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Abstract

A family of multivariate distributions, based on asymmetri c nor-
mal mixtures, is introduced in order to model the dependenceamong
insurance and �nancial risks. The model allows for straight-forward
parameterisation via a correlation matrix and enables the modelling
of radially asymmetric dependence structures, which are often of in-
terest in risk management applications. Dependence is characterised
by showing that increases in correlation values produce models which
are ordered in the supermodular order sense. Explicit expressions for
the Spearman and Kendall rank correlation coe�cients are derived
to enable calibration in a copula framework. The model is adapted
to simulation in very high dimensions by using Kronecker products,
enabling speci�cation of a correlation matrix and an increase in com-
putational speed.
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1 Introduction

The importance for risk management of modelling the dependence between
multivariate insurance or �nancial risks has been well established. The ef-
fect of dependence on aggregate risk positions is discussed in Dhaene and
Goovaerts (1996), M•uller and Stoyan (2002), while model choices diverging
from the multivariate normal paradigm are extensively discussed by Frees
and Valdez (1998), Embrechts et al (2002), who propose the use of copula
functions for modelling dependencies between risks. Extensive reviews of de-
pendence models for insurance and �nancial risk management purposes can
be found in McNeil et al (2005), Denuit et al (2005).

Copulas form a tool for constructing joint probability distributions, by
separating the dependence structure from the marginal distributions of multi-
variate models. By a result known asSklar's Theorem(e.g. Nelsen, 1999), for
everyn-dimensional random vectorX with joint distribution function FX and
marginal distributions Fi ; i = 1; : : : ; n, there is a functionC : [0; 1]n 7! [0; 1],
called the copula ofX such that

FX (x1; : : : ; xn ) = C (F1(x1); : : : ; Fn (xn )) (1)

One way of constructing copulas is by considering a tractable family of mul-
tivariate distributions, such as the multivariate normal or t, and then ob-
taining the corresponding copula by transforming the marginal distributions
to uniforms in [0; 1], i.e. by:

C(u1; : : : ; un ) = FX (F � 1
1 (u1); : : : ; F � 1

n (un )) ; (2)

where F � 1
1 ; : : : ; F � 1

n are the (generalised) inverses ofF1; : : : ; Fn . This tech-
nique is of particular interest when the random vectorX is easy to simulate
from; then simulation from an arbitrary random vectorY with marginal dis-
tributions G1; : : : ; Gn and copulaC is easily performed byY1

d= G� 1
1 (F1(X 1)) ; : : : ; Yn

d=
G� 1

n (Fn (X n )).
Through their shared copula, random vectorY thus inherits the depen-

dence properties ofX . Hence it is important to specify what a desirable set
of properties forX are. One possible list is:

1. Ability to simulate from X e�ciently, potentially in high dimensions.

2. Speci�cation via a correlation matrix, since pairwise correlations form
one of the most popular (and interpretable) characterisations of depen-
dence.

3. Flexibility to allow for asymmetry and/or tail dependence, as these are
frequent features of insurance/�nancial data.

4. Characterisation of the resulting dependence structure viastochastic
order relations, as this enables better understanding of the model and
facilitates practical sensitivity testing (this point is discussed further in
Section 3.1.
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In this contribution a multivariate probability distributi on is constructed
that satis�es the properties listed above. The model emerges asan asymmet-
ric (mean-variance) mixture of multivariate normal distributions. Mixtures
of normal distributions, resulting from a randomisation of the covariance
matrix, form a subcase of the more general class or elliptical distributions
(Fang et al, 1987). Such distributions are easy to simulate and specify via
a correlation matrix (or a generalisation thereof when secondmoments do
not exist), as well as potentially displaying asymptotic tail dependence, as
shown by Hult and Lindskog (2002). These models are however still radially
symmetric, hence dependence for the left tails is the same as for the right
ones. This can be addressed by considering normal mixtures wherethe mean
is randomised as well as the covariance, as in Barndor�-Nielsen(1978), De-
marta and McNeil (2005). However in these models the resulting correlation
matrix is not easily speci�ed from input parameters, which complicates pa-
rameterisation. The construction of asymmetric normal mixtures presented
here addresses this problem.

The models discussed above all rely on the de�nition of a dispersion (cor-
relation) matrix. De�ning such a matrix can however become problematic
in very high dimensions, e.g. of the order of 1000. For such cases the con-
struction of correlation matrices via Kronecker products isproposed, and it
is demonstrated how such a construction also improves computational e�-
ciency.

