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Imbalanced Decision Hierarchy in Addicts Emerging from
Drug-Hijacked Dopamine Spiraling Circuit
Mehdi Keramati*, Boris Gutkin

Group for Neural Theory, INSERM U960, Departément des Etudes Cognitives, Ecole Normale Supérieure, Paris, France

Abstract

Despite explicitly wanting to quit, long-term addicts find themselves powerless to resist drugs, despite knowing that drug-
taking may be a harmful course of action. Such inconsistency between the explicit knowledge of negative consequences
and the compulsive behavioral patterns represents a cognitive/behavioral conflict that is a central characteristic of
addiction. Neurobiologically, differential cue-induced activity in distinct striatal subregions, as well as the dopamine
connectivity spiraling from ventral striatal regions to the dorsal regions, play critical roles in compulsive drug seeking.
However, the functional mechanism that integrates these neuropharmacological observations with the above-mentioned
cognitive/behavioral conflict is unknown. Here we provide a formal computational explanation for the drug-induced
cognitive inconsistency that is apparent in the addicts’ ‘‘self-described mistake’’. We show that addictive drugs gradually
produce a motivational bias toward drug-seeking at low-level habitual decision processes, despite the low abstract
cognitive valuation of this behavior. This pathology emerges within the hierarchical reinforcement learning framework
when chronic exposure to the drug pharmacologically produces pathologicaly persistent phasic dopamine signals. Thereby
the drug hijacks the dopaminergic spirals that cascade the reinforcement signals down the ventro-dorsal cortico-striatal
hierarchy. Neurobiologically, our theory accounts for rapid development of drug cue-elicited dopamine efflux in the ventral
striatum and a delayed response in the dorsal striatum. Our theory also shows how this response pattern depends critically
on the dopamine spiraling circuitry. Behaviorally, our framework explains gradual insensitivity of drug-seeking to drug-
associated punishments, the blocking phenomenon for drug outcomes, and the persistent preference for drugs over natural
rewards by addicts. The model suggests testable predictions and beyond that, sets the stage for a view of addiction as a
pathology of hierarchical decision-making processes. This view is complementary to the traditional interpretation of
addiction as interaction between habitual and goal-directed decision systems.
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Introduction

‘‘We admitted we were powerless over our addiction—that our

lives had become unmanageable’’ states the very first tenet of the

Narcotics Anonymous 12-step program [1]. This spotlights how

powerless addicts find themselves when it comes to resisting drugs,

despite knowing that drug-taking is a wrong course of action [2–4].

In fact, the hallmark of addiction is compulsive seeking of the

drugs even at the cost of evident adverse consequences [5]. A

signature of such pathological behavior becomes evident in

controlled experiments where addicts exhibit a characteristic

‘‘self-described mistake’’: an inconsistency between the potent

behavioral response toward drug-associated choices and the

relatively low subjective value that the addict reports for the drug

[4,6,7]. When combined with the loss of inhibitory cognitive

control over behavior, after protracted exposure to drugs, this

divergence between the cognitive plans and the consolidated

habits may result in a transition from casual to compulsive drug-

seeking behavior [8].

The loss of cognitive control and self-described mistake have so

far eluded a principled explanation by formal models of addiction

[9–13]. Previous computational theories of drug addiction, mostly

posed within the reinforcement learning framework, view addic-

tion as a pathological state of the habit learning (stimulus-response)

system [9–13]. The central hypothesis behind all those models is

that the pharmacological effect of drugs on dopamine signaling,

supposedly carrying a stimulus-response teaching signal, results in

gradual over-reinforcement of such associations. This effect in turn

leads to compulsive drug-seeking habits. While this reduced view

of addiction has captured some aspects of the phenomenon, a

growing consensus in the addiction literature indicates that

multiple learning systems are involved in the pathology. Only

such a more complex picture that includes brain’s cognitive, as

well as low-level habitual processes, can explain the variety of

addiction-like behaviors [8,14].

