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Abstract: 

Goal-directed planning in behavioral and neural sciences is theorized to involve a prospective 

mental simulation that, starting from the animal’s current state in the environment, expands a 

decision tree in a forward fashion. Backward planning in the artificial intelligence literature, 

however, suggests that agents expand a mental tree in a backward fashion starting from a 

certain goal state they have in mind. Here we show that several behavioral patterns observed in 

animals and humans, namely outcome-specific Pavlovian-to-instrumental transfer and 

differential-outcome effect, can be parsimoniously explained by backward planning. Our basic 

assumption is that the presentation of a cue that has been associated with a certain outcome 

triggers backward planning from that outcome state. On the basis of evidence pointing to 

forward and backward planning models, we discuss the possibility of brain using a bidirectional 

planning mechanism where forward and backward trees are expanded in parallel to achieve 

higher efficiency. 

Introduction 

Most real-life problems in humans and other animals involve making a sequence of choices, 

each of which have costs and benefits. Behavioral and neurobiological research in decision 

making since the cognitive revolution in the 1950s (Tolman, 1948) and particularly over the last 

three decades (Adams and Dickinson, 1981; Doya, 1999; Dickinson and Balleine, 2002; Daw et 
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al., 2005) have highlighted the important role of planning as a brain decision making 

mechanism. Several studies have shown that humans (Balleine and O’Doherty, 2010; Glascher 

et al., 2010; Lee et al., 2014; Doll et al., 2015) and animals (Tolman, 1948; Dickinson and 

Balleine, 2002; Balleine and O’Doherty, 2010) build a cognitive map of the dynamics of their 

environment and then use this knowledge to foresee the potential consequences of different 

courses of action. Formalizing this idea, “model-based forward planning” is a class of 

reinforcement learning algorithms (Sutton and Barto, 1998) that has been widely used to 

explain this body of experimental evidence (Daw et al., 2005; Glascher et al., 2010; Keramati et 

al., 2011; Dezfouli and Balleine, 2012; Huys et al., 2012; Doll et al., 2015; Kurth-Nelson et al., 

2016). According to forward planning models, given the individual’s knowledge of 

environmental dynamics, a prospective mental simulation expands a decision tree that starts 

from the decision-maker’s current state. This process reveals to the decision-maker the 

expected consequences of each sequence of actions, helping him to choose the option that 

maximizes reward. 

The complicated nature of many real-life problems, however, renders forward planning 

insufficient, whereas humans and animals can skillfully solve them. Consider, as an example, 

the problem of finding the best route to a concert on the other side of the city. As the depth of 

a naïve forward planning that starts from your current position (analogous to a breadth-first 

search algorithm) increases, the number of edges (i.e., streets) of the corresponding mental 

decision-tree grows exponentially. Cognitive limitations like time and working memory (Otto et 

al., 2013) thus restrict the depth of forward planning (Huys et al., 2012) and make it impossible 

to take into account the rewarding value of states that are far away (i.e., the concert). 

Several solutions to this so-called curse of dimensionality are suggested in the field of artificial 

intelligence, and behavioral and neural signatures of some of those strategies are also reported 

in humans and animals. These strategies include pruning (Huys et al., 2012), hierarchical 

reinforcement learning (Botvinick, 2008; Botvinick et al., 2009), and plan-until-habit strategies 

(Keramati et al., 2016). Another classical solution in artificial intelligence to tackle the curse of 

dimensionality in sequential decision problems is bidirectional planning (Dijkstra, 1959; Pohl, 

1971; Russell and Norvig, 2009). According to this approach, when the goal-state (e.g. the 

concert venue, in our example) is known to the artificial agent, two simultaneous mental trees 

are expanded: one forward, initiating from the current state, and one backward, initiating from 

the goal state. If these two trees meet in the middle, a path (i.e., a sequence of choices) for 

reaching the goal-state from the current state is discovered. This forward-backward scheme 
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increases the effective depth of planning, with imposing minimal cognitive costs to the system 

(discussed further in the next sections). Although this approach is widely used in artificial 

intelligence, it has remained, to the best of our knowledge, unexplored in cognitive science 

(Balleine and O’Doherty, 2010). 

Here, we show that in addition to forward planning, there are several behavioral and 

neurobiological evidence that point to the use of a backward planning mechanism in humans 

and other animals. Namely, our simulation results show that backward planning can explain 

outcome-specific Pavlovian-to-Instrumental Transfer (PIT) in both factual and counterfactual 

action-outcome mappings (Laurent and Balleine, 2015), as well as differential-outcome effects 

(Trapold, 1970; Urcuioli, 2005). We hypothesize that forward and backward planning 

mechanisms provide the brain with two major building blocks of a bidirectional planning 

system, enabling animals to mitigate the curse of dimensionality.  

Although the behavioral and neurobiological bases of merging forward and backward trees 

remain unspecified, and the existing evidence can be equally explained by assuming separate 

forward or backward planning mechanisms that take control over behavior under different 

circumstances, here we take an integrative approach and frame our solution in a unified 

“bidirectional” planning mechanism. The advantage of this approach is merely being unified as 

well as being normatively motivated. Otherwise, as shown, behavioral evidence explained here 

by simulating a bidirectional planning system can be equally explained by mere backward 

planning. 

