
J=1

^ max 
1 i  6 m

q+1

sj=1
a. . a . -  f
iJ j  i*

such

(8.2.13)

fo r  a l l  a v, 0.
V

The problems are now in the fora considered by Barrodalo end: Young ( 1SS6), 

except that in our formulation the parameters a era already non-negative ’  

(the f i r s t  stage o f Barrodalo end Young's algorithm reduces the r roW (., 

to contain just non-negative parameters). Barrodale and Young show that 

the problems can be reduced to linear programs as fo llow s. F0.v the L 

approximation problem put

G( ° i  t . )  = u. -
( 8 .2 .16)

where v± £  0, to  give the follow ing n equality constraints in non­

negative variabüe s,
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/ a. .a .. -  u. -s v, = f .  ( i  = 1, 2, . . . .  r.7 ./ J i.i ,1 X X X ' *

q+1

( e . 2 . 17 )

J=>

The problem is  then solved, by minimizing ^  j  (u. + v . )  subject to
i=1  1 1

(8 .2 .1?) e £  0 and in , v,̂  ^  0 (1 =.- i , 2, . . . ,  m) .

For the Lw approximation problem put u = Krf ” |e ( fL •. \ 

the 2m constraints

to obtain

q+1

j=1
f ( i  := 1 %  ̂> • * • j **0 •

q+ ‘
^  ‘ “a. . a . “  f . -  u £ 0 
Z  t x j j  x
j=1

(0 .2.18)

This gives the linctur programing problem of minimizing u subject to

(3 .2 .18 ), a^ . 0 and u ^ 0 .

E ffic ien t algorithms which exploit the specific  structure o f those 

formulations are given in Barrodale and Yeung ( 1966) .  Other versions of

these algorithms arc given by Barrodale (19o7) and Barrodale and P.obcrts

(1971).

8.3 A r epresentation of cubic splines

Y/c derive in  th is section an exp lic it  representation o f a cubic spi in e , 

which exhibits as parameters the values o f the second derivative of the 

spline at the knots.

A cubic spline s (x ) with s t r ic t ly  increasing knots x , x
O 1 '  V XI

additional exterior knots are introduced in the usual way) can be 

expressed (Theorem .9.1.2) as

N+3;— i
w  ci Hu (x ) (0.3.1)
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fc r  x m ja, o j - [ x o, ^ ] .  Vie intend to express the values o f

c. ( i  zz 2 . 3 , N+2) in terms o f those o f c , c and « "  (•; r> ^1 N+3 “ W - v), 1

■ • • i N)* Here s” denotes the values o f s" (x . ) .  Kcvt")
Nr: 3

»3  \ 2  * i W  CJ ■  ° * 1 ........... K)
i - i

(8 .3 .2 )

which, because o f the compact support property of tho B-spl.uioo* reduces 

to
J+3,

(8 .3 .3 )*! = /  , c.n; ' . (x ,.) ( j  = o, 1 , M)
1 i  'l*̂ * j

i=j+1

Tfe re-write equations (3.3*3) as fo llow s:

>
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I44(xn)if ¿ G N,% O ü43 °

T* ti ( \
J,42U 1;

TTM { ••
43 1 B4 ( ï i>

llIh3^x2̂ K4 (X2>

^ ( , o) 1

W4.,N~iU R~2  ̂ NJ,N+i

£ÍL  kW - 1 ̂  W4,N+1 ̂ XN-1 * I 4,r.H2^N-1 ■

N4,Nt '¡ 4 P  4 ,1 4  2 4 P

N

"N+1

N+2

1 -N," „  (x  )
4,N+5V ir

. I!>O

f.,!
N-2

s"
N-1

o it
ir

%-!■ 3

(O.3 .4 )

Tho use o f relations (4 . I . I ) ,  (3*4.2) and (3*2*9) gives

.-1 ^
N." . , 
4,0+1 {x?  ■ « * > 1  -  W  (3Cj* i  * V 4

h4 j <-3 (V  = é ( l 3 » 2  "  -  V . ) " 1

" { . * 2  <h> * -* 1 . },1  ( b >  -  K4 w  ( * , ) •
J

(8.3 .5 )

Insertion  o f the relations (8.3*5) in ( 8 .3 .4) anti the m ultiplication of 

row j-r1 ( j  = O, 1, . » *, N) by the factor -  ■g ( x . _  ̂ -  x . ) and putting
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-  (x s ’• x i z )  ‘ yie lds the system

Ac = Bg ,IV/V ^

where

ar:d

~ -  { ° 2 } cy  V 2 }

a i  v  *uo> sf> ^ 3 }  >

( 8 .3 .6)

(8-3.7)

( 8 .3 .8)

A is  the (N+1) ty (N i-l) symmetric trip le-d iagonal matrix with ele.rr.uts

kj+1 ’’ *cj+2 ( j  = 0» 1# N ).

(8-3.9)
a . , . = a . . . 
Oid+1 J+'iiJ ¿i+1 - •> h)

and B is  the (N+1) by(N+3) matrix whose only non-zero elements are

b11 “ k1 ' bN+'i,N+3 “ ^K+2;

"tl . t • rj1+1#0+2 ( J “ ° - 1 .............« •

(8.3.10)

Since A has a dominant main diagonal i t  is  positive defin ite  and of fu l l  

rardi. Hence

c = H g ,/v ^  M 7 (8.3.11)

whore II is  defined uniquely by

AH = B ./v /\. ^

The (N+1) by (N+3) matrix H can be computed

(8.3.12)

an an efficient and numerically
stable manner by forming the Cholesiy factoriza tion  

A = LDLT ,
(0.3.13)
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where L is  lower un it L i-d ia gon a l ana D i s  d iagonal, fo llow ed  by the 

appropriate forward- and back-substitu tions to  form the columns o f  H

froui the corresponding columns o f  £ . I t  fo llo w s  that

(3 - 0, 1, H).

N-i3

C j+2 ~  L___ j h j+1 , r  “ r
r=1

(8.3.14)

Time N+3

; ( x ) “  ci \ l ^  ' 2 _ i  Z L j  hi-*1 , r ej ' \ i ^ ; ' f °N + 3 \ ,N + 3 ^ ^  * ( 8>3 * 1 t )
1=2 r=1

So, r e c a l l in g  that = g^ and c ^  = g ^ j  ~o obtain

i N+2 -- N+2

* «  = M V x) hi - i , i v ( x ) f  +U
i=2

N+2

J
¿ L i  V ) / „
r-2  I i= ;

1 1
hi - 1 , r \ i ^  f

r N+2

V i+ % +3} 2 l.i  V i  ,N+3\i^x  ̂ + \ ,N +3^'V  *
1 i=2 j

J
(8.3.1 f>)

Thus, d e fin in g .

h , = 1 oi V+2,K+3 ~ 1 ’

ho,r+1 ~ -- 0 (r -  1, 2, , , , j  N+2) ,

(8 .3 .1 7 )

we have

N+3

¡ w  - ¿ l Z  sA (x'  5
r~1

(0.3.10)

where N+3<r—'~j

4 «  = 2 — 1 hi - l , r H4 iW
1- I

(8.3.19)

which i s  a rep resen tation  o f the cubic sp lin e  s (x )  in  terms o f  +h3 U , ‘ 

basis functions 0 ^ ( x )  ( r  = 1, 2, . N+3) .
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Tli fiomo provlous work 011 thia VroUrn  (Cox, 197. ) a d ifferen t approach 

^  USGdi ln whioh a rGPr essntatiou o f cubic splines in ter,,« o f a But 

o f blended cubic arcs was employed. The ,jt)i such arc ( j  = 1; 2, K)

applied fo r x .^  $ x £ x . and war. defined in terms o f the values of s (x ) 

are s ” (x ) ac x - x._^ and at x = iogather v.ith appropriate conditions 

to ensure the continuity o f . • ( * ) ,  the use of thia representation, which 

is  given in  ih lberg, Nilson and Welsh ( 19S7) ,  also gave risr to a m e t r i c  

positive  defin ite trip le-d iagonal system, but o f order N~1 rfi.t;:Cr than

K+1 * Th9 ma5jl reason fo r  usi»S  the B-spline approach here is  that it s  

generality enables i t  to be extended more read ily  than other approaches 

to  constrained spline-approximation problems of arbitrary degree. 

S p ec ifica lly , a spline 01’  order n, expressed in terms o f B-oplines, cur 

be represented in a form which exhibits as parameters the values of ita  

derivatives o f order n-2 at the knots. Thus approximating functions can 

be constructed which enable conditions cn particu lar derivatives to be 

imposed. For example, the use o f a quadratic spline enables conditions to 

be placed on the f i r s t  derivative (monotonicity); the use o f a qunrtic 

spline enables conditions to be placed on the th ird derivative. Another 

important reason fo r  using the B-spline basis re la tes to the evaluation 

o f the derivatives in the generalization of equations ( 8. 3 .',.) to tho 

o f splines of order n. In this generalization a l l  non-zero values o f 

havc to he GTaluatcd; i t  was established in Section 4 .3  

(Theorem 4-3.3) that these values can be formed in an xmcondi.tionally 

stable manner.

8 .4 Con strained, cubic-spline approx Inatlon

We now return to the problem of approximating discrete data sots in tho 

h. or L c,-, norms by cubic splines satisfy ing certain prescribed properties.
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Suppose a set of data points ( i . , f  ) ( i   ̂ 1, m) j.s ex-van,

together with s s tr ic t ly  increasing set o f knots xq, x |, x , such

that xo $ Min t . and ^  >  max t ± . Additional exterior knots ara added

in the usual way such that the complete set forms a standard knot set.

At the position o f each knot Xj ( j  = 0, 1, . . . ,  n ) the approximating 

spline s (x ) is  to be

(a ) lo ca lly  convex ( i e  to  possess a non-negative second d eriva tive ), 

( i i )  lo ca lly  concave ( i e  to possess a non-positive second deriva tive ),

01'

( i i i )  unrestricted.

In terms o f the representation ( 8 .3 . 18) and (8.3.19) and reca llin g  (8 .3 .8 ) 

th is  requirement is  equivalent to 

8 j +2 <>0}

( i i )  g j+2^ 0, 01>

( i i i )  £.j+p unrestricted.

But th is formulation is  just that discussed in Section 8.2, and hence can 

be solved, by the method described there.

In some problems, i t  may be important that the value o f the second 

derivative does not f a l l  below (or above) a prescribed c r it ic a l  value. 

In such cases conditions ( i )  and ( i i )  are replaced by g .  >  a o r  

"j+2 ^  dj+2 as aprr °Pr la te » where dj+g denotes the c r it ic a l  value.

