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Humans can rapidly discriminate complex scenarios as they unfold in real time, for

example during law enforcement or, more prosaically, driving and sport. Such decision-

making improves with experience, as new sources of information are exploited. For

example, sports experts are able to predict the outcome of their opponent’s next action

(e.g., a tennis stroke) based on kinematic cues “read” from preparatory bodymovements.

Here, we explore the use of psychophysical classification-image techniques to reveal

how participants interpret complex scenarios. We used sport as a test case, filming

tennis players serving and hitting ground strokes, each with two possible directions.

These videos were presented to novices and club-level amateurs, running from 0.8 s

before to 0.2 s after racquet-ball contact. During practice, participants anticipated

shot direction under a time limit targeting 90% accuracy. Participants then viewed

videos through Gaussian windows (“bubbles”) placed at random in the temporal,

spatial or spatiotemporal domains. Comparing bubbles from correct and incorrect trials

revealed how information from different regions contributed toward a correct response.

Temporally, only later frames of the videos supported accurate responding (from ∼0.05 s

before ball contact to 0.1 s afterwards). Spatially, information was accrued from the ball’s

trajectory and from the opponent’s head. Spatiotemporal bubbles again highlighted ball

trajectory information, but seemed susceptible to an attentional cuing artifact, which may

caution against their wider use. Overall, bubbles proved effective in revealing regions of

information accrual, and could thus be applied to help understand choice behavior in a

range of ecologically valid situations.

Keywords: reverse correlation, classification images, sports science, visual perception, tennis, occlusion, bubbles,

spatiotemporal

INTRODUCTION

Imagine yourself driving your car one evening. As you turn a bend, a cat appears in your headlights.
Should you brake hard, or perhaps swerve left or right? Seemingly without your conscious
intervention, your body has decided, and you are relieved to find that your reaction has avoided
the cat without causing a more dangerous collision.
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Successful speeded decision-making of this kind has been
fundamental to our survival as a species, and continues to
pervade everyday life. However, it is not always obvious what
particular information is exploited to make speeded choices, and
which potentially relevant cues are left unused. For example,
when avoiding the cat, was the upcoming curvature of the road or
the presence of another vehicle in the rear-viewmirror taken into
account? If not, might a better driver have exploited these cues?

In real-life scenarios, many cues to speeded decision-making
are subtle, and training or extensive experience may be required
to facilitate their use. Competitive sport provides a good example.
How is it that experts are able to quickly and accurately
discriminate sporting scenarios as they unfold? Previous research
has revealed that elite athletes make use of visual information
from their opponents’ bodies in order to predict what will happen
next, for example using the movement of a cricket bowler’s arm
and hand, just before ball release, to anticipate the trajectory
of the ball that will be delivered (Abernethy and Russell, 1984;
Muller et al., 2006; Yarrow et al., 2009).

Our knowledge about this sport’s “expert anticipatory
advantage” has been garnered through the application of
the spatial and temporal occlusion paradigms, developed
by experimental psychologists (e.g., Jones and Miles, 1978;
Abernethy, 1988). However, there are several issues with these
paradigms as a general-purpose methodology to reveal regions of
information accrual in complex real-world scenarios. In the next
section, we briefly describe these traditional approaches, then
use their limitations to motivate the introduction of a method
that has thus far been applied mainly to low-level psychophysical
problems: Classification-image analysis (Ahumada and Lovell,
1971). We go on to describe one specific variant of this approach
(“bubbles;” Gosselin and Schyns, 2001) which we will test here,
using tennis as a representative decision-making scenario, in
order to assess its applicability to the more general problem of
measuring information extraction in complex situations where
one from a discrete set of choices must be rapidly selected.

The Spatial and Temporal Occlusion
Paradigms
In competitive sports, time is of the essence. While an unfolding
scenario might ultimately provide unambiguous information
about the appropriate response, this will often come too late
for an athlete to simply wait and then react with certainty.
Examples include reacting to bowling in cricket, pitching in
baseball, serving in tennis, or penalty taking in soccer. In
each case, the ball’s trajectory provides the clearest information
about the appropriate reaction, but the interval of time between
receiving this information and having to initiate a response is
very brief. This necessitates some degree of guessing if the ball is
to be intercepted effectively. However, this guessing may still be
informed by additional cues, for example the kinematics of the
opponent’s body prior to ball contact or release. To investigate
this issue, multiple exemplars of a sports scenario can be filmed
from a decision maker’s perspective—for example, tennis serves
coming to either forehand or backhand—so that a realistic
decision with n (in this case 2) possible responses can be elicited.

The videos can then be deliberately degraded, under the logic that
the decision, which is trivially easy when the video is played in its
entirety, will become much harder as critical cues are removed
(ultimately falling to chance levels of performance).

Early studies degraded videos by limiting information in the
temporal domain, known as temporal occlusion. For example,
in tennis (the sport we investigate here) one early study showed
that experts were above chance (and better than intermediate
or novice players) at guessing the landing position of a serve
when the video was stopped at (and thus information was
occluded from) 0.042 s before ball contact (Jones and Miles,
1978). The implication was that some useful information must
have been accrued before this moment. Typically, temporal
occlusion involves stopping the video at one or several different
time points, but some authors have also introduced discrete
windows (e.g., 0.3 s periods of visibility) that occlude both earlier
and later information (e.g., Farrow et al., 2005).

Temporal occlusion approaches can be complemented by
spatial occlusion, where the video is shown after having removed
a spatially constrained source of information, in order to assess its
impact. In tennis, this is typically accompanied by full (temporal)
occlusion following racquet-ball contact in order to isolate the
spatial location of cues utilized for pre-trajectory prediction. For
example, Jackson and Mogan (2007) showed that experts still
discriminated the direction of tennis serves at above-chance
levels following removal of body regions such as the entire lower
body, but not when the ball’s toss was occluded. Experts were
also impaired (but to a lesser extent) by removal of the arm
and racquet. Removal of this latter region has also been found
to impair expert performance when predicting the direction of
ground strokes, rather than serves (Shim et al., 2006).