Materials and Methods 

Theory Sketch:  

An animal, hypothetically, views the environment as a set of states – in each state, a set of 

actions is available; taking an action in a certain state results in receiving some immediate 

reward or punishment and will also take the animal to a new state. Given this view of the 

environment, according to the computational theory of reinforcement learning (RL; (Sutton and 

Barto, 1998), in each state the animal tries to find the action that maximizes the sum of 

expected rewards it will receive, or other similar objectives.  

Forward planning, as one solution to this problem, assumes that animals learn the causal 

dynamics of their environment in terms of transition and reward functions, representing 

respectively the ensuing new state and immediate reward upon performing a certain action in a 
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certain state. When at a choice point, the animal exploits this knowledge and expands a mental 

decision tree that starts from its current state in the world and foresees the expected 

consequences of different courses of actions. The simplest way to take the limitation of 

cognitive resources into the forward-planning account is to assume that, given cognitive 

resources, the depth of the tree is limited (Sutton and Barto, 1998). Whether using this naïve 

depth limitation or more sophisticated pruning methods, resource-limited forward planning 

produces a mental tree that starts from the current state and ends at several terminal states, 

called leaves. Each sequence of imagined actions takes the animal from the current state to one 

of the leaves, and results in a sequence of immediate rewards. Thus, for a limited depth D, this 

algorithm only takes into account the first D rewards that will be received following a certain 

choice, and will ignore further consequences. 

One efficient solution to expand the thinking horizon of the algorithm, while imposing minimal 

cognitive costs, is to expand simultaneously another mental tree in a backward fashion (Pohl, 

1971; Russell and Norvig, 2009). Imagine the animal is living in an environment with very sparse 

rewarding states. That is, at every given point of time, only one or very few states of the 

environment contain outcomes that are highly interesting to the animal. Knowing the position 

of a goal state in such environments, the animal can start from the goal state and expand a 

backward tree. This would require the animal to retrieve causal associations from memory in a 

reverse order: what state-action pair will lead to the goal state? Having retrieved those 

penultimate states, this process can be repeated several times in order to gradually expand the 

backward tree. After D repetitions of such a process, the backward tree reaches a depth of D 

and the leaves of such a tree represent the states that will eventually lead to the goal state 

after taking a sequence of D actions. Thus, the backward planning process attributes a high 

reward value to all the leaves, as well as the states inside the backward tree, since the goal-

state is reachable from those states.  

Now, if the forward and backward trees expand simultaneously, the forward planning process 

does not necessarily need to limit its horizon to only D steps. In fact, if any of the leaves of the 

expanded forward search belong to the backward tree, then the backward planning process 

already has some estimate of the value of those states. Thus, rather than ignoring the 

consequences further than D steps (i.e., further than its leaves), the forward process can use 

the values computed, for its leaves, by the backward process (Fig. 1). 
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Bidirectional planning, therefore, can increase the depth of planning from D to 2D (in the best 

case), along the course of actions where the forward and backward trees meet. This can be 

seen in Fig. 2 where the efficiency of forward, backward, and bidirectional planning strategies 

are compared in an environment with highly sparse rewards. This increased depth and 

efficiency, given an appropriate implementation of the algorithm, can have no extra time cost. 

For example, if the causal structure of the world is represented in an associative network and 

tree expansion is realized by a spreading activity algorithm (Baronchelli et al., 2013), then a 

neural network implementation of this system can spread neural activity in parallel (Rogers and 

McClelland, 2004) in forward and backward directions from start and goal locations. This will 

have the same time cost as spreading activity in only one direction. The biological processes 

allowing merging the trees at leaf level, however, remains unspecified in the spreading-activity 

networks literature (Baronchelli et al., 2013). 

Even in the absence of parallel expansion, bidirectional planning is more efficient in terms of 

working memory usage. Since the number of visited nodes increases exponentially as the depth 

of tree increases, the total number of retrieved states in a tree with depth D is on the order of 

b
D
, where b is the branching factor (i.e., number of choices in each state). Thus, the number of 

retrieved states for reaching a depth of 2D is on the order of b
2D

 for a forward-only process, but 

b
D
 for a bidirectional planning process (Russell and Norvig, 2009). Therefore, bidirectional 

planning is an effective solution for tackling the curse of dimensionality in complex 

environments with spare rewards, given that the model of the environment and the reward-

containing states are known to the agent. 

Association Retrieval in Reverse Order 

As mentioned before, one necessary mechanism for backward planning is retrieval of causal 

associations in reverse order. There are several lines of behavioral and neurobiological research 

that point to the existence of such a capability in animals.  

