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Abstract 

This article examines the formation of forward rates in the dry bulk shipping industry. We illustrate 

that the bulk of basis volatility can be attributed to expectations about future physical market 

conditions rather than expectations about future risk premia. However, there exists significant 

predictability of risk premia by both price-based signals and economic variables. To explain this 

finding, we develop a dynamic asset pricing framework where, apart from having different objective 

functions, agents might also differ in the way they form expectations about future market conditions 

Accordingly, we argue that the average investor should hold “near-rational” but slightly contrarian 

beliefs.  
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1 INTRODUCTION 

In this paper, we extend the application of heterogeneous beliefs models to commodity 

derivatives. In particular, we focus on the forward market for shipping freight rates, that is the market 

for Forward Freight Agreements (FFAs). Shipping is a very important sector of the world economy 

since 90% of the world trade is transported by sea and it is justifiably considered as a leading indicator 

of world economic activity (Killian, 2009). During the last decade, in addition to traditional shipping 

investors, the market for freight derivatives has also attracted the interest and participation of 

investors from other sectors of the economy. Due to the distinct features of the shipping industry and 

its highly volatile character, trading volume in shipping derivatives markets is expected to increase 

significantly over the next years. Hence, understanding the pricing and trading dynamics of this market 

is important.  

To the best of our knowledge, this is the first time that a structural, heterogeneous-beliefs asset 

pricing model is applied to a futures or forward market. 1 Thus, we provide a framework that can be 

adapted and evaluated empirically in other commodity derivative markets. In doing so, our 

contribution to the literature is threefold. First, we are the first to apply the variance decomposition 

framework in a derivatives market where the underlying asset is a non-storable service. Second, we 

document for the first time several noticeable empirical regularities related to FFA rates and risk 

premia. Third, we propose a theoretical behavioural asset pricing model that can account for these 

stylised facts. 

We begin by analysing the formation of the basis in the freight forward market. Fama (1984a and 

1984b) and Fama and French (1987) show that the variance of the basis of any futures and forward 

contract can be decomposed into the sum of the covariance between the basis and the expected 

change in the spot price and the covariance between the basis and the expected premium over the 

spot price at maturity; this premium reflects the excess return for an investor who goes short on the 

derivative contract. We illustrate formally that volatility in the FFA basis can be attributed primarily to 

expectations about future physical market conditions rather than expectations about future risk 

premia, as is generally the case in commodity markets (Fama and French, 1987). This is justified on 

the basis that freight rates are subject to supply and demand shocks which cannot be smoothed 

through short-term adjustments in supply; the reader can parallelise this to lack of commodity 

storability. This results in predictable variation of spot rates which, consequently, increases the 

forecasting ability of the FFA basis. This is consistent with previous empirical evidence that 

                                                             
1 For instance, Ellen and Zwinkels (2010) and Bredin et al (2108) also use behavioural models with heterogeneous 
speculators to explain commodity price dynamics. Despite some similarities to our model, commodity demand 
in their frameworks is not derived explicitly through a structural economic model as in our case. 
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predictability of future spot rates is a decreasing function of commodity storability (Hazuka, 1984; 

French, 1986; Fama and French, 1987). 

While volatility in FFA basis is primarily attributed to changes in expected spot rates, we cannot 

rule-out the existence of (possibly, time-varying) risk premia. Accordingly, we provide evidence of 

several stylised features that might be of interest to academic and practitioners alike. Specifically, in 

contrast to most commodity futures markets, we find strong statistical evidence of contango; that is, 

realised risk premia are, on average, positive. In addition, there exists significant predictability of 

future risk premia, consistent with the existence of a momentum effect: lagged risk premia strongly 

and positively forecast future risk premia. Finally, FFA risk premia can be strongly negatively 

forecasted by both spot market signals and economic indicators related to commodity trade and 

shipping demand. The existence of statistically significant predictability of future risk premia 

contradicts the unbiased expectations hypothesis and, in turn, the efficiency of the FFA market. We 

further examine the validity of the unbiasedness hypothesis by performing three frequently 

incorporated econometric tests which unequivocally suggest the existence of a bias in the dry bulk 

FFA market. From a market participant’s perspective, those stylised features can be used to develop 

potentially profitable trading strategies. 

We develop a theoretical model of FFA price determination to reproduce our main empirical 

findings. The proposed framework draws its main features from the latest generation of structural 

economic models in the commodity futures literature (e.g. Gorton et al, 2012; Acharya et al, 2013) 

and has been modified and extended in two, quantitatively simple but conceptually important, 

manners. First, our framework departs from the “theory of storage” explanation of “time-varying” risk 

premia (e.g. Gorton et al, 2012; Ekeland et al, 2018) since shipping freight is a non-storable service. An 

immediate consequence of this is the extension of the (widely used) two-period economic 

environment to an infinite horizon model, which simplifies the empirical evaluation of the generated 

framework; accordingly, we validate the theoretical predictions of our model through numerical 

simulations. Second, we incorporate the existence of distorted beliefs on a fraction of the investor 

population; heterogeneous beliefs models provide an alternative way for researchers to explain 

empirical regularities in asset prices that cannot be explained by traditional rational expectations 

models. This way, we contribute to the generic commodity finance literature by incorporating 

explicitly the behavioural dimension in the formation of derivative contracts rates.  

Our discrete-time economy consists of three types of agents; ship-owners, charterers, and 

speculators. Apart from having different objective functions, agents also differ in the way they form 

expectations about future market conditions. While ship-owners and charterers are fully rational 

investors, speculators are characterised by bounded rationality and suffer from a form of 
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“representativeness heuristic” which means that they “exaggerate how likely it is that a small sample 

resembles the parent population from which is drawn” (Tversky and Kahneman, 1971; Shefrin, 2000). 

As a result, following a shock in freight rates, speculators believe that rates will revert more rapidly to 

their previous level than is the case in reality which results in a contrarian investment behaviour on 

their behalf.   

The use of behavioural models in equity markets is often justified by survey data which confirms 

the theoretical predictions (Greenwood and Shleifer, 2014). Since there are no comparable detailed 

surveys regarding shipping industry participants’ beliefs and investment strategies, we justify the use 

of the proposed model by contradiction using both theoretical predictions and model simulations. 

Namely, we show that a rational expectations model with a hedging pressure bias, cannot explain the 

documented empirical regularities. Similarly, simulation tests suggest that to simultaneously match 

all observed regularities sufficiently well, the average investor should hold “near-rational” but slightly 

contrarian beliefs.  

The remainder of this article is organised as follows. Section II describes the shipping industry and 

discusses our dataset. Section III performs the empirical analysis. Section IV presents the environment 

of our economy and the theoretical model. Section V concludes. 

2 DESCRIPTION OF THE INDUSTRY AND DATASET 

The market for FFA contracts was established in 1992 as a hedging instrument for participants in 

the physical shipping market. An FFA contract is “an agreement between two counterparties to settle 

a freight rate or hire rate, for a specified quantity of cargo or type of vessel, for one or a basket of the 

major shipping routes in the dry-bulk or the tanker markets at a certain date in the future. The 

underlying asset of FFA contracts is a freight rate assessment for an underlying shipping route or 

basket of routes. FFAs are settled in cash on the difference between the contract price and an 

appropriate settlement price” (Alizadeh and Nomikos, 2009). 

In the context of this research, we focus on the Capesize and Panamax dry bulk FFA contracts since 

they constitute by far the most liquid segments: on average, approximately 98,000 dry bulk FFA 

contracts are traded each month of which 45% and 43%, respectively, are for Capesize and Panamax 

vessels. The total paper activity corresponds to about 90% of the trading activity in the underlying 

physical market. Our dataset consists of monthly observations of spot prices, settlement rates, and 

FFA rates for the BCI 4TC and BPI 4TC contracts with 1- and 2-month maturities from January 2007 to 

September 2016, obtained from The Baltic Exchange. Those contracts correspond to the equally 

weighted average of the four trip-charter routes of the Baltic Capesize Index (BCI 4TC) and the Baltic 

Panamax Index (BPI 4TC), respectively. Incorporating the industry convention, settlement rates are 
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calculated as the arithmetic average of the respective underlying spot rates over all trading days of 

the settlement month.2  

Following Fama and French (1987) and Cochrane (2011), we decompose the difference between 

the log FFA rate at time ! for a contract expiring in " periods,	$(!, "), and the current log spot rate, 

((!), into the sum of the expected change in the log spot rate and an expected premium over the log 

settlement rate at maturity of the contract,	((! + "): 

 $(!, ") − ((!) = ,-[((! + ") − ((!)] + ,-[$(!, ") − ((! + ")]. 

 

(1) 

The quantity on the left-hand side of (1)	is defined as the basis of the FFA contract which is also a 

frequently used valuation ratio. The two terms on the right-hand side of (1) are the expected spot 

growth rate and the expected risk premium, respectively; the latter can be interpreted as the bias in 

the FFA rate as a forecast of the future settlement price or, equivalently, as the excess return for an 

investor who goes short on the FFA contract. Equation (1) shows that a high basis may be due to 

higher expected spot growth rate and/or higher expectations of future log risk premia.  

Panel A of Figure 1 presents the Forward, Spot, and Settlement rates for the 1-month Panamax 

case. While all series are very volatile, reflecting the growth in freight rates and the subsequent crisis 

in 2008, they are also strongly correlated. From an economic perspective, the high volatility and 

uncertainty regarding freight market conditions justifies the existence of the FFA market as a hedging 

instrument for participants in the physical market but also attracts the trading interest of investors 

outside of the shipping markets such as hedge funds and investment banks (Alizadeh and Nomikos, 

2009). Panel B of Figure 1 illustrates the evolution of the spot growth, premium and basis for the 1-

month Panamax case. Evidently, while all three variables appear to fluctuate significantly over time, 

spot growth rates exhibit the highest volatility. This finding is also confirmed by the estimated 

standard deviations presented in Table I and has important implications for the predictive regression 

results, as discussed in the following section.  

Looking at the remaining descriptive statistics in Table I, we note that the basis is, on average, 

significantly positive and strictly increases with maturity for both contracts, consistent with the 

forward market being in contango. There is also evidence of positive mean risk premia in both 

                                                             
2 Depending on the cargo-carrying capacity of the vessel (measured in dead-weight tonnage, dwt), the dry bulk 
fleet is subdivided into the Capesize, Panamax, Handymax, and Handysize sectors. At the largest end of the 
range, Capesize carriers (above 150,000 dwt) are used in the transportation of iron ore and coal while Panamax 
carriers (around 74,000 dwt) are associated with the trade of a large variety of commodities such as coal, grains, 
bauxite, and the larger minor bulks. The 4TC routes reflect the main trading routes on which Capesize and 
Panamax vessels operate: the Atlantic Trade, the Pacific Trade, the Continent-to-Far East Trade, and the Far East-
to-Continent Trade. Finally, the FFA rates are based on the Baltic Exchange Forward Assessments (BFA) which 
represent the mid-price of bids and offers for the dry bulk market, submitted and published every trading day 
at 17:30, London time. 
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contracts and across all horizons suggesting that, on average, FFA rates are higher than the 

corresponding realised settlement rates at the maturity of the contract. It is interesting to note that 

the risk premia are high in absolute terms, implying annualised mean returns of more than 30% in all 

cases, which is much higher than those reported in the literature for other commodity markets. For 

instance, Szymanowska et al (2014) examine eight commodity indices and report annualised mean 

returns ranging from -7% to 11%. Note though that the premia are only statistically significant in the 

1-month case. From a market participant’s perspective and in terms of potential trading strategies, 

those results suggest that an investor should rather take a short position in the FFA market as this 

seems to be consistently generating positive returns. In addition, it might be preferable for a short 

hedger (or speculator) to go short on two consecutive 1-month contracts instead of taking a short 

position on the respective 2-month one. The inverse is true for a long hedger. 

