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Abstract

Decision-making in the real world presents the challenge of requiring flexible yet prompt

behavior, a balance that has been characterized in terms of a trade-off between a slower,

prospective goal-directed model-based (MB) strategy and a fast, retrospective habitual

model-free (MF) strategy. Theory predicts that flexibility to changes in both reward values

and transition contingencies can determine the relative influence of the two systems in rein-

forcement learning, but few studies have manipulated the latter. Therefore, we developed a

novel two-level contingency change task in which transition contingencies between states

change every few trials; MB and MF control predict different responses following these con-

tingency changes, allowing their relative influence to be inferred. Additionally, we manipu-

lated the rate of contingency changes in order to determine whether contingency change

volatility would play a role in shifting subjects between a MB and MF strategy. We found that

human subjects employed a hybrid MB/MF strategy on the task, corroborating the parallel

contribution of MB and MF systems in reinforcement learning. Further, subjects did not re-

main at one level of MB/MF behaviour but rather displayed a shift towards more MB behav-

ior over the first two blocks that was not attributable to the rate of contingency changes but

rather to the extent of training. We demonstrate that flexibility to contingency changes can

distinguish MB and MF strategies, with human subjects utilizing a hybrid strategy that shifts

towards more MB behavior over blocks, consequently corresponding to a higher payoff.

Author summary

To make good decisions, we must learn to associate actions with their true outcomes.

Flexibility to changes in action/outcome relationships, therefore, is essential for optimal

decision-making. For example, actions can lead to outcomes that change in value – one

day, your favorite food is poorly made and thus less pleasant. Alternatively, changes can

occur in terms of contingencies–ordering a dish of one kind and instead receiving

another. How we respond to such changes is indicative of our decision-making strategy;

habitual learners will continue to choose their favorite food even if the quality has gone
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down, whereas goal-directed learners will soon learn it is better to choose another dish. A

popular paradigm probes the effect of value changes on decision-making, but the effect of

contingency changes is still unexplored. Therefore, we developed a novel task to study the

latter. We find that humans used a mixed habitual/goal-directed strategy in which they

became more goal-directed over the course of the task, and also earned more rewards

with increasing goal-directed behavior. This shows that flexibility to contingency changes

is adaptive for learning from rewards, and indicates that flexibility to contingency changes

can reveal which decision-making strategy is used.

Introduction

For optimal decision-making, animals must learn to associate the choices they make with

the outcomes that arise from them. Classical learning theories suggest that this problem is

addressed by habitual or goal-directed strategies for reinforcement learning [1, 2]. These strat-

egies differ in that habitual behavior seeks simply to reinforce responses based on environ-

mental cues, whereas goal-directed behavior considers action-outcome relationships – that is,

contingencies–in the environment. Habitual and goal-directed strategies have been imple-

mented in model-based (MB) and model-free (MF) reinforcement learning algorithms,

respectively. Both algorithms make decisions by estimating action values and choosing the

actions that maximize reward in the long term [3, 4]. The MF system achieves this retrospec-

tively, caching past rewards using a reward prediction error signal [5] whereas the MB system

achieves this prospectively, planning using a learned internal model of the state transitions and

rewards in the environment [6,7].

Recent studies have emphasized that MB and MF systems work in parallel rather than in

isolation [4, 8–10]. Early studies discerned MB and MF contributions using manipulations of

reward values, such as in reward devaluation paradigms, but did not seek to quantify their rela-

tive contributions [1]. A recent study [8] addressed this by developing the hallmark “two-step”

task in which each trial following rare or common outcomes was informative of the MB/MF

tradeoff, thereby permitting model-fitting analyses to quantify their relative influence in deci-

sion-making. Human subjects showed a hybrid MB/MF strategy in the task, a result that has

been widely replicated under different manipulations [11, 12, 13] and extended to the non-

human animal literature (Groman et al. Soc. Neurosci. Abstracts 2014, 558.19, Miranda et al.

Soc. Neurosci. Abstracts 2014 756.09, Akam et al. Cosyne Abstracts 2015, II-15; Hasz &

Redish, Soc. Neurosci. Abstracts 2016 638.08). All these studies measured MB/MF contribu-

tions in terms of behavioral flexibility following reward updates, whereby “rare” (as opposed to

“common”) observations of a rewarded or unrewarded outcome was informative to the MB

system, but not the MF system, and thus these observations disclosed which system controlled

participants’ choices.