Neurobiologically, reverse replay of hippocampal place cells (Foster and Wilson, 2006; Diba and 

Buzsáki, 2007; Karlsson and Frank, 2009; Carr et al., 2011) is a clear demonstration that the 

brain “can” retrieve experienced sequences in reverse. According to these findings, particularly 

during periods of relative immobility of the animal, hippocampal place cells show sequential 

reactivations that encode the experienced behavioral trajectories in reverse order. This reverse 

pattern has also been observed recently in MEG signal recorded from humans solving a 

sequential decision making task (Kurth-Nelson et al., 2016). 
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Behaviorally, animals that were passively moved through a tree-like maze from the terminal 

states (goal positions) back to the starting state could later use this knowledge efficiently (as 

compared to naïve control animals) to actively navigate from the starting state to their desired 

terminal state (Pritchatt and Holding, 1966). This would either directly show that animals use 

backward planning and use the learned associations in the same order experienced (from the 

end to the beginning), or if animals use forward planning, it at least demonstrates that they can 

exploit the experienced associations in reverse order (i.e., experienced backward, but exploited 

in a forward fashion). It is noteworthy that in this study (Pritchatt and Holding, 1966), forward 

training (i.e., moving animals through the maze passively, in a forward direction) was more 

effective that backward training. 

Results 

The theoretical argument and the experimental evidence discussed above show that 

bidirectional planning is an efficient and neurobiologically plausible algorithm. Here we show 

that bidirectional planning can explain two behavioral patterns: outcome-specific Pavlovian-to-

Instrumental Transfer (PIT) and differential-outcome effect. Our simulation results show that in 

both cases, the backward planning mechanism is an essential component for explaining 

behavior. 

Outcome-Specific Pavlovian-to-Instrumental Transfer  

Outcome-specific PIT, although requiring specific experimental conditions, is a robust pattern 

that captures how cues that signal the presence or absence of certain goals influence goal-

directed behavior (Kruse et al., 1983; Colwill and Rescorla, 1988; Corbit and Balleine, 2005; 

Balleine and Ostlund, 2007; Holmes et al., 2010). In a typical experimental scenario, different 

conditioned stimuli (CS) are associated with different outcomes (O) during an initial Pavlovian 

training phase (e.g. CS1→O1 and CS2→O2). In an upcoming instrumental phase, animals also 

learn that different actions (A) lead to each of those outcomes (e.g. A1→O1 and A2→O2). In a 

final test phase, performed in extinction, the presentation of the CS associated with an 

outcome is shown to enhance the instrumental response directed to the same outcome only 

(e.g., CS1 enhancing A1, but not A2). In other words, a CS signaling the presence of an outcome 

guides choices specifically toward seeking that outcome (Fig. 3).  

A recent study (Laurent and Balleine, 2015) further showed that a CS that signals absence of an 

outcome, instead, motivates behaviors toward the alternative outcome. In this experiment, 
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during the Pavlovian training phase, while CS1 predicted O1, CS1 and CS3 presented in 

conjunction (CS1-CS3) predicted absence of O1. Likewise, CS2 predicted O2, whereas CS2 and 

CS4 presented together (CS2-CS4) predicted absence of O2. Experimental results replicated the 

classical specific PIT patterns: CS1, but not CS3, enhanced seeking O1, and CS2, but not CS4, 

enhanced seeking O2. Moreover, the results revealed a new pattern: CS1-CS3 enhanced 

seeking the alternative outcome, O2, but not the absence-signaled outcome, O1. Vice versa, 

CS2-CS4 enhanced seeking O1, but not the absence-signaled outcome, O2 (Fig. 3). 

Our simulation results show that only backward (Fig. 4C) and bidirectional (Fig. 4D), but not 

forward (Fig. 4B), planning systems can explain these patterns, pointing to the essential role of 

backward planning. These results are based on the critical assumption that Pavlovian cues 

signal the availability or absence of outcomes and thus, trigger expansion of a backward 

decision-tree from the appropriate goal state. We simulate 120 agents in an artificial 

environment (Fig. 4A) that captures the experimental design in rats (Laurent and Balleine, 

2015). In order to obtain O1, for example, the agent first needs to approach lever 1 (AL1) and 

press it (PL1) so that the corresponding food pellet becomes available at the magazine, and 

then it should approach the magazine (AM) and consume the outcome (CO1). In this 

environment, the animal only consumes either of the two outcomes that is highly rewarding. 

Other responses (i.e., AL, PL, AM), in contrast, have a small punishment, capturing the energetic 

cost of performing actions (see the subsection “Formal model and simulation details” below for 

details).  

In the absence of any Pavlovian cue (i.e., during the instrumental phase), as traditionally 

assumed in many RL models, a forward planning process evaluates the rewarding consequences 

of choices by expanding a decision-tree from the agent’s current state. This control condition 

(i.e., absence of Pavlovian cues) gives rise to a certain rate of pressing each of the two levers, 

hereafter called the baseline rate. 