Section 2 introduces the asymmetric mixed normal model proposed, along
with its basic properties. In Section 3 the dependence properties are more
closely examined, in particular with respect to stochastic orders, and formulas
for rank correlations are derived. In Section 4, parameterisation issues are
further discussed. Finally, in Section 5 the use of Kronecker products for the
construction of very high dimensional dependence models is proposed.

2 The asymmetric mixed normal model

2.1 De�nition and basic properties

The asymmetric mixed normal model proposed in this contribution was orig-
inally introduced by Smith (2002).

De�nition 1. An n-dimensional random vectorX is de�ned as having a
multivariate asymmetric mixed normal distribution, denoted byX � ANM n (G; � ; u)
whenever it satis�es

X d= 
 � 1 � (H � 1) � u +
p

H � L � Z; (3)

where,

� Z is an n-vector of independent standard normal variables.
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� H is a non-negative random variable, independent ofZ, following cu-
mulative distribution G with mean 1 and standard deviation
 .

� � 2 Rn� n is a symmetric positive de�nite matrix andL 2 Rn� n is such
that L � L T = � � u � uT .

� u 2 Rn is a `non-centrality vector' such thatuT � � � 1 � u � 1.

Note that when u = 0, X reduces to a normal mixture, which is known
to represent a large subclass of elliptical distributions (Fanget al., 1987).
Conditional upon H , (3) represents a multivariate normal with mean vector

 � 1�(H � 1)�u and covariance matrixH �� . Intuitively, the e�ect of (positive)
non-centralities is that, conditional uponH , a high mean vector corresponds
to high covariance and this is where the asymmetry originates.

The next few lemmas present stylised facts regarding the elementary prop-
erties of the multivariate asymmetric mixed normal distribution. The �rst
two moments ofX are given below1.

Lemma 1. Consider X � ANM n (G; � ; u). It is:

E(X i ) = 0 ; i = 1; 2; : : : ; n: (4)

V ar(X i ) = � ii ; i = 1; 2; : : : ; n: (5)

Cov(X ) = � : (6)

Proof. To begin with, denote

L =

0

B
B
B
@

L 1

L 2
...

L n

1

C
C
C
A

(7)

with L i 2 R1� n . From LL T = � � uu T it follows that L T
i L i =

P n
j =1 l2

ij =
� ii � u2

i and that L T
i L j = � ij � ui uj . It now is

E(X i ) = E
h
E

�

 � 1(H � 1)ui +

p
H L i Z jH

�i

= E
h

 � 1(H � 1)ui +

p
HE

� P n
j =1 l ij Z j jH

�i

= 
 � 1E(H � 1)ui + E
hp

H
P n

j =1 l ij E (Z j )
i

= 0

(8)

1It is noted that for heavy tailed H the moments ofX may not exist. However, similarly
to the case of elliptical distributions, the discussion still holds, with the matrix � itself
being �nite.
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For the variances it is

V ar(X i ) = E [E (X 2
i jH )]

= E
h
E

�

 � 2(H � 1)2u2

i + H (L i Z)2 + 2
 � 1(H � 1))ui

p
H L i Z jH

�i

= 
 � 2E[(H � 1)2]u2
i + E

�
HE

� � P n
j =1 l ij Z j

� 2
��

+ E
h
2
 � 1(H � 1))ui

p
HE

� P n
j =1 l i jZ j

�i

= u2
i + E (H )

P n
j =1 l2

ij + 0
= u2

i + � ii � u2
i = � ii

(9)
Finally, for the covariance matrix of X we �nd

Cov(X ) = E
�
E

�
XX T jH

��

= E
n

E
h�


 � 1(H � 1)u +
p

H LZ
�

�
�


 � 1(H � 1)uT +
p

H ZT L T
�

jH
io

= 
 � 2E [(H � 1)2] uu T + E [HCov (LZ )] + 2 
 � 1uE
h
(H � 1)

p
HE (LZ )T

i

= uu T + E
�
H

�
� � uu T

��
+ 0 = �

(10)

Hence, the asymmetric mixed normal distribution as de�ned in (3) has
zero mean and covariance matrix equal to the speci�ed� . A non-zero mean
vector could of course be added, but this is not further considered here. More-
over, as it is the copula ofX that is primarily of interest, we will sometimes
consider standardised versions ofX , where� is a correlation matrix. In the
next lemma it is shown that linear transformations of asymmetric normal
mixtures are themselves asymmetric normal mixtures.

Lemma 2. Consider X � ANM n (G; � ; u) and A is a m � n dimensional
matrix of rank m � n. Then AX � ANM m (G; A�A T ; Au ).