Theory predicts that flexibility to transition contingency changes can – like flexibility to

reward structure–determine the relative influence of MB and MF strategies [4, 14]. Two stud-

ies have examined the flexibility of MB and MF systems to global contingency changes [15,

16]. However, quantification of the MB/MF tradeoff was limited as these studies manipulated

contingency and tested flexibility to the change of contingency in separate phases; at these

timescales, it becomes difficult to exclude the effect of adaptation on MB/MF weights. Thus,

we developed a novel two-level contingency change task containing multiple, frequent and

interleaved transition contingency changes that elicit different consequent actions by the MB

and MF systems. Our design, like the two-step task [8] and its variants, therefore permits

Flexibility to contingency changes distinguishes decision strategies
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model-fitting analyses to robustly determine the relative influence of the MB/MF systems. The

contingency change task is structured such that actions following frequent contingency

changes are distinctly attributed to either a MB or MF strategy; this then permits quantification

of the degree to which each system is in control.

On top of a hybrid MB/MF strategy, subjects may not remain at one level of MB/MF con-

trol but instead shift their relative weight in accordance with environmental factors. In general,

animals show habit formation with time, a robust effect reported since early reward devalua-

tion studies [17] in which extensive training stamped in habits, resulting in insensitivity to

reward devaluation; in contrast, limited training retained goal-directed behavior. Sensitivity to

contingency degradation (the omission of a previously-learned contingency between actions

and outcomes) also decreases with overtraining, likewise reflecting a trend towards habitiza-

tion with time [18]. In the original two-step task, the MB/MF trade-off was designed to be sta-

ble [8], but will shift under manipulations such as limited time [10] or cognitive load [11, 19,

20]. However, habits are not guaranteed to form with time; even after extended training, rats

can show residual flexible responding following outcome devaluation, indicating that they

retained goal-directed behavior despite overtraining [21]. In another study using the two-step

task [20], the level of MB/MF control in fact increased in favour of more MB control (i.e.

towards less habitual behavior) over three days of training. However, general shifts in MB/MF

control should be disentangled from the effects of environmental volatility, which are known

to affect the MB/MF balance [22]. Thus, in this study, we examined whether the MB/MF rela-

tionship is affected by environmental stability, or whether it shifts more generally over time.

We found that human subjects indeed showed a hybrid strategy in reacting to contingency

changes in our task, with an increased influence of MB control over the first two blocks. How-

ever, relative MB/MF control did not significantly differ across rates of contingency changes;

thus, the increase in MB control may be a more global effect of “anti-habitization” over time.

Results

Subjects (N = 16) performed a two-level contingency change task that consisted of 600 trials

(Fig 1). Each trial began at either the first level (S0) with 50% probability, or the second level

with 50% probability – 25% for each of the two states at this level (S1 or S2). If a trial started at

the first level, a two-alternative choice was possible between two abstract stimuli. Each first-level

action always deterministically led to the same second-level state, i.e. A1 to S1 and A2 to S2.

Critically however, transitions from the second-level states to the terminal states flipped between

two contingencies every 3–14 trials. Each of the two terminal states was then associated with

either high or low reward, with the exact reward values drifting across trials (see Methods for

details). Thus, flexibility to contingency changes was essential for maximizing reward.

If a contingency change occurred, subjects always experienced the new transition structure

regardless of whether they started at the first or second level, as contingency could only change

between second-level and terminal states. Therefore, provided that an action was possible at

the next trial (i.e. that the next trial started at the first level) the MB system would plan using

the updated causal structure and thus would take the action that led under the new transition

contingencies to the high reward terminal state. However, if a contingency change trial started

from the second level, the MF system would not choose the optimal action on the next trial, as

neither the received reward nor the new contingency would update the cached values of first-

level actions, simply because no first-level action was experienced on those trials. As a result,

the relative contribution of MB and MF systems can be measured by the degree of behavioral

flexibility on first-level trials following contingency change trials starting from the second

level.

Flexibility to contingency changes distinguishes decision strategies
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To examine the effect of environmental volatility on the contribution of the two systems,

the frequency of contingency changes was varied–from 3–6 trials for 200 trials, to 7–10 trials

for another 200 trials, and then 11–14 trials for the final 200 trials. The order of fast and

medium contingency-change blocks was counterbalanced across two subject groups (n = 8

each). Every 40 trials, assignment of the high and low reward states also flipped to prevent for-

mation of habits over an extended state representation, which could masquerade MF as MB

behavior [23].