A further noticeable stylised fact is that the 1- and 2-month risk premia are positively 

autocorrelated and their autocorrelation increases with contract maturity which indicates the 

existence of a momentum effect, as analysed in the following section. Finally, risk premia and spot 

growth rates are negatively correlated, as is also shown in Panel B of Figure 1, which suggests that an 

unexpected positive (negative) shock in spot rates will result in a negative (positive) realised risk 

premium. 

Concluding, in the dry bulk FFA market there is no evidence supporting the Theory of Normal 

Backwardation (Keynes, 1930; Hicks, 1939). This contrasts with the evidence from many other 

commodity futures markets where, in line with the theory, futures prices are at a premium to expected 

spot prices to compensate the long side of the futures settlement for providing price insurance 

(Gorton et al, 2012). Following this argument, our results suggest that the short side of the FFA 

position is – on average – rewarded for providing price insurance.  Furthermore, these stylised facts 

combined appear to verify the common view of practitioners that a positive basis or, equivalently, a 

negative “roll yield” is a requirement for the existence of a positive risk premium to a short position 

in futures markets (Gorton et al, 2012).3 From an economic perspective, there exist three potential 

explanations for this finding. First, there is on average net long hedging pressure in the market; that 

is, more long hedgers than short ones. Second, short physical hedgers – shipowners – require a 

‘settlement risk premium’ and/or a ‘basis risk premium’ from the long side; the first arises due to the 

difference between the average rate used for the settlement of the FFA contract and the freight rate 

at the which the vessel is fixed in the physical market while the second from the mismatch between 

the specification of the FFA contract and the exposure of the hedger in the physical market (Alizadeh 

                                                             
3 Practitioners define the roll yield as the ratio of the spot price over the contemporaneous futures contract rate. 
Therefore, it is equivalent to the inverse of the basis definition adopted in this article. 
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and Nomikos, 2009). Third, short physical hedgers demand a “liquidity premium” from the long side; 

Kang et al (2018) argue that this is a consequence of the fact that short physical hedgers accommodate 

the liquidity demands of speculators who readjust their positions much more frequently than physical 

hedgers. While any (combination) of those explanations appears plausible, we cannot confirm that 

empirically since detailed commitment of traders reports are not available for this market. 

3 PREDICTABILITY OF MARKET CONDITIONS AND RISK PREMIA USING VALUE INDICATORS  

We begin by applying the variance decomposition framework (Fama, 1984a and 1984b; Fama and 

French, 1987) to assess the forecasting ability of the FFA market for ships. While shipping researchers 

have already examined the question of FFA predictability using cointegration techniques (e.g. 

Kavussanos and Nomikos, 1999), our estimation framework is more versatile and aims to fill certain 

gaps in the literature.  

First, and most importantly, this estimation procedure allows us not only to quantify the predictive 

power of the FFA contracts but also to provide an economic interpretation for the results. Namely, 

since shipping services are considered a commodity, we explain our findings by performing a 

comparison with other commodity futures and forward markets. Specifically, Hazuka (1984), French 

(1986), and Fama and French (1987) show that the forecasting ability of futures contracts is directly 

related to seasonality in supply and demand as well as the storage cost of the commodity. In the 

following, we illustrate how their arguments can be extended to shipping where the corresponding 

commodity is a non-storable service. In addition, this decomposition allows us to quantify precisely 

the variation in the FFA basis that can be attributed to expectations about future market conditions 

and time-varying risk premia.  

 Second, the results from the variance decomposition framework are robust even in the presence 

of overlapping observations. What is more, the variance decomposition framework examines a 

question of relative predictability without imposing any restrictions on either the spot rate process, 

the rationality of expectations or the existence of time-varying risk premia. Third, the incorporated 

sample corresponds to the most recent available data ‒ including the extreme shipping cycle of the 

period 2007 to 2009 ‒ regarding the forward shipping markets.  

Following Cochrane (2011), it is straightforward to decompose the variance of the basis into two 

parts. Namely, multiplying both sides of (1) by $(!, ") − ((!) − ,[	$(!, ") − ((!)] and taking 

expectations yields 

																															234[$(!, ") − ((!)] = 562[$(!, ") − ((!), ((! + ") − ((!)] 

																																																																						+562[$(!, ") − ((!), $(!, ") − ((! + ")]. 

 

(2a) 
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Therefore, the variance of the basis is equal to the covariance between the basis and the expected 

spot growth and the covariance between the basis and the expected risk premium. Dividing both sides 

of (2a) by the variance of the basis yields 

562[$(!, ") − ((!), ((! + ") − ((!)]

	234[$(!, ") − ((!)]
+
562[$(!, ") − ((!), $(!, ") − ((! + ")]

	234[$(!, ") − ((!)]
= 1 

(2b) 

	
⇒ ;<=,> + ;?,> = 1, 

where ;@,>
	  is the "-period contract coefficient corresponding to the A-B element of the decomposition. 

Incorporating (1) in (2b), these two coefficients are further analysed into 

;<=,>

=
234[((! + ") − ((!)] + 562[((! + ") − ((!), $(!, ") − ((! + ")]

	234[((! + ") − ((!)] + 	234[$(!, ") − ((! + ")] + 2562[((! + ") − ((!), $(!, ") − ((! + ")]
 

 

(2c) 

and 

;D,>

=
234[$(!, ") − ((! + ")] + 562[((! + ") − ((!), $(!, ") − ((! + ")]

	234[((! + ") − ((!)] + 	234[$(!, ") − ((! + ")] + 2562[((! + ") − ((!), $(!, ") − ((! + ")]
 

 

(2d) 

The expressions above suggest that the variance of the basis depends on the variances of the spot 

growth and the risk premium as well as the covariance between those two components. We can 

examine which of those two sources is the major determinant of the observed variability in basis by 

running forecasting OLS regressions in the spirit of Fama (1984a and 1984b), Fama and French (1987), 

and Cochrane (2011). Namely, we regress realised log spot growth and realised log risk premia on the 

current log basis: 

 ((! + ") − ((!) = F<=,> + ;<=,> ∙ [$(!, ") − ((!)] + H<=,-I>
	 , (3a) 

 $(!, ") − ((! + ") 	= F?,> + ;?,> ∙ [$(!, ") − ((!)] + H?,-I>
	 , 

 

(3b) 

In line with Fama and French (1987), statistical evidence that ;<=,> is positive means that the basis 

has forecasting power on the future change in the spot price which, in turn, implies that the FFA 

contract is a reliable predictor of the future spot rate. Statistical evidence that	;?,>  is different than 

zero implies that the basis at ! has forecasting power regarding the future premium realised at ". 

Notice that equations (1) and (2b) impose the restrictions F<=,> + F?,> = 0, H<=,-I>
	 + H?,-I>

	 = 0, 
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and, most importantly, ;<=,> + ;?,> = 1. The last restriction implies that regressions (3a) and (3b) 

will always allocate all basis variation to either expected spot growth or expected risk premia or some 

combination of the two; thus, those regressions examine a question of relative predictability through 

the magnitudes of the two slope coefficients, ;<=,> and ;?,>.  

We run the predictive regressions (3a) and (3b) for the Capesize BCI 4TC and Panamax BPI 4TC 

contracts for both maturities.4 In line with the existing literature, for the 2-month maturity contracts 

we incorporate Newey-West (1987) heteroskedasticity and autocorrelation consistent (HAC) standard 

errors to deal with the overlapping nature of risk premia and growth rates. 

As it becomes evident from Table II, all spot growth coefficients are significantly positive at the 1% 

level in every sector and horizon and the forecasting power of the log basis appears to be strong with 

the LMs of growth regressions being at least 14%. Turning next into the regressions for risk premia, 

the slope coefficients and the respective t-statistics are much smaller in magnitude and the LMs are 

below 8% in all cases. Overall, the variance decomposition results clearly suggest that there exists 

strong predictability of future spot price changes from the FFA basis. In turn, this implies that FFA rates 

are good predictors of future spot rates.  

There is a long-standing debate in asset pricing regarding the forecasting ability of futures markets. 

In many markets, futures prices do not appear to possess statistically significant forecasting power 

while, in some cases, they do not even provide better forecasts compared to the current spot price. 

Having demonstrated that the former is not the case in the FFA markets, we now show that FFA rates 

are better predictors of future market conditions compared to the current spot rates. Table II presents 

the results from regressions of future spot growth on the first lag of the 1-month spot growth. We 

note that, irrespective of the maturity and the sector under consideration, the coefficients for lagged 

spot growth are not statistically significant which is consistent with the view that FFA rates contain 

superior information compared to contemporaneous spot and settlement rates.5  

In order to interpret our findings, it is worth noting that if the current spot price equals the 

expected spot price, futures prices cannot provide a better forecast of the future spot price than 

current spot prices (French, 1986). In other words, for futures markets to be able to forecast future 

spot rates, there must be something to be predicted. While this statement appears to be trivial, it is 

very profound and important for the interpretation of the forecasting results. 

                                                             
4 We also examine formally whether the variables of interest satisfy the necessary stationarity condition. 
Evidently, the null hypothesis of a unit root is rejected for the three variables for both contracts and maturities. 
Results are available from the authors. 
5 This is also verified by the results of bivariate forecasting regressions using both current basis and lagged spot 
growth as the explanatory variables and future spot growth as the dependent one. The results can be provided 
by the authors on request. 
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One should expect that in markets where realised spot rates are volatile there will be strong 

predictability of future spot rates from futures prices. Specifically, if investors know ‒ up to a certain 

degree ‒ the underlying data generating process of the spot rate, they will be able to predict the future 

spot rate; in the presence of futures markets, this expectation is reflected ‒ at least partially ‒ in 

futures rates and, in such cases, spot rate volatility results in futures rate volatility. Consequently, in 

line with French (1986) and Fama and French (1987), for futures prices to provide reliable forecasts of 

future spot rates, the volatility of both spot rate changes and futures basis must be high. 

Hazuka (1984), French (1986), and Fama and French (1987) verify the direct relationship between 

the “theory of storage” and predictability of future spot rates for a variety of commodities. Specifically, 

the degree of predictable variation in future spot prices should be an increasing function of the cost 

of storage or, equivalently, a decreasing function of the inventory level. The reason is that inventories 

tend to smooth predictable adjustments in spot prices in response to these shocks and thus, tend to 

reduce the volatility of both realised and expected spot rates. Since high storage costs relative to the 

commodity value deter storage, they also reduce the degree of spot price smoothing and, in turn, 

increase the amount of predictable variation in spot prices. As a result, for commodities that are non-

storable (e.g. electricity) or require high storage costs relative to value (e.g. broilers and eggs), the 

respective futures prices exhibit significant forecasting power. In contrast, for commodities with low 

storage costs relative to value, such as precious metals, prices are not informative regarding future 

market conditions (French, 1986; Fama and French, 1987). 

