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Abstract—The high mortality rate associated with coronary
heart disease (CHD) has driven intensive research in cardiac
image analysis. The advent of computed tomography angiogra-
phy (CTA) has turned non-invasive diagnosis of cardiovascular
anomalies into reality as calcified coronary plaques can be easily
identified due to high intensity values. However, detection and
quantification of the non-calcified plaques in CTA is still a
challenging problem because of their lower intensity values, which
are often similar to the nearby blood and muscle tissues. In this
work, we propose Bayesian posterior based model for precise
quantification of the non-calcified plaques in CTA imagery. The
only indicator of non-calcified plaques in CTA is relatively lower
intensity. Hence, we exploited intensity variations to discriminate
voxels into lumen and plaque classes. Based on the normal
coronary segments, we computed the vessel-wall thickness in first
step. In the subsequent step, we removed vessel wall from the seg-
mented tree and employed Gaussian Mixture Model to compute
optimal distribution parameters. In the final step, distribution
parameters were employed in Bayesian posterior model to classify
voxels into lumen or plaque. A total of 18 CTA volumes were
analyzed in this work using two different approaches. According
to the experimental results, mean Jaccard overlap is around
88% with respect to the manual expert. In terms of sensitivity,
specificity and accuracy, the proposed method achieves 84.13%
,79.15% and 82.02% success, respectively. Conclusion: According
to the experimental results, it is shown that the proposed plaque
quantification method achieves accuracy equivalent to human
experts.

Keywords—Coronary segmentation; non-calcified plaques; vas-
cular quantification; coronary wall analysis

I. INTRODUCTION

Coronary heart disease (CHD) is related to the accumula-
tion of fatty materials (also termed as coronary plaques) inside
coronary arteries. The recent statistics of the National Health
Services, United Kingdom [2] reveals that over 2.3 million
people in the United Kingdom suffer from CHD where the
annual death toll is approximately 73,000 (an average of one
death every seven minutes). The substantial levels of growing
morbidity and mortality have led to a intensified interest in new
techniques for detecting coronary abnormalities to potentially
avoid worst events [1], [2].

The recent advancements in non-invasive imaging have im-
proved the diagnostic accuracy in terms of high temporal and
spatial resolution [3]; however, detection and quantification of
non-calcified plaques in CTA is still a challenging problem.
Clinically, the non-calcified plaques have been established as
the most important indicator of acute coronary syndromes due

to their fragile nature [4]. The risk of sudden rupture has
made soft plaques threatening in clinical context, i.e. for many
individuals, sudden death becomes the first sign of soft plaque
in contrast to the calcified plaques which often lead to disease
symptoms at early stages. It should be noted that calcified
plaques can be identified easily in a CTA image based on
the high intensity value, consequently numerous methods have
been reported with a reasonable quantification accuracy [5]–
[8]; however, non-calcified plaque requires more sophisticated
phenomenon. In context of the flow of paper, we start with
relevant literature and CTA data specification. Subsequently,
we explain the plaque quantification methodology which is
followed with the Results section. The lumen - plaque quan-
tification results are provided in the Results section using
statistical metrics of sensitivity, specificity and accuracy, with
respect to manual experts.

II. RELATED WORK

Non-calcified plaque detection and quantification in CTA
has been a challenging problem; hence, there is a little
literature [9]–[12], [14] published addressing automatic seg-
mentation, out of which the majority have been clinical pilot
studies or generic anomaly detection techniques. The use of
machine learning in soft plaque detection was first reported
by Wei et al. [10] where a linear discriminant analysis (LDA)
was used to reduce the false positives in a set of 120 pre-
selected soft plaque candidates. Accordingly, the detection
accuracies reported were 94% and 79%, respectively for the
calcified and non-calcified plaques, along with a high number
of false positives. Another interesting method for the automatic
detection of vascular abnormalities was proposed by Zuluaga
et al. [13]. In this work, an unsupervised SVM model trained
on normal cross sections was used to detect the outliers i.e.
the cross sections which violate the intensity pattern of normal
class. The authors reported promising results for 9 clinical
CTAs with NCP detection accuracy of 79.62%, however;
the precise quantification was not performed in this work.
Similarly, the detection methods were reported by Renard and
Yang [14], Lankton et al. [11], Li et al. [15]; however, the
precise quantification has not been reported frequently.