Simulated choices on the task were implemented according to MB and MF reinforcement

learning algorithms (see Methods for details). For each system, we measured a “stay probabil-

ity” index that followed the logic of contingency change trials described above. This index dif-

fers from classic stay probabilities [8] as trials starting from the second level do not have any

choices to “stay”. Instead, stay probability in our task was defined as the probability of choos-

ing the first-level action that results in the same second-level state as the previous trial. Stay

Fig 1. Schematic of the experimental design. (A) Each trial started from either the first-level state (S0), with

50% probability, or one of the two second-level states (S1 or S2), each with 25% probability. While two choices

were available at S0, only a single forced choice was available at the second-level states. The transition

structure from the second-level states to terminal states repeatedly flipped after a random number of trials

(every 3–14), in an unsignalled fashion. One of the two terminal states (S3 or S4) was associated with a high

reward outcome and the other resulted in a low reward outcome. (B) Timeline of the task for one example trial.

https://doi.org/10.1371/journal.pcbi.1005753.g001
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probability was measured for four different conditions: whether the reward received in the

previous trial was “high” or “low”, and whether the transition experienced in the previous trial,

relative to the trial before that, was “changed” or remained “fixed”. Our analyses of stay/switch

choices were restricted to trials that started from the first level and thus allowed the partici-

pants to make a choice. Furthermore, we restricted our analyses to first level trials following

trials starting at the second level, since only these could distinguish MB and MF strategies.

Across these conditions, MB and MF systems showed different stay probability patterns.

The MF system, having no experience of the action that led to the new contingency, was more

likely to stay on the action leading to the high reward state, and shift on the action leading to

the low reward state, under “fixed” than “changed” conditions (p< 0.01), indicating it was not

flexible to changes in contingencies (Fig 2A). However, the MB system could immediately

adapt with the correct next action, staying on the action if it would lead to the high-reward

state but shifting if it would lead to the low-reward state, with a main effect of reward (p<
0.01) regardless of contingency condition (Fig 2B). As expected, for contingency changes from

the first level, MB and MF systems did not differ in stay probability patterns, as the MF system

was able to update its action values accordingly, given that it directly experienced the action

leading to the new contingency (S1 and S2 Figs). In addition to pure MF and pure MB strate-

gies, we simulated a hybrid model that linearly weights MB and MF action values according to

a parameter wMB. The stay probability pattern produced by this hybrid system reflected a mix-

ture of the effects observed for the pure MF and MB stay probabilities–that is, showing a main

effect of reward (p< 0.01), but also an interaction between reward and contingency (p< 0.01)

(Fig 2C).

Subjects showed hallmarks of both MB and MF strategies in reacting to contingency

changes (Fig 3A), showing a main effect of reward, F(1,60) = 24.65, p< 0.01, as well as a

reward/contingency interaction, F(1,60) = 13.60, p< 0.01. Therefore, subjects did not solely

use a MB or MF strategy when reacting to contingency changes, but rather displayed a hybrid

MB/MF strategy.

While stay probabilities ruled out a purely MB or purely MF strategy, this measure could

not quantify the degree to which subjects used the hybrid strategy; therefore, we used a hierar-

chical Bayesian method to fit candidate models of behavior to the subjects’ data, to determine

which model best explained subjects’ choices and to obtain parameter estimates for the MB/

Fig 2. Stay probability patterns predicted by simulating model-free (A), model-based (B), and hybrid (C) reinforcement learning algorithms. Stay

probability measures the probability of choosing the first-level action that results in the same second-level state as the previous trial. This index was

measured for trials under four conditions: whether the reward received in the previous trial was “high” or “low”, and whether the transition experienced in the

previous trial (relative to the trial before that) had its contingency “changed” or remained “fixed”. Stay probabilities are plotted for trials following a change

trial that started at the second level, as only these distinguish model-free and model-based strategies. For the hybrid model (C), the parameter wMB was set

to 0.56, the median value of the parameter inferred from participants’ behavior. * p < 0.05, ** p < 0.01.

https://doi.org/10.1371/journal.pcbi.1005753.g002
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MF weighting used by the subjects. The models tested included a pure MB model, a pure MF

model, a hybrid model with one constant weight wMB across the session, a hybrid model with

three separate wMB weights for each range of contingency change rates (fast, medium, or

slow), and a hybrid model with three separate wMB weights for the three experimental blocks.

The last two models served to test whether the relative contribution of the two systems de-

pended on volatility of transition structure, or instead on block order, as contingency change

rates were counter-balanced across the first two blocks. Model-fitting was confirmed to be able

to recover true parameter values, as simulations showed that median estimated parameter val-

ues from model-fitting (see Methods for details) were well-correlated to known simulated

parameter values, r� 0.99, p< 0.01.

Model-fitting results supported the existence of a hybrid MB/MF strategy in our task. Can-

didate models were compared using two criteria – integrated Bayesian Information Criterion

(iBIC) which controls for number of parameters [24] and exceedance probabilities [25] (S2

Table). The hybrid model with three wMB weights over blocks outperformed the other candi-

date models under both criteria, with the lowest iBIC and a probability of 89.4% that it was the

most common of the four models across subjects. Thus, from here we only discuss the results

of best-fit model, the three-block hybrid model.