Proof. Consider:

AX = 
 � 1(H � 1)Au +
p

H ALZ (11)

It is su�cient that ( AL ) (AL )T = ALL T A T = A � A T � (Au ) (Au )T .

Note that by letting each row of A contain at most one element equal
to 1 and all other elements equal to 0, it follows from Lemma 2 that the
marginals of an asymmetric mixed normal vector are themselvesasymmetric
mixed normal.

Lemma 3. Consider X � ANM n (G; � ; u). The joint distribution of X is
given by

P(X 1 � x1; X 2 � x2; : : : ; X n � xn ) = E [� n (a1; a2; : : : ; an ; R)] ; (12)
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where� n (; R) is an n-dimensional standard normal joint cdf with correlation
matrix R = f r ij g and

ai = x i � 
 � 1 (H � 1)u ip
H

p
� ii � u2

i

r ij = � ij � u i u jp
(� ii � u2

i )( � jj � u2
j )

(13)

Proof. For simplicity the proof is carried out forn = 2, proof for n > 2 being
identical. It is:

P(X 1 � x1; X 2 � x2)
= P(
 � 1(H � 1)u1 +

p
H

P 2
j =1 l1j Z j � x1; 
 � 1(H � 1)u2 +

p
H

P 2
j =1 l2j Z j � x2

= E
h
P

� P 2
j =1 l1j Z j � x1 � 
 � 1 (H � 1)u1p

H
;
P 2

j =1 l2j Z j � x2 � 
 � 1 (H � 1)u2p
H

jH
�i

(14)
We know that

E[
P 2

j =1 l ij Z j ] = 0
V ar(

P 2
j =1 l ij Z j ) =

P 2
j =1 l2

ij = � ii � u2
i

Cov(
P 2

j =1 l1j Z j );
P 2

k=1 l2kZk)) =
P 2

j =1

P 2
k=1 l1j l2kCov(Z j ; Zk)

=
P 2

j =1 l1j l2j = � 12 � u1u2

(15)

Consequently, sinceH is independent ofZ,

P(X 1 � x1; X 2 � x2)

= E
�
� 2

�
x1 � 
 � 1 (H � 1)u1p

H
p

� 11 � u2
1

; x2 � 
 � 1 (H � 1)u2p
H

p
� 22 � u2

2

; � 12 � u1u2p
(� 11 � u2

1 )( � 22 � u2
2 )

��
(16)

Finally the restriction on the non-centrality vector is justi�ed.

Lemma 4. The condition uT � � � 1 � u � 1 is su�cient for the decomposition
L � L T = � � u � uT to exist.

Proof. Let � = D � D T , for D 2 Rn� n . SuchD will always exist because�
is positive de�nite and symmetric. Now consider matrix

L = D �
uu T (D � 1)T

1 +
p

1 � uT � � 1u
(17)

It can be checked by direct calculation thatLL T = � � uu T . The existence
of L is guaranteed byuT � � 1u � 1.

2.2 Numerical illustration

In �gures 1.-3. the dependence patterns induced by asymmetric normal mix-
tures are demonstrated. In �gure 1. a scatter plot of 5000 samples from
a standard bivariate normally distributed vector with � 12 = 0:5 is shown.
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The corresponding sample ranks with could be viewed as a sample from the
underlying copula are also shown.

In �gure 2. the corresponding plots are given for a standard bivariate
t distribution, with � 12 = 0:5 d = 5 degrees of freedom. This distribution
can be constructed as an asymmetric normal mixture withu = 0 and in-
verse Gamma distributed mixing variableH � 1=Gamma

�
d
2 ; 2

d� 2

�
. For this

distribution it is 
 = � (H ) = 1p
2d� 2

. It can seen how the normal mixture
introduces a higher dependence in the tails, while maintaining the radial
symmetry of the normal distribution.

In �gure 3. samples from an asymmetric generalisation of the t dis-
tribution are plotted. This is e�ected by taking H as before and letting
u1 = u2 = 0:7. The e�ect of the non centrality vector u on the dependence
structure is clearly seen, as positive dependence becomes concentrated in the
top-right area of the distribution.

3 Dependence properties

3.1 Stochastic orders

Here the dependence properties of asymmetric normal mixturesare studied in
some more depth. We start with the de�nition of the stochastic concordance
and supermodular orders, which provides a much stronger characterisation
of dependence than correlation. The presentation of standardresults (with
no regard to full generality of those results) is based upon M•uller and Stoyan
(2002).