The temporal and spatial occlusion approaches have provided
important information about how experts extract and use
information in numerous sporting domains. In principal the
approaches could even be generalized beyond sporting scenarios.
However, they have some drawbacks as widely applicable
methods. First, they depend upon the researcher’s intuitions
regarding the location of relevant information—the researcher is
choosing what to occlude. It may be desirable to have sources
of information emerge in a more bottom-up fashion, to make
sure that cues are not overlooked (and avoid concerns over
experimenter confirmation bias). Second, the creation of stimuli
is time intensive. Video manipulation of this kind, particularly
for spatial occlusion, is difficult to automate, providing a barrier
to potential users from new fields of experimentation.

Spatial and temporal occlusion techniques were developed
by researchers in applied cognitive psychology. However, as
we outline next, parallel developments in other fields, most
notably sensory psychophysics, provide a natural complement
to these techniques that relies on a very similar basic
logic, but replaces deliberate image occlusion with random
degradation.

Classification-Image Techniques
Traditional psychophysics (e.g., Graham, 1989) has three general
paradigms for probing the properties of visual mechanisms:
summation, masking, and adaptation. All three paradigms
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require a visual target that observers can detect. Inm-alternative,
forced-choice designs, where there is 1 target and m−1 foils,
non-target stimuli added to the target typically produce a
decrease in the detection threshold (i.e., less of the target is
required for successful detection). This is known as summation.
Selectivity of the detection mechanism can be inferred from the
relationship between non-target content and threshold decrease.
In the masking paradigm, non-target stimuli are added to all
m alternatives. This typically (but not always) elevates detection
threshold, and selectivity of the detection mechanism can be
inferred from the relationship between non-target content and
threshold elevation. The adaptation paradigm is like masking,
except the non-target stimuli are presented prior to the m
alternatives.

Unlike m-alternative designs, each trial in a classification
design contains only 1 target (there are no foils). The observer
must classify this stimulus into one of n possible categories (note
the similarity to the occlusion paradigms described previously).
With only a target (and no foils) there is no difference between
masking and summation. Non-target stimuli added to the target
can bias the observer’s response and/or reduce its reliability.
In a typical experiment, non-target content is manipulated
systematically, and its effect on response bias and response
reliability can provide clues to the observer’s decision process.

Instead of manipulating non-target content systematically,
Ahumada et al. (Ahumada and Lovell, 1971; Ahumada, 2002)
pioneered the use of stochastic manipulation. In their studies,
the selectivity of classification mechanisms was inferred from
the trial-by-trial relationship between each individual sample of
the non-target or “mask” and the observer’s response. In some
cases (e.g., Abbey et al., 1999) a simple linear combination of
non-target stimuli (called the “classification image”) could be
guaranteed to provide an unbiased estimate of the classifier’s
“template” or receptive field. Essentially, the random noise that
happened to be added to the image when observers got things
right (and indeed the random noise added when they got things
wrong) can be extremely informative about how they are forming
their decisions.

The traditional classification-image approach in visual
psychophysics makes use of pixel-by-pixel additive luminance
noise, and is conceptually closely related to the technique of
spike-triggered averaging applied to single-cell recordings in
neurophysiology (Marmarelis and Naka, 1972; Simoncelli et al.,
2004). It is sometimes referred to as “reverse correlation,” and can
appear mathematically intimidating to the uninitiated. However,
a closely related approach, based on the stochastic application
of multiplicative noise, is (arguably) more intuitive. In the
“bubbles” approach, the entire information space (e.g., a 2D
image) is initially masked (e.g., set to average image luminance)
before specific regions are revealed through randomly located
Gaussian windows (the so-called bubbles) that vary from trial to
trial (see Figure 1 for illustration). As we expand in the methods
section below, a comparison of the bubbles that were present
on trials where participants succeeded with those present on
trials where they failed can be used to produce a classification
image yielding a map of the informative regions driving correct
decisions. For example, bubbles have been used to show which

regions of the human face are used by observers when they make
decisions about gender (Gosselin and Schyns, 2001).

The Current Study: Testing Bubbles for
Real-World Decisions
The bubbles technique has previously been applied mainly to
static images, although bubbles with temporal or spatiotemporal
profiles have sometimes been applied in order to reveal
information use through time (e.g., Vinette et al., 2004; Fiset
et al., 2009; Blais et al., 2013). Occasionally, dynamic stimuli
more akin to a video have been investigated (e.g., Thurman
and Grossman, 2008; Blais et al., 2012). However, given
the psychophysical tradition within which classification-image
analysis evolved, the tendency has been to work with austere
and tightly controlled stimuli. Here, we investigate the use of
bubbles to reveal informative regions within real-world video
stimuli. We also apply different bubbling methods (temporal,
spatial, and spatiotemporal) to the same task to see how each
performs. Furthermore, we deliberately adopt a sample size and
experimental duration typical of experimental psychology, rather
than sensory psychophysics, as classification-image approaches
have tended to be used with small samples but very large numbers
of trials (but see e.g., Butler et al., 2010; Smith et al., 2017),
something thatmay appear as a barrier to researchers with amore
applied focus (who may depend on specialist populations). We
use sports, specifically tennis, as a test case, with the intention
of assessing the applicability of this kind of approach to a wider
range of decision-making scenarios.