The median fitted wMB weights in the three-block hybrid increased across the three blocks

(Fig 3B–3D), indicating some extent of “anti-habitization” rather than habit formation. The

increase of wMB from block 1 to block 2, but not the increase from block 2 to block 3, was sig-

nificant according to permutation tests, p< 0.01. Stay probability analyses were not conducted

on the three separate blocks, as slower contingency changes meant that the later blocks had

fewer samples of contingency changes for comparison. The increase in wMB across blocks

was not attributable to differences in quality of fit from the model-fitting procedure, as the log-

likelihood of parameter estimates did not differ significantly across blocks, F(2,45) = 1.42,

p> 0.05. Strength of correlations between simulated wMB weights and wMB weights recov-

ered from simulation were also similar across blocks (block 1: r = 0.99, block 2: r = 1.00, block

3: r = 0.99; p< 0.01 for all blocks). Therefore, the significant increase in wMB from the first to

second block was not caused by differences in quality of model fit.

To confirm that the increase in model-based weight was not due to differences in the rate of

contingency changes, we further analysed the fitted weights from the three-frequency hybrid

model, which had a different wMB assigned to each range of contingency change rates, i.e. fast

(every 3–6 trials), medium (every 7–10 trials) and slow (every 11–14 trials) contingency change

blocks. The estimated wMB weights (S3 Fig) were not significantly different between fast vs.

medium, or medium vs. slow frequency of contingency change blocks in permutation tests,

Fig 3. Experimental results. (A) Stay probabilities from human subjects (N = 16) showed significant effects of both model-based (p < 0.01) and model-

free (p < 0.01) strategies. * p < 0.05, ** p < 0.01 (B) Probability density function over the model-based weight parameter, estimated in three different

blocks of the first, middle and last 200 trials (out of 600 trials). Overlaid are the individual subjects’ model-based weight parameter estimates for each

block type. Error bars represent standard deviation.

https://doi.org/10.1371/journal.pcbi.1005753.g003
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p> 0.05. Thus, the increase in wMB in our study seemed to be an effect of block order rather

than environmental volatility from differences in contingency change rates. In summary, sub-

jects became more model-based across the first two blocks but did not differ in MB influence

between different rates of contingency changes; therefore, it seems that block order, but not

contingency change volatility, affects wMB in our task.

As subjects became more model-based, high reward choices and consequently reward rate

also increased. Choice probabilities for the high reward action differed over blocks, F(2,45) =

5.77, p< 0.01, with post-hoc tests finding a significant increase between the first and third

blocks (p< 0.01) and the second and third blocks (p< 0.05). Additionally, there was a signifi-

cant difference in reward rate across blocks, F(2,45) = 3.83, p< 0.05, specifically increasing

between the first and third blocks (p< 0.05). Mean reaction time and number of missed trials

due to timeout did not significantly change across blocks, p< 0.05; therefore, the increase in

high reward choices over blocks was not necessarily because subjects were worse at the task to

begin with. Two analyses were performed to rule out the possibility of practice effects driving the

association between reward rate and model-based weight. Within each block, there was a signifi-

cant correlation of each subject’s median wMB and reward rate (block 1: r = 0.66, p< 0.01, block

2: r = 0.65, p< 0.01, block 3: r = 0.56, p< 0.05), indicating that on an individual subject basis,

the extent of MB control was related to reward earned. Since these analyses were conducted

within blocks, the association with reward rate could not be accounted for by block order.

Additionally, the hybrid model was simulated using a range of MB weights (0, 0.2, 0.4, 0.6,

0.8 and 1) using the one-weight hybrid model for simplicity. Other free parameters were set to

values fitted to the participants’ data. There was a significant effect of MB weight on reward

rate, (F(5,90) = 8.5, p< 0.01). Therefore, MB influence in this task corresponds to a better

“payoff” in terms of reward gained. However, lack of wMB adaptation to contingency-change

rate suggests that using the cognitively-demanding MB system, at least in this task, is not moti-

vated by its higher payoff. In other words, although being model-based does increase the pay-

off, it is not the reason for participants showing MB behavior. To further investigate this, we

also computed the effect of wMB on reward rate, separately for different contingency change

frequencies (fast/medium/slow) and found a significant effect of frequency on reward rate in a

one-way ANOVA (F(2,45) = 5, p = 0.01). This shows that contingency change volatility did

not affect wMB, despite having a significant effect on how much a MB strategy pays off. How-

ever, this absence of evidence should not be taken as evidence of absence, given the sample-

size in this study. Alternatively, this absence of evidence could be because the effect of wMB on

reward rate, though statistically significant, is in fact very small (S4 Fig). Therefore, this differ-

ence may not be apparent enough to discern or motivate a higher engagement of the MB sys-

tem as contingency change frequency increases.

