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Abstract

Instrumental responses are hypothesized to be of two kinds: habitual and goal-directed, mediated by the sensorimotor and
the associative cortico-basal ganglia circuits, respectively. The existence of the two heterogeneous associative learning
mechanisms can be hypothesized to arise from the comparative advantages that they have at different stages of learning. In
this paper, we assume that the goal-directed system is behaviourally flexible, but slow in choice selection. The habitual
system, in contrast, is fast in responding, but inflexible in adapting its behavioural strategy to new conditions. Based on
these assumptions and using the computational theory of reinforcement learning, we propose a normative model for
arbitration between the two processes that makes an approximately optimal balance between search-time and accuracy in
decision making. Behaviourally, the model can explain experimental evidence on behavioural sensitivity to outcome at the
early stages of learning, but insensitivity at the later stages. It also explains that when two choices with equal incentive
values are available concurrently, the behaviour remains outcome-sensitive, even after extensive training. Moreover, the
model can explain choice reaction time variations during the course of learning, as well as the experimental observation
that as the number of choices increases, the reaction time also increases. Neurobiologically, by assuming that phasic and
tonic activities of midbrain dopamine neurons carry the reward prediction error and the average reward signals used by the
model, respectively, the model predicts that whereas phasic dopamine indirectly affects behaviour through reinforcing
stimulus-response associations, tonic dopamine can directly affect behaviour through manipulating the competition
between the habitual and the goal-directed systems and thus, affect reaction time.
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Introduction

A very basic assumption in theories of animal decision making is

that animals possess a complicated learning machinery that aims

for maximizing rewards and minimizing threats to homeostasis

[1]. The primary question within this framework is then how the

brain, constrained by computational limitations, uses past

experiences to predict rewarding and punishing consequences of

possible responses.

The dual-process theory of decision making proposes that two

distinct brain mechanisms are involved in instrumental respond-

ing: the ‘‘habitual’’, and the ‘‘goal-directed’’ systems [2]. The

habitual system is behaviourally defined as being insensitive to

outcome-devaluation, as well as contingency-degradation. For

example, in the experimental paradigm of outcome-devaluation,

the animal is first trained for an extensive period to perform a

sequence of actions for gaining access to a particular outcome. The

outcome is then devaluated by being paired with an aversive

stimuli (conditioned taste-aversion), or by over-consumption of

that outcome (sensory-specific satiety). The critical observation is

that in the test phase, which is performed in extinction, the animal

continues responding for the outcome, even though it is

devaluated. The goal-directed process, on the other hand, is

defined as being sensitive to outcome-devaluation and contingen-

cy-degradation. This behavioural sensitivity is shown to emerge

when the pre-devaluation training phase is limited, rather than

extensive Adams [3].

Based on these behavioural patterns, two different types of

associative memory structures are proposed for the two systems.

The behavioural autonomy demonstrated by the habitual system is

hypothesized to be based on the establishment of associations

between contextual stimuli and responses (S-R), whereas repre-

sentational flexibility of the goal-directed system is suggested to

rely on associations between actions and outcomes (A-O).

A wide range of electrophysiological, brain imaging, and lesion

studies indicate that different, and topographically segregated

cortico-striato-pallido-thalamo-cortical loops underlie the two

learning mechanisms discussed above (see [4] for review). The

sensorimotor loop, comprising of glutamatergic projections from

infralimbic cortices to dorsolateral striatum, is shown to be

involved in habitual responding. In addition, phasic activity of

dopamine (DA) neurons, originating from midbrain and projecting

to different areas of the striatum is hypothesized to carry a

reinforcement signal, that is shown to play an essential role in the

formation of S-R associations. The associative loop, on the other

hand, is proposed to underlie goal-directed responding. Some

critical components of this loop include dorsomedial striatum and

paralimbic cortex.
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The existence of two parallel neuronal circuits involved in

decision making arises the question of how the two systems

compete for taking control over behaviour. Daw and colleagues,

proposed a reinforcement learning model in which, the compe-

tition between the two systems is based on the relative uncertainty

of the systems in estimating the value of different actions [5]. Their

model can explain some behavioural aspects of interaction

between the two systems. A critical analysis of their model is

provided in the discussion section.

In this paper, based on the model proposed in [5], and using

the idea that reward maximization is the performance measure

of the decision making system of animals, we propose a novel,

normative arbitration mechanism between the two systems that

can explain a wider range of behavioural data. The basic

assumption of the model is that the habitual system is fast in

responding, but inflexible in adapting its behavioural strategy to

new conditions. The goal-directed system, in contrast, can

rapidly adapt its instrumental knowledge, but is considerably

slower than the habitual system in making decisions. In the

proposed model, not only the two systems seek to maximize the

accrual of reward -by different algorithms-, but the arbitration

mechanism between them is also designed in a way to exploit

the comparative advantages of the two systems in value

estimation.

As a direct experimental observation for supporting the

assumptions of the model, it has been reported classically that

when rats traverse a T-maze to obtain access to an outcome, at the

choice points, they pause and vicariously sample the alternative

choices before committing to a decision [6–8]. This behaviour,

called ‘‘vicarious trial-and-error’’ (VTE), is defined by head

movements from one stimulus to another at a choice point,

during simultaneous discrimination learning [9]. This hesitation-

and conflict-like behaviour is suggested to be indicative of

deliberation or active processing by a planning system

[6,7,10,11]. Important for our discussion, it has been shown that

after extensive learning, VTE frequency declines significantly

[6,12,13]. This observation is interpreted as a transition of

behavioural control from the planning system to the habitual

one, and shows difference in the decision-time between habitual

and goal-directed responding [14].

Beside being supported by the VTE behaviour, the assumption

about the relative speed and flexibility of the two systems allows

the model to explain some behavioural data on choice reaction

time. The model also predicts that whereas phasic activity of DA

neurons indirectly affects the arbitration through intervening in

habit formation, tonic activity of DA neurons can directly

influence the competition by modulating the cost of goal-directed

deliberation.

Model

The Preliminaries
Reinforcement learning (RL) is learning how to establish

different types if instrumental associations for the purpose of

maximizing the accrual of rewards [15]. In the RL framework,

stimuli and responses are referred to as states and actions,

respectively. An RL agent perceives its surrounding environment

in the form of a finite set of states, S, in each of which, one action

among a finite set of actions, A, can be taken. The dynamics of the

environment can be formulated by a transition function and a

reward function. The transition function, denoted by pT (s
a

s’),
represents the probability of reaching state s’ after taking action a
at state s. The reward function, pR(rDs,a), indicates the probability

of receiving reward r, by executing action a at state s. This

structure, known as the Markov Decision Process (MDP), can be

demonstrated by a 4-tuple, SS,A,pT ,pRT. At each time-step, t, the

agent is in a certain state, say st, and makes a choice, say at, from

several alternatives on the basis of subjective values that it has

assigned to them through its past experiences in the environment.

This value, denoted by Q(st,at), is aimed to be proportional to the

sum of discounted rewards that are expected to be received after

taking action at onward:

Q(st,at)~E rtzcrtz1zc2rtz2z . . . jst,at

� �
~E

X?
i~t

ci{trijst,at

" #
ð1Þ

0ƒcƒ1 is the discount factor, which indicates the relative

incentive value of delayed rewards compared to immediate ones.

Model-free and model-based RL, are two variants of reinforce-

ment learning with behavioural characteristics similar to the

habitual and goal-directed systems, respectively [5]. These two

variants are in fact two different mechanisms for estimating the Q-

function of equation 1 , based on the feedbacks, r, that the animal

receives from the environment through learning.

In temporal difference RL (TDRL), which is an implementation

of model-free RL, a prediction error signal, dt, is calculated each

time the agent takes an action and receives a reward from the

environment. This prediction error is calculated by comparing the

prior expected value of taking that action, Q̂QH (st,at), with its

realized value after receiving reward, rt:

dt~rtz1zcV̂V (stz1){Q̂QH (st,at) ð2Þ

V̂V (stz1) is the maximum value of all feasible actions available at

stz1. The prediction error signal is hypothesized to be carried by

Author Summary

When confronted with different alternatives, animals can
respond either based on their pre-established habits, or by
considering the short- and long-term consequences of
each option. Whereas habitual decision making is fast,
goal-directed thinking is a time-consuming task. Instead,
habits are inflexible after being consolidated, but goal-
directed decision making can rapidly adapt the animal’s
strategy after a change in environmental conditions. Based
on these features of the two decision making systems, we
suggest a computational model using the reinforcement
learning framework, that makes a balance between the
speed of decision making and behavioural flexibility. The
behaviour of the model is consistent with the observation
that at the early stages of learning, animals behave in a
goal-directed way (flexible, but slow), but after extensive
learning, their responses become habitual (inflexible, but
fast). Moreover, the model explains that the animal’s
reaction time must decrease through the course of
learning, as the habitual system takes control over
behaviour. The model also attributes a functional role to
the tonic activity of dopamine neurons in balancing the
competition between the habitual and the goal-directed
systems.

Habitual and Goal-directed Systems in Competition
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the burst firing of midbrain dopamine neurons. This signal can be

used to update the estimated value of actions:

Q̂QH (st,at)/Q̂QH (st,at)zadt ð3Þ

a is the learning rate, representing the degree to which the

prediction error adjusts the QH -values of the habitual system.

Assuming that the reward and transition functions of the

environment are stationary, equations 2 and 3 will lead the QH -

values to eventually converge through learning to the expected

sum of discounted rewards. Therefore, after a sufficiently long

learning period, the habitual system will be equipped with the

instrumental knowledge required for taking the optimal behav-

ioural strategy. This optimal decision making is achievable without

the agent knowing the dynamics of the environment. This is why

this mechanism is known as model-free reinforcement learning.

