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Highlights  

• A novel metal strip loaded horizontal slot hybrid plasmonic waveguide with a 

refractometric sensitivity of 1.13 is proposed. 

• Optimized waveguide design shows a high 59.23% and 82.04% quasi-TM field 

confinement in the slot and sensing (slot + clad) region, respectively. 

• A compact Mach-Zehnder interferometer is designed for detection of temperature and 

volume concentration of isopropanol/water solution, although it is also suitable for any 

other liquid chemical.   

• Asymmetric power splitting scheme enhances the interference fringe visibility to the ideal 

value (𝐹′ ≃ 1).   

•  A single on-chip sensor design shows a high temperature sensitivity of 243.9 pm/oC and 

volume concentration sensitivity of 437.3 nm/RIU. 

• The device incorporates a simple design scheme which is highly resilient to the fabrication 

tolerances.   
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Abstract 

We report a compact lab-on-chip design of a Mach-Zehnder interferometer (MZI) incorporating a 

novel metal strip loaded horizontal slot hybrid plasmonic waveguide (HSHPW) in the sensing arm 

and a dielectric horizontal slot (DHS) waveguide in the reference arm. The HSHPW is optimized 

to confine a high ~60% and ~82% evanescent optical field in the low index dielectric slot and an 

active sensing region, respectively which enhance the device sensitivity with a comparative lower 

propagation loss than a typical plasmonic waveguide. We report here a single MZI configuration 

which not only exhibits an excellent temperature sensitivity of 243.9 pm/oC but also liquid 

concentration sensitivity of 437.3 nm/RIU for a 40 𝜇m long HSHPW. To mitigate loss arising from 

each section such as butt coupling and plasmonic modal losses, the HSHPW has been optimized 

by incorporating an asymmetric power splitter which shows a considerable improvement in the 

fringe visibility and device insertion loss. Thus, the proposed single MZI design shows an excellent 

response to the temperature and liquid concentration sensing with a maximum total loss and 

extinction ratio of 2.56 dB and >25 dB, respectively. A much simpler CMOS friendly compact 

design is also found to have a great robustness to the fabrication tolerances.  

 

1. Introduction 

On-chip integrated photonic and plasmonic waveguides [1 – 4] have great potential in applications 

for biochemical industries, real-time rapid medical diagnosis, early-stage detection of critical 

diseases, DNA characterizations, environmental monitoring, food and water quality screening, 

pharmaceutical industries, particle tracing and tweezing etc. [5 – 8]. Several electronic and 

mechanical sensors have already been commercialized to achieve these functionalities but with a 

lower detection accuracy, bulky design and high-power consumption. In recent years, integrated 

optical technology-based sensors are gaining interests as attractive alternative approaches to the 

electronic technology due to its immunity from electromagnetic interference (EMI), compact 

portable lab-on-a-chip scale design for low-cost mass production, suitable for real-time 

monitoring, low power requirements, remote operation, fast response and above all, a much higher 

sensitivity for accurate detection of targets even at the atomic level. Monitoring and control of 

most fundamental parameters of organic, inorganic, and hazardous chemical solution such as 

temperature and concentration of analytes represent a major concern to the biochemical industries 

and health organizations for their improvement of manufacturing producibility and protection of 

public health from hazardous accidents. Instead of the commonly used thermocouple and 

resistance thermometer, optical temperature sensors are attracting substantial interests. 

Refractometric based photonic sensors incorporating guiding materials with large thermo-optic 

coefficients (TOC) are promising in many biochemical applications, such as DNA, RNA, and 

protein precipitation from aqueous solution [9, 10] and temperature sensitive biochemical 

characterizations where distinct chemical behaviors depend on a small fractional change in 

temperature [11].       