Following this discussion, the results from the FFA market should be a priori expected. First, from 

a statistical perspective, we observe that the necessary conditions stated by French (1986) are 

certainly met in the dry bulk FFA market. Namely, in line with Table I and Panel B of Figure 1, log-

changes in both the basis and spot rates changes are highly volatile.6  

In addition, it is well-documented that freight rates are very volatile and subject to demand shocks 

along with significant construction lags on the supply side, the combination of which results in very 

volatile yet mean-reverting (in longer horizons) rates. As illustrated in the recent shipping literature 

(Greenwood and Hanson, 2015; Nomikos and Moutzouris, 2018a and 2018b) however, due to the 

nature of the industry,7 future spot rates can be predicted ‒ up to a certain degree ‒ based on the 

time-! public information filtration and/or investors’ private information. Accordingly, FFA rates are 

                                                             
6 The fact that spot rates changes are relatively more volatile that the basis – the ratio of the standard deviation 
of the basis to the spot growth ones ranges from 0.54 to 0.72 – is attributed to the existence of time-varying risk 
premia, as illustrated in the following section. 
7 There is a large number of established private shipping companies that operate in the industry. In some 
instances, ship owning families have been present in the market for more than a century (Stopford, 2009); 
consequently, they have strong prior experience and expertise about the key supply and demand drivers of the 
shipping industry which translate into better forecasts about future market conditions. 
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expected to reflect, to some extent, the economic predictions of market participants. In contrast, if 

expected spot rates could not be predicted using ℱ--measurable economic variables, the FFA basis at 

time ! would have no forecasting power about future market conditions. Note that in the applied 

variance decomposition methodology, the FFA basis is the sole state variable and thus, is assumed to 

summarise the historical and prevailing market conditions (Fama and French, 1988). Equivalently, the 

“more storable” a commodity is, the lower the predictability of future spot rates is expected to be. In 

shipping, however, the commodity is a non-storable service which results in predictable variation of 

spot rates and, in turn, substantial forecasting ability of FFA rates.8  

Notice that the arguments presented above apply not only to derivatives contracts but also to 

financial (e.g. stocks and bonds) and physical (e.g. real estate and vessels) assets. Namely, Chen et al 

(2012) and Rangvid et al (2014) show that in equity markets, cash flow predictability by valuation 

ratios (such as dividend yields) is positively related to cash flow volatility and inversely related to the 

degree of dividend smoothing. Therefore, we can relate the role of dividend smoothing in equity 

markets to inventories and the cost of storage in commodity markets. Closely related to these 

arguments is the analysis in Nomikos and Moutzouris (2018a) who examine the formation of vessel 

prices in a framework similar to the one discussed here. Their findings indicate that vessel valuation 

ratios (namely, the earnings yield which is defined as the ratio of net earnings to the current vessel 

price) strongly and negatively predict future market conditions. 

Finally, recall that we examine a question of relative predictability; since ;<=,> + ;?,> = 1, basis 

variation must be either due to predictability of future risk premia and/or predictability of future spot 

growth. Accordingly, the fact that spot growth changes are more volatile than the respective risk 

premia predisposes us, through equations (2c) and (2d), for the variance decomposition results. In 

conclusion, we argue that FFA basis moves mainly due to expectations about future changes in the 

spot prices because the latter can be predicted – up to a certain degree – by market agents at time	! 

through the shipping supply and demand mechanism. For the residual proportion of basis variability 

that is attributed to time-varying risk premia, there can be two plausible economic justifications; a 

“rational” and an “irrational” one. 

                                                             
8 One might argue that shipping services are storable as well in the sense that shipowners can affect the supply 
of shipping services by ordering new vessels and scrapping or laying-up existing ones. While this argument is 
valid, it only affects the supply in the longer term and not in the 1- and 2-month horizons which is the focus in 
this paper. In line with this argument, in the following we illustrate that shipping supply variables have no 
predictive power regarding future risk premia. Furthermore, we have formally tested whether the theory of 
storage holds in the shipping industry by regressing the FFA basis on the nominal interest rate. Following Fama 
and French (1987), the storage equation hypothesis is that the slope coefficient of the regression should be 
equal to one for any continuously storable commodity. The obtained coefficients in our case are statistically 
insignificant and thus, the theory is rejected. 



12   
 

Regarding the former, there exist two, usually interconnected (Gorton et al, 2012; Ekeland et al, 

2018), “rational” theories to explain risk premia predictability in the commodity markets literature; 

namely, the “theory of storage” and the “theory of normal backwardation”. These theories justify the 

predictability of risk premia through the existence of inventories which, in turn, result in time-varying 

hedging pressure, usually on the part of commodity producers. Regarding the latter explanation, as 

analysed previously and in line with Fama and French (1987), the variability of the risk premia 

component can be attributed to irrational forecasts of future market conditions. In Section IV, we 

illustrate formally why the latter explanation appears to be more plausible in the FFA market.9  

We should note that regressions (3a) and (3b) are designed to detect variation in expected 

premia; hence, failure to identify time-varying expected premia does not imply that expected premia 

are zero (Fama and French, 1987). Indeed, as reported in Table I, there appears to be statistical 

evidence of positive mean risk premia for both contracts. We examine formally the predictive power 

of additional factors that may explain the existence of risk premia. Table III summarises the results 

from regressions of 1- and 2-month risk premia on past realisations of the variable. The first three 

rows of each panel present the results from bivariate regressions where the lagged 1-month risk 

premium is the predictor; that is, in the first row the regressor is the first lag of the risk premium 

variable related to the 1-month contract, in the second row the second lag, and so on. In the fourth 

row, the regressor is the corresponding previously realised risk premium for each contract; that is, for 

the 2-month contract expiring in ! + 2 months, the predictor is the realised risk premium related to 

the 2-month contract that expired at !. 

Results in Table III indicate that there exists statistically significant predictability of future risk 

premia from lagged realisations of the variable in both contracts. Specifically, both the 1- and 2-month 

risk premia can be strongly positively forecasted by the first lag of the 1-month risk premium. Notably, 

in the Panamax contracts the slope coefficients are significant at the 1% level and the second lag of 

the 1-month risk premium strongly positively predicts both the 1- and 2-month risk premia. We also 

note that when we use higher lags as regressors the values of the slope coefficients strictly decrease 

and become less significant. Thus, a high realised risk premium forecasts high future premia and vice 

versa which indicates the existence of a momentum effect. Importantly, the fact that predictability is 

attenuated as the lag of the regressor increases reinforces this argument. Therefore, from a trading 

strategy perspective, this suggests that taking the short (long) position on the FFA contract after a 

positive (negative) risk premium is realised might be a profitable investment strategy.  

                                                             
9 According to this theory, the degree of irrationality should be analogous to the relative variability of the risk 
premia component, as measured by the magnitude of the ;?,> coefficient. Thus, the fact that the bulk of volatility 
is attributed to spot growth changes implies that, while distorted expectations can justify the observed bias, the 
average degree of expectations’ irrationality is not extreme. 
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We examine next whether future risk premia can be forecasted by changes in lagged spot growth  

and by lags of the Baltic Dry Index (BDI). The BDI is a composite freight index widely used by 

practitioners as a general market indicator in the dry-bulk market. It is in other words the ‘barometer’ 

of dry-bulk shipping (Alizadeh and Nomikos, 2009). Results presented in Table III indicate that there 

exists statistically significant predictability of future risk premia from realised physical market 

conditions. Specifically, in both contracts, the first lag of monthly changes in spot rates is statistically 

significant and negatively predicts 1-month future risk premia. Therefore, a recent increase in the spot 

market strongly predicts a decrease in future risk premia. These results are consistent across 

maturities and sectors, although it appears that predictability is stronger for the Panamax contract 

and the 1-month horizon. This heterogeneity can be explained by the fact that Capesizes are less 

diversified than Panamaxes in terms of both the nature of cargo transported and the trading routes 

they operate on. As a result, it might be easier to forecast future market conditions – and, in turn, 

more difficult to predict future premia – in the Capesize sector compared to the Panamax one. 

The finding that spot market indicators and lagged risk premia have significant predictive power 

regarding future risk premia becomes more interesting if we recall that the same indicators have very 

little explanatory power over future market conditions (Table II). Therefore, this implies that these 

variables may affect in an inefficient or biased manner the formation of current FFA rates and, in turn, 

future risk premia. Moreover, comparing the risk premia and spot market indicators results, we 

observe that when using the first lag of the regressors, the corresponding risk premia and physical 

market indicators slope coefficients have opposite signs and the magnitudes of the former coefficients 

are higher than the latter ones. This feature suggests that lagged risk premia may contain more 

information regarding future risk premia compared to physical market conditions.10 

Finally, these findings may have useful implications for devising profitable investment strategies. 

Namely, current FFA basis, lagged risk premia and lagged changes in physical market conditions can 

be incorporated as signals/indicators for taking a position in the FFA market. It is thus interesting to 

examine the potential drivers of this sort of predictability and momentum in the FFA market. To this 

end, in Section IV we develop a theoretical model that can justify and reproduce these findings. 

4 PREDICTABILITY OF RISK PREMIA USING ECONOMIC VARIABLES 

As illustrated in the previous subsection, there is evidence of risk premia predictability by realised 

physical market conditions. Since spot rates are determined in equilibrium through the freight rate 

mechanism, we further examine the predictability of FFA risk premia by economic variables related to 

                                                             
10 With the exception of the 1-month BCI 4TC contract, this finding is verified using bivariate regressions where 
the realised risk premium is regressed on the first lags of the risk premium and the spot growth. 
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the supply of and demand for shipping services. Namely, we focus on predictors that reflect current 

and recent short-term changes in supply and demand conditions. This new dataset is retrieved from 

Clarksons Shipping Intelligence Network and runs at a monthly frequency for the period corresponding 

to the previous analysis. 

We first examine several shipping supply variables related to the capacity and availability of the 

fleet: 1-, 2-, and 3-month changes in fleet capacity (both for the specific sector and for the total dry 

bulk fleet) and congestion in main dry bulk ports scaled by the corresponding fleet capacity. None of 

these variables appears to be significant in explaining variations in risk premia at conventional levels. 

An explanation for this is that fleet supply is slow-moving and inelastic in the short term.  

We now turn to the demand variables which consist of trade and demand indicators that, in line 

with the existing literature (e.g. Kalouptsidi, 2014), aim to capture the prevailing conditions in the dry 

bulk sector  (i.e. global iron ore seaborne exports, global coking coal and steam coal seaborne imports 

and exports, and global seaborne dry bulk trade), the shipping industry as a whole (i.e. aggregate 

Chinese imports, crude oil, gasoline, and propane prices) but also the general global macroeconomic 

environment (i.e. world steel production, the trade-weighted steel production index, the Blast Furnace 

Iron (BFI) and Directly Reduced Iron (DRI) indices, iron ore spot prices but also OECD inflation and 

LIBOR rates), expressed in monthly log-differences. In addition, we incorporate as a regressor the 

spread between the one-month growth rates of dry bulk fleet supply and commodity demand (as 

quantified by total dry bulk seaborne trade). This variable, defined in Nomikos and Moutzouris 

(2018a), aims to capture imbalances between shipping supply and demand  

Results from these regressions are consistent with previous evidence. To begin with, predictability 

is stronger in the Panamax sector compared to the Capesize for both the 1- and 2-month horizons; 

namely, only steaming coal imports and exports – out of fifteen different predictors – do not forecast 

future Panamax risk premia. In contrast, only five variables (namely, iron ore spot prices, global coking 

coal imports, global steaming coal imports and exports, and aggregate Chinese imports) are significant 

for Capesizes. It is important to note that the signs of the regression coefficients that are statistically 

significant are always negative. This implies that past changes in trade and demand variables always 

negatively forecast future risk premia; in other words, futures risk premia are negatively affected by a 

recent improvement in demand conditions.  