METHODS

Participants
Thirty participants (7 women and 23 men) aged 19–62
(mean = 32) took part in the various stages of this experiment
(with 29 participants completing each of the stages, and most
participants completing all three). Participants were recruited
and assigned to one of two groups on the basis of their
tennis playing experience/skill. Those in the novice group (5
women and 10 men) aged 20–51 years (mean = 30) had no
experience of playing tennis competitively. Those in the tennis
group (2 women and 13 men) aged 19–62 years (mean = 33)
had 2–35 (mean = 11) years of experience playing competitive
tennis and currently played between 0 and 150 (mean = 30)
competitive matches per year1. Players also indicated their
current International Tennis Number (ITN), which is an index
of their standard of play and ranges from ITN 1 (a player
with extensive professional tournament experience and who
currently holds or is capable of holding an ATP/WTA ranking)
to ITN 10 (a player that is just starting to play competitively).
Tennis-playing participants had an average ITN of 4 (range 2–7).
Informed consent was obtained from all participants, who were
paid £10/h for their time. Ethical approval was granted by the
Dept. of Psychology Research Ethics Committee, City, University
of London.

1One participant failed to provide this information.
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FIGURE 1 | Example trial from a bubbles experiment, in which Gaussian profiled windows of visibility are placed at random positions. (A) Original video sequence;

(B) temporal bubbles, revealing information only at specific times; (C) spatial bubbles, revealing information only in specific positions; (D) spatiotemporal

bubbles—spatially constrained regions of information have limited lifetimes.

Apparatus and Stimuli
Video stimuli (available on request) were recorded at a tennis
club using a tripod-mounted camera (frame rate 120Hz, frame
size 1,280 × 720 pixels). Four club coaches/hitters of a good
but not elite standard acted as models, and were instructed to
“hit winners” without attempting explicit deception. They were
situated near the baseline, and recorded against a largely uniform
blue backdrop. They were recorded serving (from the right-hand
side of the court) or playing forehand ground strokes (running
rightwards from a central position to return near the singles
side line), directing their shots toward an imaginary receiver’s
forehand or backhand. To increase image resolution, the camera
was positioned at the net, on a line projecting from the filmed
player to the imaginary receiver at the opposite baseline (height
= 1.6m, left of center line by 1.25m for ground strokes, right
of center line by 1.5m for serves). Balls were called in or out
to facilitate later rejection of videos where the ball landed out.
For ground strokes, one player delivered to all of the other three
models, to ensure as constant a delivery as possible, and also
called for line/cross strokes (i.e., toward the right-handedmodel’s
backhand and forehand, respectively) immediately after delivery
to prevent early decisions that might introduce unnatural or pre-
emptive postural cues. Only these three models were included
in the experimental trials (see below). The final player received
deliveries from a different model, and was consequently included
only in practice trials.

Videos were first transformed to eight-bit gray scale. Of 350
initial videos, 215 contained shots that landed in. These videos
were retained and then rated by two authors in order to pick
a subset that were unambiguous (regarding the direction of the
shot—line/cross for ground strokes, T/cross for serves), relatively
homogeneous in terms of the position of the players at the time

of ball contact, and lacking in artifactual cues that might allow
the videos to be easily remembered for future classification (e.g.,
an unusual delivery trajectory for ground strokes). In each video,
the frame corresponding to ball contact and the position at which
the ball struck the racquet head on this frame were manually
identified for use in subsequent presentation and analysis (see
below).

The experiment was controlled by a PC running scripts
written in Matlab (The Mathworks, Natick, U.S.A.) using the
Psychophysics Toolbox extension (Brainard, 1997; Pelli, 1997;
Kleiner et al., 2007). Video stimuli were presented on a CRT
monitor (1,024 × 768 pixels, ∼40 × 30 cm, with a vertical
refresh rate of 120Hz). Only a central 600 × 400 pixel region of
each video that excluded irrelevant peripheral information was
presented. The screen was elevated to eye level via an adjustable
support and viewed at a distance of ∼100 cm in order to present
the opposing tennis player with a height subtending ∼4◦ visual
angle (approximating their size as seen from the baseline during
actual play). Participants responded by stepping rightward or
leftward, thus lifting the corresponding foot from one of two
digital pedals, monitored at 100,000Hz via a 16 bit A/D card
(National Instruments X-series PCIe-6323).

Design and Procedure
Participants completed three variants of the task in separate
sessions, with a constant order (temporal, then spatial, then
spatiotemporal)2. Sessions took around 2 h, and consisted of
four blocks: One practice and one experimental block presenting

2We viewed this systematic confound as acceptable, as we intended to assess the
broad viability and compatibility of each approach, rather than make a detailed
comparison between them, but we recognise that this choice was not ideal.
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videos of only serves, and the same for ground strokes (with
order of shot type counterbalanced across participants). During
practice, participants viewed 100 videos (50% to forehand, 50%
to backhand) containing all four players (8 possible videos per
player) but with a preponderance of videos (70%) from one
player (see stimuli, above) and fewer videos (10% each) from
the remaining three players, who were saved mainly for the
experimental trials (see below). Videos were presented in a
random order, and selection was carried out with replacement
(such that individual videos for each player did not necessarily
occur with equal frequencies).

Videos presentations began at −0.8 s relative to racquet-ball
contact, and terminated at 0.2 s after racquet-ball contact, or at
the time of response if earlier than this. We wished to push
participants to respond as quickly as was feasible for them,
while retaining some ability to perform the task, so as to extract
sources of information that might be used during actual play.
The practice block therefore served not only as a warm up,
but also to estimate the time window within which participants
could respond with ∼90% accuracy. This was achieved via a
QUEST staircase (Watson and Pelli, 1983) modified to assume a
cumulative Gaussian psychometric function. An adjustable value
defined the middle of a 0.3 s window within which participants
were encouraged to respond via on-screen feedback (which also
indicated correctness and the exact time they took to act). QUEST

varied this value, based on the correctness of previous decisions
(but only those decisions that had been made within the target
window) in order to estimate an appropriate response deadline
for the subsequent experimental block (being the upper limit
of the target window). The initial target value was 0.4 s from
racquet-ball contact. Further QUEST parameters, in particular the
slope of the assumed psychometric function (σ−1 = 7.5 s−1)
were estimated from pilot work, in which the target window for
one author was manipulated systematically, via the method of
constant stimuli.

