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Abstract

A family of multivariate distributions, based on asymmetri ¢ nor-
mal mixtures, is introduced in order to model the dependenceamong
insurance and nancial risks. The model allows for straightforward
parameterisation via a correlation matrix and enables the nodelling
of radially asymmetric dependence structures, which are ¢én of in-
terest in risk management applications. Dependence is chacterised
by showing that increases in correlation values produce magls which
are ordered in the supermodular order sense. Explicit exprssions for
the Spearman and Kendall rank correlation coe cients are deived
to enable calibration in a copula framework. The model is adated
to simulation in very high dimensions by using Kronecker pralucts,
enabling speci cation of a correlation matrix and an increase in com-
putational speed.
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1 Introduction

The importance for risk management of modelling the dependes between
multivariate insurance or nancial risks has been well estatshed. The ef-
fect of dependence on aggregate risk positions is discussed in &f®and
Goovaerts (1996), Muller and Stoyan (2002), while model dhices diverging
from the multivariate normal paradigm are extensively discusseby Frees
and Valdez (1998), Embrechts et al (2002), who propose the uskcopula
functions for modelling dependencies between risks. Extersireviews of de-
pendence models for insurance and nancial risk managementrposes can
be found in McNeil et al (2005), Denuit et al (2005).

Copulas form a tool for constructing joint probability distributions, by
separating the dependence structure from the marginal distutions of multi-
variate models. By a result known a$klar's Theorem(e.g. Nelsen, 1999), for
everyn-dimensional random vectoiX with joint distribution function Fyx and

Fx (X1;::05%Xn) = C(Fi(Xx2); 11 Fa(Xn)) Q)

One way of constructing copulas is by considering a tractablarhily of mul-
tivariate distributions, such as the multivariate normal or t, and then ob-
taining the corresponding copula by transforming the margirdalistributions
to uniforms in [0; 1], i.e. by:

C(ug;::i;un) = Fx (Fy Yuy); i F, Hun)); (2)

nique is of particular interest when the random vectoX is easy to simulate
from; then simulation from an arbitrary random vectorY with marginal dis-

Gp* (Fn(Xn))-

Through their shared copula, random vectoilY thus inherits the depen-
dence properties oX . Hence it is important to specify what a desirable set
of properties forX are. One possible list is:

1. Ability to simulate from X e ciently, potentially in high dimensions.

2. Speci cation via a correlation matrix, since pairwise coglations form
one of the most popular (and interpretable) characterisatianof depen-
dence.

3. Flexibility to allow for asymmetry and/or tail dependence as these are
frequent features of insurance/ nancial data.

4. Characterisation of the resulting dependence structure vistochastic
order relations, as this enables better understanding of theadel and
facilitates practical sensitivity testing (this point is discussed further in
Section 3.1.
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In this contribution a multivariate probability distributi on is constructed
that satis es the properties listed above. The model emerges as asymmet-
ric (mean-variance) mixture of multivariate normal distributions. Mixtures
of normal distributions, resulting from a randomisation of the ovariance
matrix, form a subcase of the more general class or ellipticalstlibutions
(Fang et al, 1987). Such distributions are easy to simulate and sgify via
a correlation matrix (or a generalisation thereof when seconsioments do
not exist), as well as potentially displaying asymptotic tail ¢pendence, as
shown by Hult and Lindskog (2002). These models are however stéldially
symmetric, hence dependence for the left tails is the same as floe right
ones. This can be addressed by considering normal mixtures whtre mean
is randomised as well as the covariance, as in Barndor -Niels€¢h978), De-
marta and McNeil (2005). However in these models the resulting reelation
matrix is not easily speci ed from input parameters, which comiicates pa-
rameterisation. The construction of asymmetric normal mixtues presented
here addresses this problem.

The models discussed above all rely on the de nition of a dispergigcor-
relation) matrix. De ning such a matrix can however become pyblematic
in very high dimensions, e.g. of the order of 1000. For such casks ton-
struction of correlation matrices via Kronecker products iproposed, and it
is demonstrated how such a construction also improves computatial e -
ciency.

Section 2 introduces the asymmetric mixed normal model proped, along
with its basic properties. In Section 3 the dependence prop&s are more
closely examined, in particular with respect to stochastic ords, and formulas
for rank correlations are derived. In Section 4, parameteation issues are
further discussed. Finally, in Section 5 the use of Kronecker pitacts for the
construction of very high dimensional dependence models isoposed.