In context of the non-calcified plaque quantification, a
number of algorithms [16], [17], [34], [35] have been proposed
in recent years with a motive of correlating CTA based plaque
quantification with intra-vascular ultrasound (IVUS) measure-
ments. Athanasiou et al. [35] employed 4-class Gaussian
Mixture Model to identify respective classes namely lumen,
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calcified plaque, non-calcified plaques and the background.
Accordingly, the paper reported efficiency over the existing
literature and a good correlation with IVUS measurements;
however, the blooming effect of calcified plaque resulted in
relatively low agreement for calcified plaque volume. More-
over, the vessel wall analysis was not performed explicitly,
which is very crucial in context of the non-calcified plaques
because of two-way vessel remodelling.

In addition, a number of studies [16], [18]–[23], [34], [36]–
[39] have been reported in context of the non-calcified plaque
quantification: however, the main focus in these studies was
to demonstrate the capability of CTA imaging to reflect the
non-calcified plaque rather than automated quantification of
non-calcified plaque in CTA. Accordingly, non-calcified plaque
lesions were manually selected in the first step, and plaque
quantification results were compared with respect to intra-
vascular ultrasound analysis to establish correlation between
two imaging modalities.

Our contribution in this work is an efficient methodology
for quantification of the non-calcified plaques with a human-
equivalent accuracy. First, we present an efficient method for
the vessel wall analysis in context of the non-calcified plaques.
The proposed vessel-wall analysis can be used as a stand-
alone plaque detection method as well it serves as important
step towards plaque quantification. In addition, we formulate a
posterior class based plaque quantification method for voxel-
wise plaque quantification with a human-equivalent accuracy.

In this work, we employed clinical CTA data (a total of 16
CTA images) obtained from publicly available database of Rot-
terdam Coronary Artery Evaluation framework [24], [25]. The
Rotterdam CTA data comes from different sources and is based
on different vendors as described in [24]. The motive behind
using Rotterdam data is the availability of the manual ground
truth in terms of expert annotations i.e. segment- wise status
(normal/abnormal) and the precise position of non-calcified
plaque for the abnormal coronary segments. Based on the
provided ground truth, we identified the individual coronary
segments affected with non-calcified plaques as defined in
Table I.

TABLE I. NON-CALCIFIED PLAQUE EFFECTED SEGMENTS IN
ROTTERDAM CTA DATA

Segment ID Plaque Specifications

Segment Type Plaque Type Plaque Grading Stenosis(%)

DS1 seg6 Proximal Non-calcified mild 20
DS2 seg6 Proximal Non-calcified mild 25
DS4 seg1 Proximal Non-calcified Severe 65
DS4 seg2 Proximal Non-calcified Moderate 51
DS5 seg2 Proximal Non-calcified Moderate 57
DS5 seg8 Distal Non-calcified Moderate 45
DS7 seg2 Proximal Non-calcified Severe 71
DS7 seg3 Proximal Non-calcified Moderate 41
DS9 seg2 Proximal Non-calcified Moderate 51
DS11 seg7 Proximal Non-calcified Mild 22
DS15 seg2 Proximal Non-calcified Moderate 53
DS15 seg3 Proximal Non-calcified Mild 22
DS15 seg14 Distal Non-calcified Moderate 45

III. PROPOSED MODEL

Precise segmentation of the coronary vasculature serves as
first step in plaque quantification. Accordingly, we employed
hybrid energy model of [26] to extract the coronary tree as

(a) DS04 seg1

Fig. 1. Segmented coronary trees with overlaid centreline and two cross
sectional planes. The centreline is overlaid in black colour for the right
coronary artery, whereas blue, red and green represents the curved cylindrical
approximations for coronary segments numbered 2, 7 and 8 respectively.

illustrated in Fig. 1. Subsequently, radial profile based plaque
detection method [27] was applied to precisely localise the
plaque in different coronary segments.

A. Ground Truth Construction

In context of plaque quantification, we started with the “ref-
erence” ground truth formulation using plaque position inside
respective coronary segments. Because of the ambiguous ap-
pearance in CTA imagery, the non-calcified plaque is clinically
estimated by evaluating lumen deformations. Accordingly, we
used the annotated lumen boundary of Rotterdam experts to
derive the voxel-wise plaque ground truth. The lumen diameter
variations can be observed in the mid of the vessel as shown
in Fig. 2a - 2b, indicating non-calcified plaque instance at
respective locations. We approximated the ideal “plaque-free”
vessel (red contours) for the plaque affected region using two
“normal” cross sections (immediately before and after the
plaque region) as shown in Fig. 2c - 2d. In the subsequent
step, the annotated lumen (black contour) is subtracted from
the ideal vessel (red contour) and the remaining voxels in the
plaque free region are labelled as ground truth plaque voxels.

