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A B S T R A C T

We propose a new concept of the nonlinear effect called the Kerr-Vernier effect by using cascaded Si-ChG microring circuits. The circuit is simulated for two materials
of different refractive indices which results in phase difference in propagating light and hence observed in the output signal. By varying the input power into the
system, the Vernier effects in terms of the Kerr-Vernier effects are seen. In application, the comparative results of the two-channel outputs are used to form the phase
sensors, while the self-calibration between the two-channel outputs can be performed. The change in wavelength at the whispering gallery mode of 8 nm is achieved
when the applied input power was fixed at 10 mW. A sensitivity of ∼120 µm −W 1 is obtained for this proposed sensor.

The Vernier effect is a well-known technique in coupled cavities
passive systems to extend the free spectrum range (FSR) of band-pass
filters. The Vernier effect is used in microring resonators photonics
circuits to increase the FSR which in turns increase the capacity of the
optical system thus contributing to embedding large channel count in
DWDM system. It is widely used also for the design and fabrication of
ultra-high performance telecommunication sensors. Vernier effect of
the microring resonator may lead to a defect in the device fabrication
which contributes to the error in light propagation phase and the
overlapping in the output frequency comb [1]. However, the slight
discrimination of the defect device from a required device can have the
useful applications, for instance, for sensor applications [2–6]. There
are the remarkable demonstrations on the Kerr switching in different
materials found in the following Refs. [7–10]. By using the device
called a Panda-ring resonator [11,12], the difference in the ring radii of
two side rings introduces a similar Vernier effect as obtained by the
defect device. However, the problem that it is difficult to overcome is
the repeatability of the fabrication process. In this article, we have
proposed that the ring radius is not required to change. Same results
can be obtained by using the different ring materials or propagation

lengths. The Vernier effect can be induced by nonlinear Kerr effect,
which is known as the Kerr-Vernier effect. By varying the input power,
nonlinear refractive index of the ring material with different lengths
causes changes in the propagation of light and hence in output signals.
The comparative output from two systems can be used for two-channel
phase change measurements. It is the two-channel phase sensor that can
be compared for self-calibration.

From Fig. 1, the electrical output field at the center ring is the
electrical field of the whispering gallery mode (EWGM), which is given
in the cylindrical coordinates and found in the Refs. [12,13]. To sim-
plify the equation, reflection from the reflector is neglected, whereas
the reflection output is obtained as IWGMR =−RWGM IWGMR. RWGM.
Here, RWGM is the reflectance of the applied material [14]. Finally, the
simulation parameters were selected closer to the considered practical
parameters [15]. The parameters used in simulations are given in the
captions of relevant figures. A selected light is fed into the system as the
input electric field (Ein). The electric fields are circulated within the
system and described by the Eqs. (1) and (2) [16,17], the input electric
field is fed into the z-axis, where =E Ein Z = − − +E e ik z ωt φ

0 z , E0 is the
initial electric field amplitude, Where E0 is the electric field amplitude
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(real), kz is the wave number in the direction of propagation (z-axis), ω
is the angular angular frequency, and is the initial phase.

The output intensity of the proposed single system is given by the
transfer function of the output power (intensities) at through port and
drop port given by Eqs. (1) and (2), respectively [17].
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where A1/2= −e αL( /4) is the half-roundtrip amplitude (A= A1/2
2 ),

Φ1/2 = e jωT( /2) is the half-roundtrip phase contribution (Φ=Φ1/2
2 ),

τ1/2 = −κ(1 )1,2
2 1/2, κ1 and κ2 are the coupling constants.

Before employing Eqs. (1) and (2) for simulations in MATLAB,
preliminary results, as shown in Fig. 2, were obtained by using the
graphical approach of the Optiwave program. Simulation of the laser
input into the first system is illustrated in Fig. 1. The center wavelength
is 1.55 µm with a peak power of 10mW. A fraction of this power is

coupled into the device that propagates throughout the first system and
the output is obtained at the throughput port. Coupling constants and
the other used parameters are given in the related figure captions. Next,
the output from the drop port is input into the second system and the
processes repeat.

The output of the second system is also obtained at the throughput
port. In application, the two-channel sensor mechanism can be formed
by the Kerr-Vernier effect within the circuits, which is firstly introduced
by us in this work. In Fig. 2, the plot shows graphical results obtained
from the Optiwave program, where the input light wavelength center is
at 1.55 µm, Rl1 = Rr1 = Rl2 = Rr2 =1.2 µm, Rd1 = Rd2 =2.0 µm, each
of the coupling constant, κ1 to κ8 is 0.5, the refractive index; nChG =2.9
[18], nSi =3.47 (Si-Crystalline silicon).