2 The asymmetric mixed normal model

2.1 De nition and basic properties

The asymmetric mixed normal model proposed in this contributin was orig-
inally introduced by Smith (2002).

De nition 1.  An n-dimensional random vectorX is de ned as having a
multivariate asymmetric mixed normal distribution, denoted byX  ANM ,(G;
whenever it satis es

S i pur H L Z; (3)

X
where,

Z is an n-vector of independent standard normal variables.

,u)



H is a non-negative random variable, independent &f, following cu-
mulative distribution G with mean 1 and standard deviation .

2 R" " is a symmetric positive de nite matrix andL 2 R" " is such
that L LT = u u'.

u 2 R" is a ‘non-centrality vector' such thatu’ Lu 1

Note that when u = 0, X reduces to a normal mixture, which is known
to represent a large subclass of elliptical distributions (Fangt al., 1987).
Conditional upon H, (3) represents a multivariate normal with mean vector

1(H 1) uand covariance matrixH . Intuitively, the e ect of (positive)
non-centralities is that, conditional uponH, a high mean vector corresponds
to high covariance and this is where the asymmetry originates.

The next few lemmas present stylised facts regarding the elentary prop-
erties of the multivariate asymmetric mixed normal distribuion. The rst
two moments ofX are given below.

Lemma 1. ConsiderX ANM ,(G; ;u). Itis:

E(XX{)=0; i=1;2:::;n: 4)
Var(Xi)= 4; i=1;2::5;n: (5)
Cov(X)= (6)
Proof. To begin with, denote
0 1
Ly
L
L = % ? § (7)
Ln
P
with L; 2 Rt ", From LL T = uu' it follows that LTL; = j":l Iz =
i u?andthatL]L; = § uu. Itnowis
h o i
E(x) = [ EE IH é)ui + PHLiZjH i
= E YH Dy h HE [, 1;Z J'}" (8)

'E(H u+E PH i E(Z) =0

tis noted that for heavy tailed H the moments ofX may not exist. However, similarly
to the case of elliptical distributions, the discussion still holds, with the matrix itself
being nite.



For the variances it is

V ar(X;)

h E[E (X?jH)] 0

= EE *H 12+H(Li2)?+2 YH 1)y HLiZjH
P 2

= 2E[(kl—]| 1+ E HE iz

P |
+E 2 1(H 1))U|p HE jn:1 ||JZJ
= w+EH) [ 15 +0
= uf+ i uf=
(9)

Finally, for the covariance matrix of X we nd

Cov(X) = E E XXTjH
n h p_ p_
= EE YH 1u+ HLZ H Dul+ HZ'LT jH
= 2E[H 1)7uu’+E[HCov(LZ)]+2 WE (H 1) HE (LZ)"
= uuT+E H uu’ +0=
(10)
]

Hence, the asymmetric mixed normal distribution as de ned in (Bhas
zero mean and covariance matrix equal to the speci ed. A non-zero mean
vector could of course be added, but this is not further consiosd here. More-
over, as it is the copula ofX that is primarily of interest, we will sometimes
consider standardised versions of, where is a correlation matrix. In the
next lemma it is shown that linear transformations of asymmetd normal
mixtures are themselves asymmetric normal mixtures.

Lemma 2. ConsiderX ANM,(G; ;u) andA isam n dimensional
matrix of rank m n. Then AX ANM,(G;AA T;Au).

Proof. Consider:
Pp—
AX = YH 1Au+ HALZ (11)
Itis sucientthat ( AL)(AL)" = ALLTAT=A AT (Au)(Au)'. O

Note that by letting each row of A contain at most one element equal
to 1 and all other elements equal to O, it follows from Lemma 2hat the
marginals of an asymmetric mixed normal vector are themselvasymmetric
mixed normal.

