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ABSTRACT

Certain Fredholm integral equations are studied which arise from
boundary value problems of potential theory. It is shown how these may
be solved numerically to a'good apﬁroximation. The results are applied
to the calculation of electrostatic capacities and to the computation of

velocity potentials.,
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INTRODUCTION

This thesis deals with certain three-dimensional boundary value
problems of potential theory. Such problems may be formulated in many
different ways, both numerically and analytically. Here we use
exclusively the method of boundary integral equations. The idea goes
back nearly 100 years but was not systematically exploited until after
1955. One reason is that, generally speaking, the equations can only
be solved numerically utilising fast digital computers which were not
available before about 1955. In some cases the existence of the
solution did not seem to be clearly established. Difficulties also
arise from the prescnce of weakly singular kernels,

Part I of the thesis deals with the formulation of certain
boundary integral equations arising in electrostatics and in potential
fluid motion. As regards the determination of electrostatic capacity
of conductors, we introduce simple sources on the boundary which
generate a unit potential everywhere in the interior and on the boundary.
This leads to a Fredholm integral equation of the first kind for the
source density distribution on the boundary. We establish the existence
and uniqueness of the solution of this equation, which does not seem
to be readily available elsewhere. The electrostatic problem can
alternatively be formulated by a normal derivative condition, leading
to a Fredholm integral equation of the sccond kind for the source density
distribution on the boundary. We have made a compafison between the two
approaches, which seem to be interesting both on analytical and numerical
grounds.

In Part I we also treat the velocity potential of potential fluid
flows past various rigid obstacles, of shapes which can not be handled
analytically. Two distinct formulations are studied, The first, due to
A.M.0. Smith in U.S.A., represents the velocity potential as generated by
a simple source distribution on the boundary. This source distribution
satisfies a Fredholm integral equation of the second kind expressing a
normal derivative condition on the boundary. The second formulation, due
to M. A, Jaswon, utilises Green's formula on the boundary to determine
the velocity potential directly. llere again we have made a compirison‘
between the two approaches, which seems to be interesting both on

numerical and analytical grounds.



Part II shows how to discretise the preceding equations. Our main
problem here concerns the subdivision of a given surface into small
intervals, i.e. sub-areas. Special complicationsarise when the boundary
has sharp edges and corners. Wec also show how the presence of homogeneows
equations affects the discretisation procedures.

In Part III we compute the electrostatic capacity of a cube. Our
results lie within all known bounds. We also compute the capacity of
circular discs of varying thicknesses. Our results converge to the exact
known result for a thin circular disc.

In Part IV we compute the velocity potential for shapes of
cylindrical symmetry, as well as for a thick delta wing. In all these
cases we first work with a suitable test velocity potential. This is a
necessary precaution against any errors which may arise in the
discretisation procedures and in our computer programs. In this section
we also deal with the thin delta wing problem discussed by Brown and
Stewartson. The thin delta may be considered as a limiting case of a
thick delta, but such an approach is not practicable numerically for reasons
given in Chapter 18. Accordingly we attack the problem by analysing the
velocity potential of a thick delta wing into symmetric and antisymmetric
components. The symmetric part arise from the thickness effect, and the
antisymmetric part accordingly solves the problem of a thin delta wing.

In the final Chapter we experiment with a method of successive
approximations. In effect this amounts to obtaining an approximate
analytical solution of a Fredholm integral equation of the second kind using
a perturbation technique. Although it works very well for smooth boundaries,
e.g. a sphere, it appears not to work well with boundaries having sharp

edges and corners.



PART I

THE FORMULATION OF BOUNDARY INTEGRAL
EQUATIONS IN POTENTIAL THEORY

10
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CHAPTER T

PROPERTIES OF POTENTIALS GENERATED BY SIMPLE
AND DOUBLE LAYERS

Simple Layer Potential

Let Bi denote a finite domain bounded by a smooth regular surface 6B,
The infinite region exterior to Bi is denoted by Be' Let there be a surface
distribution of simple sources on §&B of density ¢ , which is a

continuous function on 6B and satisfies a HOlder condition!

at every point
on 8§B. This distribution generates a Newtonian potential at any point p

which is given by

Vip) =J g*%-z—%!* ; qQ€6B | either peB; or peBe , (1)
§B
where p and q are vector variables such that p specifies a field point in
Bi or in Be and q specifies a source point on $B; dq and 0(q) denote the
area differential and source density, respectively, at the point q on é B;
IB - 1' denotes the distance from‘P to q (Fig. 1). The simple layer integral

(1) remains continuous as p crosses &B, and therefore on §B

-

Ip-ql
SB -

Although V remains continuous at ¢ B, its normal derivative is discontinuous.
The interior normal derivative of V at a point p of &8 B(Fig. 2) is given by

1
(Kellogg)

vi (P) = -2ma(p)+ g 91;9-—)-21- 5 P, Q6B (3)
Y ‘

where ;lg - j -1 stands for the interior normal derivative of If - g’—l

at,? keeping q fixed. The exterior normal derivative of V at p on éB

(Fig. 2) is given by

Vé(g) = -2m0(p) + 9(q)dq s P» q€6B (4)
~ lll)"'(il ~ -
e

éB
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where :|g - ql—l stands for the exterior normal derivative of fp - ql_l

at p keeping q fixed. Bearing in mind (Fig. 2) that

g pmal™ o+ gtlpmal T = 05 pesB )
we. find
‘v’i(g) + vé(g) = -4wol(p) (6)

-~

Further, V(p) -+ |p|™! 5 0(q)dq as IBI e

§B
More precisely

V(P)

IBI—“l J o(q)dq + OIEI—2
§B

i

olp[™' as |[p| =+~

Double Layer Potential

Let there be a surface distribution of double layer sources on B
of density u which is a piecewise continuous function at every point of & B,
The potential W generated by this distribution is given by
W, (p) = j ulqldq i qE&6B, peB,

o lpeli o T R ”

where ill(l - pl“1 stands for the interior normal derivative of|p - ql -1

at q keeping p fixed. Unlike the simple layer integral, the double layer
. . s . . . . . . 1
integral is discontinuous at OB whereas its normal derivative is continuous,
If we approach a surface point p from the interior, Wi jumps by an amount

- 2 7y (p). Let W represent a continuous function ¢ , in which case

¢(p) = W(p) ; either p&B, or peB . (8)
when p approaches OB along the normal at P to 8B, either from the interior

or- from the exterior, if follows that

¢$(p) = W(p) + 2mu(p) ; pesSB )
The above sign conventions are those adopted by Jaswon (1963)% This

convention has the advantage of ensuring that the interior and the exterior

formulae carry the same signs i.e. (3) and (4) for the normal derivative

expression and (8) and (9) for the double layer surface relations.
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Green's TFormula

Since every Newtonian potential is a harmonic function, it follows that
the potentials V and W are harmonic. Now the question arises whether an
arbitrary harmonic function ¢ in Bi can be represented by potentials such as
(1) or (7). According to Kellogg% if ¢ 1is given on 6B (Dirichlet problem),
it may be represented by (7). If ¢;, the interior normal derivative of ¢
is given on §B (Neumann problem), it may be represented by (1). However a
more general representation is provided by Green's formula. Given a

harmonic function ¢ defined throughout Bi’ which assumes values ¢ on §B

and normal derivatives ¢£ on 8B, Creen's formula states that
j G(p,g)iq‘)(q)dq - [ G(E"l)d’i(%)dq = ¢(p); qedB, peB, (10)
8B 6B

- | . . . .
where ¢ T = 4 wp - q | and G(E,g)i represents the interior normal derivative

of G at q keeping P fixed. When P lies on 8B, (10) becomes
y G(p,q);¢(q)dq - f G(p,q)¢;(q)dq = 1¢(p); q,pesB (11)
B éB ’

by virtue of the jump =-}¢ in the double layer integral

G(p,q)j¢(qldq - .
6B

This is Green's boundary formula for the interior harmonic ¢ . When p lies

~

in Be’ (10) becomes

JG(E,g)i¢(%)dq - (G(E,%)¢i(%)dq = 0; peB_, qedB (12)
0B 8

by virtue of the further jump in the integral

g. Glp,g)leCqddq .
~ ~ 1 &
6B |
Our sign conventionsensure that all exterior equations carry the same signs
as their interior counterparts. Hence for the exterior harmonic ¢ defined in
Be, such that ¢ = o|l2|~l

as IBI + © | whicn assuues._.values ¢

on 8B and normal derivatives ¢e on 6 83, Green's formula take the form.
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J G(P,g)é¢(g)dq - j G(P,g)¢é(q)dq = ¢(E)5 qe&B,PeBe (13)
8B éB
where G(g,g); represents the exterior normal derivative of G at q keeping

p fixed. When p is a point on 6B, as before,

~

.J.G(E’%)é¢(%)dq - f G(E,g)¢é(q)dq = 3¢(p); P>qedB  (14)

§B B

and for a point p in Bi’ by virtue of a further jump in the double layer

integral,

S G(p,g)é¢(q)dq -jé(P,g)¢é(g)dq = 03 peB,,qedB. - (15)
55 . OB |

It is interesting to examine the behavior of ¢ defined by (13), at

infinity. Given ¢ and (bé on 8B, from (13) we have

¢(p) = Ofp|~* J ¢$(q)dq - Ofp|~! j 9o (q)dq, (16)
8B éB
since G = O}p| ™! and G! = Ojp} ™2 when lp| + =

In contrast with the interior problem, where

J(bi(g)dq = 0
§B

for the interior harmonic ¢ (Gauss condition)

1 an
Jﬁ ¢e(§1)dq 0
8B

necessarily. This does not contradict the Gauss condition if we bear in

mind the compensating contribution from a large sphere at infinity.
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" CHAPTER 2

TORMULATION OF DIRICHLET AND NEUMANN PROBLEMS
BY FREDHOLM INTEGRAL EQUATIONS

Dirichlet Problem

If the simple source potential V represents a harmonic function
characterised by the boundary values ¢ , it must, from (2), satisfy the

boundary equation

¢(p) = [ 6(pqlo(qldq ; p,qesB (18)
§B

which is a Fredholm integral equation of the lst kind for ¢ in terms of ¢

on 8B. If a solution of (18) exists, it generates an interior harmonic

function

$(p) = f C(P,g)6(%)dq 3 q€éB, EeBi'
éB

and an exterior harmonic function

$(p) ='j G(p,q)a(qldq ; " q€8B, pe€ Be
B __1
such that ¢(p) = 0| p| as |p| + e« .Similarly if the double source
potential W represents a harmonic function ¢ in Bi’ it must, from (9)

satisfy the boundary equation

¢(P) = %u(P) + J G(P,g)fu(g)dq ; P,q&dB (19)
l -~
éB
which is a Fredholm integral equation of the 2nd kind for ¥ in terms of
$ on ©s,

Interior Neumann Problem

I, .
In the case of the interior Neumann problem, where ¢ . is given on 4B,
it follows from (3) that

¢i(P) = ~}o(p) + [ G;(p,g)o(q)dq ; p,qedB . T (20)
6B

This is a Fredholm integral equation of the 2nd kind for the unknown

boundary function O ,
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Equation (19) is fully discussed by Kellogg but is not utilised
in this thesis. Leaving aside (18) to be discussed later, the necessary
.1
and sufficient condition for the existance of a solution of (20), by

Kellogg, is

[utprstprap = o (21).

§B
where | is a solution of the transpose (or adjoint) hamogeneous equation

-3up) + J G(p,q)iulqddg = 0 ; p,qedB . (22)

8B :
This admits the non-trivial solution W = 1 by virtue of the Goum flux

theorem for the field point on & B viz.

‘IG(g,g>§dq = - r G(p,q)idq = }; p,qedB . (23)
Setti B =1 2 B .. . .
etting 1 in (21) we have the expected Gous condition for the interior
harmonic ¢viz, .
6B

The general solutiog'of (20) is then given by
g =g, +kA
where % is a particular solution of (20); K 1is an arbitrary constant

and Ais a solution of the corresponding homogenous equation

-3A(p) + { Gl(p,q)A(q)dq = 03 p,qeéB (25)
éB
An alternative proof of (24) is as follows. Integrating both sides of

(20) with respect to p and bearing in mind the Theorem (23):

1]
]
—

f ¢{(E)dp 30(p)dp + f ‘( Gi(g,g)o(g)dq dp
8B §B §B B

1"
!
N

%U(P)dp + J %o(g)dq = 0 : (26)

éB §B
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Exterior Neumann Problem

. (I .
In the case of the exterior Neumann problem, where ¢ o 18 8lven on §B,

it follows from (4) that

Nol-s

~

¢é(P) = -30(p) + j Gé(g,g)o(g)dq ; P,qedB [47)

§B
This has a solution, by Kellogg, if

. j 0o (Plulpldp = 0 (28)
6B
where u 1is a solution of the corresponding transpose homogeneous
equation
-3ulp) + JG(E,g)éu(g)dq = 0; p,qedB . (29)

8
The equation (29) in three dimensions has no non-trivial solution, since

its transpose

| 30
“%A(P) + fGé(g,g)A(g)dq = 0; p,qcéB (30)

‘OB
as shown in the next chapter, has no non-trival solution. As a result,

by Kellogg, (27) has always a unique solution.
Integrating both the sides of (27) with respect to p, we find

S ¢é(P)dp = -%‘j o(p)dp + f J’ Gé(g,g)o(g)dq dp
8B OB B 6B '

[}

-3 j O(B)dp -1 j o(g)dq = - f o(q)dq (31)
§B éB " 8B
which, in contrast with (26), does not equal zero necessarily. This is

completely in accordance with (17) in Chapter 1.

Creen's Boundary Formula

In Green's formula (10), the interior harmonic function ¢>is expressed
in terms of the values of ¢ and (p; on §B. These over—prescribe3the
boundary data and, therefore, the formula cannot be used directly to solve
the boundary value problems. This is because ¢ alone
on 6B, or ¢i alone on OB, or any admissible local relation between ¢ and

¢£ on 68, suffices to determine ¢ throughout B.. One way out of this
difficulty is to take the field point p on 8B itself, which is Green's

boundary formula (11). This may be viewed as a constraint between $ and
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¢ ; on OB that defines one in tcrms of the other . Given ¢ on § B

(Dirichlet problem), (11) becomes a Fredholm integral equation on the lst

kind for ¢ ; viz,

(32)

1 1
J G(P,g)¢i(q)dq = =3¢(p) + 5 G(E,q)i¢(q)dq 3 P»qedB
3B 6B
Conversely, given ¢ ; on 6B (Neumann problem), (11) becomes a Fredholm'

integral equation of the 2nd kind for ¢ viz,

1 1
-3¢(p) + f G(p,q);¢(q)dq = j G(p,q)¢;(q)dq ; p,qesB . (33)
§B §B

Leaving equation (32) to be discussed in the next chapter, we come to

equation (33) which, by Kellogg, has a solution if

| .
j A(p)dp J G(P,g)¢i(g)dq =0 ; p,qcdB . (34)
éB §B

Here A is a solution of (25), which is the transpose of homogeneous part

of (33) viz.