The critical assumption we make for explaining PIT is that presentation of a positive Pavlovian 

cue (e.g., CS1) works as a reminder that enables the recall of the goal and thus, triggers the 

expansion of a backward tree, in parallel with the forward-tree that is always expanded from 

the current state. We further assume, however, that the backward search starts most of the 

time (two-thirds, in our simulations) from the relevant goal-state (i.e., from O1, when CS1 is 

presented), but sometimes (i.e. one-third of the time) from the irrelevant goal state (i.e., O2, 
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when CS1 is presented). This assumed stochasticity could be due to memory retrieval noise, or 

intrinsic noise in neural activity.  

For the bidirectional planning simulations (Fig. 4D), we assume a depth of four for both forward 

and backward components. For the forward-only (Fig. 4B) and backward-only (Fig. 4C) 

simulations, however, we assume a depth of zero for the backward and the forward 

components, respectively, and a depth of four for the other component. 

In keeping with the assumption that CS1 triggers backward search, we assume that CS1-CS3 

also triggers backward search in the same fashion (i.e., same stochasticity, same depth, etc.). 

However, since CS3 also signals absence of O1, the backward search process assigns a 

rewarding value of zero to that goal state. Thus, backward planning back-propagates zero value 

from that state. Similarly, in the case of presenting only CS3, a rewarding value of zero is 

attributed to the relevant goal state, but the backward planning process is not triggered due to 

absence of CS1. Therefore, the zero value of the goal-state affects decisions only when that 

state falls within the forward-search depth limit.  

Simulation results show that in the presence of backward planning (Fig. 4C, D) CS1 presentation 

enhances responses to O1 (i.e., compared to baseline). This is because backward-planning 

triggered from the goal-state (G1) increases the chance of taking the rewarding value of O1 into 

account when the agent’s current state is still distant from that goal. CS1 presentation could 

also, with a small probability, trigger backward search from the irrelevant goal-state (i.e., G2). 

This results in a marginal increase of responding for O2, compared to the baseline. This effect, 

though, was not statistically significant in rats (Laurent and Balleine, 2015). 

Presentation of CS3 or CS4 alone, in our backward-only (Fig. 4C) and bidirectional (Fig. 4D) 

simulations, also has only a marginal effect on lever-press rates. Since CS3 and CS4 are never 

associated with the food outcomes during the Pavlovian phase, we assume their presentation 

does not evoke backward planning. In the absence of backward planning, the rewarding values 

of O1 and O2 are rarely taken into account by only forward planning when the current state is 

distant from them. Resetting them to zero upon presentation of CS3 or CS4, therefore, has only 

a small effect on choice.  

In our simulations of backward-only (Fig. 4C) and bidirectional (Fig. 4D) planning, presentation 

of CS1-CS4 significantly increases responding toward O1. This is because CS1 triggers backward-

planning from G1 most of the time and thus motivates behavior toward that goal. In the rare 

case that backward-planning initiates from G2 instead, the presence of CS4 signals the absence 
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of O2 and thus, a rewarding value of zero propagates back from G2. In such cases, the 

rewarding value of both levers remain unaffected by their relevant outcomes and therefore, 

the agent remains indifferent toward the levers.  

Last but not least, presentation of CS1-CS3 marginally inhibits seeking O1, but significantly 

guides choice toward O2 (Fig. 4C, D). Replicating this experimental fact by our model is the 

result of both the backward planning mechanism as well as the stochastic nature of choosing 

the root of the backward tree. That is, when CS1 triggers backward planning from G1 (most of 

the time), a value of zero propagates back, resulting in indifference toward either of the levers. 

When CS1 occasionally triggers backward planning from G2, however, a positive value 

propagates back that directs behavior toward O2. Therefore, explaining rats’ behavior in 

response to compound Pavlovian CS (both congruent and incongruent), but not the basic 

specific PIT pattern, requires the introduced assumption on the stochasticity in the starting-

point selection of backward tree-expansion. Note that this stochasticity assumption is only 

necessary for explaining the rats’ behavior in response to congruent-compound CSs, but not the 

basic specific PIT nor the incongruent-compound-CSs pattern. In sum, our simulation results 

show that the backward component of the bidirectional planning model is essential for 

explaining the PIT patterns.  

As shown in simulation results (Fig. 4C, D), our model predicts a stronger factual response to 

the incongruent, compared to the counterfactual response to the congruent, compound CSs. 

This is a limitation of our theory, since the experimental results (Laurent and Balleine, 2015) do 

not show a statistically significant difference between the two, or even suggest the opposite 

trend. 

Differential Outcomes Effect  

Several studies have provided compelling evidence that choice accuracy increases when each of 

the different stimuli predicts a distinctive, as opposed to common, reward (Trapold, 1970; 

Urcuioli, 2005). In a typical experiment, animals learn to choose one of two options in the 

presence of different stimuli. For one group, called the differential-outcome group, each of the 

two reinforced responses yields one of the two different outcomes (Fig. 5A). For example, 

performing action A1 in the presence of CS1 yields outcome O1, whereas performing A2 in the 

presence of CS2 yields O2. For a second group, called the nondifferential-outcome group, both 

reinforced responses yield, in a random way, one of the two outcomes (Fig. 5B). That is, the CSs 

still signal the correct choice, but are not predictive of the outcome to be received upon 
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choosing that correct action. Experimental results show a significantly higher choice accuracy in 

the differential, compared to the nondifferential group (Trapold, 1970; Urcuioli, 2005). 