In this paper, we adopt a hierarchical reinforcement learning

approach [15] where decisions are represented at different levels of

abstraction, in a cognitive-to-motor hierarchy. We assume that a

cascade of dopamine-dependent learning signals links levels of the

hierarchy together [16]. We further assume that drugs of abuse

pharmacologically hijack the communication mechanism between

levels of abstraction. Based on these assumptions, we show that the

reported cognitive dissonance in addicts emerges within the

hierarchical reinforcement learning framework when chronic
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drug-exposure disrupts value-learning across the decision hierar-

chy. This disruption results in a pathological over-valuation of

drug choices at low-level habitual processes and hence drives

habitual drug-seeking behavior. We then demonstrate that

‘‘disliked’’ but compulsive drug-seeking can be explained as

drug-hijacked low-level habitual processes dominating behavior,

while healthy cognitive systems at the top representational levels

lose control over behavior. Furthermore, we demonstrate that the

proposed model can account for recent evidence on rapid vs.

delayed development of drug cue-elicited dopamine efflux in the

ventral vs. dorsal striatum, respectively, as well as the dependence

of this pattern on dopamine spiraling circuitry.

Materials and Methods

Preliminaries
In concordance with a rich cognitive psychology literature, our

hierarchical reinforcement learning [15,18] framework assumes

that an abstract cognitive plan like ‘‘brewing tea’’ can be broken

into a sequence of lower-level actions: boiling water, putting tea in

the pot, etc. Such decomposition proceeds until concrete motor-

level responses at the lowest level of the hierarchy (Figure 1A).

Neurobiologically, the different levels of decision hierarchy from

cognitive to motor levels are represented along the rostro-caudal

axis of the cortico-basal ganglia (BG) circuit [19–21]. This circuit is

composed of several parallel closed loops between the frontal

cortex and the basal ganglia [22,23] (Figure 1B). Whereas the

anterior loops underlie more abstract representation of actions, the

caudal loops, consisting of sensory-motor cortex and dorsolateral

striatum, encode low-level habits [19–21].

Within this circuitry, the phasic activity of midbrain dopamine

(DA) neurons projecting to the striatum signals the error between

predicted and received rewards, thereby carrying stimulus-

response reinforcing information [24]. These DAergic projections

form a cascading serial connectivity linking the more ventral

regions of the striatum to progressively more dorsal regions

through the so-called 0spiraling0 connections [25–27] (Figure 1B).

Functionally, such feed-forward organization connecting the

rostral to caudal cortico-BG loops allows directed coupling from

coarse to fine representations. Accordingly, the DA spirals are

hypothesized to provide a neurobiological substrate for the

progressive tuning of the reward prediction error by the higher

levels of the hierarchy (encoding the abstract knowledge about the

value of behavioral options). This error is then utilized for

updating action-values at more detailed levels [16]. In other

words, the DA spirals allow for the abstract cognitive levels of

valuation to guide the learning in the more detailed action-

valuation processes.

Theory sketch
In terms of the computational theory of reinforcement learning

[28] (RL), the agent (in our case a person or an animal) learns to

make informed action-choices by updating its prior estimated

value, Q(st,at), for each state-action pair, (st,at), when a reward rt

is received by the agent at time t as a result of performing an

action at in the contextual state (stimulus) st. The value Q(st,at) is

updated by computing the reward prediction error signal. This

signal not only depends on the instantaneously received reward

(rt), but also on the value of the new state the agent ends up in,

after that action has been performed. Denoted by V (stz1), this

temporally-advanced value-function represents the sum of future

rewards the animal expects to receive from the resultant state,

stz1, onward. The prediction error can be computed by the

following equation:

dt~rtzV (stz1){Q(st,at) ð1Þ

Intuitively, the prediction error signal computes the discrepancy

between the expected and the realized rewarding value of an

action. In a hierarchical decision structure, however, rather than

learning the Q-values independently at different levels, more

abstract levels can tune the teaching signal computed at lower

levels. Since higher levels of the hierarchy represent a more

abstract representation of environmental contingencies, learning

occurs faster in those levels. This is due to the relative low-

dimensionality of the abstract representation of behavior: an

action plan can be represented as a single step (one dimension) at

the top level of the hierarchy and as multiple detailed actions

(multiple dimensions) at the lower levels of the hierarchy. The top

level value of this action-plan would be learned quickly as

compared to the detailed levels where the reward errors would

need to back-propagate all the detailed action-steps. Thus, tuning

the lower level values by the value information from the higher

levels can speed up the convergence of these values. One

statistically efficient way of doing so is to suppose that for

computing the prediction error signal at the n-th level of

abstraction, dn
t , the temporally-advanced value function,

V (sn
tz1), comes from one higher level of abstraction, nz1 [16]:

dn
t ~rn

t zVnz1(snz1
tz1 ){Qn(sn

t ,an
t ) ð2Þ

To preserve optimality, equation 2 can be used for computing

the prediction error only when the last constituent primitive action

of an abstract option is performed (see Figure S1 in File S1). In

other cases, value-learning at different levels occur independently,

as in equation 1. In both cases, the teaching signal is then used for

updating the prior values at the corresponding level:

Qn(sn
t ,an

t )/Qn(sn
t ,an

t )za:dn
t ð3Þ

where a is the learning rate. This form of inter-level information-

sharing is biologically plausible since it reflects the spiraling

structure of the DA circuitry, carrying the information down the

hierarchy in the ventro-dorsal direction. At the same time, being

guided by more abstract levels significantly accelerates learning,

alleviating the high-dimensionality of value learning at detailed

levels [16].

In this paper we show that the interaction between a modified

version of the model developed in [16] and the specific

pharmacological effects of drugs of abuse on the dopaminergic

system can capture addiction-related data at radically different

scales of analysis: behavioral and circuit-level neurobiological.

First, the new model brings about a possible cogent explanation for

several intriguing behavioral aspects associated with addiction to

drugs (e.g. the self-described mistake [4,6,7]). Second, we can

account for a wide range of evidence regarding the dynamics of

the drug-evoked dopamine release [17].

We modify the model presented in [16] as follows. We make the

model more efficient in terms of working memory capacity by

replacing Vnz1(snz1
tz1 ) with Qnz1(snz1

t ,anz1
t ){rnz1

t , in equation

2, since the two values converge to the same steady level (see

Figure S2 in File S1, for computational and neurobiological basis):

Hijacked Decision Hierarchy in Addicts

PLOS ONE | www.plosone.org 2 April 2013 | Volume 8 | Issue 4 | e61489



dn
t ~rn

t zQnz1(snz1
t ,anz1

t ){rnz1
t {Qn(sn

t ,an
t ) ð4Þ

Here, anz1
t is the relatively abstract option and an

t is the last

primitive action in the behavioral sequence that full-fills this

option. Similarly,rnz1
t is the rewarding value of anz1

t , which

includes rn
t (the rewarding value of an

t ).

Crucially, the various drugs abused by humans share a

fundamental property of pharmacologically increasing dopamine

concentration within the striatum [29]. Accordingly, we incorpo-

rate this pharmacological effect of the drug by adding a positive

bias, D, (see also [9–12]) to the prediction error signal carried by

dopamine neurons (see Figure S3 in File S1, for computational

and neurobiological basis):

Figure 1. Hierarchical organization of behavior and the cortico-BG circuit. A, An example of a decision hierarchy for two alternative choices:
drug vs. food. Each course of action is represented at different levels of abstraction, supposedly encoded at different cortico-BG loops. Seeking each
of the two types of reward might follow a punishment of magnitude 16. B, Glutamatergic connections from different prefrontal areas project to
striatal subregions and then project back to the PFC through the pallidum and thalamus, forming several parallel loops. Through the striato-nigro-
striatal dopamine network, the ventral regions of the striatum influence the more dorsal regions. vmPFC, ventral medial prefrontal cortex; OFC, orbital
frontal cortex; dACC, dorsal anterior cingulate cortex; SMC, sensory-motor cortex; VTA, ventral tegmental area; SNc, substantia nigra pars compacta.
Figure 1B Modified from ref 21.
doi:10.1371/journal.pone.0061489.g001

Hijacked Decision Hierarchy in Addicts
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dn
t ~rn

t zQnz1(snz1
t ,anz1

t ){rnz1
t {Qn(sn

t ,an
t )zD ð5Þ

Here D captures the direct pharmacological effect of drug on

the DA system, and rt is its reinforcing value due to the

euphorigenic effects (see File S1 for supplementary information).