For the experimental blocks, 24 new videos (8 per player,
50% to forehand and 50% to backhand) were selected from the
three players seen less often during practice. These videos were
presented 16 times each in a random order, yielding a block of 384
trials. Participants were required to respond by their previously
established deadline, and trials where they failed to do so (along
with any trials with presentation glitches, i.e., where one or
more frames were dropped after the −0.2 s time point) were re-
randomized and repeated at the end of the block. Feedback about
response times and correctness was provided after every trial.

Importantly, during experimental trials, the videos were
subjected to random masking via the application of bubbles (see
Figure 1, and Videos S1–S3). In different sessions, individual
bubbles were combined to generate bubbles profiles in one
(temporal), two (spatial) or three (spatiotemporal) dimensions.
The number of bubbles presented (B) began at 12. This number
was then adjusted (up to ceiling values of 20, 20, and 90 for
temporal, spatial, and spatiotemporal sessions, respectively) via
a QUEST staircase varying the number of bubbles in order to
maintain participants’ performance at around 75% correct (i.e.,
bubbles were added if the task was too hard, or removed if it
was too easy). The profile of each individual bubble was that

of a 1, 2, or 3-dimensional Gaussian density function, scaled to
have unit height. In the temporal sessions its width (σ ) was 3
frames; in the spatial sessions its width was 12 pixels (vertically
and horizontally); and in the spatiotemporal sessions its widths
were 5 frames and 12 pixels3.

Bubble mean positions were generally selected at random
within a domain extending throughout the relevant space of
the video. However, in the spatiotemporal session, mean bubble
positions were excluded from the first 25 frames of the video, and
were further constrained to a rectangular spatial region of the
video that varied across frames, capturing all player motion, in
order to generate fewer bubbles in regions of null information4.
Bubbles profiles were determined by combining the individual
bubbles together. This was achieved by first reflecting bubble
magnitudes around 0.5, then multiplying them together, and
finally re-reflecting:

Bubbles = 1−
∏B

b=1
(1− bubbleb) (1)

Pixel intensities were then calculated for display as the mean
pixel intensity plus the difference between original and mean
intensities (at each point) multiplied by the Bubbles profile
(at that same point). Expressed in terms of Weber contrasts,
pixels were displayed at their original Weber contrasts multiplied
by the Bubbles profile.

Data Analysis
The saved Bubbles profiles from each trial formed the starting
point in generating classification sequences, images, or videos
(for temporal, spatial, and spatiotemporal sessions, respectively),
which reveal the regions from which information supporting a
correct response has been extracted. We collectively term these
classification arrays. First, for spatial and spatiotemporal sessions
only, Bubbles were re-centered so that the profile (saved in
video coordinates) was translated to a new coordinate frame
centered on the ball at the time of racquet-ball contact. This
has the effect of reducing noise in subsequent estimation, but
to a degree that depends upon the proximity of any potential
region of information to the middle of the new coordinate
frame5. Essentially, it addresses the problem that when multiple
videos are used, it is not necessarily absolute spatial position that
matters—it might, for example, be the position of a body part,
which is best captured by a body-centered frame of reference.

Next, for each participant, a weighted sum of (re-centered)
Bubbles profiles (weighting profiles from correct trials positively

3To speed calculations, each bubble was rounded to zero beyond 4 (temporal) or
3 (spatial and spatiotemporal) σ from its centre. We selected a larger temporal
bubble width in spatiotemporal compared to temporal sessions because a larger
value allowed us to utilise fewer bubbles, and this proved important in terms of the
time taken to generate each trial of the experiment.
4Motion in each video was detected via algorithm, and the estimated regions were
then expanded slightly to ensure that no body motion was missed.
5In principal, this reframing can maximise power to detect information accrual at
multiple points of interest in a series of analyses, but here we present data from a
single coordinate transform for a relatively simple demonstration. We did explore
a body-centred frame (using the navel) but it did not reveal additional sources of
information missed by the analysis we present here.
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and profiles from incorrect trials negatively) yielded the raw
classification array:

RCA =

∑C

c=1
Bubblesc −

∑I

i=1
Bubblesi (2)

However, in order to provide more intuitive values for visualizing
and combining data across participants (and to make the
method generalizable to cases where different participants
completed different numbers of trials) raw classification arrays
were normalized to a z-like format. This was achieved
via a permutation approach. On each of 2,000 iterations,
correct/incorrect labels were randomly re-assigned (without
replacement) to individual trials. The means and standard
deviations at each point (i.e., each frame and/or pixel) calculated
over these 2,000 permutations were used to z-score the
classification array. This yielded an array varying about zero, with
positive values indicating regions of possible information accrual.

In order to draw statistical inferences across large arrays
while controlling familywise type 1 error appropriately, data from
all participants were combined and assessed via both cluster
and tmax (also known as pixel or single-threshold) corrected
permutation tests (Blair and Karniski, 1993; Nichols and Holmes,
2002; Groppe et al., 2011). The first step for both tests was to
transform the z-scores at each point into a one-sample t statistic
(i.e., the ratio of the mean to the standard error across observers).
For the tmax test, each of these t statistics was then compared
with a “null” distribution of tmax, the calculation of which is
described below. Individual values of t greater than the 95th
percentile of this null distribution were deemed significant,
according to the tmax test. Under the null hypothesis, t scores
should fluctuate randomly around zero. Permutation tests rely
upon the construction of a null distribution consistent with the
null hypothesis. Hence, prior to computing each value of tmax

for the null distribution, the z-transformed classification array
from each observer was multiplied by −1 with probability 0.5.
A new t statistic (summarizing the results from all participants)
was then computed for each point in the array. The maximum
(across points) of these values (unsigned) is deemed tmax. For our
tmax test, we used a null distribution of 1,999 values computed in
this manner.