Discussion

We developed a novel two-level contingency change task in which flexibility to frequently-

changing transition contingencies between states could determine the extent to which subjects

were using a model-based or a model-free strategy. Subjects showed a hybrid strategy when

reacting to contingency changes, corroborating recent evidence of the parallel contribution of

MB and MF systems in reward-guided decision-making. Importantly, this finding confirmed

that changes to transition contingencies can elicit a balance of MB and MF behavior akin to

changes to reward structure. Model-fitting analyses indicated that a hybrid model with three

MB weights best explained subjects’ choices, with relative MB control increasing over blocks.

The rate of contingency changes did not significantly shift the MB/MF balance; rather, MB

control increased over the first two blocks of trials. This increase in MB control was concurrent

Flexibility to contingency changes distinguishes decision strategies

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005753 September 28, 2017 7 / 15

https://doi.org/10.1371/journal.pcbi.1005753


with an increased proportion of high reward choices and consequently increased reward rate;

individually, each subject’s wMB was also correlated with reward gained in the same block.

In all, these results illustrated that not only do subjects use a mixed MB/MF strategy, but

within this hybrid strategy, the trade-off shifts towards “anti-habitization” across the first two

blocks. This agrees with a previous study [20] that used the two-step task over three days,

reporting that their subjects’ MB weight increased across days. One distinction between our

findings is that in [20], subjects started relatively model-based (i.e. median wMB> 0.5)

whereas in our case, subjects began relatively model-free (i.e. median wMB< 0.5). This differ-

ence in starting MB weight simply may be due to individual differences, which is evident even

within our subject pool. Alternatively, differences could be accounted for by the relatively

short reaction time limit in our task compared to theirs (750 ms in ours vs. 2000 ms). A shorter

reaction time limit is known to provide a depth-of-planning pressure and favor more MF con-

trol [10]. Hence, our subjects may have started more model-free and only become more

model-based once they mastered prospective planning of the task structure. This is supported

by the lack of significant changes in reaction time across blocks, suggesting that subjects may

have used the full extent of their time and eventually learned more efficient planning under

time pressure, therefore showing increased MB influence over blocks.

These findings of an increase in MB control over blocks, however, goes against another

study [26] using a similar task to the two-step task, that found an exponential decay in MB

weight over the experimental session, or habit formation. This difference in findings is likely

because they used a fixed rather than drifting amount of reward; in stationary environments

such as these, habit formation can occur from overtraining, manifesting in an increase in MF

rather than MB behavior [22]. Thus, these results point to the importance of maintaining a

changing environment, as subjects can otherwise adapt to the change and become habitized.

Manipulations of the rate of contingency changes did not seem to affect MB/MF control.

While it has been shown that environmental volatility can influence MB/MF levels in the con-

text of common or rare updates of reward structure [22], in our case, the kind and range of

contingency change volatility did not elicit a significant difference in relative MB/MF control.

Further work is certainly needed to definitively rule out the possibility that environmental vol-

atility in the form of the rates of contingency changes does not affect MB weight, but in the

present study, we find that subjects did not change their use of MB control with contingency

change volatility, but rather increased MB influence more generally with block order.

In conclusion, in a two-level contingency change task, subjects showed a hybrid MB/MF

strategy, emphasizing their parallel contribution in reacting to changes in transition contin-

gencies. The inclusion of multiple, frequent changes allowed us to perform model-fitting; by

doing so, we found an increase in MB control over the first two blocks, a result not detectable

in model-agnostic analyses alone. Our results build on the literature reporting the use of a

hybrid MB/MF strategy in reacting to changes in information about reward structure, here

demonstrating a mixture of strategies in reacting to multiple, frequent contingency changes

that has yet been unexplored.

In addition to MB and MF systems, a third reinforcement learning algorithm known as the

successor representation (SR) [15, 27] caches transitions (i.e., the probability of occupying a

state after performing an action in a previous state) in a model-free fashion, but learns reward

values in a model-based fashion. The SR algorithm is therefore flexible to changes in rewards

(like the MB system), but inflexible to changes in contingencies (like the MF system). As a

result, the MB behavior seen in the original two-step task with non-stationary reward structure

[8] could be equally explained with a SR model. In other words, wMB and wSR are conflated

into wMB. Similarly, the MF behavior in our task with non-stationary transition structure

could be interpreted under a SR framework, whereby wMF and wSR are conflated into wMF.
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In this sense, the two-step task and the task presented here complement each other in provid-

ing evidence that humans use both MB and MF strategies. This novel paradigm therefore pro-

vides another avenue for exploring the relationship between MB and MF control for future

studies in neuropsychiatric disorders that may differentially implicate this balance between

changes in transition contingencies and changes in reward values.

Methods

Ethics statement

Sixteen subjects (nine males, mean age 24 years) took part. The study was approved by the

University College London Research Ethics Committee (Project ID 3450/002). All subjects

provided written informed consent.