For mathematical formulation of the plaque estimation
problem, we represent the coronary segment (lumen boundary
annotations) using a tubular model Tmodel

[
CP, θ

′

cs

]
, where

CP denotes the centreline of the segment and θ
′

cs defines cor-
responding cross-sectional information. Accordingly, complete
coronary segment is represented using an [Ns] by [m] array,
where Ns represent the total number of points in segment
centreline and m denotes cross-sections related parameters.

The elliptical model is used to represent vascular cross
sections, as Vessels are elastic bodies which can accommodate
local deformations of the lumen due to changes in the blood
flow and intra-luminal pressure. Such deformations cannot
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(c) DS4Seg1-ideal vessel
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(d) DS7Seg2-ideal vessel

Fig. 2. Lumen boundary annotations for two non-calcified plaque effected
coronary segments. Black contours represent manual annotations for lumen
boundary in 3D space, (red) contours define “ideal” (plaque-free) vessel
boundary for the plaque effected region of the coronary segment.

be accurately represented using circular cross section model
proposed in [28]–[32].

The elliptical model based representation used in this work
is illustrated in Fig. 3a. Accordingly, for the ith point of the
centreline CP , we define the parameter vector θ

′

cs(i) using el-
lipse as [Exyz(i) ≈ {a(i), b(i), Cxyz(i), Rxyz(i)}], where a(i)
and b(i) represent the semi axis length for major and minor
axes of the current ellipse, Cxyz(i) denotes the centre of the ith
ellipse of segment, Rxyz(i) defines orientation information for
ith ellipse and Exyz(i) represents points on the ellipse circum-
ference. Accordingly, the mathematical formulation (paramet-
ric representation) for a 3-dimensional ellipse is expressed by
(1), where t

′
denotes the angular parameter varying between

0 to 2π.

(a) (b)

Fig. 3. Tubular model representation and estimation of ideal vessel boundary
for plaque effected region of coronary segment. Black contours represent
manually annotated lumen boundary in the plaque effected region, red shows
the estimated ideal (plaque-free) vessel boundary based on two normal (upper
and lower) cross sections.

Exyz =

[
Cx
Cy
Cz

]
+Rxyz

[
a.cos(t′)
b.sin(t′)

0

]
(1)

where, Rxyz = R1.R2.R3, and individual rotation values
are computed as follows:

R1 =

[
cos(α) sin(α) 0
−sin(α) cos(α) 0

0 0 1

]
,

R2 =

[
1 0 0
0 cos(β) sin(β)
0 −sin(β) cos(β)

]
,

R3 =

[
cos(γ) sin(γ) 0
−sin(γ) cos(γ) 0

0 0 1

]
.

Accordingly, for an ellipse based modelling of the re-
spective coronary segment, we approximated the manually
annotated lumen boundaries (3D- contours) using best fitting
ellipses on respective cross sections of the coronary segment
using non-linear least square fitting. After obtaining the el-
liptical model Tmodel

[
CP, θ

′

cs

]
of the coronary segment, we

used two “normal” ellipses adjacent to the lesion region i.e
(immediately before and after the plaque region) to derive the
parameters for ideal ellipse (plaque-free vessel) through the
plaque affected region as illustrated in Fig. 3b. It should be
noted that, in order to model the ideal plaque-free vessel at
ith point of the centreline, we employed the ellipse orientation
information from the current fitted ellipse i.e. Rxyz(i), whereas
the major-minor axis lengths for ideal ellipse are derived from
two “normal” ellipses Es and Ee , which ensures that the 3D
progression of vessel is tracked realistically.

Exyz(i) = {a(i) b(i), Cxyz(i), Rxyz(i)}

where a(i) and b(i) represent major-minor axes derived
from two normal ellipses adjacent to the plaque region i.e.
immediately before and after the plaque region.

After deriving the ideal ellipses for the plaque effected
region, we subtracted the manually annotated lumen region
which results in “reference” ground truth plaque voxels. The
process of obtaining plaque ground truth is further illustrated
in Fig. 4 where lumen boundary contours are used effectively
in plaque identification process. It can be observed that due to
the presence of a non-calcified plaque , the lumen shrinks in
the proximal section and overcomes the diameter reduction
as plaque region is passed. The left column of the figure
represents the ideal vessel at respective cross sections of the
segment, the middle column shows the manually annotated
lumen and the right column represents the leftover to be
interpreted as non-calcified plaque. It can be observed from
the middle column that the lumen annotations are closely
corroborating the plaque-free vessel for two normal contours
(top and bottom row), whereas the lumen contour in middle
row (plaque affected) appears significantly reduced. Likewise,
the right column justifies that there exist a minimal plaque for
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two normal cross-sections, whereas the plaque effected cross-
section results in a substantial amount of non-calcified plaque.
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Fig. 4. The ground truth estimation for plaque-effected cross-sections using
lumen boundary annotations of manual expert. The Top and bottom rows show
two normal slices at the start and end of the plaque region, whereas the middle
row represents a severely effected plaque cross section. The first column shows
ideal vessel, middle column shows the manually annotated lumen and right
column shows derived plaque.