The gradual convergence of QH -values to their steady levels, leads

the habitual system toward being insensitive to sudden changes in

the environment’s dynamics, such as outcome-devaluation and

contingency degradation. Instead, as all the information required

for making a choice between several alternatives is cached in S-R

associations through the course of learning, the habitual responses

can be made within a short interval after the stimulus is presented.

Instead of keeping and updating point estimations, by using

Kalman reinforcement learning [16], the habitual system in our

model keeps probability distributions for the QH -values of each

state-action pair (See Methods for mathematical details). These

probability distributions contain substantial information that will

be later used for arbitration between the habitual and the goal-

directed systems.

In contrast to the habitual process, the value estimation

mechanism in a model-based RL is based on the transition and

reward functions that the agent has learned through past

experiences [5,15]. In fact, through the course of learning, the

animal is hypothesized to learn the causal relationship between

various actions and their outcomes, as well as the incentive value

of different outcomes. Based on the former component of the

environment’s dynamics, the goal-directed system can deliberate

the short-term and long-term consequences of each sequence of

actions. Then by using the learned reward function, calculating

the expected value for each action sequence will be possible.

Letting Q̂QG(s,a) denote the value of each action calculated by

this method, the recursive value-iteration algorithm below can

compute it (See Methods for algorithmic details):

Q̂QG(s,a)~E½p̂pR(rDs,a)�zc
X

s’

p̂pT (s
a

s’):V̂V (s’) ð4Þ

Due to employing the estimated model of the environment for

value estimation, the goal-directed system can rapidly revise the

estimated values after an environmental change, as soon as the

transition and reward functions are adapted to the new conditions.

This can explain why the goal-directed system is sensitive to

outcome-devaluation and contingency-degradation [5]. But ac-

cording to this computational mechanism, one would expect the

value estimation by the goal-directed system to take a considerable

amount of time, as compared to the habit-based decision time.

The difference in speed and accuracy of value estimation by the

habitual and goal-directed processes is the core assumption of the

arbitration mechanism proposed in this paper, that allows the

model to explain a set of behavioural and neurobiological data.

Speed/Accuracy Trade-off
If we assume for simplicity that the goal-directed system is

always perfectly aware of the environment’s dynamics, then it can

be concluded that this system has perfect information about the

value of different choices at each state. This is a valid assumption

in most of the experimental paradigms considered in this paper.

For example, in outcome-devaluation experiments, due to the

existence of a re-exposure phase between training and test phases,

the subjects have the opportunity to learn new incentive values for

the outcomes. Although the goal-directed system, due to its flexible

nature, will always have ‘‘more accurate’’ value estimations

compared to the habitual system, the assumption of having

‘‘perfect’’ information might be violated under some conditions

(like reversal learning tasks). This violation will naturally lead to

some irrational arbitrations between the systems.

Thus, the advantage of using the goad-directed system can be

approximated by the advantage of having perfect information

about the value of actions. But this perfect information can be

extracted from transition and reward functions at the cost of losing

time; a time which could be instead used for taking rapid habitual

actions and thus, receiving less rewards in magnitude, but more in

frequency. This trade-off is the essence of the arbitration rule

between the two systems that we propose here. In other words, we

hypothesize that animals balance the benefits of deliberations

against their cost. Its benefit is proportional to the value of having

perfect information, and its cost is equal to the potential reward

that could be acquired during the time that the organism is waiting

for the goal-directed system to deliberate.

As illustrated schematically in Figure 1 , at each time-step, the

habitual system has an imperfect estimate for the value of each

action in the form of a distribution function. Using these

distribution functions, the expected benefit of estimating the value

of each action a by the goal-directed system is computed (see

below). This benefit, called ‘‘value of perfect information’’, can be

denoted by VPI(s,a). The cost of deliberation, denoted by �RRt, is

also computed separately (See below). Having the cost and benefit

of deliberation for each action, if the benefit is greater than the

cost, i.e. VPI(a,a)w�RRt, the arbitrator will decide to run the goal-

directed system for estimating the value of action a; otherwise, the

value of action a that will be used for action selection will be equal

to the mean of the distribution function cached in the habitual

system for that action. Finally, based on the estimated values of

different actions that have been derived from either of the two

instrumental systems, a softmax action selection rule, in which the

probability of choosing each action increases exponentially with its

estimated value, can be used (See Methods). Upon executing the

selected action and consequently receiving a reward and entering

a new state, both the habitual and goal-directed systems will

update their instrumental knowledge for future exploitations.

Based on the decision theoretic ideas of ‘‘value of information’’

[17], a measure has been proposed in [18] for information value in

the form of expected gains in performance, resulted from

improved policies if perfect information was available. This

measure, which is computed from probability distributions over

the Q-value of choices, is used in the original paper for proposing

an optimal solution for the exploration/exploitation trade-off.

Here, we use the same measure for estimating the benefit of goal-

directed search.

To see how this measure can be computed, assume that the

animal is in the state s, and one of the available actions is a, with

the estimated value Q̂QH (s,a) assigned to it by the habitual system.

Habitual and Goal-directed Systems in Competition
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At this stage, we are interested to know how much the animal will

benefit if it understands that the true value of actions a is equal to

Q�(s,a), rather than Q̂QH (s,a). Obviously, any new information

about the exact value of an action is valuable only if it improves

the previous policy of the animal that was based on Q̂QH (s,a). This

can happen in two scenarios: (a) when knowing the exact value

signifies that an action previously considered to be sub-optimal is

revealed to be the best choice, and (b) when the new knowledge

shows that the action which was considered to be the best, is

actually inferior to some other actions. Therefore, the gain of

knowing that the true value of Q̂QH (s,a) is Q�(s,a) can be defined as

[18]:

Gains,a(Q�(s,a))~

Q̂QH (s,a2){Q�(s,a)

if a~a1 and Q�(s,a)vQ̂QH (s,a2)

Q�(s,a){Q̂QH (s,a1)

if a=a1 and Q�(s,a)wQ̂QH (s,a1)

0 otherwise

8>>>>>><
>>>>>>:

ð5Þ

a1 and a2 are the actions with the best and second best expected

values, respectively. In the definition of the gain function, the first

Figure 1. An example for showing the proposed arbitration mechanism between the two processes. (A) The agent is at state S0 and
three choices are available: a1 , a2 and a3 . The habitual system, as shown, has an estimate for the value of each action in the form of probability
distribution functions, based on its previous experiences. These uncertain estimated values are then compared to each other in order to calculate the
expected gain of having the exact value of each action (VPI ). In the case of this example, action a3 has the highest mean value, according to the
uncertain knowledge in the habitual system. However, it is probable that the exact value of this action be less than the mean value of action a1 . In
that case, the best strategy would be to choose action a1, rather that a3 . Thus, it is worth knowing the exact value of a3 (VPI(s0,a3) has a high value).
(B) The exact value of actions is supposed to be attainable if a tree search is performed in the decision tree, by the goal-directed system. However, the
benefit of search must be higher than its cost. The benefit of deliberation for each action is equal to its VPI signal, whereas the cost of deliberation is
equal to �RRt, which is the total reward that could be potentially acquired during the deliberation time, t (�RR is the average over acquired rewards
during some past actions). Since for action a3 , the benefit of deliberation has exceeded its cost, the goal-directed system is engaged in value
estimation. (C) Finally, action selection is carried out based on the estimated values for actions, which have come from either the habitual (for actions
a1 and a2) or the goal-directed (for action a3) system. For those actions that are not deliberated, the mean value of their distribution function is used
for action selection.
doi:10.1371/journal.pcbi.1002055.g001

Habitual and Goal-directed Systems in Competition
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and the second rules correspond to the second and the first

scenarios discussed above, respectively.

According to this definition, calculating the gain function for

each choice requires knowing the true value of that state-action

pair, Q�(s,a), which is unavailable. But, as the habitual system is

assumed to keep a probability distribution function for the value of

actions, the agent has access to the probability of possible values of

Q�(s,a). Using this probability distribution of Q�(s,a), the animal

can take expectation over the gain function to estimate the value of

perfect information (VPI ):

VPI(s,a)~E Gains,a(Q�(s,a))½ �

~

ð?
{?

Gains,a(x)Pr½QH (s,a)~x�dx
ð6Þ

Intuitively, and crudely speaking, the value of perfect informa-

tion for an action is somehow proportional to the overlap between

the distribution function of that action and the distribution

function of the expectedly best action. Exceptionally, for the case

of the expectedly best action, the VPI signal is proportional to the

overlap between its distribution function and the distribution

function of the expectedly second best action. It is worth to

emphasize that for the calculation of VPI signals, the goal-directed

system has in no way been involved and instead, all the necessary

information has been provided by the habitual process. The VPI
signal for an action expresses the degree to which having perfect

information about that action, i.e. knowing its true value, results in

policy improvement and thus, VPI is indicative of the benefit of

deliberation.

It is worth mentioning that computing the VPI integral

proposed in equation 6 is shown to have a closed form equation

[18] and thus, the integral doesn’t need to be actually taken.

Therefore, assuming that the time needed for evaluating VPI is

considerably less than that of running the goal-directed system is

plausible.

For computing the cost of deliberation, on the other hand,

assuming that deliberation about the value of each action takes a

fixed time, t, the cost of deliberation can be quantified as �RRt;

where �RR is the average rate of reward per time unit. Average

reward can be interpreted as the opportunity cost of latency in

responding to the environmental stimuli [19]. It means that when

the average reward has a high value, every second in which a

reward is not obtained is costly. Average reward can be computed

as an exponentially-weighted moving average of obtained rewards:

�RRtz1/(1{s)�RRtzsrt ð7Þ

The arbitration mechanism proposed above, is an approxi-

mately optimal trade-off between speed and accuracy of

responding. This means that given that the assumptions are true,

the arbitration mechanism calls or doesn’t call the goal-directed

system, based on the criterion that sum of discounted rewards, as

defined in equation 1 , should be maximized [See Methods for

optimality proof]. The most challenging assumption, as mentioned

before, is that the goal-directed system is assumed to have perfect

information on the value of choices. As some cases that challenge

the validity of this assumption one could mention the cases where

only the goal-directed system is affected (for example after

receiving some verbal instructions by the subject). Clearly, the

cached values in the habitual system and thus the VPI signal will

not be affected under such treatments, though the real accuracy

that the goal-directed system has in estimating values has changed.