For the cluster test, a cluster was defined as the sum of
contiguous t values where t exceeded an (arbitrary) 5% threshold
(two-tailed). Note that neither the particular way in which
a cluster is defined, nor the particular threshold that defines
inclusion in a cluster, affect the logic by which the procedure
yields control over type 1 errors (so long as multiple definitions
and/or thresholds are not tried out in order to cherry pick a
preferred result). Contiguity was defined as adjacent frames in
the 1D case. In the 2D case it was defined as 4-connected6

pixels. Finally, in the 3D case it was defined as 4-connected
pixels per frame, but only the largest cluster across all frames

6“4-connected” is a term from image processing and describes the manner in
which connectivity is determined in a 2D or 3D space. Four-connected pixels are
considered neighbours to (i.e. connected with) pixels that share a side, but not
pixels that share only a corner.

of the video was used to form the null distribution7. Clusters
whose summed t values exceeded the 95th percentile in a null
distribution of cluster sums were deemed significant. Sums for
the null distribution were computed in a manner analogous to
the computation of tmax, i.e., following a random reassignment of
sign: the randommultiplication of each observer’s z-transformed
classification array by −1 with probability 0.5. Just like the null
distributions of tmax, our null distributions of cluster sums were
formed from 1999 recomputations of t following this random
reassignment of sign.

Subsets of trials forming repeated-measures comparisons
(e.g., information accrued from shots to forehand vs. shots
to backhand) were compared by subjecting differences of
classification arrays to the procedure outlined above. For
comparisons between groups (e.g., tennis players vs. novices)
the same procedure was followed, with modifications following
standard principles for permutation testing (i.e., group labels
were randomly shuffled on each permutation). Matlab code
for our experiments and analyses are available at http://www.
hexicon.co.uk/Kielan/#research.

RESULTS

Display Characteristics and Response
Times
Response deadlines where imposed in experimental sessions,
based on performance during practice, in order to ensure
that participants used the earliest information source available
to them. Deadlines in each group, experiment and condition
are shown in Table 1, along with mean RTs on accepted
trials (which are necessarily lower than the deadlines). Table 1
also shows mean accuracy and mean number of bubbles
during experimental blocks. Novices and tennis players differed
significantly on only one of these metrics [mean RT was lower
for tennis players than novices in the ground-strokes trials
of the spatiotemporal experiment: independent t(28) = 2.451,
p = 0.021]. However, given the familywise context (i.e., 24 such
tests) the Dunn-Šidák corrected p-value was not significant (p =
0.395).

Although our QUEST staircase aimed to generate 75%
performance, the somewhat lower accuracy scores are likely the
result of the caps we imposed on the maximum number of
bubbles, in combination with the response deadline. Nonetheless,
performance was above chance in all conditions, implying scope
for bubbles to reveal the sources of information that were
informing correct decisions.

Temporal Bubbles: Informative Regions
The mean z-scored classification arrays (for the entire sample)
for the temporal experiment are shown in Figure 2. Positive
values indicate video frames that are candidates for periods of

7One typical approach to clustering in 3D data would be to use 3D connectivity to
establish 3D clusters. Here, we instead used 2D connectivity per frame to establish
2D clusters for each frame of the video. Because we retained only the largest such
cluster from the entire video for our null distribution, our 3D cluster test is, strictly,
a 2D cluster test that has itself been tmax corrected for multiple frames.
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TABLE 1 | Mean (standard deviation) of response deadlines, reaction times (RT), accuracy, and number of bubbles for novices and experts responding to ground strokes

(G.S.) and serves in temporal, spatial, and spatiotemporal experiments.

Novices Tennis players

Deadline

(s)

RT

(s)

Correct

(%)

Bubbles

(N)

Deadline

(s)

RT

(s)

Correct

(%)

Bubbles

(N)

Temporal G.S. 0.40

(0.08)

0.24

(0.05)

69

(5)

12

(5)

0.36

(0.07)

0.20

(0.05)

68

(4)

11

(5)

Serves 0.43

(0.08)

0.25

(0.05)

69

(5)

11

(5)

0.43

(0.07)

0.23

(0.08)

71

(6)

10

(4)

Spatial G.S. 0.42

(0.09)

0.25

(0.11)

66

(7)

14

(4)

0.42

(0.06)

0.26

(0.04)

68

(3)

13

(3)

Serves 0.45

(0.08)

0.27

(0.08)

68

(6)

13

(6)

0.47

(0.06)

0.28

(0.04)

70

(3)

13

(4)

Spatio-temporal G.S. 0.43

(0.08)

0.29

(0.06)

66

(6)

59

(22)

0.38

(0.06)

0.22

(0.09)

62

(9)

61

(24)

Serves 0.50

(0.09)

0.30

(0.08)

60

(7)

79

(10)

0.46

(0.09)

0.24

(0.08)

59

(7)

77

(11)

Response deadlines and reaction times are relative to the point of racquet-ball contact.

information extraction. For the ground strokes, two regions are
promising. The most obvious one extends from around frame 90
(so ∼0.050 s before racquet-ball contact) until around frame 108
(so ∼0.1 s after racquet-ball contact). A much smaller region of
positivity occurs around frame 64 (∼0.267 s before racquet-ball
contact, when the swing is being initiated).

The statistical significance of these regions was assessed
using cluster and tmax permutation tests. tmax tests are well
suited for detecting strong and highly localized regions of
information, while cluster tests are well suited for detecting
more diffuse regions (Chauvin et al., 2005). Both control
familywise error across a classification array, but cluster tests
do not guarantee strong familywise error rate control at every
constituent point (Nichols and Holmes, 2002; Groppe et al.,
2011). The permutation approach avoids strong distributional
assumptions. It revealed that only the latter putative information-
carrying region represented a significant cluster (extending from
frame 91 to frame 108; p = 0.0005). Note, however, that the
bubbles technique introduces smear (dependent on the extent
of the individual bubbles) such that the recovered classification
array should be considered a filtered approximation of the
information it attempts to represent. Hence we can conclude
that information was extracted somewhere within this temporal
region, but should not infer that each and every one of these
frames provided useful information for the classification of shot
direction, even for those significant by tmax test. We revisit and
expand upon this issue (via a set of simulations) in the final
section of the results.