Lemma 3. ConsiderX ANM ,(G; ;u). The joint distribution of X is
given by

P(X1 Xi5X2  Xo;iiiiXn  Xn)= E[ n(ansa::i;an;R) (12)

io



where ,(; R) is an n-dimensional standard normal joint cdf with correlatia
matrix R = fr; g and

= .E pl(H Lu;
a H i u?
b (13)

rij =P .
Ci up)Cy u)

Proof. For simplicity the proof is carried out forn = 2, proof for n > 2 being
identical. It is:
P(X1 X1; X2 Xp)

- 1 2 .1 P>
= P( (H F]).)Ul + H j=1 llj Zj X1 (H 1)U2 H j=1 |2j %j X2

=E P Zlyzy ol but e gz e Wl Dugy
(14)
We know that
P 2
E[ pi=1 lij ZJ] = P 0
2 2 2 — 2
pVarl jufiZ) = p, piplic iU (15)
COV( j=1 Ilj Zj); k=1 |2kzk)) = P:12 k 1 Ilj |2kCOV(Zj ’Zk)
= j:1|11|21 = 12 Uz
Consequently, sinceH is independent ofZ,
P(X1 X1;X2  Xp)
- E X1 1(H Dug. xp n(H Duz. 12 UiUp (16)
2 " uz -’ "B us Iv( 1 uf)( 22 ud)
Ul

Finally the restriction on the non-centrality vector is justi ed.

Lemma 4. The conditionuT 1'u 1is sucient for the decomposition
L LT = u u' to exist.

Proof. Let =D DT, forD 2 R" ". SuchD will always exist because
is positive de nite and symmetric. Now consider matrix
uuT(D 1)T
L=D p— 17
1+°1 uT 1u an
It can be checked by direct calculation thatLL T = uu'. The existence
of L is guaranteed byu™ 'u 1. O

2.2 Numerical illustration

In gures 1.-3. the dependence patterns induced by asymmetrnormal mix-
tures are demonstrated. In gure 1. a scatter plot of 5000 samefrom
a standard bivariate normally distributed vector with 1, = 0:5 is shown.



The corresponding sample ranks with could be viewed as a samplani the
underlying copula are also shown.

In gure 2. the corresponding plots are given for a standard bariate
t distribution, with 1, = 0:5 d = 5 degrees of freedom. This distribution
can be constructed as an asymmetric normal mixture witlu = 0 and in-
verse Gamma distributed mixing variableH 1=Gamma g; d—22 . For this
distribution itis = (H) = % It can seen how the normal mixture
introduces a higher dependence in the tails, while maintaimg the radial
symmetry of the normal distribution.

In gure 3. samples from an asymmetric generalisation of the t sh
tribution are plotted. This is e ected by taking H as before and letting
u; = up = 0:7. The e ect of the non centrality vector u on the dependence
structure is clearly seen, as positive dependence becomes eatrated in the
top-right area of the distribution.

3 Dependence properties

3.1 Stochastic orders

Here the dependence properties of asymmetric normal mixturage studied in
some more depth. We start with the de nition of the stochastic coocordance
and supermodular orders, which provides a much stronger chatagsation
of dependence than correlation. The presentation of standarésults (with
no regard to full generality of those results) is based upon Mt and Stoyan
(2002).

De nition 2.  Consider random vectors(X1; X;) and (Yi;Y2), such that

X1 4 Y1, X = Y,. Then we say thatX precedesY in the concordance

order and write X .Y, if either of the following two equivalent conditions
holds:

) P(X1 Xxp;X2 X)) P(Yr X3;Y2  Xp) for all xq;Xs.

i) Cov(g(X1);h(X2) Covg(Y);h(Y>,)) for all increasing functionsg; h
such that the covariance exists.

It is apparent from De nition 2 that concordance order is a poperty of
the copulas of the random vectorsX and Y and does not depend on the
marginal distributions. The importance of concordance ordein risk man-
agement is related to a result by Dhaene and Goovaerts (1996@)hich shows
that among portfolios whose respective elements are equal irstdbution,
the more concordant portfolio is also the riskiest one in the steljpss and
convex order senses. It is a desirable property for a multivariatmodel that
an increase in correlation makes the random vector more condant, as this
ensures the intuitively appealing property that higher corelations produce



higher aggregate risk holds true. This is also practically rebant when sensi-
tivity testing the implementation of a dependence model. If ggregate risk,
de ned as the sum of increasing functions of the elements of @m vector
X, is measured by a risk measure that is consistent with the stop-losler
(see e.g. Denuit et al (2005) for a discussion of the relation beten risk
measures and stochastic orders), then an increase in input coatedn should
also yield a increase in the aggregate risk.