De�nition 2. Consider random vectors(X 1; X 2) and (Y1; Y2), such that

X 1
d= Y1, X 2

d= Y2. Then we say thatX precedesY in the concordance
order and write X � c Y , if either of the following two equivalent conditions
holds:

i) P(X 1 � x1; X 2 � x2) � P(Y1 � x1; Y2 � x2) for all x1; x2.

ii) Cov(g(X 1); h(X 2)) � Cov(g(Y1); h(Y2)) for all increasing functionsg; h
such that the covariance exists.

It is apparent from De�nition 2 that concordance order is a property of
the copulas of the random vectorsX and Y and does not depend on the
marginal distributions. The importance of concordance orderin risk man-
agement is related to a result by Dhaene and Goovaerts (1996),which shows
that among portfolios whose respective elements are equal in distribution,
the more concordant portfolio is also the riskiest one in the stop-loss and
convex order senses. It is a desirable property for a multivariate model that
an increase in correlation makes the random vector more concordant, as this
ensures the intuitively appealing property that higher correlations produce

7



higher aggregate risk holds true. This is also practically relevant when sensi-
tivity testing the implementation of a dependence model. If aggregate risk,
de�ned as the sum of increasing functions of the elements of random vector
X , is measured by a risk measure that is consistent with the stop-loss order
(see e.g. Denuit et al (2005) for a discussion of the relation between risk
measures and stochastic orders), then an increase in input correlation should
also yield a increase in the aggregate risk.

The above discussion generalises to the case of dimensions higher than 2,
via the concept of supermodular order:

De�nition 3. Consider random n-vectorsX and Y , Then we say thatX
precedesY in the supermodular order and writeX � sm Y , if

E [f (X )] � E [f (Y )]; (18)

for all supermodular functionsf such that the expectations exist.

We need not assume assume equality of marginal distributions in the def-
inition above, as such equality is actually a consequence of the supermodular
order. Moreover it can be shown that the supermodular order generalises the
concordance one, as formally stated in the next lemma (M•uller and Stoyann,
2002, Th. 3.9.5).

Lemma 5. Let X � sm Y . Then

� X i
d= Yi ; i = 1; : : : ; n

� (X i ; X j ) � c (Yi ; Yj ); 8i; j:

The relationship between the supermodular order on random vectors and
the stop-loss order on the sum of their elements is given by Theorem 8.3.3
in M•uller and Stoyan (2002), essentially generalising Dhaeneand Goovaerts
(1996).

Is is now seen that an increase in the correlations between elements of an
asymmetric mixed normal vector, makes the vector more dependent in the
supermodular order sense.

Lemma 6. ConsiderX � ANM n (G; � ; u) and X 0 � ANM n (G; � 0; u), such
that � ii = � 0

ii ; � ij � � 0
ij 8i; j . Then X � sm X 0.

Proof. We need to show that for all supermodular functionsE[f (X )] �
E [f (X 0)] holds. For H; H 0 � G the mixing variables corresponding toX ; X 0,
it then enough to show thatE[f (X )jH = h] � E[f (X 0)jH 0 = h]. We observe
that X jH = h; X 0jH = h0 are multivariate normal vectors with the identi-
cal marginal distributions and o�-diagonal elements of the covariance matrix
given by cij = h(� ij � ui uj ); c0

ij = h(� 0
ij � ui uj ). Sincecij � c0

ij the Lemma
is proved by Theorem 3.13.5 in M•uller and Stoyan (2002).
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3.2 Rank correlations

While the asymmetric mixed normal model can be used to model quantities
of interest in risk management, e.g. asset log-returns, it can alsobe used
to model risk with arbitrary marginal distributions, by considering only the
copula of an asymmetric mixed normal vectorX . Hence, beyond the Pearson
correlation coe�cient (and its generalisation via the matrix � ), expressions
for the rank correlation coe�cients by Spearman and Kendallare necessary.
Rank correlations are of interest in the copula context because they are in-
variant to monotone transformations of the elements ofX .

ConsiderX � ANM 2(G; � ; u) and X 0; X 00independent copies ofX . The
Spearman and Kendall rank correlation coe�cients can then be de�ned via
the equations (e.g. Nelsen, 1999):

� s(X 1; X 2) = 12P(X 1 � X 0
1; X 2 � X 00

2 ) � 3 (19)

and
� � (X 1; X 2) = 4 P(X 1 � X 0

1; X 2 � X 0
2) � 1 (20)

respectively.
Expressions for the rank correlation coe�cients are given below.