Analyzing responses to the serve stimuli generated a similar
result (Figure 2, bottom). While there is a suggestion of
information accrual early on during the ball toss, around frame
20, only the large and striking region from frame 90 onwards
forms a significant cluster (p = 0.0005). From these data, we
can conclude that participants were basing their decisions on
information presented late on in the videos, most likely from after
the ball had been struck, but perhaps also from slightly before this
point.

Temporal Bubbles: Regions of Contrast
Just as with other forms of data, we can perform contrasts on
classification arrays to determine whether particular regions are
utilized more in one condition than in another. For the temporal
data, we present an example of a between-participants contrast,
by comparing the tennis-playing participants to the novices when
responding to videos of serves. Results are illustrated in Figure 3.
It is apparent that, slightly surprisingly, classification sequences
are very similar between tennis players and novices (Figure 3,
top)8. There is perhaps a suggestion that novices make slightly
more use of ball trajectory information toward the very end of
the videos, but this difference is not significant by cluster or tmax

test (Figure 3, bottom).

Spatial Bubbles: Informative Regions
Figure 4 illustrates the classification image and inferential
statistical results emerging from the spatial experiment. For
concision, we present data from only the ground-stroke session,
but the services session yielded a broadly similar outcome. The
classification image is shown at the top of the figure, and implies
a region centered roughly over the racquet head from which
useful information may be being extracted. This is clearer in the
bottom part of the figure, where statistical thresholding has been
applied to produce a 2D representation. The cluster is highly
significant (p = 0.005) and covers the region occupied by the
racquet, arm, and head at the time of racquet-ball contact. As
with the temporal results, smear generated by the experimental
and analytical techniques means that we should be cautious
about inferring that information has been extracted from all
points within a significant cluster. The spatial analysis also tells
us nothing about the time at which information was extracted
from within this cluster. However, in concert with the relevant
temporal results (Figure 1, top) it seems likely that the significant

8We also found no differences between these groups for serves, or in our spatial
and spatiotemporal experiments, but do not illustrate all null results in order to
maintain a focussed presentation.
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FIGURE 2 | Mean classification sequences for all participants in temporal bubbles experiments. (A) Ground strokes. (B) Serves. Shaded regions were significant in

cluster/tmax permutation testing, suggesting information was extracted from this part of the video sequence. Error bars denote 95% confidence intervals around

classification arrays.

spatial cluster may be capturing primarily the early trajectory of
the ball as it leaves the racquet head. However, the fact that it
extends to the player’s head region suggests that the models in
our video may have followed the ball with their eyes/heads after
hitting it, providing another potential cue for our participants to
exploit when guessing shot direction.

Spatial Bubbles: Regions of Contrast
Previously, for the temporal experiments, we presented an
example of a between-participants contrast of classification
sequences. It is also possible to run within-participant contrasts
on the data from bubbles experiments. For example, wemight ask
whether different regions of the video drove decisions when the
ball was delivered to forehand (on one half of all trials) compared
to when it was delivered to backhand (on the other half). The
results of this contrast are shown in Figure 5 for the spatial
experiment involving predictions about service direction.

For contrasts of this kind, both directions of difference are
potentially interesting, but a 3D visualization (Figure 5 part A)
is better suited to illustrate one direction at a time (in this case
leftward shots> rightwards shots). The heat plot in Figure 5 part
B captures both directions of difference well, but it is difficult
to see where, on the video, these differences lie. Figure 5 part C

is complementary to parts A and B, but statistical thresholding
has been applied, with clusters of significant difference overlaid
on an averaged video frame. Together, the various visualizations
show how regions to the left of the video, covering positions
the ball might initially traverse when being hit toward a right
hander’s backhand, were more informative for exactly the subset
of trials in which that stroke occurred (and vice versa for regions
to the right of the video). From left to right, the four clusters are
significant at p = 0.0065, p = 0.0045, p = 0.0045, and p = 0.039,
respectively.

Spatiotemporal Bubbles
Illustrative results from the inferential analysis applied to the
spatiotemporal experiment are shown in Figure 6. Results are
shown for the ground strokes session, but were qualitatively
similar for the session in which participants responded to serves.
The classification video appears to reveal a spatiotemporal cluster
located in the vicinity of the point of ball contact, which spans
the entire time course of the video (excluding the first 25 frames,
where no bubbles were applied for this experiment). However,
cluster tests were applied at the level of the individual frame,
rather than the entire video, and thresholding on this basis
yields significant clusters in frames that form two temporally
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FIGURE 3 | (A) Mean classification sequences shown separately for tennis players and novice groups in the temporal bubbles experiment involving serves. (B) Mean

difference in classification sequences between the two groups. No significant differences emerged. Error bars denote 95% confidence intervals around classification

arrays.

contiguous regions, the first from frame 27 to frame 85 (so
around −0.6 to −0.1 s relative to racquet-ball contact) and the
second from frame 95 (or 91 by tmax test) to frame 105. The
latter region appears highly consistent with the results from the
temporal and spatial sessions, suggesting information accrual
from the trajectory of the ball and/or racquet head starting
around the time the ball is struck.

The earlier cluster in Figure 6 is puzzling, because
this region of the video should have contained no useful
information to inform guesses about the subsequent shot’s
direction. The ground-stroke experiment was particularly
revealing in this regard, because the player never occupied
the region that is being marked as significant until much
later on. Hence the result appears to be an artifact of some
kind. We see three possibilities. First, this may simply be
a false positive. However, we believe that our procedures
against inflating familywise error were robust, and a
similar region emerged in both ground-stroke and service
sessions.