While equations 3 and 5 together define the computational

mechanism to update the values in our model, we also hypothesize

that an uncertainty-based competition mechanism determines the

level of abstraction that controls behavior. This is inspired by the

mechanism proposed in [29] for arbitration between the habitual

and goal-directed systems. In this respect, at each decision point,

only the level of abstraction with the highest certainty in estimating

the value of choices controls behavior. Once this level has made

the decision to act, all the lower levels of the hierarchy will be

deployed by this dominant level to implement the selected action

as a sequence of primitive motor responses (see File S1 for

supplementary information; Figure S4 in File S1; Figure S5 in File

S1). Upon receiving the reward feedback from the environment,

the values at all the levels are updated. This uncertainty-based

arbitration mechanism predicts that as abstract processes are more

flexible, they have superior value-approximation capability during

the early stages of learning and thus, control behavior at these

stages. However, since the abstract levels use a coarse represen-

tation of the environment (e.g. due to containing a relatively small

number of basis functions), their ultimate value approximation

capability is not as precise as those of detailed levels. In other

words, after extensive training the certainty associated with the

estimated values is lower for the lower levels of the hierarchy as

compared to the upper levels. Thus, with progressive learning, the

lower levels of the hierarchy take over the control over the action

selection, as their uncertainty decreases gradually. This is in

agreement with several lines of evidence showing a progressive

dominance of the dorsal over the ventral striatum in the control

over drug-seeking (as well as seeking natural rewards) [8,30,31].

Results

Hierarchy valuation inconsistency emerges under drug
but not natural rewards

In contrast to the previous reinforcement learning-based

computational models of addiction [9–13] which are based on a

single-decision-system approach, our account is build upon a

multiple-interacting-systems framework. As a result, although the

form of modeling drug’s effect on the prediction error signal in our

model is similar to the previous ones [9–12], it results in

fundamentally different consequences. The drug-induced transient

dopamine increase boosts the immediate prediction error at each

level of the hierarchy and as a result, entrains a bias, D, on the

transfer of knowledge from one level of abstraction to the next,

along the coarse-to-fine direction of the hierarchy. This bias causes

the asymptotic value of drug-seeking at a given level to be D units

higher than that of one more abstract layer (Figure 2B). The

accumulation of these discrepancies along the rostro-caudal axis

progressively induces significant differences in the value of drug-

seeking behaviors between the top and bottom extremes of the

hierarchy. Thus, even when followed by a strong punishment, the

value of drug-associated behavior remains positive at the low-level

motor loops, while it becomes negative at cognitive levels. In other

words, the model predicts that accumulation of drug effect over

DA spirals increases drug-seeking value at motor-level habits to

such high amplitude that even a strong natural punishment will

not be able to decrease it sufficiently. We suggest that this explains

the inconsistency between cognitive and low-level evaluation of

drug-related behaviors in addicts. In other words, we propose that

compulsive drug seeking and the significantly reduced elasticity to

associated costs stems from the pharmacological effect of the drug

hijacking the dopamine-dependent mechanism that transfers the

information among the levels of decision hierarchy.

While drugs, in our model, result in imbalanced valuation

across levels, the value of natural rewards converges to the same

value across all levels, due to lack of a direct pharmacological effect

on DA signaling mechanism (D~0). Consequently, neither

inconsistency nor overvaluation at detailed levels will be observed

for the case of natural rewards (Figure 2A). Overvaluation of drug-

seeking responses at lower levels of the hierarchy should result in

abnormal preference of drugs over natural rewards, and over-

engagement in drug-related activities.