Lemma 7. For X � ANM 2(G; � ; u) Spearman's rank correlation coe�cient
is given by

� s(X 1; X 2) =

12E
�
� 2

�

 � 1u1 (H � H 0)p
(� 11 � u2

1 )( H + H 0)
; 
 � 1u2 (H � H 00)p

(� 22 � u2
2 )( H + H 00)

; (� 12 � u1u2 )Hp
(� 11 � u2

1 )( � 22 � u2
2 )( H + H 0)( H + H 00)

��
� 4;

(21)
whereH; H 0; H 00� G are independent copies of the mixing variable.

Proof. Denote by H; H 0; H 00and Z; Z0; Z00 the mixing and normal variable
corresponding to the independent pairsX ; X 0; X 00� ANM 2(G; � ; u). Then
we have:

P(X 1 � X 0
1; X 2 � X 00

2 ) = EP(X 1 � X 0
1; X 2 � X 00

2 jH; H 0; H 00) =

EP

0

B
B
@


 � 1(H � 1)u1 +
p

H (l11Z1 + l12Z2) �

 � 1(H 0 � 1)u1 +

p
H 0(l11Z 0

1 + l12Z 0
2);


 � 1(H � 1)u2 +
p

H (l21Z1 + l22Z2) �

 � 1(H 00� 1)u2 +

p
H 00(l21Z 00

1 + l22Z 00
2 )

�
�
�
�
�
�
�
�

H; H 0; H 00

1

C
C
A =

EP

0

B
B
@

p
H (l11Z1 + l12Z2) �

p
H 0(l11Z 0

1 + l12Z 0
2) �


 � 1(H 0 � H )u1;p
H (l21Z1 + l22Z2) �

p
H 00(l21Z 00

1 + l22Z 00
2 ) �


 � 1(H 00� H )u2

�
�
�
�
�
�
�
�

H; H 0; H 00

1

C
C
A

(22)

For �xed H; H 0; H 00, the joint distribution of

Y1 =
p

H (l11Z1 + l12Z2) �
p

H 0(l11Z 0
1 + l12Z 0

2)
Y2 =

p
H (l21Z1 + l22Z2) �

p
H 00(l21Z 00

1 + l22Z 00
2 )

(23)
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is bivariate normal with mean vector [0 0]T and covariance matrix:
�

(� 11 � u2
1)(H + H 0) ( � 12 � u1u2)H

(� 12 � u1u2)H (� 22 � u2
2)(H + H 00)

�
(24)

Hence
P (X 1 � X 0

1; X 2 � X 00
2 jH; H 0; H 00) =

� 2

�

 � 1u1 (H � H 0)p
(� 11 � u2

1 )( H + H 0)
; 
 � 1u2 (H � H 00)p

(� 22 � u2
2 )( H + H 00)

; (� 12 � u1u2 )Hp
(� 11 � u2

1 )( � 22 � u2
2 )( H + H 0)( H + H 00)

�
;

(25)
which by equation (19) completes the proof.

Lemma 8. For X � ANM 2(G; � ; u) Kendall's rank correlation coe�cient
is given by

� � (X 1; X 2) =

4E
�
� 2

�

 � 1u1 (H � H 0)p
(� 11 � u2

1 )( H + H 0)
; 
 � 1u2 (H � H 0)p

(� 22 � u2
2 )( H + H 0)

; (� 12 � u1u2 )p
(� 11 � u2

1 )( � 22 � u2
2 )

��
� 1;

(26)

whereH; H 0 � G are independent copies of the mixing variable.

Proof. The proof is near identical to that of the previous lemma. Denote
by H; H 0 and Z; Z0 the mixing and normal variable corresponding to the
independent pairsX ; X 0 � ANM 2(G; � ; u). Then we have:

P(X 1 � X 0
1; X 2 � X 0

2) = EP(X 1 � X 0
1; X 2 � X 0

2jH; H 0) =

EP

0

B
B
@


 � 1(H � 1)u1 +
p

H (l11Z1 + l12Z2) �

 � 1(H 0 � 1)u1 +

p
H 0(l11Z 0

1 + l12Z 0
2);


 � 1(H � 1)u2 +
p

H (l21Z1 + l22Z2) �

 � 1(H 0 � 1)u2 +

p
H 0(l21Z 0

1 + l22Z 0
2)

�
�
�
�
�
�
�
�

H; H 0

1

C
C
A =

EP

0

B
B
@

p
H (l11Z1 + l12Z2) �

p
H 0(l11Z 0

1 + l12Z 0
2) �


 � 1(H 0 � H )u1;p
H (l21Z1 + l22Z2) �

p
H 0(l21Z 0

1 + l22Z 0
2) �


 � 1(H 0 � H )u2

�
�
�
�
�
�
�
�

H; H 0

1

C
C
A

(27)