1
—}¢(P) + JG(P,g)i¢(g)dq = 0 ; P,qeGB . (35)
8

This equation (35), by virtue of (23), exhibits a non~trivial solution
$ = 1. Hence (25), which is the transpose of (35), has a non~-trivial

solution A . Interchanging the order of integration in the left hand

side of (34), we have

1 1
5 A(P)dp j G(g,g)¢i(g)dq = { ¢i(g)dq 5 G(g,P)A(P)dp=(),
éB éB - 6B &B

Since G(p,%) = G(q,p) and j G(%,Q)A(E)&: d= 1.
B

The above condition is in agreement with the condition derived in (24).
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The general solution of (33) is given by

b= 0y + kT

where ¢ is a particular solution of (33); k is an arbitrary constant
(o}
and N =1 is a solution of the corresponding homogeneous equation (35).
' | ’
Given ¢e on 8B (the exterior Neumann problem), (14) becomes

a Fredholm integral equation of the 2nd kind for ¢ viz.

1 1
-3¢(p) + J G(p,q),¢(qldq = J G(p,q)¢,(q)dq ; p,qesB . (36)

8B 6B
This has a solution, by Kellogg, if

1
A(P)dp ]é(g,g)¢e(g)dq =
oB fol:)

where )

O ; p,qedB

is a solution of (30) which is a transpose of the homogeneous
part of (36).

It is discussed earlier that in three dimensions, equation
(30) has no non-trivial solution.

Hence in three dimensions, by Kellogg,
(36) has a unique solution.,

Confining our discussion to three dimensions, we find the exterior

Neumann problem, in contrast with the interior Neumann problem, has always
a solution and that it is unique.
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CHAPTER 3

EXISTENCE AND UNIQUENESS OF THE SOLUTION OF FREDHOLM

INTECRAL EQUATION OF THE 1ST KIND

The Electrostatic Equation

If we put 0

]

1 in (18), we obtain the electrostatic equation

5 G(P’Cl“(‘l)dq

= 13 p,qedB 37
8B
Since ¢ =1 on 4 § B, it follows that ¢ = 1 everywhere in Bi' Hence
taking the interior normal derivative of (37), we have
1
‘%X(B) + J Gi(?,g)A(g)dq = 0 ; E,ngB . (38)

6B

This equation exhibits a non-trivial solution A , since its transpose

1
~3u(p) +J 6(p,q);u{q)dq = 0 ; p,qedB ,
8B _ ‘
has, by virtue of (23), a non-trivial solution Y = 1., The solution of

(38) generates an interior simple source potential

X(p) = JG(p,q)A(q)dq 3 gédb, geBi (39)

éB
characterised by

1
Xi(g) = 0 ; p€dB . (40)

It follows that X = Constant on B, Hence the solution A either

satisfies (37) or possibly satisfies

J G(p,q)A(q)dq = O ; p,qedB . , 1)

8B
Let us assume the non-trivial solution A of (38) satisfies (41).

Hence it generates an exterior simple source pot.ntial
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)((P) = J G(P,q)k(g)dq : QEBB,PeBe | (42)
éB

characterised by

X(p) +0|B|"Jx(q)dq as ]p[ > o . (43)
©B
The combination of (43) with (41), i.e. X =0on & B, implies by a

. . 1 .
classical existence theorem that x.= 0 everywhere 1in Be.

Hence
1
)(e(g) = 0 ; pesB . (45)

Bearing in mind }(i (p) =0 ; p € 4B, by (6),
it follows that

-A(p) = ﬁ(p) ¥ l<p) =0 .
£ i3 e's

This shows that the equation (41) has no non-trivial solution. Hence A
satisfies (37), and the solution of (37) is unique. In two dimensional

potential theory

X<(p)

oClog [pD) | n(qaa as [p] + =
8B

and hence we can not conclude that X = 0 everywhere in Be even though
X =0 on §B. In two-dimensions, therefore, equation (41) may exhibit

a non-trivial solution ([” contour case, Jaswon 1963).

Generalisation of Electrostatic Equation -

To show that the more general equation (18) has a unique solution,
let us consider its equivalent normal derivative equation (20).

It has already been shown that the general solution of (20) is

o = 0'0 + kA ’ . | 45)
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where 00 is a particular soluton of (20); k is an arbitrary constant
and A is a solution of the corresponding homogeneous equation (25). This
solution generates a simple source potential that differs from ¢ (p)
of (18) only by a constant, which may be eliminated by choosing a suitable
value of k. Hence 00 + kA provides a unique solution of (18). This
discussion covers the equation (32) though it remains to be proved that

¢ ; (p) of (32) satisfies (24). Operating on both sides of (32) by

f---- c e -A(g)dp and interchanging the order of integration (Fubini's

theorem), we have

1 1
JA(B)dp JG(P"lmi(‘l)dq = [A(P)dp IG(P,Q)1¢(g)dq—% g)\(g)cb(g)dp
6B §B 5B 6B 6B

. 1 1
i.e. J¢i(g_)dq fG(q,g)A(g)dp = L¢(g)dq fG(P,g_)iA(Q)dp—& fk(g)cb(g)dp
éB éB $ $B éB

1
i.e. f¢i(g)dq = 3 f¢<q)x(g>dq-% IA(P)cb(g)dp
éB éB $B

Relation between formulations

We have two formulations (18) and (32) of the Dirichlet problem, both
of which are Fredholm integral equations of the lst kind. Neither of these
coincide with the classical formulation (19), which is a Fredholm integral
equation of the 2nd kind. To establish a connection between (18), (19) and
(32) let us introduce Green's identity (15) for an exterior function ¥ in

. . -1
Be’ characterised by the behaviour O Ipl aSI P I + o,
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1 1
(G(g,q)e“’(q)dq- g G(p,q)¥,(q)dq = O ; peB;,qedB | (46)
6B 8B

Superimposing (10) and (46), and bearing in mind the relation (5), we find

1 1 1
]G(P,g>i[¢(g)-wg)]dq - g 6(p,a)[6;(Q+¥ (@]dq = #¢p) . UD
6B 88

There are two distinct possibilities for \" :
(1) Y = ¢ on § B, whence
1 1

¢(p) = - SG(P,%)[WQ(3)+¢i(q)] dq ; chGB,EeBi . (48)

éB
Putting \yl('c_lv) + ¢.; (g) = "0‘(9,,)’ (48) identifies with (18),

1 1
(ii) ‘*’e(%) = -¢i(g) on  §B, whence

IR
op) = | [oc@-¥(@)]e(p,q) dqa 5 pen; gesB . 49)
6B

Putting ¢ (q) - y(q) = U((l)’ (49) identifies with (19) when

p is taken on  &B.

~



24

CHAPTER 4

SOME. APPLICATIONS OF POTENTIAL THEQORY

Electrostatic Capacity

It has been shown that the 'electrostatic' equation

j G(p,q)A(gldq = 1 ; p,qeéB (50)
6B

exhibits a unique solution A. To prove that A has the same sign
everywhere on 8B, we note O B is an equipotential of the exterior

! . .
harmonic functionn X of (42). Hence Xe has the same sign everywhere on
GBo NOW

|
K= Olhl as ,H"’oo ) :
\ .
Therefore, Xe<g)< 0 ' (51).

everywhere on §B. Bearing in mind ](i (B) = 0, we see that, by (6),

1 1
NNp) = -(Xi(g) + Xé(g)) >0

~

on §B. The quantity

k = f A(p)dp>0 (52)
§B
is defined to be the elecctrostatic capactity of § B.
The electrostatic density A which generates the potential ¢ =1 on & B

can be obtained by solving the equation (50). The capacity }" then may be

computed using this A in (52).

Potential Fluid Motion

An inviscid incompressible fluid is flowing from infinity with
uniform velocity | . 1In the finite region it passes round a fixed
obstacle B which distrubs the flow. If Y 1is the velocity potential of the

freerflow, and if ¢ 1is the perturbation of this potential by the presence

of B, then the total velocity potential is

= ¢ + V¥ ; . (53)
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where -VY = U =4 constant, (54)

-1
and ¢ = OIBI , by (16), as [p\_.,oc .

The normal velocity component is zero at the boundary § B, and so
1 1 1
= + = H S .
¢e(g) ¢e(g) ‘i‘e(g) 0 3 ECGB (55)
From (55), CP:,_(B) = - y L(B) , PESB, Since y Lis
known (F;' is therefore known m §B. Hence the determination of ¢

becomes an exterior Neumann problem which, as shown earlier, has always a

unique solution.

1 1

Since ¢e = "q'e on §B ,

we have
1 1 ,
$o(p)dp = - f ¥ (p)dp = 0 , by (54) . (56)
§B . §B S ,
Putting (56) in (16), we find in the case of potential flow, that the
~2

perturbation b is of order | p | as [p| + = .

Given ¢; on 8B, the perturbation ¢ can be obtained in two
ways:-

(1) It can begenerated by a simple source distribution of density
o} on § B such as (18) i.e.

¢(g) = / G(g,g)c(g)dq 3 gedB (57)
8B
where @ is obtained by solving the integral equation (27) viz.
1 ) 1
-30(p) + G,(p,qlolgldq = ¢.,(p) ; p,qedB (58)
6B

in which ¢ ! (p) is given by (55). The 0 's in (58) have the property,
e o~
by (31) ,

1
f‘-’(g)dq = - [ $o(p)dp = 0 , by (56) . (59)
éB B
(ii) ¢ can directly be obtained by solving the integral equation
(36) viz.
1 1
~3¢(p) +j 6(p,q),¢4(q)dq = [G(g,g)%(q)}_dq ;'P,%G(SB (60)
8B €3 '
vhere  ¢' on &8 is given by (55).

e
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CHAPTER 5

NUMERICAL SOLUTION OF FREDHOLM INTLECRAL EQUATION

Tirst Kind

To solve a boundary integral equation analytically is, generally
speaking, out of/;hzstion. A straightforward numerical approach replaces
the equation by a system of simultaneous linear algebraic equatioms,
referriﬁg to a set of nodal points spaced over the boundary. The equations
are then assembled and solved by writing a digital computer program.

For a numerical solution we divide the surface OB into N intervals
i.e. sub=areas, and then we make the fundamental assumption that

(1) TIE SOURCE DENSITY REMAINS CONSTANT OVER A SUB-AREA .

On the basis of this assumption, for a particular field point p,

equation (18) becomes

N .
; @JQ(&»,I) ‘Lb = ¢, . (61)
T

where ©6j stands for the constant value of 6 over the j th sub-area. To
make further progress, we introduce a pivotal point Qe within the k th sub-

area, which is normally the centroid of the sub-area, and we put

S P AR

successively. As a result (61) becomes
N .
Z@ Iq((l’w L)dy, = *@n) 3 R=1,2, - - N (62)
]
J=1
This is a discrete system of N linear algebraic equations for the N unknowns .
Equatiorms (62) can be put in the matrix form

[+ [o] - (4] “

where [OJ is a column vector with the elements 65 and [431 is a column

vector with N elenents CP(gj); [A] is a N x N matrix with elements
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ay - ja(ln.'@) & 6
j .

i.e. the integral of G (91<."l) over the jth sub-area keeping 9 fixed. 1In
principle this can be computed as it stands, but simple approximations to
it suffice for our purposes. Two distinct cases arise:
(a) when j = k, the integrand is finite. To approximate it we make the
assumption that
(2) THE KERNEL REMAINS CONSTANT THROUGHOUT THE SUB-~AREA, ITS VALUE
BEING ASSOCIATED WITH THE PIVOTAL POINT 9

On this basis, we find

ij-=G(CLR ,‘L)Jj% 5 1R (65)

(b) when j = k, the integrand is singular, but integrable, and it may be
evaluated analytically (Appendix I).

Given CP on bB, (63) represents a system of N linear algebraic
equations for Oy’ These can be solved either by the matrix inversion method

or, since a # 0, by the Gauss - Seidel iterative method.
Second Kind

Following the basic assumptions and procedures adopted with equation

(18), we write equations (20) and (27) as

N
- 2 +2@JG'(‘LM1)4@=<}>'($?) p k=1.2, 00 - N, (66)
R

Given 43' (qk) on OB, this reprcsents a system of N linear algebraic

equations for the unknowns Gys Gy =oec- o of the form

=[] -

The element X’kj of the N x N matrix [B] is given by

fpkj = ‘Gl(i’k ’C,l.’) (21; ’ j*k ’ 6%
j _ .
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| 3 '
=_I_Z+JG (lmi'/"l‘b 5 d=R - (69)
] : .

The integrand in (68) is finite and on the basis of the assumption 2 it

becomes

{ . .
LM-—.G(I,R,L)JCH/ otk (70)
)
The integrand in (69) is apparently indeterminate but integrable, and may

be evaluated analytically (Appendix I1)

Similarly following the same assumptions and procedures; we write
equations (33) and (36) as

N :
_ i;(ln) jﬁ(h,% >4>' jG 'L,Qﬂ; 3 k=t,2, N . O
7
Given q>(gk) on aB, this equation represents a system of N linear
algebraic equations for the unknowns Cp(il), <?(32), e dP(iN)’

of the form

c]l¢] =[»] . o

The element ij of the N x N matrix [C] is given by

Chj = JG(l’n )1‘)'4‘]4, “’ j"#

]

=~

’ (73)

=gt Zq(lk,@%* =R (74
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The integrand in (73) is finite and, as before, on the basis of assumption 2,

it becomes

1 .
cwaak,x)h SNTON 73)
3
When j = k, the integrand is apparently indeterminate but integrable, and may

be evaluated analytically (Appendix II). The column vector [D] has N elements

N
A, =Z¢‘(1j)Jg(‘LR,‘L)&1{ b okR=1,2, -+ N .
L j
3=l

The above integral for j =1, 2, ..... N is evaluated in the same way as (64).
From (69) and (74) we find that the diagonal element in any of the
matrices [Bl and [C] is a fairly large element in a row. This makes the

equations amenable to solution by the Gauss-Seidel ’4dterative method.