Other methods fo r  finding constrained cubic-spline approacimations have, 

been proposed by a number o f authors including Rabinowits ( 1968) ,  Amos and 

S later (1969) and LaPata and Rosen (1?70 ). A l l  these methods introduce 

additional equations to describe the constraints, rather than use an 

ex p lic it  representation o f the spline which enables the constraints to  bo 

dealu v.^tn /ii ouaxly no extra cost, as we have suggested here. /... a
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consequence their methods appear to he somewhat in e ffic ie n t  as records 

both storage and computer time. Some o f these methods also appear to

suffer from a certain degree of ill-con d ition in g . Amos and Slater ( 1969) 

use the l g norm and solve the resulting quadratic program using the 

The! 1-Van da Panne procedure, a method which is  known to be very 

in e ffic ien t (Boot, 1964). Furthermore, they employ the representation

2
q

v - 'l
S(x) -  S1 + G2 X + S3 x~ + g4 x- + 2 J  B.¡(* -  x ._4)^

j-5
(Ó.4.1)

fo r  the spline, which is  a particu larly poorly-conditioned form fo r  

numerical purposes (Carasao. 1966) .  Rabin owitz ( 1968) also suggests the 

use o f th is ill-cond itioned  representation in the solution o f suoli 

problems in one 1 ^  norm. Lafata and Rosen ( i 973) use the L and L* j

norms end, as a basis fo r  s (x ), they employ B-splines, but consider only 

equally-spaced toots. Moreover they compute the required values o f the 

B-splinos from the unstable exp lic it formula ( 3 .2 .4 ) / rather than from 

the numerically stable recurrence re la tion  ( 3 .4 . 1 ) or ( 3 .4 .2) .  ►

The method we employ appears to comparo favourably with the above methods.

I t  resu lts in a re la t iv e ly  short computer code; fo r  either the L or the
1

norm, the complete procedure, including the code fo r  the solution of 

the linear program, and fo r the monitoring o f the growth factor (sea 

below), contains only about 2^0 A lgol statements.

I t  is  now becoming widely recognized that, because the Gauss-Jordan 

elimination process without a p ivo ta l strategy is  employed, many of the 

ex isting linear programming codes (including those o f Barrodalc and Young

( 19S6) ,  Barr .'dale ( 1967) and Barrodale and Roberts (1970 fo r-so lv i 

d iscrete linear and L w approximation problems) are potential l y  

unstable in  that severe error growth (which in  certain  cases could

JiC>

ramp
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-wio r.rae solui-ion) may ocour. It. is  to be expected, by analogy v.ith 

Gausaiaa eliiaiaation (ffilkinson, 19o$: 214; P.eid, 197'.), that a good 

incdoav.’.on c f ohe löse o f accuracy in  Buch an implemontation of‘ the 

Simplex method is  given by the gror/th of tho magnitudes o f the olamenta 

in the tableau {  }  • A  ränge c f  somo fifte e n  exumples, having fron

it to 100 doi/a p0-iti<y;>j  2 to 10  knots and knot spacing r^ t ' os* l ’roin 1 io 

2 0 , werc solved on an English E lectric  K D F $  C o m p u t e r . I n  eaoh oaae the 

"grov.th factor" g, definsd by

6 =
max

i ,  j,k
( 0 )

r j (8 .4 .2 )

*“  0OT,puteä- In *  i ;)U0 ta o to s  the value o f a a fter

itera tions o f the simplex method. The largest value o f g observed TO  

approximately 104 , indicating a loan o f about four decimal t i e « * ,  (out o f 

the .35 biMTjr, or about 12 decimal, « g o r e ,  available on KBFJ) in tho 

computation. In many oases tho value o f g „as lose than 10, indicating a 

lose o f at most one decimal d ig it ; in  some cases g „as unity, indicating 

essen tia lly  no error grovrth at a l l .  The s ite  o f g seemed to bo unrelated 

to m, N or tho knot spacing ra tio . This reasonably encouraging evidence, 

docs not ot course imply that „e can preclude tfco p o ss ib ility  that, in 

some applications, completely unreliable results m y be obtained. I t  is  

recommended therefore that the g r e th  factor be computed and examined 

before the results are accepted. An e ff ic ie n t  method fo r  computing the 

growth factor has bsen giren by Businger ( ¡971) .

In  recent years, numerically stable algorithms fo r  the simplex method 

based upon triangular decomposition (Bartels and Golub, 1969) and upon

*■ The knot spacing ratio  is  do:ofinod by ^  ( x . - x. ) /  *in
U c i h  J J-1-} ' UjiK - X-M



orthogonal recomposition (C all ana Murray, 1973) ,  have appeared, which 

avoid the d iff ic u lt ie s  associated with the p o ss ib ility  o f severe error 

growth. I t  is  hoped that future variants of the sp lin e -fitt in g  algorithms 

discussed here w i l l  incorporate versions o f one o f these stable staple* 

methods, ta ilored  to ta lc advantage o f the features or the approximation 

problem.

8.5 Numerical examples

*> pre3eat * »  e::!“ Ples " » < * ,  for the purpose o f concise presentation, ore 

small, but nevertheless illu s tra te  some o f the advantages o f constrained 

■ approximation. The norm was considered appropriate in  both cases. The 

resu lts were obtained using the KDF9 computer, which has a floating-poin t 

word containing 39 binary d ig its  in  the mantissa.

For each example we give f i r s t ly  an unconstrained approximation based on 

a prescribed set o f knots, and secondly an approximation, based on the 

same set o f knots, constrained to possess certain properties o f the 

underlying function. The growth factors and the mean absolute residuals

|s( t i ) “ f i  / m are also quoted.
£¿1
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Example 8.5-1

Data: Temperature distribution (Amos and S la te r , 1969) -  Table 8 5 1



3 0 6

iI1
!

t .1 if.1

1 0.25 17.0
2 0.50 15.2
3 O.75 13.8
4 1.25 12.2
5 1.75 11.0
6 2.25 10.1
7 2.75 9-4
8 3.25 8.6
5 6.25 6.1

10 12.25 3.5

Table 8.5.1 Temperature■distribution data 

Property required: Convexity.

In terior knots. ihose chosen by Acios ci.nd S later, v iz x = 1 6 2 5  6 0

Approximation 1: Unconstrained -  Tables 8.5.2 and 8.5.3 and Fig 6.6. 1 . 

Ur owth fact or: 104. I

Comment: The approximation is  unacceptable since s (x ) is  concave fo r

8 . 0 8  $ x ^ 1 2 .2 5  (Table 8.5.2 anu Fig 8 .5 .1) .

j X .
J

0 . 0 V .

0 0.25 8.53235
1 1.60 17.0000 0.62750
2 2.50 13.3075 0.34528
3 6 . 0 0 11.4728 0.31493
4 1 2 .2 5 8.1373 -0.63153
5 4.6560
6 6.4586
'71 3.5000

Table 8.5-2 B-spline coeffic ien ts  and values o f the second derivative 

at the knots i  or the unconstrained splino approximation 

to the temperature distribution data o f Example 8.5 . 1 .



3 0 7

i s ( t . )X s ( t . )  - f .  x 1

1 17.0000 0.0000
2 15.2000 0.0000

3 13.6418 0.0418

4 12.0847 -0.1153

5 11.0000 0.0000
6 10.1000 0.0000
7 9-3067 -0.0933

8 8.6000 0.0000

9 6.1000 0.0000
10 3.5000 0.0000

Mean absolute residual = 0.0250

Table 8 .5 * 3  Unconstrained spline approximation to the temperature 

distribution data o f Example 8.5 . 1 .

I
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Fiq 8.5.1 Temperature distribution : unconstrained spline
approx i mati on

F ig Temperature d i etr i but i on convex sp l i ne approxi mat i on
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Approximation 2: Convexity constraint at each knot -• Tables 8.5.4 and

8.5*5 and P ig  8.5*2.

G-r OT.’th fact or: 12.5.

Comment: The constrained spline has a. mean absolute residual which is

about 10/3 greater than that of the unconstrained spline.

■v-i: . c . s
J ,1 J

0 0.25 8.74185

1 1.60 17*0000 0.42650

2 2.50 13.2971 0.50328

3 6.00 11.5513 0.07516

4 ■12.25 8.0052 0.00000

5 5.4263

6 4.2525

7 3.5000

8. 5-4 B- spline cce ffic ien ts  and values of the seco

at the knot s fo r  the constrained spline appr

the temperature distribution data o f Example

i s ( t . )  - f .  v j/ 1

1 17.0000 0.0000
0 15.2000 0.0000

3 13.8501 0.0501

4- 12.-1158 -0.0342

5 11.0305 0.0305

6 10.1000 0.0000

7 9.2905 -0.1095

8 8.6000 0.0000

9 6.1000 0.0000

10 3.5000 0.0000

Mean absolut■e residual = 0.0274

3.5 .5 Constrained spline approxiiaat ion to  the tempt

¿ is tr ib u tiori data o f Example 8.5.1.
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Example 8.5.-

Data: Stress distribution fo r ax ia lly  loaded aluminium strut". (.Br:ii:i

Standard Code o f Practice CP118, 1969) -  Table 8.5 .6.
on

Property required: S-shaped ( i s  exactly one in flex ion  po in t).

In terio r knots: x  ̂ 1.2, 1.5, 2.1, 2 .4 .

Awr«dmati® I: Unconstrained -  Tables 8.5.7 end 8.5.3 and K g  8.5.3. 

Hrorfch factor: 75.1 .

-Comnent: The approbation  is  unacceptable since » ( * )  „as three points

or i» f ln * io n (T a b le  8.5.7 « d  M g 8 .5 .3 ). The spurious osoiUc'.ions can 

be seen cleanly by sighting M g 8.5.3 In the plane o f the paper and 

•looking along the curve.



Û J
c .
J

----------

s .»
J

0 1 .05 190.403

1 1.2 19-9000 121.997

2 1.5 17.5715 -7-858

3 2.1 12.7280 5.439

4 2.4 1 1 .0338 - 69.156
5 2.588 7.6831 - 66.965
6 5.5328
7 1 .8235

8 0.0000

Table 8.5.7 B-spline coeffic ien ts  and vainno o f the second

derivative at the knots fo r the unconstrained spline 

approximation to the stress distribution data of 

Example 8.5-2.

i s ( t . ) s ( t . )  - f .

1 I 9.9OOO 0.0000
2 17.8000 0.0000

3 14.8000 0.0000

4 13.0238 0.0238

5 12 .0348 - 0.0652
6 11.4000 0.0000
7 10.7625 0.0625
8 10.0685 0.0685

9 9.3403 - 0.0597
10 8.6000 0.0000
11 7.8698 - 0.0302
12 7.1718 0.0718

13 6.4830 0.0830

14 5.6000 0,0000

15 4.2741 - 0.0259
16 2.3000 o.ocoo
17 o.ocoo. o.ocoo

Mean absolute residual  ̂ 0.0289

8.5-8 Unconstrained spline approximation to  the

disti ibution data o f Example 8.5 2.
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Fig 8 .5 .3  Stress distribution s unconstrained spline approximation

I

Fig 8.5.A Stress distrioution : o shaped spline approximation
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Approximation 2: Convexity constraints at x *  1.05, 1.2, 1 .5 ; concavity 

constraints at x = 2.1, 2.4, 2.588 -  Tables 8.5.9 and 0.5.10 and 

P ig 8.5.4.

Gr ovrfch fact or: 14 .0.

Comments: The mean absolute residual of 0.0499 fo r  the constrained

spline is  about 70$ greater than the value 0.028? o f the unconstrained 

spline.