For �xed H; H 0, the joint distribution of

Y1 =
p

H (l11Z1 + l12Z2) �
p

H 0(l11Z 0
1 + l12Z 0

2)
Y2 =

p
H (l21Z1 + l22Z2) �

p
H 0(l21Z 0

1 + l22Z 0
2)

(28)

is bivariate normal with mean vector [0 0]T and covariance matrix:
�

(� 11 � u2
1)(H + H 0) ( � 12 � u1u2)(H + H 0)

(� 12 � u1u2)(H + H 0) ( � 22 � u2
2)(H + H 0)

�
(29)

Hence
P (X 1 � X 0

1; X 2 � X 0
2jH; H 0) =

� 2

�

 � 1u1 (H � H 0)p
(� 11 � u2

1 )( H + H 0)
; 
 � 1u2 (H � H 0)p

(� 22 � u2
2 )( H + H 0)

; (� 12 � u1u2 )p
(� 11 � u2

1 )( � 22 � u2
2 )

�
;

(30)

which by equation (20) completes the proof.
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4 Parameterisation issues

4.1 Rank correlations

One can calculate Spearman's and Kendall's rank correlation for a particu-
lar choice ofG; � ; u by equations (21) and (26) respectively, by numerical
integration. There are however two practical issues that such aprocess will
not address:

� A closed form formula for rank correlations may be more useful,e.g.
for reasons of computational speed.

� When choosing parameters for a model where only the copula of an
asymmetric normal mixture is of interest, one needs to work backwards
from a speci�ed set of rank correlation coe�cients to the matrix � (say
for a �xed non-centrality vector u).

The approach taken here is to resolve these issues by deriving approximate
formulas for the rank correlation coe�cients. The approximation carried out
by considering a discrete distributionG for the mixing variable H , de�ned
on a �nite number of points. This could be derived as an approximation
to the generally continuous distribution G used in reality. The method is
presented here only for the case of the Spearman rank correlation coe�cient;
the calculation for Kendall's rank correlation is very similar. Without loss of
generality we assume that� is a correlation, rather then a covariance matrix.

Lemma 9. Let X � ANM 2(G; � ; u), with H � G such thatP(H i = hi ) =
pi ;

P d
j =1 pj = 1 for h1 < � � � < h d and � 11 = � 22 = 1. Then Spearman's rank

correlation is given by:

� s(X 1; X 2) = 12

"

� 0 +
1X

m=1

� m (� 12 � u1u2)m )

#

� 3: (31)

The coe�cients � m are given by

� 0 =
P d

i =1

P d
j =1

P d
k=1 pi pj pk �( a1(hi ; hj ))�( a1(hi ; hk))

� m =
P d

i =1

P d
j =1

P d
k=1 f pi pj pk � (a1(hi ; hj )) � (a1(hi ; hk))

Hem� 1(a1(hi ; hj ))Hem� 1(a2(hi ; hk))b(hi ; hj ; hk)mg;
(32)

where:

� ai (x; y) = 
 � 1u i (x� y)p
(1� u2

i )( x+ y)
; i = 1; 2:

� b(x; y; z) = xp
(1� u2

1 )(1 � u2
2 )( x+ y)( x+ z)

� Hek(x) =
P [k=2]

i =0
k!

i !(k� 2i )! (� 1)i 2� i xk� 2i are the Hermitian polynomials.

11



� � and � are the standard normal cumulative distribution and density
respectively.

Proof. First note that for mixing variable H of the form considered here,
equation (21) becomes

� s(X 1; X 2) =
12

P d
i =1

P d
j =1

P d
k=1 pi pj pk � 2 (a1(hi ; hj ); a2(hi ; hk); ( � 12 � u1u2)b(hi ; hj ; hk)) � 4:

(33)
Moreover, the bivariate standard normal distribution can be written as (Gupta,
1963)

� 2(a1; a2; b) = �( a1)�( a2) + � (a1)� (a2)
1X

m=1

1
(m + 1)!

Hem (a1)Hem (a2)bm+1

(34)
The result follows directly from these two equations.

Given Lemma 9, it is now possible to approximately calculate� 12 from
� s = � s(X 1; X 2) by performing a series reversion. In particular we can write:

� 12
�= u1u2 +

7X

m=1

� m

�
� s + 3

12
� � 0

� m

; (35)

where the coe�cients � m of the reversed series can be calculated from those
of the original series� m by Abramowitz and Stegun (1972, p.16).