Using an argument similar to that for specific PIT, forward-backward planning can account for 

the differential outcomes effect. We assume that in the differential-outcomes group, given the 

fact that CS1 always leads to O1 upon taking the correct choice (i.e., A1), a Pavlovian 

association is formed between CS1 and O1. Similarly, a Pavlovian association is established 

between CS2 and O2. Therefore, presentation of a CS triggers backward planning from the 

relevant goal state and propagates the rewarding value of that state back to the correct choice.  

In the non-differential case, however, CS1 is associated with both O1 and O2 with equal 

probability. Therefore, we assume that presentation of CS1 triggers backward planning from 

one of the two relevant goal states, with equal probability. However, since each outcome is 

delivered only half of the time upon performing the correct action, only half of the rewarding 

value of that outcome propagates back to the correct choice at the starting state. Therefore, 

the probability of choosing the correct choice is significantly less, compared to the differential 

case where the full value of the outcome is back-propagated. Note than in the nondifferential 

case (Fig. 5B), whether or not the presentation of CS1 (or CS2) also trigger backward planning in 

the lower (or upper) tree does not affect the values of actions in the upper (or lower) tree, 

which is relevant to the animal’s current state.  

Fig. 5C shows the simulation results, using the exact parameter values used for simulating 

specific PIT. Results show that the backward-planning component is essential for explaining the 

differential outcomes effect. 

Formal model and simulation details: 

A deterministic Markov Decision Process (MDP) is defined by a 5-tuple ��, �, �.�. , . �, �.�. , . �, 	�, 
where � is a finite set of states, � is a finite set of actions, and ��
, �� and ��
, �� are the 

transition and reward functions returning, respectively, the state and reward ensued after 

taking action � in state 
. Finally 	 ∈ 0,1� is the discount factor. The goal, in our case, is to 

choose a stochastic policy � that maximizes the expected discounted sum over a potentially 

infinite time-horizon (Sutton and Barto, 1998): 

〈�	���
�, ���
�

���
〉� 
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by choosing actions �� = ��
��. To approximate this value for each possible action, the Bellman 

equation can be used in a recursive way for D consecutive depths, equivalent to expanding a 

forward decision tree with depth D, to compute the value of each action ��: 
����� �!" �
, �� = ��
, �� + 	$�%�� �!"&' �
′� 

Where $���� �!"&' �
)� = max ) ����� �!"&' �
′, �′� and 
) = ��
, ��. When D is reduced to zero (i.e., 

after reaching depth D) the value of actions at the terminal states can be set to zero 

(����� �!"�� �
), �′� = 0), equivalent to ignoring the consequences of state-action pair �
, �� that 

are further than D steps. Alternatively, if the terminal state 
′ belongs to the backward tree, the 

values at the terminal states can use the values computed by the backward tree: 

-.	
) ∈ 01 23� �!:							����� �!"�� �
), �′� = �1 23� �!�
), �′� 
Where 01 23� �! is the set of states in the backward tree. To construct this tree, the set is 

initialized to 01 23� �! = {
6}, where 
6 is a goal state where backward planning begins. Also, 

the backward value of all actions at this state are initialized to zero: �1 23� �!�
6 , �� = 0. 

The backward tree is then expanded in D iterative steps. At each step, any state that can reach, 

with only one action, any state in 01 23� �! will be added to the set: 

∀	
, �, 
):									-.	
) ∈ 01 23� �!		�9:		
) = ��
, ��, ;ℎ=9	�::	
	;>	01 23� �! 

For each such states, 
, the �1 23� �!�
, �� will be computed as: 

�1 23� �!�
, �� = ��
, �� + 	$1 23� �!�
′� 
Where  
) = ��
, �� and $1 23� �!�
)� = max ) �1 23� �!�
′, �′� 
Having computed the forward values for all available actions, a soft-max rule can be used for 

action-selection: 

?��� = �|
�� ∝ =BCDEFGHFIJ �KL, � 

where M is the rate of exploration. Generalizing this bidirectional model-based evaluation to 

stochastic MDPs is straightforward. 

To replicate the experimental data from (Laurent and Balleine, 2015), 120 simulated agents 

were simulated, each for 10
4
 trials. The values of the free parameters of the model were 

	 = 0.9 and M = 0.45. See Fig. S2 for the sensitivity of simulation results to free parameters of 
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the model. The payoff for different actions was as follows: ��. , 9QR� = −1, ��. , �T� = −5, 

��. , �U� = −5, ��. , VT� = −10, ��. , WX� = 1000.  