Differential dopamine responding in the ventral versus
dorsal striatum to drug-associated cues

Neurobiologically, differential roles of the striatal subregions in

the acquisition and expression of drug-seeking behavior has taken

center stage in addiction research. Converging evidence from

different lines of research suggests that the behavioral transition

from recreational to compulsive drug use reflects a neurobiological

shift of valuation from the ventral to the dorsolateral striatum

[8,33,34], corresponding to a shift from cognitive to detailed levels

in our model. Consistent with our model, DA spiraling network

connecting the ventral to progressively more dorsal regions of the

striatum is shown to play a pivotal role in this transition [25].

In a key recent study Willuhn et al. [17] assessed the pattern of

dopamine release in response to drug-associated cues in the ventral

and dorsolateral striatum of rats during three weeks of experienc-

ing cocaine. Using fast-scan cyclic voltammetry, the critical

observation was that cue-induced DA efflux in the ventral striatum

emerges even after very limited training. In contrast, the

dorsolateral striatum showed cue-triggered DA efflux only after

extensive training, and the development of this release pattern

disappeared when the ventral striatum was lesioned in the

ipsilateral hemisphere.

Since the temporal resolution of fast-scan voltammetry captures

subsecond fluctuations in concentration, the observed pattern of

DA efflux should be attributed to ‘‘phasic’’ DA signaling and thus,

to the prediction error signal, according to the RL theory of

dopamine [24]. According to RL theory, the prediction error

signal upon observing an unexpected stimulus is equal to the

rewarding value that that stimulus predicts. Therefore, cue-

induced DA release is equivalent to the value predicted by that

cue.

In this respect, our hierarchical framework provides a formal

explanation for the differential pattern of ventral versus dorsal

striatal DA efflux reported in [17]. The value predicted by the

drug-associated cue at the abstract cognitive levels of the hierarchy

increases rapidly at the very early stages of training (Figure 2B),

due to low-dimensionality of the learning problem at high levels of

abstraction. As a result, our model shows that the cue-induced DA

efflux should be observed in the ventral striatum even after limited

training (Figure 3). At the more detailed levels of representation,

however, the learning process is slow (Figure 2B), due to high-

dimensionality of the problem space, as well as dependency of

learning on more abstract levels through DA spirals. Consequent-

ly, cue-induced DA efflux in the dorsolateral striatum should

develop gradually and become observable only after extensive

training (Figure 3).

Hijacked Decision Hierarchy in Addicts
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Figure 2. Motivation for food vs. drug at different levels of abstraction (simulation results). In the first 150 trials where no punishment
follows the reward, the value of seeking natural rewards at all levels converge to 10 (A). For the case of drug, however, the direct pharmacological
effect of drug (D, set to2) results in the asymptotic value at each level to be D units higher than that of one higher level of abstraction (B). Thus, when
followed by punishment, whereas cognitive loops correctly assign a negative value to drug-seeking choice, motor-level loops find drug-seeking
desirable (positive value). The curves in this figure show the evolution of values in ‘‘one’’ simulated animal and thus, no statistical analysis was
applicable.
doi:10.1371/journal.pone.0061489.g002

Figure 3. Dopamine efflux at different striatal subregions in response to drug-associated cues (simulation results). In line with
experimental data [17], the model shows (left column) that in response to drug-associated cues, there will be dopamine efflux in the ventral striatum,
after limited and extensive training. In more dorsolateral subregions, however, cue-elicited DA efflux will develop gradually during the course of
learning. The model predicts (second column from right) that this delayed development of cue-elicited DA efflux in dorsal striatum depends on the
DA-dependent serial connectivity that links the ventral to the dorsal striatum. That is, as a result of disconnecting the DA spirals, whereas cue-elicited
DA response remains intact in the ventral striatum, it significantly decreases in the dorsolateral striatum. Moreover, the model predicts (third column
from right) similar results for cue-induced DA efflux in dorsolateral striatum for the case of lesioned ventral striatum. Finally, if after extensive drug-
cue pairing in intact animals, a punishment follows drug, the model predicts (right column) that drug-related cue results in inhibition of the ventral
leg of DA spirals, even after limited training. In more dorsal regions, however, DA efflux decreases slowly during learning, but will remain positive,
even after extensive drug-punishment pairing. The data presented in this figure are obtained from ‘‘one’’ simulated animal and thus, no statistical
analysis was applicable.
doi:10.1371/journal.pone.0061489.g003
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Furthermore, our model explains the evidence in [17] that such