Singular Matrix

l
In the electrostatic problem 431 =0 on OB, so that (Z0O) becomes the

homogeneous equation

AR G (YN, =0 7o

where int. stands for interior normal (replacing i of Part I).

. I .
On discretisation (76) gives (67) with ¢ = 0, and [6] is replaced by[A]

i.e. [F_)][}\] -0 .

It has already been shown in Chapter 2, that the equation (76) has a non-trival
solution. Hence the matrix [B] must be singular. This property must be
ensured by our numerical procedure. How can this be done? Since (76) has a

non-trivial solution, it follows that

[0+ [ al ()20 | o,

B 3B
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Our numerical approach should theoretically ensure that

.
JC‘L@&)O{;’” =7 | (77)

B

This result suggests that we should define bkkf given by (69), so that

N
Q)kkfz JGL(IJ@H(L:O voR=b2,e N
i1 R
N
¥
i.e. by (68) , Q’m{*z 2’5#: =0 5 k=L, N, (78)
7

*
where Z “indicates omission of j = k in the sequence j = 1,2,,.. N,
This means that the sum of each column of [B] is zero, and hence

evaluation of bkk by (78) ensures that the matrix [BJ is singular.

The homogeneous part of (33), i.e.
!
LB+ [Wa(E)L 4, =0 9
o

on discretisation gives (72) with [D] =0, i.e.

[e][#] -0
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Since (79) has a non-trivial solution, shown in Chapter 2, the matrix [C]

must be singular. This property must be ensured . by our numerical

procedure. Adding all the elements in a k th row of [C] s, we obtain,
by 23,
N N
|
ol (
)- CR) T2 f}j G ~R’1)bdﬂf
41 j 3

Hence our numerical approach should ensure that

XG(LR 1}):!0{1{ "‘Ji 5 R=1,2, .-+ N . (80)

o8

This result suggests that we should define Ckk’ given by (74), so that

* :
CMQ + SG((L;Q ’1")1\,&1( =0

*
where I indicates omission of the k th interval. Evaluation of Ckk by

(81)

(81) ensures that the matrix [Cl is singular.
In the case of the exterior Neumann problem, the homogeneous equations

(29) and (30), shown in Chapter 2,have no non-trivial solutions. Hence
the matrix [Cl and [B} , obtained on discretisation of (29) and (30)
respectively, are not generally singular. In such cases we assume

(3) THE SUB-AREAS ARE PIECEWISE FLAT .
On this basis, by Appendix IL ,we find

J'Gl(ifkai’)(i(lr =JG (‘LR,L)lo(elr =0 . (82)
R

R
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CHAPTER 6

PRINCIPLES OF DIVISION OF A SURFACE INTO SUB-AREAS

Introduction

We now consider in detail the problem of dividing a surface into sub-
areas., In the case of a flat surface, say the surface of a cube no
difficulty arises. We simply divide each side into equal squares. On the
other hand, in the case of a sphere, it is not immediately obvious how to
proceed. The possible sub-division of a spherical surface is given in
Figure 3. This suggests that the optimum sub-division will be a mixture of
squares and triéngles.

It is also necessary to consider that, generally, the charge density is
not constant. It varies over an interval and therefore our fundamental
assumption i.e. the charge density is constant over a sub—area, brings in
some error. The question now arises how we can minimise this error by a

suitable choice of sub-area.

Variation of density

To carry out our numerical analysis, we divide a curve, a surface or a
volume into smaller intervals and we assume that the density G over each
interval is a continuous function which spreads uniformly in all directions
from the centroid. TFollowing Wekrstrass's theorem, we know, any continuous
function can be represented as accurately as we please, over a finite range
of its arguments, by a polynomial of sufficiently high degree. Hence &

-at a point (x, y, z) can be approximated by
d :Z Fn(l’"ﬂ’--ﬁ) ’ (83)
© :

where Fn is a plecewise continuous symmetric polynomial function of degreen.

On rearrangement, F can be written as

b= E Anjljkj , (84)
j R

where ij is a homogeneous polynomial of degree j which remains invariant

under any permutation of %, y ana z.
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To simplify our numerical calculations, we approximate the value of &
over an interval by taking only the first term in its Taylor expansion
about the centroid of the interval. As a result, the approximate value of

O becomes a constant over an interval, which agrees with our fundamental

assumption.

At any point 1I<X°+5x 7kf63 320*62) , we may write

= ok F, Y-
o) = ) [E, (o, go120) 4 5% 55 Tgh} U P € )
n

where (xo,yo,zo) are the co-ordinates of the centroid'go of the q th interval.

According to our approximation,

5(1, 2 (xo,}o,Z) (86)
n

Neglecting higher-order quantities, the significant part of the error in

(86), as compared with (85),1is given by

B ak, OF
€ -'__J.égi— ox + \3 g} —\~ 82><L1f (87)

n

where the integral is taken over the q th interval and dq stands for the
volume element dxdydz at (x, y, z). Transferring the origin of the

reference frame to (xo, Yoo zo), we find, by Euler's theorem on homogeneous

functions,

:f—i{l aFdxcl
G}Lé +3}} ><J-:rz

n

i J R () declyde (88)
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Some special Intervals

Taking z = 0, a typical term of € is given by

1 =j(xmah+ 1n3m> dx Ol} . | (89)
1

(1) For a circular area with radius 'a'

g e

’

a
! j Ym+n+1(cosm9 Sn6 4 Cos'O SWMG) do dr

6=0 r=0
iy
meny 2 2 .
m . n
6:0 (90)

This can be computed for any choice of m and n:

(@ n=1,m » O orm=1, n Z» 0 gives
mEny L {
' = .&Q__—’—'—
Ic -

mantz  (mrn)

Bd) nrl, m=0 gives

MR
I = 8a Km—})(h—ﬂ---}-i LS ; when n is an even integer
’Vlfnf’z.l_nm.)_) ----- 42 2 v

= SQMWL[@H}(H)“' b

MmNt [ n(n2).- - 5.5.1 1] ; when n is an odd integer,



(¢) n>1l, m >1 gives

; =%am+n+2[1.3,5...(n4), {.3.5.. '(M—l)

< m X
At 2:446--+ (intn) 7

5 when both m and n are even,

:8amm+7'[2.4.6--~(’n~1) J |
( )

m+n+ r\+1)(yu1) N (m_fn)

toham any one of them, say m, is an odd integer .

(ii) For a rectangular area with sides 2a and 2b,

a :
IR:&S (37" o Y dy

= 1 et 41, mid
‘4W['&m b —t(lyk A ] .

(91)
(iii) For an isoceles triangular area (Fig. 4)
. m n n o
IT"J(K Ty )d‘i, y Putting x = r Cos® ,
1 : y=1r Sin®
and H =r Sec®
3 Gj Hj SecG
= mo..n )
2 f [(cos OSn' 0 +Sun @ cos0)| P Otrl de |
321760 =0
= mint+ Z 0;
=2 H;

)

¢ : ,
4 n m .
Mty j (T“’“ o+ Jan 6> 5957’@ do
- o-0

< .

36
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3
- LR SC Y
- 22 H_'j .TCWLVUI@J. . Ta nhMlq' ) .

n+1i Myl (92)

Optimum Choice of Interval

The integral IR in (91) varies with a and b. For a given rectangular

area, IR has a minimum when a = b, Hence by (91)

mintl

To=Tg = o - |
I G G ) vhenas=b oo 03

Similarly, I, in (92) attains a minimum when the triangular interval of a

T
given area is an equilateral triangle. This is evident from Table 1 in which
IT ( © ) refers to the value of IT for the isosceles triangle with base angles
© . The triangular areas considcred therein are each of unit area. From

Table 1 it is clear that for all values of m and n, for a given area

T,0s°) > T(30°) »1; (45°) 7 14 (60°) < 1,(#°) . (94)
Further for a given area

I < Tsy €T (60%) | (95)

This is evident from Table 2 in which the areas considered are each of
unit area.
All the relations mentioned above are true for every term of (88)

and therefore these are true for (88) itself.



ESTIMATION OF ERROR ON UNIT TRIANGULAR AREAS

37(a)

o o 0 o 0
m n mn IT(15 ) IT(SO ) IT(45 ) IT(6O ) IT(75 )
0 1 1 0+80765 0:64138 0:56929 0+54574 0°58422
1 1 2 025881 0°21605 0:17901 016667 0:17328
2 1 3 0°16290 0°10582 007344 0°06302 007260
3 1 4 0+16603 0°06883 0:03601 0:.02673 0.03972
3 2 5 0-04918 0.02713 0-01453 0+01067 0+01361
L 2 6 0°05655 0°01993 0+00805 0°00499 0+00856
Table 1

ESTIMATION OF ERROR ON DIFFERENT FICURES OF UNIT AREA

m N mn I, Isq L1(60°)

0o 1 1 0+47890 050000 0-54574

1 1 2 0-10132 0-12500 0:16667

2 1 3 ‘0.03049 004167 0°06302

3 1 4 0+01075 0°01563: 0:02673

3 2 5 0°:00408 0:00521 0°+01067

4 2 6 0+00101 0.00208 0°00499

Table 2




38

General Rules for Sub-division

" In numerical analysis, tﬁe entire curve or surface or volume under
consideration should be covered by intervals keeping no gap between them.
The spherical intervals can not be fitted together to cover a volume in
the above fashion. The next most suitable intervals are the regular
polygons, of which the simplest interval is a cube. Similarly, in the case
of a surface, the most suitable interval i.e. sub-area is a square or an
equilateral triangle.

Bearing these considerations in mind, we lay down the fdllowing general

procedures:

1. It is recommended to cover a curve, a surface or a volume by'the
same type of intervals as far as possible.

2, In case of a surface it needs, in general, a mixture of
triangular and rectangular sub-areas to fit together. The
triangular sub-areas should be as far as near to equilateral
form. The rectangular sub-areas should be kept near to the
square form.

3. It is found, in general, that § changes rapidly as we approach
a sharp edge or a corner on a surface. In fact it can not
preperly be represented by (83) near a sharp edge or a corner,
Hence in general, one should not expect to obtain an accurate
measure of (G at these points by our numerical methods. To

achieve a tolerable approximation to ¢ near such a point:

(a) The sub-areas should become smaller in size as we approach
such a point. '

(b) The reduction in size of the sub—area should be gradual.
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CHAPTER 7

APPROXIMATE INTEGRATION

Introduction

To evaluate analytically an integral of the form

1 {F(bfk)% (96)
28

the first requirement, in general, is that the integrand should have an
analytic expression in terms of the co-ordinates of q. Further, the
boundary surface OB should also have an analytic expression. For bodies
with definite regular geometrical shapes, there are analytic expressions
for OB, but sometimes it happens that even for these the evaluation of
(96) becomes very complicated. TFor a body with an irregular boundary
different parts of it may require different analytic expressions, in which
case the evaluation of (96) becomes extremely complicated. Often in
practice, only the numerical values of the integrand are available at the
pivotal points of OB. Accordingly this is not generally possible to
evaluate (96) analytically.

In view of the above difficulties, we must think of an operation to
approximate (96) over any surface OB over which F(p,q) is defined. It is
desirable that the operation should be simple on the one hand and, on the
other hand, it should be capable of approximating (96) within a tolerable error.

When F(p,q) is a function of a single variable, as happens with the
plane curves, the Simpson and the Trapezoidal rules of approximate
integration produce results to a sufficient degree of accuracy. Unfortunately,
there arq%ﬁgigiﬁgégﬁalogous rules to effect an approximate integration when
the integrand is a function of two or more independent variables.

Approximation Methods

When F(p,q) is a function of two or more variables, we propose two methods

to approximate the integral over OB @
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(1) The AVERAGING method of approximation.

(i1) The CENTROID method of approximation.
In both these methods, we divide OB into N intervals i.e. sub-areas,
operate on each of the sub—areas separately, and then add them up to
approximate the integral over OB,
1) AVERAGING METHOD

If the k th interval, i.e. sub-area, is an m sided polygon, the
averaging approximation to (96) over this area is defined by
Nyt
I,- 571 1T ’f»c&:aa , (97)

m+1

R
R=1

where 9129y seeer 4 define the m corner points of the polygon and q,
defines the pivotal point (centroid) of the polygon.
(11) CENTROID METHOD

If Ic represents the approximation to (96) by the centroid method of

approximation, thaxIc is defined by

N

.- F(i"k)f% b g, ©98)
R .

R=1
where, as before, q, defines the centroid of the k th sub-area.

The centroid method of approximation is nothing but the application
of assumption 2 in the evaluation of (96). The averaging method may well
be looked upon as an extension of the above principle,

If the integrand has a factor_ lP - g‘ then, depending upon the
position of p two distinct cases arise:

(1) If 2 + q , rhe integrand is finite and evaluation of (97) as

well as of (98) is straight-forward.

(ii1) 1f p = q the integrand is singular and, the integral must

be evaluézed analytically., -~

A Comparative Study of the TWO Methods

To make a comparative study of the merits of the two approximations,
we consider the analytic value of the integral (96) for a particular F.

In this thesis, we deal mainly with integrals of the type

Tl | dy,
. | k-1 )= |-y
R ~ -




Let us therefore take

1 = -V (99)
b1 |
B

as a test case for a comparative study of the two approximations.
Using a cartesian frame of reference, let OB be a rectangular
. + + . .
area defined by 2 =0, X = - a, y = - b. Since q € OB, we may write

q = (x, y, 0) and a field point may be represented by p = (X,Y,2).
By appendix I,

i} du dy ,
I ()7 27 | (100)
P8 a

~ : L R=Teb
k( )C
- loj T |re+lh”+DlE +2 05l [t E TR ) -SulBF ¢ (R D
Re) (R4 %) e P |
:
- Ry-b

2- +
where C= )(+O.) D= C-‘;Z. , E=%X-0a, Fl:EL—tZL and k= T"'a’ .

Choosing a = b = 1 to ease the numerical work and treating OB as a
single sub-area and not sub-dividing it any further, we compute I,, Ic for
(100) for various locaticns of p as indicated in Table 3.

~

From Table 3 we find that, for all locations of the field point,

I I—IC\ £ II—IAI : (101)

.