Results

Outcome-Sensitivity after Moderate vs. Extensive
Training

First discovered by Adams [3] and later replicated in a lengthy

series of studies [20–23], it has been shown that the effect that the

devaluation of outcome exerts on the animal’s responses depends

upon the extent of pre-devaluation training; i.e. responses are

sensitive to outcome devaluation after moderate training, whereas

overtraining makes responding insensitive to devaluation.

To check the validity of the proposed model, the model has

been simulated in a schedule analogous to those used in the above

mentioned experiments. The formal representation of the task,

which was first suggested in [5], is illustrated in Figure 2 . As the

figure shows, the procedure is composed of 3 phases. The agent is

first placed in an environment where pressing the lever (PL)

followed by entering the food magazine (EM) results in obtaining

a reward with the magnitude of one; but magazine entry before

lever press, or pressing the lever and not entering the magazine

leads to no reward. As the task is supposed to be cyclic, after

performing each chain of actions, the agent goes to the initial state

and will start afresh (Figure 2:A). After a certain amount of

training in this phase, the food outcome is devalued by being

paired with poison, which is aversive with magnitude of one

(equivalently, its reward is equal to -1) (Figure 2:B). Finally, to

assess the effect of devaluation, the performance of the agent is

measured in extinction, i.e. in the absence of any outcome (neither

appetitive, nor aversive), in order to avoid the instrumental

associations acquired during training from being affected in the

test phase (Figure 2:C).

The behavioural results, as illustrated in Figure2:D, show that

behavioural sensitivity to goal-devaluation depends on the extent

of pre-devaluation training. In the moderate training case, the rate

of responding has significantly decreased after devaluation, which

is an indicator of goal-directed responding. However, after

extensive training, no significant sensitivity to devaluation of the

outcome is observed, implying that responding has become

habitual.

Through numerical simulation, homogeneous agents, i.e. agents

with equal free parameters of the model, have carried out the

experimental procedure under two scenarios: moderate vs.

extensive pre-devaluation training. The only difference between

the two scenarios is in the number of training trials in the first

phase of the schedule: 40 trials for the moderate, and 240 trials for

the extensive training scenario. The results are illustrated

separately for these two scenarios in Figure 3 . It must be noted

that since neither the ‘‘lever-press’’ nor the ‘‘enter-magazine’’

actions are performed by the animal during the devaluation phase,

the habitual knowledge remains intact in this period; i.e. the

habitual system is not simulated during the devaluation period.

Devaluation is assumed to only affect the reward function, used by

the goal-directed system.

Figure 3:A and G show that at the early stages of learning, the

VPI signal has a high value for both of the actions, PL and EM,

at the initial state, s0. This indicates that due to initial ignorance of

the habitual system, knowing the exact value of both of the actions

will greatly improve the agent’s behavioural strategy. Hence, the

benefit of deliberation is more than its cost, �RRt. By obtaining a

reward, the �RRt signal elevates gradually. Concurrently, as the QH -

values estimated by the habitual process for the two actions

Habitual and Goal-directed Systems in Competition
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converge to their real values through learning, the difference

between them increases (Figure 3:D and J). This increase leads to

the overlap between the distribution functions over the two actions

becoming less and less (Figure 3:E and K) and consequently, the

VPI signal decreasing gradually.

Now by focusing on the moderate training scenario, it is clear

that when devaluation has occurred at the trial number 40, the

VPI signals have not yet become less than �RRt (Figure 3:A). Thus,

the actions have been goal-directed at the time of devaluation and

hence, the agent’s responses have shown a great sensitivity to

devaluation at the very early stages after devaluation; i.e. the

probability of choosing action PL has sharply decreased to 50%,

which is equal to that of action EM (Figure 3:B and F). Figure 3:C

also shows that in the moderate training scenario, deliberation

time has always been high; indicating that actions have always

been deliberated using the goal-directed system.

In contrast to the moderate training scenario, the VPI signal is

below �RRt at the time of devaluation in the extensive training

scenario (Figure 3:G). This means that at this point of time, the

cost of devaluation has exceeded its benefit and hence, actions are

chosen habitually. This can be seen in Figure 3:I, where

deliberation time has reached zero after almost 100 training trials.

As a consequence, the agent’s responses have not sharply changed

after devaluation (Figure 3:H and L). Because the test has been

performed in extinction, the average reward signal has gradually

decreased to zero after devaluation and concurrently, the VPI

signal has slowly raised again, due to the reduction of the

difference between the QH -values of the two choices (Figure 3:J)

and so, the augmentation of the overlap between their distribution

functions. At the point that VPI has exceeded �RRt, the agent’s

responses have become goal-directed again and so, deliberation

time has boosted (Figure 3:I). Consistently, the rate of selection of

each of the two choices has been adapted to the post-devaluation

conditions (Figure 3:H).

In a nutshell, the simulation of the model in these two scenarios

is consistent with the behavioural observation that moderately

trained behaviours are sensitive to outcome devaluation, but

extensively trained behaviours are not. Moreover, the model

predicts that after extensive training, deliberation time declines; a

prediction that is consistent with the VTE behaviour observed in

rats [6]. Furthermore, the model predicts that deliberation time

increases with a lag after devaluation in the extensive training

scenario, whereas it remains unchanged before and after

devaluation in the moderate training scenario.

Just for the sake of more clarification, the reason that the mean

value of QH (s0,EM) in Figures 3:E and K is above zero is because of

the cyclic nature of the task, i.e. by taking action EM at state s0, the

agent goes back to the same state, which might have a positive value.

Outcome-Sensitivity in a Concurrent Schedule
The focus of the previous section was on simple tasks with only

one response for each outcome. In another class of experiments,

the development of behavioural autonomy has been assessed in

more complex tasks where two different responses produce two

different outcomes [21,24–26]. Among those experiments, to the

best of our knowledge, it is only in the experiment in [26] that the

Figure 2. Formal representation of the devaluation experiment with one lever and one outcome, and behavioural results. (A) In the
training phase, the animal is put in a Skinner box where pressing the lever (PL) followed by a nose-poke entry in the food magazine (enter-magazine:
(EM)) leads to obtaining the food reward. Other action sequences, like entering the magazine before pressing the lever (i.e. (s0,EM)) result in no
reward. As the task is supposed to be cyclic, the agent will return back to the initial state, S0 , after taking each sequence of responses. (B) In the
second phase, the devaluation phase, the food outcome which used to be acquired during the training period is devalued by being paired with
illness. (C) The animal’s behaviour is then tested in the same Skinner box used for training, with the difference that no outcome is delivered to the
animal anymore, in order to avoid changes in behaviour due to new reinforcement. (D) Behavioural results (adopted from ref [22]) show that the rate
of pressing the lever decreases significantly after devaluation for the case of moderate pre-devaluation training. In contrast, it doesn’t show a
significant change, when the training period has been extensive. Error bars represent s:e:m (standard error of the mean).
doi:10.1371/journal.pcbi.1002055.g002
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Figure 3. Simulation results of the model in the schedule depicted in Figure 2. The model is simulated under two scenarios: moderate
training (left column), and extensive training (right column). In the moderate training scenario, the agent has experienced the environment for 40
trials before devaluation treatment, whereas in the extensive training scenario, 240 pre-devaluation training trials have been provided. In sum, the
figure shows that after extensive training, but not moderate training, the VPI signal is below �RRt at the time of devaluation (Plot G against A). Thus,
the behaviour in the second scenario, but not the first, doesn’t change right after devaluation (Plot H against B. Also, plot L against F ). The low value
of the VPI signal at the time of devaluation for the second scenario is because there is little overlap between the distribution functions of the values
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two different choices (PL1 and PL2) are concurrently available

and hence, the animal is given a choice between the two responses

(Figure 4:A). In the others, the two different responses are trained

and also tested in separate sessions and so, their schedules are not

compatible with the requirements of the reinforcement learning

framework that is used in our model.

In [26], rats received extensive concurrent instrumental training

in a task where pressing the two different levers produces different

types of outcomes: food pellets and sucrose solution. Although the

outcomes are different, they have equal reinforcing strength, in

terms of the response rates supported by them. A task similar to

that used in their experiment is formally depicted in Figure 4.

After extensively reinforcing the two responses, one of the

outcomes was devalued by flavour aversion conditioning, as

illustrated in Figure 4:B. Subsequently, given a choice between the

two responses, the sensitivity of instrumental performance to this

devaluation was assessed in extinction tests. The results of their

experiment showed that devaluation reduced the relative perfor-

mance of the response associated with the devalued outcome at the

very early stage of the test phase, even after extensive training.

Thus, it can be concluded that whatever the amount of

instrumental training, S-R habits do not overcome goal-directed

decision making when two responses with equal affective values

are concurrently available.

