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Abstract

We present an Adaptive Mesh Re nement (AMR) method suitable for hybrid unstructured meshes that allows for
local re nement and de-re nement of the computational grid during the evolution of the ow. The adaptive imple-
mentation of the Discontinuous Galerkin (DG) method introduced in this work (ForestDG) is based on a topological
representation of the computational mesh by a hierarchical structure consisting of oct- quad- and binary trees. Adap-
tive mesh re nement (h-re nement) enables us to increase the spatial resolution of the computational mesh in the
vicinity of the points of interest such as interfaces, geometrical features, or ow discontinuities. The local increase
in the expansion order (p-re nement) at areas of high strain rates or vorticity magnitude results in an increase of the
order of accuracy in the region of shear layers and vortices.

A graph of unitarian-trees, representing hexahedral, prismatic and tetrahedral elements is used for the represen-
tation of the initial domain. The ancestral elements of the mesh can be split into self-similar elements allowing each
tree to grow branches to an arbitrary level of re nement. The connectivity of the elements, their genealogy and their
partitioning are described by linked lists of pointers. An explicit calculation of these relations, presented in this pa-
per, facilitates the on-the- y splitting, merging and repartitioning of the computational mesh by rearranging the links
of each node of the tree with a minimal computational overhead. The modal basis used in the DG implementation
facilitates the mapping of the uxes across the non conformal faces.

The AMR methodology is presented and assessed using a series of inviscid and viscous test cases. Also, the
AMR methodology is used for the modelling of the interaction between droplets and the carrier phase in a two-phase
ow. This approach is applied to the analysis of a spray injected into a chamber of quiescent air, using the Eulerian-
Lagrangian approach. This enables us to re ne the computational mesh in the vicinity of the droplet parcels and
accurately resolve the coupling between the two phases.

Keywords: Droplets, Sprays, Vortex Rings, Discontinuous Galerkin, Adaptive Mesh Re nement

1. Introduction

The variety of di erent spatial scales observed in compressible, dispersed, multiphase ows re ects the more
general problem of the interaction between the micro- and the macro-scales in uid mechanics [1]. There is a signif-
icant number of examples where the physical ow problem is the result of a closely-binded synergy of phenomena
occurring at di erent scales [2, 3, 4]. In compressible, dispersed, multiphase ows we observe the interaction of the
macroscopic ow in the following ways:

i) with re ned structures due to compressibility (e.g. shock and acoustic waves [5, 6], thereta@and chemical
reaction regions [7], [8], [9]),

i) with vortical structures [10], and
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i) with dispersed micro-scale droplets and particles [11], moving walls and detailed solid structures [12] or
solidi cation interfaces[13].

Due to the complexity of these interactions, we need to resolve all scales of the problem. Small scale features in a
complex ow are not knowra-priori and can vary in time. To fully resolve a complex ow, ne resolution is required
throughout the computational domain. This ne resolution allows us to describe ne structures and features of the
ow.

Adaptive Mesh Re nement (AMR) addresses the problem of resolving this wide range of scales by focusing the
discretisation resolution in the proximity of the ne structures. The Finite Element (FEM) framework [14] for the
solution of PDE's gives us two options to enhance the spatial resolution (and accuracy) of discretisation. Firstly, this
can be achieved by increasing the number of basis functions used for the discretisation of the eld variables, resulting
in an increase of the degrees of freedom within the element and the order of accuracy of the discretisgiitypé.e.
re nement) [15, 16]. Secondly, this can be achieved by local increase of mesh resolution-fjge re nement),

a strategy which is also relevant to the Finite Volume (FV) [17, 18] and Finiteei2inces [5] framework. Also, a
combination of both approaches (ilgp-type re nement) can also be applied [19, 20].

By localising the discretisation resolution, the desirable resolution can be achieved with minimal increase of
the size of the problemH-type re nement results in the re-arrangement of the computational grid. This can be
achieved either by relocating the nodes of the mesh [7, 21, 22, 23] or by splitting existing elements in smaller ones
[24, 19, 25, 26]. The relocation of the mesh vertices allows us to retain the connectivity topology but eventually
leads to highly anisotropic elements [23]. This approach allows us to focus on areas of interest without increasing
the total number of degrees of freedom. An alternative approach is to start from the nest resolution and locally
coarsen the mesh atwd decrease the original order of accuracy [20]. This is achieved by agglomeration based,
adaptive implementations. One of the advantages of this approach is that the nest grid is accurately prescribed.
Thus, it can deal with highly anisotropic meshes appearing at the highest re nement level in high Reynolds viscous
simulations [27]. Furthermore, agglomeration techniques, being inherently related to multigrid methods, can lead to
major convergence performance bene ts that stem from multigrid solvers [28, 29].

Splitting of cells may be achieved by retaining the existing faces of the mesh [25, 30] and introducing verticies
inside the elements, or by introducing new vertices leading to non-conformalities [31, 19]. The second approach to cell
splitting results in an increase in the total number of elements and the re-arrangement of the inter-element connectivity
relationships. This method of cell-splitting in AMR requires a versatile data structure. According to [32], approaches
to cell splitting in AMR can be classi ed into three distinct categories: block structured AMR (SAMR), unstructured
AMR (UAMR) and tree AMR (TAMR). SAMR utilises the regular mapping of the structured grids at the expense of
numerical complexity. UAMR, on the other hand,ers the exibility of unstructured meshes through the use of an
adjacency graph. The TAMR approach, introduced in [33] and [34, 32, 13] fotaktzode, uses a forest of trees
structure for the description of the locally re ned mesh and thus creates an internal mapping [32] for the derivation
of the connectivity relations of the re ned grid. In the category of unstructured split cell FEM solverdetdl
FEM library o ers an object oriented data structure [35] for AMR on hexahedral elements, and has been widely used
for the solution of the Navier-Stokes equations [36]. Thlemesh[37] FEM library also provides a versatile data
structure for the implementation of adaptive oct-tree re nement on triangular and prismatic elements for numerical
simulations in hybrid unstructured meshes. We use the forest of trees structure to describe the topology of a split-cell
re ned hybrid unstructured mesh. The connectivity graph relations of the re ned grid are calculated based on the
varying relative relations of the ancestral elements and the prede ned internal structured mapping in the tree. The
versatility of pre-de ned tree split structures (e.g. oct- quad- and binary trees) has made them applicable to a wide
range of problems [4].

The Discontinuous Galerkin method [38, 39, 40, 41] combines high order accuracy with the ability to handle
complex geometries described by hybrid unstructured meshes. The computatioimdey of this method (alongside
the spectral volume [40, 42] and spectralelience [40, 43, 44] methods), however, is generally believed to be inferior
to more commonly used methods, such as the FiniteeRinces (FD) and Finite Volume (FV) [45, 46] methods.

The cell splitting AMR strategy results in irregular meshes with hanging nodes. pAigoe re nement leads to
polynomial approximations of derent orders across the elements [38]. DG, however, is perfectly adapted to handle
irregular meshes with hanging nodes stemming out of AMR on structured grids [47, 48, 49, 19, 12]. Furthermore,
the basis expansion of the solution within the DG element provides an explicit description of the eld, resulting in
gradient preserving properties during splitting and merging operations. The latter do not interfere with neighbouring
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cells. The DG method provides a compact, discretisation stencil, where the inviscid and viscous uxes are calculated
from the solution within the element and only the surface integrals, at the adjacent neighbouring faces, are taken into
account. Oct-tree based re nement has been associated with the generation of spurious shocks, in Eneite®i

AMR implementations [4, 50, 51]. However, the compact, discretisation stencil used in the DG method, as well as the
treatment of the non-conformal faces as faces of a polyhedral element, results in the elimination of spurious shocks
and oscillations [52, 53]. Moreover, accurate integration of the inviscid uxes in non-conformal faces is known to
remove the occurrence of spurious shocks in compressible simulations using Finite Volume [54] and Ferieacs

[55] approaches. The compatibility of the DG discretisation with adapted unstructured meshes and the improvement
of the computational eciency of the DG method due to AMR leads to a powerful combination for solving complex
ows.

The identi cation of the ne structures which drives AMR is primarily based on the characteristics of the resolved
ow eld. The gradients of the ow eld, quanti ed by the magnitude of the vorticity or the strain tensor, show the
regions of potential ow instabilities [56, 10]. Also, the local mesh size [57], and the density gradients [8] can serve as
criteria to identify shocks. The geometrical features of the ow eld, e.g. the solid boundaries [13, 12] or the location
of inertia particles [17, 11] can also be used as AMR criteria. Re nement criteria based on the estimation of expected
spatial errors have been suggested in [58, 59]. These are used to drive AMR adaptation for unsteady pfoblems.
posteriori error estimate techniques [52, 53] are based on the identi cation of the spatial error distribution. This
approach results in a re nement strategy that optimises theiency of the solution and accuracy of the re ned
discretisation [60]. Validation of simple gradient based criteria, as reasonable choices for the indication of regions to
be re ned, can be based on the analyses, using error estimate techniques [61].

In this paper a new mesh adaptive method associated with the Discontinuous Galerkin methodology is suggested.
This approach allows on the y locdlp-type re nement and de-re nement of the computational mesh [8]. An
e cient algorithm for the implementation d¢ifp-type re nement is described and it is applied to the design of a
new computational code (ForestDG). ForestDG is based on modal, hierarchical basis, as described in [62, 63] for
the case of conforming hybrid meshes. The use of modal basis in best suited-fgpe re nement [64, 65]. In
contrast to nodal basis, modal basis are evaluated in the computational space, thus allowing a simpler evaluation of
the volume integrals and uxes across non-conforming element faces. We show that a hierarchical representation
of a forest of binary, quad- and oct- trees is highlyagent and we introduce a uni ed methodology for the @ent
splitting, merging and repartitioning of hexahedral, prismatic and tetrahedral elements. Furthermore, the accuracy and
performance of the new code are assessed. Finally, the ability to capture discontinuities, moving vortical structures
and the dispersed phase in multiphase ows, is demonstrated for several examples.