The above discussion generalises to the case of dimensions highant2,
via the concept of supermodular order:

De nition 3.  Consider random n-vectorsX and Y, Then we say thatX
precedesY in the supermodular order and writeX 4y Y, if

Ef () EF(Y)L (18)
for all supermodular functionsf such that the expectations exist.

We need not assume assume equality of marginal distributions indldef-
inition above, as such equality is actually a consequence okttsupermodular
order. Moreover it can be shown that the supermodular order geralises the
concordance one, as formally stated in the next lemma (Mulleand Stoyann,
2002, Th. 3.9.5).

Lemma 5. Let X ¢, Y. Then
Xi:in; i=1;::::n
Xi; X)) (Vi3 Y)); 8

The relationship between the supermodular order on random uvecs and
the stop-loss order on the sum of their elements is given by Theon 8.3.3
in Maller and Stoyan (2002), essentially generalising Dhaerend Goovaerts
(1996).

Is is now seen that an increase in the correlations between etts of an
asymmetric mixed normal vector, makes the vector more depegnt in the
supermodular order sense.

Lemma 6. ConsiderX ANM,(G; ;u)andX® ANM,(G; %u), such
that i = I?, i I(J)8|,j . Then X sm X0

Proof. We need to show that for all supermodular function€E[f (X)]

E[f (X9] holds. ForH;H?® G the mixing variables corresponding toxX ; X ©,
it then enough to show thatE[f (X)jH = h] E[f (X9jH%= h]. We observe
that XjH = h; XYH = h®are multivariate normal vectors with the identi-
cal marginal distributions and o -diagonal elements of the avariance matrix
given byg; = h( j uy); @ =h( P uy). Sinceg; ¢ the Lemma
is proved by Theorem 3.13.5 in Muller and Stoyan (2002). O



3.2 Rank correlations

While the asymmetric mixed normal model can be used to model quigties
of interest in risk management, e.g. asset log-returns, it can alé® used
to model risk with arbitrary marginal distributions, by consideing only the
copula of an asymmetric mixed normal vectoX . Hence, beyond the Pearson
correlation coe cient (and its generalisation via the matrix ), expressions
for the rank correlation coe cients by Spearman and Kendallare necessary.
Rank correlations are of interest in the copula context becae they are in-
variant to monotone transformations of the elements oX.

ConsiderX ANM ,(G; ;u) and X %X %independent copies oK. The
Spearman and Kendall rank correlation coe cients can then & de ned via
the equations (e.g. Nelsen, 1999):

s(X1;X2) =12P(X1 XXz X3 3 (19)

and
(X1;X2) =4P(X1 XXz X3 1 (20)
respectively.
Expressions for the rank correlation coe cients are given beiw.

Lemma 7. For X ANM,(G; ;u) Spearman's rank correlation coe cient
is given by

S(Xl;XZ):
1 1 o]
12E n ur(H H9 ;n uz(H HY ;n (12 ugup)H 4,
2 P )A+AY T (2 W)H+HD' T (11 W) 2 W)(H+HO(H+HO

(21)
whereH;H% H G are independent copies of the mixing variable.

Proof. Denote by H;H % H%and Z; 7% Z%the mixing and normal variable
corresponding to the independent pairX ;X% X% ANM ,(G; ;u). Then
we have:
P(Xg XXz XZI=EP(Xy XpXp XPHHOHY=
'H Lug+ Hﬁllzl + 112Z5)
EP% 1(H0 1)U1+p H0(|112f+ |122g), H,HO;HO§ -

'H uy+ pH£2121 + 12275)
1(H 00 1)U2 + H0Q|21Z:?0+ |222§9

(22)
p_— o J— 1
H (11221 + 112Z5) . HA112Z9+ 11,Z9)
1(H H)uy; §
EP% _ RAPAE H;HCGHO
g H (12121 + 122Z5) H 01,2 2% 15,299
{HO H)u,
For xed H;H %H% the joint distribution of
p_— o J—
Y, = p H (11121 + 112Z2) H O(Illz;?"' |1zzg) (23)

Yo = H(121Z1 + 122Z5) HOQ5,Z 9% 1,729

9



is bivariate normal with mean vector [0 0] and covariance matrix:
(nn UDYH+H) (12 uu)H (24)
(12 UUp)H (22 ud)(H+H
Hence
P(X1 X%Xz XFH;HOGH) =