I f  such a value were considered unacceptably large, a constrained 

approximation with residuals comparable to those o f the above unconstrained 

approximation can be obtained by using more knots. Por exomple, fo r the 

in te r io r  toots 1 . 2, 1.35, 1.5, 2 . 1 , 2.25 and 2 .4, the mean absolute 

residual o f the constrained spline is  0.0208. The unconstrained spline 

fo r  these toots has a s ligh tly  better mean absolute residual of 0.0196, 

but again v io la tes the requirement that the approximation is  S-shapcd.

j X ,
j

c
J s ."0

0 1.05 237.985
1 1.2 19.9000 101.090
2 1.5 17.5214 0.000
3 2.1 13.0530 - 1.870
4 2.4 10.6839 - 51.194
5

COCOLP,
c\i 7.9649 - 111.802

6 5.1960

7 1.9201
8

- .1 '■ ■
0.0000

Table 8.5.9 B-spline coeffic ien ts  and values o f the second 

derivative at the knots fo r  the constrained spline

approximation to the stress distribution data of

Example 8.5 .o•



3 1 4

i s ( t . ) s ( t . )  -  f .  :i. x

1 1 9 .9 0 0 0 0 .0 0 0 0

2 1 7 .8 0 0 0 o.ocoo
3 1 4 .9 3 1 2 0 .1 3 1 2

4 13 .176 0 0.1760

5 1 2 .1 0 0 0 o.ocoo .
6 1 1 .36 3 6 ••0.0564

7 1 0 .6 8 3 4 -0 .0 16 6

8 1 0 .0 0 0 0 0.0000
9 9.3104 -0.0896

10 8 .6 114 0 .0 114

11 7.9000 o.cooo

12 7 .17 3 0 0.0730

13 6.4004 0.0004

14 5.4447 -0 .1 5 3 3

15 4  * 1413 -0 .15 8 5

16 2.3000 0 .0 0 0 0

17 0.00c0 0.0000

Kean absolute residual = 0.0499

Tabls 8.5.10 Constrained spline approba tion  to the stress 

d isti’ibution data or Example 8.5 .2 .

D iscrete linear approximation theory informs us (R ice, 1984) that, 

in  the unconstrained case, the best ^  approximation interpolates (a t 

lea s t) N+3 o f the data points. V7e see that in. the f i r s t  example lU t. 

and the number o f interpolated points is  7, ftS predicted by the theory. 

In  the constrained case only 6 data points are interpolated, but one 

value c f s " . takes the value zero. In  other words an interpolation 

condition has been traded fo r  an active constraint.

Similar remarks apply to  the second example in  which N=5. The number o f 

interpolated p o i ŝ is  8 in  the unconstrained case, whereas in the

constrained case the number o f interpolated nointc ^  -> „f  poruns n.s t and one value o f

a  If f r . K p c
the value sero.
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CHAPTER 9

'¿HE IKPOSITIOK OP BODNPNBY CONDITIONS MID OTHra EQ1MIJTT CONSil’./aifS 

I t  is  sometimes necessary Sr, problems o f spline approximation to force 

the nth-order spline » ( * )  to  have the property that at the boundaries 

o f, or within, the in terval o f in terest, s (x ) or some o f i t s  derivatives 

are to  tako prescribed values. Por instance, in  spline interpolation i t  

is  often required that » ( * )  sa tis fies  6iven derivative conditions at the 

houndaries; in least-squares spline approximation i t  is  sometimes required 

that either proscribed boundary conditions, as in the interpolation  

problem, are to bo sa t is fie s , or that » ( , )  and possibly i t s  derivatives 

are to  take given values at certain in te rio r points.

Because o f the ir re la tive  sim plicity, We treat boundary conditions 

separately from the more general conditions. Thus, in Section 9.1 we 

discuss the imposition o f a single derivative boundary condition. In 

Section 9.2 we treat the imposition o f a set o f derivative boundary 

conditions. Both of these types o f conditions are incorporated by a 

simple change o f basis. In Section 9-3 we consider simple point constraints 

and in  Section 9-4 the most general type o f linear equality point 

constraint, f in a lly ,  in Section 9.5 we outline algorithms fo r  least- 

squares problems with linear constraints, and indicate how these algorithms 

can bo applied to the general constrained spline approximation problem.

9-1 I l i £ , ^ . o ^ i o n ^ a ii-single der iv a t iv o

Let the nth-order spline s(x ) be expressed in it s  B-spline form ( 3.1 10) 

where the knots upon which s (x ) and the B-splines are defined fori, a

standard knot set with coincident end knots. Suppose that in an interpolation

or least-squares approximation problem i t  is  reauired -f-w- t \
HUiUt,a wiai/ ¿.(x; or one o f

i t s  derivatives is  to take a prescribed value at one or other o f the -mge 

end-points a and b. In the ease o f interpolation the end condition would
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nearly always involve a derivative, since s(x ) is  usually already 

required to take specific function values at a and b; moreover, in order 

that the number o f free linear parameters o f s (x ) matches the to ta l 

number o f conditions to be sa tis fied , the end condition would be traded 

fo r  a conventional interpolation condition. For least-squares spline 

approximations, however, the end condition may involve either s (x ) or i t s  

derivatives; further, i t  w il l  not usually be appropriate or necessary to 

trade the end condition for one of the data points.

sinceWe shall treat solely a condition at the left-hand end-point x-_-n, 

the right-hand end-point x=b is  handled analogously.

Let r  (0 .< r < n) and the value of £( r ' (a ) be prescribed. I t  is  required 

that s(x ) sa tis fy

3( r >(a) = f W ( a ) .

17e shall show that condition (9 .1 .1 ) can be enforced by a simple 

modification o f tho data and of the basis functions.

We examine f i r s t  the case r  = 1 . From (5 .1 .10 ), (9 .1 .1 ) and using 

Theorem 4.2,1 we obtain

c1Ni i (a ) + C2Nn2<a) = f ‘ ( a) *

(9.1 .1)

(9 .1 .2 )

But from (4 .2 .1 ), (a ) / 0. Hence, by eliminating ĉ  between (5.1.10)

and ( 9- 1 .2) and setting q = W+n-1 , we obtain 

' f ' ( a ) - c  N' (a )
--------- I  IV I V *  ^  •  -  ' T  /  '  .  .

(9 .1 .3 )
s (x )

N ».(a ) n1 v '
+ Z 1  v V * ) .

1 - 2  '

a simple re-arrangement o f which yields

»(* ) = » ( * )  -
f ' ( a )  „  . \ -
—  / T Nn 1 ^  = . ( x) ,
1 ^ 1  (a ) n 1 i = 2  1  nx (9 .1 .4 )

where



3 1 7

Kn2W  •
N;?(a )

- ---------  N (x )
H V (a ) n1

0?11•H

.(x ) = J
nx

in
( 9 .1 .5 )

N .(x ) nx ' ( *̂* ~ y hr 9 *, * • 5 q) .
i.

But, by d ifferen tia ting (3*6.1) and using (4 .2 .1 ), ?p f (a ) + N 'v(a ) .. 0. 

Hence (9*1*5) sim plifies to

f Bnl(x) * V x) ( 3 = 2)

I " n iW  t1 = ■• ■ » l )  •

(9*1.6)

Consequently, i f  appropriate values o f the expression Nn1 (x )

are subtracted from the data to be approximated, the use of the modified 

representation s(x) enables, in the case r=1 , the condition (9 , 1 . 1 ) to be 

incorporated automatically. Note that, since Nn1 (x) = 0 for x ^ x.j, the 

tei-m 1 (a)/N’ ^(a) j  N^ (x) involves modii’ication only of data values in 

the interval a x < x̂  * Also observe that the function Nj 0 (x) has the 

same support as N 2(x) end is non-negative. Moreover, Njj2 (x) is formed 

stably, since it  is simply the sum of two non-negative quantities, each 

of which can be computed stably (Section 3 *9 ) .

We now consider the generalization o f the above approach to the enforcement 

o f the boundary condition (9*1 -1 ) fo r  a general value of r (0  £ r  < n ). 

Proceeding along lines similar to the above we obtain the modified

r e pr e s e nt at i  on

' M Nn1W  -  2  C i V * )  ,
i -2

( 9 *1 .7 )

where

” n i(x ) * 4

N *(x )

N .(x ) nxv '

N ^ ( a )nx v * > T  f
n1 x 1

(1 = 2 , 3 » •••> r+l)

( i  = r+2 , r+3 , . . . »  <])•

(9 .1 .8 )



c

318

Uufortunately, no longer do a l l  the basis function;-, . (x ) have the

property that they are formed as positive linear- combinations o f non-

negative quantities, and hence there is  no guarantee that the N . (x )
nj. '

can be computed with small re la tive  errors. However, their values w i l l  

certa in ly possess small absolute errors compared with unity, the maximum 

possible value o f Nn i( x) • In order to  obtain basis functions which have 

small re la tive  errors we proceed as follows.

rv

Consider the representation (9 .1 .7 ) with the N ^ x )  defined by

N ^ ( a )
Nni(*) -----Nn (*)

' .(a ) n' 1“ !n,x-1' '

H„ i «  = {

N .(x ) nxv '

( i  = 2 , 3 , r+ 1 )

( i  = r+2 , r+3 , . . . ,  q) ,

(9.1.9)

rather than by (9 .1 .8 ). As with the representation (9 .1 .7 ) and ( 9. 1 .8) 

i t  is  easily  v e r ified  that ?<r >(a) »  0 and j W ( , )  .  „5 required.

Moreover, both representations enjoy the property that fo r  i  -  ? ,

the basis functions Nn.(x ) have the same support as the functions N . ( * ) .  

However, the representation (9.1 .7) and ( 9.1.9) has the d istinct -advantage 

that the factors ^ ( a J A ^ ^ a )  are a l l  negative, by virtue o f (4 .2 . 1 ) ,  

and hence that the Nn.(x ) are formed as positive linear combinations o f 

non-negative quantities, with the consequence that the computed values 

have small re la t iv e  errors.

9.2 Imposition  o f a set of boundary condi tions

In the previous section a method was given fo r  forcing the nth-ordor spline 

s (x ) to have the property that s^r \ a) takes a prescribed value f ^ ( a ) .

We now consider the case where, fo r some k (0  £ k < n ) , the values of 

s( r ) (a )  are to take prescribed values f ^ ( a )  fo r  r  = 0, 1 , k. Thus

the conditions
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c .’/ r \ a )  = f ^ ( a )  
i  m  ' '

i =1
( 9 . 2 . 1 )

aro to  be sa tis fied  fo r  r  = 0, 1, . . . ,  k. Because o f (4 .2 .1 ), conditions

( 9.2 . 1 )  reduce to

r+1

T .
i =1

r(r ) ic ,N ^ .'(a ) 
a ni f ( r ) (a ) (r  -  0, 1 , . . . ,  k ) , (9.2 .2)

ie  to

Lc ( o )  _= a, (9.2.3)

where L is  the lower-triangular matrix o f order k+1 with non-zero elements

l i  . =NCr 1>(a) ,  =, { „  c2, . . . .  ok+1j  and d •_ f f ( a ) ,  f ‘ (a ) ,  . . . ,

' f ^ :) ( a ) l  . The values o f the B-spline derivatives required in L aro

computed from Algorithm 4.': .1 in. an unconditionally stable manner (Theorem

4 .2 .3 ). The triangular system possesses a unique solution since its
/ \

diagonal elements N ^ +1 (a ) ( r  = 0, 1 , . . . ,  k) are a l l  non-zero, by virtue 

of (4 .2 .1 ). The system is  easily  solved by the usual process o f forward

substitution.