In Section 2 we present the general formulation of the governing equations for the modelling of mass, momentum
and energy conservation of a compressible ow. In Section 3 the discretisation of these equations in the DG framework
is described. In Section 4 we introduce the forest structure for the representation of an adaptive unstructured mesh.
In Section 5 we describe the splitting and merging techniques occurring during the adaptation of the computational
grid to the ow eld solution. In Section 6 we describe the algorithm introduced for theient assignment of the
connectivity problem during the adaptation of the grid. In Section 7 we present a series of test cases for subsonic and
supersonic con gurations where we assess the accuracy of the algorithm, ¢reney of the proposed method and
the computational performance of the code. In Section 8 we demonstrate the capabilities of the code to capture moving
structures for the problem of an inviscid supersonic ow around a cylinder in a duct. In Section 9 we demonstrate
the resolution of the ow discontinuities and reaction regions arising from the interaction of the oblique shocks in the
case of a hypersonic ow around a double cone con guration. In Section 10 we use the solver introduced in this paper
for the solution of a dispersed multiphase ow arising during spray injection of gasoline fuel.

2. Governing equations

The method presented here is developed for the general case of viscous compressible ows. The basic set of
governing equations correspond to the ow eld of a compressible viscous uid described by the stateWectr
in Eulerian coordinates, which contains the values of densitwomentum u and energy e at each position of
the computational domaix at timet. Depending on the case modelled, the state vdd{mrt) can be extended to
include the vibrational energy, needed for the Park's model [66] for air dissociation simulations, the species speci ¢
densities Ys and nally the equation for the turbulent viscosity in the cases of turbulent simulations. For the
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compressible turbulent dispersed two phase ow simulations, the carrier uid phase is modelled as an Eulerian ow
eld U(x;t) and the droplets are suspended in the carrier gas phase and are modelled using the Lagrangian approach.
Sub-grid turbulent uctuations are modelled using the one-equation Spalart-Allmaras (SA) model [67], leading
to a Detached Eddy Simulation (DES) [68, 69] approach. The SA modaiscan alternative to the standard LES
models, that is not dependent on the Iter width For the AMR methodology presented in our paper, the cell size
changes substantially in space thus making the standard LES models inapplicable. Furthermore, in the spray injection
case investigated in our paper, the Spalart-Allmaras model accounts foregbeadd the cylinder head wall where a
strong recirculation region and detachment of the boundary layer is observed [70].
The Favre averaging operat6) = ()= is used for the separation of the small turbulent uctuations from
the large ones. The state vector for the Favre averaged veloatyd specic energye is de ned asB(x;t) =
(G Tep;7ey; @3, 7€e). The conservation of mass, momentum and energy provides the set of the governing equations
for the turbulent compressible ow of the carrier phase. The strong conservative fohdan be presented as [71]:

1
% +1 finy © R_er fus €€ =wy © ; 1)
€=rfax ® ; (2)

wherewy is the vector of the source terms stemming from the two way coupling for the momentum and energy transfer
between the carrier and the discrete phéseis the 5 3 tensor of the inviscid uxes anfijs is the 5 3 tensor for
the viscous uxes, de ned as:

) 0 0 "e'#
fin = §ee;+D ijf fuis=f 20 + 0S;; ¥ wa= Bnafy § fa= el ; (3

e+ D)e; ( + &S, ¢ Ng fo,@;

S = 3 % + % 3 i % is the traceless rate of strain tensor related to the viscous stress tgrsd S, the
non-dimensional local viscosity is normalised by the dynamic viscosity at the reference temperature gidutkhe
summation of the translational, rotational and vibrational heat uxes which are assumed to be in equilibrium. In this
case the heat ux is related to the temperature gradjent r T where = Pr( + ) is the thermal conductivity
of the uid. For low speed supersonic and subsonic simulations the value of the Prandtl number for the air is taken
equal to 076.

The auxiliary state vecto? contains the spatial gradients of the 4. auxiliary ux fa,x for the di usive com-
ponents of the state vectBras de ned in Equation (2). The viscous uxégs are evaluated frorf. The auxiliary
variables vectof is discretised separately resulting in three equations for each of the fausigk components of
the state vector. As aresult, Equation (2) is solved at the same aqguragy with the state variables. Equations (1) and (2)
comprise the coupled formulation of the governing equation&fer ©;€ for a turbulent compressible two phase
ow.

The contribution of sub-grid turbulence scales, not accounted by the spatially Itered state vector, is taken into
account by the turbulent dimensionless viscosity tefiim the de nition of the viscous uxes in Equation (3). In the
Spalart-Allmaras model; is estimated by the variable as:

t = "tfu; 4)

where 7} is calculated by the integration of the equation for the turbulent viscosiged in the Spalart-Allmaras
model:
@At_’_@e‘jAt__ 1 )8 - f Cb1f At!2+1"@ @t@t# 1@ @ . 5
@ @ = "Co ( ) St Cuilw  — T2 d - @] CDZ@@ & @& (5)
The constants and parametdgs, Co1, fi2, Cu1, fws Co1, » frz, andcy, are provided by tAhe model described in
[67] and its modi ed v(ffrsion for the areas of negative viscosity as described in [72]. Par&@ristezlated to the rate

of strain tensojéijj = 2§;;8;; and the vorticity magnitude of the resolved eld, acting as a source term for turbulent
kinetic energy of the ow.d is the distance from the walls of the computational domain.
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The transport equations of each spedés expressed in terms of the conservation of density Y5 of each
species as:
@Ys
@

whereYs is the mixture fraction of a species & = (ud;vd;wl) is the corresponding dusion velocity, andws
is the chemical source term [8]. The rates of forward and backward reactions are obtained using the Arrhenius
approximation, and the vibration-dissociation model developed by Park [66].
The energy equation for a ow witiNs reactive species is modi ed taking into accounting the total enefgyf
the mixture

+ro(Yu) =71 v ws; (6)

Xns
Qe (er+pu=r (wr  q§ r ol @)

=1

Fluxesd';§"; §" are the translational, rotational, and vibrational heat ux vectors, respectitigli the total
speci c enthalpy of the species Translational and rotational energies refer to the translational and rotational motions
of the molecules, whereas vibrational energy refers to the energy of vibrations of the chemical bonds in polyatomic
molecules. In the current work, a simpli ed form of the energy equation is used. In this equation, the vibrational
energy of diatomic species is described by a single vibrational temperature. This allows us to solve the equation for
the total vibrational energy of the mixture instead of separate equations for each of the polyatomic species. This
equation for the vibrational energy per unit volume is presented as:

KN
%+r (el)=r @§ r el : (8)
=1
wheree is the vibrational energy per unit mass of speaies, is the vibrational energy source teriy is the number
of diatomic species in the mixture.
The relation between vibrational energy and vibrational temperatuiginferred from the following expression:

K X R "
¢ @= i ©
=1 =1 Visew 1

where Y is the characteristic temperature of vibration for each diatomic spédigds,the molecular weight, arldis
the ideal gas molar constant.

Although the above equation provides an explicit de nition of the vibrational energy it is solved with an iterative
method for the calculation of the vibrational temperature from a given vibrational energy. Equation (1) has been
non-dimensionalised over the characteristic length of the ow, gas dynamic viscgsityd gas density, at ambient
conditions. The Reynolds number of the ow is estimated as=ReycL= 4, wherec is the velocity of sound at
ambient conditions.

The discrete phase is modelled as parcels of droplets with diantgferalocitiesvy and density 4. The e ect of
the dispersed phase on the energy and momentum of the carrier phase is modelled as the sowgde Eqomation
(3). ng is the droplet number density. The teffiqnin Equation (3) is the force acting on each individual droplet in the
parcel. Assuming a steady Stokes ow, the expression for the drag force can be presented as:

3ngcp d
ngfq = % @ Vg , (10)

where,cp = 1+ 0:1666R%’“Q’ is the correction for the Stokes force for large droplet Reynolds numbegsRg
The trajectories of droplets are described by the following equations:

dXd

v =vg, dvg=fgdt: (12)



3. Discretisation of the equations

We consider the discretisation of the computational domairto N elementE€, ( = [ En). Aweak formulation
of the governing equations is derived by multiplying the conservative form of these equations with a test function
w(x) and integrating them over the element. In the Galerkin context, the test function is taken from the same set of
polynomial basis functions as used for the interpolation of the state V@@&nd the extended state vecfor ©;€ .

The interpolated distributioX[ for X is de ned for each elemerk, as the weighted sum &, polynomial basis
functions:

X
Xp= q(t)bi(x);form=1;Np; (12)
i=1
where p is the maximum degree of the basis functions. A similar expansion is assumelf'fand . In this
expansion, the solution coeientsc;(t) are the degrees of freedont;(x) is the tensor product of the Legendre

polynomial basis functions in the three spatial dimensions. The integral formulation of Equations (1) is expressed as:

z m I Z Z
bl—th+ b|f Xhm ndS r b| f Xhm dE = bIWg‘dE for i= 1, pr m= 1,N , (13)
Em @ Sm En E..
bi fdE = bifaux Uy ndS rbi faux Uy dE for i=1;Np; m=1;N; (14)
Em Sm Em

providing a set oN, N equations foc(t).