D lug(H HO9 p lup(H H® p (12 uiup)H
(11 UD(HFHY " (22 Ud)(H+HO " (11 uf)( 22 UB)(H+HO(H+HO

(25)
which by equation (19) completes the proof. O

2

Lemma 8. For X ANM ,(G; ;u) Kendall's rank correlation coe cient
is given by
(X1;X2) =

4E n tuiH HY . lup(H HY .y (12 uiup) 1 (26)
2 | y I y © ’
(11 uf)(H+H9 (22 Uf)(H+HO (11 u)( 22 ud)

whereH;H® G are independent copies of the mixing variable.

Proof. The proof is near identical to that of the previous lemma. Deote
by H;H % and Z;Z° the mixing and normal variable corresponding to the

independent pairsX; X° ANM ,(G; ;u). Then we have:
P(Xg XIXo X)=EP(Xs XXy XFHH=
H Lug+ H (11121 + 112Z5)
(H 1ux+ Fﬁﬁlel + 122Z5)
1(H 0 1)U2 + H °(|21Zf + |222§) (27)

p_ P 1
H (11121 + 112Z5) HY11,Z9+ 11,Z9)
YHO H)ug; c§
EP% p— p_—2-~ H:H
H (12121 + 122Z5) HQ12:Z2+ 1,529
1(H0 H)u,

For xed H;H° the joint distribution of

p_
Yy = D E(Illzl + 112Z5)
Yo =" H(l21Z1+ 122Z5)

P

D HY111Z29+ 11,29

HY151Z9+ 12,29
is bivariate normal with mean vector [0 0] and covariance matrix:

(1 U)H+HY (12 up)(H+HY (29)
(12 U)(H+HY (22 uj)(H+HI

(28)

Hence
P(X1 XXz XJH;HO9=
, P tus(H H9Y p lup(H HO p (12 uiup) ; (30)
(11 Uuf)(H+HO (22 U3(H+HO (11 u$)( 22 uj)
which by equation (20) completes the proof. O

10



4 Parameterisation issues

4.1 Rank correlations

One can calculate Spearman's and Kendall's rank correlatidor a particu-
lar choice of G; ;u by equations (21) and (26) respectively, by numerical
integration. There are however two practical issues that such grocess will
not address:

A closed form formula for rank correlations may be more usefut,.g.
for reasons of computational speed.

When choosing parameters for a model where only the copula of a
asymmetric normal mixture is of interest, one needs to work bewards
from a speci ed set of rank correlation coe cients to the matrk  (say
for a xed non-centrality vector u).

The approach taken here is to resolve these issues by deriving epgmate
formulas for the rank correlation coe cients. The approximdion carried out
by considering a discrete distributionG for the mixing variable H, de ned
on a nite number of points. This could be derived as an approriation
to the generally continuous distribution G used in reality. The method is
presented here only for the case of the Spearman rank corretetticoe cient;
the calculation for Kendall's rank correlation is very simiér. Without loss of
generality we assume that is a correlation, rather then a covariance matrix.

Lemgna 9. Let X ANM 2(G; ;u), with H G such thatP(H; = h;) =
pi; jdzl p =1 for hy < <hgand 13 = 2 =1. Then Spearman's rank
correlation is given by:

! #

s(X1;Xp) =12 o+ m( 12 Up)m) 3 (31)

The coe cients |, are given by
Pg Pg Py
0 = pimip j=ip ke PP Cai(hishy)) Cau(hishi))
d d d
m = izt =1 k=1 TRIR P (aa(hishy)) (aahishy)) (32)
Hem 1(ai(hi;hy))Hen 1(az(hi; hy))bthi;hy;h)™g;

where:
v+ — ui(x y) .o =12
al(X,Y) p—m, | y Lo
b(x;y;2) = P X

T w)I w)(x+y)(x+2)

I:)[k=2] k! 9 iyk 2i it i
Hey(X) = 5 W( 1)'2 'x* < are the Hermitian polynomials.

11



and are the standard normal cumulative distribution and density
respectively.