Finally, we also examine whether the number of second-hand vessel transactions within a given 

month, scaled by the corresponding fleet size, can predict future risk premia. This can be used both as 

a measure of liquidity (Nomikos and Moutzouris, 2018b) and as a proxy for investor sentiment 

(Papapostolou et al, 2014). The results (not presented here) suggest that there is evidence of 

statistically significant predictability of future risk premia. In particular, vessel transactions negatively 
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forecast future risk premia. Similar to all previous forecasting tests, predictability is stronger in the 

Panamax sector. This finding is interesting since there two variables are only indirectly linked with 

each other. Specifically, second-hand vessel transactions are positively correlated with physical 

market conditions, the correlation coefficients between freight rates and dry bulk fleet transactions 

being 0.38 and 0.39 for the Capesize and Panamax sectors, respectively. In turn, as illustrated above, 

prosperous market conditions negatively forecast future risk premia.  

In conclusion, the results in this section are in line with economic theory and reinforce our previous 

findings. Namely, increased demand for shipping services implies, ceteris paribus, an improvement in 

physical market conditions or, equivalently, an increase in spot rates both of which negatively predict 

future risk premia.11 

5 A DYNAMIC BEHAVIOURAL ASSET PRICING MODEL OF FFA RATES 

The documented predictability in the BCI and BPI 4TC contracts suggests that FFA rates are not 

unbiased forecasts of the realised settlement rates and that FFA markets are not efficient in the sense 

of Fama (1970). Namely, the unbiased expectations hypothesis states that futures prices before 

maturity must be equal to the rational expectation of the settlement price at maturity: 

 $(!, ") = ,-[((! + ")], 
 

(4) 

 

where ,-[∙] is the rational expectations’ operator conditional on the time ! information filtration. This 

hypothesis is closely related to weak-form market efficiency, i.e., that future asset returns cannot be 

predicted by past returns. This framework can be extended to include not only past realisations of the 

variable, but also any other ℱ--measurable variable (Fama, 1991). Equivalently, future returns should 

be unpredictable by ℱ--measurable variables, such as valuation ratios, lagged risk premia, realised 

physical market conditions and economic indicators (Kavussanos and Nomikos, 1999).  

Apart from the existence of return predictability, a straightforward way to test for unbiasedness is 

by performing a Wald test on the coefficients of the regression equation (3a). Namely, if the log basis 

is an unbiased estimator of future spot growth, then F<=,>  and ;<=,> should be jointly equal to 0 and 

1, respectively. The unbiasedness hypothesis is also examined by testing parameter restrictions in the 

cointegrating vector (Johansen, 1991) as well as using the Philips and Hansen (1990) fully modified 

                                                             
11 We have also incorporated trading activity variables to examine whether liquidity in the FFA market can 
forecast either future market conditions and/or future risk premia. Our dataset is obtained from the London 
Clearing House (LCH) and consists of monthly observations on trading volume related to the BCI 4TC and BPI 4TC 
contracts with 1- and 2-month maturities. Our results indicate that trading volume is positively correlated with 
current market conditions and, furthermore, an improvement in market conditions is accompanied by a 
contemporaneous increase in trading volume; however, it does not have statistically significant forecasting 
power regarding future risk premia. 
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ordinary least squares (FMOLS) procedure. Results from these tests indicate the rejection of the 

unbiasedness hypothesis across all contracts and maturities, as expected.12 

There exist two possible explanations for the rejection of the unbiasedness hypothesis: namely, 

the formation of irrational expectations and the existence of ‒ either constant or time-varying – risk 

premia. To capture the stylised features of this market, we develop a dynamic asset pricing model of 

Forward Freight Agreements rates that can account both for “hedging pressure” bias and irrational, 

heterogeneous expectations. Accordingly, by analysing and simulating several alternative 

specifications of the model, we show that to reproduce these findings in a sufficient manner we need 

to depart from the rational expectations benchmark of the economy. 

5.1 Economic Environment and Model Solution 

Consider a discrete-time environment where the passage of time is denoted by	!. The economy 

consists of one commodity (a numéraire) which is the freight service and two markets: there is a spot 

market related to a specific shipping route and a derivatives market with a forward contract (FFA) on 

the freight service corresponding to this route. Both markets operate in every period, that is, they 

clear at each ! and, in turn, the respective equilibrium rate is determined. Naturally, the forward 

contract at each ! is related to the spot rate at ! + 1.  

 Let P-  denote the spot price at !, observed at each period by the entire investor population. In the 

context of our theoretical model, the spot price is stochastic and exogenously determined. Thus, we 

examine the formation of FFA rates in a partial equilibrium framework. In line with the data (Tables I 

and II), the evolution of spot prices follows a random walk with zero drift process:  

S-IR = P- + H-IR = P- + S-IR + T-IR, (5) 
 

where H-IR ∼ AAW	X(0, YZM). We further assume that the random error term, H-IR, consists of two 

uncorrelated parts, S-IR ∼ AAW	X(0, Y[M) and T-IR ∼ AAW	X\0, Y]
M^; S-IR is realised a priori, that is at !, 

but is not observed by all market participants with the same precision. The reader can think of S-IR 

as a private information signal about future market conditions; T-IR is realised at time	! + 1 and all 

market participants at	!  have the same prior information about its distributional properties.  

The FFA market consists of three types of investors,	A: “ship-owners”, “charterers”, and 

“speculators”, denoted by 6,	5, and (, respectively. We normalise the investor population related to 

each type to a unit measure. Ship-owners 13 are the providers of the freight service who will hedge 

                                                             
12 These results are available from the authors. 
13 This group may also include vessel operators; the distinction between the two is that a shipowner owns a 
controlling interest in the ship while an operator is a management company that deals with the day-to-day 
operations of the ship (Stopford, 2009). 
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their freight income by taking a short position in the FFA market. A ship-owner has two incentives to 

trade in the FFA market. First and most importantly, he is interested in hedging his production risk. 

Second, he speculates on the difference between the FFA rate and the expected spot-settlement rate.  

Charterers (cargo owners) are the consumers of the commodity since they transport their cargoes 

using ships. In practice, this group may correspond to large trading houses, commodity producers, 

mining companies and energy firms. By participating in the FFA market, charterers want to reduce 

their consumption risk and, like ship-owners, their demand also consists of a speculative component. 

In equilibrium, charterers are expected to take long positions on the derivative contract. Since ship-

owners and charterers participate in both markets, they can be defined as “physical hedgers” or, 

equivalently, “traditional players”.  

Finally, the third investor type corresponds to speculators; in practice, this group may consist of 

finance houses such as hedge funds and investment banks but also from individual investors. 

Speculators are motivated by purely speculative incentives thus their participation in the FFA market 

is not part of a diversification policy and their aim is to profit from absorbing part of the freight risk 

that ship-owners and charterers wish to hedge (Vives, 2008). 

In line with the literature (e.g. Hong and Yogo, 2012; Acharya et al, 2013), agents are assumed to 

have mean-variance objective functions where both the risk aversion parameter, @̀, and the time ! 

expectations operator, Ε-
@ , depend on the agent type. Importantly, the only source of uncertainty in 

the model is the realisation of the future spot price, S-IR. The crucial innovation of the proposed 

framework is that agents form heterogeneous expectations regarding future market conditions and 

they may be asymmetrically informed. Specifically, we assume that in agent A’s mind, spot prices 

evolve according to 

S-IR = (1 − b@)[S- + c@κ-IR + T-IR
	 ] + b@[S- + e@(S-fR − S-) + T-IR

	 ]  (6a) 

in which	b@ ∈ [0,1), c@, ∈ [0,1], and e@ > 0. 

The specification in (6a) consists of two terms or signals. Regarding the first term, the quantity in 

the square brackets, S- + c@κ-IR + T-IR
	 , represents the fundamental evolution of the spot price as 

perceived by investor A; we call this the “fundamental value signal”. As mentioned above, while the 

value of S- and the distribution of T-IR
	  are public information, the random term κ-IR is not since it 

depends on the private information of each investor type. Specifically, for an investor with perfect 

information about future market conditions the “coefficient of precision”, c@, is equal to 1; 

equivalently, the less informed an investor is the closer  c@ is to zero.  

Regarding the second term, the quantity in the square brackets,	S- + e@(S-fR − S-) + T-IR
	 , 

represents the contrarian evolution of the spot price as perceived by investor A; we call this the 
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“contrarian value signal”. This indicates that spot prices will fall if they have recently risen and vice 

versa. The coefficient e@  measures the “degree of gambler’s fallacy” or, equivalently, the “degree of 

contrarian beliefs” of investor A (Shefrin, 2000); thus, for a totally rational investor e@ = 0. Overall, for 

investor A, the evolution of the spot price variable is given by a weighted average of these two signals; 

we call the weight coefficient b@  “degree of wavering”. Equivalently, (1 − b@) quantifies the degree of 

confidence that investor A has about his private information.   

We assume that physical hedgers are both perfectly informed and totally rational; thus, they only 

trust the fundamental value signal which they receive with perfect precision, so we set cj = ck = 1, 

ej = ek = 0, and bj = bk = 0. In contrast, speculators believe that spot price shocks tend to cancel 

out each other and spot rates tend to revert rapidly to their level before the last realised shock; that 

is, a price shock at ! is followed by one of the opposite sign at ! + 1. Therefore, speculators are both 

less than perfectly informed and irrational, that is,	c= ∈ [0,1), e= > 0, and b= ∈ (0,1) and thus they 

waver between the two signals. The assumption regarding asymmetric and imperfect information can 

be justified by the fact that traditional players operate also in the physical shipping market and have 

been doing so potentially for a long period; therefore, they are more experienced and/or better 

informed than speculators since they have “inside” information regarding physical market conditions. 

Hence, they are expected to form “more accurate” forecasts of future spot market conditions than 

the latter.14 However, it is important to note that the assumption of which group – or combination of 

groups – is the least sophisticated does not matter as the bias in FFA rates depends on the aggregate 

views of the individuals or, equivalently, the average market view. In other words, it does not matter 

who is irrational as long as the aggregate view is irrational. 

The speculator-specific parameters c=,	e=, and	b= characterise completely the information 

structure of this model. When c= = 1 and either e= or b= equals zero, all agents are totally rational 

and have perfect and symmetric information about the economy. We define this case as the 

benchmark “rational” economy of the model,	L. When c= < cj = ck = 1, information is both 

imperfect and asymmetric, irrespective of e= and b= (Wang, 1993). When e=, b= > 0, then, on 

average, aggregate investors’ expectations in the market are formed in an irrational manner. In 

concise form, equation (6a) can be written as: 

                                                             
14 We assume that speculators are less sophisticated traders in the sense that they are less informed and follow 
contrarian strategies compared to physical market participants. Although this assumption is in line with the 
structure and composition of participants in the shipping industry, one might argue that in practice the opposite 
is true since non-commercial investors, such as hedge funds, may use advanced analytics that are not available 
to traditional players who are more conservative. In fact, it may be the case that shipowners and/or cargo 
owners are the least sophisticated players. In support of this argument, Kang et (2018) suggest that commercial 
hedgers may hedge based also on their market views and thus, their position may also include a speculative 
component. Namely, their empirical results suggest that in many cases commercials trade as contrarians.  
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S-IR = S- + (1 − b@)c@κ-IR + b@e@(S-fR − S-) + T-IR
	   (6a′) 

 

Incorporating in equation (6a′) the expectation and variance operators, conditional on both public 

information available at time ! and the specific agent’s private information and beliefs, we obtain 

Ε-
@ [S-IR] = S- + (1 − b@)c@κ-IR + b@e@(S-fR − S-) (6b) 

 

and  

Var-
@[S-IR] = Var-

	 [S-IR] = Y]
M. (6c) 

 

Therefore, while the expectation of the future spot price depends on both the agent-specific 

information and beliefs, the perceived variance is equal to the variance of the random cash flow shock 

which, in turn, is common knowledge. 