The surface integrals are de ned on the surface of the eleBygnt @, with n de ned as the outward normal unit
vector. In the weak formulation presented in Equation (13), thef tepresents both the viscous and inviscid uxes in
Equation (1) a$ = finy (17R€ f,is; the ux fauxWas de ned in Equation (3). In the DG context we do not require the
continuity of the interpolated variables across the element faces. Thus, the vallgsnd [ on the facesSy, are
de ned twice. The conservation of uxes at the boundaries of the elements infers from the approach to the evaluation
of the surface integrals used in our analysis. In the Local Lax-Friedrichs (LLF) scheme for the evaluation of viscous
uxes, the signs of surface sides of the elements (referred to as minas plus )) are introduced.

Calculating the uxes from one of the two sides for the adjoin elements guarantees the conservation properties of
the scheme. Speci cally, for the LLF scheme the surface integral,fandf,,y in Equation (1) are evaluated from
the opposite sides as:

fuis = fuis U hm; hm ;o faux = faux U+hm . (15)

n o
The inviscid ux fiy, is evaluated from the mean value of the variables on the two face sikJeswhere an arti cial
di usion term, proportional to the jump of the uxes on the bounding surfdd]][ is introduced via the equation:

n o i
finv = finv Uhm + 5[[Uhm]] ; (16)

where, in the LLF scheme; = max jfiﬂv(ui)j is the maximum absolute eigenvalue of the inviscid ux at the speci ¢
position of the interface (Local).

The volume and surface integrals in Equations (13) and (14) are de ned in the physical space. The integrals
are evaluated in the transformed domain for the computational space elements using the Gauss-Legendre quadrature
rule and the Jacobian of the transformation [14]. Using the transformations described by Equations (A.1) to (A.3)
the physical coordinate) for each element of the discretisati, are transformed to a computational space

m With coordinates 1; » and 3. This transformation maps any hexahedral prismatic or tetrahedral eldpent
to a cube with ; 2 [ 1;1] using collapsed coordinates [14]. Introducing the Jacobian of the transformation to the
computational space, the volume integrals of a eld, expanded as in (12), is evaluated as:

Z o Z o
i bi(x)  c®Obj()dE=  bi(x)  c](t)b;(M)I()d 17)
m =1 m =1



The above integral is now de ned in the standard computational space and is calculated by evaluating the integral
function onNg, selected quadrature points ofy: ~i;jx = ~iq. Finally, the integral on the right hand side of (17) is
approximated by the Gauss-Legendre quadrature rule with walghispre-calculated atq as:

Z XIP Keq )@p
bi(x)  cf®b(MI)d = bi(~ig)c}(H)b; () IHW() - (18)
m j=1 ig=0 j=1
Similarly, surface integrals in Equations (13,14) are calculated on quadrature fgintke ned at each active

face of the computational domain. Although the AMR methodology introduced here presents shock capturing
characteristics by enhancing the resolution of discontinuities arising in compressible ows, a uni ed limiting approach
is needed to detect and smooth sharp gradients. The uni ed Total Variation Bounded (TVB) limiter proposed by Shu
and Cockburn [73] for capturing discontinuities with high order (p1 and higher) DG discretisation, is used in our
analysis. Although the AMR presents shock capturing characteristics by enhancing the resolution of discontinuities
arising in compressible ows, a uni ed limiting approach is needed to detect and smooth sharp gradients. The uni ed
TVB limiting approach [73], described in [62, 63] folD3solutions and its extension [8] to the set of equations
provided by the Park's model, is applied in the space of characteristics, as described in [74]. In the AMR methodology
introduced here, the detection of discontinuities accounts for the distribution of the solution of non-conforming adjoint
faces.

4. Mesh representation

Unstructured, conforming grids are represented using a nite serial addressing of the cells with each cell deter-
mined by the addresses of its vertices. The connectivity of the cells is de ned by appointing the numerical addresses
of the neighbouring cells to each face. In our case, the numerical list of the cells is substituted by a hierarchical graph
representation of the elements.

The computational domain is descretised iNtancestral elements;, constituting the initial coarse unstructured
grid. Any ancestral element can be split into a number of kids of the same type. Any of the resulting siblings can be
further split to more kids up to an arbitrary leMel A kid of a parentP obtains a unique addresgsand is assigned
an indexilA = i that identi es it as thdth element of its parent tref@ at levell. The address oA is related to the
address of the pare asA = fP, ilAg Expanding the genealogy of the parent elenfenthe kid A is de ned as
A = fEp;i;i5; 11 1;iffg A parent shares the same indices with its kfi$}; : : :;if*; up to the level 1. The index
of any tree at the zero level is the index of the initial ancestral n'r@sh m. Thus, each element obtains a unique
address that is traced back to the ancestral element. The topology created by the hierarchical relations of the resulting
elements forms a forest of nodes.

4.1. Forest and Tree structures

The addres#\ of each element is a pointer to the tree node data structure shown in Figure 1. The pbinters
for all the trees of the domain are stored in the forest data structure. An example of a developed forest is shown in
Figure 2. Each node, referred to as tree node, contains all the pointers needed to de ne the computational element.
The most important pointers contained in the tree node structure are the pointers to the paréhttodde lowest
level ancestoE,, to the previous tree, to the next tree and to the neighbours for each face of the element. Also, the
tree node structure contains the arrays of the indices of the neighbouring faces and their relative angles. Finally, the
pointers to the mesh vertices and the mesh faces, akin to the speci c element, are also stored in the tree node structure.
Any node is accessed by a dynamic linked list. An arbitrary node is assigned as the “rst” node of the mesh,
shown in Figure 1. By assigning a “next” node for every cell we can go through all cells of the grid. This is performed
by advancing to the “next” node each time starting from the “ rst” one as shown in FigurefB)( The tree node in
our implementation is a data structure that contains all necessary information needed for the de nition of the relative
relations of the cell and also its geometrical characteristics, i.e. nodes, edges and faces. A node of the graph can be
split furnishing a tree of nodes while a single node is perceived as a unitary tree. This scheme provides the versatility
of adding or removing nodes and manipulating the relations between the nodes without interfering with the addressing



ParenfTree

AncestorT ree

PreviousTree

Keens [f]

Local nodes

Neigs [f
os[f] Local faces

Parameters

X Children ]
Solution VectorX

Figure 1: The tree node data structure.

scheme of the remaining nodes. The connectivity pointers and the linked lists for accessing the nodes are cut and re-
stitched to the new topology, without altering the addressing of the parts of the mesh that areatetldby the new

topology, as shown in Figure R{ght).

O Cell with kids € j Cell with leaf
k allocated at part 1 -- - > Pointer to next in ancectral mesh

Boundary layer split ( D Cell with leaf
~/ allocated at part 2

E— Pointer to kids

Figure 2: An example of a forest of oct-trees representing a three dimensional adapted topology.

The actual solution vectof is stored at a special data structure of the tree node, named leaf in Figure 1. The leaf
contains the characteristic coeients of the basis functions used for the description of the conservative variables, the
Jacobian matrix, the mass matrix and the matrices used for the calculation of the derivative and basis values at the face
and volume quadrature points. Eventually, the leaf data structure contains the memory consuming information that
describes the actual eld. When a tree node is split then the leaf is dropped. This means that the memory consuming
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data objects are de-allocated and are replaced by the pointers to the kids.
4.2. Domain decomposition

Ancectral mesh and the correspondig graph Split mesh and the corresponding graph

———+ Connectivity pointer O “Tree node cellin partition 1 <~ Connectivity pointer

Pointer to next Pointer to next
ﬁ O Tree node cell in partition 2 ﬁ O Tree node cell in partition 2

Figure 3:Left: An example of hybrid unstructured mesh and the corresponding gRight: Prismatic and hexahedral cells are split into four
cells; the nodes of the adapted mesh are repartitioned by introducing the new nodes to the local element lists and the connectivity pointers are
re-de ned.

In ForestDG, the graph representation of the computational domain, shown in Figure 3, is fed into the METIS [75]
graph domain decomposition library which furnishes an optimised partitioning of the domain. For each partition, a
node is assigned as the local rst node of the graph de ned by the pdiorest->next . The rest of the nodes are
accessed iteratively by assigningrat->next pointer to the next node in the list as shown in Figureéft). During
a simulation, the graph is repartitioned resulting in a balanced computational load along the processes, as shown later
in Figure 6 for a case of three levels of re nement of an ustructured mesh consisting of tetrahedral elements.

5. Splitting and merging

In the event of splitting a node, a number of new nodes are created. A binary type splitting results in two children,
a quad tree type of splitting results in four children, and an oct-tree splitting results in eight children. The parent node
is removed from the linked list that controls the access to the cells and is replaced by the children nodes. The next
pointers of the linked list are re-stitched in a such way that the parent's previous tree node now points to the rst of
the kids created and also the last kid points to the next of the parent, as shown in FiRight3. (

The geometry of the splitting for hexahedral, prismatic and tetrahedral elements is presented in Figure 4. Hex-
ahedral elements are split into eight elements which are self similar if the ancestral element has two parallel faces.
Four vertices are positioned on the vertices of the higher level cell, three vertices are positioned at the midpoints of
the adjacent edges, three vertices are positioned on the centroids of the adjacent faces and a nal vertex is positioned
at the centroid of the higher level hexahedral, as shown in Figure 4(a).

The numbering of the children follows the numbering of the higher level cell vertices so that the 1st kid is adjacent
to the 1st vertex of the cell anth kid is adjacent to thih vertex of the cell. The resulting kids can also be numbered
by their positioning in relation to the coordinate system of the element faces adjacent to the kid. For edch face
the kids acquire indek’ which is a function of the face indek and the element kid numbér From the topology
of Figure 4 we can easily construct a simple operator E2F that provides the face index of a'kid EQFQ@; f).
Naturally, E2F is not de ned if is not adjacent td.