41
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41(a)

CO~-ORDINATES DISTAKCE I I I % ERROR
OF p FROM CENTRE c A IN IC
X v Z
0-750, 0, O 0°750 1°41929 133333 176736 | 6-06
1-750, 0, O 1-750 0+57898 0°57143 0°41027 1-30
2+750, 0, O 2°750 0°36562 0°36364 0-18502 | 0-54
3+750, 0, O 3-750 0+26745 0°+26667 0°+11217 | 0°29
0+750, 0750, O 1:061 0°99118 0°94281 2°09872 | 4-88
1-750, 1+750, O 2°475 0740697 0+40406 0422494 | 0-72
2+750, 2+750, O 3-889 0-:25786 0-25713 0-:10625| 0°+28
3-750, 3-750, O 5+303 0-18885 0-18856 0-06669 | 0-:15
0, 0, 0-500 0+500 1.58672 2+00000 1-46667 | 26-00
0,0, 1:750 1-750 0°55671 0-57143 0°33885| 2+64
0,0, 2°750 2+750 '0'35972 0°36364 0°+17195 1.09
0, 0, 4500 4500 0.22132 022222 0-08300| 0-.41

Table 3
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This means that the centroid method produces a better approximation than

that of the averaging method. When we divide ©B into N sub-areas to evaluate
IA and IC by a more general application of (97) and (98), relation (101)
remains valid for each of the N sub-areas. Hence (101) remains valid when
these are added over the whole of OB, It may be mentioned that the centroid
method not only yields a better approximation than the averaging method but

is also simpler to compute.

Error in the Centroid Method

If OB forms a single sub—area, and pC# OB, we see from Table 3
and Fig. 5 that:

(1) The error in IC diminishes asymptotically to zero as p tends

~

to infinity.
(ii) For a given distance from the centroid of 'bB, the error is a

maximum when p lies on the normal to OB through its centroid.

~

Further, it is evident that, for all locations of p,

2 2D , (102)

S é 17 when '
. max

P~

~

where & nax Tepresents the maximum of the errors in Ic for various positions
of’E and Dmax represents the greatest diagonal of the largest interval i.e,
sub-area.

Now let us divide OB into N sub—areas and examine the behaviour of

the error in Ic ag N gradually increases. We define Ic at a point

P gg CF OB) by

N
IC’b =Z ch , | (103)

i1
where ch represents the value of Ic over the j th sub~area, The field point

p lies outside OB at a perpendicular distance d  from the boundary point
P‘B[Fig- 6 (a)], such that

d=| b=k =t (104

where Lmin is the minimum distance between the two nodal points of the N

sub-areas. Hence, as N increases, p -» P,. Taking ‘OB to be a unit area

~
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and dividing. it into N sub-areas, ICp and I are evaluated for different values
of N. For each choice of N, the field point p always satisfied the relation
(104). The values of ICp and I for different values of N and for different
positions of p are given in Table 4.

This Table shows clearly that, as N increases, though the field point
P approaches the boundary of OB, the percentage error in ICp gradually
decreases. The same conclusion holds good when OB is a triangular surface
[fig. 6 (bi]of unit area with N triangular sub-areas.

If OB is divided into N sub-areas, and h & OB, P will either be
an interior point of a sub-area or it will be a boungéry point of two or more
sub-areas. In such a case, as stated carlier, we must evaluate the integral

analytically over the sub-area for which p is an interior or a boundary point.

Evaluating the integral over the rest of the sub-areas by (103), we find

Ick, =Z ch '\’ZI_R ’ (105)
i - R

where ch refers to the sub-area not containing p and Ik refers to the sub-
area for which p is an interior or a boundary point.

~

If p satisfies (104), from Fig. 6(1) and Fig. 6(5) it follows that

elN < 6OUT (106)

for the same sub-division of OB and for all values of N, where € ,€our
respectively stand for the % errors in ICp when p & OB and p CF OB,
Accordingly, when dealing with boundary value problems, the above
approximations produce a better result when the field point P is on the

boundary itself than when it is outside the boundary and obeys relation (104),

Application of the Approximation to Some Test Cases

We know, by the Gauss flux theorem (23) of Chapter 2, that

£ OB (107).
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ERROR IN APPROXIMATION DEPENDING UPON THE POSITION OF THE FIELD POINT

TOTAL

CO-ORDINATES o OtAL 0 % ERROR.

oF SUB-AREAS d_lE'PBl I I, i
N | c

X Y Z
0:6250, 0°1250, 0 16 0-1250 1.23059  1-22175 0718
0°5625, 0-0625, 0 64 00625 1-41726  1°41122 0-359
0:5417, 00417, 0 144 0-0417 1°50030 149673 0+238
0+5250, 0:0250, .0 400 0+0250 1-58055 157832 0°141
0+5179, 0-0179, O 784 0+0179 1462084 161922 0.099

Table 4
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NUMBER  oF SUBAREAS —

ERROR. IN THE  APPROXIMATION AS THE NMNUBER OF SU3-AREAS
INCREASES

Fig. b
[
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where lp - ql int rcepresents the interior derivative of

point q keeping P fixed. On discretisation, (107) can be represented as

P - q at the

I 1\ ! (108)

5

where 9 B - When j successively assume values 1, 2, ... K, .... N there

arise two distinct cases:

(1) when j:# k, by assumption 2

% (1! 1’) w’t (11)

,' e Yig.

clrlr B (109)
R ~1’ 1

where ﬁext (qj) represents the exterior unit normal at the pivotal point gj.
(ii) when j = k, the integrand is singular. But by assumption 3 and

Appendix I'T, we may approximate this to zero i.e.
4y
it
e Il

By (109) ,

(14{1 st (1) | 4 ) —
- _ ’ (
Je %, i A 1 1\1}“' 110)

V

A
: J

3
where Jk represents the approximated value of J at the point 9 e OB
and.z represents the summation over all the sub-areas except the k th
sub—area.

Let OB be a surface of a unit cube whose 6 sides are given by

=+ -+ L =t 1
1""2'_ ’ 3‘il and 77 °

Dividing OB into N square sub-areas (Fig. 7), the value of Jk is compﬁted

by (110). This value, as expected, is most inaccurate when k defines a

sub—area nearest to a corner. The value of Jk at the points q, are computed
and exhibited in Table 5 for comparison with the analytic value

ZR=>=623318.
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TESTING OF THE APPROXIMATION ON THE SURFACE OF A UNIT CUBE

COBgRDINATES SUBziggiS 1 % ERROR
q, N %

0°000, 0:000, 0°500 216 630768 0389
0°000, 0:000, 0+500 1944 628591 0:043
0:000, 0+000, 0°500: 5400 628417 0-017-
0°417, 0417, 0+500 216 619087 1+469
0:472, 0:472, 0-500 1944 618639 14540
0+483, 0483, 0°500 5400 6°18614 1-544

Table 5

44(v)
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Let OB be the spherical surface
=
L4y rs =1

It is divided into N sub-areas as in Fig. 3. The sub-—areas adjacent to
the poles are approximately triangular in form and the rest all are
approximately trapezoidal in form. The value of Jk at the point 9 is then
computed by application of (110) for different values of N and for different
positions of the field point, as exhibited in Table 6.

- 'For a given value of N the error is a maximum when the field point is
‘nearest to the pole, which is expected because of the size and the form

of the sub-areas at that region.



TESTING OF THE APPROXIMATION ON THE SURFACE OF A UNIT SPIERE

_ TOTAL
CO-ORDINATES SUB-AREAS J % ERROR
OF q k
.- e k N
X y 2
0°9997, 0, 0-0228 2544 6°16661 1+855
0-9998, 0, 0°0175 9264 6+20372 1:265
0:9999, 0, 0:0135 20184 6°22496 0:927
0-9999, 0, 0-0110 35304 6°23724 0:731
0:0906, 0, 09959 2544 6-08119 3.215
0-0453, 0, 0°9989 9264 618188 1:612
0.0302, 0, 0°9995 20184 621561 1:075
0:0227, 0, 0+9997 35304 6+23325 0807

Table 6

45(a)



PART III
CAPACITY OF CONDUCTORS
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CHAPTER 8-
ELECTROSTATIC CAPACITY

Recapitulation of Equations

We now regard OB as a closed perfectly conducting surface brought to
a unit potential by the introduction of charges. If >(@) is the

equilibrium charge density at 9, , this distribution generates the potential

)= )y
|t
oBR '

at % , which exists and is continuous everywhere including OB. Hence )

V(K

musEvsatisfy the integral equation
1)d
M:i : _]'vé >R (111)
byt
ob :
of which a unique solution has been proved to exist. It has also been proved,

in Chapter 4, that A has the same sign ( > 0) everywhere on OB. This

enables us to define the essentially positive quantity

k= gk(‘lf)cﬁ, ,
08
which is known as the capacity of OB.

On discretisation, (111) gives N linear algebraic equatiomsfor A

ViZ|

a . =L 5 RkR=t,2 ---N, (112)

where (113)
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=

B}
where Agj represents the area of the j th sub-area.

Solution of Equations

After evaluation of the akj by the procedures discussed in Chapter 5,
. D .
equations (112) are solved by the Gauss-Seidel interative method. In this
method, after each iteration, we obtain a set of values of )&, ‘xz . >\N

at the N pivotal points 9ys Qg v v v on ©OB. After the r th

q
~N
iteration these values are denoted 7%} AE- ¢ v e AL, and so

at the pivotal point q, Ve have, after n iterations, a sequence of n values
| | R ) Fr=4,2.- - n, (115),

which are successive approximations to the exact value )\(gk)-
If for a pre-assigned small positive quantity ¢ ( € = 00-+0001

say), there exists a number M such that

P
A >\RL £ €, for Y=M,- (116)

at every pivotal point 910 3y + -+ Iy then at this the approximate

solutions are given by

M

N s R=L2, e N (117)

Determination of The Optimum Value of N

Our preceding analysis has dealt with a fixed number N of nodal
points. TFrom the fundamental assuﬁbtion that the source density is constant
over a sub-area, it appears that the computed source density at a nodal
point approaches its analytic wvalue at that point as N->o< . But
because of the rounding-off errors involved in the computations, after a
certain stage, the result becomes distorted as N increases, Hence the
problem arises of finding the optimum value of N. To find this we start with

a small value of N and gradually increase it until a stage comes when either
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i) K ceases to behave monotonically,
~or (ii) .the density distribution along a line on OB changes sign.
At this stage, the optimum value of N is given by the value of N considered
in the previous stage.

Intrinsic Test of Accuracy

The solution of (112) yields the numerically generated potential
N | '

dy
V(!‘) = >\) W . (118)
R

at any point p & B+ OB. This automatically has the value V = 1 at

the nodal points on OB, but will generally deviate from 1 at any other point.

For a particular sub-area,

=0 when p is a nodal point on bB,

\1 - v(p)

>0 when P is not a nodal point on OB.

Since 1 = V(p) is a harmonic function in B, its modulus ‘ 1‘VQ‘) \
attains a maximum1 for some point p on OB, We may therefore approximately
determine \ 1 - V(P)\max by generating V(p) at a number of representative

non-pivotal points on OB,



50

CHAPTER 9

CAPACITY OF THIN CONDUCTORS

Square Plate

Let the periphery of a thin square conductor ABCD (Fig-8) of unit
area in the plane z = O be given by

x == ! and y = bt i

It is divided into N equal square sub—areas of area ds each, where

‘ Nt‘.hL 5 k=2M+L‘, m:i,').,---)'\,,
and de= N1, (119)

0f these N sub-areas, there is a sub-area with its nodal point at the
centroid of the plate, which concides with the origin of therféference
frame OXYZ. TFurther, there are 4 rows of sub—areas with nodal points

on the lines x =0, y =0, x =y and x = -y respectively. This pattern
of sub-division helps us to obtain the density and the potential
distribution along these lines directly from (112) and (118) respectively,

According to (112), there are N linear algebraic equations for A ,

By symmetry, the number of equations reduces to

N=1t24 - + (Ri)A

- BB
(ke (kr3)/8 .

1

(120)

In this particular case, the sub—areas are all squares. The
elements akj of (112) are evaluated as in Chapter 5. The diagonal
element A o by Appendix T, is

a, = ‘4h tog (1 +2),
where h denotes th: ¢dge length of the square sub-area.
- Starting with a small value of ) , equations (112) are constructed
and solved for A by the Gauss-Seidel iterative method with € = 0:0001,
with the help of the I.C.L. 1905 computer at the City University.
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From the 2\ so computed, we calculate the capacity [ from (114) using
(119).

The values of the electrostatic capacity of a thin square
conductor of unit area for increasing values of N are given in Table 7.
It is evident from this Table that, when N = 361, the density distribution
at some points becomes negative. This marks the optimum stage in the
numerical procedures. At this stage K = 0°36188 and it is attained for
N = 289 as discussed in Chapter 8.

If 'a' represents the edge length of the thin square plate,

then according to Polya and Szego, the capacity lies between the bounds
0-35917 @ < K < 0+37570 a . (121)

It will be seen that our computed value lies well within the bounds given
in (121).

The figures 8(a) and 8(b) show the density distribution along the
lines x = 0 and x = y respectively. This is a minimum at the centre and it
increases gradually as we go towards the rim in any direction. This
behaviour compares with the known density behaviour for the circular plate as -
we move from the centre towards its rim (Chapter 10).

To examine the accuracy attained in generating V on OB, V has
been calculated by (118) for N = 289, taking'g as the corner points of the
sub—areas. The )\ used in (118) were obtained from (112) for the same
value of N i.e. N = 289, Table 7(a) shows the generated values of V at the
corner points of the sub-areas along the diagonal of the:square.

It is evident from Table 7(a) and from figure 8(c) that |V -1 ‘
is minimum near the centre of the plate and gradually increases as we move

towards the rim. It is maximum, as expected, at a corner of the plate.

Rectangular Plate

Let the unit rectangular plate ABCD (Fig. 9) he in the plane
z = 0. The boundaries of ABCD are given by x = X 2a y ¥V = Z 4. The breadfh
AB is divided into k parts by (k =1) lines drawn parallel to BC and the
length BC is divided into 2 k  parts by drawing (2 kK = 1) lines parallel

to AB. Hence the rectangular area ABCD is divided into

N=2k" (122)

equal square sub-areas.



ELECTROSTATIC CAPACITY OF A THIN SQUARE CONDUCTOR

51(a)

Some of them become negative .