Secondly, our videos may have contained subtle differences
that we failed to note, which, given that each video was presented
several times, observant participants might have learnt in order
to aid their discriminations. We cannot rule this out, as we did
not attempt any formal investigation of potential information in
this region via an ideal-observer approach. However, the earlier
region of the video highlighted in Figure 6 mostly covers a
blue background which was largely uniform and thus unlikely
to have contained useful cues (except for chance differences in
ball trajectory shortly before ball contact, which are visible here

toward the end of the relevant period and might perhaps have
been memorized across experiments).

This region is, however, remarkably consistent, spatially, with
the later-emerging region that appears (based on the preceding
analysis of our spatial and temporal experiments) to be a
genuine locus of information accrual. Hence we suggest that
the earlier region of significance may reflect an artifact caused
by spatiotemporal bubbles sometimes acting as an exogenous
attentional cue (Posner, 1980). A bubble occurring in this area
of the video early during presentation would have revealed little
useful information, but might, as a spatially localized transient
event, have grabbed a participant’s attention. On trials when
a subsequent bubble at the same location then revealed useful
information, attention would already be at this spatial location in
order to assist with information extraction, thus increasing the
likelihood of a correct response. Alternatively, or additionally,
the earlier bubbles might not only be pointing the attentional
spotlight to a relevant location, but also providing a visual
predictive context for what comes next, potentially making it
easier to utilize the information that was subsequently revealed
in this location.

Simulations to Illustrate the Impact of
Spatiotemporal Smear
We have noted in previous sub-sections of the results that the
informative regions suggested by a classification array should
be treated with some caution, i.e., as containing, but potentially
exaggerating in scale, regions of a video that contain information
utilized by decision makers. Formally, we might consider the
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FIGURE 4 | Classification image for all participants in the spatial bubbles

experiment involving ground strokes. Results are overlaid on an image of the

mean of all presented videos for the frames capturing racquet-ball contact,

centered on the point of racquet-ball contact (hence constituent images do

not perfectly align). However, the results of the spatial analysis are not specific

to any one time point. (A) Transparent red (gray) peaks denote mean

classification-image intensity normalized to the cluster threshold value used in

permutation testing (i.e., values more extreme than ±1 formed potential

clusters). (B) Solid colored regions were significant in cluster/tmax permutation

testing, suggesting information was extracted from this part of the video.

Transparent red (gray) regions denote non-significant clusters.

classification array a convolution of information-carrying regions
with a filter. The properties of this filter reflect the spatiotemporal
extent of the bubbles used to mask the video. While this idea is
familiar to bubbles aficionados, having received discussion from
the outset in the bubbles literature, it is likely less obvious to
potential users from other fields. Hence, to illustrate this idea,
we ran a set of simulated experiments and analyses, focussing on
temporal and spatial (rather than spatiotemporal) experimental
procedures (as these appear more likely to yield artifact-free
results). In one set of simulations, all useful information was
assumed to be contained in a single frame (temporally) or pixel
(spatially). Observers’ behavior (i.e., their chance of guessing
correctly) was modeled as a cumulative Gaussian psychometric
function of image visibility (i.e., the Bubbles profile) at the
critical point, p, in time or space. This function was assumed to
asymptote at 90% correct (as per our experimental design):

Pr
(

“Correct′′
)

= 0.5+ 0.4.8(
Bubblesp − µ

σPF
) (3)

Where φ denotes the Standard Normal cumulative density
function with mean µ and standard deviation σPF .

Mean simulated data are presented in Figure 7A (temporal
simulations) and Figure 7B (spatial simulations), varying the

width of bubbles for observers modeled by a single arbitrarily
selected psychometric function (σPF = 0.1, µ = 0.2; the pattern
of results would be similar for other choices of these parameters).
Notice how the resulting classification arrays are always spread
out relative to the (point) information source, but even more so
for bubbles with a larger width.

From the left-hand panels of Figure 7, a reasonable conclusion
would be that we should use many small bubbles rather than few
large bubbles, at least to the extent that the Bubbles profile can
still be calculated within a reasonable period of time during an
experiment. However, this is based on the assumption of a single
point source informing a decision. In reality, information at
various scales may prove informative. Hence we ran a second set
of simulations, in which performance was modeled as a function
of seeing both of two points of information, p1 and p2, separated
by 24 frames (temporal) or∼71 pixels (spatial):

Pr
(

“Correct′′
)

= 0.5+ 0.4.8

(

Bubblesp1 − µ

σPF

)

.8(
Bubblesp2 − µ

σPF
)

(4)
This approximates situations in which the start and end of a
larger contiguous region must be perceived to support accurate
responding. Results are shown in Figures 7C,D. In cases like this,
small bubbles, while precise, may reduce the magnitude of the
mean classification array (and thus power to detect larger regions
of information) relative to large bubbles. We would expect this
difference to be exaggerated further if information from an entire
contiguous region were critical.

DISCUSSION

Here, we set out to evaluate whether the bubbles variant of
classification-image analysis (Gosselin and Schyns, 2001) could
be an effective and practical tool for revealing the information
extracted from real-world video stimuli to inform a speeded
discrimination. We used predictions about tennis-shot direction
for both forehand ground strokes and serves as a test case,
bubbling our video stimuli either temporally, spatially, or
spatiotemporally in a series of experiments. The results from
the temporal and spatial bubbles experiments are extremely
promising—the regions that emerged were consistent with the
use of ball trajectory information immediately after racquet-ball
contact, just as one might expect.