B. Vessel Wall Analysis

The non-calcified plaque quantification algorithm is based
on the assumption that the input data (vessel) comprises
of two components (i.e. blood lumen and the non-calcified
plaque); however, the initial segmented tree violates this basic
assumption. This is due to the fact that initially segmented
tree includes the vessel wall, i.e. the interface of the lumen
with the background in CTA imagery. Hence, the vessel
wall must be identified and removed before applying the
non-calcified plaque quantification algorithm. Accordingly, we
started with the segmented coronary tree and computed the
vessel wall thickness for normal segments in respective CTAs.
In the subsequent step, the vessel wall is removed using
ray projection based thickness metric. In the final step, wall-
removed coronary segments are evaluated for the lumen and
non-calcified plaques.

The wall thickness computation process starts with the
cylindrical model of Fig. 1, in which a coronary segment is
approximated using 6 millimeters based cylindrical model for
segment approximation. Based on the fact that 6-mm repre-
sents the maximum possible expansion of coronary vessel, the
background data is often included in circular approximation.
Accordingly, we used three class Gaussian Mixture Model
(GMM), followed with the Bayesian Posterior’s computation
to classify the tubular segment voxels into three classes namely
the background, vessel wall and the lumen as illustrated in Fig.
5.

Accordingly, it can be observed from the second column
of the figure that background is generally well identified by

(a) image (b) back (c) wall (d) Lumen

(e) image (f) back (g) wall (h) Lumen

Fig. 5. Vessel wall analysis based on 3-class approximation of 6mm
cylindrical model of DS4 seg1. First column shows 6mm region on the cross-
sectional plane, second column represents the background of vessel that comes
inside 6mm, next two columns shows the vessel wall and lumen respectively.
First and third row represents two normal cross-sections, whereas the middle
row represents an abnormal cross section.

“class-1” as first peak of the histogram corresponds to the
low intensity regions that appears dark-black in the 6 mm
circle of first column. Likewise, “class-2” defining vessel wall
is represented in the middle column in which a ring pattern
circumscribing the lumen can be clearly visualized. Class-3
representing lumen is shown in column 4 of the figure where
a stable pattern can be observed for normal cross sections
(top and bottom row) along the length of the segment. In
case of plaque effected cross-section(middle row), the 3-class
approximation reflects the abnormality in terms of violation
of the normal patterns for both lumen and the vessel wall.
The non-calcified plaque in general assumes intensity value
comparatively lower than the blood lumen and close to the
myocardial tissues. Hence, our 3-class approximation assigns
the existing non-calcified plaque voxels to “class-2” i.e. the
vessel wall. Consequently, the vessel wall shows unexpected
increase in thickness for non-calcified plaque-effected sections
with a significant reduction in lumen as illustrated in Fig. 5a
- 5d.

After identifying the vessel wall, we employed ray-
projection technique to compute the wall thickness for arterial
cross section as illustrated in Fig. 6a - 6c. Based on the centre
of the lumen, we projected a total of 36 rays outward with an
angular interval of 10 degrees and computed ray-wise thickness
of the vessel wall, which is averaged to obtain the wall thick-
ness for respective cross section. This phenomena is further
illustrated using wall thickness plots for two plaque affected
segments as shown in Fig. 6d - 6e. It can be observed that for
both segments, the lumen (black) starts with sharp decrement
and becomes stable as we move away from the aorta. Similarly,
the wall thickness (red) shows a stable thickness value for
normal region of the segment. However, the plaque affected
region shows unexpected reduction in lumen coupled with
unexpected increase in the wall thickness. Once the mean wall
thickness is computed for respective CTA volumes, the next
step is to remove the wall of the segmented tree.
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Fig. 6. Computation of the Vessel Wall thickness for coronary segment
DS4 seg1. (a-c) shows the ray-projection to compute the mean thickness of
the vessel wall, (d) represents the graphical comparison between lumen area
and the normalized vessel wall thickness to reflect the anomalous lesion area.
Cross sectional representing normal segment (a and c) leads to stable vessel
wall, whereas abnormal cross section leads to expansion of the vessel wall
based on low density soft plaques.