SUB-AREA  EQUATION DENSITY AT THE CENTRE OF SUB-AREFAY CAPACITY

N N#* (a) (b) (c)

25 6 0-18792 0.37434 056870 0+34845

49 10 018515 0°+43358 0-71120 0+35390

81 15 0+18369 0-+48609 0°+84261 035690
121 21 0-18269 053336 0°+96626 035886
169 28 0.18198 0°57679 1-08360 0°+36018
225 36 0°+18144 0°61724 1°19580 0-36115
289 45 0-18093 0°65537 130370 0°36188
361 55 I11 condition arises in the values of &

Table 7

(This should be read in conjuction wi

th Fig., 8)
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POTENTTALS GENERATED AT THE CORNER POINTS OF THE SUB-AREAS LYING ALONG

A DIAGONAL OF THE THIN SQUARE PLATE

CO-ORD. OF THE CORNER
POINTS

X Y v l V-1 l
0-02941 0:02941 1:00170 0+00170
0-08823 008823 1-00180 0-00180
0+14706 0°14706 1°00180 0+00180
0°20588 0+20588 100200 0+00200
0-26471 026471 1°00240 0400240
0+32353 0+32353 1°00310 0-00310
0'38235 0+38235 1°00420 0+00420
0°44118 0°044118 1°03450 0+03450
050000 0+ 500000 0+76845 0+23155

Table 7(a)



51(e)

DISTANCE FROM CENTRE —

FIg. 8 ()

VARIATION OF COMPUTED POTENTIAL ALONG

A DIAGONAL OD .

A D
s}
11050+ 8 C
1025+
\
I 1-:00 R gl g '
9 025 050, D
0. 8*_[5_4._
0" ¥50 | } |
025 0-50 07107



51(f)

FiG.9

SUB-AREAS ON A RECTANGULAR PLATE
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Proceeding the same way as in the case of a square plate, we form

the N equations

N

. - (123)
Z“m‘ et Reb e
41

The N equations (123), from symmetry, reduce to

equations . | (124)°

LK
Ntz =7
The equations are then solved by the Gauss-Seidel iterative method with

€ =0°'0001 and the K is computed as before by (l1l4). Table 8 exhibits the
value of K as N increases.

In this case, K gradually increases from 0°35938 to 0:37431 as N
increases from 32 to 1800. No ill conditioning was noticed in this range of
N but the machine capacity forced us to stop at N = 1800: . For the unit
rectangular plate with edge ratio 1:2, we find K= 0:37431.

2. Isosceles Triangular Plate

Let a thin isosceles triangular conductor ABC (Fig. 10) have its
centroid at the origin of a reference frame OXYZ and it lies in the plane |
z =0. Its boundaries are given by

x = d

y

y

x tan® + 2d tan8 ,

-X tan® - 2d tan¢o ,

wvhere the meridian AD = 3d, and 8 is the angle made by AC with the

axis of x,

The plate is divided into

N = k" (125)

equal triangular sub—areas[:Fig. 1o(a)] by drawing 3 sets of ( k -1)
equidistant parallel lines, parallel to the sides of the triangle, and k in
(125) is given by

R= 1+ (3.‘1)5 > ﬂ.'—‘ 2,3, 0 o (126)
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ELECTROSTATIC CAPACITY OTF A THIN RECTANGULAR PLATE

(EDCE RATIO 2:1)

SUB-AREA EQUATION DENSITY AT THE POINTS CAPACITY

N N* 0(Centre) AﬁCorner)

32 8 020076 062369 035938
128 32 0°19321 0°99326 0+36815
288 72 019049 1-31218 0+37102
648 162 0°18872 1-73780 0°37288
968 242  0-18817 1-99826 037354
1352 338 0-18780 2424514 037399
1800 450 018758 248107 037431

Table 8

(This should be read in conjuction with Fig. 9)
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This pattern of sub—divisions gives us 3 rows of sub-areas whose nodal
points lie on the 3 meridians of the triangle along with a sub-area whose
nodal point lies at the centroid of the triangle. Further the sub-areas
thus formed are all equal in size and in form [Fig. lo(a)}.

From symmetry, the number of independent equations reduces to

% -1} 3 : .
N= _1*.(52 ) 21(1)3Fy je2,3.- -0 (127)
For the equilateral triangular plate
* N - .
N'= %’{21’(1‘1)3} ) 122,30 (128)

The co—-efficients a3 of (112) are computed over the sub-areas,
as before, by the centroid method when iF k . When j =Kk
by Appendix Iy

’

m
IN L;+Ljyta
Oy = _Jloz L’ - I (129)
a; § T
3=1
where 435 is the area of the triangle formed by the sides Lj, Lj'+ 1

and aj {Fig. 10(bﬂ. When J =m, in (129) J + 1  should be replaced by

1 instead of m + 1; m denotes the number of sides of the polygon.

Equilateral Plate of unit area

For an equilateral plate of unit area 8 = 300, and a side BC is
given by
1 . o
2 BC. AC Sin 60" =1
!
P . o _ BC = 2

or 1 BC’ BC Sin 60 =1 or e .

b Sin 60°

The meridian AD is given by

AD = 3d = BC Cos 30° .
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After evaluation of t:e co-cfficients akj of (112) over the
triangular sub-areas, the N equation¢,where N 1is given by (128), are
then solved by the Causs-Seidel iterative method with € = 00001,
The >¥ thus obtained are used in (114) to evaluate the capacity of the
plate.

The values of the capacity of the thin equilateral triangular
conductor of unit area for increasing values of N are given in Table 9, It
is evident from the Table that the capacity of the plate is K =0:38308,
and this value is attained when N = 361. The density A distributed along
a median, for the above value of N, is given in the Fig. 10(c).

For N = 361, the potential V is calculated at the corner points of
the sub-areas along a median of the plate. The reference frame is taken as
in Fig. 10. The values of l v - 1[ thus computed are exhibited in
Table 9 (a). It is evident from this Table that the value of \V - 1\ is
the lowest when p is near the centroid of the plate and gradually increases
as we move towafas the periphery. The maximum value of it, as expected, lies

at an apex of the plate.

Right angled isosceles triangular plate of Unit Area

A thin isoscdes triangular plate of unit area with base angles 45°
each is divided into N sub-areas by the procedure stated before. In this
case O = 45° and hence

AD = AB sin 45°
and } BC. AD = 1 i.e. } (2 AB Cos 45°) (AB Sin 45°) =1 .
Hence AB = 2 and BC = 2.

' As in the former case, the N equations (112) are constructed. From
symmetry, the N equations reduce to N equations where N is‘gibénrﬁy'(127).
The equations are then solved, as before, by the Gauss-Seidel iterative
method and then K is computed by (114). The values of K for a
range of values of N are given in Table 10.

In this case K gradually increases from 0:36174 to 0°+40025 as N
increases from 16 to 361. No ill conditioning was noticed in this range of
N but the machine capacity fortedus to stop atN = 361. The value of the
capacity attained at this stage is found to be K= 0:40025. '

Following the same procedure, the capacity of an isosceles triangular
plate (1200, 300, 300) of unit area is computed for increasing value of N,
and are exhibited in Table 11. The capacity of the plate, from Table 11,
is K = 0-41011.
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54(a)

DENSITY

AT

SUB-AREA EQUATION S NTROLs  CAPACITY
i N N*

2 16 5 0°18340  0-35361

3 49 | 12 018610 0+36527

4 100 22 0:18397  0-37010

5 109 35 0-18277  0°37273

6 256 51 0-18200  0+37438

7 361 70 . 0°18136 038308

8 484 92 0-18086  0°38139

Table 9
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POTENTIALS GENERATED AT THE CORNER POINTS OF SUB-AREAS LYING ALONG

A MEDIAN OF THE THIN EQUILATERAL TRIANGULAR PLATE

54(c)

CO-ORD. OF THE CORNER

POINTS
X y v l'v—ll“-‘
0402309 0+03999 1:00131 0-00131
0+09236 0415997 1°00142 0400142
0'16162 0427994 1-00165 0+00165
0+23089 0+39991 1-00215 0400215
0430016 0-51989 1-00346 0+00346
0+36942 0463986 1:02819 0+02819
0443869 0-75984 0470133 0°29867

Table 9 (a)




ELECTROSTATIC CAPACITY OF A RIGUHT ANGLED ISOSCELES TRIANGULAR

PLATE OF UNIT AREA

54(a)

SUB~AREA EQUATION DENSITY AT CENTROID CAPACITY
i N N*
2 16 10 0°:1845 0:36174
3 49 28 0.1890 0+37372
4 100 55 0+1869 037866
5 169 91 0°1859 0°38135
6 256 . 136 01850 0+38303
7 361 190 , 0+1849 040025

Table 10




ELECTROSTATIC CAPACITY OF AN ISOSCELES (1200, 30

o}

54(e)

, 30°) TRIANGULAR

PLATE OF UNIT AREA

SUB-AREA EQUATION DENSITY AT CENTROID CAPACITY
1 N N*
2 16 10 0-1800 7 Qf38498
3 49 28 0-1978 0°39829
4 100 55 0+1932 0°40384
5 169 91 0-1934 0+40688
6 256 136 0-1930 0°40879
7 361 190 0+1930 0-+41011

Table 11



General Conclusions

It is interesting to note how K varies for different shaped
triangles of unit area. This is exhibited in Table 12. ¥From this,
we see that K decreases as the symmetry increases, reaching its minimum
for the equilateral plate. Table 12(a) exhibits the capacity of unit
plates of different shape. It appears from Table 12(a) that, for regular
polygons of unit area, K decreases as the number of sides increases,

reaching its minimum for a circular plate (Chapter 10).

55



55(a)

THIN
ELECTROSTATIC CAPACITY OF UNIT/TRIANGULAR PLATES OF DIFFERENT SHAPE
/ L%
ANGLES OF TIE PLATE IN
DECREES CAPACITY
60 60 60 0°38139
90 45 45 0+40025
120 30 30 0°41011
Table 12
THIN .
ELECTROSTATIC CAPACITY OF/PLATES OF UNIT ARFA
/
PLATE CAPACITY
EQUILATERAL TRIANGULAR PLATE 0°38139
SQUARE " 0°36188
CIRCULAR " 0°35917

Table 12(a)
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CHAPTER 10
CAPACITY OF A THIN CIRCULAR DISC

Analytical Solution

Let V be the potential due to an electrified flat circular disc
of unit radius. The centre of the disc defines the origin of a system
of cylindrical polar co-ordinates, of which the Z-axis lies perpendicular

to the plane of the disc. In cylindrical co-ordinates, V satisfies

1
VLV _ov 1oy 3 =0 (130)
5=t ¥ o6 oz*- )

with boundary conditions, for =z =0 (i.e. plane of the disc)

V=1 , 0&rQ1 (131)
oV _
gz—o ’ r-1 . (132)

The 2nd condition (132) comes from the symmetry of V across 2z = 0 and

absence of charges outside the disc.

The solution of (130) under the above conditions, according to

Tranterz is

o0

V- EFM 0 Sap az
For r 1

(gi) . L Sabh A

0

which is the imaginary component of



From Watson?

—4
1
i
1
>4| P

Therefore

11
7\—7\")’ 1—YL ’

Where A 1is the density at a radial distance r from the centre.

disc of radius a, at a distance r from the centre

11
A= 1‘(5.[_-

The capacity | of the disc of radius ‘a'is

Qa 27 4 -
K :[k(ij)clft/ :J »-1—,2'. e _1:.__.:: Y‘C{@ Gh"
ob r-0 “6=0

57
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(135) -

(136)

For a
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1
~
>
=
a_
R
i
o
-_—
)
—~—er”

=0

=~ 063662035 , when =1 . (137)‘

Numerical Approach

Apart from the anal&tical approach, already discussed,'the integral
equation formulae provide a straightforward numerical approach to solve
the problem numerically., Let a density distribution X on OB (thin
circular plate of unit radius) generate the potential V which satisfies the
equation (130) i.e.

’ 1.
Vv=0
with boundary conditions (131)and (132) i.e.
V(k) =1 5+ P e3B
and on Z=0,

V(=0 sz
respectively. In the integral equation method the boundary condition (131)
is sufficient to solve the problem and hence the condition (132) is ‘
redundant in this case. This is essentially because our formulation is a
Dirichlet formulation, which confines us to EDB, whereas Tranter's
formulation is a mixed formulation for which we must go outside OB,
Since V=1 on OB, A satisfies the equation (111) which, on

discretisation, takes the form (112) i.e.

N

Eaijj- 21 H h,—;l’z... N.
§=1

Division of a circular domain into sub-areas

To find a numerical solution of (112), it is necessary to divide
OB into sub-areas. To offect the sub-division the circular domain is
divided into n  annular rings and each ring in its turn is divided into
M sub-areas except the inner most ring which is divided into M, sub=

1
areas (Fig. 11). For sub—areas of equal area we have in a j th ring
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%L *
AN T )_ AN
M T
* L »1- \ %1
; _ _ (M 1
i.e. fj Eﬂ." (M1>n- . (138)

Putting j =2, 3, . . . . n in succession and adding them up, we obtain

{@ (% )+ }r;— .

Since r, =a (=1, the radius of the disc),

T -a/[(n— Ti]

¥ . . .

Using this value of n_ in (138) and putting j =2, 3, « . . « nin
succession, we obtain n annular rings on the circular domain, The value of
Ml usually equals 6 to obtain the sub-areas, nearly of equilateral form,

in the inner-most ring and, M is determined by
M=e (o) k<n (129)

n may have any value but to keep the sub—areas in the outermost ring

near to square form, we choose n such that it approximately satisfies

2K Yy\, Y . 629318 —_— A .
— N -3y . N
dl n -6(14)

Hence for a particular choice of k , a choice for n, from above, is given

by

n= 2 . (140)

This sub-division gives very thin trapezo<dal sub-areas in a few
of the inner rings, which are not suitable for numerical work. To
eliminate the thin sub-areas, the width of the m th ring is diminished by

the adjustment given by

T - H(E) rfi.



60

where Ti represents the width of the m th ring in (138); m- usually

the
equals 4, The width of the rings inner te/m th ring are then determined
by

T b () s i) (e e

(141)
The validity of (141) depends on the features of the inner rings
T171~1
i 7 i and O Lt -
- Now the radii of the above m = 1 concentric rings are given by
m
v T §22,3 m
=to—) Tt 5 1°% (142)
=4
In the circular area of radius r2 » given by (142), k annular rings are
introduced where k is given by (139). Each of the k rings has Mj
equal sub—-areas, where
i1 ,
r@:e@.) o 21,23k . (143)

Of these k rings, if Ei be the radius of the first circle, then 6; is
given by

?