The timeline of the model is as follows. At each !, T-
	  is realised and S- is observed by the entire 

investor population. In addition, S-IR
	  is also realised, however, it is not observed with the same 

precision by each investor type. Accordingly, agents determine their optimal time ! demands for FFA 

contracts with the aim of maximising their respective mean-variance objective functions. First, for 

each ship-owner this corresponds to  

  
max
Br
s
Ε-
j[P-IRt-IR + ℎ-

j(P-IR − v-)] −
j̀

2
Var-[P-IRt-IR + ℎ-

j(P-IR − v-)], 

 

(7a) 

 

where t-IR are his time ! + 1 holdings of the physical asset (i.e. ship-owner’s fleet capacity) while ℎ-
j 

and	v-  are his time ! demand for and the price of the FFA contract, respectively. Following Gorton et 

al (2012) and Hong and Yogo (2012), we assume that ship-owners at time ! know with certainty the 

amount of shipping services they will sell at time ! + 1, t-IR, which is plausible for large shipping 

companies. The optimisation yields 

 
ℎ-
j =

Ε-
j[P-IR − v-]

j̀Var-[P-IR]
− t-IR. 

 

(7b) 

 

Second, each charterer maximises    

 
max
Br
x
Ε-
k[−P-IRy-IR + ℎ-

k(P-IR − v-)] −
k̀

2
Var-[−P-IRy-IR + ℎ-

k(P-IR − v-)], 

 

(8a) 

 

where y-IR is his time ! + 1 demand for shipping services while ℎ-
k is his time ! demand for the FFA 

contract. As in the case of shipowners, we assume that charterers at time ! know with certainty the 

amount of shipping services they will demand at time ! + 1. The optimisation yields 
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 ℎ-
k =

Ε-
k[P-IR − v-]

k̀Var{[P-IR]
+ y-IR. 

 

(8b) 

 

Third, speculator’s maximisation problem is   

 
max
Br
|
Ε-
=[ℎ-

=(P-IR − v-)] −
=̀

2
Var-[ℎ-

=(P-IR − v-)], 

 

(9a) 

 

where ℎ-
= is his time ! demand for the FFA contract. This yields 

 

 ℎ-
= =

Ε-
=[P-IR − v-]

=̀Var{[P-IR]
. 

 

(9b) 

 

In equilibrium, FFA contracts are in zero net supply. Therefore, the market clearing condition at 

each ! requires 

																ℎ-
j + ℎ-

k + ℎ-
= = 0. (10) 

 

Substituting equations (7b), (8b), and (9b) in (10), the equilibrium FFA rate at !, v-
∗, is endogenously 

determined and equals 

 v-
∗ = k̀ =̀Ε-

j[P-IR]+ j̀ =̀Ε-
k[P-IR]+ j̀ k̀Ε-

=[P-IR]

k̀ =̀ + j̀ =̀+ j̀ k̀
− j̀ k̀ =̀

k̀ =̀ + j̀ =̀+ j̀ k̀
Y]
M(t-IR − y-IR). 

 

(11) 

 

Equation (11) indicates that the FFA rate consists of two terms. The first one is a weighted average 

of market expectations regarding the future spot price, with the weights being determined by the 

agent-specific coefficients of risk aversion. If all agents in the market held symmetric, perfect 

information and formed rational expectations this term would reduce to Ε-
�[P-IR]. The second term 

measures the balance between supply and demand for freight services and thus quantifies the 

“hedging pressure” bias in the FFA rate, the direction of which depends only on the sign of the term 

in brackets.  

In structural models for commodity markets, hedging pressure is determined endogenously by 

incorporating the theory of storage and modelling explicitly the level of inventories. Accordingly, 

inventories, hedging pressure, and spot rates are interdependent. In the case of shipping, however, 

the underlying asset is non-storable; thus, hedging pressure cannot be determined endogenously 

through this mechanism. Therefore, to account for time-varying hedging pressure, we need to impose 

an assumption, based on plausible economic arguments, that relates it explicitly to the exogenously 

determined spot rate process. 
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For conciseness, in the following we define the hedging pressure variable as t- − y- = ÄÅ-. When 

ÄÅ- equals zero the two positions exactly offset each other; on the other hand, when ÄÅ- is positive, 

the physical market position of short hedgers (ship-owners) exceeds the one of long hedgers 

(charterers) and vice versa. In conclusion, in rational expectations symmetric information models, 

when “hedging pressure” is equal to zero, hedgers’ positions in the derivative market exactly offset 

each other and the derivative contract’s price is an unbiased predictor of the future spot price. 

The innovative idea proposed by this framework, however, is that even in the absence of hedging 

pressure, the FFA price can be a biased predictor of future spot rates due to the heterogeneity of 

beliefs among the investor population. Thus, in the following, we aim to provide the most plausible 

explanation for the existence of biases by simulating the “rational” and “irrational” versions of our 

framework and examining which one reproduces more sufficiently the observed regularities. 

Without loss of generality and for expositional simplicity we assume that j̀ = k̀ = =̀ = `. 

Accordingly, equation (11) is simplified to 

 v-
∗ =

1

3
{Ε-

j[P-IR] + Ε-
k[P-IR] + Ε-

=[P-IR]} −
`Y]

M

3
ÄÅ-IR. 

 

(12) 

 

Plugging equation (6b) in (12) for A = 6, 5, ( subject to c6 = c5 = 1, e6 = e5 = 0, and b6 = b5 = 0 

yields 

 v-
∗ = S- +

2 + (1 − b=)c=
3

κ-IR +
b=e=
3

(S-fR − S-) −
`Y]

M

3
ÄÅ-IR. (13) 

 

It is also useful to examine the benchmark rational economy,	L, in which the market solely consists 

of fully rational agents who know precisely the actual stochastic process that governs the evolution of 

spot prices. In this case, the expected spot price at ! + 1 and the time ! FFA rate, v-
�,ÑÖ, are given by 

Ε-
�[P-IR] = S- + κ-IR, (14) 

 

and 

 v-
�,ÑÖ = S- + κ-IR −

`Y]
M

3
ÄÅ-IR, 

 

 

(15) 

 

respectively.  

Comparing (13) to (15), we observe that v-
∗ = v-

�,ÑÖ if and only if S-fR = S-  and κ!+1 = 0; that 

is, if there is no random shock,	H-
	 , between ! − 1 and ! and κ-IR = 0 and there is no private 

information/signal about future spot market conditions. Whenever a shock perturbs the equilibrium, 
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however, the futures price deviates from its rational equilibrium counterfactual. The sign and 

magnitude of this deviation depend on the values of the shocks S- − S-fR = H-
	  and κ-IR and the 

speculator-specific coefficients. 

The realised bias in the FFA rate at	! + 1 in the heterogeneous-agent economy can be quantified 

by subtracting equation (5) from (13): 

 v-
∗ − P-IR = Ü

(1 − b=)c= − 1

3
κ-IR +

b=e=
3

(S-fR − S-)á −
`Y]

M

3
ÄÅ-IR − T-IR

	 . 

 

(16) 

 

The latter bias can be decomposed into three terms. We define the first term in brackets as the 

“heterogeneous expectations bias”; this arises if and only if there is asymmetry of information and/or 

existence of the “gambler’s fallacy” in the market. The second term is the familiar “hedging pressure 

bias”; this arises if and only if ÄÅ-IR ≠ 0, that is, if t-IR ≠ y-IR. The third one is the “random bias”; 

this arises if and only if the error term of the cash flow process, T-IR
	 , is different than zero.  

Similarly, using equations (14), (15), and (5), in the absence of asymmetric information and 

gambler’s fallacy, the rationally expected and the realised bias in the FFA rate at ! + 1  are 

 v-
�,ÑÖ − Ε-

�[P-IR] = −
`Y]

M

3
ÄÅ-IR 

 

(17a) 

 

and 

 v-
�,ÑÖ − P-IR = −

`Y]
M

3
ÄÅ-IR − T-IR

	 , 

 

(17b) 

 

respectively. Moreover, in the absence of hedging pressure, this becomes 

 v-
� = P- + κ-IR, (18) 

    

and, in turn, the rationally expected risk premium at ! is 

 
v-
� − Ε-

�[P-IR] = 0, 

 

(19) 

 
while the realised risk premium at ! + 1 is given by 

 
v-
� − P-IR = −T-IR

	  

 

(20) 

 

Therefore, even if there is no hedging pressure and all investors are rational and have access to the 

same information, the realised risk premium can be different than the rationally expected one, which 
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in this case will always be equal to zero. Specifically, from equation (20), the realised risk premium 

depends on the realisation and the distributional properties of the error term. Thus, since T-IR ∼

A. A. W. X(0, YZM) over time, the average realised risk premium would be statistically equal to zero and, 

furthermore, there would be neither statistically significant momentum nor predictability of risk 

premia in general – as documented in Section III.  

In conclusion, both the fundamental structure of the economy, as quantified by hedging pressure, 

and market participants’ beliefs, as quantified by the speculator-specific coefficients, can affect the 

realised risk premia. In order to illustrate the effect of these two potential sources of bias on risk 

premia we calibrate our model for several alternative specifications and, accordingly, provide a 

comparison between the obtained results. Note that the simulation exercise focuses on the Panamax 

BPI 4TC contract since the evidence of predictability in this case is more significant. 

A final note is that we could have modelled the “gambler’s fallacy” bias through a straightforward 

contrarian investment strategy indicating to go long (short) on the current FFA contract when the 

realised risk premium is positive (negative), that is, when the short (long) position on the expired FFA 

contract realises a profit. This would result in a speculator demand function of the form 

 ℎ-
= = (1 − b=)

S- + (1 − b@)c@κ-IR − v-
`Y]

M + b=e=
P- − v-fR
`Y]

M . 

 

(21) 

 

From a modelling point of view, however, both mechanisms yield the same result; that is a contrarian 

investment behaviour on behalf of speculators which, in turn, would create the observed form of 

predictability and momentum in the market. 

5.2 Calibration of the Model 

We calibrate the economy described above for several different specifications of the model. For 

each scenario, we generate 10,000 sample paths using equation (5) each one corresponding to 120 

monthly periods. If somewhere in a simulation either the spot rate variable or the FFA rate attain a 

negative value, we discard that path. Finally, we estimate the average of each statistic and regression 

estimate under consideration across all valid paths and we compare it to its empirical value (Barberis 

et al, 2015). In particular, we are interested in (i) the predictive power of the FFA basis regarding future 

spot growth and future risk premia, (ii) the predictive power of lagged spot growth and lagged risk 

premia regarding future risk premia, (iii) the mean of the FFA log basis and its p-value, (iv) the mean 

of the FFA log risk premium and its p-value, and (v) the correlation between spot growth and realised 

risk premia. The initial parameters used in the simulations are presented in Table IV and are described 

in greater detail below, for each simulation experiment. 
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 We begin by examining our model’s predictions in the simplest case, that is, when all agents are 

perfectly informed and totally rational and, furthermore, there is no hedging pressure in the FFA 

market. The FFA rate and the realised risk premium in this scenario are given by (18) and (20), 

respectively and we only need to calibrate parameters Pâ,	Y[M, and Y]
M. We set Pâ 	= 20; that is, the 

initial spot rate is assigned the value of the mean of the spot rate variable in our sample (in thousand 

US dollars). We set the standard deviations of the private information,	Y[M, and the unpredictable 

random shock¸	Y]
M, both equal to 1 to reduce the number of discarded paths but at the same time 

ensure a sufficient degree of spot price volatility. Note that, in this case, the values of Pâ,	Y[M, and 	Y]
M 

per se have no direct impact on the estimation and the results remain qualitatively the same for 

different plausible values of the parameters. 