Simulating the proposed model in the task of Figure 4 has

replicated this behavioural observation. As illustrated in

Figure 5:A, initially, the VPI signal for the two responses has a

high value which gradually decreases over time as the variance of

the distribution functions over the estimated values of the two

responses decreases; meaning that the habitual process becomes

more and more certain about the estimated values. However, due

to the forgetting effect, i.e. the habitual system forgets very old

samples and does not use them in approximating the distribution

function, the variance of the distribution functions over the values

of actions doesn’t converge to zero, but instead, converges to a

level higher than zero. Moreover, because the strength of the two

reinforcers is equal, as revealed in Figure 5:D, the distribution

functions do not get divorced (Figure 5:E). As a result of these two

facts, the VPI signal has converged at a level higher than �RRt
(Figure 5:A). This has led to the performance remaining goal-

directed (Figure 5:C) and sensitive to devaluation of one of the

outcomes; i.e. after devaluing the outcome of the action PL1, its

rate of selection has sharply decreased and instead, the probability

of selecting PL2 has increased (Figure 5:B and F).

As it is clear from the above discussion, the relative strength of

the reinforcers critically affects the arbitration mechanism in our

model. In fact, the model predicts that when the affective values of

the two outcomes are close enough to each other, the VPI signal

will not decline and hence, the behaviour will remain goal-directed

and sensitive to devaluation, even after extensive training. But if

the two outcomes have different reinforcing strength, then their

corresponding distribution functions will gradually get divorced

and thus, the VPI signal will converge to zero. This leads to the

habitual process taking control of behaviour and the performance

becoming insensitive to outcome devaluation. This prediction is in

contrast to the model proposed in [5], in which the arbitration

between the two systems is independent of the relative incentive

values of the two outcomes. In fact, in that model, whether the

value of an action comes from the habitual or the goal-directed

system, only depends on the uncertainty of the two systems about

their estimated values and thus, the arbitration between the two

systems is independent of the estimated value for other actions.

Reaction-Time in a Reversal Learning Task
Using a classical reversal learning task, Pessiglione and

colleagues have measured human subjects’ reaction time by

of the two available choices (Plots j and K ). The opposite is true for the first scenario (Plots D and E). Numbers along the horizontal axis in plots A to
D, and G to J , represent trial numbers. Each ‘‘trial’’ ends when the simulated agent receives a reward; e.g. in the schedule of Figure 2 , each time the
agent chooses EM at state S1 , the trial number is counted up. Plots E and K show the distribution functions of the habitual system over its
estimated QH -values, at one trial before devaluation. Bar charts F and L show the average probability of performing PL at 10 trials before (filled
bars) and 10 trials after (empty bars) devaluation. All data reported are means over 3000 runs. The s:e:m for all bar charts is close to zero and thus, not
illustrated.
doi:10.1371/journal.pcbi.1002055.g003

Figure 4. Tree representation of the devaluation experiment with two levers available concurrently. (A) In the training phase, either
pressing lever one (PL1) or pressing lever two (PL2), if followed by entering the magazine (EM), results in acquiring one unit of either of the two
rewards, r1 or r2 , respectively. The reinforcing value of the two rewards is equal to one. Other action sequences lead to no reward. As in the task of
Figure 2 , this task is also assumed to be cyclic. (B) In the devaluation phase, the outcome of one of the responses (PL1) is devalued (r1~{1),
whereas the rewarding value of the outcome of the other response (PL2) has remained unchanged. After the devaluation phase, the animal’s
behaviour is tested in extinction (for space consideration, this phase is not illustrated). Similar to the task of Figure 2 , neither r1 nor r2 is delivered to
the animal in the test phase.
doi:10.1371/journal.pcbi.1002055.g004

Habitual and Goal-directed Systems in Competition

PLoS Computational Biology | www.ploscompbiol.org 8 May 2011 | Volume 7 | Issue 5 | e1002055



Figure 5. Simulation results for the task of Figure 4. The results show that since the reinforcing value of the two outcomes is equal, there is a
huge overlap between the distribution functions over the QH -values of actions PL1 and PL2, at state s0 , even after extensive training (240 trials)
(Plots D and E). Accordingly, the VPI signals (benefit of goal-directed deliberation) for these two actions remain higher than the �RRt signal (cost of
deliberation) (Plot A) and thus, the goal-directed system is always engaged in value-estimation for these two choices. The behaviourally observable
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temporal decoupling of deliberation and execution processes [27].

Reaction time, in their experiment, is defined as the interval

between stimulus presentation and the subsequent response

initiation. Subjects are required to choose between two alternative

responses (‘‘go’’ and ‘‘no-go’’), as soon as one of the two stimuli

(‘‘s1’’ and ‘‘s2’’) appear on the screen. As shown in Figure 6:A, at

each trial, one of the two stimuli s1 and s2 will appear in random,

and after the presentation of each stimuli, only one of the two

actions results in a gain, whereas the other action results in a loss

(r1~1,r2~0,r3~0,r4~1). The rule governing the appropriate

response must be learned by the subject through trial and error.

After several learning trials, the reward function changes without

warning (r1~0,r2~1,r3~1,r4~0). This second phase is called the

reversal phase. Finally, during the extinction phase, the ‘‘go’’

action never leads to a gain, and the appropriate action is to

always choose the ‘‘no-go’’ response (r1~0,r2~1,r3~0,r4~1).

To analyse the results of the experiments, the authors have

divided each phase into two sequential periods: a ‘‘searching’’

period during which the subjects learn the reward function by trial

and error, and an ‘‘applying’’ period during which the learned rule

is applied. The results show that in the searching period of each

phase, the subjects might choose either the right or the wrong

choice, whereas during the applying period, they almost always

choose the appropriate action. Moreover, as shown in Figure 6:B,

the subjects’ reaction time is significantly lower during the

applying period, compared to the searching period.

Figure 7 shows that our model captures the essence of

experimental results reported in [27]. In fact, the model predicts

that during the searching period, the goal-directed process is

involved in decision making, whereas during the applying period,

the arbitration mechanism doesn’t ask for its help in value

estimation. It should be noticed that the reaction time reported in

[27], is presumably the sum of stimulus-recognition time,

deliberation time, etc. Thus, a fixed value, which is the sum of

all the other processes involved in choice selection, must be added

to the deliberation time computed by our model.

One might argue that variations in reaction time in the

mentioned experiment could also be explained by a single habitual

system, by assuming that lack of sufficient learning induces a

hesitation-like behaviour. For example, high uncertainty in the

habitual system at the early stages of learning a task, or after a

change is recognized, can result in a higher-than-normal rate of

exploration [18]. Thus, assuming that exploration takes more time

than exploitation, reaction time will be higher when the

uncertainty of QH -values is high. However, as emphasized by

the authors in [27], uncertainty doesn’t have any effect on the

subject’s movement time, but only on the reaction time. In fact,

movement time remains constant through the course of the

experiment. Movement time is defined as the interval between

response initiation and submission of the choice. Since movement

time is unaffected by the extent of learning, it is unlikely that

variations in reaction time be due to a hesitation-like effect and

thus, as an alternative, it can be attributed to involvement of

deliberative processes. Moreover, such an explanation lacks a

normative rationale for the assumption that exploration takes

more time than exploitation.

Reaction-Time as a Function of the Number of Choices
According to a classical literature in behavioural psychology,

choice reaction time (CRT) is fastest when only one possible

response is available, and as the number of alternatives increases,

so does the response latency. Originally, Hick [28] found that in

choice reaction time experiments, CRT increases in proportion to

the logarithm of the number of alternatives. Later on, a wealth of

evidence validated his finding (e.g., [29–35]), such that it became

known as ‘‘Hick’s law’’.

Other researchers [36,37] found that Hick’s law holds only for

unpracticed subjects, and that training shortens CRT. They also

result is that responding remains sensitive to revaluation of outcomes, even though devaluation has happened after a prolonged training period
(Plots B and F ).
doi:10.1371/journal.pcbi.1002055.g005

Figure 6. Tree representation of the reversal learning task,
used in [27], and the behavioural results. (A) When each trial
begins, one of the two stimuli, S1 or S2 , is presented in random on a
screen. The subject can then choose whether to touch the screen (go
action) or not (no{go action). The task is performed in three phases:
training, reversal, and extinction. During the training phase, the subject
will receive a reward if the stimulus S1 is presented and the action go is
performed by the subject, or if the stimulus S2 is presented and the
action no{go is selected (r1~1,r2~0,r3~0,r4~1). During the reversal
phase, the reward function is reversed, meaning that the go action must
be chosen when the stimulus S2 is presented, and vice versa
(r1~0,r2~1,r3~1,r4~0). Finally, during the extinction phase, regard-
less of the presented stimulus, only the no{go action leads to a reward
(r1~0,r2~1,r3~0,r4~1). (B) During both the training and reversal
phases, subjects’ reaction time is high at the early stages when they
don’t have enough experience with the new conditions yet. However,
after some trials, the reaction time declines significantly. Error bars
represent s:e:m.
doi:10.1371/journal.pcbi.1002055.g006
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found that in well-trained subjects, there is no difference in CRT

as the number of choices varies.

In a typical CRT experiments, a certain number of stimuli and

the same number of responses are used in each session of the

experiment. Figure 8 shows the tree representation of an example

task with four stimuli and four alternatives. In each trial, one of the

four alternatives appears at random, and only one of the four

responses results in a reward. As in the CRT experiments the

subjects are provided with a prior knowledge about the appropriate

response after the presentation of each stimuli, we assume that this

declarative knowledge can be fed into and used by the goal-directed

system in the form of transition and reward functions. Furthermore,

subjects are asked to make true responses, and at the same time as

fast as possible. Hence, since subjects know the structure of the task

in advance, they show very high performance (as defined by the rate

of correct responses) in the task.

As demonstrated in Figure 9 , the behaviour of the model has

replicated the results of CRT experiments: at the early stages of

learning, the deliberation time increases as the number of choices

increases, whereas after sufficient training, no difference in

deliberation time can be seen. It must be mentioned that in

contrast to behavioural data, our model predicts a linear

correlation between the CRT and the number of alternatives,

rather than a logarithmic function. Again, a fixed value

characterizing stimulus-identification time must be added to the

deliberation time computed by our model in order to reach the

reaction time reported in the CRT literature.