Discussion 

Although backward planning seems to be very pertinent to the kinds of environments humans 

and other animals live in, it has so far evaded the cognitive science literature. This is likely partly 

due to the fact that direct behavioral manifestation of this strategy is difficult to capture in 

experimental tasks. Observing the subjects’ thought process, for instance by decoding neural 

activity, is one alternative approach to investigate backward planning more closely. In this 

respect, one could predict sharp wave ripple-associated hippocampal place cell activity in 

reverse order from the goal position at the time the animal is at a choice point and shows 

vicarious trial-and-error (VTE) behavior (Tolman, 1939; Wikenheiser and Redish, 2015).  

In this paper, we showed that outcome-specific PIT and differential-outcome effect can be 

parsimoniously understood as indirect behavioral signatures of backward planning. The main 

mechanism in the algorithm that explains rats’ behavioral patterns (Urcuioli, 2005; Laurent and 

Balleine, 2015) is the CSs evoking a representation of the goal states and thus, triggering 

backward planning.  

While backward planning is essential in our explanation of PIT and differential-outcome effect, 

other behavioral evidences are classically interpreted as signatures of forward planning. For 

example, vicarious trial-and-error (VTE) behavior in rats (Tolman, 1939), defined by head 

movement from one choice to another at a choice point, implies thinking forward about the 

future (Redish, 2016). Other behavioral studies show that during prospective evaluation of a 

sequence of choices, humans prune a sequence (i.e., curtailed any further evaluation) once 

they expect a large loss to be encountered on the sequence (Huys et al., 2012). Moreover, time 

pressure is shown to impose a limit on the depth of planning (Keramati et al., 2016). Explaining 

these decision tree-pruning patterns is inherently based on the assumption that planning 

occurs in a forward fashion.  

If the brain uses both forward and backward mechanisms for planning, one possibility is that 

those mechanisms are separately used in different contexts, mediated by a biologically 

unspecified arbitration mechanism. An alternative possibility is that a unified bidirectional 

planning system employs the two mechanisms is parallel, and is equipped with a (yet 

biologically unspecified) tree-merging mechanism. In this paper, we used this second 
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alternative for the simulations. However, we must emphasize that there is no evidence, to the 

best of our knowledge, to preferentially support any of the two hypotheses. The advantage of 

the bidirectional approach is merely being unified as well as being normatively motivated.  

Our backward planning explanation of specific PIT can be viewed as a formal modeling of the 

associative-cybernetic theory proposed before (Balleine and Ostlund, 2007; Balleine and 

O’Doherty, 2010). According to this theory, the instrumental phase of the PIT experiments 

engenders two different associations: the response predicts the outcome (response-outcome; 

R-O), and the outcome itself acts as a stimulus that predicts the next response (outcome-

response; O-R). During the test session, the Pavlovian CS activates the outcome representation 

and thus, through the O-R associations, selectively enhances the relevant response. Our model 

proposes that the computational mechanism by which the outcome representation leads to the 

relevant response is the expansion of a decision tree from that outcome in a backward fashion. 

There is indeed evidence suggesting that R-O associations can be harnessed in a backward 

manner to guide action selection (de Wit et al., 2009). 

Several studies have shown that the specific PIT pattern remains intact after outcome 

devaluation (Rescorla, 1994; Holland, 2004; Corbit et al., 2007). That is, devaluating the 

outcome by for example associating it with a bitter substance does not reduce the power of the 

Pavlovian CS in increasing motivation for seeking that outcome. Our model cannot explain this 

observation; if devaluation simply decreases the value of a goal state, and CS presentation 

triggers a backward propagation of that value, then devaluation would reduce the effect of the 

CS on instrumental choice.  

While we propose that the Pavlovian CS acts as a “reminding” signal that triggers backward 

planning, a previous computational theory (Cartoni et al., 2013) suggests that the CS works as 

an “availability” signal. According to this Bayesian account, the CS cues that there is a higher 

probability of getting the reward associated with the instrumental action and thus, motivates 

pursuit of that action. Although this conceptualization explains basic specific PIT, it does not 

account for counterfactual PIT in response to compound congruent CSs. In this model, there is 

no reason for the presence of CS3 to make the presence of the hidden cause for O2 more likely. 

In other words, this model in its present form does not feature competition between hidden 

causes and therefore, is unable to account for counterfactual PIT. 

While our model offers a normatively-motivated account for outcome-specific PIT, it leaves 

general PIT unexplained. In general PIT, the Pavlovian CS enhances all appetitive instrumental 
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responses, even if they are associated with a different outcome (Dickinson and Balleine, 2002; 

Holland, 2004; Corbit and Balleine, 2005). It is, however, noteworthy that general and specific 

forms of PIT are shown to be governed by distinct neural processes (Corbit et al., 2001; Corbit 

and Balleine, 2005, 2011) and thus, explaining both of them with a single computational 

mechanism is not likely to be a sensible approach.  

Consistent with our proposal that specific PIT stems from Pavlovian cues affecting the planning 

strategy, the basolateral amygdala (BLA), as one of the critical areas involved in specific PIT,  

projects to several areas involved in instrumental decision making: the orbitofrontal cortex, the 

core and shell of the nucleus accumbens (Alheid, 2003), and mediodorsal thalamus (Reardon 

and Mitrofanis, 2000). Lesions of these areas have indeed been shown to affect specific PIT 

(Ostlund and Balleine, 2005, 2007, 2008). This connectivity could be the neural substrate for the 

Pavlovian associations triggering the model-based planning process. 