The refractive index of Si is 3.47 The attenuation coefficient of the
waveguide is 0.1 dB (mm)−1, Aeff=0.50 μm2. For simplicity, the wa-
veguide loss is 0.5 for all wavelengths. The ChG dimension is given in
the figure captions, the nonlinear refractive index
n2=10.20× 10−18 m2 −W 1 [20], linear refractive index n0=2.90.
The fractional intensity loss γ=0.1 and other parameters are given in
the related figure captions. The key parameter of such effects is the
nonlinear refractive index (n2) of the ChG, which is the side ring (phase
modulator) that induces the coupling of power into the centre ring (Si).
This affects the output at the throughput and drop ports. Hence, the less
input power from drop port is coupled into the second system and
observed at the throughput and drop ports, A different amount of power
is coupled into the two side rings (right and left rings of both system)
that provides with different refractive index changes induced by the
Kerr effect. The shift in wavelength (or frequency) between the
throughput ports of the systems introduce different phase changes due
to the refractive index changes and produce two-channel comparative
results. In a similar manner, the Vernier effect of the two side rings is
reported by Bahadoran et al. [1]. This is the on-chip scale circuit that
can be used for two-channel measurements, where the shifts of the two
comparative results can offer better measurement accuracy, in which
self-calibration can be performed. Regarding Kerr effect, the change in
the input power causes the change in the output of Kerr-Vernier effects
output, which is a display of a two-channel sensor operation.

The Kerr-Vernier effects of the system can be seen by changing the
input power into the system, from which the output signal of the second
system will be shifted in phase (wavelength). In the microring system,
which is ultimately reflected in the refractive index, given by the re-
lationship as n=n0 +n2I=n0 +n P A/ eff2 , where n0 and n2 are the
linear and nonlinear refractive indexes, respectively. I is the optical
intensity and P is the optical power. Aeff is the effective mode core area
of the device. For the microring resonator, the effective mode core areas
range from 0.1 to 0.5 μm2 [6]. The comparison of the results due to such
effects is described in the following details. Fig. 3 shows the simulations
performed using MATLAB and the two-channel comparative results at
(a) through ports, (b) the drop ports, (c) the WGM outputs. In Fig. 4, the
plot of the relationship between the input power and the changes in the
output wavelengths with the two system outputs are compared, where
the sensitivity of 1.2W −m 1 of the WGM output is obtained. In appli-
cation, the initial measurement can be used as the off-set data before
the sensing operation, therefore, if there is any change from the initial
data will be the measurement values. Moreover, the shift in phase
(optical path difference) from the two systems can be compared with
each other, i.e. self-calibration. Moreover, the two-system can be used
to form a sensor system in which one is the sensing unit and another
one is performed the sensing unit, which has the potential of various
sensor applications such as bio-sensors, mechanical sensors and other
forms of sensor that requires the sensing and reference system com-
parison (see Table 1).

To the best of our knowledge, this is the first time the concept of the
double effects called the Kerr-Vernier effects is introduced by using the
material device size and refractive indices. The concept is demonstrated
by using the two coupling panda-ring resonators, where the nonlinear

Fig. 1. A schematic of the on-chip Si-ChG microring circuits, where Rr , Rd, Rl

are the ring radii of the center ring and two side rings, right (Rr) and left (Rl)
hands, RSi: silicon ring radius. ESubs are the electrical fields in the related
system.

Fig. 2. The grapical results of the wave propagation in the system in Fig. 1
using the Optiwave program, where the input light source wavelength cenetr is
at 1.55 µm, Rl1 = Rr1 = Rl2 = Rr2 =1.2 µm, Rd1 = Rd2 =2.0 µm, each of the
coupling constant, κ1 to κ8 is 0.5, the refractive index; nChG =2.9, nSi =3.47 (Si-
Crystalline silicon).
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material is the ChG. When light is input into the two systems, the Kerr
effect is induced in both systems. By the difference in the propagation
lengths, the longer length results in lower optical, which is observed by
the phase differences. We have shown that the Kerr-Vernier effects
within the microring resonator with the materials can be easily changed
by applying the input power into the system, which is the external
application. The comparison of the two outputs has shown that a phase
shift of ∼120 µm −W 1 is obtained with an applied input power was
fixed at 10mW.
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