Since in CRT experiments a declarative knowledge about

appropriate responses is provided to the subjects, they have a

relatively high performance from the very beginning of the

experiment. The proposed model can explain this behavioural

characteristic due to the fact that at the early stages of the

experiment, when the habitual system is totally ignorant about the

task structure, the goal-directed system controls the behaviour and

exploits the prior knowledge fed into it. Thus, a single habitual

system cannot explain the performance profile of subjects, even

Figure 7. Simulation results of the model in the reversal learning task depicted in Figure 6. Since the VPI signals have high values at the
early stages of learning (plot A), the goal-directed system is active and thus, the deliberation time is relatively high (plot C). After further training, the
habitual system takes control over behaviour (plot A) and as a result, the model’s reaction time decreases (plot C). After reversal, it takes some trials
for the habitual system to realize that the cached QH -values are not precise anymore (equivalent to an increase in the variance of QH ). Thus, after
some trials after reversal, the VPI signal increases again (plot A), which results in re-activation of the goal-directed system. As a result, the model’s
reaction time increases again (plot C). A similar explanation holds for the rest of the trials. In sum, consistent with the experimental data, the reaction
time is higher during the searching period, than the applying period.
doi:10.1371/journal.pcbi.1002055.g007
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though it might be able to replicate the reaction-time profile. For

example, a habitual system that uses a winner-take-all neural

mechanism for the Q-values of different choices to compete

[38,39] also predicts that at the early stages of learning where the

Q-values are close to each other, reaching a state that one action

overcomes the others takes longer, compared to the later stages

where the best choice has a markedly higher Q-value than other

actions. Such a mechanism also predicts that at the early stages, if

the number of choices increases, the reaction time will also

increase. However, since feeding the subject’s declarative knowl-

edge into the habitual system is not consistent with the nature of

this system, a single habitual system cannot explain the

performance of subjects in Hick’s experiment.

Discussion

Neural Implications
As mentioned, training-induced neuroplasticity in cortico-basal

ganglia circuits is suggested to be mediated by dopamine (DA), a

key neuromodulater in the brain reward circuitry. Whereas phasic

activity of midbrain DA neurons is hypothesized to carry the

prediction error signal [40,41], and thus imposes an indirect effect

on behaviour through its role in learning the value of actions, the

tonic activity of DA has shown to have a direct effect on

behaviour. For example, DA agonists have been demonstrated to

have an invigorating effect on a range of behaviours [42–46]. It is

also shown that higher levels of intrastriatal DA concentration is

correlated with higher rates of responding [47,48], whereas DA

antagonist or DA depletion results in reduced responsivity [49–

53].

Based on these evidence, it has been suggested in previous RL

models that tonic DA might report the average reward signal (�RR)

[19]. By adopting the same assumption, our model also provides a

normative explanation for those mentioned experimental results,

in terms of tonic DA-based variations in deliberation time.

Rationality of Type II
In the economic literature of decision theory, rational

individuals make optimal choices based on their desires and goals

[54], without taking into account the time needed to find the

optimal action. In contrast, models of bounded rationality are

concerned with information and computational limitations

imposed on individuals when they are encountered with

alternative choices. Normative models of rational choice that take

into account the time and effort required for decision making are

known as rationality of type II. This notion emphasizes that

computing the optimal answer is feasible, but not economical in

complex domains.

Figure 8. The tree representation of the task for testing the Hick’s law. In this example, at each trial, one of the four stimuli is presented with
equal probabilities. After observing the stimulus, only one of four available choices lead to a reward (r~1). The task structure is verbally instructed to
the subjects before they start performing the task. The interval between the appearance of the stimulus and the initiation of a response is measured
as ‘‘reaction time’’. The experiment is performed under different numbers of stimulus-response pairs; e.g. some subjects perform the task when only
one stimulus-response pair is available (n~1), whereas for other subjects the number of stimulus-response pairs might be different.
doi:10.1371/journal.pcbi.1002055.g008

Figure 9. Simulation results for the task of Figure 8. Consistent with the behavioural data, the results show that as the number of stimulus-
response pairs increase, the reaction time also increases. Moreover, if extensive training is provided to the subjects, the reaction time decreases and
becomes independent from the number of choices.
doi:10.1371/journal.pcbi.1002055.g009
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First introduced by Herbert Simon, it was argued that agents

have limited computational power and that they must react within

a reasonable amount of time [55,56]. To capture this concept, [57]

used the Scottish word ‘‘satisficing’’ which means satisfying, to

refer to a decision making mechanism that searches until an

alternative that meets the agent’s aspiration level criterion is found.

In other words, the search process is continued until a satisfactory

solution is found. Borrowed from psychology, aspiration level

denotes a solution evaluation criterion that can be either static or

context-dependent and acquired by experience. A similar idea has

been taken by neuroscientists to explain the speed/accuracy trade-

off, using signal detection theory (see [58] for review). In this

framework, the accumulated information gathered from a

sequence of observations from a noisy evidence must reach a

certain threshold, in order for the animals to convert the

accumulated information into a categorical choice. If the threshold

goes up, the accuracy increases. As in this case more information

must be gathered to satisfy that increased level of accuracy,

response latency will decrease.

Simon’s initial proposal has launched much attempt in both

social science and computer science to develop models that

sacrifice optimality in favor of fast-responding. The focus has been

on complex uncertain environments, where the agent must

respond in a limited amount of time. The answer given to this

dilemma in social science is often based on a variety of domain-

specific heuristic methods [59,60] in which, rather than employing

a general-purpose optimizer, animals use a set of simple and hard-

coded rules to make their decisions in each particular situation. In

the artificial intelligence literature, on the other hand, the answer

is often based on approximate reasoning. In this approach, details

of a complex problem are ignored in order to build a simpler

representation of the original problem. Finding the optimal

solution of this simple problem will be feasible in an admissible

amount of time [61].

To capture the concept of time limitation and to incorporate it

into models of decision making, we have used the dual-process

theory of decision making. The model we have proposed is based

on the assumption that the habitual process is fast in responding to

environmental stimuli, but is slow in adapting its behavioural

strategies, particularly in environments with low stability. The

goal-directed system, in contrast, needs time for deliberating the

value of different alternatives by tracing down the decision tree,

but, is flexible in behavioural adaptation. The rule for arbitrating

between these two systems assumes that animals balance decision

quality against the computational requirements of decision-

making.

However, the optimality of the arbitration rule is based on the

strong assumption that the goal-directed decision process has

perfectly learned the environmental contingencies. This assump-

tion might be violated at some points, particularly at the very early

stages of learning a new task. When both systems are totally

ignorant of the task structure, although the habitual system is in

desperate need of having perfect information (high VPI signal),

the goal-directed system doesn’t have any information to provide.

Thus, deliberation not only doesn’t improve animal’s strategy, but

leads to a waste of the time that could be used for blind

exploration. Though, since the goal-directed system is very

efficient in terms of exploiting the experienced contingencies, this

sub-optimal behaviour of the model doesn’t last long. More

importantly, in real world situations, the goal-directed process

seems to always have considerably more accurate information

than the habitual system, even in environments that have never

been explored before. This is because many environmental

contingencies can be discovered by mere visual observation (e.g.

searching for food in an open field) or verbal instruction (as in the

Hick’s task discussed before), without any experience being

required.

State of the Art
Our model is in fact based on the previous computational model

of the dual-process theory, proposed by Daw and colleagues [5].

After assigning model-free and model-based RL models to

habitual and goal-directed systems, respectively, they suggest an

uncertainty-based arbitration mechanism between the two sys-

tems. In their model, each of the two systems not only separately

estimate a value for each certain action, but their uncertainties

about that value-estimations are also computed. As in our model,

lack of enough experiences in the environment results in

uncertainty in the habitual system. The source of uncertainty in

the goal-directed system, on the other hand, is (1) uncertainty in

transition and reward functions, due to the lack of enough

experiences and (2) ‘‘pruning’’, which refers to incomplete

consideration of the all parts of the decision tree when considering

the consequences of alternative choices. The latter source of

uncertainty is not explicitly modeled and instead, is captured by

adding a noise to the estimated values.

At any given point of time, both systems get involved in value

and uncertainty estimation for all the available choices and when

they have both finished, the system that is more certain about its

estimation of the value of each action will determine the value of

that action for action-selection. As a result of this arbitration rule,

the goal-directed system is dominant at the early stages of learning;

but after extensive learning, the habitual process will take control

over behaviour. This happens because uncertainty of the habitual

system decreases through the course of learning, whereas the goal-

directed process remains uncertain due to the incomplete search of

the decision tree (the added noise). Thus, their model can explain

the canonical observation in the experimental paradigm of

outcome-devaluation (Outcome-sensitivity after moderate, but

not extensive training).

The added noise to the goal-directed system in that model

actually characterizes, in an adhoc way, all the computational

constraints that the goal-directed system is confronted with; e.g.

time constraint, working memory constraint, caloric needs, etc. It

has also been pointed out in [5], that the trade-off between

behavioural flexibility and computational costs can be captured in

a cost-benefit fashion. In this respect, the arbitration mechanism

we have proposed in this paper is a variant of the model proposed

in [5], where only one of the computational constraint, i.e.

deliberation time, is modeled in an explicit, cost-benefit account.