The efficiency of bidirectional planning, as discussed before, relies on starting the expansion of 

backward tree from “appropriate” goal-states. In this paper, we simply assumed that backward 

planning starts from the goal states signaled by the Pavlovian CSs, but an important open 

question is how to choose such appropriate states. Saliency and accessibility from the current 

state seem to be two key requirements. Also, whereas we used a simple breadth-first algorithm 

that expands the trees evenly along all directions, one could think of pruning both forward and 

backward trees to avoid imposing unnecessary cognitive costs. Last but not least, the idea of 

bidirectional planning can be generalized to multi-directional planning where several decision 

trees expand from different starting points; i.e., not only from the current and goal states, but 

also from intermediate states like important landmarks, or bottleneck states (Botvinick et al., 

2009) in the environment.  

In sum, we propose that several lines of evidence, namely hippocampal reverse replay patterns 

(Foster and Wilson, 2006), rats exploiting associations in reverse order (Pritchatt and Holding, 

1966), specific PIT (Laurent and Balleine, 2015), and differential-outcome effect (Trapold, 1970; 

Urcuioli, 2005) suggest that animals use a backward model-based planning algorithm to 

estimate the value of choices. We hope this proposal motivates future research to investigate 

this possibility in more tailored experimental conditions. 

If higher efficiency is the reason that animals use bidirectional, compared to unidirectional 

planning, then the critical characteristic of a behavioral task that would require bidirectional 

planning is a high branching factor at both the starting state and the goal state. In such cases, 
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the total number of nodes of the expanded decision tree grows rapidly as a function of depth 

and thus, one cognitively feasible solution to such problems would be to use bidirectional 

planning. This principle can be used for designing tasks that show more direct signatures of 

bidirectional planning. Similarly, having a high branching factor in the forward direction (e.g., in 

a tree, with the root as the starting state and a leaf as the goal state) would motivate using 

backward-only planning, since it will the most efficient algorithm in terms of working memory 

load. 
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Figures: 

Fig. 1. Schematics of the forward-backward planning algorithm (see the subsection “Formal 

model and simulation details” for the general formal algorithm). Expanding a backward tree 

with depth D, started from an arbitrary goal state, sG, the algorithm finds all states like sB and sC 

that can potentially lead to that goal state by taking a sequence of D actions. Similarly, 

expanding a forward tree with depth D, started from the current state sS, the algorithm finds all 

states like sA and sC that are reachable by performing a sequence of D actions from the current 

state. If the forward and backward trees overlap, as in sC, the forward-backward planning 

algorithm has actually found a sequence of (at most) 2D actions for reaching the goal-state, sG, 

from the current state sS. 

 

Fig. 2. An example of bidirectional vs. unidirectional planning. A 20x20 map was used with the 

black states as blocks. The large and small red states contain a large (50 units) and a small (25 

units) reward, respectively. The agent is assumed to have perfect knowledge of the map (i.e., 

reward and transition function). Each episode starts from a random starting state (e.g., the blue 

state in this figure). In each state, the agent can choose among four actions: up, down, left, and 

right, except when block states or map boundaries restrict the agent. Each action has a small 

constant cost of 0.05 units, and takes the agent to the targeted next state deterministically. 

Reaching any of the two reward states results in receiving reward and resetting the episode 

(i.e., returning to start). The agent is assumed to have a fixed tree-depth of 10. Examples of the 

expanded decision tree when the agent is in the start state are shown in red for backward (A) 

and in blue for forward planning (C). When bidirectional planning is used (B), forward and 

backward trees meet and the value of the big reward back-propagates to the actions available 

at the starting state, and therefore guides behavior toward the big reward. In the case of 

forward planning (C), however, only the small reward is in the mental “visual-field” of the agent 

and therefore, behavior is directed toward that goal. (D) As a result, the total reward 

accumulated over time (i.e., number of moves) is highest for a bidirectional planner, and lowest 

for a backward planner (in the context of this environment). Each curve is averaged over 100 

simulations. 
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Fig. 3. Experimental results on factual and counterfactual PIT in rats (reprinted from (Laurent 

and Balleine, 2015)). (A) Experimental design. In an initial Pavlovian training phase, animals 

learned that CS1 and CS2 predict O1 and O2, respectively, whereas combined presentation of 

CS1 and CS3, as well as CS2 and CS4 predict absence of any outcome. In a separate instrumental 

phase, animals learned that actions A1 and A2 lead to O1 and O2, respectively. In a test phase 

performed in extinction, the animals’ rate of choosing A1 vs. A2 was measured under four 

different cue-presentation conditions. Results showed that animals’ response rate, as 

compared to baseline (i.e., in the absence of Pavlovian cues), was enhanced when CS1 or CS2 

were presented, but only for the response that led to the outcome that was predicted by the 

cue (B). Furthermore, presentation of CS1-CS4 (or CS2-CS3) in conjunction increased seeking 

the outcome that was associated with CS1 (or CS2) (C, left), whereas presentation of CS1-CS3 

(or CS2-CS4) together increased seeking the outcome that was associated with CS2 (or CS1) (C, 

right). Reprinted with permission from Elsevier. 