4.2 Choice of non-centrality vector

As discussed in Section 2, the non-centrality vectoru is used in order to skew
the dependence structure of a normal mixture. So choosing highelements of
u will yield a very skew copula. The extent to which this can be carried out
is nonetheless limited as very high values of inu would violate the constraint
uT � � � 1 � u < 1.

It is therefore of interest to ask: \given a correlation matrix� , what is
the largestu that one could use?". Answering this is our aim in this section.
We note that using \the largest possibleu" is a decision by the modeler as to
how the dependence structure should look like and has nothing to do in this
context with statistical estimation of the u parameter vector. The respective
choice of non-centrality vector is given in the following result:

Lemma 10. The vector u for which the sum
P n

j =1 u2
j is largest anduT �

� � 1 � u < 1, is proportional to the eigenvector of� corresponding to its
largest eigenvalue.

Proof. Let S = � � 1. As S is the inverse of a symmetric matrix, it is itself
symmetric. HenceuT � S � u < 1 =

P n
i =1

P n
j =1 sij ui uj .

12



Consider now the following optimisation problem:

max
u1 ;:::;u n

nX

i =1

u2
i ; such that:

nX

i =1

nX

j =1

sij ui uj = a; (36)

wherea < 1, e.g. a = 0:99. The corresponding Lagrangian is

L (u; � ) =
nX

i =1

u2
i + �

 

a �
nX

i =1

nX

j =1

sij ui uj

!

(37)

It then is:

@L (u;� )
@uk

= 2uk � @
@uk

�
�

u1
P n

j =1 s1j uj + � � � + un
P n

j =1 snj uj

�

= 2uk � �
�

u1
@

@uk

P n
j =1 s1j uj + � � � +

P n
j =1 skj uj + uk

@
@uk

P n
j =1 skj uj

+ : : : @
@uk

un
P n

j =1 snj uj

�

= 2uk � �
� P n

j =1 skj uj + u1s1k + � � � + unskn

�

= 2uk � 2�
P n

j =1 skj

(38)
Setting @L (u;� )

@uk
= 0 yields:

uk = �
nX

j =1

skj =) u = � � S � u (39)

Hence the reciprocal of the Lagrange multiplier� is an eigenvalue ofS and
the non-centrality vector u is the corresponding eigenvector. Consequently,
� is an eigenvalue of� = S� 1 with corresponding eigenvectoru.

Now, to determine which exactly of� 's eigenvectorsu corresponds to,
consider

uk = �
nX

j =1

skj =)
nX

i =1

u2
i =

nX

i =1

8
<

:
� 2

 
nX

j =1

sij

! 2
9
=

;
(40)

It is � P n
j =1 sij

� 2
=

P n
j =1

P n
r =1 (sir ur )(sij uj )

(39)
=

P n
j =1 (sij uj ) � 1

� ui

(41)

Thus P n
i =1 u2

i =
P n

i =1 � 2 �
P n

j =1 (sij uj ) � 1
� ui

= � �
P n

i =1

P n
j =1 sij uj ui

= � � a
(42)

Therefore the largest value of the sum
P n

i =1 = u2
i is achieved whenu is an

eigenvector of� corresponding to its largest eigenvalue.
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5 Kronecker products in high-dimensional sim-
ulation

5.1 Properties of the Kronecker product

Simulation algorithms based on the multivariate normal distribution, such
as the asymmetric mixed normal model (3) are well suited for simulation
in high dimensions, e.g. n = 50. However, a portfolio of insurance risks
will sometimes be of much higher dimension. Consider for example the case
of a large insurance company exposed to 50 lines of business, underwritten
in 15 years over 3 territories. This immediately produces 2250 potentially
dependent random variables. At such high dimension a number of problems
occur:

� It becomes very di�cult to specify a positive de�nite correlation matrix
� .

� The Cholesky decomposition algorithm used to factorise the matrix
� � u � uT may fail because of numerical errors.

� Runtimes may become impracticably long, particularly for the matrix
multiplication L � Z.

A means to addressing these problems is to construct the matrix� using
Kronecker products. Consider square matricesA = f aij g 2 Rm� m ; B =
f bij g 2 Rn� n . Then their Kronecker product A 
 B is a mn � mn matrix
such that

A 
 B =

0

B
B
B
@

a11B a12B � � � a1mB
a21B a22B � � � a2mB

...
...