Beside this noticeable behavioural harmony of that model with

the current dual-process literature, it suffers from some deficien-

cies. These deficiencies arise from the fact that in that model, the

goal-directed system ceaselessly searches for the optimal policy,

regardless of the system that is controlling the behaviour. In

contrast to this assumption, overtraining of a behaviour is shown

to causes a transition in neural activity from the associative to the

sensorimotor network; i.e., whereas PFC and caudate nucleus are

activated at the early stages of learning a new motor response, this

activity shifts to motor cortices and putamen as the response

becomes well-trained [62,63]. As a result, response latency in that

model doesn’t vary through learning. Of course, it should be

mentioned that by adding the noise to the goal-directed system in

order to model pruning, time-limitations have been implicitly

incorporated into the model; but as this noise level remains fixed

through learning, the involvement of the goal-directed system, and

so the deliberation time, doesn’t change even after extensive

training.

Habitual and Goal-directed Systems in Competition

PLoS Computational Biology | www.ploscompbiol.org 13 May 2011 | Volume 7 | Issue 5 | e1002055



As mentioned before, the core idea that we have proposed here

for arbitration between the two systems is that there should be a

balance between speed and accuracy in responding. A similar idea

has been previously used by Shah and Barto [64], but in an

evolving sensory representation framework. In the task that they

have simulated, subjects must choose among the potential goals in

each trial. However, the sensory representation of the true goal of

each trial is weak at the beginning of the trial, and resolves

gradually during the course of the trial [65]. The basic assumption

of their model is that the planning system can select actions only

when goal representation is fully resolved, but the habitual system

can also use ‘‘uncertain’’ accumulated sensory information. At the

early trials of learning the task, since the value of different choices

is not learned by the habitual system yet, this system cannot choose

among the choices within a considerable period of time. This is

due to using a winner-take-all competition mechanism for action

selection [38,39]. Thus, at the early trials, the sensory represen-

tation has enough time to be fully resolved and as a consequence

of this, the planning system controls behaviour. However, after

extended training, the habitual system can make a decision before

the goal is fully identified, based on uncertain sensory information.

Although both the model we proposed here and the model

proposed in [64] use speed-accuracy trade-off for arbitration

between the two systems, there is fundamental differences between

them. Whereas the extra time needed by the planning system in is

used for state recognition [64], this time is used for deliberating the

consequences of choices in our model. In fact, it is the process of

state recognition that is time-consuming in their model, and not

the process of deliberation. Due to this difference, the model of

[64] can only be applied in cases where stimulus identification

takes non-negligible time, which doesn’t seem to be the case of the

experiments addressed by our model.

Changes in the animals’ response rate has been previously

explained in the reinforcement learning literature [19,66].

Importantly, in the model proposed by Niv et al. [19], as in our

model, animals make a balance between the cost and benefit of

acting quickly. �RRt is the cost of responding after an interval t.

Thus, in their model, as in our model, the animal benefits from

responding fast, because it loses less potential rewards. But as they

do not model the goal-directed system, the cost of acting quickly in

their model is due to an extra fatigue-like cost induced by

responding fast, whereas this cost in our model is due to inaccurate

and inflexible value estimations. We believe that both factors,

influence the animals’ response rate.

But as a result of this fundamental difference, the two models

have different behavioural predictions. In fact, the term t in the

model proposed in [19] refers to ‘‘execution time’’, whereas in our

model it refers to ‘‘reaction time’’. Notice that reaction time is, by

definition, the interval between stimulus presentation and

performance initiation, whereas execution time (movement time)

refers to the interval between response initiation and its

finalization. Due to this difference, their model cannot explain

any of the three experiments on reaction time that our model can:

(1) VTE behaviour, (2) increase in reaction time as the number of

choices increases, (3) decrease in reaction time after reversals, in

the go/no-go task. Interestingly, by temporal decopulation of

deliberation and execution, it has been shown in [27] that whereas

reaction time has significantly decreased after reversal in a go/no-

go task, the execution time has remained intact.

Untested Behavioural Predictions of the Model
As mentioned previously, one prediction of the competition

mechanism proposed in this paper is that outcome sensitivity is

dependent on the relative value of the choices that are

concurrently available. That is, if the value of choices are

sufficiently close together, the habitual system will remain

uncertain about what the best choice is (equivalent to high

VPI ), even after extensive training. This will result in the

informational gain of knowing the exact value of choices

remaining high and thus, the goal-directed system staying

dominant. Such a mechanism can explain the behavioural data

reported in [26].

By contrast, the model predicts that in a concurrent schedule

where the value of the two choices are sufficiently different,

responding will eventually become habitual. This is because after

extensive training, the habitual system will have sufficient

information for choosing the better choice among the two,

without needing the exact value of them; i.e., without needing the

goal-directed system. To our knowledge, this prediction is not

tested yet. In this respect, the model has a different prediction from

what the model proposed in [5] predicts. According to that model,

the goal-directedness of responding doesn’t depend on the relative

value of choices and thus, it predicts that responding will remain

goal-directed in concurrent schedules, whether the values of

choices are equal or not.

Another prediction of our model is that if the two choices in a

concurrent schedule lead to a unique outcome, responses will

remain sensitive to devaluation, regardless of the amount of

instrumental training. This is because when the outcomes are

identical, the values of the two choices that lead to it will be exactly

the same. In fact, when the values of the two choices are equal, our

model predicts that responding will remain goal-directed, whether

the identity of the outcomes of choices are the same or not.

However, in the model proposed in [5], if the two outcomes are

identical, it can be said that since fewer outcome values must be

learned, the asymptotic uncertainties of the habitual system will

decrease. Thus, according to that model, responding might

become habitual or remain goal-directed after extensive training,

depending on the parameters of the model.

It should be mentioned that in an experiment by Holland [21],

sensitivity to devaluation is tested where two different choices

result in an identical outcome. However, since in that experiment

responding for the two choices is trained and tested in separate

sessions, rather than the choices being available concurrently, the

reinforcement learning framework cannot see it as if the values of

the choices could be compared together. Therefore, in order to

test the above prediction of our model, it is necessary to use a

concurrent schedule.

Another theoretical account for competition between the S-R

and the A-O systems proposed by Dickinson [67] predicts that

competition between the systems depends on the relative value of

choices. In this account, responding is goal-directed if, and only if,

the animal experiences instrumental contingency between re-

sponses and outcomes. Experienced contingency is defined as the

correlation between a change in response rate and a change in

reward rate. Consistent with behavioural data, this theory predicts

that in one-choice tasks where a ratio schedule is used, the

response rate and thus the reward rate increase during the initial

acquisition period. Hence, due to the positive experienced

correlation between the changes in these two variables, responding

will be goal-directed. However, after extended training, response

rate, as well as reward rate, converge to a high rate. This will

remove any experienced contingency perceived by the animal and

thus, the habitual system becomes dominant.

For the case of concurrent schedules where the two outcomes

are different but have equal values, this account predicts that even

after extensive training, the animal might choose either of the two

responses from time to time. Thus, every time that the animal
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performs one of the two responses, it experiences a loss of the

outcome that could be acquired by performing the other response.

In this respect, the animal always experiences a local correlation

between response and outcome rates and thus, remains goal-

directed even after extensive training. This prediction is also

consistent with behavioural data [26].

However, if the identity of the two outcomes are the same, this

theory will have a different prediction. In such a case, since the

outcomes are identical, the rate of outcome will be fixed after

extensive training regardless of which of the two responses is

performed. Thus, in this case, the local A-O rate correlation dies

out and responding becomes habitual. Moreover, this account

predicts that if the two choices result in different outcomes that

have markedly different values, responding will become habitual

after extensive training. This is because after extensive training,

the high-value choice will become stereotyped and the other

response will be chosen rarely. Thus, since only one of the two

outcomes is often experienced with a consistently high rate, the

locally experienced A-O rate correlation decreases. In fact, the

experienced A-O rate correlation is negatively correlated with the

difference between the values of the two outcomes: the higher the

difference between the values, the lower the experienced

instrumental contingency. As a result, if the values of the two

outcomes are sufficiently different, responding will become

habitual eventually. In this respect, both the theoretical account

of [67] and our model predict that arbitration depends on the

relative value of the two choices.

A summary of the predictions of the reviewed dual-process

accounts are provided in Table 1. The experimental schedules of

the first and the third rows of the table, as discussed before, are

used in [3] and [26], respectively. As shown, the prediction of all

three arbitration mechanisms for these two cases are the same, and

supported by behavioural data. However, the theories have

differential predictions in the other two cases that are not tested

yet.

One critical assumption of our model that is worth being tested

is the assumption that arbitration between the systems is

independent of any knowledge that is acquired by the goal-

directed system. This assumption is in contrast to the model

proposed in [5], where the uncertainty of the goal-directed system

also plays role in competition among the systems. One way to test

this assumption of our model is to manipulate the knowledge of the

goal-directed system, while other variables are remained intact,

and to test the impact on the goal-directedness of animal’s

behaviour. For this purpose, a place/response task similar to what

is suggested in Figure 10 can be used.

In the first phase, the animal is moderately trained to retrieve

food from one arm of a T-maze. Since the training period is

moderate, we expect that at the end of this phase, the animal will

use a place strategy (goal-directed system) at the choice point,

rather than a response strategy (habitual system). Thus, if the

animal is then directly tested in the third phase, e.g., the starting

arm is placed at the opposite end of the maze, it is expected to still

turn toward the window. Now, the critical prediction of our model

is that if any manipulation is applied only to the goal-directed

system during a new phase between training and test, it should not

change the animal’s strategy. In fact, our model will be falsified if

after such manipulations, the animal chooses the ‘‘turn right’’

response at the choice point (going in the opposite direction of the

window), which indicates that it is using the response strategy,

rather than the place strategy.