Having obtained the values o f c ,, crj. . . . ,  cVj  ̂> we write

k+1

V  2 ’ k+1

q

~s(x) = . (x )  - " 2 2  . ^ ( x )  -  2 ]  • (9 .2 .4 )
i =1 i-k +2

Then, fo r  each data abscissa x we subtract from the corresponding ordinate 
k+1

the value o f S  CjN (x ) • The modified data is  then approximated by 
i =1

s (x ) . Note that only data in  the in terva l a £ x <  is  a ffected  by the

subtraction. Boundary conditions at x = b are treated in a sim ilar 

fashion.

The method o f th is section has been used successfully in conjunction with



a variant o f Algorithm 7-3.1 in a number o f applications. In particu lar, i t  

has been applied to  the f i t t in g  o f various sets o f data representative o f 

modes o f vibration o f a clamped plate where, as a consequence o f the clamping, 

values o f 3^  (x ) fo r r  = 0, 1 , 2 were prescribed at each end of the data 

range.

9.3 Simple  point constraints

In some spline approximation problems i t  is  necessary to impose restrictions 

on s (x ) or i t s  derivatives at various points in the range o f in terest. We 

have already treated cases where a single boundary constraint or a cortain 

set o f boundary constraints is  to be imposed. Y/e now consider more general 

constraints. We deal in th is section with simple point constr a ints, io 

constraints involving a single value' o f the function or one o f i t s  derivatives 

and in  Section 9.A with compound point constraints, which may involve the 

function value and the values o f a number o f derivatives.

Suppose bW ( z ) is  to take the value f ^ ( t o) at x. = t Q. Hero r ( 0 i r < n ) ,

t  ( a ^ t  £ b) and f^  ' ( t  ) are prescribed. Thus ive require s (x ) to  sa tis fy  
o'’ o" 0 .

=( r ) ( t 0) “ 2 3  ° i nm  <*„> = ■
i=1

\ _ -p(r ) { (9 .3 .1 )

Relation (9-3.1) is  evidently a linear equality in the B-spline coe ffic ien ts  

V  Jn fact> becauss the compact support o f the B-splines, at most n of 

the values o f the are non-zero. Moreover, ( 9.3.1) has precisely

the same structure as the usual interpolation condition or "observational

equation".

9.4 Compound point constraints

We now consider a more general form of linear equality constraint which 

v/e term a compound point constraint. Let L be a linear operator o f the

form
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n-1

l - Z l  • /
r =0 (9 .4 .1 )

v/hero Dr denotes r - fo ld  d ifferen tia tion  with respect to x , and the e are

prescribed constants, not a l l  of which are zero. Let g be a given number

(possib ly z e ro ). I t  is  required that at a proscribed value o f x i sav
> 0 jr»

Ls(x ) is  to  take the value g, ie

r )
l  7  , <■.»„. (=0 >/--- 1 " i  n i ' " 7 l ~  g.

J x=t

Thus

q
V '1 C < LN .(x ) 
¿ i - i  i  I  n a . w = C,

x=t

(9 .4 .2 )

(9 .4 .3 )

f  n- 1  

2
0 ) )  r  m  v o M

h 0 J

is  a linear equality

(9 .4 .4 )

with the same structure as a re lation  of the f

q
c.N . ( t  ) = g .X  j l  ni^ o/ °

i =1

: icionts c.
x

onn

(9./,.5)

j n imposing constraints o f the form (9 .3 .1 ) and ( 9 .4 .4 ) i t  is  necessary 

to  evaluate the appropriate values and derivatives o f Nn i( x ) . Such 

evaluations can be accomplished using Algorithms 3 . 1 2 . 2  and 4*4.1.

Y.’hen used in least-squares data f i t t in g  by splines those constraints mi 

be incorporated by the methods o f Section 9*5.
¡nay

9 . 5  S ta b j^ th o d s  fe r  the imposition o f general linear

I t  remains to discuss methods fo r  imposing constraints o f the form discussed 

in  Sections 9 o  ane. 9-4. In the case o f in terpolation , by ordering the 

in terpolation  conditions and constraints (assumed consistent) appropriately



the resu lting linear system, which is  stepped-banlcd, can be solved by 

Algorithm 2.12.1 or Algorithm 2 .i 3-i • In the case o f least-squares 

approximation i t  is  necessary to  solve a problem, o f the form

min
x

subject to the equality constraints (assumed consistent)

(9 .5 .1 )

Cx = g, ,~~ ~ (9 .5 .2 )

where A is  an m by n matrix o f (possibly unknown) rank k ( <C n) and C is  a 

p by n matrix o f (again possibly unknown) rank 1 ( P) . The notation used 

in  th is section is  chosen to be sim ilar to that o f Chapter 2 .

We f i r s t  mention two numerically stable methods fo r  solving the above 

problem. One of these methods is  due to Golub (1965) and applies only 

in  the case where both A and C have maximum rank. However, th is mothod 

can be made very e ff ic ie n t  fo r  stepped-banded A and C. The other method 

is  given by Hayes and Ralliday ( 1974) ^<3 allows either or both o f A and C
f-*

to be rank defic ien t. However, because o f the need to carry out column 

interchanges in  their method, l i t t l e  or no advantage can bo token o f the 

structure o f A and C. F ina lly , we present an enhancement o f Golub's method 

that allows cases of rank deficiency to be treated in  a stable manner, 

whilst taking advantage o f structure such as stepped-bendedness in  A and C

Golub’ s method is  based upon the use c f Lagrange m ultipliers X to express 

the solution o f (9 .5 .1 ) and ( 9-5 .2) as that o f the "augmented normal 

equations"

(9.5.3)

Householder transformations are applied to  solve ( 5.5 . 3) ,  vdthout o f course

A^A Tc V
a Axb

r-» A* cv /V A#

c 0

-------------J s



323

forming these equations e x p lic it ly  and incurring the possible l o r . s  of 

information associated with such a formation ( c f  Section 2.3).  i n Golub’ -, 

description, column interchanges are carried out but, as v/o indicated in 

Chapter 2 , such interchanges are unnecessary. A fter setting >- !
rv* rs* iv '

where u denotes the unconstrained solution (obtained in practice v ia  the 

«R decomposition o f A) satisfying A n  = ATb, i t  is  seen from ( 0 .3 . 3 ) that 

?•, the "correction tern*', sa tis fies

T TA Afi -i- C \  = 0fV r/M ,v r# (9 .5 .4 )

ana

C(u+6) = g. ( 9 . 5 . 5 )

Eliminating 6 from (9.5-4) and (9.515) y ie lds

rp —i  T
C(A A) C l  = Cu - g
~ ~ ‘v ~~ ~ (9 .5 .6 )

as an equation defining the Lagrange m ultipliers. Having solved (9 .5 .6 ) 

fo r  X, 6 is  found from (9 .5 .4 ) and then x = jj + f . ln  actual computation 

advantage is  taken o f the factorisation  A .  Jg to sim plify the process.

In particu lar, (S'.5 .6) reduces to

VTVh = Cu -  g, ,"  ~~ ~~ (9 .5 .7 )

where V is  given by the triangular system R^V = CT. Equation ( 9.5 .7) i s 

solved by carrying out an orthogonal decomposition o f V. Final!Iv f, 

formed from (9-5.4) by taking further advantage o f the already-factorised A.

Of course, plane rotations can be used in  place o f Householder transformations. 

Since the bulk o f the work (assuming the usual case in which p is  small 

compared with m) is  involved in the factorisation  o f A, and sdr.ee advantage 

can be token o f the structure of A during i t s  QR decomposition, the complete 

process can be carried out in l i t t l e  mere time than that taken by the 

computation o f the unconstrained solution u.•v



Tb» method o f ¡¡ayos and Halliday provides essentia lly  a „cans of 

elim inating in  a stable manner 1  o f the n unknowns and thus reducing 

tho system to  one of order u-1 , rather than having to  treat one o f order 

n+p as in  (9 .0 -3 ). S pec ifica lly , their approach, which works with an 

orthogonal transformation y, say, o f tl.e solution vector, f i r s t  reduces 

the constraint equation, to a triangular system o f order 1 , which is  then 

solved fo r  the f i r s t  1 components o f j .  They then show that the remaining 

n- 1  components o f y  can be found by solving an unconstrained least-squares 

problem, f in a l ly ,  2  is  recovered from on orthogonal transformation o f y .

We have described their approach only in very broad outline fo r two reasons. 

F ir s t ly ,  i t  is  given in  considerable detail, in their paper and, secondly, 

fo r  s ta b ility , i t  is  crucial to carry out column interchanges in thoir 

method; consequently, we can sec no way of adapting thoir algorithm to 

solving stepped-banded systems e ff ic ie n t ly  without destroying structure.

Tie now propose an adaptation o f Golub's method that permits rank deficiency

in  A or C or both and, moreover, allows considerable advantage to bo token 

o f the structure o f these matrices.

F ir s t ly ,  we consider the constraint equations. Frequently, in practical 

spline-approximation problems, 0 w i l l  be o f fu l l  rank. However, whether 

or not th is  is  true, we recommend the fo llow ing approach. Carry out an 

orthogonal «composition o fC T using, say, plane rotations. The resulting 

upper-trapezoidal matrix, U, say, w i l l  have precisely p- 1  sero diagonal 

elements (in  the absence of errors in  the elements o f C and in  tho arithmetic 

operations or. C ). In practico, p- 1  diagonal elements w i l l  be "small" 

(r e la t iv e  to some norm of C), and a suitable threshold value should be 

selected to decide which diagonal elements arc to  bo regarded as zero. By 

deleting the corresponding p-1 columns o f CT, ( V i  roT.„ n,. r\~ lows oi c ;,  the constraint

equations are reduced to a to ta l o f .1 equations whose co e ffic ien t matrix-
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is  o f fu l l  rank. Henceforth, we shall assume that the constraint 

equations have, i f  necessary, been so treated and le t  ( 9.5 .2) ,  with p- 1  

replacing p, denote the reduced system.

I t  remains to  treat the rank deficiency, i f  any, in A. We observe that 

the solution to (9*5<l) and ( 9.5 .2) is  iden tica l to that o f

min
x

A'x -  b’ (9 .5 .0 )

subject to  (9.5*2), vilere

5-9)

and

(9 .5 *10)

In the c m .  o f stepped-bamded A and C i t  1 ,  desirable to  j l e a v e  the 

nows o f (0 | g) with those o f (A | b) so that the resu lting system is

sim ilarly  stepped banded. I t  is  advisable, i f  necessary, to introduce 

suitable scaling factors so that the rows o f A' have norms of sim ilar

magnitude. Such a scaling is  particu larly appropriate i f ,  for instance, 

A is  a matrix o f B-spiane values and C contains values o f B-spl-ine 

derivatives (perhaps o f various orders).