. . .
...

am1B am2B � � � amm B

1

C
C
C
A

(43)

Kronecker products have a number of useful properties (e.g. Van Loan,
2000) of which we note here:

1. (A 
 B )(C 
 D ) = ( AC ) 
 (BD )

2. (A 
 B )T = A T 
 B T

3. (A 
 B )� 1 = A � 1 
 B � 1

4. If A ; B are positive de�nite matrices, thenA 
 B is positive de�nite.

5. If A = M � M T and B = N � N T , then A 
 B = ( M 
 N ) � (M 
 N )T .

Property 4. ensures that a positive de�nite correlation (covariance) ma-
trix � can be constructed as the Kronecker product of 2 (or more) smaller
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correlation (covariance) matricesA ; B . Property 5. breaks down the prob-
lem of decomposing a large correlation matrix to that of decomposing two
smaller ones, thus reducing the potential for numerical error.

Consider now the matrix multiplication (A 
 B )�Z, whereA 2 Rm� m ; B 2
Rn� n and Z 2 Rmn � 1. We can then write:

(A 
 B )�Z =

0

B
B
B
@

a11B a12B � � � a1mB
a21B a22B � � � a2mB

...
...

. . .
...

am1B am2B � � � amm B

1

C
C
C
A

�

0

B
B
B
@

Z1

Z2
...

Zm

1

C
C
C
A

=

0

B
B
B
@

P m
j =1 a1j B�Z jP m
j =1 a2j B�Z j

...P m
j =1 amj B�Z j

1

C
C
C
A

;

(44)
where Z j 2 Rn� 1; j = 1; : : : ; n:. It is apparent that the matrix products
B � Z j are repeated in each block row of the matrix above. Hence they can
be calculated in advance and reused as appropriate. Multiplication of an
mn � mn matrix by an mn � 1 vector generally requires 2(mn)2 elementary
operations (additions and multiplications). However, if themn � mn matrix
can be represented by a Kronecker product as above, the computational
workload drops to 2mn2 + 2m2n operations. If for examplem = n = 50,
this implies approximately a 25-fold reduction in the number of elementary
operations required.

5.2 Kronecker products in the asymmetric mixed nor-
mal model

Here is shown how a high-dimensional version of the asymmetric mixed nor-
mal model can be constructed with the use of Kronecker products.

Lemma 11. Consider X � ANM mn (G; � ; u), such that

� � = A 
 B for A 2 Rm� m ; B 2 Rn� n ; with A = MM T , B = NN T

� u = v 
 w for v 2 Rm� 1; w 2 Rn� 1

Then X can be written as

X d= 
 � 1(H � 1)(v 
 w) +
p

H � (M 
 N ) � Z�
p

H

1+
p

1� (v T A � 1v )
 (w T B � 1w )
�
�
(vv T (M � 1)T ) 
 (ww T (N � 1)T )

�
� Z;

(45)
where

� Z is an (mn)-vector of independent standard normal variables.

� H is a non-negative random variable, independent ofZ, following cu-
mulative distribution G with mean 1 and standard deviation
 .

Proof. Follows directly from equations (3), (17) and the properties of the
Kronecker product discussed in the previous section.
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Hence by constructing� = A 
 B , the problems of specifying a large pos-
itive de�nite correlation matrix and decomposing that matrix are addressed.
Moreover, it can be seen from equation (45) that the matrix multiplication
L � Z is broken down to a di�erence of two matrix multiplications, in each
which the �rst factor can be expressed as a Kronecker product. Hence, the
computation of L � Z can be substantially speeded up by using representation
(45). We note that the preceding discussion easily generalises tothe case of
� expressed as a Kronecker product of more than two matrices.

Imposing a Kronecker-product structure on of� forms quite a strong
assumption, so it is fair to ask whether such a speci�cation makes sense.
Consider the example of an insurance company that has exposuresin m lines
of business,n years, andr territories. Specify correlation matricesA , B and
C, with dimensions m � m, n � n, r � r respectively. Interpret A as the
correlation matrix between lines written in the same year andin the same
territory, B as the correlation between the same line, written in the same ter-
ritory over di�erent years etc. De�ning � = A 
 B 
 C produces an overall
correlation matrix that is consistent with the above speci�cation, with the
Kronecker structure producing the cross-correlations between risks in di�er-
ent lines and di�erent years or territories. As these cross-correlations emerge
as products of correlation coe�cients with modulus< 1, it is ensured that
they are smaller than the corresponding correlations betweenlines within the
same year and territory - hence a �rst reasonableness check is passed. There
is of course no particular reason why the cross-correlations should have the
prescribed form. Nonetheless, given that it would be very unlikely that an in-
surance company has enough data to statistically estimate a, say,2000x2000
correlation matrix, this choice of correlation matrix structure seems to be an
acceptable compromise.
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