Experimental procedure

Subjects performed 600 trials of three blocks (200 each) which differed in frequency of contin-

gency changes: fast (contingency change every 3–6 trials), medium (every 7–10 trials) or slow

(every 11–14 trials). Each subject was assigned to one of two groups (n = 8 each), which dif-

fered by the order of presentation of fast and medium contingency change blocks, i.e. half of

the subjects had fast, medium, then slow contingency changes, and the other half started with

medium, fast, then slow frequency of contingency changes.

To ensure subjects understood the task structure, they were first trained with practice trials

(N = 35) which followed the same structure of the task but used practice stimuli. After this, a

training session (55 trials) started which used the test stimuli but without reward. This phase

was intended to introduce some familiarity to the transition relationships between states before

participants were allowed to make reward-guided decisions. This was then followed by the test

session using the same stimuli, but now rewarded, for 600 trials. Subjects were informed that

contingency changes would occur, but did not know the frequency of changes nor that those

rates would vary across the session.

At the first level, subjects had a two-alternative forced choice between two actions (pressing

‘S’ for the action available on the left side of the screen, ‘L’ for the right) with the presentation

of stimuli randomized for the left/right side of the screen. To ensure that subjects recognized

second-level states, they had to press ‘D’ if they encountered one of these states, and ‘K’ for the

other. Both responses had a time limit of 750ms, following which the trial would end with no

reward. Missed trials were not repeated.

Payoff at the high-reward terminal state varied according to a Gaussian random walk (N(μ =

0.5, σ = 0.2), with a drift rate of 0.15), bounded between £0 and £1. The payoff at the low-reward

terminal state was £1 minus the reward of the high-reward terminal state. In practice, this

resulted in an unambiguously large reward in one terminal state and an unambiguously small

reward in the other terminal state. Therefore, the overall reward structure was stationary (until it

flipped after every 40 trials, as noted). Subjects received a fixed proportion of their total reward

gained, with payoff bounded between £5 and £25. To make the task adequately difficult and pre-

vent formation of complex state-space representations [23], high- and low-reward assignments

switched every 40 trials between the two terminal states. This change was designed never to co-

occur with contingency changes.

Model

Both model-free and model-based algorithms seek to estimate the values of state-action pairs

in order to choose the actions which can maximize expected future rewards. The state space
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was modelled as having a first-level state s0 with two actions a1 and a2, two possible second-

level states s1 and s2, and two possible terminal states s3 and s4. There was only one action avail-

able on second-level and terminal states, as the subject did not have any choices at these levels.

The model-free algorithm updates values of state-action pairs using temporal difference Q-

learning [3, 28]. The reward rt is used to compute a reward prediction error δt which updates

action values for that state s and action a at time t, QMF(st,at). At the first level rt is set to be 0 as

there is no reward at this level.

dt ¼ rt þmaxa0½QMFðs
0; a0Þ� � QMFðst; atÞ

QMFðst; atÞ ¼ QMFðst; atÞ þ aMFldt

The reward prediction error updates existing action values according to a learning rate αMF,

and is modified by the eligibility trace λ, which governs how much credit past actions are

given for outcomes. In a TD(λ = 0) algorithm, first-stage actions are updated only by the sec-

ond-level action values, which in turn are updated by terminal state rewards. In contrast, in a

TD(λ = 1) algorithm, first-level actions are directly updated using the reward from the terminal

state reached on that trial.

The model-based algorithm learns both transition probabilities PT and reward probabilities

RT. The transition probabilities track the transition contingencies PT between states s and sub-

sequent states s0. Upon encountering a contingency change, the model-based system always

updated its knowledge of both transitions.

PTðs1!
a s3Þ ¼

1; if s0 ¼ s3; s ¼ s1

0; otherwise

(

PTðs2!
a s4Þ ¼

1; if s0 ¼ s4; s ¼ s2

0; otherwise

(

PTðs1!
a s4Þ ¼ 1 � PTðs1!

a s3Þ

PTðs2!
a s3Þ ¼ 1 � PTðs2!

a s4Þ

The reward probabilities RT use the reward rt to update its subjective reward R for that state

s and action a at time t.

Rðst; atÞ ¼ Rðst; atÞ þ aMBðRðst; atÞ � rtÞ

These learned transition and reward functions are then used to update the action values for

the model-based system, QMB.

QMBðst; atÞ ¼ PTðs1!
a s3Þ � Rðs3; aÞ þ PTðs1!

a s4Þ � Rðs4; aÞ

Other parameters from the simulated models included learning rates for model-based and

model-free systems, αMB and αMF, and a stay bias which temporarily increased the action value

for the previously-selected action regardless of outcome, to quantify a perseveration bias.

These additional parameters improved fit even when controlling for model complexity (S3

Table).