Q:(fga@, o<t ¢l

where r 2 is given by (142). After determining 61 with a starting value

q = 0'9, the radii of the remaining k = 1 circles are fixed by

f“j:Ej._l—r(m—q_}/Mj)h; JaL.3 R (144)

where Py is usually set at 1+5. Now the annular gap, given by
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is divided into J parts to give J annular rings such that

£€ (145)

TZ)— (Y?_— ehfj—l,)

where € is a pre-assigned small +ve quantity (usually < 0°001) and J is

a +ve whole number given by the integral part of Q where,

D
Q = -(Zi—?k—)—"i . (146)

The radii of these J concentric circles are given by

€= Cortoy * SXTH (U 5 Loty2 T,

where

and U = Y?f (JR-# (SXT)J} q:l)__?

If Q€0 , q is gradually made smaller until Q>0 and the adjustment is

stopped at the stage when (145) is satisfied. At this stage €k+3 is

readjusted by setting

@MI-"—Y,_ . (147)

Now the total number of annular rings on the circular face becomes

.x_
= (N~ 148
N=(n2)tk+] | (148)
and the radii of the concentric circles are given by

.Rj =€ j=1,2++. (Rt3)



h2

»
kaj-Zfﬁzr/’ s A(neg), e M

The sub-areas in the 1st ring are quadrilaterals with shapes very
near to that of an equilateral triangle. From the 2nd up to the (k - 1) th
ring, the sub-areas are pentagons[;Fig. 11 (ai] in which sla:t side BE of a
sub-area is Py times the side BD. From the k th up to the (N - 2) th ring,
the sub-areas are trapezoidal in form. To make sub-areas smaller in size
as we approach the rim, the number of sub—areas are doubled in the § th ring-
by inserting radial line segments through the middle of each sub-area., The
sub-areas in the (§ - 1) th and in the § th ring are then made pentagonal
in form [Fig 11(a)].

The total number of sub-areas on the circular plate is

J1 R4 R-1 (149)

N 6*z_+ (p\f—mi)é*o_ + 2xbr2 .

Formulation and solution of equations

For the N sub-areas, there are N algebraic equations in N unknowwn
7\5 given by (112). The co efficients akj of (112), are evaluated over
the sub-areas, as before, by the centroid method when j F k and
analytically when j = k.

From symmetry, the N equations reduce to ﬁ equations where
ﬁ is given by (148). The equations are then solved, as before by the Causs-
Seidel iterative method with € = 0°0001.

Table 13 exhibits the value of the capacity of a thin plate of unit
radius with increasing value of N. It is evident from the Table that

K = 0-6351%72. The analytic value of K , by (137), is

~ 06366205 .

S

Table 14 exhibits the density distribution along a radius compared with that
obtained analytically by (136). The numerical A deviates only slightly |
from the analytical A except in the neighbourhood of the rim. This
behaviour of A in the neighbourhood of the rim supports the conclusions

drawn in Chapter 6. Fig. 12(a) gives the density profile based upon
Table 14,
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€2(b)

ELECTROSTATIC CAPACITY OF A THIN CIRCULAR PLATE COMPARED WITH
ANALYTICAL VALUE K = 0°+6366

SUB—-AREA EQUATION NUMERICAL
N N* K
162 7 0-6239460
522 12 0:6314764
2202 25 0°634633
2682 30 06351872
3162 35 0°6351505
Table 13

DENSITY DISTRIBUTION ON A CIRCULAR PLATE ALONG. A RADTAL LINE

iﬁg;AgEgigg ANALYTICAL NUMERICAL
T A A

0°02797 0.10136 0:10306
0°12294 010209 010194
019271 0:10326 010324
0-25042 0°10466 010456
0°32629 . 0°10719 0°10689
041929 0:11161 0°10647
0°52502 011905 012033
0-61273 012821 0-12982
0-72462 © o0c14702 014901
0-82141 0:17765 0°18016
093499 0°28567 0-27671
098732 063816 0-87936

Table 14
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CHAPTER 11

CAPACITY OF THICK CIRCULAR DISCS

Introduction

A thick circular disc (Fig. 13) may be viewed as a right circular
cylinder with a small ratio H/a, where H defines the height and a
defines the radius of the cylinder. Taking the.origin of cylindrical polar
co-ordinates at the centroid of the cylinder and the Z~axis to coincide .

with .the axis of the cylinder, the plane boundaries at the ends are

the curved cylindrical boundary is
r=a .
If V be the potential due to a equilibrium charge distribution on
B, V satisfies Laplace's equation
1
Vv V=0

with boundary conditions (131) and (132) i.e.

V(k)=t s e

@

and on Z=0 ,

e

V=05 [t} >a .

Because of the form of OB, complications. arise in solving the problem
analytically. However, the integral equation formulation provides a
. straightforward numerical approach. In the'integral equation method, the

boundary condition (131) i.e.

V(b);‘i: k"éae’ )
is sufficient to solve the problem and hence, as in the case of a thin
plate, the boundary condition (132) is redundant. If the density distribut-

ion A generates the potential V =1 on EB, then A satisfies (111) which,

on discretisation, takes the form (112).

Division of the surface into suh-areas

Each of the plane circular faces is divided into suh-areas as the
thin plate in the previous case. Hence if N*1 be the number of annular

rings and Nlbe the total number of sub-~areas on a plane face, by
(148) and (149),
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If we now insert Ng annular rings in the upper half of the cylindrical

surface, then N§ is given by
*  * ) -
N, = L1 (150)

k3
where |, 1is the integral part of

)|
AR

If h1 be the width of the ring nearest to the edge,
then

?a——(%—’%) = b () (151)

Further, if

(8- (/0

the widths of the subhsequent rings, as we move towards the plane

z = 0, are given by

b=t (300 5 det200 Ny,
when the breadth of each sub-area is kept constant at h given by
(151).
Each of the N*2 rings contains 4M sub-areas, and hence the total

number of sub-areas on the upper half of the cylindrical surface is

Ny = 4 <M)Ni . (152)
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The total number of annular rings on the surface is

* oo
2N = 2 (NN ) (153)

and the total number of sub-areas 1is

N= 2( N, + Nz)

kR

-2 Z 6(21'1)+(Nt—1—k)(2k'1)g ¥ zk'll( 12 + 24 N:_)
IE! ?

1}

R : |
2 [Z é(fﬁl) + é,(Q_R 1) <fo l-tlfrg—}q)] . (154)
=1

For H = 018 and k = 3, it is found that N*2 =2, n=4, and
J = 2. Hence N*l = 7 and, by (153) and (154)

N*¥ = 9 and N = 708 .

The analysis of the sub-aréas in each of the annular rings, for the

above values of H and k , is given in Table 15.

Formulation and solution of the equations

For the N sub-areas, there are N algebraic equations in N unknowns

given by (112). The co-efficients a1 of (112), are evaluated over the

sub-areas, as before, by the centroid method when j ¥ k and
analytically when j =k.
From symmetry, the N equations reduce to N* independent

equations where N* is given by (153). The equations are then solved, as
before, by the Gauss-Seidel iterative method with € =-0001.
Table 16 exhibits the value of ¢ of a thick plate of unit

radius and thickness H = 0°18 with increasing value of N,
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SUB-AREAS ON THE SURFACE OF A THICK DISC (THICKNESS 0°48) OF UNIT RADIUS

NODAL POINTS ARMS OF SUB-AREAS AREA
RADIAL DIST
Ty z BD GE BE
ON THE PLANE CIRCULAR SURFACE
0+10066 0:2400 0°+00 016184 016184 { 0.01310
0°+22636 02400 0°08377 0+14957 012711 | 0°01506
0°34580 0°2400 0:07543 0+10505 0:11347 0°Q1015
0°48519 0+2400 0-10505 0+14630 0-15803 1 0:019649
0-62816 0°2400 0°14630 018312 014103 ] 0°:02303
0:77278 0°2400 0-18312 0-22159 0°14738 | 0°'03037
0492506 0+2400 . 0-11103 0-13081 0+15115| 0°01838
ON THE CYLINDRICAL SURFACE
100 020728 0:06545 0+06545 0°06545 | 0-00428
100 0+13455 0-06545 0:06545 0-08000 | 0:00524
1-00 0°+04728 0°06545 0+06545 0°09455 [ 0+00619
Table 15

[ This should be read in conjuction with Eig. 11(a)

and Fig. 13(a)]
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Following the same procedure, the capacity of circular plates of

unit radius with various thickness are evaluated and are given in Table 17.

Fitting of a polynomial through the capacity values

Our numerical approach gives the capacity for some.discrete values
of the thickness H. To approximate the capacity for any value of H in the
above range, we attempt to fit a continuous curve through the computed values
of capacity utilising the method of least squares.?

It appears from the difference columns (3) and (4) of Table 17 that
the smoothest interpolating function may be a log function. Considering
the analytiec value of Kk when the thickness is zero, we expect the form

of the function to be

o
K =§(H)"—%—Y {0} (Co‘filcj' H ) ’ (155)

where c0 = e , the base of natural logarithms. For the 11 valuesof K
(Table 18), a polynomial of degree 10 will fit exactly through them.

Starting with m = 1 and gradually increasing m in steps of 1, it is

found that, for m = 5, the interpolating function (155) fits the computed
values to an accuracy of 3 significant figures. Further when H—>0

73 in (155) tends to-é% as required.

’ For m = 5, the co-efficients are C_=e = 2+71828,
C1 = 2+53801 , C2 = = 278274 , C3 = 4* 63385 CA ==-3°74689 and C5 = 1+18925,
Fig. 14 shows the relation between the computed values and the fitted values
of K , based on Table 18, for a disc of unit radius, as.thickness varies

from 0 to 1.



€6(a)

ELECTRO-STATIC CAPACITY OF A THICK DISC (THICKNESS 0°18) OF UNIT RADIUS

SUB-AREA EQUAT ION CAPACITY
N N*
708 9 0+72143804
1812 14 0°72189708
8244 30 0+72209634
10064 35 0+72201394
Table 16

ELECTRO-STATIC CAPACITY OF THICK CIRCULAR DISCS OF UNIT RADIUS AND THE

DIFFERENCE COLOUMNS OF CAPACITY

THICKNESS CAPACITY 1ST ORDER DIFFERENCE 2ND ORDER DIFFERENCE
H K 5 &

0-18 0+72209638
003615471

0°28 0+75825109 - 0+0030993
0:03314478

0°38 0:79139585 - 0-00204284
0°03110194

0+48 0.82249781 , - 0+00262198

_ 0:02847996

0°58 0:85197777 - 0°+00018507
002829489

0-68 088027266 - 0°00104826
002724663

078 090751929 - 0-00091254
002633409

0-88 093385338 - 0+00030316
0:02553093 '

0-98 093385338

Table 17




CAPACITY OF THICK CIRCULAR DISCS FROM A FITTED POLYNOMIAL

€6(v)

THICKNESS COMPUTED FITTED
H f K
0-00 0+63519 0:63662
0-18 072210 0-:72197
0-28 0-75825 0+75843
0-38 0:79140 0°79141
048 082250 - 082237
0-58 '0'85198 0°85196
068 0°+88027 0°+88034
0-78 090752 0°90757
0°+88 0-93385 0°93378
0+98 0°95938 095941
1°00 0°96440 0+96453

Table 18
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CHAPTER 12

ELECTROSTATIC CAPACITY OF A CUBE

Division of surface into sub-areas

We choose a cartesian co-ordinate system so that the six faces of

the cube have the equations
x =2 af2, y = z a/2 and 2 = i a2,

As in the case of a square plate, each face of the cube is divided into
2

N1 =k

square sub-areas where k is always an odd integer. The total number of

sub-areas on the surface OB of the cube is

N=bN =6k . (156)

Dirichlet Formulation

Let an equilibrium charge distribution A on 0B generate a

potential V = 1 on ©OB. Hence A satisfies the equation (111) i.e.

f Mydy

Ty b
ofR

on discretisation, as before, equation (111) giveq. N linear algebraic

equations for the N unknown %5viz.

N

d,
. —_— = 3 =1, 2,9 N
J .

i

which is of the form

- N
TRe, 2,300 N
-1 ,
The co-efficients ak,are evaluated, as before, by the centroid methdd of
J .
approximation whenk 4 j . When k = j , the diagonal elements alk , for
<

a square sub—area of edge length h, is given by (Appendix I)

4, =40 log O+ I2)

Y
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By symmetry, the N equations reduce to N* independent equations,

where, from (120),

N*=(&eﬂ)(k‘rﬂ/8 . (157)

The equations are then solved by the Gauss—-Seidel iterative method with
€ = 0:0001 and the capacity K is then computed by (114). The capacity of
the unit cube, computed for an increasing N is given in Table 19, The
optimum N occurs at N = 1014, since the density A, at the centre of a face
has remained constant to the three preceding values of N, At this stage,
= 0°6595.

The upper and the lower bounds for the capacity, determined by
Polya and Szego, are

062210 <K 0o l06a .

Our value of K lies well within the bounds given above. The charge

density at the centre of any face is approximately
Ng=0-0687 .

Neumann Formulation

If the density distribution © of (2) produces a constant
potential on OB, then from (20) of Chapter 2

ot + 6k (t) o =0 - a5

oB

On discretisation, (158) gives N linear algebraic equations in N unknown @

. 3
which can be represented by (67) with 4253C) viz.
[BNG] =0 . (159)

[B] in (159) is a singular matrix, and the co-efficients bkj'are
evaluated as in Chapter 5. As before, the N equations reduce to N*
independent equations. To solve these equations we delete the N* th row,
and we put GN*:1 in the N*th columa. Hence (159) reduces to a system

*
of N-1 equations in unknown ratios

O

f

Xj =

- , f=t L (V4) (160)

=



CAPCITY OF A UNIT CUBE BY SOLVING DIRICHLET PRODLEM

DENSITY AT THE CENTRE

SUB-AREA EQUiTION OF THE FACE CAPACITY
N N
150 6 00691 0:65384292
294 10 0-0691 0465677327
486 15 00687 0:65819403
726 21 0:0687 0°:65893621
1014 28 0+0687 0°65945535
1350 36 00684 065977961

Table 19
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Equation (159) now reduces to

-1
!
and are solved by the Gauss-Seidel iterative method with € =0-0001.,
The Neumann formulation (158) does not immediately give '
the capacity, since it only provides the relative charge density. However
we know that if a conductor OB is raised to a constant potential V = ¢

by a charge distribution 6 on OB, then

Jﬁ(kn‘h)c@)du =C

so that °B

K :é— 0(1)‘1’{; ' (162)
38

The numerical C% do not generate a constant V on CB.We therefore define

N

C= 2.\6 N .
=1
Putting this value of ¢ in (162),we obtain K . The values of K thus
found, for increasing N are exhibited in Table 20. By contrast with the
Dirichlet formulation, no ill-conditioning appeared even at N = 2166. The

capacity of the unit cube obtained by the Neumann formulation is
K (Neumann) = 0 6435,

and that obtained by Dirichlet formulation is
K (Dirichlet) = 06595 -

Each value is well within the bounds given by Polya and Szego . W

(Neumann) appears to lie midway between the bounds whereas’ K (Dirichlet)

lies close to the upper bound.