For prismatic elements, splitting leads to self similar elements (in the case when the ancestral element has two
parallel faces) and the cell numbering follows the vertex numbering of the higher level cell. The 7th and 8th children
are placed along the core of the prism with reversed orientations, as shown in Figure 4 (b).

Tetrahedral elements are split into four self-similar tetrahedra (only in the case when the ancestral element is a
regular tetrahedron) located at the corresponding vertices of the higher level cell, and are numbered as shown in Figure
4. The remaining space in the element is an octahedron which can be split in theeendiways. In order to split
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Figure 4: Topology of oct-tree splittin@): Hexahedral element¢b): Prismatic elementgc): Tetrahedral elements.

the inner octahedron one must choose a splitting plane that lays on the edge connecting the midpoints of two opposite

edges of the tetrahedron. One example is the édgévi, shown in Figure 4(c). Choosing the mode for which the

distance of the midpointsl; andM, is minimal results in cells with the minimal squewness since this edge is akin to

the parent element and remains un-split. The numbering of the resulting elements is shown in the same Figure 4(c).
Given that the size of an element reduces to its half at each split, the level ofispigeded to re ne an element

with a characteristic size to a desirable sizeis given by the formula:

log(L =) .
log(2)
Several quantities can be used as a re nement criterion: density gradients serve as indicators of shocks and vor-
ticity (or shear stress magnitude) identi es areas of vortical ow structures. Furthermore, the user can impose a

prede ned level of re nement based on speci ¢ geometrical properties that de ne certain regions of interest of the
ow eld.

L=10+ (19)

6. Connectivity assignment

Once the cells are split to the required resolution, the connectivity of the cells needs to be remapped. For the
ancestral grid En, the connectivity is resolved by means of tracking the common mesh vertices at the onset of the
simulation. The matching of the common element vertices gives the information on neighbouring cells, neighbouring
faces and the orientation of these faces. For the elelgrnd at each facé, the pointerE,, > neig[f] to the
neighbouring elemeri,, the pointerg,, > face[f] to the adjacent facd, of the neighboulE, and the relative
orientation angle of the adjacent facels,, > angl[f] are represented by the following relations:

N(Em; f) = En ;F(Em; f) = fo JA(Em f) = a (20)

The above connectivity relations are important for nding the relative position of the computational space of an
element to the computational space of its neighbour needed for the evaluation of the surface integrals. In the event
of splitting an element, the connectivity calculations cannot be based on tracking mesh vertices, not only because of
non-conformalities (i.e. the neighbouring faces do not share common vertices anymore), but also because a search
algorithm would impose a heavy computational load. Finally, the splitting and merging process is a dynamic procedure
during which the neighbouring cells may not have been formed yet. Additionally, the creation of a new element raises
the need to resolve the connectivity of the new element but also alters the connectivity of all surrounding elements
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which must be updated. Here, we present an explicit algorithm that solves the connectivity problem by providing an
explicit expression for the three connectivity relations described by Equations (20).

6.1. Connectivity assignment of keen cells

On the rst stage, the connectivity is evaluated among the siblings of a split eldPnéaitzen that the elements
of the same type, split in the same way are also arranged in the same way, they present a global internal connectivity
pattern. This is expressed by the array of keen elenéne de ne a keen element as the neighbour of an element
at a speci c face if this is a sibling, or the parent of the element if the kid shares the speci c face with its parent. Thus,
the keen is a neighbour assuming that all the siblings are incubated within the parent cell. This concept leads to an
expression of the connectivity which is intrinsic to the speci ¢ branch that is being split. This split is neitheted
nor a ects the connectivity of the neighbouring branches.

For each type of splitting (oct-tree, quad-tree, binary-tree) on each type of tree (hexahedral, prismatic or tetrahe-
dral) the connectivity among the siblings remains the same since the siblings are arranged in the same way within a
parent. The following array provides the neighbours foriﬂ’nb kid A= fP, ifgof P within an hexahedral element for
each facef:

g fPrg g P09 P 1g g g P4g 59
HfPlg Pg P3g Py P59 Pg R7g g
K £ i) = B f]f’,Zg P3y Pg Pg P6g P79 Pg Pg
g fPg P0g g P29 fg P4y Pg P 6g

HfPg Pg Py Pg POy Plg P2y P3y
fP4g #5 69 P79 g Pg g g

(21)

As can be seen from the above expression, the keen of eatR Kidis its neighbouring siblingP; jgif the face
f is internal to the parent element. The keen is the parent elementRgdlff is adjacent to the border of the parent
element.

Array Ky introduces a pre-solved internal connectivity among the siblings. The connectivity outside the parent
will then be evaluated through the connectivity of the pafeand the relative orientations of the ancestral &gl
at the second stage. The neighbouring faces between within a branch are evaluated by theh&friayd] and
Agw[ f;iY] which provide the neighbouring face index and the neighbouring face orientation angle, respectively, as:

0 02 2 00 2 2

#H3 1 3 1 31 31

A_HB0 02 200 2 2

hex ¢.:A1 — B .
FATRid =83 1 3 1 3 1 3 1%’ (22)

H4 4 4 4 5 5 5 5

4 4 4 4 55 55

and

APf;if=0: (23)

The arrays of the keen elemeris the neighbouring faceB and the orientation angles for prismatic and
tetrahedral elements are presented in the Appendix B in Equations (B.1) to (B.6).

6.2. Connectivity assignment of neighbouring cells

In order to locate the direct neighbour of the elemirt fEr,; i1 i5; : 1 1 ;if\gat the facef, we evaluate the following
recursive algorithm:

The above algorithm is a recursive evaluation of the keens of the elefnghich is stored irC while the new
value is stored irB. At each iterationC is a level lower tharB. If C is at the same level witB, thenB is a direct
neighbour ofC = KB[f;ilB]. Hence,B andC are either two neighbouring siblings or two neighbouring ancestral
elementsE,; En. If BandC have the same level from the rst evaluation in line 2, it means Bigta sibling and a
direct neighbour ofA as described by the array (21) and the connectivity problem is solvBaritiC are at di erent
levels, therC is the parent oB and the recursion continues as required by the condition in line 4. At the end of the
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Figure 5: Top: Identifying the neighbouring element of a split element at a hexahedral to prism of oct-tree splitting, incorporating a rectangular
face.Bottom: Identifying the neighbouring element of a split element at a prism to tetrahedron of oct-tree splitting, incorporating a triangular face.

algorithm, we obtain the arrdy which is a direct neighbour d, andB which is an ancestor d&. At this point, we
are certain that the neighbour of the initial arays one of the descendants©f

An example of connectivity tracking for two adjacent elements is shown in Figure 5. The keeatdhe face
f = 1is the elemenB. The evaluation of the connectivity of the keens Bwill point to the prismatic elemer€,
shown on the right side of Figure 5. The elemeBtandC can be two siblings of a parent at a lower level or two
ancestral elements of the initial mesh. The elerfeistthe 5th kid ofB (iﬁ = 5) located at the bottom right corner of
B. Using the operat&ZFle(iﬁ), the index ofA at the facef isif = 1. The face is then rotated, using opera®®rby
the orientation angla for B andC inferred from (20) or (23). The rotation results in an index of the transformed face
R(E2F¢-1(if)) = 0. Finally, given that the faces &andC are opposite to each other, the face should be mirrored as

M(Ra(EZFle(if))) = 0. Thus, the neighbour it at f = 1 is the kidi[ = 0 of C at facefc. Introducing the reverse
transformatiorF2E; (i), the neighbour oA is provided by the following expression as t}th kid of C:

jL=F2E, M R E2F, (iL) (24)

The mirror and rotation operators for rectangular and triangular faces are de ned as:

o

Mres(if) = ; MT(iN = P Redih = ;RN = (25)

WEN

wWwEFkLNO
O WN P
WON P
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Algorithm 1 Location of neighbouring ancest@rfor the kid A at the facef.

1.1 LevelA)

2B A

3 C  Kalf;ifY

4: while Leve(B), LevelC) do

5: B C

6: C  Kgl[f;if]

7: | LevelC) (or equivalent =1 1)
8: end while

In the general case, when the elemeBEndC at the intersection of two neighbouring branches are not just one
level below, the neighbour &k is de ned as:

N fEmifig;:iifg f =fCF2E, M R E2F, if* ;:::; F2E, M R* E2F, i' gt (26)

The important advantage of this method is that Equation (26) is explicit and does not involve the connectivity of
the neighbouring branch. This equation is based on the connectivity at the closest intersection of the neighbouring
branches betwedBandC. In cases of dynamic adaptation, it is never certain that the neighbouring cell actually exists
oritis located in the same partition. Formula (26) gives the neighbouring cell address regardless whether the topology
of the neighbouring branches has changed or is going to change.

In the case when ceB has not been re ned up to the same lekalf elementA, Formula (26) becomes:

N(A) = fC;F2E;, M Rf E2F, (i) ;:::; F2E, M Rt E2F, (iL 1) ©; 27)

whereL 1 is the maximum level which can be reached at the bran¢h of

Figure 6:Left: Domain decomposition for a tetrahedral mesh re ned to three levelser®it colours represent the mapping ofetfient partitions.
Right: Pressure distribution for an isentropic vortex projected on a tetrahedral grid.