I t  should now be apparent that i f  A' is  of rank n, Golub’ s method may be 

applied immediately to the solution c f (9.5*8) and (9 .5 .2 ). I f  A’ is
r<j»

rank defic ien t we recommend that, a fter having computed the QR factors o f 

A’ , elements of the solution vector corresponding to columns o f A'

containing "amall" diagonal elements be made zero by using the "resolving 

constraint" concept due to  Gentleman (1973). The resolving constraint is  

treated as an additional row o f (A- | g ' )  and consists c f  the row vector 

(0 . .. 010 . . .  0 [ 0) twhere the non-zero element l ie s  in the column



containing ohe diagonal clement to be regarded as zero. By rotating th ?'• 

row into the current triangular- factor (R I G), the rank o f m •;» 

increased by one and the residual sum o f squares is  unaltered. A l l  such 

diagonal elements are so treated. (This method o f treating rank 

deficiency is  also of considerable use in unconstrained.problems).

A p ilo t  computer program based upon the above ideas has been constructed 

and tested on cases containing rank deficiency in C but not A in  A but ' 

noi C, and in both A and C. Cases in which A- was ami m s not rank defic ien t 

were also tested. The results achieved to date imply that the process 

appears to function extremely sa tis fa c to rily .

I t  should be noted that the tests fo r  zero diagonal elements are not 

in fa l l ib le  since examples can be constructed ( j  II Wilkinson, private 

communication) fo r  which a matrix is  close to  being rank deficien t but 

fo r  which the resulting diagonal elements in the triangular or trapezoidal 

factor are in no sense small even i f  arithmetic is  carried out exactly. 

However, such examples are somewhat a r t i f ic a l  and in practice are moot 

un likely to arise. In cases o f doubt the singular value decomposition 

(Section 2.15) should be employed.
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CHAPTER 1C

MULTIAARIATE SPLINES

In th is chapter we consider the extension to higher dimensions of the 

methods fo r one-dimensional interpolation and least-squares approximation 

by splines discussed in Chapters 6 and 7 . In particu lar, we examine 

problems in  two independent variables, a natural (but notationally complex) 

extension o f which enables higher-dimensional problems to bo treated.

P ir s t ly ,  wo consider in  Sections 10.1 and 10.2 the interpolation fund 

least-squares approximation to data given at a l l  the vertices o f a f in ite  

rectangular mesh by a tensor product o f general univariate functions.

This treatment is  then specialized in  Section 10.3 to  tho case where the 

univariate functions are B-splines. In Section 10.4 the important problem 

o f least-squares spline approximation to arb itrarily-p laced b ivariate 

data is  considered. The imposition o f constraints is  discussed b r ie fly  

in  Section 10.3- F ina lly , in Section 10,6, the evaluation o f a 

m ultivariate spline from i t s  B-r.pli.no representation is  examined.

10.1 I nterpolation o f data on a rectangular mesh by a to rsor product 

c f univariate functions

Let n n

= Z l  Z 2 ci j % (x b j ( y)
i —1 1=1

(10.1.1)

denote the space o f functions obtained by taking the tensor product o f 

the 0\iO linecj xy indepenaent set;:; o f basis functions

tr (y\ o.-L >/ ( i  - 1 , 2 , n ) x ' ho(y ) ( j  = 1 , 2, n ).
y '

( 1 0 . 1 .2 )

Suppose data values z ^  are prescribed at a l l  the vertices

rectangular mesh, defined by the linos y - t (vr '  ”

of the 

nx ) and
A 9 1 7 ** i
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y = u (s  = 1 , 2, . . ' j  n ) .J s y

ïho problem is  to determine the coe ffic ien ts  c . , in ( 1O .I.1 ) £Uch tliat
n. j

f ( x , y )  interpolates the given data values, ie  to compute values o f c
idwhich sa tis fy  the n n equations

J x y

rs

nx n

1^tr ,us) = Z _ i  2 Ü  ° i j® i ( tr ) hj ( u3)
i=1 d=1

(r= 1 , 2, . . . .  n ; s = 1 , 2 . «  \X ' 1 }  f  • • • ;• H J .
»y ( « 1. 1 .3)

Ihe system (10 .1 .3 ), once formed, could bo solved d irec tly , since i t  in 

*  squar0 Sy£to!” 0f lin0SJ- “ iee-broic equations o f order nyn . por ortosp].., 

Caussicn elimination with partia l p ivoting could be used, in which eu o  

the solution would be obtained in about l „ „ s operations. However,

with such an approach no advantage, apart perhaps in the formation o f the 

system, :l s  taken o f the tensor-product representation o f the approximating 

function f (x , y ) .  fo r  instance, fo r  a problem o f modest size an which

nx = ny  - ttl3C'ut 2 X 10 lons operations are required. A second approach 

is  therefore normally used (see eg G rev ille , 1961) and discussed b r ie f ly

here xn which fu l l  advantage is  taken o f the tensor-product form, with the 

consequence that only about (V »y ) */3 long operations arc ncccssai-y. por

the case n = n -  30 th is number is  about 7 X IfA  Tn +v
x y ' A 1U • In the case o f B-spline

basis functions, further economies are achieved (Section 10.3)

The system (10.1.3) may be expressed in matrix form as 

GCHT = Z
( 10. 1 ./,)

or, equivalently,

rp rn rn
HC G = Z ,

( 10. 1 .5)

wher



3 2 9

G is  the Jiv by nv matrix with elements , = g .(•,• )
j  n.1 J

II is  the n by n matrix with elements h. . = 
~ v  v 1 J

«and

C is  the n by n matrix of elements c. .
~ x y  a,]

Z is  the n by n matrix o f elements z
x y  i j

So,defining
T

E = CH ,

the matrix E can be found by solving

( 10.1 .6)

&E = 7, .
c*

Then 0 can be obtained by solving

T T H(T -  E

(10.1.7)

(10. 1 .8)

Equations ( 10.1.7) involve on ^  by ^  matrix with ny rieht-hm d sides, 

the solution o f which using Gaussian elimination with p a rtia l pivoting 

takes about y>-x long operations fo r  the decomposition plus about n2n 

long operations fo r  the solution of the resu lting triangular systems! 

Equations (10.1.8) involve an ny by ny  matrix with right-hand sides, 

the solution o f which requires about + nxn2 long operations. Thus the 

to ta l amount o f work involved in the solutions o f ( 10. 1 .7 ) and (lu  1 ft) ; t. 

about jnx + nyny + \n y  -4 y j  B 3(^ + 1^.)3 long operations. From the 

symmetry o f th is result i t  is  immaterial from the point o f view o f 

computational e ffo r t  whether we treat the system ( 10. 1 J ,), os we have done 

here, or the system ( 10.1 .5) .

Equations (10.1.7) and (,0 .1 .3 ) she« that the problem degenerates in to two 

sub-problems, each of which is  essen tia lly  a set of univariate interpolation  

problems, and may be interpreted as fo llow s. Along each mesh lin e  y = u
o

( s — 1 , 2 , « . ny ) decox,.ane thf.. coe ffic ien ts  © ( r  = 1 , f  n ) o ■

the function ' j r -  & g (x ) which interpolates the data ( t  z \/.—j * - i’ # r s '
T- I
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(r -  1 , ¿ } n . ) . Then Tor each value of r -  1 ? ,, , .
'* '- i determine

the coefficient, ors (s = 1, 2, n ) of the function 3 '  c h ( v)
J /  . F3 8 '* '
, S—1

•which interpolates the data (u 5 e W s  -  -t 9 \' s i rs' ' > '-j • • • .* n ,J •

10*" .aPPr0Xlr-n‘1 yggjg... ata on a roctammlin py n

tensor product of univariate fYmivH/nng

We treat in this section the extension of the interpolation problem

considered in Section 1 0 .1  to the case where the data values z ere
rs

prescribed at all the vertices of the rectangular mesh defined by the 

lines x -  t (r „ 1j 2, ¡r. ) and v = u fs ~ i  r> \

to be approximated in the least-sguares sense by a function of the form

( 1 0 . 1 . 1) .  Hero mx >  nx and roy >  ny and it  is required to determine the 

coefficients c±J in (10.1.1) such that the residual sum of squares

m m __

X X {f(Vus> d o .a . 1)
r_1 3r=1

is  minimized.

Hole that arbitrary w i l t i n g  fa c to r, cannot bo incorporated in ( I 0.? .1 ) 

a i they can in the one-dimensional case ana, at the same timo, fu l l  

advantage taken o f the tensor-product representation. Tor spline 

approximation, cases o f unequal „eight may be tackled using the more 

general but computationally re la t iv e ly  expensive method o f Section 10.),.

let S, H, C and 2  be as defined in Section 1 0 . 1 , except that now 0 J„
2>Z

b.v n , H is  d by n and 2 is  m bv m fr  ie  „  v „
• x ~ y y “ X J By by ny as before). G.-oville

(1561) has shown that the solution to this least-squares problem is  the 

natural extension of that for the interpolation problem discussed in 

Section 1 0 . 1 . In fact, in place of the interpolator/ solution
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( 10 . 2 . 2 )
— i 'V

c = & z(n ) .

obtained from ( 10. 1 .4) ,  one uses

J- *• m
C = C- Z(H ) ,

~ ~ '  ( 10.2 . 3)

where G and H are respectively the pseudo-inverses o f fi and II. Of 

course i t  is  unnecessary to compute e x p lic it ly  these pseudo-inverses. 

Rather, by analogy with (10.1.7) and (10 .1 .8 ), C may be formed by 

determining the least-squares solution of

gi: = z  ,rvw rw

fo llowed by that o f

T T HC = E .
r-* < ^

(10.2.4)

( 10.2.5)

Assuming that one of the faster orthogonalisation methods o f Chapter 2 

i s  employed and that v  ^  »  V  ny , an operation count reveals that 

the solution o f ( 10.2 .4) requires about long operations for the 

decomposition o f G and about fo r  the operations involving £..

S im ilarly, the count fo r  the solution o f ( 10.2 .5) is  about 1?  + «  „  .

1’hus the to ta l emount o f wort in determining C is  dominated by the ^ ”  ’’ 

computations involving the multiple right-hand sides in the f i r s t  least- 

squares system (10.2 .4 ), and is  approximately equal to n long 

operations. Unlike that fo r  the interpolation problem o f Seotion 10. 1 , 

th is  count is  not symmetric in i t s  parameters. Note, therefore, that il.

may be cheaper to form C from the transpose o f ( 10.2 .3) ,  ie  by computing 

the least-squares solutions o f

lilf = z 1rv ̂  t * ( 10.2 .6)
ana

6C Vx
(10.2 .7)



rathor than those o f (10.2.4) and (10.2 .5 ). The resu lting operation 

count is  then about ram n long operations.
y  y

By analogy with our interpretation o f equations ( 10. 1 .7) and (10.1.8) 

in  the interpolation problem, we may interpret the least-squares solution 

of ( 10 .2 .4) and ( 10.2 .5) as fo llows. Along each mesh lino y  = u
o

(3 = 1, 2, . . . ,  ra ) determine the coeffic ien ts  e ( r  -  1 0 \
n rs ' 1 j s •••, n ) ofy , . jv.

the function 'S " ’ e g (x ) which rrovidp +>10Z _ i ■ rsbr v '  ' Fro/iae the least-squares approximation
r =1

to  the data (t ,., ( r  .  1, 2, . . . .  ny) .  Then fur each value of

r  = 2, . . . ,  n_ determine the coeffic ien ts c (s — 1 \ ~
n ■ rs ' * * * * • > n,J oi

the function ^  ere*BW  >*ich provide the leant-equaree approximation
S=1

to  the data (u£, e ^ )  (s = 1, 2, ray ) . Clenshaw and Hayes ( 1965) 

discuss the case where the ^ ( x )  and h j y )  form polynomial bases.