delayed development of cue-elicited DA efflux in the dorsolateral

striatum depends on the ventral striatum (Figure 3). In our model,

a simulated unilateral lesion of the ventral striatum (the abstract

valuation level in the model) significantly decreases the drug cue-

predicted value at detailed levels in the ipsilateral hemisphere and

thus, significantly decreases the level of cue-induced DA efflux. In

order to model lesion of the ventral striatum, we simply fix the

value of all stimuli at the highest level of the hierarchy to zero.

Similarly, our model predicts that the development of phasic

DA signaling in the dorsolateral striatum depends on the integrity

of the DA spiraling circuit (Figure 3). In fact, a disconnection in

the DA spiraling circuit in our model cuts the communication

across levels of abstraction, which in turn, prevents accumulation

of the drug-induced bias on the reinforcement signal, along the

levels of decision hierarchy. To model the disconnection in the

DA-dependent serial circuitry of ventral to dorsal striatum, we

clamp each level of abstraction to compute the prediction error

signal locally (as in equation 3), without receiving the value of the

temporally advanced state from the immediately higher level of

abstraction.

Furthermore, the model predicts that the pattern of cue-elicited

DA efflux will change if after an extensive training with cocaine

and cocaine associated cues, as in the above experiment, one starts

to pair the cocaine delivery with a strong punishment. We predict

that the DA efflux in response to the cocaine-associated cue should

rapidly decrease below baseline in the ventral striatum. In the

dorsolateral striatum, however, cue-induced DA release should

stay above baseline (Figure 3) with a possible delayed partial

decrease. This indicates assigning positive subjective value to the

drug stimulus at detailed levels, despite negative (below baseline)

values at cognitive levels. It is noteworthy that this prediction

depends on the assumption that punishment is treated by the brain

simply as a negative reward. This assumption is somewhat

controversial: it is clearly supported by experimental studies

[35], yet also discussed otherwise by others [14,36]. Except for this

prediction, other aspects of the model do not depend on whether

punishment is encoded by dopamine or by another signaling

system.

The training regimen used by Willuhn et al. [34] is not

sufficiently extended to producing compulsive drug-seeking

behavior, characterized by insensitivity to drug-associated punish-

ments [37,38]. Thus, a key question to be answered is what is the

relation between delayed development of cue-induced DA

response in DLS, and late development of compulsive responding.

According to our model, compulsive behavior requires not only

the excessive valuation of drug choice at low levels of the

hierarchy, but also the transfer of control over behavior from the

abstract cognitive to the low-level habitual processes. The time

scale of these two processes are only partly dependent to each

other: the over-valuation process depends on the prediction error

signal, while the transfer of behavioral control also depends on the

relative uncertainties in value-estimation. Hence, the over-

valuation of drug-associated cues at low levels of the hierarchy

can precede the shift of control over behavior from top to the

bottom of the hierarchy. The exact time scales of the two processes

depend on the learning rate and the noise inherent at the different

levels, respectively (see File S1 for supplementary information). In

other words, it is likely that the cue-induced dopamine efflux in the

DLS may develop significantly before the compulsive drug-seeking

is behaviorally manifested.

Behavioral implications of the inconsistent valuation for
drugs versus natural rewards

Behaviorally, in our model, if punishment is paired with drug at

the early stages of voluntary drug use, the abstract value of drug-

seeking response becomes negative rapidly. Assuming that drug-

seeking is controlled by abstract levels during these early stages,

negative abstract evaluation of drug choice makes the subject

unwilling to experience that course of action any longer. This will

prevent consolidation of strong low-level preference toward drugs

over time. Thus, the model explains elasticity of drug choices to

costs during the early stages of drug consumption, but not after

chronic use. Consistently, animal models of addiction show that

insensitivity of drug-seeking responses to harmful consequences

associated with drug develops only after prolonged drug self-

administration, but not limited drug use [37,38]. In contrast to our

theory, earlier computational models of addiction [9,10] are in

direct contradiction with this body of evidence, since they predict

that adverse behavioral outcomes that immediately follow drug

use, have no motivational effect even at the very early stages of

experiencing drugs (see File S1 for supplementary information).