 As expected, the simulation results (Scenario 1 in Table V) suggest that there is no predictability in 

risk premia and, thus, no momentum effect in prices; similarly, the mean basis and mean realised risk 

premium are both zero which contrasts sharply with the actual data presented in the last column of 

the same Table. In line with equation 20, the reason is that the rationally expected risk premium is 

zero in this case. The only two statistics qualitatively matched are the negative correlation between 

spot growth and risk premia and the positive predictability of future spot growth by the current basis. 

This can be explained by the fact that the basis is an unbiased and, thus, a very accurate predictor of 

future spot rates; namely, the basis is perfectly positively correlated with the rationally expected 

future spot rates. Accordingly, an unexpected random shock in spot rates,	T-IR
	 , will result in a shock 

of the opposite sign in the risk premium (equation [20]) which induces negative correlation between 

these two variables. 

The second scenario describes an economy where all agents are perfectly informed and totally 

rational, however, there exists constant hedging pressure in the FFA market. The FFA rate and the 

realised risk premium are given by (15) and (17b), respectively and	ÄÅâ = ÄÅ ≠ 0. Following 

Barberis et al (2015 and 2018), we set the coefficient of risk aversion,	`, equal to 0.1 while for the 

constant hedging pressure we select a value that ensures that the simulated average realised risk 

premium will be close to the observed one (Table I). We thus set ÄÅâ = ÄÅ = −20, that is, we assume 

that long hedgers’ (charterers’) position in the physical market constantly exceeds that of short 

hedgers (ship-owners).  

As in the previous case, the simulation results (Scenario 2 of Table V) suggest that this specification 

is not consistent with risk premia predictability or a momentum effect. This is expected since 

(negative) constant hedging pressure implies a rationally expected (positive) constant risk premium 

and not a time-varying one (since ÄÅ!+1 = −20 in equation 17a). In turn, this results in both a positive 

mean basis and a positive mean realised risk premium (the latter can be shown by taking unconditional 
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expectations of both sides of equation [17b], for ÄÅ = −20). The positive predictability of future spot 

growth by the current basis can also be explained as the bias in the FFA rate is constant and, thus, 

basis is perfectly positively correlated with the rationally expected future spot rates. Following the 

same line of reasoning, the realised risk premium is negatively correlated with the realised spot 

growth.  

In the third scenario, all agents are perfectly informed and totally rational, as before, but there 

exists time-varying hedging pressure. As analysed above, we cannot apply the “theory of storage” to 

model explicitly the hedging pressure variable and its interdependence with the spot rate process. 

Furthermore, we do not have data on the hedging pressure variable for freight to empirically examine 

its relationship with spot rates.  As such, to account for time-varying hedging pressure, we assume a 

stochastic process based on plausible economic arguments, that relates it to the exogenously 

determined spot rate process. Since hedging pressure is defined as the difference between demand 

for short hedging positions, which is related to fleet supply, and demand for long hedging positions, 

which is related to demand for seaborne trade, one should expect the former and the latter to be 

negatively and positively related to conditions in the freight market, respectively; specifically, t- −

y- = ÄÅ-  should be negatively related to P- . Hence, the evolution of hedging pressure can be 

indirectly modelled through the evolution of the exogenous spot rate process. 

Following the usual convention in the shipping literature (Kalouptsidi, 2014; Greenwood and 

Hanson, 2015), we assume that the spot rate is determined through a linear inverse demand function: 

 
P- = F"- − ;v-, (22) 

 

where v- and "-  correspond to the time ! available fleet capacity and demand for seaborne services, 

respectively. The positive coefficients F and ; are positively and negatively related to the elasticity of 

the demand curve, respectively.  

 Accordingly, we relate hedging pressure to equation (22) in a straightforward manner. Specifically, 

recall that at !, market participants determine their hedging demands related to ! + 1; this 

corresponds to t-IR for ship-owners and y-IR for charterers. For simplicity, we assume that these 

variables are equal to the rationally expected values of	v-  and "- , respectively: 

 ä
t-IR = Ε-

�[F-IR]
y-IR = Ε-

�[T-IR]
, 

 

(23) 

 

Importantly, this assumption can be directly related to the private signal about the spot rate, κ-IR, 

realised at time ! that market participants receive with perfect precision. Furthermore, since fleet 
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supply in the short run is inelastic, we set v- and, in turn, t- equal to a constant, t.15 This implies that 

ship-owners have a constant hedging demand for FFA contracts. In turn, the evolution of charterers’ 

hedging demand, y- , can be quantified through equations 5, 22, and 23: 

 
y-IR =

;

F
t +

P- + S-IR
F

. 

 

(24) 

 

Accordingly, the hedging pressure variable corresponding to ! + 1 is given by 

 

 
ÄÅ-IR = t-IR − y-IR = ç1 −

;

F
ét −

P- + S-IR
F

. 

 

(25) 

 

Thus, it is a decreasing function of both current market conditions and the signal about future market 

conditions. Plugging in (15) equation (25) yields the expression for the rational expectations, time-

varying hedging pressure FFA rate: 
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`Y]
M

3F
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M
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;

F
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(26) 

 

Finally, using equation (14), we calculate the rationally expected bias in the FFA rate as 
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(27) 

 

while the realised one equals 
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�,ÑÖ − S-IR =

`Y]
M

3F
(S- + κ-IR) −

`Y]
M

3
ç1 −

;

F
ét − T-IR

	 . 

 

 

(28) 

 

Equations 26, 27, and 28 suggest that the FFA rate, the rationally expected bias, and the realised bias 

are all increasing functions of both current market conditions and the signal about future market 

conditions. 

We calibrate parameters F, ;,	yâ, and t in the following manner. Equations 22 and 23 imply 

that	Pâ = F"â − ;t
	
⇒ Pâ = Fyâ − ;t, while from the constant hedging pressure case we have 

ÄÅ = ÄÅâ = t −	yâ = −20. Thus, assuming	yâ = 100 yields t = 80. Accordingly, since Pâ = 20, 

we can calibrate F and ; from 20 = 100F − 80;; thus, assuming ; = 0.1 implies F = 0.28. To 

                                                             
15 In principle, ship-owners can affect short-run elasticity by slow steaming and reducing available utilisation. 
While this simplifying assumption can be easily relaxed, it does not have any qualitative or quantitative 
implication on the model’s predictions and results.   
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illustrate how spot rates and hedging pressure are determined and interrelated, assume that at ! = 0 

the signal κR equals 1. Hence, the rationally expected spot price at ! = 1 is equal to 21 and the long 

hedging demand related to ! = 1, yR, equals 103.5714. In turn, the corresponding hedging pressure 

variable,	ÄÅR, becomes -23.5714, that is, it decreases by 3.5714. 

The simulation results (Scenario 3 of Table V) suggest that while this specification provides a better 

match for the observed regularities, it cannot simultaneously match two of the most important 

stylised features: the momentum effect and the negative predictability of risk premia by lagged spot 

market conditions since the coefficients in the respective regressions are statistically insignificant. 

Note than even if we were to recalibrate the coefficients – namely, the variance of the random 

shock,	Y]
M – to obtain significant slope coefficients in the lagged risk premium regression, there would 

still be no negative predictability of future risk premia by past market conditions.  

This can be easily justified by examining equation (28) at ! + 1: 

v-IR
�,ÑÖ − P-IM =

`Y]
M

3F
(S-IR + κ-IM) −

`Y]
M

3
ç1 −

;

F
ét − T-IM

	  

=
`Y]

M

3F
(S- + ∆S-IR + κ-IM) −

`Y]
M

3
ç1 −

;

F
ét−T-IM

	 , 

where by ∆S-IR = S-IR − S- we denote the change in the spot rate. Therefore, we observe that the 

realised risk premium is an increasing function of lagged spot rate changes. In turn, this explains the 

positive predictability of risk premia by lagged spot growth in this scenario.  

In a similar manner, the positive sign in the lagged risk premium regression can be explained if we 

restate equation (28) at ! + 1 as 

v-IR
�,ÑÖ − P-IM = \v-

�,ÑÖ − P-IR^ +
`Y]

M

3F
κ-IM + è1 +

`Y]
M

3F
ê T-IR

	 − T-IM
	 . 

The remaining results under this scenario can be explained in a similar way. 

The fourth case corresponds to the economy with asymmetric information and irrationality of 

beliefs. Furthermore, we assume that there is constant hedging pressure in the market as in scenario 

2.16 Therefore, the FFA rate and the realised risk premium are given by equations 13 and 16 , 

respectively (setting ÄÅâ = ÄÅ = −20). Accordingly, we examine several parameterisations for the 

speculator specific parameters, {	b=, c=,e=}.  

In the following, we present and discuss the results for the set {0.9,0.5, 1}; namely, we allow 

speculators to “worry” about the “fundamental value signal” but weigh more heavily the “contrarian 

                                                             
16 Note that the predictive regression results remain the same if we set hedging pressure equal to zero. 
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value” one (Barberis et al, 2018). In addition, we assume that they receive the private value signal with 

50% precision; thus, there is asymmetry of information in the market. Finally, we set the “degree of 

gambler’s fallacy” equal to 1, implying that speculators believe that the last spot price shock will be 

immediately cancelled out.  

The simulation results (Scenario 4 of Table V) suggest that this specification can match 

simultaneously almost all stylized facts. Most importantly, we observe that it can account not only for 

the momentum effect – the lagged risk premium coefficient being positive and statistically significant 

– but also for the negative predictability of future risk premia by lagged spot growth, since the lagged 

spot growth coefficient is negative and statistically significant.  

The latter feature can be explained by examining equation 16 at ! + 1: 
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3
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(29) 

 

Specifically, the realised risk premium is a decreasing function of the one-period lagged spot rate 

changes,	∆S-IR = S-IR − S-. Furthermore, equation 16 at ! can be re-expressed as 
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∗ − P-IR − Ü
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3
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(30) 

 

Plugging (30) in (29), we observe that the realised risk premium at ! + 1 is an increasing function of 

the realised risk premium at !.  

The only stylised facts poorly matched in this case are the ones related to the variance 

decomposition (Scenario 4 in Panel B of Table V); essentially, none of the variation in basis is attributed 

to time-varying risk premia in this case, because the “contrarian value signal” significantly reduces the 

volatility of realised risk premia. However, if we increase either the variance of the unexpected shock, 

Y]
M, or the “degree of fallacy”, we can match sufficiently well also this regularity. The former 

adjustment for Y]
M = 2.5M and	` = 0.04 is presented in Scenario 4’ in Table V. Finally, when there is 

irrationality of beliefs but information is symmetric the results are very similar to the ones above.  

The last scenario combines some features from scenaria 3 and 4; namely, it corresponds to the 

economy with asymmetric information, irrationality of beliefs, and time-varying hedging pressure. In 

line with scenario 4, we present and discuss the results for the speculator-parameterisation 

{0.9,0.5, 1}. In this case, the equilibrium FFA rate is obtained by plugging the expression for hedging 

pressure in (25) in equation (13): 
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Accordingly, the rationally expected bias and the realised one are given by 
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and 
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(33) 

 

respectively. The corresponding simulation results (Scenario 5 of Table V) suggest that this 

specification can simultaneously match all observed regularities in a sufficient manner. This result was 

expected since this scenario combines the features of the previous two economies.17  

 In conclusion, both the theoretical predictions and the simulation results of the proposed model 

suggest that in order to simultaneously match all observed regularities sufficiently well one has to 

depart from the rational benchmark of the economy since the time-varying hedging pressure 

dimension alone cannot capture the negative predictability of risk premia by lagged market 

conditions. While the predictions are not particularly sensitive to the degree of information 

asymmetry this is not true for the distorted expectations feature; namely, a fraction of investors must 

suffer from the “gambler’s fallacy” or, equivalently, follow a contrarian investment strategy. From a 

market composition perspective, our results suggest that the average FFA investor should hold “near-

rational” but slightly contrarian beliefs to match the observed risk premia predictability. 