I 0*-'5 ari- least-squares approximation to data on a

rectangular mesh by bivaria te sp lines 

17e now specialize the approaches o f Sections 10.1 and 10.2 to  the case 

where in ( 10. 1 . 1 ) the functions g±(x ) are B-splines o f order n in  x 

(defined upon an appropriate set o f x-knots) and the h .(y ) are B-splinos 

o f the same order-- in y (defined upon an appropriate set o f y-knots), and 

we wish to interpolate or obtain least-squares approximations to data r
r3

prescribed at a ll vertices o f the rectangular mesh x -  t  fv < *1» V-1 •- 1 ; * > • #. . ra

y  = us (s  = 1 , 2, . . . ,  my ) .  lie shall assume that t  $ t 9 £ . . .  < t  and
1  ̂  ̂ uX

111 £ u2 ^ •** ■' um/ that “  tho case o f interpolation m = n and m -  n
y  X y *

and that in the least-squares case m > n and m *> n
X '  X y  '2' y *

* The methods given in this and Section 10.4 may without d if f ic u lty  be 

extended to  the case where the B-spline 3 are o f d ifferen t orders in

x and in y .



In order to define our B-spline bases le t  ( i  = 1, 2, N - 1 ) and

y . ( j  = 2, N -1 ), where IT = n -  n + 1 and N = n - n + 1, be
j y •* x y y

two prescribed sets of in terio r knots which form respective ly n-oxtendod

partitions (Ssction 3 , i )  o f the x- ana y-axos with t  < x , x . t
1 1 N -1 N mx x

and u < ŷ T _.| < u • • We introduce additional coincident end knots
y" y

in the U3ual way by augmenting those prescribed by x-knots o f m u ltip lic ity  

n at x = t j  and at x = t^ , and y-knots o f m u ltip lic ity  n at y u and at

y “ u,m

Let

a = v  * = c = y o> d B v (10.3.1)

The knot-lines x = x ( i  -  0, 1, N ) and y = y ( j  = 0, 1 , . . . ,  N )i  x j  y

form a rectangular mesh, the boundary (formed by the lines x = a, x = h,

y = c, y  = a) of which contains a l l  the data points. We define p r  , '1

( i ,  j )  as the rectangular region bounded by the x-knot lines x -  x andx~1
x -  x and the y-knot lines y = y and y  = y . A panel may be null in 

the sense that i t  has zero area, in which case x. = x or v v

We say that a point (x , y ) (a  ^ x < b, c ^ y < ci) l ie s  in  panel ( i ,  j )  j f  

x £  x < x ana y $ y < y ( i f  x = b we sot i  = IT and i f  y   ̂ d wo 

set j  = IT ) • Note that as a consequence o f the above defin itions, a nul] 

■panel contains nc points.

Upon the augmented set o f x-knots v/e define the B-sline basis IT (x )n iv v

( i  = 1 , 2 , . . . ,  n ) and upon the augmented set o f y-knots the B-splino 

basis P .(y ) ( j  -  1, 2, n ) .  P ,(y ) denotes the normalized B-splinenj j  Tx j
o f order n in y  based on the knots y . , y . . . . ,  y  . The tensorJ—1H j J

product

® { Pn ,W  P„ 2 «  V / S)}  ( l ° - 3-2)



foni'-s a "basis fo r the set o f b ivariate splines o f order" n in  x and in  y. 

,phus our representation o f the b ivariate spline s (x ,y ) is  simply

n n x v
■<**> = 1 2  ^ 2

i =1 0=1

in accordance with ( 1 0 . 1. 1) .

(10.3.3)

Evidently the interpolatory solution exists and is  unique i f  and only i f  tno

Schoenberg-TVhitney conditions (6 .1Jf ) are sa tis fied  fo r  the x-knots x, and

the x-values and also for the y~knots y . and the y-valuos u . In the

least-squares case, the solution is  unique i f  the conditions arc sa tis fied

fo r  the x-knots x± and at least one subset o f the values o f t  , as w ell as

fo r  the y-knots y . and at least one subset o f the values o f u
J B *

I t  is  apparent that the matrices G and H in (10 .1 .7 ), (10 .1 .8 ), (io.2./: ) 

and ( 10.2 .5) are a l l  stepped-banded o f bandwidth n, and that an obvious 

extension (to  allow fo r  multiple righ t—hand sides) o f the methods (level orod 

in  Chapter 2 fo r  systems with such matrices can be spoiled.

Operation counts reveal that fo r  interpolation about n n n + ( n +r
* y x y

long operations are required and that fo r least squares (again assuming that

V  “ y  ̂  V  V  the doadnant term is  ra mn. Thus fo r  a fix cd  ordf)r of 

spline the computational e ffo r t  is  essentia lly proportional to the to ta l 

number o f data points (even taking in to account the formation o f & and H) 

a resu lt that holds also in  one dimension (see Chapters 6 and 7) .  Such a 

desirable situation would f a i l  to hold i f  a basis not having the compact 

support property were employed.

Note An excellent review (Hartley, 1576) 0f  methods fo r  tensor 

product approximations to data defined on rectangular meshes, is  shortly

to appear. Hartley also shows how the computations may be organised to



solve such problems in an arbitrary number o f dimensions. Reference is  

made by Hartley to  the gains in e ffic ien cy  achieved by using B-splines 

as a basis in  the case where the approximating function is  a multivariate 

sp lin e.

10 *4 The general least-squares mu lt ivar ia te  spline appr oxj.wation  problem 

The approach considered here is  a generalization of that o f Chapter 7 to 

two independent variables. A further generalization to more than two 

independent variables is  in princip le straightforward but notationally 

complex and is  not given here.

235

\7e consider only least-squares multivariate spline approximations since 

i t  is  rarely  o f practical in terest to interpolate multivariable data unless 

the data values are specially distributed such as at a l l  vertices  o f a 

rectangular mesh (Section '¡0.3) • However, i f  i t  is  required to investigate 

whether a spline interpolant to an arbitrary set of data exists and is  

unique and, i f  so, to determine i t ,  a simple extension of the method of 

th is section can indeed be applied to such a problem.

Suppose values z^ o f the dependent variable z are given at points 

(r  = 1, 2, . . . ,  ji) in the (x,y)--plane. The problem is  to determine a 

b ivariate spline s (x ,y ) o f order n (degree n-1 ) .in x and o f the seme order 

in  y  such that the residual sum o f squares

2I 2 1
l£
i 2

W£sw r-ji

m
V r CZ yr t

■ r
r =1

(10.4.1)

and

cr
2r u)

( 10.4 .2)

(r  = I, 2 , • • • J (10.4.3)



is  minimized with respect to the free  parameters o f s (x ,y ) . I t  is  

assumed that in terior x-knots x. ( i  = 1, 2, N -1) and in terio r3- X

y-knots y . ( j  = 1» 2, . N -1) are prescribed. A detailed treatment 
*■ j *v
of the case n = 4 is  given by Hayes and Halliday ( 197A ).

ju st as in Section 10.3 we introduce additional end knots, define 

B-splines in x and in y, and employ the representation (10.3.3)* 

Unfortunately, there is  no analogue of the generalised Schoenborg-TOiitnoy 

conditions (7 .2 .3 ) in  the general multivariable situation (unless fo r 

instance, the data l ie s  at all. vertices o f a rectangular mesh •- 

c f Section 10.3)* Thus i t  w i l l  not usually bo possible to  say, as the 

resu lt c f a simple test on the data and knots, whether the least-squares 

multivariate spline approximation problem has a unique solution. However, 

by analogy with the considerations o f Section 7*2, we- make the follow ing 

conjecture.

Conjecture 10.A.1

In order fo r  the least-squares b ivariate spline approximation to bo unique

there must ex ist at least one subset o f n n d istinct data points with the

follow ing property. I t  must be possible to find  an "ordering" o f these

points such that the kth point (k = 1, 2, n ^ )  l ie s  s tr ic t ly  within

the support o f the kth b ivariate B-spline. (The kth bivariate B~spl3.n0 is

defined as the kth member o f the tenser-product set (10 .3 .2 ). the supporl;

o f N .(x )P  .(y ) being the rectangle x £ x < x , y  < y < y ) .  
jxx n j -i.—¿1 •*- j

A proof of th is conjecture has not yet been attempted. Rather, e ffo rts  

have been made to construct an algorithm (a b ivariate counterpart of 

Algorithm 7.2.1) to  test whether any given data arid knot sets sa tis fy  the 

property referred  to in the conjecture. These e ffo r ts  havo so fa r proved 

unsuccessful for the fo llow ing reason. In one dimension the data set has 

a natural ordering in the sense that i t  is  possible to examine sequentially
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the re la tive  positions o f the points and the knots. In two (or more) 

dimensions, at least fo r  arb itrarily-p laced data, no such ordering ex ists. 

Accordingly, when an algorithm associates a particular point with the 

support of one of the b ivariate B-splines, th is decision a ffects 

subsequent decisions of the same nature. As a resu lt, the algorithm may 

w ell conclude incorrectly that the conditions ore not sa tis fied . Some 

form o f back-tracking therefore seems to he required, but no satisfactory 

solution along these lines has yet been worked out.

The solution to the problem of minimizing (10.4.1) with respect to the

c.., is  given by the least-squares solution o f tho system

the case; indeed, least-squares solutions (though not necessarily unique) 

always exist (Peters and Wilkinson, 1970), even i f  m < n n . The rth row 

o f A contains the values

( 10,A .A-)

nn.x

and the vector c contains the coe ffic ien t

y

. . ,  cn n
y



As a result of the compact support o f the E-splines, A takes the 

hi nek stepped-banded form

f  A A. . . .  A«11 ” 12 "In

” 22 ” 23
A =

0

A„
"2,n+'1

~N N A i ,N +1 ~N n- v - v -  v ^ - v  i r -lC X X' X x x

. (10.4.5)

In order to achieve th is form fo r A i t  is  necessary to order tho values 

o f the independent variable so that they l i e  in tho successive panels ( 1 ,1 ) ,

( 1 .2 ) ,  . . . ,  (1 5 ( 2 j l ) j  ( 2 ,2 ) ,  •. •, (2,n ) j . . .  ; (n^>l ) ,  >2), . . . ,
*> »)

( n n )• T7e assume henceforth that such an. ordering has been carried out. 
v *  y

Each sub-matrix A . is  its e lf  a stepped-bnnded matrix of bandwidth n.
**■*-!-J 9

The complete matrix A is  a stepped-bandad matrix o f bandwidth (N " l ) (n - l )+ n

Since the computational e ffo r t  required to triangularize p. stepped-banded
p

matrix with m rows and bandwidth q is essentially proportional to mq 

(Sections 2.12 -  2 .14), i t  is  more economical to interchange the roles of 

the independent variables x and y i f  N <  N .y

The computational e ffo r t  to triangu laris9 A using one of the methods o f
2

Sections 2.12 - 2.14 is  proportional to m {  (N ,- l) (n - l)+ n 2 }  ! TJiis 

number is  to be compared with a value c f m(N +n~l)2(N +n -l)2 i f  a  isX y  • ~

regarded as fu l l .  Thus fo r  a modest problem in which n = 4 (bicubic sp line), 

Nx ~ 8 Ny -  the atove numbers are respective ly about 800m and 

COOOra; consequently the algorithms that take advantage o f the steppod-banded 

form are roughly an order o f magnitude faster for this example.