Our model further accounts for the occurrence of blocking

effect for drug outcomes [39]. Blocking is a conditioning

phenomenon where prior pairing of a stimulus A with an outcome

blocks formation of association between a different stimulus B with

that outcome in a subsequent training phase, where both A and B

are presented before the delivery of the outcome [40]. Results of

simulating our model in a Pavlovian experimental design (see File

S1 for supplementary information on the Pavlovian version of the

model) shows that for both cases of natural rewards and drugs,

when the estimated value at a certain level of the hierarchy reaches

its steady state (rather than growing unboundedly), no further

learning occurs at that level, since the prediction error signal has

decreased to zero (Figure 4). Thus, associating a new stimulus with

the already-predicted reward will be blocked. Behavioral evidence

showing a blocking effect associated with both drug and natural

reinforcers [39] has been used as a major argument to criticize the

previously proposed dopamine-based computational model of

addiction [9]. Here we showed that focusing on the hierarchical

nature of representations and dorsal-ventral spiraling dopamine

loop organization can in fact account for the blocking data,

thereby circumventing this criticism (see File S1 for supplementary

information).

As mentioned before, several lines of evidence show a

progressive dominance of the dorsal over the ventral striatum in

the control over behavior during the course of learning [8,31,32].

Being interpreted on a background of those evidence, the

imbalanced drug-seeking valuation across the hierarchy also

explains addicts’ unsuccessful efforts to cut down drug-use after

prolonged experience with drug, when control over drug-related

choices has shifted from cognitive to low-level habitual processes.

This supremacy of drug-dominated processes naturally leads to

behavioral inelasticity to drug-associated costs (compulsive drug-

seeking), likely accompanied with self-described mistake. For the

case of natural rewards, however, our model predicts that even

though behavioral inelasticity increases over the course of

learning, as no valuation-inconsistency develops across the levels

of the hierarchy, punishments associated with reward will

eventually inhibit reward-seeking.

Our model focuses on evaluation of actions in a ‘‘presumably

given’’ decision hierarchy, and leaves aside how the abstract

options and their corresponding low-level subroutines are initially

discovered during development. Discovering the decision hierar-

chy is proposed to be a bottom-up process, accomplished by

chunking together sequences of low-level actions and constructing

Hijacked Decision Hierarchy in Addicts

PLOS ONE | www.plosone.org 6 April 2013 | Volume 8 | Issue 4 | e61489



more abstract options [41]. This process, supposedly undergoing a

shift from the dorsal to the ventral striatum, is in the opposite

direction of the competition mechanism proposed here, for taking

control over behavior.

Discussion

The growing body of evidence on the differential role of

different striatal subregions in addiction is usually interpreted in

the framework of habitual vs. goal-directed dichotomy [8,14,34].

The hierarchical decision making approach we use here is

complementary to such dual-system accounts. Whereas the dual-

process approach deals with different algorithms (model-free vs.

model-base [30]) for solving a single problem, the hierarchical RL

framework focuses on different representations of the same

problem at different levels of temporal abstraction. In theory,

either a habitual or a goal-directed algorithm can solve each of

these different representations of the problem. In our model, the

accumulation of drug-induced biases over DA spirals occurs in a

setting where the value-estimation algorithm is model-free (habit

learning). However, this does not rule out existence of model-

based systems working at the top levels of the hierarchy. One can

simply incorporate the PFC-dependent goal-directed valuation

and decision system into the model by assuming that actions at the

highest levels of abstraction are evaluated by a goal-directed

system. While such complication does not change the nature of

results presented in this manuscript, its ensuing additional

flexibility in explaining other aspect of addiction is left to future

studies. In fact, in our model, irrespective of whether a goal-direct

system exists or not, the discrepancy in the asymptotic value of

drug-seeking between the two extremes of the hierarchy grows

with the number of decision levels governed by the ‘‘habitual’’

process.