An alternative comparison with the Dirichlet formulation is possible.

We scale the Neumann computed Cy by a factor f so that
ﬁ c(%) dﬂh = f fc("b)&ck = K (Dmdpw.) (163)
o8 38

From (163),

{164)
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CAPACITY OF A UNIT CUBE BY SOLVING NEUMANN PROBLEM

SUB-AREA  EQUATTON Pé‘rlﬁﬁfr\(l;il, TOT‘éﬁAg‘gg 20 CAPACITY
N N* C DIRCHLET NEUMANN .
294 10 4+80998 3-07528 0-65677 0+63935
486 15 407314 2+61327 0°65819 0:64159
726 .21 3454252 2:27895 0°65899 0'64331
1014 28 3'13809 2'02308 0°65946 0:64469
1350 36 é'81929 1-82072 0°+65978 0+64581
1534 45 256049 1°65599  0°66001 064675
2166 55 233703 151328 - 0464752
(-ve density
appears)

Table 20



This allows us to compare the charge densities yielding the same K .
Table 21 exhibits the value of A obtained from both formulations
for N = 1014. The two solutions are in good agreement with one another

except at the nodal points near the sharp edge and the corner of the cube.
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COMPARISON OF DENSITY DISTRIBUTION ON THE SURFACE z = 0.5
FIELD POINT DENSITY
X Y Dirichlet Neumann
ALONG A DIAGONAL ON A FACE

0.0 00 0:069 0-073
0°077 0.077 0070 0°074
0°154 0.154 0073 0077
0-+231 0-231 0+080 0°084
0-308 0°308 0°092 0°'098
0-385 0-+385 0-114 0129
0+462 0+462 0272 0°326

ALONG THE NODAL POINTS OF THE SUB-AREAS

COMPRISING ANY OUTERMOST ROWS ON A FACE
0°+462 0:0 0°154 0°150
0462 0:077 0°155 0-151
0+462 0+'154 0°+158 0+154
04462 0-:231 0°163 0-160
0-462 0°308 0°173 O°17Q
04462 0°385 0+189 0-194
0462 0°462 0°272 0°326

Table 21
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CHAPTER 13

SUMMARY OF TFORMULATIONS

Introduction

It has been shown in (57), Chapter 4, that for uniform potential flow
perturbed by a fixed obstacle B, the disturbance potential 4>can be generated

by a simple source distribution of density Gon OB, i.e.

(k) ZJGQ“,‘L)O(%)% , e BtOB . (165)
8

The free flow potential ﬁ’, by (54) of Chapter 4, is

(166)
\'{" -:——’U-I +C

where U is the free flow velocity vector and ¢ is an additive constant which
does not affect the flow. The distribution @ in (165) satisfies the normal

derivative equation

2

~2xo(p)t {0 i‘!ﬂ,_ _ ‘Fel(l‘)v bé oB | (167)

08
in which (#é(b) is given by (55), i.e.

i = %elt) 5 beos 6o

It has already been shown in Chapter 2 that equation (167) has a unique

solution 6 which generates 4>everywhere (including the surface OB) as the

simple source potential

0-]_ody (169)
c‘)(—) !k‘“‘ll
8
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Discretising, by Chapter 5,(167) becomes

N
g, |
—28G6, +7 0 | — = B (1) k=1,2,--+N . (170)
: ZJJ geyy - Tl !
i

10
and the computed Oj generate CP according to the formula

N
P (k) = f””%l . (171)
i1

11,12
Alternatively, utilising Creen's boundary formula {60) of Chapter 4,
c{: satisfies

-2w4>(b»)+ ﬁ?@’ 0’1, cﬁf(%){ T P o ., (172)

B

It has been shown in (36), Chapter 2, that equation (172) has a unique
solution <{> on OB. On discretisation, by Chapter 5, (172) becomes

N

"‘27\‘43(({1 }CFQ(‘L 3 k=1,2,-+-N, (173)

l
2.

Wl

- ‘

The tangential velocity 4y at a point p on OB is given by

pI=

22 & os ¢ (174
\7(-){(“6‘;; +C50) | )

where CID—_«#.\-\V and /J1 ’Az_ are arc lengths along two mutually

perpendicular tangential directions at p & OB. When ¢ is determined

o~

. . g . . . 13
at discrete equidistant points along Ay the tangential velocity component
along 4, at . is given b

& Ay q i+ } g y

I IR PSR- T SR .
A 4'+11):“K‘[51“§Z, &+ {ip &1 ] , (175) |

1

[
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. . . r .,
wh . : t betwe . and q. H t
ere gj + 4 is the mid point between q ; an iJ + 1 tﬁ is the

difference of order r in a central difference table for & , and h1 is

the distance between any two equally spaced consecutive points along Ay

on OB i.e.,

kl ?l 1j+1_ jﬁl .

Axial Flow Past A Symmetric Body

Let OB be an axially symmetric surface, and suppose the frce flow is
parallel to its axis of revolution. Let us now divide 0B into 2K rings
such that the plane of each ring is perpendicular to the axis of flow, and for
a ring in the upper part of OB there is a ring of equal width in the lower
part of OB. If p and ‘F represent one such pair of rings in which p lies
in the upper part and p lies in the lower part of OB (Fig. 16), the serial

number of P , counting from the top, is given by

P = 20-p+1 . (176)

Similarly for a pair q,q

q = 2k-q+1 .

Since the plane of the rings are perpendicular to the direction of flow,

at the nodal points in the p th ring © and CP satisfy

(‘b)r"’ (C})j);ﬁ, , (‘Fl)}f @);)V” and (O\)F (Oﬂj)‘m’ j’lf"MK(M v (177)

where MK(p) is the number of sub—areas in the p th ring.

(a)Sirple Source Formulation

By virtue of (177), the N equations(170) for the N unknown Gj reduce
to 2K equations viz.
2k

} FOREY AN

V=1

bet,, o2k . 178)

s

In (178) Qslbl is the discret® approximation to C}'ét any nodal point in the

q th ring; ( ¢%)p represents the exterior normal derivative ofc§at ‘ny nodatl



FIG. 16

SUB-AREAS ON THE SURFACE OF A SPHERE

&% | UPPER SIE
A 17 f fARH

- LOYER SIDE
SUBAREAS
ATTHETOP

FIG. 16(a) Fig.16(b)
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point in the p th ring, and qu stands for

M)
) g,
Em‘l ey vk
i1
Mk (1) |
= -2K 4 / !I&_l I
mo T

where p 1s any nodal point in the p th ring.

75

If we take the Z-axis as the axis of flow, then for a pivotal point

(X,Y,Z) in the p th ring there is a pivotal point (X,Y,-Z) in the P th ring

on OB, Hence

di, ,
E = v , over the q th ring
M) el
‘II - o~
J
= T ) over the T th ring
]
[/
= E}li :Ezk—ywi W=+t
and  ( 43')1) = - (43‘-)5 = = 4>I)2k-—p+1 )

Further it is interesting to note that

o JLM JM'” |

By virtue of (179) and (180), the system of equations (178) becomes

(179)

(180)

(181)



76

By B o By Brw T Eu\j (0)1 | (4)@')1
Ejt Eaa - - ¢ Egk Equwn -+ - BEypoak (0)2. (#%ZL
!
EKi EKl oo EKK EK kel o+ € 2K Qj)k . <¢%L< (182)
- 1 .
Beaw g = 0 Bewa Bk - 0 B g (O)k*‘ —(#E)“4
_Ezzx Ez w1 Ezkﬂ Ey_K - o Exy (O)zk—i ~((ioel)z
!
L_Ei w ELZW1 By Eik oo By Qs)zm "(4%)1

The solution of (182) has the property (Appendix III)

(G)}»= B (G)ZK—yu +1 3

et 2es K 183)

Hence (182) reduces to K equations viz.

K
\ \
P = A Lok (184)
>(EM Eyv ZK—‘IJ+1)(G)‘1I (%)yw bety2, K
-1
From (183) we see that for every positive source on OB there is a

negative source of equal strength on OB and hence, in accordance with (59),

the total source strength on OB is zero.

(b)Green's boundary formula

For a free flow parallel to the axis of revolution of a symnetric surface
OB, the distrubance potential ¢>in every ring, shown earlier, satisfies
relation (177). As a result the N equations (173), as before, reduce to ZK°

equations given hy



. o (185)
!

where

, w M@ |
' t {
B M,T?%T } ‘f’e)‘LH |
1 .

As in the previous case, following the same procedures, it can be shown
that

HM/"; HV“T: = sz—}wi et (186)

and Dyv = "va = ‘DzK—}»+1

(187)

By virtue of the above results, the 2K equations in (185), as before, reduce
to K equations viz,

K.

L
2!

Test Function

B

It has already been shown that the approximation to an integral, over
a given surface OB, approaches the analytic value as the number of sub-areas
increases on OB.

Further, by our fundamental assumption, the density
distrihution over a surface approaches its true value as the sizes of the

77
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sub-areas decrease and thelir number increases. Now the question arises what
should be the minimum number of sub-areas, along with their respective sizes
on OB, which will produce a sound value of the unknown on OB. Accordingly
we first find a distribution of sub-areas on OB which will generate a test
harmonic function h  of the same nature as the required function 4> .

The disturbance potential q> has the property
b-olb @ |poe .

Hence a comparable test function is
L» . (189)

A »
where U defines a unit vector in the direction of the flow and h 1is a

harmonic function with right behaviour at infinity i.e.
-2
h=Olt] @ [fee -

The test function has been very useful in experimenting with the sub-

division of OB and with our discretisation procedures.
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CHAPTER '14

FLOW PAST A SPIERE

Introduction

A rigid sphere of radius ‘'a" is fixed with its centre at the origin
of spherical polar co-ordinates (Fig. 17). An inviscid incompressible fluid

is flowing from infinity with uniform velocity U given by

y=(0,0,-U) = -vy (190)
wheré Y is the free flow potential, and hence

\r__UZ . (191)

]

taking the constant of integration to be zero. As already noticed in

. . -2
Chapter 4, the disturbance potential 43 behaves as O ‘p‘ as p->0s |,
satisfies

\71<[>(H:O ;. b € B.

~

(192)

and on OB satisfies the boundary condition

Ct)l(b) == ‘i’;(f“) = *U(Z)L =-UCos@ . (193)

3 . . . .
The solution of (192) subject to boundary condition (193), in spherical polar

co—ordinates, is

UO}Z
<\>:i2 3 (194)

The total velocity potential & , by (53), is

3
‘13‘;43*“\’-;%_—!%—55 + Uz (195)

The fluid velocity on the surface of the sphere, by symmetry, is in
the © increasing direction. This is given by

\}‘G::—_%Dw,. =1 Ua S8 + Ua Sin 8 :-%UQS{MG . (196)

06 1
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Our aim is to compute an accurate approximation to (194) using the
formulation of the last Chapter. Since the analytical solution of the problem
is known, we have a chance to test the soundness of our numerical and
geometrical procedures by obtaining a numerical solution for comparison with

(194), taking a = 1. Since-

3
t Uadz z
CF=1 r5 ii'F’S (taking U = 1, a = 1) (197)
<t3'e(g) on OB is given by.
{
#%&)=V¢ Ne
32% 34z 327 1 . -
*—*%[Ts‘ i ’(Tﬁ“rﬁ)]'("»?»‘)“
! -1 -
*--*'2'_ z_rz; Q :—--(‘}—QO_SIG = ~Cos 0 ( . =1 and r-{ onbﬁ)
r
|
A Ly ]
]’eu by (168) | (198)
where ge = (x,y,z)a—l at p € OB. Introducing (198) in (172), Green's

11,12 ~© . .
Boundary Formula (Jaswoﬁ} defines an equation for d[') on OB with exact
solution (197).Alternatively, introducing (198) in (167) the Simple Source
10 . . . .
Formulation (A.M.0. Smith) defines an equation for ( with exact solution*

3 CosH

°=Tgx

(199)

This & , by (165), generates 4) in (197).

’ | !
* - 4ro = b+ %‘ = 5[(%)2* Z@]nm
"z[fil;@ffg)‘”if(”“e)] S T
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Division of the surface into sub-—areas

To solve the equations (167) and (172) numerically,the surface OB
is to be divided into sub—areas. The upper half of the spherical surface
X+ y2 + 22 = a2 is divided into K horizontal rings. Each of the 1st
KN( < K) rings, starting from the pole, is divided into MKj equal sub~

areas by Mijeridian line segments where MKj is given by

Mk =6 [ Le@02] | d=1,2, - W .

Starting from (KN + 1) up to the K th ring, each ring is divided into M
equal sub-areas where

M = ijse(iézkw) . .j;(kN-H,),H- K

The total number of rings on the upper hemispherical surface is given by

\<=kN+KT=KN+(—%L—)=4l<N +2 . (200)

Any half meridian is dividea into K equal parts to give the height hk of

a trapezoidal sub-area (Fig. 16) adjacent to the equatorial line which is

divided into M equal parts to give the breadth b, of the same sub-area. From

k

the above, the ratio hk : bk is given by

. hy _ BR/20kn41) 3
by ~ ane/6Qntl) 4 7

where ideally r = 1 (see Chapter 6). 1If hk is increased keeping bk fixed and

vice versa, the form of the trapezoidal sub-areas near the polar region
deviates from the ideal form. This justifies the value of K chosen in (200).
If ch#ﬁ be the angle between any two consecutive meridian line

segments in the j th ring, then

Ci. ~—}_}§_ M '—- e K ]
Py = wg > b

The width of the lst ring is tentatively taken to be {, where

o= (B%kr)ay 5 Lok L2

This subtends an angle @l at the centre of the sphere where
-1
The width of the j th ring is given by

[j-:pj((kgm@j_l)dciaj 5 5:2,5,-"‘(’\')
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: -1
where O, = {0 and 1 <45 L2 . Normally /3 is kept fixed

at 1°'5. From the (KN + 1) th up to the K th ring, the width of a sub-area

is given by

[KNH =D+ §(ur) 5 5et, 20 kT,
where ) :%aﬁhQN)d¢kwn

The total numbef of sub-areasis
- KN ol
N = 2[6{1-(& KN-1 z)} + M(kr)}

=12 (7 k37 en 42) - (201)

The analysis of the sub=-areas thus formed, for KN = 5, is given in
Table 22, It is evident from this Table that:
(1) The sides of the triangular sub-areas adjacent to the pole are
nearly equal.
(2) From the 2nd up to the KN th ring the width of any sub-area is
nearly 1-5 times its average breadth.
(3) The change in the size of the sub-areas, as we move from the top

to the equatorial line, follows a continuous pattern.