Because of the remarks made earlier in th is section re la tin g  to tho

d iff ic u lty  o f assessing in  advance whether tho least-squares solution is



339

unique, ana. cecause we contend that many, probably moot, practice] data 

sets fo r  which a multivariate spline approximation is  required w i l l  give 

rise to a non-unique solution, the factoriza tion  method i t s e l f  must bo 

able to detect rank deficiency in  A. The reason why we belivo non-unique 

solutions are commonplace can be seen by the follow ing illu s tra tion .

Suppose data covering a roughly e l l ip t ic a l  region is  prescribed. Then, i f  

two sets of orthogonal knot lines are la id  down over th is data so as to 

contain i t ,  there are very lik e ly  to be single panels void o f data, or a 

number o f adjacent panels with few data. In particu lar, a corner panel is  

l ik e ly  to  contain no data points, with the consequence that one of the 

basis functions w il l  be zero at a l l  data points, .ic the corresponding 

column of A w i l l  contain only zeros and hence A w i l l  bo rank defic ien t.

Such a case is  eas ily  detected and remedied by setting the appropriate 

B-spline coe ffic ien t to zero and deleting the nu ll column from the matrix 

before A is  triangularized. However, a less obvious form o f deficiency 

may occur in  which no columns o f A are id en tica lly  zero. As a simple example, 

consider a case in  which each panel contains precisely one data point. Then 

a l l  columns o f A contain non-zeros, yot the rank o f A is  at most equal to 

O  , the number o f data points in this case, which is  less than the 

number o f columns o f A by (n-1) (Nx+N +n-1) .  For a further informative 

discussion, see Hayes and Halliday ( 197^ ).

Any rank deficiency in A is  conveniently handled, a fte r having computed 

the upper triangular factor, using the "resolving constraint" concept 

(Section 9*9).

10.5 The imposition of constraints

Kany o f the ideas o f Sections 9.1 - 9 .4 carry ovor to the multivariate

case. T/e mention just two simple extensions. Tlio f i r s t  is  the simple

^ ic h  s( r ) (x ,y ) is  to  take the value f ( r ) ( t  , u )  at' o ’ o'
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(x ,y ) = ( t 0, uq) .  Here r  (0 ,< r< n ),  t Q (a «  t Q ^ b ) , « o(e  $ cl) 

and f^r \ t o> uq) are a l l  prescribed. By analogy with the discussion o f 

Section 9*3, such a constraint can be formed very read ily  and imposed 

using the methods o f Section 9*5.

As an instance o f a lino constraint we consider tho follow ing example. 

Suppose s (x ,y ) is  to sa tis fy  the line constraint

(10.5*1)

where g (y ) is  a prescribed function o f y . Now

n n
c>s ) sr-^i

i=1 0=1
(10.5.2)

and hence

n
y

Z 3  aiPn iW = s(y) ,
0=1

(10.5*3)

where
nx

a = T ~ ‘ c. .11' .  (a)0 — i 3-0 nr
i —1

y 1 ® iiK’ i ( « )  */_,-i 3-0 “ -L
i=1

(10.5*4)

using the compact support property.

Evidently, such a constraint can be imposed exactly only i f  g (y ) is  a 

spline of order n in  y with the same y-lcnots as s (x ,y ),  or i f  g (y ) is  a 

polynomial o f degree less than n in y  (which is  o f course a special case 

o f a spline o f order n ) . In the former case, i f  g (y ) is  expressed in i t s  

normalized B-spline form i t s  coe ffic ien ts  are simply the values of d..
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In the la tte i case, i f  g (y ) ir, expressed in i t s  power-series form,

Algorithm 5*7*1 can he used to determine the d ,. I f  g (y ) fa l ls  into 

neither of those categories i t  is  recommended that i t  is  f i r s t  

approximated, perhaps by using one o f the interpolation algorithms of 

Section 6 .A, by a spline of order n having the same y-knots as o (x ,y ).

In any case the d. ore usually read ily  found. The remaining stop is  the 
J

imposition o f the n linear constraints (10.5*4), which may ho carried
*/

out as in Section 9-5 or by a suitable modification o f the basis as in 

Section ? .1 .

10.6 Evaluation o f a multivariate sp line from i ts B-spliuc .representation 

Consider the evaluation o f the b ivariate spline (10.3*3) fo r  given values 

o f x and y  (a. £ x $ b, c $ y  £ d ) . Since

_ny
s (x ,y ) = y >  , a .(x )Pn .(y ) , (10 .6 .i )

¿=1

where n

d^(x) = 2 - J  Ci j Nn i ^  ( j  = 1, 2, . . . ,  ny ) ,  (10.6.2)
i =:1

s can evidently be evaluated by forming each o f the (a t most) n values o f

cl . (x )  in (10.6.2) corresponding to the non-scro values o f P ,(y)> followod 
j

by the evaluation of (10 .6 .2 ). A to ta l of n+1 splino evaluations is  

required and i f  either Algorithm 5*2.1 or Algorithm 5.2.2 were employed 

would take a to ta l o f -|n̂  + O (n ') long operations. Note, however, that 

advantage can he taken o f the fa c t that fo r n o f these evaluations, the 

same knot set is  employed. The follow ing minor modification of 

Algorithm 5*2.2 accomplishes th is improvement.
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Algorithm 1 0 .6 .1  : The evaluation of s(x,y) from its  normal!".od

B-spline repr e aentat i  on.

Step 1 . Determine k and 1  such that x, . < x < x, and v, „ < y < y„ r k-1  k - 1 -1  v J  .1

using sequential or binary search.

Step 2 . Uso Algorithm 3 . 1 2 .2  to evaluate i/u = N^(x) for i  h, k+1 , 

. .  - , k+n-1 .
k+n-1

Step 3 . For j = 1 , 1+1, l+n- 1  form d. = ^  ^ v. c . 
i  aj

i-k
Step 4 . Use either Algorithm 5 -2 .1  or Algorithm 5 -2 . 2  to evaluate

">~-l d.P .(y).
k___» J no
3=1

The total number of long operations taken by Algorithm 1 0 .6 .1  is 4 n?+0 (n).

An error analysis of Algorithm 1 0 . 6 . 1 , carried out in a similar fashion to 

those of Algorithms 5 -2 .1  and 5 . 2 .?! reveals that the computed value 

s(x,y) satisfies

S(x,y) -  s(x,y) £ 1 5 -59n2
-t max 

k $i<k+n
max

1 $ j < j+n 13
(10.6.3)

Algorithm 1 0 . 6 .1  and the error analysis may be extended in an obvious way 

to multivariate splines in p dimensions. The form of the error bound is 

the natural extension of ( 1 0 . 6 .3 ) ,  the constant 1 5 -5 9  being replaced by 

7-745P-



REFERENCES
ANLBERG, J H, NILS ON, E N and WALSH, J L. The Theory of Splines and 

Their Applications. New York: Academic Press, '¡967*

AMOS, 1) E and SLATER, M L. Polynomial and spline approximation liy- 
quadrat ic  programming. Common, Assoc. Compu t. Mach ., 1969, 12,
379-381.

BAUER, P L. Elimination with weighted row combinations fo r  solving 
linear equations and least squares problems. Nnmerlache Nath.,
1965, 7, 338-352.

BARRODALS, I .  Approximation in the and L «> norms by linear programming. 
University o f Liverpool, PhD Thesis, 1967•

BARRODALE, I  and ROBERTS, P D K. An improved algorithm fo r  discrete 3̂  
linear approximation. University of V ictoria , Department o f 
Mathematics Report (un-nurabered), British Columbia, Canada, 1971.

BARRODALE, I  and YOUNG-, A. Algorithms fo r  best L1 and L m approximations 
on 0 discrete set. Rumorischo Math., 1966, 0, 295-306.

BARTELS, R II ai,d GOLUB, G )I. The simplex method o f linear programming 
using LU decomposition. Commun. Assoc. Compu t. Mach. , 1969, 12, 
266- 268.

BELLMAN, R, KASH3F, B and VASUDEVAN, R. Mean square spline approximation. 
J. Math. M a i. Applies., 1974 , 45 , 47-53*

Bj SrCK, A. Solving linear least squares problems by Gram-Sclimidt 
orthogonalization, BIT, 1967, 7, 1-21.

BOOR, C DE. On calculating with B-splines. J .Approximation Theory,
1972, 6, 50- 62.

BOOR, C DE. Good approximation by splines with variable knots.
In A Heir and A Sharma (Eds), Spline Functions and Approximation 
Theory, ISKM 21, 57-72. Basel: Birkhauser Verlag, 1973*

BOOR, C DE and FIX, G J. Spline approximation by quasiinterpolnnts.
J. Approximation Theory, 1973, 8, 19-45.

BOOR, C DE and RICE, J R. Least squares cubic spline approximation I  - 
Fixed knots.• Purdue University. Report CSD TR20, 1963.

E00R, C DE and RICE, J R. Least squares cubic spline approximation I I  - 
Variable knots. Purdue University. Report CSD TR21, 1963.

BOOT, J C G. Quadratic Programming. Chicago: Rand McNally, 1964.

BRITISH STANDARD CODE OF PRACTICE. CP118. The Structural Use o f Aluminium. 
London: British  Standards Institu tion , 19£>9*

BUSINGER, F A. Monitoring the numerical s ta b ility  o f Gaussian 
elimination. Rumerlsche- Math., 1971, 16, 36O-361 .



BUSINGER, F and GOLUB, G H, 19 6 5 . 
Householder transformations.

Linear least squares solution:- by 
Numerische Math, , 1965, 7, 269- 276.

BU1UU1RTT5LD, K R. A generalised matrix decomposition o f the rath.
derivative of a B~spline basis of order k associated with numerical 
evaluations. To appear in J. Inst. Maths. App lie s . ,  197.5«

CARA33Q, C. Méthodes numériques pour l ’ obtention de fonctions-spline. 
Thèse de 3&me Cycle, Université de Grenoble, 1966.

CARASSO, C and LAURENT, P J. On the numerical construction and
practical use of interpolating spline-functions. In A .'! H Morrell 
(E d .), I nformation Processing 68. Amsterdam: ITorth-Holl-nnd, 1969.

CLENSHAT7, C V. Chebyshev series fo r  mathematics. 
Physical Laboratory Mathematical Tables .5 • 
Stationery O ffice , 1962.

CLENSHAW, C W and. HAYES, J G. Curve and surface 
Applies., 1965, _1_, 164-183«

.1 functions. National 
London: Her Majesty’ s

f i t t in g . J. Inst, Maths

CLINE, A K. An elimination method fo r  the solution of linear least 
squares problems. SIAM tT. Numer . Anal., 1973» 10» 284-289.

COX, M G. An algorithm fo r approximating convex functions by means o f 
f i r s t  degree splines. Coaput. J .,  1971, 14, 272-775.