6 CONCLUSION 

This article examines the formation of forward prices in the dry bulk shipping industry. We illustrate 

that the bulk of volatility in the FFA basis can be attributed to expectations about future physical 

market conditions rather than expectations about future risk premia, as is suggested in the commodity 

                                                             
17 One may obtain values closer to the actual moments either through finer adjustment of the set of parameters 
or, by using exact closed-form expressions for the moments of interest. Nevertheless, we believe that the results 
and the realised patterns will be qualitatively similar. 
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finance literature. Our results validate and extend the economic arguments presented in the seminal 

commodity market papers that examined the forecasting power of derivative contracts. Namely, 

predictability of spot rates is an increasing function of the commodity cost of storage. In shipping, 

where the commodity is a non-storable service and the industry is subject to significant supply and 

demand shocks, we evidence predictable variation of spot rates and, in turn, substantial forecasting 

ability on behalf of the FFA rates. 

Despite this finding, though, there appears to be a bias in the FFA rates in the form of both a strong 

momentum effect and significant predictability of risk premia by lagged price-based signals and 

economic variables that reflect recent changes in the physical market conditions. Importantly, the 

existence of statistically significant predictability of future risk premia contradicts the unbiased 

expectations hypothesis and, in turn, the efficiency of the FFA market. We further examine the validity 

of the unbiasedness hypothesis by performing three frequently incorporated econometric tests. The 

obtained results unequivocally suggest that there exists a bias in the formation of the FFA rates in both 

contracts. 

To capture these stylised features we develop a dynamic behavioural asset pricing framework that 

can explain both the existence of momentum and the documented predictability of future risk premia. 

The proposed framework departs from the “theory of storage” and the “cost-of-carry” model and 

incorporates both the “hedging pressure” feature – the rational dimension – and a behavioural finance 

explanation – the irrational dimension. Accordingly, we show that the average FFA investor should 

hold “near-rational” but slightly contrarian beliefs to match the observed risk premia predictability in 

the market.  

REFERENCES 

Acharya V.V., Lochstoer, L.A., & Ramadorai, T. 2013. Limits to arbitrage and hedging: Evidence from commodity 
markets. Journal of Financial Economics 109, 441-465. doi: 10.1016/j.jfineco.2013.03.003 
Akaike, H. 1973. Information theory and extension of the maximum likelihood principle, in: Petrov, B., & Csake, 
F. (eds.), Second international symposium on information theory. Budapest, HU: Akademiai Kiado. 
Alizadeh, A.H., & Nomikos, N.K. 2009. Shipping Derivatives and Risk Management. London, UK: Palgrave 
Macmillan.  
Barberis, N., Greenwood, R., Lawrence, J., & Shleifer, A. 2015. X-CAPM: An extrapolative capital asset pricing 
model. Journal of Financial Economics 115, 1-24. doi: 10.1016/j.physa.2018.06.004 
Barberis, N., Greenwood, R., Lawrence, J., & Shleifer, A. 2018. Extrapolation and Bubbles. Journal of Financial 
Economics 129, 203-227. doi: 10.1016/j.jfineco.2018.04.007 
Bredin, D., Potì, V., & Salvador, E. 2018. Commodity Pricing: Evidence from Rational and Behavioral Models, 
Unpublished working paper. University College Dublin and Universitat Jaume I. 
Chen, L., Da, Z., & Priestley, R. 2012. Dividend smoothing and predictability. Management Science 58, 1834–
1855. doi: 10.1287/mnsc.1120.1528 
Cochrane, J.H. 2011. Presidential address: Discount rates. Journal of Finance 66(4), 1046-1108. doi: 
10.1111/j.1540-6261.2011.01671.x 
Ekeland, I., Lautier, D., & Villeneuve, B. 2018. Speculation in commodity futures markets: A simple equilibrium 
model. Economic Theory, Forthcoming. 



FFA Rates in Dry Bulk Shipping   31 
 

Ellen, S.T., & Zwinkels, R.C.J. 2010. Oil price dynamics: A behavioural finance approach with heterogeneous-
agents. Energy Economics 32, 1427-1434. doi: 10.1016/j.eneco.2010.03.003 
Engle, R.F., & Granger, C.W. 1987. Cointegration and error correction: Representation, estimation, and testing. 
Econometrica 55, 251-276. 
Fama, E.F. 1970. Efficient capital markets: A review of theory and empirical work. Journal of Finance 25, 383-
417. doi: 10.1111/j.1540-6261.1970.tb00518.x  
Fama, E.F. 1984a. Forward and spot exchange rates. Journal of Monetary Economics 14, 319-338. doi: 
10.1016/0304-3932(84)90046-1 
Fama, E.F. 1984b. The information in the term structure. Journal of Financial Economics 13, 509-528. doi: 
10.1016/0304-3932(84)90046-1  
Fama, E.F., & French, K.R. 1987. Commodity Futures Prices: Some Evidence on Forecast Power, Premiums, and 
the Theory of Storage. The Journal of Business 60(1), 55-73. 
Fama, E.F., & French K.R. 1988. Permanent and temporary components of stock prices. The Journal of Political 
Economy 96, 246–273. doi: 10.1086/261535 
Fama, E.F. 1991. Efficient Capital Markets: II. The Journal of Finance 46(5), 1575-1617. doi: 10.1111/j.1540-
6261.1991.tb04636.x  
French, K. R. 1986. Detecting Spot Price Forecasts in Futures Prices. The Journal of Business 59(2, Part 2), S39-
S54. 
Gorton, G.B., Hayashi, F., & Rouwenhorst, G.K. 2012. The Fundamentals of Commodity Futures Returns. Review 
of Finance 17, 35-105. doi: 10.1093/rof/rfs019 
Greenwood, R., & Hanson, S.G. 2015. Waves in ship prices and investment. Quarterly Journal of Economics 130, 
44-109. doi: 10.1093/qje/qju035 
Greenwood, R., & Shleifer, A. 2014. Expectations of returns and expected returns. Review of Financial Studies 
27, 714-746. doi: 10.1093/rfs/hht082 
Hazuka, T.B. 1984. Consumption betas and backwardation in commodity markets. Journal of Finance 39, 647-
655. doi: 10.1111/j.1540-6261.1984.tb03653.x  
Hicks, J. R. 1939. Value and Capital. Cambridge, UK: Oxford University Press. 
Hong, H., & Yogo, M. 2012. What does futures market interest tell us about the macroeconomy and asset prices? 
Journal of Financial Economics 105, 473-490. doi: 10.1016/j.jfineco.2012.04.005 
Johansen, S. 1988. Statistical analysis of cointegrating vectors. Journal of Economic Dynamics and Control 12, 
231-254. 
Johansen, S. 1991. Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive 
models. Econometrica 59, 1551-1580. Doi: 10.2307/2938278  
Kalouptsidi, M. 2014. Time to build and fluctuations in bulk shipping. American Economic Review 104(2), 564-
608. doi: 10.1257/aer.104.2.564 
Kang, W., Rouwenhorst, K.G., & Tang, K. 2018. A Tale of Two Premiums: The Role of Hedgers and Speculators in 
Commodity Futures Markets. Unpublished working paper, Shanghai University of Finance and Economics, Yale 
School of Management, and Tsinghua University. 
Kavussanos, M.G., & Nomikos N.K. 1999. The Forward Pricing Function of the Shipping Freight Futures Market. 
The Journal of Futures Markets 19(3), 353-376. doi: 10.1002/(SICI)1096-9934(199905)19:3<353::AID-
FUT6>3.0.CO;2-6  
Keynes, J. M. 1930. Treatise on Money. New York, NY: Macmilan. 
Killian, L. 2009. Not all oil price shocks are alike: Disentangling demand and supply shocks in the crude oil market. 
American Economic Review 99, 1053–1069. doi: 10.1257/aer.99.3.1053  
Newey, W.K., & West, K.D. 1987. A simple, positive-definite, heteroskedasticity and autocorrelation consistent 
covariance matrix. Econometrica 55, 703–708. 
Nomikos, N.K. Moutzouris, I.K. 2018a. The earnings yield and predictability of earnings in the dry bulk shipping 
industry. Unpublished working paper, Cass Business School. 
Nomikos, N.K., & Moutzouris, I.K. 2018b. Extrapolative Expectations and the Second-Hand market for Ships. 
Unpublished working paper, Cass Business School. 
Papapostolou, N.C., Nomikos, N.K., Pouliasis, P.K., & Kyriakoy, I. 2014. Investor sentiment for real assets: The 
case of dry bulk shipping market. Review of Finance 18, 1507-1539. doi: 10.1093/rof/rft037  
Rangvid, J., Schmeling, M., & Schrimpf, A. 2014. Dividend predictability around the world. Journal of Financial 
and Quantitative Analysis 49, 1255-1277. doi: 10.1017/S0022109014000477  
Shefrin, H. 2000. Beyond Greed and Fear: Understanding Behavioural Finance and the Psychology of Investing. 
Boston, MA: Harvard Business School Press. 
Stopford, M. 2009. Maritime Economics (3rd ed.). New York: Routledge. 



32   
 

Szymanowska, M., De Roon, F., Nijman, T., & Van Den Goorbergh, R. 2014. An Anatomy of Commodity Futures 
Risk Premia. The Journal of Finance 69(1), 453-482. doi: 10.1111/jofi.12096  
Tversky, A., & Kahneman D. 1971. Belief in the Law of Small Numbers. Psychological Bulletin 76, 105-110. doi: 
10.1037/h0031322 
Vives, X. 2008. Information and Learning in Markets: The Impact of Market Microstructure. Princeton, NJ: 
Princeton University Press.  



FFA Rates in Dry Bulk Shipping   33 
 

FIGURES AND TABLES 

 
 

 

 
 

  

Figure 1: Variables of Interest. 

Panel A plots the evolution of spot, settlement, and FFA rates from January 2007 to August 2016, for 
the 1-month BPI 4TC contract; figures are in thousand US$/day. The spot and settlement rates are the 
prices observed at the issuance and maturity of the corresponding FFA 1-month contract, respectively. 
Panel B plots the evolution of basis, spot growth, and risk premium for the 1-month BPI 4TC contract. 
All variables correspond to log differences. Note that spot rates, FFA rates, and the basis are reported 
at time ! while settlement rates, spot growth, risk premia at time ! + 1. 
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Panel A: FFA, Spot, and Settlement Rates. 

 

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

Ja
n-

07

Ju
n-

07

N
ov

-0
7

A
pr

-0
8

Se
p-

08

Fe
b-

09

Ju
l-0

9

D
ec

-0
9

M
ay

-1
0

O
ct

-1
0

M
ar

-1
1

A
ug

-1
1

Ja
n-

12

Ju
n-

12

N
ov

-1
2

A
pr

-1
3

Se
p-

13

Fe
b-

14

Ju
l-1

4

D
ec

-1
4

M
ay

-1
5

O
ct

-1
5

M
ar

-1
6

A
ug

-1
6

Lo
g 

Sc
al

e

Growth Premium Basis

Panel B: Basis, Spot Growth, and Risk Premium. 
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Figure 2: Risk Premia, Lagged Risk Premia, and Lagged Spot Growth. 