Our results demonstrate that the bubbles technique
generalizes successfully from tightly controlled psychophysical
stimuli (e.g., Gosselin and Schyns, 2001; Fiset et al., 2009;
Smith et al., 2017) to videos of real-world decision-making
scenarios. Although we tested just two closely related scenarios
here (tennis serves and forehand ground strokes) it seems
likely that the method could be further generalized. The most
obvious application would be other sports, as a complement to
traditional temporal and spatial occlusion paradigms. Although
we did not see the anticipated differences between our novice
and tennis-playing participants (for example use of kinematic
information from the opponent’s body by tennis players, c.f.
Jackson and Mogan, 2007) this may simply reflect the nature
of our tennis-playing sample, which was non-elite. It is also
possible to envisage a range of other applications (e.g., in
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FIGURE 5 | An illustrative within-participants contrast of classification images (rightward serves to forehand vs. leftward serves to backhand) for all participants in the

spatial bubbles experiment. (A) Transparent red (gray) peaks denote mean classification-image differences, normalized to the cluster threshold value used in

permutation testing (i.e., values more extreme than ±1 formed potential clusters). Results are overlaid on an image of the mean of all presented videos for the frames

capturing racquet-ball contact, centered on the point of racquet-ball contact. (B) An alternative illustration of mean classification-image differences, normalized (as per

part A) but trimmed at ±1 (the cluster threshold) and presented in 2D to better illustrate both positive and negative differences between conditions. (C) Solid-colored

regions were significant in cluster/tmax permutation testing, suggesting that these parts of the video where more informative for one direction of shot than for the other.

Compare with part B to ascertain the direction of the differences. Transparent red (gray) regions denote non-significant clusters.

driving, and law-enforcement or military scenarios) where
information extraction might helpfully be assessed. However,
the results from the spatiotemporal experiment were cautionary,
suggesting that this particular variant of the bubbles technique
may introduce an exogenous attentional cuing artifact (c.f.
Posner, 1980) that can undermine interpretation of the resulting
classification videos (although other interpretations of our
result cannot be ruled out). Based on the data presented
here, we tentatively recommend the use of only temporal
and spatial bubbles in order to avoid artifactual inferences.
We speculate that by revealing regions where information
is being extracted, in combination with expert knowledge
about additional cues which are not being utilized, techniques
like this could help inform bespoke training regimens in the
future.

The strengths and limitations of bubbles need to be considered
carefully when any new application is being planned. Relative
to traditional spatial occlusion, the demands of stimulus
preparation (i.e., frame by frame video manipulation) are
reduced by a stochastic methodology. However, the bubbles
method is correspondingly more complex, so the front-end
investment may not be worthwhile unless a lab plans to
test a range of scenarios across several experiments. We
have highlighted some other considerations, for example

the spatiotemporal scale of the bubbles. Small bubbles
reveal information sources with high acuity, but may lack
power to detect spatially or temporally extended cues. We
have investigated only a single bubble size here, but some
variation and/or combination of bubble sizes within a single
experiment may prove more optimal when the scale of relevant
information sources is hard to predict. Several ideas along
these lines can be gleaned from previous work employing
the bubbles technique (Chauvin et al., 2005; Blais et al.,
2012).

Our work here points to a possible attention-cuing artifact
for spatiotemporal bubbles, albeit one that requires further
verification. However, such an artifact would really be an extreme
version of a general limitation with any masking approach,
which is that the masking might itself influence an observer’s
strategy (or their automatic processing of information) by
making the image unnatural. It remains to be seen whether
other forms of masking (e.g., the additive noise used in reverse
correlation) could prove less disruptive in the spatiotemporal
case. Clearly, tennis players do not in general see the world
through bubbles, and may adapt substantially when faced
with this situation. While the possible cuing artifact in our
spatiotemporal experiments appears particularly egregious, it
should be borne in mind that any information source revealed by
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FIGURE 6 | Thresholded classification video for all participants in the spatiotemporal bubbles experiment involving ground strokes. Results are overlaid on the mean

of all presented videos (for each frame) centered on the point of racquet-ball contact (which occurred in frame 96). Solid red/yellow (dark/light gray) colored regions

were significant in cluster/tmax permutation testing, respectively, suggesting information was extracted from these parts of the video (but see main text for caveat).

Transparent red (gray) regions denote non-significant clusters. In the bottom part of the figure, three frames have been selected and magnified to illustrate the loss and

re-emergence of cluster significance.

bubbles reflects performance only during a bubbles experiment,
not during natural viewing. For example, consider the use of
information from the head/gaze, found here when predicting
the direction of forehand returns. Clearly our participants can
use this information, but it is unclear whether they would do
so if bubbles did not interfere with other sources, such as ball
trajectory. In general, triangulation with other complementary
methodologies to assess information use (e.g., eye-tracking

techniques) would be desirable, as any single technique will face
interpretative limitations.

To conclude—we have demonstrated that a combination
of spatial and temporal bubbles in separate experiments
can be used to determine the sources of information that
guide correct decisions during the real-world scenario of
tennis-shot anticipation. We recommend this approach more
generally, as it does not require that experimenters are required
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FIGURE 7 | Results from illustrative simulations showing how the choice of bubble size affects the resulting classification array. Results are shown for simulations

where information comes from a single frame/pixel (A,B) or must be seen at both of two frames/pixels (C,D). The width of bubbles was varied in units of frames (A, C:

1 vs. 3 vs. 5) or pixels (B, D: 4 vs. 20). Smaller bubbles offer greater resolution for isolating small sources of information, but lack power (see especially part D) when

information must be accrued across larger spatiotemporal scales.

to intuit potential sources of information in advance or
deliberately manipulate videos in accord with these hunches.
Although initially challenging, the technique is easily adapted
once it has been implemented, and has potential for much
wider application within psychological and human-factors
research.
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Video S1 | Video example of bubbled trials from the temporal experiment. Frame

rates have been slowed to 1/4th actual presentation rate for clarity.

Video S2 | Video example of bubbled trials from the spatial experiment. Frame

rates have been slowed to 1/4th actual presentation rate for clarity.

Video S3 | Video example of bubbled trials from the spatiotemporal experiment.

Frame rates have been slowed to 1/4th actual presentation rate for clarity.
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