In the light of our theory, relapse can be viewed as revival of

dormant motor-level maladaptive habits, after a period of

dominance of cognitive levels. In fact, one can imagine that as a

result of cognitive therapy (in human addicts) or forced extinction

(in animal models of abstinence), high value of drug-seeking at the

detailed level of the hierarchy is not extinguished, but become

dormant due to shift of control back to cognitive levels. Since drug-

related behavior is sensitive to adverse consequences at abstract

levels, hence drug-seeking can be avoided as long as high-level

cognitive processes dominate control of behavior. One can even

speculate that the popular 12 step programs (e.g. Alcoholics

Anonymous, Narcotics Anonymous, etc) work in part by explicitly

requiring the participants to admit the inconsistency of their drug

related lifestyle, thereby empowering the abstract cognitive levels

to exert explicit control over their behavior. Stressful conditions or

re-exposure to drug (priming) can be thought of as risk factors that

weaken the dominance of abstract levels over behavior, which can

result in re-emergence of drug-seeking responses (due to the latent

high non-cognitive values).

In summary, we propose a coherent account for several,

apparently disparate phenomena characteristic of drug addiction.

Our model provides a normative account for data on the

differential roles of the ventral vs. dorsal striatal circuits in drug-

seeking acquisition and habit performance, as well as the selective

role of feed-forward DA connectivity for effects of drug versus

natural reinforcers. Most importantly, we show how the drug-

induced pathology in ventral-to-dorsal DA signals trickling the

motivational information down cognitive representation hierarchy

could leads to discordance between addicts’ abstract attitudes

toward drug-seeking and what they actually do. Obviously, our

model does not, and is not meant to, give a complete account of

drug addiction. Explaining other unexplained aspects of addiction

requires incorporating many other brain systems that are

demonstrated to be affected by drugs of abuse [42]. How to

incorporate such systems within the formal computational network

remains a topic for further investigation.

Supporting Information

File S1 Figure S1,A sample decision hierarchy with five levels of

abstraction. Figure S2, The corresponding neural circuit for the

three discussed value learning algorithms is a hierarchical decision

structure. A, Using a simple TD-learning algorithm (equation S7),

the prediction error signal in each level of abstraction is computed

independently from other levels. B, In the model proposed by

Haruno and Kawato (4) (equation S8), the value of the temporally-

advanced state comes from one higher level of abstraction. C, in

our model (equation S9) the value of the temporally-advanced

state is substituted with a combination of the reward and Q-value

Figure 4. Blocking effect for natural vs. drug rewards. The model predicts that blocking occurs for natural rewards (A) and drugs (B), only if
the initial training period is ‘‘extensive’’, such that the first stimulus fully predicts the value of the outcome. After ‘‘moderate’’ training, cognitive levels
that are more flexible fully predict the values and thus, block further learning. However, learning is still active in low-level processes when the second
training phase (simultaneous presentation of both stimuli) starts. Thus, our model predicts that moderate initial training in a blocking experiment
with natural rewards will also result in cognitive/behavioral inconsistency. The data presented in this figure are obtained from ‘‘one’’ simulated animal
and thus, no statistical analysis was applicable.
doi:10.1371/journal.pone.0061489.g004
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of the performed action at a higher level of abstraction. Figure
S3, Our model predicts different sites of action of drugs on the

reward-learning circuit: sites 1 to 3. Drugs affecting sites 4 to 6, in

contrast, will not result in the behavioral and neurobiological

patterns produced by simulation of the model for drugs, but will

produce results similar to the case of natural rewards. Figure S4,
The task used for simulating the uncertainty-based competition

mechanism among the levels of the hierarchy for taking control

over behavior. Figure S5, Simulation result, showing gradual

shift of control over behavior from higher to lower levels of the

hierarchy. Q(s,a) and U(s,a) show the estimated value and

uncertainty of the state-action pairs, respectively.

(PDF)
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