Furthermore, the address obtained by Equation (26) can be a parent of a cell that has been re ned further. In this
case, the neighbour pointer Afat f points to all children ofN (A) located at facdg. Although the splittingmerging
and connectivity algorithms have been designed to deal with an arbitrary level of non-conformalities, the numerical
evaluation of the face uxes has been designed only for non-conformalities 1:1 1:2 and 2:1. Thus, after the re nement
of the mesh, a smoothing pass might need to be implemented. This pass reassures that if a neighbouring cell is re ned
to more than one level, then the current element is re ned further.
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6.3. Solution Projection, Face Fluxes

When a cell is split into a number of kids or when a set of kids merge to their parent, the solution has to be
projected from the parent to the kids or visa versa. This is achieved by the Galerkin projection of the solution [76] on
the quadrature points of the new element to the basis of the new elements.

An example of Galerkin projection is shown in Figure Right) where an isentropic vortex eld is initially
projected on a grid consisting of tetrahedral elements. In FiguRight) we show the projection of an isentropic
vortex eld solution from an initial level equal to 2. The solution is projected to the merged tetrahedral elements of
level 1 in the outer radius of the vortex and to the split tetrahedral elements with level 3 in the core of the vortex. The
mapping of the quadrature points for the new elements in the computational space of the old element is described in
Figure 7 Left).

In the right column of Figure 7LEft) the topology of the physical space and arrangement of the kids within
the physical element are shown for three types of elements discussed above. The physical space is mapped to the
computational space shown in the right column of the same gure. Although the arrangement of the kids in the
physical space is straightforward and has been described in the previous section, the sub-domain of each kid is mapped
to the computational domain of the parents through the transformations (A.1) to (B.3). AssumiAgathcéB are
two overlapping elements with eithArcontained inB or B contained inA, the computational space coordinateBof
are mapped to the computational coordinatea as:

P2 50 X% 1555 =X 35 3 (28)
In the general case, which includes tetrahedral and prismatic elements, the transformation (28) is not linear. Equa-
tion (28) can be solved numerically by introducing the Jaco@fr;@js. All the descendants across the branch on
an ancestral element are split in a similar manner. Thus, this transformation is valid for all the mappings from a
parent to its kids and for all the kids to the parent within a branch. For the case of hexahedral elements, the above
transformation is linear and the computational spac® cdin be mapped to the computational spaca a$:

A_ 1B B 1;B. A_ 2B B 2:B. A_ 3B B 3B .
160 pHdT =t o +d™T gt g dY (29)

where coe cientsc® andd® depend on the relative position betwe&rand B in the computational space. This is
shown for an example of the parent to kid mapping for a hexahedral element at the right column of Figefte. 7 (
Evaluating the current solution on the quadrature points of the new elements, we can project the solution vector on
the new elements.

The projection of the solution on kids or parents is also applied for the evaluation of the uxes for non-conformal
faces. Non-conformalities arise due to p-re nement, h-re nement or both as shown in FigRight)( In [76, 19],
a gather operator and a scatter operator are used for the calculation of uxes on non-conforming meshes. The gather
operatorP® Mo js ysed for evaluating the solution ( uxes) on the major element basis from the minor face basis
iminor. The scatter operat®® ™" s used for evaluating the conserved variables from the major element face to the
minor faces basis iminor. The gather and scatter operations are described by the following equations:

f= i PG iminorfiminor. and Uiminor= PS iminorU. (30)
iminor=1

wherenminoris the number of minor non-conforming faces. OperaR5t§"°" andPSMn°r ensure that the ux from
the one side of the non-conformal face is equal to the sum of the uxes to the other side of the non-conformal face
and vice versa. This is expressed by the following equations for an arbitrary:eld

I I

UMnor  J dSiminor = O; for each iminoy and U U dS=0; (31)
Siminor S

whereU is the branch function that corresponds to the discontinuous distribution of the conserved variable vector of
the children on the parent face. The calculation of the uxes across non-conformal faces is performed by scattering
the conserved variables, described by the neighbour major face solution, to the minor ghost faces. Thus, the problem
is reduced to a conforming case where Equations 15 and 16 for the viscous and inviscid uxes are applied. Following
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Figure 7:Left: Transformation from physical to computational space for split hexahedral, prismatic and tetrahedral elements. Blue dots represent
the quadrature points (assumipg expansion) on the computational space of the kids. These quadrature points are mapped taking into account the
coordinate transformations for each type of elements to the computational space of their parent . The relative location of the quadrature points is
shown in the right column for each type of elemeRight: Types of non-conformalities encountered ifp daptive cases. Solid curves indicate

the neighbouring cells, dashed curves indicate the ghost faces on which the solution is projected. In the rst step (Scattering), in the case of 2:1
connectivity, for the evaluation of uxes on theside the conserved variables from the solution of trede is projected to the ghost face of the

same level. In the second step (Gathering), in the case of 1:2 connectivity, for the evaluation of the uxes-midbelement, the uxes as
calculated on the side are projected to the ghost face of the same level.

[76, 19] in the case of a 2:1 connectivity, the calculated uxes are evaluated on low level faces. In the case of a 1:2
connectivity the calculated uxes are gathered usingRfi& operator and evaluated on the higher level element.

For the cases of rectangular faces belonging to either hexahedral or prismatic faces the projection is based on the
linear relation (29) which is solved explicitly. For triangular faces belonging either to prisms or tetrahedra the implicit
relation (28) is used instead. In (28) one of the computational coordinléumsd iB are either 1 or 1 depending on
the number of the adjacent facesfodndB. The ghost faces do not appear as a part of the computational domain, but
they are linked to the tree nodes with which they overlap. As a result, the connectivity of an element with the ghost
faces of the non-conforming neighbour reduces to a conforming case.

Since the uxes are eventually projected to a @ient basis, their distribution across the faces is not identical
[19]. The distribution of the uxes across the minor faces is discontinuous while in the major face, the distribution of
the uxes is evaluated on a single element. On the major element, it is continuous and it can even becoérat di
order. Although, Equation (10) guarantees the conservation of the mass, the projection of the ux introduces an
error at the level of the discretisation error of the scheme. According to [19], the level of this error in the total mass
conservation increases with the number of elements. It was concluded, however, that this error remains at the levels
of the discretisation error, as in the standard conforming cases.

Both in p- and in h- adaptivity the solution is either evaluated from a poor resolution or projected to a poor
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resolution. Thus, AMR can only locally improve the accuracy of the simulation and care must be taken so that
important features of the ow should be resolved at a siently high accuracy throughout the solution of the ow.

If, however, the important ow structures are resolved adequately, the global accuracy of the simulation is determined
by the re ned resolution as highlighted in Section 7.1.

7. Test cases

In this section we present a series of test cases for which the accuracy aiethey of the new code is evaluated.
Firstly, we consider a viscous test case with a manufactured solution to investigate the accuracy of the code. Then the
numerical e ciency and accuracy of the code for capturing oblique shock waves will be investigated.

7.1. Spatial discretisation

The method of manufactured solution [77, 78] is used for the investigation of the order of accuracy of the DG
discretisation. A steady state unidirectional ow eld is considered:

=10; p=10; u=0;v=0; w(xy;Zt)=wo (1 cos(4x))(1 cos(dyl)) ; (32)

wherewy is taken equal tavg = 0:3c. Out ow conditions are assumed for all boundary faces,lile.= U for all
variables of the state vector.
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Figure 8: The nal distribution of thev velocity for a square subdomain of the manufactured solution eld with kiZeLeft: For a spatially
re ned unstructured hexahedral me&ight: For a spatially re ned unstructured prismatic mesh.

Introducing this ow eld into Equations (1) we obtain analytical expressions for the sourcevgriihis source
term balances viscous forces and sustains the steady state manufactured solution (32). Due to the spatial and temporal
discretisation errors, this solution is distorted. A small timestep and an implicit time marching scheme [16] are used to
keep the temporal error low. The error of the numerical solution, compared with the exact solution (32), is described

by theL, norm [79]:
14 B
L, = (u ueNdVE (33)

m=l Em

Forthe ow eld described by (32), Equations (1) were integrated ug,te= 0:1L=c on a computational domain of
sizel. Various discretisations were tested. The Reynolds number of the ow for all casd®awas™ = 1000. Each
discretisation is characterised by a background uniform mesh with elementsiE®r each test case, h-re nement

16



is uniformly imposed up to a levé+1 and a re ned resolution x=2 for all the elements within a circle of diameter
0.5 around the maximum velocity point of the solution (32) as shown in Figure 8. The elements outside this area were
re ned to a lower level and a nominal resolutionx. The nal solution for hexahedral and prismatic discretisations
is shown in Figure 8l(eft) and Right). The order of the polynomial basis is uniform for all the elements. This test is
introduced to assess the order of accuracy for the discretisation of our implementation, in the case of a non-conforming
mesh, re nement. The maximum order of accuracyis 1 for basis functions which are polynomials of degpee
Thus, thel, norm of the error is expected to depend on the mesh resoluti@sL, ( x)P*L.
The normalised value of thie, error is presented in Figure 9 for a number of mesh sizes. Four mesh sizes were

used, withN = 10, 20 40 and 80 cells per direction at the edges of the domain, resulting in mesh sizgaal to

x = L=N. For each discretisation, the core of the domain is further re ned to one more level.,;reor, de ned
in Equation (33), displays a second order decrease with the mesh size. Thus, the implementation of the adaptivity
preserves the order of accuracy. Results similar to those shown in Figures 9, but for the third and fourth orders of
accuracy, withp = 2 andp = 3 polynomial orders, are presented in Figure 10. As follows from this gure, the
expected accuracy is achieved in these cases, gsdr.

Figure 9: Values of thé; error for the momentum components and energy, normalised by the value of the error for the coarse discretisation, versus
mesh resolution for the second order discretisatipr (). Left: Hexahedral elementRight: Prismatic elements.