For both systems, values for the non-selected action were updated as well, assuming that

subjects knew that the reward for the selected action and reward for the non-selected action
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were negatively related, according to proposals of fictive reward [29]. Action values were

updated for both visited and non-visited states, with the action values of non-visited states cor-

responding to 1 − Q(st,at) of the visited states. The inclusion of fictive reward updates resulted

in a better fit to the subjects’ choices (S3 Table).

The hybrid model weighted MB and MF action values according to a parameter wMB, with

wMB = 1 indicating fully MB control:

Qhybridðst; atÞ ¼ wMB � QMBðst; atÞ þ ð1 � wMBÞ � QMFðst; atÞ

Action selection was then determined for all models according to a “softmax” rule which

computes action probabilities as proportional to the exponential of the action values.

p at ¼ a1jstð Þ ¼
exp ðb � Qðst; a1ÞÞ

exp ðb � Qðst; a1ÞÞ þ exp ðb � Qðst; a2ÞÞ

The inverse temperature β determined the extent to which action selection was stochastic

or deterministic from action values, quantifying an exploration/exploitation trade-off.

Simulations

To best replicate the subjects’ data of 600 trials for 16 subjects, each simulation was run for 16

initializations of 600 trials each. All reported simulations used fitted parameters from the

three-block hybrid model for the learning rates αMF and αMB, inverse temperature β, eligibility

trace λ and stay bias (S1 Table). wMB values were 1 for pure MB and 0 for pure MF models.

Model-fitting

Subjects’ data were fit to the models using mixed effects hierarchical model fitting. Expecta-

tion-maximisation was used which iteratively generates group-level distributions over individ-

ual subject parameter estimates, choosing the parameters that maximizes the likelihood of the

data given those estimates. In each iteration, parameters were estimated by minimizing the

negative log-likelihood of parameter estimates using fminunc in Matlab (MathWorks).

The group-level distributions over all free parameters were assumed to be Gaussian, with

no constraint. To then impose sensible constraints (0� wMB� 1; 0� α� 1; β� 0), the origi-

nal free parameters were passed through a logistic function (with slope parameter equal to

one) for computing wMB and α, and through an exponential function for computing β. Con-

sequently, although the original parameters were Gaussian, the resulting parameters of the

models (wMB, α, β) were not necessarily Gaussian (hence the skewed distributions in Fig 3).

This method is preferred to imposing hard constraints on parameters because it avoids param-

eters hitting boundary conditions and also remains loyal to the Gaussian assumption required

for hierarchical Bayesian modelling.

To ensure the efficacy of wMB parameter estimation for the candidate model, each block wMB
was simulated for 11 different parameter values: 0, 0.1, 0.2, . . . 1. These resulted in a total of 33

parameter settings for wMBblock 1, wMBblock 2, wMBblock 3, with 16 iterations per setting. All other

parameters in the simulations were set constant as the median parameter estimates taken

from the hybrid three-block model from model-fitting on the subjects’ data. The same model-fit-

ting procedure was performed on the simulated data and estimated parameter values were

extracted.

The integrated Bayesian information criterion (iBIC) [24] was used to compare the fits of

candidate models to the data, with lower scores indicating better fit; this criterion penalizes

more complex models. Finally, Bayesian model selection [25] was used to examine the
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prevalence of each model in the participant population. This quantifies an exceedance proba-

bility, the probability that each model is the most common in the subject pool.

Permutation tests

Permutation tests were run to evaluate the probability that wMB could differ across blocks by

chance. Subjects’ blocks were randomly permuted such that each “block” contained a mixture of

true first, second and third blocks. Model-fitting was run on each permutation to extract parame-

ter estimates of wMB for each new “block”. The probabilities p(wMBblock 2> wMBblock 1), and

p(wMBblock 3> wMBblock 2) were then evaluated for each permutation. The occurrences of the

random permutations which had a smaller p(wMBblock 2> wMBblock 1), and p(wMBblock 3>

wMBblock 2) than the true permutation were then tallied.

Likewise, to evaluate the effect of frequency of contingency changes, permutation tests were

run to compare wMB for fast, medium and slow contingency change blocks. Each subject was

randomly assigned to one of the two groups (which differed in the order of fast and medium

contingency change blocks) then wMB of each frequency block was computed for each permu-

tation. Both the aforementioned one-tailed permutation test and a two-tailed Hellinger dis-

tance permutation test were used.

Further analyses

To rule out the possibility that the effective learning rate of the MB and MF systems – rather

than their fundamental differences – produced the behavior, we conducted several further

analyses. A hybrid model composed of two MF systems with small (0.25) and large (0.75)

learning rates could not replicate the stay probability patterns observed from subjects and the

MB+MF hybrid system. Even more extreme, a hybrid model composed of two MF systems,

one with a small (0.25) learning rate and no eligibility trace (λ = 0), and another with a large

(0.75) learning rate and with eligibility trace (λ = 1) could not replicate those patterns. Further-

more, a hybrid model composed of two MB systems with small (0.25) and large (0.75) learning

rates could not replicate the patterns either.