In recent years, various optical fiber-based device configurations, e.g. fibers with Bragg gratings 

[12, 13], in-line interferometer [14, 15], graphene assisted microfiber interferometer [16], surface 

plasmon resonance (SPR) supported fiber sensors [17, 18], and modal interferometers in 
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microstructured optical fibers (MOFs) [15, 19] have been developed and investigated for 

temperature monitoring. However, on-chip integrated optical temperature sensors based on ring 

resonators [20, 21], Fabry-Perrot cavities [22], Bragg reflectors [23, 24], and interferometers [25, 

26] have also been demonstrated and are envisaged to be favorable candidates for integration with 

electronic circuits for lab-on-a-chip information processing and calibration compared with their 

fiber-optic siblings. All these sensing mechanisms are restricted to a much lower temperature 

sensitivity of around ~70-80 pm/°C. Recently published reports by Guan et al. [27] and Zhang et 

al. [28] have demonstrated an improved sensitivity of 172 pm/°C and 162.9 pm/°C for Si/SU-8 

hybrid waveguide assisted MZI sensor and Si/SU-8 based photonic crystal nanobeam cavities, 

respectively. Besides temperature sensing, an accurate detection of chemical concentration is of 

considerable interest in biomedical research and chemical industries [9, 10, 29, 30]. Different 

exotic waveguide schemes such as disk [31], ring [32, 33] and straight resonators [34, 35], sub-

wavelength gratings [36], and interferometers [37, 38] have also been proposed and evaluated as 

biochemical sensors depending on the changes of mode effective index (𝑛𝑒𝑓𝑓) by homogeneous 

or bulk sensing and localized or surface sensing. A recent report shows a maximum isopropanol 

refractometric sensitivity of 160 nm/RIU for a hollow hybrid plasmonic MZI liquid sensor [39].   

In this paper, we introduce a novel metal strip loaded horizontal slot hybrid plasmonic waveguide 

(HSHPW) assisted asymmetric unbalanced Mach-Zehnder interferometer (MZI) with dynamic 

sensing ability. In HSHPW, a nano-scale low index plasmonic slot region is formed by suspending 

a high index silicon (Si) slab on top of a thin silver (Ag) layer deposited on silica (𝑆𝑖𝑂2) buffer 

layer. The key objective of a sensor design would be to enhance light-matter interactions in the 

low index slot region to obtain a high waveguide sensitivity to a small refractive index change in 

the sensing material. Dominant quasi-TE mode of a vertical slot waveguide is highly sensitive to 

the sidewall roughness caused by the dry-etching fabrication process, which results in high 

scattering loss. On the other hand, the dominant quasi-TM mode suffers less scattering loss as the 

horizontal interfaces are relatively smoother due to the wet-etching technology used. Thus, the 

horizontal dielectric slot suffers lower loss [40] compared to vertical one and higher sensitivity in 

bio-chemical and gas sensing applications [41–44]. The waveguide design parameters 

optimizations for the maximum sensitivity have been investigated by using our in-house accurate 

full-vectorial finite element method (FV-FEM). However, this type of HSHPW being different 

than standard silicon nanowire or dielectric slot guide, so we have considered the design variation 

to reduce the junction losses. The least squares boundary residual method (LSBR) along with the 

FV-FEM has also been used to obtain scattering matrices at waveguide discontinuity junctions. 

The MZI consists of non-identical waveguides in sensing and reference arms. The HSHPW 

incorporating sensing arm with isopropanol in the cover and slot regions provides a negative 

temperature dependent phase change, whereas the reference arm with 𝑆𝑖𝑂2 clad Si/𝑆𝑖𝑂2/Si 

dielectric horizontal slot (DHS) waveguide incurs a positive temperature dependent phase change. 