Figure 10: Values of thé&, error for the momentum components and energy, normalised by the value of the error for the coarse discretisation,
versus mesh resolution for hexahedral elemdrgét: Third order discretisationp(= 2). Right: Fourth order accurate discretisatign¥ 3).

7.2. Shock capturing

In this section, we assess the shock capturing capabilities of ForestDG for the advection dominated problem of
an oblique shock generated by a supersonic ow at Mach nurivher 2 over an inclined ramp at= 10. This
problem has an analytical solution and has been widely used as a testbed for compressible solvers [71]. The scope of
this test is the assessment of the order of accuracy. In the next section this problem is used for the assessment of the
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computational e ciency of the AMR methodology. The shock angleMach numbeM, and gas density, at the
downstream side of the shock were calculated from the analytical expressions [71]:

y ———
MZsir? 1 ( +DMZsi? 1 1+ — M2sir?

tan = 2cot = 2= —
sin( ) MZsi?

2= 1 ;o (34)

M2( +cos2)+2' ( LMZsi? +2
where, ; andM; are the density and Mach number of the gas at the upstream side jgtite heat capacity ratio.

The problem was solved numerically by integrating the inviscid form of Equations (1) on the geometry shown in
Figures 11. The computational domain consists of two blocks with unity sides formingraf@vedge. The domain
is discretised using 20 40 elements with base (coarse level) resolutiop = 0:05. For the solution presented in
Figure 12 Right) the base mesh is dynamically re ned by up to ve levels to a resolutiomof 0:003125 based on
the density gradient criterion. For this simulation, p1 polynomial basis was used. The shock capturing characteristics
of the AMR approach resulted in the stable bounded solution without the use of the TVB limiter.

Neighbouring cells are also meshed to a gradually increasing resolution after the implementation of the smoothing
pass. The three numerical solutions shown in the upper row of Figure 11 were obtained using uniform grids starting
from the base resolution and reaching up to four levels of re nement (not shown)LTaegors of the numerical
solutions for the Mach numbevl, and density , are shown in Figure 12Right). As follows from this gure, the
level of thel, error decreases as¢, in agreement with the prediction of the second order discretisapien).

level 1 level 2 level 3

level 1! 2 level 2! 3 level 3! 4

Figure 11: Density distribution for the converged numerical solutions to the oblique shock prdfdpmievel 1, Level 2 and Level 3 solutions
on a uniform hexahedral mesBottom: Converged AMR solutions restarted from the corresponding solutions in the upper row.

Each numerical solution shown in the top row of Figure 11 was locally re ned by one more level at areas where
the density gradients indicate the location of the oblique shock. The re ned solutions on the uniform meshes were
integrated again until their residuals converged to new values. The values lof #reor for each re ned solution
are shown as the points connected with dashed lines in Figureef.(In this gure, these errors are presented as
functions of the spatial resolution of the re ned area.

The local re nement of a solution in the area of the shock results in the reduction of the residuals ofLevel
solution to the values of Level + 1 solution. Although the errors of the re ned solutions do not reach exactly the
L, levels, inferred from the corresponding uniform mesh solutions|.th&@MR errors decrease with the increasing
resolution following the second order law. As follows from the intermediate solution shown in FiguRigtR); the
formation of the shock is a dynamic process. The local re nement has to continuously adapt to the changing ow
geometry. For the oblique shock result, shown in FigureRig{t), AMR provides an e cient way to capture ow
discontinuities.
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level 1! 5

Figure 12:Left: Values ofL; errors for density  and Mach numbeM;, normalised with the error of the coarse discretisation at the upwind side
of the shock, versus the mesh resolution. For the AMR cagerresponds to the re ned cell sizRight: Intermediate solution for density,
during the formation of the oblique shock for an AMR scheme from the base level 1 up to level 5.

7.3. Computational eciency

In this section we perform an assessment of the computationaileacy of the AMR implementation. The
assessment is carried out for two problems. Firstly, the numerical solution of the three-dimensional problem of the
obligue shock presented in the previous section. Computationally, this speci c case represents problems where the
complexity arising from the solution drives a gradual increase in the degrees of freedom of the simulation. In this test,
we assess the scaling of the computational cost as the topological forest develops. The second problem is a typical
viscous problem of the ow around a cylinder at R&000. In this case we assess the performance of the AMR
methodology for a developed AMR forest which is periodically re-adapted to resolve the moving vortical structures.

In Figure 13 we present the solution to the oblique shock problem on a domain consisting of two prisms joint
on their triangular faces so that their rectangular bases form @dlfwedge. The initial mesh consists of only
two prisms. Each of these prisms is uniformly re ned up to ve levels. The density gradient is used to identify the
elements intersected by the oblique shock. These elements are further re ned up to nine levels. This demonstrates the
ability of the method to capture ow structures. In this speci c case, the initial ancestral mesh witR siz& nally
reachedN 30:000 elements. These elements follow the evolution of the oblique shock to the steady state solution.
For technical reasons, the domain decomposition is restricted to two computational domains, since the ancestral mesh
consists of only two trees. As described in Section 4.2, the forest graph is dynamically repartitioned. Although most
of the new trees reside under the second ancestral tree (the prism on the ramp), they are equally distributed among the
two processors.

In Figure 13 Right) we present the CPU time per timestep, for the rst 300 steps of simulation when the mesh
starts from 16 elements (using oct-tree splitting, the two initial cells are splitinto 16 cells at the start of the simulation)
and reache® = 11:685 trees after the 300th iteration. The mesh is re ned every 10 timesteps to account for the
changes in the ow structure. As can be seen in FigureRigtt) the computational cost of AMR is 2 3 times
greater than the actual cost of the integration of the governing equations for the Euler explicit time advancement
scheme. For the interval of 10 timesteps, however, the computational overheads due to the use of the AMR sum up to
between 20% and 30% of the total computational time. The bene ts of UsMB are even more clearly seen if we
consider the computational cost needed for reaching the required resolution in three dimensional cases for uniform
meshes. In this case the number of cells for a 9 times ner mesh would have been of the orderTifi4@s two to
three orders of magnitude greater than the number of cells needed to reach the same resolution using AMR.

In order to assess the computational cost breakdown for treretit steps of the AMR methodology, we carried
out an AMR simulation for the case of the viscous subsonic ow around a cylinder with diaet&he far eld
velocity isUg = 0:3c and the macroscopic Reynolds number is, ReMP = 5000, wherec is the speed of sound.

Under these speci ¢ conditions, a characteristic vortex path emerges in the wake of the cylinder [80]. In Figure
14 we present the results of our simulation using the AMR methodology. The trailing vortices form cylindrically
shaped rollers. The velocity eld shows a three-dimensional structure with the formation of characteristic connecting
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Figure 13:Left: Density distribution for the oblique shock problem discretised with prismatic elements. Light (yellow) iso-surface indicates the
= 1:05 contour.Right: Performance of the AMR algorithm for the three dimensional oblique shock simulation using oct-trees. (Solid curve):
CPU time for each timestep. (Dashed curve): Number of elements.

Figure 14:Left: AMR simulation of the ow around a cylinder @&e> = 500. The contour levels range from white to red and correspond to the
vorticity magnitude. The red and blue iso-surfaces correspond to the lateral velocitylevel9:05M. The positive and negative lateral velocities

show the three dimensional structure at the location of the lambda vortices which connects the main trailing vortices of the wake (rollers). Only the
elements with vorticity magnitude larger thar2® are shown, in order to reveal the structure of the oct-tree split mesh.

vortices between the rollers, parallel to the streamwise direction. The initial mesh congikts 89760 prismatic
and hexahedral elements and the simulation is discretisedRitalements. The elements are re ned at level 2
within a radius equal to the cylinder diamet@rand at a level up to 3 based on the local vorticity magnitude. For
our analysis, the total number of elements ranges from0280to 300000. Due to the size of the problem, the
speci ¢ case was integrated in time with an explicit RK method using a time-step eqdatd 0 3. The mesh is
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Number of CPU's (nodes cores) 1 20 1 40 2 40 4 40

Process Units Time breakdown

Solution (%) 84.82 7497 6443 53.25
Communication (%) 9.51 8.99 10.88 8.46
Gradients (%) 18.68 13.80 9.70 6.05
Adaptation (%) 1356 2198 31.05 38.86
Connectivity (%) 1.00 1.65 2.28 2.80

Partitioning (%) 1.62 3.05 452 7.88

Exchange (%) 1.21 2.14 2.56 3.68
Time (s) 6331.0 5404.0 3449.0 2397.0

Table 1: AMR computational cost breakdown.

re ned every 100 steps. A characteristic displacement of the conveyed structures for this adaptation int€3@| is 0
which corresponds to the smallest mesh size of the problem (The boundary layer elements:62B,iglbwing

the resolution of the boundary layer structure at the wall with 1). With this set-up, the vortical structures are
always within the re ned domain, allowing the potential for even greater adaptation intervals than the 100 steps at the
far- eld.

Figure 15: Evolution of the total number of elements for the three dimensional simulation of the viscous ow around a cylindeDwith4.
(Solid curve): Total number of elements. (Dashed curve): Number of elements in each partition. Circles correspond@ocargs simulation
and solid circles to a 1 20 cores simulation.

In Table 1 we present the computational time breakdown for each of the processes of the AMR methodology for
four decompositions on 20, 40, 80 and 160 processors, clustered in nodes of 40 cores each. The times are measured
using calls to a stopwatch subroutine based orMREWTIME()function. The total time of the simulation is broken
down into three parts: solution, mesh adaptation and re-partitioning which sum up to the total computational time. As
it can be seen from the table data, the most demanding process is the solution of the equations, which contains the
costs of the calculation of the surface and volume integrals and the integration in time. In Table 1, the solution CPU
time also contains the cost for communicating the solution across the partition boundaries and the calculation of the
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gradients (auxiliary variables ).