IV. PIXEL-BASED SEGMENTATION

After removing the vessel wall from the segmented tree,
it is expected that the leftover is true lumen and the non-
calcified plaque (if any). Accordingly, we derive hand crafted
discriminative features capable of differentiating voxels into
lumen or non-calcified plaque. For voxel-wise discriminative
features, we employed the spatial neighbourhood information,
optimized 2-class GMM based posteriors, signed distance
function, distance from the arterial orifice, pixel distance from
the medial axis and histogram based fuzzy label as explained
in this section.

V. 2-CLASS POSTERIORS

It is notable that the non-calcified plaques present inside
coronary vasculature do not follow any particular shape or
structure; hence, the use of shape-prior information is not very
effective in the problem domain. Consequently, the extensively
investigated feature in context of non-calcified plaque segmen-
tation is the intensity distribution in the vessel, as the plaque
region undergoes an unexpected intensity drop relative to the
normal blood HU distribution. Accordingly, we computed the
intensity histogram for the plaque affected region with an
expectation of two peaks representing the plaque and lumen
respectively, as illustrated in Fig. 7a.

Next, the bi-modal intensity histogram of the plaque af-
fected section is approximated using 2-class Gaussian Mixture
Model, followed with the application of expectation maxi-
mization (EM) algorithm for optimal representation of two
classes. Fig. 7b shows GMM approximation, with first class
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Fig. 7. 2-class approximation for the plaque effected section of the coronary
segment DS4 seg1. (a-b) shows the plaque effected boundary and respective
bi-modal intensity histogram, (c) represents 2-class Gaussian Mixture Model
and respective HU intensity peaks.

defining low density non-calcified plaque and the second class
representing high intensity blood lumen.

After obtaining EM based optimal distribution parameters,
we used Bayesian modelling approach to compute the posterior
probabilities for two classes respectively as represented in Fig.
8.

(a) Ideal vessel slice (b) GMM based Lumen (c) GMM based Plaque

(d) Ideal vessel slice (e) GMM based lumen (f) GMM based plaque

Fig. 8. 2-class approximation based initial estimation for lumen and plaque.
Top row represents a normal cross-section, i.e. at the immediate start of the
non-calcified plaque region, and second row represents cross-section in the
mid of plaque region. Left column shows a 2D intensity based cross-section
of the coronary vessel, whereas middle and right columns respectively shows
the 2-class GMM based lumen and non-calcified plaque.

The left column represents the cross sectional view for an
ideal vessel (plaque free vessel), the middle and right columns
represents 2-class GMM based lumen and the plaque voxels,
respectively. It can be observed that top row (start of the
plaque) shows the 2-class lumen much close to the ideal vessel
with a minimal plaque, however second row reflecting the mid
of the plaque region shows significantly reduced lumen along
with an expended plaque. Moreover, the relative position of the
lumen and plaque validates the clinical fact that non-calcified
plaque generally sticks with the vessel walls leading to Napkin
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ring signs [33].

From a statistical point of view, the computed
plaque is compared against expert-based manual
demarcations.Accordingly,we employed metrics true
positive (TP), true negative (TN), false positive (FP),
false negative(FN), respectively. True positive refers the case
when expert-based lumen voxel is identified as lumen by
posterior method. Similarly, True negative refers the case
when expert-based plaque voxel is identified as plaque by the
posterior method. In contrast, false positive and false negative
defines two cases for mismatch among the expert-based
lumen/plaque demarcation and the output of the posterior
method. Using individual metrics, we computed Jaccard
similarity index as follows.

Jaccardindex =
TP

(TP + FP + FN)

It is important to mention that for an ideal plaque quan-
tification, the Jaccard index approaches to one, whereas two
dissimilar annotations result in Jaccard score of zero. Ac-
cording to the experimental results, mean Jaccard overlap
is around 88% with respect to the manual expert. In terms
of sensitivity, specificity and accuracy, the proposed methods
achieves 84.13% ,79.15% and 82.02% success.

VI. CONCLUSION

In this work, we proposed a method for voxel-wise quan-
tification of coronary non-calcified plaque using Bayesian
Posterior probability model. Based on the normal coronary
segments, we computed the vessel-wall thickness in first step.
In the subsequent step, we removed vessel wall from the
segmented tree and employed Gaussian Mixture Model to
compute intensity based clusters. According to the experimen-
tal results, it is shown that the automated plaque segmentation
method achieves accuracy equivalent to human experts. We
aim to extend this work in future in context of deep learning
based solutions for the said problem. Application of convo-
lutional neural network (CNN) shows promising results in
recent years; however, this requires a bulk amount of data for
adequate training.
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