One manipulation is to put the animal inside the right arm for

some very few trials, while the food reward comes at random or is

totally removed. This will increase the uncertainty of the goal-

directed system about the outcome of the strategy ‘‘running

toward the window’’. Note that the number of trials should be

sufficiently small such that the animal is not able to learn the new

conditions, but only to increase its uncertainty. Among the

variables of our model that influence arbitration (i.e., VPI , �RR, and

t), the only variable that is affected due to this manipulation is the

average reward variable (�RR). However, since this variable is

decreased, the model predicts that such a manipulation will make

responding even more goal-directed than before. As the animal

has not experienced being at the choice point during the second

phase, the habitual system will remain intact in this phase. In sum,

our model predicts that whatever the number of trials in the

second phase is, the animal must still respond goal-directedly (turn

toward the window) in the test phase, even though the second

phase has increased the uncertainty of the goal-directed system.

The above experiment is in fact a way to test the hypothesis of

the model that outcome-sensitivity after re-exposure (in devalua-

tion experiments) is not the result of shift in control from the

habitual to the goal-directed system (through manipulating the

goal-directed knowledge during the incentive learning period, as

suggested in [5]), but instead, it is because the goal-directed system

has been dominant even before devaluation, and the only effect of

the re-exposure phase is learning the new incentive value of

outcomes (updating the reward function of the goal-directed

system). This explanation is the dominant explanation for

incentive learning [68]. However, if the rats in the above

experiment show response strategy in the third phase (in contrast

to what our model predicts), it will support the hypothesis that

manipulating the goal-directed system can affect arbitration, and

that outcome-sensitivity after devaluation might be due to such a

manipulation [5].

Another assumption of our model is that when the animal is at

the choice point, the time needed for computing the VPI , which is

in fact the time needed for arbitration, is trivial, compared to the

time needed for goal-directed search. As mentioned before, this is

a plausible assumption since the VPI signal can be computed by a

closed form equation [18]. However, it might be argued that goal-

directed responding can also be achieved within a trivial period of

time. This is possible, for example, by assuming that the goal-

directed system is capable of evaluating the value of choices in an

Table 1. Prediction of different dual-process accounts about the dominant process after extensive training.

Dickinson [67] Daw et al. [5] Our model

Single choice S-R S-R S-R

Two concurrent choices with identical outcomes S-R S-R or A-O A-O

Two concurrent choices with different outcomes, but equal values A-O A-O A-O

Two concurrent choices with different outcomes and sufficiently different values S-R A-O S-R

doi:10.1371/journal.pcbi.1002055.t001
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off-line mode (when the animal is not necessarily performing the

task) and caching them for future exploitations. Similarly, the goal-

directed system might be argued to be neurally implemented by an

attractor equation for value iteration (e.g. [69]). Fortunately, the

assumption of our model that goal-directed search requires a

considerable time is experimentally testable by measuring the

animal’s reaction time at the choice points, and comparing them

when responding is habitual vs. when it is goal-directed (see

Figure 3:I).

Future Directions
One limitation of the proposed model is that the computation of

the average reward signal, which is assumed to be encoded by

tonic dopamine, requires the simulated task to be cyclic and highly

repetitive. For example, since shifts in the animal’s motivational

states don’t have an immediate impact on the average reward

signal, they cannot have a direct effect on the arbitration

mechanism. This is despite the fact that motivational states, like

hunger and thirst, are demonstrated to modulate the tonic firing

activity of dopamine neurons [70], even before new training under

the new motivational state being provided to the animal. It is also

analytically more reasonable that the opportunity cost be a

function of motivational states; e.g. a hungry animal has a higher

opportunity cost, compared to a sated one. One way to resolve this

limitation is to develop a more realistic formulation for

opportunity cost, rather than the simple average reward

formulation.

A similar limitation of the model concerns the necessity of

experiencing rule changes by the subject, for the arbitration

mechanism to be affected. In fact, the model is silent about how an

unexperienced, but verbally communicated, environmental

change can affect the competition between the two systems. At

least in some cases for humans, it seems that a communicated

change in the context makes the goal-directed system able to

override the habitual response. Modeling such a phenomenon

requires a normative way for the arbitration mechanism to be

directly influenced by verbal instructions. Although in our model

verbal instructions are supposed to affect the subjects’ goal-

directed knowledge, they don’t contribute to the arbitration

mechanism.

A critical question that must be answered in any dual-process

account of decision making is why animals need two systems. In

fact, if the goal-directed system makes more rational decisions,

then why the habitual system should have survived? One raw

answer to this question could be that animals’ brains were not

redesigned anew through the course of evolution, but new

capabilities were added to the underlying, evolutionarily old brain

structures. A more sophisticated answer is that deliberation is

Figure 10. An experiment for testing the validity of the model. The proposed model predicts that manipulating the knowledge acquired by
the goal-directed system should not affect the goal-directedness of behaviours. To test this prediction, a place/response task can be used. (A) In the
first phase, the animal is moderately trained to acquire food reward in a T-maze. Since this training is moderate, the goal-directed system is expected
to control behaviour during this phase. (B) In the second phase, the uncertainty of the goal-directed system is increased by putting the animal inside
the right arm for some few trials, while the food reward comes at random or is totally removed. (C) Since the second phase doesn’t have any effect on
the habitual system, our model predicts that the arbitration between the system must have remained intact and thus, responding should still be
goal-directed in the third phase. For that, the animal should still chose turning toward the window, even though its starting point is at the opposite
end of the maze.
doi:10.1371/journal.pcbi.1002055.g010
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subject to some constraints in a way that making habitual

responses is more optimal at many choice points. The constraint

that our model relies on is the slowness of deliberation. But it can

be argued that an increase in response latency is only one of the

costs that the animals’ decision making machinery must pay for

flexibility in sensorimotor coordination; and some other advan-

tages can be counted for the habitual process, each of which is

potentially the basis of another normative computational model.

Working memory limitations is another constraint imposed on

the goal-directed process. The previously acquired information

that the goal-directed system requires for its analysis must first be

loaded to working memory. Hence, subject to working memory

limitations, the goal-directed system might not be provided with

enough materials for an accurate deliberation and so, its response

might be less optimal than the corresponding habitual response.

One more comparative advantage of the habitual system is that

it seems impossible, or at least very costly to deliberate about more

than one issue at a time, whereas the habitual responses involve

massively parallel processing [71]. For example, so many habitual

responses are made by a taxi driver while he/she is driving, but the

deliberative system is involved in only one issue, e.g. finding the

shortest path to reach the destination. Another influential factor

that seems to favour habitual decisions despite their non-optimality

is that goal-directed deliberation consumes more energy than

habitual action selection. For example, low availability of blood

glucose, which is the main fuel supporting brain function, results in

impairments in cognitive tasks [72]. This factor can be captured by

adding an energy cost term, C (Cw0), to the cost of deliberation,

and hence, for arbitration between the two processes, the VPI

signal must be compared with Cz�RRt.

In both dual-process models proposed in [5] and in this paper,

the only type of interaction between the two systems is

‘‘competition’’. However, collaborative interaction between dif-

ferent associative structures can also facilitate optimal action

selection. Among different anatomy-based proposals offered for

how segregated cortico-basal ganglia loops might be integrated,

the spiral organization of DA neurons have proved compatible

with the RL framework. Through these spiral connections

between the striatum and the Ventral Tegmental Area/Sabstantia

Nigra, the output of more ventral areas of the striatum can affect

the functioning of more dorsal regions [73,74]. Accordingly, it has

been hypothesized that by propagating the teaching signal from

associative to motor areas of the basal ganglia, more abstract

policy representations can facilitate learning habitual motor-level

actions [75–77]. Based on these evidence, the goal-directed system

can be assumed to affect the computation of the prediction error

signal, in order to accelerate consolidating the optimal responses in

the habitual system. This can substantially resolve the curse of

dimensionality in model-free RL, which refers to the exponential

growth of learning required for the habitual system when the

complexity of the environment increases [78].

Mathematical Methods
Value estimation by the habitual process. The role of the

habitual system is to store and update the value of state-action

pairs in a cached form, from which high-speed retrieval is possible.

If enough experience in provided, the value of each state-action

pair, denoted by QH (s,a), converges to the total discounted

rewards expected to be obtained by taking action a in state s and

then following the optimal policy in subsequent states. Regarding

that probability distribution functions over QH -values are required

for calculating the VPI signal, the habitual system also stores and

updates an estimation of the accuracy of the learned QH -values.

For storing state-action values a look-up table representation is

used, which is a special case of the linear parametrization of QH -

values. For learning QH -values, we used the Q-learning version of

the Kalman Temporal Differences (KTD) framework proposed in

[16]. In addition to learning state-action values, this method

provides a measure of accuracy of learned values, which

corresponds to the certainty of estimations.

In this framework, the state-space of the problem is formulated

as follows:

QH
tz1(st,at)~QH

t (st,at)zvt

rt~QH
t (st,at){cmaxb[AQH

t (stz1,b)znt

(
ð8Þ

The first equation implies that QH -values follow a random walk

process. This means that the value of a state-action is composed of

its past value plus an evolution noise, vt (a Gaussian white noise).

The assumption of a process noise for the evolution of QH -values

is necessary because we utilize this framework for the learning of

QH -values in a non-stationary MDP, i.e., the reward function of

the environment might change over time. The second equation is

based on the Bellman equation. ni is the observation noise and is

supposed to be a Gaussian white noise.

As in the KTD framework where Q-values have distribution

functions rather than point estimations, the algorithm keeps track

of two matrices: Q̂QH , which stores the mean of Q-values for

different state-action pairs, and PH , which is the covariance matrix

of the former matrix. The diagonal elements of PH contain the

variance of Q-values. The distribution functions over Q-values are

assumed to be Gaussian.

Based on this formulation, after taking action at in state st and

transiting to a new state, stz1, the matrix Q̂QH can be updated

using the following learning rule:

Q̂QH
tz1~Q̂QH

t zKtdt ð9Þ

where dt is the temporal difference error, and Kt is the Kalman

Gain, which determines the direction in which the current

representation of values must be corrected. Moreover, after each

transition, the covariance matrix is updated using the following

equation:

PH
tz1~PH

t {KtPot K
T
t ð10Þ

where Pot
is the estimated variance of the observation equation.