The mesh adaptation is the second most demanding part of the algorithm. The adaptation cost increases with the
number of the processors involved in the solution. As can be seen from the table, the calculation of the connectivity
process requires a small fraction of the adaptation part of the computational time. The connectivity process involves
all the rearrangements of the linked lists needed for the updates of the mesh topology, the assignment of the keen
neighbours, the calculation of the new connectivity and the smoothing of the mesh that guarantees 1 : 2 connectivity.
The main cost of the mesh adaptation part, in this case, is the allocation of the new leaves and the projection of the
solution while merging or splitting.

The last part of the algorithm is the re-partitioning of the computational domain, which results in a balanced
workload among the processors. The most demanding part of this procedure is the exchange of the information across
the processors. In Figure 15 we present the evolution of the number of elements for the AMR simulation during the
stages of the re nement to the highest levet@) in the areas of high vorticity. During this stage new elements arise
within small concentrated regions of the ow eld shown in Figure 14. These new elements result in an imbalanced
increase in the number of elements in speci ¢ partitions, especially in the case where the domain is decomposed into
the maximum number of partitions. Given that the re-partitioning of the domain is a computationally costly procedure,
our strategy is to avoid re-partitioning at every adaptation step and re-partition only every 10 adaptation steps (i.e. to
repartition every 1000 time steps only). This results in an increase in the imbalance of the decomposition, which is
resolved after the re-partitioning, as shown in Figure 14.

8. Application to the ow around a cylinder in a duct

In this section we present an inviscid simulation of the ow around a cylinder in a duct. The aim of this case is to
demonstrate shock capturing and on the y adaptation capabilities of the method. In this example, moving complex
vortical structures, generated by the interaction of moving shocks, can be followed and resolved by applying AMR.
Adequate resolution of these structures, often embedded in ow regions with discontinuities, is the key element for
performing LES of high speed ows. For this simulation, the p1 polynomial basis was used and the unied TVB
limiter was implemented for the capturing of the shocks.

Figure 16:Left: Distribution of the density gradient arRight: pressure distribution, for the ducted ow around a cylindeMat 2:0, with the
underlying ancestral mesh.

In Figure 16[eft) we present the density gradient magnitude distribution for the ow around a cylinder with
diameterD after it has reached a quasi-steady state in tinre 10t° (t° = D=c). In the Figure 1&Right) we present
the pressure eld for the same conditionstat This cylinder is located between two parallel walls forming a duct
with heightH = 8D. The initial mesh consists of 3782 hexahedral elements, which are adapted up to ve levels,
depending of the density gradient. The bow shock formed upstream of the cylinder is re ected at the duct walls. The
interaction of the initial bow shock with the re ected shock forms a stem at the vicinity of the wall. A shear layer is
formed at the stems bifurcation which results to the formation of a Kelvin-Helmholtz instability as can be seen in the
Figure 16[eft). The two re ected shocks from each side of the duct meet at the wake of the ow of the cylinder. In
this area, the shocks interact with the vortical structures of the wake. The AMR methodology provides a tool which
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allows us to follow ow structures in real time, focusing in the areas where high resolution is required, as shown in
Figure 17.

Figure 17: Density distribution at the wake of the cylinder where the re ected shocks interact for two time instatigLeft) andt = t; + t
(Right), for t=1t .

9. Application to the hypersonic ow around a double cone

Detailed experimental measurements for hypersonic chemically reacting ows are expensive to perform, and in
some cases even impossible to obtain for very high re-entry speeds. As a result, basic mechanisms dominating high-
speed, high enthalpy, chemically reacting ows are still poorly understood. It is therefore expected that numerical
simulations will play a key-enabling role in the design and evolution of concepts for the next-generation space vehi-
cles.

In this section we demonstrate the implementation of a chemistry mechanism in the Discontinuous Galerkin
(DG) context. We include in the simulation the coupled ow-chemistry problem for high speed high enthalpy ow,
which encompass non-equilibrium, chemical and energy relaxation processes triggered by high temperatures. These
e ects are accounted for by introducing nite-rate chemistry and energy relaxation into the governing equations. The
objective is to validate a conservative, high-order accurate, shock-capturing method enhanced by the AMR, that would
be applicable to complex three dimensional geometries for the simulation of high enthalpy, transitional and turbulent,
chemically reacting ows.

In Figure 18 [eft) we present the magnitude of the density gradient for the case of the hypersonic ow around
a double cone at re-entry conditions! (= 8:06, Re = 1:3 1(0°) [8]. Under these conditions, the low density

1 = 0:9422 10 3kg/m? atmospheric air dissociates. The chemistry mechanism employed to describe the dissociation
of air as a mixture of oxygen and nitrogen incorporates ve species. Following Nompelis [82], the widely used
Park model [66] for the vibration-dissociation coupling is employed (See Section 2) assumming625K and
T = 71X for the translational and the rotational temperatures, respectively.

For this simulation, the p1 polynomial basis was used and the ow was initially solved as an inviscid ow. The
extension of the uni ed TVB limiting approach [73, 62, 63] for the set of equations provided in the Park's model is
applied in the space of characteristics [8], as described in [74]. The stability of the solution was greatly improved by
the implementation of ve levels of re nement in the vicinity of the shocks. A viscous solution is obtained by re ning
a layer close to the wall to accommodate for the creation of the boundary layer indicated by the vector eld of the ow
shown in the same Figure 1B4ft). The dissociation of air is an endothermic reaction resulting in the reduction of the
temperature at the surface of the cone shown in Figur&d®)( In Figure 19 Right) we show the distribution of the
atomic oxygen mixture fraction produced by the dissociation of the molecular oxygen. The results presented in these
gures infer from the interaction between the oblique shock initiated at the tip of the cone with the shock generated
by the shoulder of the double cone. These two primary shocks interact in the area above the cone shoulder creating
a series of re ections. The detailed structure of the ow in this region is shown in the numerical Schlieren (density
gradient distribution) presented in Figure L8ft). The AMR method enables us to achieve detailed resolution of the
complex ow structure.
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Figure 18:Left: Magnitude of the density gradient for the double cone simulatight: Pressure distribution along the wall of the double cone.
Solid curve: reactive simulation. Dashed curve: reactive simulation by Nompelis [81] using the nite volume (FV) method. Dots: experimental
data taken from [81].

Figure 19: Temperature eldft) and mixture fraction of atomic oxygeiRight) for the double cone viscous simulation taking into account air
dissociation.

10. Application to a gasoline fuel spray

The modelling approach, described in the previous sections, have been applied to the simulation of a high-pressure,
hollow-cone, gasoline fuel spray used in modern spray-guided gasoline engines. Results of this application are pre-
sented in this section.

The need to accurately model the interaction between droplets and carrier phase (coupling) in engineering appli-
cations is well known [83]. In sprays found in various engineering systems, including internal combustion engine
injection systems [84] and particle deposition devices [85, 86], the carrier phase ow induced by the dispersed phase
and the momentum exchange between them is critical for the evolution of both phases. Momentum exchange in
this case occurs at a microscopic scale which is usually well separated from the macroscopic scales of the problem.
An Eulerian approach is typically used for modelling of such ows [84]. Hybrid Lagrangian-Eulerian approaches
[83, 87, 88, 89, 90], however, @r more realistic modelling of the dispersed continuum which can be multi-valued.
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Figure 20: (a) Injection of droplet parcels in the ow eld. The size of the spheres shows droplet sizes (with maximal diameters equai to 30

and minimal diameters equal to 2n ), the colour scale shown corresponds to the number of droplets per pard@l) The computational grid

in the wake of the spray at= 1:1 ms. The smallest cell size corresponds to level 4 quad-tree splitting. The dots represent the quadrature points;
four dots per cell correspond to a p1 polynomial basis and nine dots correspond to a p2 polynomial basis. h-adaptivity is imposed in high vorticity
regions, p-adaptivity is imposed in the regions with high strain rate.

The fuel used in our analysis is iso-octane, injected at a pressure of 100 bar for a durdtisrlains. Injection
mass ow ratem (measured experimentally using a rate tube) increased linearly from zero up to a maximum value of
mp = 30 g's in @1 ms. During the following 8 ms the mass ow rate remains constant and decreases to zero during
the last 01 ms. The temporal variation of the mass ow rate is described as:

8 ¢
- . < 0
% Ea] 0 t<01T
m= % my; 01T t<0:9T (3%)
T t
. . <T
CoOTT Mo; 09T t<T:

Everyiinj = 25 time steps (37 s) of the simulationni,j = 17 droplet parcels are released at045elative to the

axis of symmetry with a spread (divergence of wall thickness).@f.5The injection point is located 1 mm ahe

middle of the injection cone edge. The magnitude of the droplet velocities was inferred from the mass ow rate of the
injected fuel and Laser Droplet Anemometry (LDA) measurements and is equakd.00nTs. The initial droplet
diameterdy is assumed equal to the injector slit liff = 27 m. The injection pattern described is shown in Figure

20. The number of dropletgy in each parcel injected in the domain during the simulation was calculated from the
mass ow rate described by Equation (35) as:

iinjm(t)dt )

inj

P = (4:0=3600) (36)

wheremy is the mass of each droplety = fﬁds). The number of dropletg in the Equation (36) has been calculated

for the computational domain used in our simulations, consisting 8fsedtor, discretised by a hybrid unstructured

mesh consisting of hexahedral and prismatic elements. Although the droplets are injected at a constant frequency
any variations of the injection mass ow rate re ect on the number of droplets per ppgcdlhe droplet breakup is
modelled using the WAVE model [83] as follows:

ddg  dg ds
E - bu ] (37)
where
% 280 ; 28 dy
4= lo33 : 38
® ;gdgmin( Un=2 ; =) ; 2By >dy %)

whereU, is the relative velocity between each parcel and the carrier phase. The calculation of the pararaeters
is discussed in detail in [91].
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Figure 21: Comparison of the experimental observations of droplet distribution from [90] (shadow graphs) with the numerical results. (a): Droplet

distribution att = 1:1 ms. Colour scale corresponds to velocity magnitudes). Scatter size corresponds to the number of droplets per parcel.
(b): Distribution of the z-component of the vorticity vector in§) att = 1:1 ms.
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Figure 22: Comparison of the experimental observations of droplet distribution from [90] (shadow graphs) with the numerical results. (a): Distri-

bution of turbulent kinematic viscosity in @ms) att = 1:1 ms. (b): Distribution of pressure in (mbar)tat 1:1 ms.