When fitted to the behavioral data, all three hybrids of MF(α = 0.25)+MF(α = 0.75), MF(α =

0.25, λ = 0)+MF(α = 0.75, λ = 1), and MB(α = 0.25)+MB(α = 0.75) performed significantly

worse than the real hybrid MF+MB model, according to our measures of model comparison.

Together, these results rule out the possibility of just different effective learning rates of the

two systems having produced the observed behavior.

We further fitted a hybrid MF+MB with a free learning rate parameter, αMBTransition for

updating transitions by the MB system (rather than assuming the parameter was 1). This model,

in terms of model comparison, fit the data better than pure MB and MF models, and even slightly

better than the hybrid MB(αMBTransition = 1)+MF model. In all previous analyses, the non-diago-

nal elements of the covariance matrix were set to zero (i.e., assuming no correlation between

free parameters). However, for the hybrid MB+MF with a free αMBTransition , we observed

strong correlations between parameters when the covariates were allowed to change freely. The

αMBTransition parameter was highly negatively correlated with αMF, and positively correlated

with stay-bias, wMBblock 1, and wMBblock 2. We therefore decided not to rely on this model and

instead, for the sake of parsimony, to use the original hybrid MB(αMBTransition = 1)+MF model

throughout the paper.

Supporting information

S1 Fig. Stay probability patterns after first-level contingency changes predicted by simu-

lating model-based (A), model-free (B), and hybrid (C) reinforcement learning algorithms,
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along with experimental results (D). Stay-probability measures the probability of choosing

the first-level action that results in the same second-level state as the previous trial, following a

trial that started at the first level. For each system, this index was measured under four different

conditions: when the reward received in the previous trial was “high” or “low”, and when the

transition experienced in the previous trial (relative to the trial before that) “changed” or

remained “fixed”. � p< 0.05, �� p< 0.01.

(TIF)

S2 Fig. Stay probability patterns after first-level contingency changes predicted by simu-

lating model-free (A) and model-based (B) algorithms for 1000 agents. When starting from

the first level and encountering a change in the transition structure, both MB and MF systems

are able to update their action values. However, the extent of this update is not equal for the

two systems due to their different effective learning rates. As a result, the two systems show

slightly different flexibility levels (i.e., stay-probability patterns) even when both systems were

informed of the change in contingencies. Therefore, in addition to structural differences, the

MB and MF algorithms that participants used in this task also have different effective learning

rates. This difference is not apparent in S1 Fig because the models were only simulated 16

times (equal to the number of participants).

(TIF)

S3 Fig. Model-based weights for (A) fast, (B) medium and (C) slow contingency changes.

Probability density function over the model-based weight parameters estimated from model-

fitting, for the blocks of fast (every 3–6 trials), medium (every 7–10 trials) and slow (every 11–

14 trials) frequency of contingency changes. Overlaid are the individual subjects’ parameter

estimates for each block type. Error bars represent standard deviation.

(TIF)

S4 Fig. Reward rates of simulated model-based weights. Choices were simulated with six dif-

ferent model-based weights (0, 0.2, 0.4, 0.6, 0.8, 1, with n = 16 iterations each) and the mean

reward rate was computed. There was a significant difference in reward rate across different

wMB values, F(5,90) = 8.5, p< 0.01, however, the difference was small, which may account for

the absence of a significant modulation in wMB across contingency change frequencies.

(TIF)

S1 Table. Median plus quartile group-level parameter estimates. Best-fitting parameter esti-

mates over the subjects from model-fitting.

(DOCX)

S2 Table. Model comparison of candidate models. Integrated Bayesian Information Crite-

rion (iBIC) and negative log-likelihood of all candidate models from model-fitting. The

models tested were: pure model-free (“MF”), pure model-based (“MB”), hybrid MB/MF

(“hybrid”), hybrid MB/MF with different weights fitted for each of the three 200-trial blocks

(“three-block hybrid”), and a hybrid model with different weights fitted for each frequency of

contingency changes (“three-frequency hybrid”). The winning model was the three-block

hybrid, highlighted in gray, according to iBIC [24] and Bayesian model selection [25].

(DOCX)

S3 Table. Model comparison of additional parameters. Integrated Bayesian Information

Criterion (iBIC) and negative log-likelihood of the winning three-block hybrid model with dif-

ferent weights fitted for each of the three 200-trial blocks and the same model without stay

bias, with λ = 1, with λ = 0, with only one learning rate for both MF and MB systems, and with-

out updating fictive reward. The full model fit better to the data than the same model without
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each of the aforementioned parameters, even when controlling for model complexity in the

iBIC.

(DOCX)
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