Computation of Disturbance Potential

‘ Now we proceed to solve the equations (167) and (172) numerically,
Dealing first with the Simple Source Formulation (167), we find, on
discretisation, that this gives (170), a system of N linear algebraic equat-
ions in N unknown G; . From symmetry of OB and for relation (180), the N
equations reduce to K equations given by (184). The co-efficients T

are evaluated as discussed in Chapter 5 and the equations are then solved by

the Causs-Seidel iterative method with € = 0°0001,



ANALYSIS OF SUB-AREAS ON A SPHERICAL SURFACE

0.43689E-02

RING SUB-AREA AREA UPPER SIDE LOWER.- SIDE ARM

. AB CD AD
1 6 0.12893E-01 0.00000E 00 0.16382E 00 0.15708E 00
2 18 0.71676E-02 " 0.54606E-01 0.88728E-01 0.99929E-01
3 30 0.56405E-02 0.53237E-01 0.71326E-01 0.90503E-01
4 42 0.48543E-02 0.50947E-01 0.62751E-01 0.85337E-01
5 54 0.42684E-02 0.48806E-01 0.57145E-01 0.80530E-01
6 66 0.39215E-02 0.46755E-01 0.53113E-01 0.78493E-01
7 65 0.42877E-02 0.531132-01 0.58993E-01 0.76457E-01
20 66 0.47242E-02 0.94217E-01 0.94781E 01 0.49982E~01
21 66 0.45528E-02 0.94781E-01 0.95099E-01 0.47945E-01
22 66 0.95099E-01 '0.95200E-01 0.45908E-01

Table 22

(This should be read in conjunction with Fig.l16, Fig.l6(a), Fig.l6(b).)

(e)co
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The ©; thus obtained satisfy the relation (183). These computed G;
when used in (171),generate the required potential 43 given by (197). Table
23 exhibits the computed O (K = 46) compared with analytical O given by
(199). Table 24 exhibits the ¢ in (197), generated by the above G;, for the
same value of K along with the analytical CFat the respective points on OB,
Fig.18 exhibits the graphs of analytical and numerical O based on Table 23,

The total velocity potential ®is then obtained by (53) viz.

=Pty , | (202)

where \‘\’= Uz =2 ( U:l ). The graphs in Fig.l9 exhibit df’ and ¢ ,
based on Table 24, on the upper hemispherical surface of the sphere.

In (172) ¢>‘e is given by (198). On discretisation, (172) gives N linear
algebraic equations in N unknown d)(‘b).),By virtue of the symmetry of OB and
for (180), the N equations reduce to K equations given by (188). After
evaluation of the Hpq and the D_, of (188), the equations are solved by the
Gauss—-Seidel iterative method with € = 0:000l. The (q:)k thus obtained for
K = 46, are exhibited in Table 24, The total potential ¢ is then obtained by
(202). The ¢ and the ¢ thus obtained, for K = 46, are exhibited in Fig. 19.

Fquipotentials

The G which generates the required disturbance potential ¢ , for q>L
given by (193), is obtained by solving the equation (167) numerically, as
discussed earlier, These 6j then generate the ¢k by (171) at any point
l‘ € Ro + 08 . The total velocity potential & is then obtained
by (202).

For K = 46, the total potential ® is then obtained at M* points outside

0B along with those at the nodal points, each lying on a separate ring, on
the upper hemi.spherical part of OB, The equipotentials are then drawn
from the K nodal points g; , q, » « « + 4, ©f OB through those points p,

for which )
\ @(@,,,)—cﬁ.(h)l < 0001 “; Y € OB ja1,2, - (MHK)

The equipotentials, thus found, are given in Fig. 20.



DISTRIBUTION OF SOURCE DENSITY ON A UNIT SPHERE

POLAR DISTANCE DENSITY ¢
IN
RADIAN ANALYTICAL NUMERICAL
0.041 0.11926 0.12073
0.179 0.11746 0.11835
0.290 0.11439 0.11512
0.390 0.11042 0.11105
0.484 0.10564 0.10623
0.579 0.09989 0.10053
0.675 0.09321 0.09387
0.771 0.08565 0.08629
0.867 007726 0.07787
0.964 0.06810 0.06867
l.061 0.05826 0.05876
1.159 0.04781 0.04824
1.257 0.03686 0.03719
1.356 0.02550 0.02573
1.455 0.01383 0.01396
1.554 0.00198 0.00199

Table 23
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GENEFATION OF ¢ O THE SUPLACE

OF A UNIT SUHERE

POTAR DLSTANCE

ANALYTIC ¢ S.L.POTENTIAL $ERROR G.B ,FORMULA HERROR
IN RADIAN (smith) (Jaswon}

0.412E-01 0.49958E 00 0.50019: 00 0.124 0.50197E 00 0.478
0.956E-01 0.49772E 00 0.499178 00 0.293 0.50009E 00 0.476
0,139k 00 0.49520E QQ 0.497138 00 0.389 0.49757E 00 0.478
0.1798 00 0.49201 00 0.494148 00 0.433 0.49435E 00 0.474
0.2178 00 0.48822E 00 0.48612E 00 0.449 0.49045E 00 0.457
0.643E 00 0.40020E 00 0.40195E 00 0.437 0.40186E 00 0.412
0.675E 00 0.39046E 00 0.39215E 00 C.433 0.39211E 00 0.423
0.707E 00 0.38030E 0O 0.33194E 00 0.434 0.38194F 00 0.431
0.739E 00 0.36973E 00 0.371331 00 0.433 0.37137E 00 0.441
0.771E 00 0.35877E 00 0.360335 00 0.435 0.36039E 0Q Q.452
0.139E 01 0.90639E~01 0.9.079E~01 0.485 0.91173E-01 0.589
0.1428 01 0.74345:.01 0.74707E-01 0.487 0.74785E~01 0.592
0.1458 01 0.57944E-01 0.58226E-01 0.487 0.58288R-01 0.594
0.149g 01 0.41453E-01 0.41655E-01 0.4487 0.41700E~01 0.595%
0.152e 01 0.24891E~01 0.25013E-01 0.486 0.25040E-01 0.598
0.155E 01 0.82761E-02 0.83163E-02 0.486 0.83255E~02 0.597

Table 24
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Fluid velcoity on the surface

The analytical value of the fluid velocity at a point qQ & oB,
by (196), is

Uéﬂ: Qz Ua Sin @v (203)

where U = 1, a = 1 and Qq represents the value of O (Fig. 17) at the point
q. The numerically computed value of the velocity at q is found by (175),
;sing the numerical ¢ . Since the nodal points on OB are not equally spaced
and the higher order D is very small, the velocity component at q & ‘OB,

in any direction S is obtained by taking only the first term in (175) i.e.,

(204)

It has already been pointed out, that for symmetry, the flow on the
surface is along the meridians on OB. The velocity at a point q(= Ej*i)
on OB is determined by (204) from the numerical d given by (202), in which
<§ is obtained by Simple Source Formulation., Table 25 exhibits the ‘bg thus
obtained, for K = 46, along with the analytical’ Ub at the respective points
on 0B, Similarly, \% is obtained from ¢ in which ¢>is determined by
Green's Boundary Formula under the same external condition and for the same
sub-division of OB. The \% thus obtained are exhibited in Table 25, -
Fig.21 shows the velocity distribution on OB base on Table 25.

General Discussion

It is evident from Table 24 that both the formulations, i.e. Simple -
Source Distrubution (Smith) and Creen's Boundary Formula (Jaswon), are
capable of yielding a good approximation, In the case of a flow past a
sphere, in this thesis, we obtained C? on OB by both the methods, in which
the maximum error in CP at a nodal point on OB is < 0:6%Z, The error in $ ,
generated by the Simple Source Formulation is less than that in @D obtained

by Green's Boundary Formula.



VELCCITY D1

IRIAUTION ON TUE SUKDACK OF A UNIT SEIE

84(a)

FOLAR DIGWAKCE AHALYTIC FROM FROI
IN RADIAN VELCCITY S.L.POTENTIAL $ERROR G.B.FOFRMULA TERROR
{Smith) {Jaswon)

0. 634E-01 0.102571 00 0.871406E-01 -0.150E 02 | 0.10291F 0O 0.336E 00
0.117E 00 0.17533E 00 0.16434E 00 ~0.6278 01 | 0.175348 01 0.334E-02
0.1591 00 0.2372412 00 0.232338 00 -0.207£ 01 [ 0,23823E 00 0.420E 00
0.138E 00 0.29540rK 00 0.2936GYE Q0 ~0.582E 00 [ 0.29813E 00 0.922E 00
0.236GE 00’ 0.35060E 0O 0.35025E 00 -0.101E 00 {0,35401E 00 0.972E 00
0.659E 00 0.91819€ 00 0.91970E 00 0.1G5E 00 }0.91822F 00 0.331E-02
0.691E 00 0.955521 dO 0.956G9¢E 00 0.150E 00 | 0.955CGE 00 0.144E~01
0.723E 00 0.99195 00 0.99333E 00 0.1391 00 {0.99220K 00 0.256E-01
0.755E 00 0.10274r 01 0.10283E 01 0.1318 00 j0.10278E 01 0.3678-01
0.7878 (0 0.10618E 01 0.10632 01 0.126K 00 {0.106248 01 0.477e-01
0.141E O1 0,147941E 01 0 14817 01 0.155E Q00 { 0.14b221 01 0.187%F 00
0.144E 01 0.148688 01 0.14821E 01 0.1%E 20 | 0.1489%61 01 0.190F 00
0.147e 0Ol 0.149262 01 0.14940L 01 0.1572 00 | 0.149548 01 0.192E CO
0.150E 01 0.14967E 0l 0.14991E 01 0.158E 00 | 0.14996E 01 0.194E 00
0.154E 01 0.149921 01 0.15016E 01 0.1S8E 00 | 0.15021% 0L 0.195E QO

‘Table 25
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neat
The error in c‘: , obtained by Green's Boundary Formula, isf{uniform.

As a result, the numerical velocity, near the pole on OB, obtained from (\)
given by Green's Boundary Formula is nearer to the analytic velocity than

obtained from CF given by Simple Source Formulation in that region
(Fig. 21).
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CHAPTER "15

FLOW PAST ‘A CYLINDER WITH HEMISPHERICAL CAPS

Introduction

Let the centroid of the cylinder define the origin of a cartesian

reference frame OXYZ, the axis of Z coinciding with the axis of the cylinder

'

(Fig.22). The cylinder is of length 2H and radius 'a', and therefore the

cylindrical surface has the equation

2 2 2
x"+y" = a » lz] £ B .
The two hemispherical surfaces have the equations
X2+ y2 + (z ¢ H)2 = a? respectively, with lZIZ H.

The cylinder is supposed to be fixed in an infinite fluid moving with

free velocity

U= (O' O:‘l) ==-VY ’ (205)

~

where \P is the free flow potential, and by (205)

Y=-2 . (206)
. . 2
As before, the disturbance potential <¥-9 0 lBl as lg]—a oo and
satisfies
1
V=0, MesBe, (207)
with boundary condition
| A ' |
ch:—v*mgz—kk . (208)

" The integral equation formulation provides a straightforward approach
to determine ¢)on the boundary. This is achieved by substituting (208) into

(167) or (172) and solving Lheequations numerically.

Discretisation Procedures

The numerical approach demands that the surface OB should be

divided into sub-areas. To effect the sub-division, the hemispherical part

of the surface is divided into K1 rings, similar to the surface of the

sphere in Chapter 14, Hence, by (200), K1 is given by
Kl‘:/\' KN +2‘ . : (209)
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By (201), the toal number of sub-areas of each of the hemispherical

surfaces, is

N| 16 (? KN'L—{- '-,L KN +Q,.) v . (210)

The M meridian lines which divide the K1 th ring into M sub-areas are
extended on the cylindrical surface. The cylindrical surface from z = H to

2 =0 is divided into K2 rings, such that the width of the ring at the top of
the cylindrical surface nearly equals to the breadth of the sub-area in that

ring, i.e.

where, by Chapter 14, M = 6(1 + 2KN), When H = a = 1, from above, the

approximate value of K, is (1 + 2KN). Since the width of the sub—area in the

2

Kl th ring is little less than the breadth 2 #a/M (Chapter 14), the value of

Kz » in this case, is taken to be

K2 = 3 KN . (211)

Each sub—area on the cylindrical surface is of breadth b and width d,
where '
b = 2%a/M and d = H/3KN

The total number of rings on OB is 2K, where
2 =2 (Kt kg)=2 (T KN +2) - (212)
The total number of sub-areas
N = L{N‘Jf KL(M)}
L
= 2[@{'}@ +FKN +7_} +3kN + 6 (14 ZKN)]

1
=12 (13 kN 310 KN +2) (213)

Test function

In order to test our geometrical and numerical procedures, we introduce

the test function

h = 'z. ‘ ! (214)
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which is a harmonic function of similar behaviour to the disturbance

potential (b . On OB,

! A - A
- 3zx 342 3L 1
kg:vh.na_—[ -, s, A ”1'"‘ « (215)

\‘b ? rs }] rs

Introducing this into the place of ¢i in (167) and applying our
procedures, we solve for O and generate h at all the nodal points on the
surface. The generated values are exhibited in Table 26 for comparison with
the analytic values defined by (214) on the boundary. It will be seen from
the Table that the error in the numerically computed values, for K = 23, is
less than 1°+57%.

We may compute h directly on OB by inserting h; from'(QIS) in (172)
and applying our procedures., For K = 23 the computed values of h at the
nodal points are exhibited in Table 26, It will be seen from Table 26 that
at n