This figure plots the evolution of risk premia, lagged risk premia, and lagged spot growth, for the 1-

month BPI 4TC contract. All variables are in log differences. The sample runs from February 2007 to 

August 2016. Lagged risk premia and lagged spot growth correspond to the first lags of the 1-month 

risk premium and 1-month spot growth, respectively. Spot growth is defined using the corresponding 

daily spot rate at maturity. 
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Table I: Descriptive statistics for the variables of interest. 

Statistics 
 BCI 4TC  BPI 4TC 
 1-month 2-month  1-month 2-month 

î  116 115  116 115 
Mean of $ − (  9.02% 12.90%  4.83% 8.88% 
! of $ − (  4.07 3.58  4.07 4.20 
Annualised Mean of 4  79.63% 76.58%  31.98% 49.95% 
!ïñ of 4  2.22 1.43  1.75 1.25 
SD of $ − (  0.24 0.39  0.13 0.23 
SD of ò(  0.37 0.72  0.18 0.36 
SD of 4  0.32 0.60  0.16 0.35 
ô644(∆(, 4)  -0.77 -0.84  -0.72 -0.80 
cR of 4  0.21 0.48  0.32 0.60 
cM of 4  0.10 0.10  0.22 0.34 

Notes: This table presents descriptive statistics related to the FFA basis, $ − (; spot growth, ò(, and risk premium, 4, for the 

1- and 2-month Capesize BCI 4TC and Panamax BPI 4TC contracts. All variables are expressed in log differences. The sample 

runs from January 2007 to September 2016. The number of observations is denoted by î. The included statistics are: the 

mean and t-statistic of the basis; the annualised mean and t-statistic, tõú, of the risk premium, estimated using the Newey-

West (1987) HAC correction; the standard deviations of the three variables, SD; and the correlation coefficient between spot 

growth and risk premium, ô644(ò(, 4). Note that when the t-statistic indicates significance at least at the 10% level, the 

respective mean statistic appears in bold. 
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Table II: Variance Decomposition and regressions of spot growth on lagged spot growth. 

Regression  " î ; !ïñ LM 
Panel A: Capesize Sector (BCI 4TC) 

∆( on $ − (  1 116        0.80*** 6.39 0.26 

4 on $ − (  1 116 0.20 1.61 0.02 

∆( on ∆((−1)   1 115 -0.08 -0.83 0.01 

∆( on $ − (  2 115         1.04*** 7.83 0.31 

4 on $ − (  2 115 -0.04 -0.28 0.00 

∆( on ∆((−1)  2 114 -0.24 -1.31 0.01 

Panel B: Panamax Sector (BPI 4TC) 

∆( on $ − (  1 116         0.63*** 5.48 0.21 

4 on $ − (  1 116         0.37*** 3.20 0.08 

∆( on ∆((−1)   1 115 -0.06 -0.62 0.00 

∆( on $ − (  2 115         0.59*** 2.84 0.14 

4 on $ − (  2 115     0.41* 1.97 0.07 

∆( on ∆((−1)  2 114 -0.10 -0.46 0.00 

Notes: Panels A-B report results from 1- and 2-month horizon OLS regressions of future spot growth, ∆(, and risk premia, 4, 

on the current basis,	$ − (, and future spot growth, ∆(, on lagged 1-month spot growth, ∆((−1), for the Capesize BCI 4TC 

and Panamax BPI 4TC contracts, respectively. Spot growth is defined as the log of the ratio of the settlement rate to the spot 

price at the end of the previous month.  To deal with the overlapping nature of the variables, t-statistics are estimated using 

the Newey-West (1987) HAC correction. The maturity of the contract and the number of observations are denoted by " and 

î, respectively. The slope coefficient, ;, is accompanied by *, **, or *** when the absolute tõú statistic indicates significance 

at the 10%, 5% or 1% level, respectively. 
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Table III: Regressions of future risk premia on lagged risk premia and spot market indicators. 

  $(!, 1) − ((! + 1)  $(!, 2) − ((! + 2) 

Variable  î 			; !ïñ LM  " 			; 			!ïñ LM 
Panel A: Capesize Sector (BCI 4TC) 

$(! − 1,1) − ((!)  115   0.21** 2.29 0.04  114  0.32* 1.74 0.03 

$(! − 2,1) − ((! − 1)  114   0.10 1.01 0.01  113  0.19 1.20 0.01 

$(! − 3,1) − ((! − 2)  113   0.00 0.04 0.00  112 -0.25 -1.64 0.02 

$(! − ", ") − ((!)  115   0.21** 2.29 0.04  113  0.10 1.10 0.01 

((!) − ((! − 1)  115  -0.18*** -3.88 0.12  114  -0.11 -1.14 0.01 

((! − 1) − ((! − 2)  114   0.02  0.36 0.00  113  -0.09 -1.04 0.01 

((! − 2) − ((! − 3)  113  -0.03 -0.68 0.00  112   0.02 0.25 0.00 

((!) − ((! − ")  115  -0.18*** -3.88 0.12  113  -0.10 -1.60 0.02 

ùyû(!) − ùyû(! − 1)  116  -0.23* -1.95 0.03  115  -0.32 -1.34 0.02 

ùyû(! − 1) − ùyû(! − 2)  116  -0.09 -0.74 0.00  115  -0.27 -0.81 0.01 

Panel B: Panamax Sector (BPI 4TC) 

$(! − 1,1) − ((!)  115   0.32*** 3.62 0.10  114   0.72*** 2.66 0.11 

$(! − 2,1) − ((! − 1)  114   0.22** 2.36 0.05  113   0.60*** 1.92 0.08 

$(! − 3,1) − ((! − 2)  113   0.15 1.62 0.02  112   0.21 1.18 0.01 

$(! − ", ") − ((!)  115   0.32*** 3.62 0.10  113   0.34*** 3.69 0.12 

((!) − ((! − 1)  115  -0.15*** -3.06 0.08  114  -0.28 -1.40 0.06 

((! − 1) − ((! − 2)  114  -0.07 -1.41 0.02  113  -0.29** -2.28 0.07 

((! − 2) − ((! − 3)  113  -0.13*** -2.74 0.06  112  -0.25*** -3.29 0.05 

((!) − ((! − ")  115  -0.15*** -3.06 0.08  113  -0.26** -2.33 0.11 

ùyû(!) − ùyû(! − 1)  116  -0.16*** -2.69 0.06  115  -0.38* -1.95 0.07 

ùyû(! − 1) − ùyû(! − 2)  116  -0.15** -2.56 0.05  115  -0.35*** -2.84 0.06 

Notes: Panels A-B report 1- and 2-month horizon OLS forecasting regressions of future risk premia, $(!, ") − ((! + "), on 

lagged risk premia and past physical market conditions, for the Capesize BCI 4TC and Panamax BPI 4TC contracts, respectively. 

Namely, in the first three rows of each panel the predictor is the lagged 1-period risk premium, $(! − ü, 1) − ((! − ü + 1)  

where the number of lags, ü, varies from 1 to 3. In the fourth row, the predictor is the corresponding previous risk premium 

for each contract, $(! − ", ") − ((!); e.g., for the 2-month contract expiring in ! + 2 months, the predictor is the realised 

risk premium related to the two-month contract that expired at	!. Note that for the 1-month contract, the first and fourth 

rows of the respective panel coincide. In rows five to seven of each panel, the predictor is the lagged 1-period spot 

growth	((! − ü) − ((! − ü − 1) where the number of lags, ü, varies from 1 to 3. In the eighth row, the predictor is the 

corresponding previous spot growth for each contract, ((!) − ((! − "); e.g., for the 2-month contract expiring in ! + 2 

months, the predictor is the realised spot growth related to the two-month contract that expired at	!, that is, the one 

corresponding to period ! − 2 to !. Finally, in rows nine and ten of each panel, the predictor is the first and second lag of the 

log growth of the Baltic Dry Index (BDI), respectively. The maturity of the contract and the number of observations are 

denoted by " and î, respectively. To deal with the overlapping nature of the variables, t-statistics are estimated using the 

Newey-West (1987) HAC correction. The slope coefficient, ;, is accompanied by *, **, or *** when the absolute tõú statistic 

indicates significance at the 10%, 5% or 1% level, respectively. 
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Table IV: Parameter values. 

Parameter  Assigned Value 

Pâ  20	

Y[M  1	

	Y]
M  {1,2.5}	

`  {0.04,0.1}	

ÄÅâ   -20	

yâ  100	

t  80	

F  0.28	

;  0.1	

	b=  0.9 

c=  0.5 

e=  1 

Notes: This table summarises the assigned values regarding the initial level of the spot rate variable, Pâ;	the variance of the 

private signal, Y[
M; the variance of the unexpected error term,	Y]

M; the coefficient of risk aversion, `; the initial level of the 

hedging pressure variable,	ÄÅ0; the initial level of the long hedging demand variable, yâ; the level of the short hedging 

demand variable, t; the two coefficients related to the linear inverse demand function, F and ;; the “degree of 

wavering”,	b=;  the coefficient of precision , c=; and the “degree of gambler’s fallacy”, e=. 
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Table V: Model predictions for the quantities of interest. 

Quantity 
 Rational Benchmark  Heterogeneous-Agent Economy  

Actual Data 
 Scenario 1 Scenario 2 Scenario 3  Scenario 4 Scenario 4’ Scenario 5  

Panel A: Basis, Risk Premium, and Spot Growth 

Mean of Basis  0.00 0.04 0.04  0.03 0.08 0.05  0.05 

p-value of Basis  0.44 0.00 0.17  0.00 0.00 0.17  0.00 

Mean of Risk Premium  0.00 0.05 0.04  0.02 0.07 0.04  0.03 

p-value of Risk Premium  0.56 0.00 0.16  0.00 0.00 0.16  0.08 

Risk Premium and Spot Growth Correlation  -0.70 -0.71 -0.60  -0.81 -0.87 -0.75  -0.72 

Panel B: Predictive Power of the FFA Basis 

Future Spot Growth Coefficient  0.99 1.00 0.75  1.02 0.56 0.80  0.63 

Future Spot Growth p-value  0.00 0.00 0.00  0.00 0.03 0.00  0.00 

Future Spot Growth !"  0.50 0.50 0.38  0.36 0.08 0.28  0.21 

Future Risk Premium Coefficient  0.01 0.00 0.25  -0.02 0.44 0.20  0.37 

Future Risk Premium p-value  0.44 0.45 0.13  0.50 0.10 0.28  0.00 

Future Risk Premium !"  0.01 0.02 0.09  0.01 0.07 0.06  0.08 

Panel C: Predictability of Risk Premia 

Lagged Spot Growth Coefficient  0.01 -0.01 0.07  -0.30 -0.28 0.35  -0.15 

Lagged Spot Growth p-value  0.45 0.46 0.39  0.01 0.05 0.05  0.00 

Lagged Spot Growth !"  0.01 0.01 0.02  0.14 0.09 0.08  0.08 

Lagged Risk Premium Coefficient  -0.01 0.02 0.14  0.31 0.30 0.23  0.32 

Lagged Risk Premium p-value  0.45 0.44 0.28  0.02 0.03 0.01  0.00 

Lagged Risk Premium !"  0.01 0.01 0.04  0.10 0.10 0.14  0.10 

Notes: This table summarises the theoretical model’s predictions for the quantities of interest presented in the left column. The right column presents the empirical values of these quantities 

as illustrated in Sections II and III of the paper. Columns 2-6 report the average value of each quantity across 10,000 simulated paths, for a given market scenario as analysed in the main text. 

The basic model parameters are presented in Table IV. Scenario 4’ corresponds to scenario 4 for #$" = 2.5" and	* = 0.04. 