Proof. First note that for mixing variable H of the form considered here,
equation (21) becomes

P P =] s(X 1) XZ) =
d d d
12 L a1 k= PIBPe 2 (@a(hishy)ia(hishe); (2 usug)b(hishyshy)) 4
(33)
Moreover, the bivariate standard normal distribution can be witten as (Gupta,
1963)

bS

1 +
a8 = (&) ( @)+ (&) (@)  ——=rHem(a)Hem(a)d"™
) (m+1)!
(34)
The result follows directly from these two equations. O

Given Lemma 9, it is now possible to approximately calculate;, from
s = s(X1;X>) by performing a series reversion. In particular we can write:

X7 s + 3 m
12 = UiUp + m 12 0 ; (35)

m=1

where the coe cients |, of the reversed series can be calculated from those
of the original series ,, by Abramowitz and Stegun (1972, p.16).

4.2 Choice of non-centrality vector

As discussed in Section 2, the non-centrality vectar is used in order to skew
the dependence structure of a normal mixture. So choosing higlements of
u will yield a very skew copula. The extent to which this can be caed out
is nonetheless limited as very high values of un would violate the constraint
u’ Lu< 1.

It is therefore of interest to ask: \given a correlation matrix , what is
the largestu that one could use?". Answering this is our aim in this section.
We note that using \the largest possiblau™ is a decision by the modeler as to
how the dependence structure should look like and has nothing to in this
context with statistical estimation of the u parameter vector. The respective
choice of non-centrality vector is given in the following ult:

Lemma 10. The vectoru for which the sum j”:1 u? is largest andu’

1 u < 1, is proportional to the eigenvector of corresponding to its
largest eigenvalue.

Proof. Let S = . As Sis the ||3vers§ of a symmetric matrix, it is itself
symmetric. Henceu™ S u<1= [, J -1 Sijuiy;.

12



Consider now the following optimisation problem:

x XX
max us; such that: Sj uiu; = a; (36)
i=1 i=1 ]:1

wherea < 1, e.g.a=0:99. The corresponding Lagrangian is
I

xXo XX
L(u; )= Uiz + a Sij Ui U; (37)
i=1 i=1 J:l
It then is:
. P P
@éuu, ) = 2Uk @@f Uq jnzl Slj Uj + + U jn=1 Snj uj
= 2u U= "ospui+ + TosaU + U8 T s U
B K Tay =1 >4Y j=1 Skj Uj k@y j=1 SkiUj
e @ n o
FJ;"'@_«un j=1 Snj Uj
= 2uy (21 S U £ UiSi+  + UnSkn
= 2Uk 2 jn:l Skj
(38)
Setting (1) = 0 yields:
W
X
Ug = Skj =) u= S u (39)

Hence the reciprocal of the Lagrange multiplier is an eigenvalue ot and
the non-centrality vector u is the corresponding eigenvector. Consequently,
is an eigenvalue of = S ! with corresponding eigenvectou.
Now, to determine which exactly of 's eigenvectorsu corresponds to,
consider

8 9
X X X X < ) X =
Uy = S =) ur= ST (40)
j=1 i=1 i=1 ° j=1 !
Itis P ) P P
j=1 Si = j=1  r=1 (Sir Ur)(sj Uj)
(39) P (41)
= n 1
= j=1 (sijuj) =ui
Thus p P P
LU= L |32n pn:% (sju) *ui
= izt j=1 Sij UjUi (42)
= a

n

P _ _ .
Therefore the largest value of the sum ., = u? is achieved wheru is an
eigenvector of corresponding to its largest eigenvalue. O

13



5 Kronecker products in high-dimensional sim-
ulation

5.1 Properties of the Kronecker product

Simulation algorithms based on the multivariate normal distibution, such
as the asymmetric mixed normal model (3) are well suited for sirfation
in high dimensions, e.g.n = 50. However, a portfolio of insurance risks
will sometimes be of much higher dimension. Consider for examapghe case
of a large insurance company exposed to 50 lines of business, uwdéen
in 15 years over 3 territories. This immediately produces 2@5otentially
dependent random variables. At such high dimension a number ofgblems
occur:

It becomes very di cult to specify a positive de nite correlation matrix

The Cholesky decomposition algorithm used to factorise the maur
u u' may fail because of numerical errors.

Runtimes may become impracticably long, particularly for he matrix
multiplication L Z.