COX, M C-. Curve f i t t in g  with piecewise polynomials. J . In s t. Maths.
Ap p lie s ., 1971, 8, 36-52.

GOX, M G, Tne numerical evaluation o f B-splines. J. I nst. Maths. Applic:
1972, 10, 134-149.

COX, M G. Cubic-spline f i t t in g  with convexity and concavity constraints. 
National Physical Laboratory, Teddington, Middlesex. Report NAC23,
1973.

COX, M G and LTHRIAN, 1» S. Real procedure ’ sere1: to determine a zero 
o f a rea l continuous function, given lower and upper bounds on the 
zero. National Physical Laboratory, Teddington, Middlesex. NPL 
Algorithms Library Document C5/01/0/Algol 60/1/73, January 1973.

COX', M G. A da ta -fittin g  package for the non-specialist user. In 
p J Evans (Ed.)-, Software for Numerica l Mathematics, pp 235-251. 
London: Academic Press,1974*

COX, M G. Procedure ’ cubic spline f i t ’ : to  compute a weighted least- 
squares approximation to an arbitrary set o f data points by a cubic 
spline with prescribed knots, and to perform cubic spline 
interpolation. National Physical Laboratory, Teddington, Middlex. 
NPL Algorithms Library Document E2/03/0/A lgol 60/4/ 74, April 1974.

COX, M G. Procedure *spdeg3*: to evaluate a cubic opline from its
B-spline representation. National Physical. Laboratory', Teddington, 
Middlesex. NPL Algorithms Library Document X2/05/0/Algol 60/4/74, 
April 1974*



345

COX, M G. Numerical computations associated with Chebyshev polynomials. 
Presented at Royal Ir ish  Academy Conference on Numerical Analysis, 
Dublin, August, 1974*

COX, M G. Subroutine ’ SP3FIT': to compute a weighted least-squares
approximation to an arbitrary set of data points by a cubic spline 
with prescribed knots, and to perform cubic splino interpolation. 
National Physical Laboratory, Teddington, Middlesex. FPL Algorithms 
Library Document £2/03/O/Portran IV/ll/74, November 1974.

COX, M G. Subroutine ' SPDEG-3’ : to evaluate a cubic spline from its
B - spline representation. National Physical Laboratory, Teddington, 
Middlesex. NPL Algorithms Library Document 112/05/O/Portran IV/11/74, 
November 1974.

COX, M G. An algorithm fo r spline interpolation. J. Inst. Maths. App lies ., 
1975, J5< 95-103.

COX, M G and HATES, J G. Curve f i t t in g :  a guide and suite o f algorithms
fo r  the non-specialist user. National Physical. Laboratory, Toddington, 
Middlesex.Report NAC 26, December 1973-

CURRY, H B and SCHOENBERG, I  J. On Polya frequency functions IV: the 
fundamental spline functions and their lim its. J. Analyse Mn.tlu,
1966, 17, 71-107.

DAVIS, P J. Interpolation and Approximation. New York, B la isd e ll, 1963.

DODSON, D S. Optimal order approximation by polynomial.spline functions. 
PhD Thesis. Computer Science Department, Purdue University,
Lafayette, USA, 1972.

DRAPER, N R and SMITH, H. Applied Regression Analysis. New York:
Wiley, 1968.

ESCH, R E ana EASTMAN, W L. Computational methods fo r  best spline
function approximation. J. Approximation. Theory, 1969, /> 85-96»

FRANCIS, J G F. The OR transformation, Parts I  and I I .  Comput. J .,
1961/ 2 , 4 , 265-271, 332-345.

GAFFNEY, P IV. The calculation of indefin ite integrals o f B-splincs.
Atomic Energy Research Establishment, Harwell. Report C3S11, 197A.

GENTLEMAN, V M. An error analysis o f Goertzel’ s (Y/att’ s) method fo r 
computing Fourier coe ffic ien ts . Computer J ., 1969, 12, 16O-I65.

GENTLEMAN, T? M. Basic procedures fo r large, sparse, or weighted linear 
least squares problems. University of Waterloo, Ontario, Canada, 
Research Report CSRR-2068, 1972.

GENTLEMAN, V M. Least squares computations by Givens transformations
without square roots. J. Inst. Maths. Appl ie s . ,  1973, 329-336.

GENTLEMAN, V K. Interface between numerical analysis and symbolic 
computation. Paper presented at the ACM/SIAM conference 
"Mathematical Software I I " ,  July 1974-, Purdue University, Lafayette, 
Indiana.



346

GILL, P U and MURRAY, W. A numerically stable form of the simplex 
algorithm. Linear Algebra and i t  Applns,, 1973; 7, 99-138*

GOLUB, G H. Numerical methods fo r solving linear least squares problems. 
Numerische Math, , 1965, 7, 206-216.

GOLUB, G K and BUS UIGUR, P. Least-squares, singular values and matrix 
approximations. An ALGOL pi’ oeodure fo r  computing the singular 
value decomposition. Technical Report No. CS73, Stanford University, 
Californ ia, USA, 19^7-

GOLUB, G H and. KAHAN, XL Calculating the singular values and pseudo­
inverse o f a matrix. J. SIAM Numer. Anal.,  1965, 2, 205-224.

GOLUB, G H and REINSCH, C. Singular value decomposition and least 
squares solutions. Numerischo Math., 1979, 14, 403-420.

GOLUB, G II and WILKINSON, J H. Note on the ite ra tive  refinement of least 
squares solution. Numerische Nath., 1966, jj, 139-148.

GREVTLLE, T N 15. Note on f i t t in g  o f functions o f several independent 
variables. J. Soc. Indnst. Appl. Math., 196> 1 , 9, 109 - 1 1 5 «

GREVILLE, T N E. Introduction to spline functions. In T N E G reville
(Ed), Theory and Application o f Spline functions, pp 1-35- Now York: 
Academic press, 1969*

IIAMILIRLHIG, S. A note on modifications to the Givens plane rotation.
J. Inst. Maths. Ap p lie s ., 1974, 13, 215-218.

HANSON, R J and LAWSON, G 3j. Extensions and applications of the
Householder algorithm fo r  solving linear least-squares problems.
Math■ Comput. , 1969, 23, 787-812.

HARTLEY, P. Tensor product approximations to data defined on
rectangular meshes in n-spaee. J. Inst. Maths. App lies., 1976.
To appear.

HAYES, J G and HALLIDAY, J. The least-squares f i t t in g  o f cubic spline 
surfaces to general data sets. J. Inst. Maths . A pp lies ,, 1974,
_14, 89-103.

HOUSEHOLDER, A S. Unitary triangular!zation o f a nonsymmetries matrix.
J , Assoc. Comput., Mach. , 1958, 5> 339-34?.

I.AFATA, P and ROSEN, J B. An in teractive display fo r  approximation by
linear programming. Common. Assoc. Comput. Mach., 1970, 13, 651-659•

LÄüCHLI, P . Jordan elimination und Ausgleichung nach kleinsten 
Quadraten. Numerische Math.',, 1961, 3> 226-240.

LAWSON, C L and HANSON, R J. Solving least squares problems. Englev;00d 
C li f fs ,  New Jersey: Prentice -H all, Inc. 1974.

MAR3DEN, V J. An iden tity  fo r s 
variation-diminishing spline 
1970, 3, 7-49»

pline functions with applications to 
approxination. J . Approximation Theory »



MARTIN, R S and WILKINSON, J H. Solution o f symmetric and unsymmetric 
"band equations and the calculation of the eigenvectors o f band 
matrices. Numsrisoho Math., 1$67, 9, 279-301 .

HOLER, C. Fast Givens. In informal proceedings of AC],/SIAM conference 
Mathematical Software I I , pp 313-318. Purdue University, Lafayette, 
Indiana, May 1974•

NAUR, P. (E d .). Revised report on the algorithmic language ALGOL 60. 
Comput. J . , 1963, 5, 349-367.

PETERS, G and WILKINSON, J H. The least squares problem and pseudo- 
inverses. Comput. J . , 1970, J_3, 309-316.

PETERS, G and WILKINSON, J H. Practical problems arising in the
solution of polynomial equations. J. Inst. Math:,.. Appl i e s , , ¡971»
8, 16-35.

POWELL, M J D. Curve f i t t in g  by splines in one variable. In J G- Hayes 
(E d .), Numerical Appro.xima.tion to Funct ions and Data, pp 65-83.
London: Athlone Press, 1970.

RABINOWITZ, F. Applications of linear programming to numerical analysis. 
SIAM Rev., 1968, 10, 121-159-

REID, J K. A note on the least squares solution o f a band system of 
linear equations by Householder reductions. Comput. J . , 1967, 10, 
188-189-*

REID, J K. A note on the s ta b ility  o f Gaussian elimination. J. Inst. 
Maths. Applies., 1971? 8, 374-375*

RICE, J R. The Approximati on of Functions, Vol 1. Reading,
Massachusetts: Addison-Wesley, 1964.

RICE, J R. Experiments on Gram-Schmidt ortliogona.lization. Math. Comput., 
1966, 20, 325-328.

RICE, J R. The Approximation o f Functions, Vol 2. Reading,
Massachusetts: Addison-Y'esley, 13b9•

ROOIJ, P L J VAN and SCHURER, F. A bibliography on spline functions I I .  
Technological University Eindhoven, Netherlands. Report 73-Y/SR-01,
1973.

SCHOENBERG, I  J. Contributions to the problem of approximation of
equidistant data by analytic functions. Quart. Apn l. Maths., 1946,
4,45-99,112-141.

SCHOENBERG, I  J and WHITNEY, Anne. On Polya frequency functions I I I .
Trans. Amsr. .Math. Sec., 1953, 74, 246-259-

SCHUKAKER, L L. Some algorithms fo r the computation o f interpolating and 
approximating spline functions. In T N E G reville  (E d .). Theory and
Application o f Spline Functi ons, pp 87-102. New, York: Academic Press, 
1969.



SC OWEN, R S. BABEL, a new programniing language. National Physical 
Laboratory, Teddington, Middlesex. Report CCU 7, 1969.

SES3TII0VA, J. Numerical construction of the h i l l  functions. Technical 
Report 70-110, NGL-21-002-008.' University of Maryland.

SEG-EIHOVA, J. Numerical construction of the h i l l  functions. SIAM J. 
Numer. Anal., 1972, _9, 199-204.

STEFFENSSN, J F. In terpolation. New York: Chelsea Publishing Company, 
1927.

WICHMANN, B A. Estimating the execution speed of an A lgo l program.
Report NAC 33* National Physical Laboratory, Teddington, Middlesex, 
1973.

WILKINSON, J II. .Error analysis o f direct methods o f matrix inversion.
J . Assoc. Comput. Mach. , 1961, 8, 281--330*

WILKINSON, J II. Rounding Errors i n A lgebraic Processes. Notes on 
Applied Science No 32. London: Her Majesty's Stationery O ffit • ,
1963.

WILKINSON, J H. The Algebraic Eigenvalue Problem. Oxford: Clarendon Pro
1963.

WILKINSON, J H. Private discussions. 1974.

WILKINSON, J H and REINSCH, C. (Eds). Handbook fo r  Automatic Computation, 
Volume I I ,  Linear Algebra. New York: Springer-Verlag, 197*1*