Thus, the opposite phase changes in both arms offer a much higher cumulative phase difference 

for a small temperature variation. This same MZI configuration is also capable of detecting a small 

fractional change of isopropanol concentration in a water/isopropanol binary solution for a fixed 

temperature. Thus, our proposed MZI sensor not only have a high response to refractive index-

based temperature sensing but also have an excellent ability to detect liquid concentration which 

is promising for a lab-on-chip sensor arrays. To the best of our knowledge, no such on-chip 

integrated photonic device has been reported which shows a single optimized device design which 

is highly sensitive to both temperature and refractometric changes of volume concentration of 

liquids. 
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2. Theory and design schemes 

2.1 Design principle 

    The metal strip loaded HSHPW supports a plasmon assisted slot confined mode in the low index 

area which is a combination of photonics and plasmonic modes arise from dielectric-dielectric 

(Si/isopropanol) and dielectric-metal (isopropanol/Ag) interfaces, respectively. The 3D schematic 

of HSHPW structure is shown in Fig. 1(a) which contains a nano-dimension slot in between 

suspended Si slab and a lower Ag layer deposited on top of the 𝑆𝑖𝑂2 buffer layer. The HSHPW is 

butt coupled to 𝑆𝑖𝑂2 clad Si/𝑆𝑖𝑂2/Si dielectric horizontal slot (DHS) waveguides at both ends. 

Thus, the Si slab forms a bridge over the metal layer and offers a plasmonic slot which is exploited 

as a sensing region in our proposed design. Inset of Fig. 1(a) shows the cross-section view of the 

HSHPW. The plasmonic waveguide design, optimizations and performance analyses require an 

accurate mode solver to solve the partial differential equations (PDEs). In most cases, the PDEs 

for plasmonic problems are much complex to be solved by using conventional analytical and semi-

analytical approaches. Our in-house H-field based full-vectorial finite element method (FV-FEM) 

has been developed [45] and refined [34, 44, 46, 47] over last thirty years is used for modal 

solutions. The variational formulation used for FV-FEM is modified by considering local dielectric 

constant of each discretized element for the elimination of spurious modes, particularly useful for 

plasmonic waveguides [44, 47] so that their Euler equations not only follow the Helmholtz’s 

equation but also satisfy the Maxwell’s divergence equation.  

 𝑘0
2 =  (

𝜔

𝑐
)

2

=  
〈𝜖�̂�

−1 (𝛁 × 𝑯), (𝛁 × 𝑯)〉 +  〈𝜖�̂�
−1(𝛁 ⋅ 𝑯), (𝛁 ⋅ 𝑯)〉

〈𝜇�̂� 𝑯, 𝑯〉
 (1) 

Here 𝑘0, 𝜔, 𝜖̂ and �̂� denote the wavenumber, angular frequency, relative permittivity and 

permeability tensor, respectively and 𝑘0
2 represents the eigenvalue. The modal phase constant (𝛽) 

and effective index (𝑁𝑒𝑓𝑓 = 𝑛𝑒𝑓𝑓 − 𝑗𝑘𝑒𝑓𝑓 = 𝛽/𝑘0 − 𝑗 𝛼/𝑘0) can be evaluated from the 

eigenvalues. Here 𝛼 is the mode attenuation constant in nepers per micrometer (Np/𝜇m) and 𝑘0 =
2𝜋/𝜆0 is the plane wave phase constant in free space and 𝜆0 is free-space wavelength of light. An 

accurate solution of a plasmonic waveguide requires a sufficient dense mesh distribution around 

the metal film to resolve the sub-wavelength field confinement. Our flexible meshing technique 

associated with FV-FEM helps in this regard. The mode propagation length (𝐿𝑝 = 𝜆/4𝜋𝑘𝑒𝑓𝑓, the 

waveguide length where the guided mode power is 1/𝑒 times of its initial value) and mode power 

attenuation (𝛼′(𝑑𝐵/𝜇𝑚) = 4.343/𝐿𝑝; 𝛼′(𝑑𝐵/𝜇𝑚) = 20 ⋅ 𝑙𝑜𝑔10𝑒 ⋅ 𝛼(𝑁𝑝/𝜇𝑚)) are also 

important in evaluation of plasmonic waveguides. Optimization to maximum waveguide 

sensitivity requires a rigorous assessment of power confinement factor (Γ) in the specific regions 

(slot and sensing regions) which can be defined as 

 Γ =
∬ 𝑅𝑒(𝑬 × 𝑯∗). �̂� 𝑑𝑥𝑑𝑦

Δ

∬ 𝑅𝑒(𝑬 × 𝑯∗). �̂� 𝑑𝑥𝑑𝑦
∞

 (2) 

Here Δ represents the horizontal slot and/or cover medium, together with forms the sensing region. 