Experimental observations of the fuel spray were conducted in a quiescent chamber of xed volum€ arizD
1 bar. The piezoelectric fuel injector was mounted in a vertical position at the top of the chamber. Measurements of
the spray shape (geometry and thickness of plume) and droplet size and velocity distributions were carried out using
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Figure 23: Comparison of the experimental observations of droplet distribution from [90] (shadow graphs) with the numerical results. (a): Droplet

distribution att = 1:67 ms. Colour scale corresponds to velocity magnitudes). Scatter size corresponds to the number of droplets per parcel.
(b): Distribution of the z-component of the vorticity vector in¢) att = 1:67 ms.
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Figure 24: Comparison of the experimental observations of droplet distribution from [90] (shadow graphs) with the numerical results. (a): Distri-
bution of turbulent kinematic viscosity in @ws) att = 1:67 ms. (b): Distribution of pressure in (mbar)tat 1:67 ms.

high-speed photography and Phase Doppler Anemometry, respectively. The experimental set-up and measurement
procedure are described in [90]. The computational mesh is re ned 2 times in the vicinity of the spray, 3 to 4 times
in areas of high vorticity and 4 times in the cells that contain droplets. In addition to h-adaptivity, p-adaptivity is
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imposed in the areas of high strain rate. This results in a combined h-p re ned discretisation as shown in Figure 20.
The comparison between experimental result and the results of numerical simulation is shown in Figures 21 to 24.
The results presented in these gures agree with the results of experimental observations of these sprays [90]. As
following from Figure 21(b), an array of vortices is formed in the wake of the spray. Also, at the edges of the spray,
two major counter-rotating, vortex rings are formed. The vortex rings induce a boundary layer at the cylinder head
wall which detaches close to the injector needle tip. The boundary layer remains attached from a distalze

mm from the centreline. As can be seen in Figure 21(b), the detached boundary layer is identi ed by the h-adaptivity
criterion. The detachment of the boundary layer and the in uence of the bounding walls (needle tip and cylinder head)
are accounted for in the SA model in the DES framework.

11. Conclusion

The results of development of an Adaptive Mesh Re nement (AMR) approach on hybrid unstructured grids for
the Discontinuous Galerkin (DG) method (ForestDG) has been presented. This approach is based on a topological
representation of the computational mesh by a hierarchical structure consisting of oct- quad- and binary trees. The
ancestral elements of the mesh are split into self-similar elements allowing each tree to grow branches to an arbitrary
level of re nement. The developed AMR (h-re nement) enables us to increase the spatial resolution for the compu-
tational mesh in the vicinity of the points of interest such as interfaces, geometrical features, or ow discontinuities.
The local increase in the expansion order (p-re nement) in areas of high strain rates or vorticity magnitude results in
an increase of the order of the accuracy. The connectivity of the elements, their genealogy and their partitioning have
been described by linked lists of pointers. These pointers are attached to the tree data structure. This facilitates the
on-the- y splitting, merging, and repartitioning of the computational mesh by rearranging the links of each node of
the tree.

This approach allows us to split or merge the computational mesh to an arbitrary level maintaining the gradients
of the basis expansion within the element. This is performed by projecting the solution on the basis of the new
elements. The calculated inviscid and viscous uxes across the non-conformal faces retain the order of accuracy
of the discretisation. The ability of the numerical code, based on this approach, to handle wide ranges of levels of
adaptation and radically rearrange the grid to the new conditions makes it ideal for tracking moving ow structures
and perform grid re nement to very high local resolution. The latter is required for the capturing moving shocks and
tracking moving droplets. This approach allows us to perform continuous adaptation of the computational grid to
the structures of the ow as they emerge from the temporal development of the solution. It has been shown that the
forest of trees facilitates quick response to the changes in the grid, imposing minimal overhead on the computational
cost. This is performed by de ning the addressing, the decomposition and the connectivity relations in a such way
that they are not aected by the local re nement of individual branches. Furthermore, the relations between the tree
nodes are presented in an explicit form, avoiding search algorithms. Balanced computational load is maintained by
repartitioning the grid. The decomposition boundaries can intersect trees and branches. Changes in the forest topology
are expressed by re-stitching pointers and relations, rather than moving and rearranging data structures.

The suggested AMR methodology has been applied for the analysis of the interaction between droplets and the
carrier phase. This has enabled us to re ne the computational mesh in the vicinity of the droplet parcels, and perform
accurate resolution of the coupling between the two phases. Results of the application of the new model for the
analysis of the interaction between droplets and the carrier phase have been described. The accuracy of the new
code has been assessed and results of its application to the analysis of a hollow-cone spray in gasoline engine-like
conditions were presented.
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Nomenclature

b Basis function [-] w Source term [-]
c Speed of sound [m &] X Coupled variables vector [-]
c Basis expansion coecient [-] Greek symbols
dq Droplet diameter [-] Coordinates in the computational space [-]
e Energy [-] X Coordinates in the physical space [-]
f Flux vector [-] Characteristic temperature [-]
fq Droplet drag force [-] Auxiliary variables vector [-]
h Total speci ¢ enthalpy [-] 9 Dynamic viscosity of carrier phase [kg s ]
L Reference length [m] t Turbulent dynamic viscosity [-]
M Molecular weight [-] t Turbulent kinematic viscosity [-]
R Ideal gas constant [-] Density [-]
N Number of elements [-] g Density of carrier phase [kg n?¥ ]
Ny Droplet number density [-] Subscripts
Ny Number of diatomic species [-aux Auxiliary
Np Number of polynomial basis [-d Droplet
Pd Droplet number per parcel [-] g Gas phase
q Heat ux inv Inviscid
Re Reynolds number [-] S Species
Sij Rate of strain tensor [-] t Turbulent
S;; Traceless rate of strain tensor T] Total
t Time [-] v Vibrational
u Carrier phase velocity [-] vis Viscous
U State vector [-]
Y Droplet parcel velocity [-]
Y Species mixture fraction [-]
Appendix A.

Transformation of coordinates from the computational spatethe physical spaoef"" for a hexahedral element

Em.

Xne 15 25 3) = ((LO  1)(20
+((.0+ (10
+((10  1)(LO
+((0+ (10

(10 )=BO)Xe"+ (10 1) (L0+ (L0  3)=BO)xXS"
(L0 3)=BO)Xg" + ((L0+ 1)(L0+ ) (10 3)=BO)X:™
2)(L0+ 3)=BO)xg" +((LO 1) (L0+ 5)(LO+ 3)=BO)X;"
2)(L0+ 3)=BO)X;" + ((L0+ 1)(L0+ 5)(L0+ 3)=BO)X™

(A1)

Transformation of coordinates from the computational spatethe physical spac)qEm for a prism elemenEp,.

Xpri = (L0 )10 ) (L0 3)=BO)Xg"+ (L0 1) (1:0+ )(10 3)=BO)X5"
+((1:0+ )@0 H)(10 3):8:0)X§“‘+((1:0+ 1) (1:0+ ,)(1:0 3):8:0)x§’“ (A.2)
+(L0+ 3 2 29O+ ((LO+ 2+ 3+ 5 3)=0)X,"

Transformation of coordinates from the computational spat@the physical spacxfm for a tetrahedral element

Em.

+((L0  )(@0 (L0 )BO)Xg"+ ((LO+ )(L0 ) (10  3)=BO)XE"

Xet = (L0+ 3)=20)xEm+ ((1L0 3+ » 2 3)=40)x5" A3
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Appendix B.
Keen, Face and Angle arrays for prisms are presented below

fpg g W69 g Pg P79 P29 P59
freg g Pg P79 g g B0y P 3g
Keli;f]=F fPg 69 fg g ¥7g g Plg P4g (B.1)
frg Pg g R0y Plg P2y Py P 6g
fP3g 49 5 Pg Pg g PR7g g

00000O0GO0 O 03
1111111 1
FIf;il=f2 2 2 2 2 2 2 2 (B.2)
333 4 4 4 3 4§
3 33 4 4 4 3 4
00300 3 3 33
100100 1 1
Alf;l=g0 1 0 0 1 0 1 1] (B.3)
0000O0O0OO Of
000O0O0O0OGO0DO
Keen, Face and Angle arrays for tetrahedra are presented below
frg g g w79 g P79 P79 P 3g
Kefi:f]=f .79 Pg P6g Pg P6g Pg P2g P6g (B.4)
Pl " Btpsg g g g P59 0y Pg 5 '
fPg P49 g Pg Plg P4y P4y g
00030 2 1 03
- _HB1 111 3 1 1 0
FItT=82 2 2 2 3 2 2 of (8.5)
33333213
00020 2 2 23
._HB0 0 2 0 2 0 2 2
AlG1=B2 0000 2 0 24 (8.6)
02002020
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