The Kalman Gain Kt is computed by:

Kt~PQtot P
{1
ot

ð11Þ

PQtot
is the covariance between Q-values and the observation

equation. Regarding that the observation equation is nonlinear -

because of the max operator-, the values of PQtot
and Pot

cannot

be directly computed from the Q̂QH
t and PH

t matrices. To address

this issue, an unscented transform [79] is used to approximate the
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statistics of interest [16]. For more details of the KTD algorithm

see [16] (Algorithm 5).

Finally, in equation 8 , the covariance matrix of the process

noise is chosen in an adaptive way, i.e. Pvt{1
~gPt{1.

Since the KTD algorithm used for estimating the mean and the

variance of QH -values is computationally expensive (e.g. it involves

matrix inversions), one might think that it practically takes the

same time that is sometimes withdrawn from goal-directed search.

That is, the time necessary for doing the heavy computations of

the KTD algorithm must also be taken into account when

choosing whether to deliberate or not. However, it must be

noticed that at the time that the model is confronted with some

choices, all the knowledge required for computing the VPI signals

(mean and variance of QH -values) is already available in the KTD

(habitual) system, without any new computation being required. In

fact, all the heavy computations of the KTD algorithm are

performed only after a decision is made and the QH and PH

matrices should be updated. Thus, the time required for these

computations doesn’t influence reaction time.

Moreover, it must be mentioned that the central contribution of

the model is in the new arbitration mechanism proposed, and in

how the mean and the variance of QH -values can be used to make

the arbitration rule approximately optimal. In this respect, any

algorithm that can give an estimate of the mean and the variance

of QH -values can be substituted with the KTD algorithm, without

affecting the arbitration rule. However, to our knowledge, the

KTD algorithm is the most appropriate algorithm, among the

currently available algorithms, for the case of the model presented

here. The bayesian Q-learning algorithm [18], for instance,

updates the QH -values without using a prediction-error signal and

thus, it loses relevance to the dopamine theory.

Value estimation by the goal-directed process. Assuming

that the goal-directed system has access to an estimation of the

reward function, R̂R(s,a), and the transition function, p̂pT (s �?{a s’),
of the environment, then the value of each state-action pair can be

calculated using the following recursive equation:

Q̂QG(s,a)~R̂R(s,a)zc
X

s
0

p̂pT (s �?{a s
0
):max

b[A
Q̂QG(s’,b) ð12Þ

where 0ƒcƒ1 is the discount factor. As the transition graph is

cyclic, we impose a maximum limit on the depth of the search.

This maximum limit is assumed to be three levels in simulations.

After this limit is reached, the recursive process stops and uses the

estimated Q̂QH (s’,b) from the habitual system as an estimation of

the Q̂QG(s’,b) afterward.

The transition function is initialized to p̂pT (s �?{a z)~1=n, for all

s,z[S and a[A, where n is the total number of states. Assuming

that after taking action a at state s, the animal goes to the new state

s’, the transition function can be updated using the following rule:

Vz[S : p̂pT (s �?{a z)~

(1{w)p̂pT (s �?{a z)zw if z~s’

(1{w)p̂pT (s �?{a z) otherwise

8><
>: ð13Þ

Where 0vwv1 is the update rate of the transition function.

This redistribution rule ensures
P

z[S p̂pT (s �?{a z)~1 for all s[S
and a[A.

The estimation of an immediate reward, R̂R(s,a), is calculated by

taking an exponential moving average over the rewards gained

after execution of action at at state st by the agent:

R̂R(st,at)/(1{r)R̂R(st,at)zrrt ð14Þ

Where 0vrv1 is the update rate of the reward function. For

modeling the devaluation of the outcome in the first two

simulations, R(S1,EM) is set to -1.

Arbitration between the two processes. When the agent is

in state s, for the purpose of selecting an action among the feasible

choices for performance, it needs to have an estimate of the value of

each choice. The estimated value of each action can come from

either the habitual or the goal-directed process. Thus, for having the

final estimated value of each action, the agent has two options: to

use values stored in the habitual system or to follow action-outcome

contingencies to gain perfect information about state-action values.

If the habitual system is used for acquiring the value of action a
at state s, then the animal predicts that it will gain a future reward

equal to Q̂QH (s,a), by taking that action. In contrast, if the agent

chooses to use the goal-directed system, then the expected sum of

discounted rewards will increase by VPI(s,a) units, due to the

policy improvement effect resulted from deliberation. But as it

takes t time units for goal-directed value estimation, that extra

amount of reward (VPI(s,a)) will come after a delay and thus, will

be discounted. In fact, by using the goal-directed system, the agent

predicts to gain a future reward equal to ct(Q̂QH (s,a)zVPI(s,a)),
where c is the discount factor. To act optimally, the agent chooses

to deliberate only if it predicts that deliberation will bring it more

rewards in future, i.e. ct(Q̂QH (s,a)zVPI(s,a))wQ̂QH (s,a). This

argument leads to the following decision rule:

if
1{ct

ct
Q̂QH (s,a)wVPI(s,a) then

use the value stored in the habitual system

else

use value{iteration to calculate the valueof(s,a)

ð15Þ

We are interested in finding a more intuitive equivalent for
1{ct

ct
Q(s,a). To do so, as proposed in [80], equation 1 can be

rewritten as follows:

Q(st,at)~E
X?
i~t

ci{t(ri{�RR)Dst,at

" #
z

�RR

1{c
ð16Þ

where �RR is the average reward calculated over non-exploratory

actions, which means that �RR is updated by rt, only if the action

with the highest expected value has been executed.

In equation 16 , as c?1, the first term of the above equation tends

to the average adjusted value of the state-action pair, which remains

finite under some conditions that hold when linear parametrization of

values is used and the environment is cyclic [81]. Hence, we will have:

lim
c?1

1{ct

ct
Q̂QH (s,a)~�RRt ð17Þ

Using the above equation and assuming that the discount factor

has a value close to one, the decision rule noted in equation 15 ,

can be rewritten as follows:
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if �RRtwVPI(s,a) then

use the value stored by the habitual system

else

use value{iteration to calculate the valueof(s,a)

ð18Þ

It is straightforward to show that if rather than the sum of

discounted rewards, the goal of the agent was to maximize the

average reward signal during its life, then equation 18 would still

be an optimal decision rule. �RR is computed according to equation

7 over non-exploratory actions. For calculation of t, we assume

that the time spent for one value-iteration is proportional to the

number of edges of the graph traversed during the value iteration

process. Also, the time needed to traverse an edge of the graph is

assumed to be 0.08 of a time-step. Under these assumptions, we

compute the agent’s expectation of t by averaging over the

amount of time spent on previous deliberations.

Based on the above discussion, we can define Q̂Q(s,a), the final

estimated value assigned to (s,a) for the purpose of action

selection, as follows:

Q̂Q(s,a)~

Q̂QH (s,a) VPI(s,a)v�RRt

Q̂QG(s,a) VPI(s,a)w�RRt

8><
>: ð19Þ

As illustrated, this value has come from the habitual or the goal-

directed process, depending on the result of arbitration. According

to this valuation, action selection will be carried out using the

softmax action selection rule:

p(s,a)~
ebQ̂Q(s,a)P

a’[AebQ̂Q(s,a’)
ð20Þ

where b is inverse temperature and determines the rate of

exploration.

Finally, assuming that each state-action value has a normal

distribution as N(Q̂Q(s,a),s2(s,a)), then based on equation 6,

VPI(s,a) can be calculated as follows [18]:

if a~a1

VPI(s,a)~½Q̂QH (s,a2){Q̂QH (s,a)�P(QH (s,a)vQ̂QH (s,a2))z

s(s,a)ffiffiffiffiffiffi
2p
p e{(Q̂QH (s,a2){Q̂QH (s,a))2=2s2(s,a)

if a=a1

VPI(s,a)~½Q̂QH (s,a){Q̂QH (s,a1)�P(Q(s,a)wQ̂QH (s,a1))z

s(s,a)ffiffiffiffiffiffi
2p
p e{(Q̂QH (s,a1){Q̂QH (s,a))2=2s2(s,a)

ð21Þ

where a1 and a2 are the best and the second best actions at state s,

respectively.

Simulation details. Table 2 shows the free parameters of the

model and their assigned values in simulations.

We showed before that one requirement for the proposed switching

mechanism between the two systems to be statistically optimal is that

the discount factor, c, should be sufficiently close to one. However, as

the MDPs of the simulated tasks are cyclic, setting c equal to one is

nonsense (it will result in non-converging, infinitely large QH -values).

Thus, in simulations, c is set very close to one (c~0:95).

Since c is close to one, QH -variables converge to relatively high

values. However, as VPI is only affected by the relative value of

QH -variables, and not their absolute values, the parameter c does

not affect VPI and thus, does not affect the temporal dynamics of

arbitration directly.

On the other hand, since a softmax action selection rule is used,

the absolute value of QH -variables also becomes important. In

fact, high values of QH -variables caused by the high value of c
decreases the probability of better actions to be chosen at the

action selection phase. This is why the model has chosen at best

60% in Figure 3:H, although the difference between the QH -

values of the two actions is remarkable (Figure 3:J). Of course, this

effect can be easily controlled by adjusting the exploration rate, b.

Higher values of b will result in relatively higher probability of

selecting the best action.

In sum, although the value of c does not affect the arbitration

mechanism directly, since it changes action selection probabilities,

it influences the convergence speed of QH -values and thus, affect

the arbitration mechanism indirectly. However, it is shown

through some simulations that different values of c and b do not

change the essence of the behaviour of the model, but only affect

the exact time at which switching from one system to the other

happens.
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