The vectorial E and the complex conjugate of H (𝑯∗) fields are used to formulate the modal 
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Poynting vector (𝑆𝑧 = (𝑬 × 𝑯∗). �̂�). Two butt-coupling junctions of the HSHPW and DHS 

waveguide in the MZI sensing arm create waveguide discontinuities. The least squares boundary 

residual (LSBR) method [48] is used in conjugation with FV-FEM for rigorous investigations of 

power transfer and transmission loss of these two butt-coupled waveguides. Minimization of the 

vector functional 𝑑𝑮 = 0 satisfy the continuity of the both tangential E and H field components 

on both sides of a waveguide junction and provides a stationary solution by least squares means. 

The functional can be represented as 

 𝑮 = ∫ [|𝑬𝑡
1 − 𝑬𝑡

2|2 + 𝑚.  𝑍0
2|𝑯𝑡

1 − 𝑯𝑡
2|2]𝑑𝑥𝑑𝑦 (3) 

The subscript 𝑡, superscripts numbers (1 and 2), 𝑍0
2 and 𝑚 represents the transverse components 

of fields (E and H), the mode fields belonging to the right and the left side of the junction, free-

space impedance and a weighting factor, respectively.   

    A single output, unbalanced, asymmetric arm and unequal power split/combine MZI is used as 

a transducer device in the detection of a small refractive index change of isopropanol depending 

on either temperature and volume concentration of isopropanol solution. The complete optical 

characterization set-up and a schematic diagram of HSHPW (in sensing arm) and DHS (in 

reference arm) incorporated MZI are shown in Figs. 2(a) and (b), respectively. The light from a 

tunable CW laser can be launched into MZI with the help of a grating coupler. The isolator can be 

used to prevent unwanted feedback to the CW laser cavity. The polarization controller is set-up at 

the input for allowing only TM mode. At the device end, an optical fiber is used to carry the 

characterization response to a high precision optical spectrum analyzer (OSA) for further analyses. 

The HSHPW is inserted in between fixed length 𝑆𝑖𝑂2 clad DHS waveguides (𝐿𝐷𝐻𝑆 = 10 𝜇m) on 

both sides (Fig. 1(a)), together they form the sensing arm of length, 𝐿𝑆𝑒𝑛 = 2𝐿𝐷𝐻𝑆 + 𝐿𝐻𝑆𝐻𝑃𝑊. On 

the other hand, the reference arm of length 𝐿𝑅𝑒𝑓 consists of only 𝑆𝑖𝑂2 clad DHS with four 90° 

bends of radius 𝑅𝐵 = 5 𝜇m (very low bending loss, thus, neglected in further calculations) and 

straight sections (𝐿𝑅1, 𝐿𝑅2, 𝑎𝑛𝑑 𝐿𝑅3) to make the device feasible to change the arm length for 

calibration of frequency spectral range (FSR) and sensitivity (𝑆𝐷). Thus, the 𝐿𝑅𝑒𝑓 can be expressed 

as, 𝐿𝑅𝑒𝑓 = (2𝜋𝑅𝐵) + 𝐿𝑅1 + 𝐿𝑅2 + 𝐿𝑅3. The DHS straight section, 𝐿𝑅2 is considered to have same 

length as 𝐿𝐻𝑆𝐻𝑃𝑊 in sensing arm. Therefore, only 𝐿𝑅1 and 𝐿𝑅3 (𝐿𝑅1 = 𝐿𝑅3) are left free of length 

calibration. The MZI has 𝑆𝑖𝑂2 cladding as cover medium except for HSHPW that creates a sensing 

window, by which the liquid isopropanol is infiltrated in the sensing region (slot + cover medium). 