A means to addressing these problems is to construct the matrix using
Kronecker products. Consider square matrice8 = fa;g 2 R™ ™;B =
fhjg 2 R" ". Then their Kronecker productA B isamn mn matrix

such that 0 1
allB alzB A1m B
A B = az-lB azlzB | a2n.1 B (43)
am1B am2B amm B

Kronecker products have a number of useful properties (e.g.al Loan,
2000) of which we note here:

1. A B)(C D)=(AC) (BD)

2.(A B)T=AT BT

3.(A B)l=A! B!

4. If A;B are positive de nite matrices, thenA B is positive de nite.
5. fA=M MTandB=N NT,thenA B=(M N) (M N).

Property 4. ensures that a positive de nite correlation (covaance) ma-
trix ~ can be constructed as the Kronecker product of 2 (or more) smal

14



correlation (covariance) matricesA ;B. Property 5. breaks down the prob-
lem of decomposing a large correlation matrix to that of decgmosing two
smaller ones, thus reducing the potential for numerical error

Consider now the matrix multiplication (A B) Z, whereA 2 R™ ™;B 2
R" "andZ 2 R™ 1, We can then Write

0 0P, 1
a;1B  a;xB aimB {nl ayj B Z
a1B  axB a Z ay B Z;
(A B)Z:% neoe o %% ZE % o §;
am1B  am2B j= 1a-mj B Z;
(44)
wherez; 2 R" '; j = 1;:::;n:. It is apparent that the matrix products

B Z; are repeated in each block row of the matrix above. Hence thegrc
be calculated in advance and reused as appropriate. Multipation of an
mn mn matrix by an mn 1 vector generally requires 20n)? elementary
operations (additions and multiplications). However, if themn mn matrix
can be represented by a Kronecker product as above, the comatinal
workload drops to 2nn? + 2m?n operations. If for examplem = n = 50,
this implies approximately a 25-fold reduction in the numbeof elementary
operations required.

5.2 Kronecker products in the asymmetric mixed nor-
mal model

Here is shown how a high-dimensional version of the asymmetric mknor-
mal model can be constructed with the use of Kronecker products.

Lemma 11. ConsiderX ANM ,n(G; :u), such that
=A BforA2R™ ™mMB2R" "withA=MMT,B=NNT
u=v wiforv2R™ Lw2R"1?

Then X can be written as

d

X ; YH (v w)+ pﬁ (M N) z
H T T T T )
P WTA v) WTB iw) (wTM HT)  (wwT(N HT) z;
(45)
where

Z is an (mn)-vector of independent standard normal variables.

H is a non-negative random variable, independent &f, following cu-
mulative distribution G with mean 1 and standard deviation .

Proof. Follows directly from equations (3), (17) and the propertis of the
Kronecker product discussed in the previous section. O
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Hence by constructing = A B, the problems of specifying a large pos-
itive de nite correlation matrix and decomposing that matrix are addressed.
Moreover, it can be seen from equation (45) that the matrix mtiplication
L Z is broken down to a dierence of two matrix multiplications, in each
which the rst factor can be expressed as a Kronecker product. Hes, the
computation of L Z can be substantially speeded up by using representation
(45). We note that the preceding discussion easily generalisesthe case of

expressed as a Kronecker product of more than two matrices.

Imposing a Kronecker-product structure on of forms quite a strong
assumption, so it is fair to ask whether such a speci cation makes s
Consider the example of an insurance company that has exposuiresn lines
of businessn years, andr territories. Specify correlation matricesA, B and
C, with dimensionsm m, n n, r r respectively. Interpret A as the
correlation matrix between lines written in the same year andah the same
territory, B as the correlation between the same line, written in the samerte
ritory over di erent years etc. Dening = A B C produces an overall
correlation matrix that is consistent with the above speci caton, with the
Kronecker structure producing the cross-correlations betweeisks in di er-
ent lines and di erent years or territories. As these cross-coriaions emerge
as products of correlation coe cients with modulus< 1, it is ensured that
they are smaller than the corresponding correlations betwedines within the
same year and territory - hence a rst reasonableness check is pass€éhere
is of course no particular reason why the cross-correlations shainave the
prescribed form. Nonetheless, given that it would be very unlikethat an in-
surance company has enough data to statistically estimate a, s&)00x2000
correlation matrix, this choice of correlation matrix stru¢ure seems to be an
acceptable compromise.
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