 

Fig. 4. Backward planning explains factual and counterfactual PIT. (A) The experimental design 

was captured by a Markov-Decision Process (MDP) where reaching a goal state like G1 requires 

a sequence of actions including approaching lever number one (AL1), pressing the lever (PL1), 

then approaching the magazine (AM) and consuming the outcome (CO1). Red and blue boxes 

show the domain of forward and backward trees when the agent is in the starting state, s0, and 

the depth of planning is two. Simulating the backward-only (C) and forward-backward (D), but 

not the forward-only (B), models in this environment captures the essential behavioral patterns 

observed in rats (Laurent and Balleine, 2015). 

 

Fig. 5. Backward planning explains differential outcomes effect. (A) In the differential group, the 

presented CS is predictive of the outcome (i.e., O1 vs. O2. Receiving no reward is indicated by X) 

to be received upon choosing the correct action. (B) In the nondifferential group, however, the 

CS predicts, given the correction action, receiving either of the two outcomes with equal 

probability. (C) Simulating the forward-only, backward-only, and forward-backward planning 

algorithms show that backward planning is a critical component for explaining experimental 

evidence. 
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the targeted next state deterministically. Reaching any of the two reward states results in receiving reward 
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(A) and in blue for forward planning (C). When bidirectional planning is used (B), forward and backward 
trees meet and the value of the big reward back-propagates to the actions available at the starting state, 

and therefore guides behavior toward the big reward. In the case of forward planning (C), however, only the 
small reward is in the mental “visual-field” of the agent and therefore, behavior is directed toward that goal. 
(D) As a result, the total reward accumulated over time (i.e., number of moves) is highest for a bidirectional 

planner, and lowest for a backward planner (in the context of this environment). Each curve is averaged 
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CS2 were presented, but only for the response that led to the outcome that was predicted by the cue (B). 
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associated with CS1 (or CS2) (C, left), whereas presentation of CS1-CS3 (or CS2-CS4) together increased 
seeking the outcome that was associated with CS2 (or CS1) (C, right). Reprinted with permission from 

Elsevier.  
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Fig. 4. Backward planning explains factual and counterfactual PIT. (A) The experimental design was 
captured by a Markov-Decision Process (MDP) where reaching a goal state like G1 requires a sequence of 
actions including approaching lever number one (AL1), pressing the lever (PL1), then approaching the 

magazine (AM) and consuming the outcome (CO1). Red and blue boxes show the domain of forward and 
backward trees when the agent is in the starting state, s0, and the depth of planning is two. Simulating the 
backward-only (C) and forward-backward (D), but not the forward-only (B), models in this environment 

captures the essential behavioral patterns observed in rats (Laurent and Balleine, 2015).  
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Fig. 5. Backward planning explains differential outcomes effect. (A) In the differential group, the presented 
CS is predictive of the outcome (i.e., O1 vs. O2. Receiving no reward is indicated by X) to be received upon 
choosing the correct action. (B) In the nondifferential group, however, the CS predicts, given the correction 

action, receiving either of the two outcomes with equal probability. (C) Simulating the forward-only, 
backward-only, and forward-backward planning algorithms show that backward planning is a critical 

component for explaining experimental evidence.  
 

177x321mm (300 x 300 DPI)  

 
 

Page 26 of 30European Journal of Neuroscience



For Peer Review

 

 

 

 

1

Supplementary information for: 

Behavioral Signatures of Backward Planning in Animals 

Authors:  Arsham Afsardeir
1
, Mehdi Keramati

2,3
*

 

1 
Control and Intelligence Processing Center of Excellence, School of ECE, College of 

Engineering, University of Tehran, P.O. Box 14395-515, Tehran, Iran. 

2 
Gatsby Computational Neuroscience Unit, Sainsbury Wellcome Centre, University College 

London, 25 Howland Street, London W1T 4JG, UK.  

3 
Max Planck Centre for Computational Psychiatry and Ageing Research, University College 

London, 10-12 Russell Square London WC1B 5EH, UK. 

* Correspondence to: mehdi@gatsby.ucl.ac.uk 

 

 

  

Page 27 of 30 European Journal of Neuroscience



For Peer Review

 

 

 

 

2

 

 

Fig. S2. Parametric exploration of the model for explaining specific PIT. The essential behavioral 

patterns observed in rats (Laurent and Balleine, 2015) can be replicated by simulating the 

forward-backward algorithm with a wide range of parameters � (temporal-discounting factor) 

and � (inverse temperature in softmax action-selection). 
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goal state and think backward to find out possible ways to get there. We show that 

several robust behavioral patterns, namely Pavlovian-to-Instrumental transfer and 

differential-outcome effect, can be parsimoniously explained by this algorithm.  
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