During sensing, the differential phase change (Δ𝜙) between both arms depends on the optical path 

difference (OPD) arises due to a refractive index change of isopropanol as 

 Δ𝜙 =
2𝜋

𝜆
[(𝑛𝑒𝑓𝑓,𝐷𝐻𝑆. 2𝐿𝐷𝐻𝑆 + 𝑛𝑒𝑓𝑓,𝐻𝑆𝐻𝑃𝑊. 𝐿𝐻𝑆𝐻𝑃𝑊) − (𝑛𝑒𝑓𝑓,𝐷𝐻𝑆. 𝐿𝑅𝑒𝑓)] (4) 

 The 𝑛𝑒𝑓𝑓 with subscripts DHS and HSHPW denote the real part of the effective indices of the 

corresponding waveguide. Thus, for a plasmonic waveguide assisted MZI, operating at a 

wavelength (𝜆) the output power (𝑃𝑜𝑢𝑡) depends on the OPD value through Δ𝜙 and that can be 

expressed as [49] 
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 𝑃𝑜𝑢𝑡 =
1

4
. 𝑃𝑖𝑛 (𝑒−2𝛼𝑅𝑒𝑓𝐿𝑅𝑒𝑓 + 𝑒−2𝛼𝑆𝑒𝑛𝐿𝑆𝑒𝑛). (1 + 𝐹 cos Δ𝜙) (5) 

 Here 𝛼𝑅𝑒𝑓, 𝛼𝑆𝑒𝑛 represent the attenuation constants in Np/𝜇m associated with the reference and 

sensing arms waveguides, respectively and 𝐹 represents the fringe visibility of MZI output given 

as: 

 𝐹 =
2𝑒−𝛼𝑅𝑒𝑓𝐿𝑅𝑒𝑓𝑒−𝛼𝑆𝑒𝑛𝐿𝑆𝑒𝑛

𝑒−2𝛼𝑅𝑒𝑓𝐿𝑅𝑒𝑓 + 𝑒−2𝛼𝑆𝑒𝑛𝐿𝑆𝑒𝑛
 (6) 

It is being assumed that the input power is distributed equally (𝑃𝑖𝑛) in both the arms. The HSHPW 

in the sensing arm has a significant amount of quasi-TM modal loss compared to the DHS which 

can be assumed to be loss-less (quasi-TM) [40] i.e. 𝛼𝑅 = 0 and the transmittance, 𝑒−2𝛼𝑅𝐿𝑅𝑒𝑓 = 1 

for a short length waveguide. Small scattering loss in both the branches can be included separately 

if necessary. The mode propagation loss in HSHPW and butt-coupling losses at the junction 1 and 

2 (𝐽1 and 𝐽2) in sensing arm (Fig. 2(b)) affect the overall device output power and its fringe 

visibility (𝐹). However, it can be compensated by tuning the coupling section (𝐿𝑥) of the input 

directional coupler so that, the sensing arm receives more power to balance the device insertion 

loss and thus, improve the interference fringe visibility. Furthermore, the only unaccounted loss 

comes from the small attenuation perturbation (Δ𝛼𝑆) in the sensing HSHPW during homogeneous 

refractometric changes of isopropanol solution. Therefore, the formulation of the MZI output 

power (𝑃𝑜𝑢𝑡) can be shown to be as: 

 𝑃𝑜𝑢𝑡 =
1

2
[𝑃𝑖𝑛𝑅 + (𝑃𝑖𝑛𝑆. 𝜏𝐽1. 𝜏𝐽2. 𝑒−2(𝛼𝐻𝑆𝐻𝑃𝑊±Δ𝛼𝑆)𝐿𝐻𝑆𝐻𝑃𝑊 )](1 + 𝐹′. cos Δ𝜙) (7) 

Where the modified fringe visibility (𝐹′) is given by 

 𝐹′ =  
2√𝑃𝑖𝑛𝑅 . 𝑃𝑖𝑛𝑆. 𝜏𝐽1. 𝜏𝐽2 . 𝑒−(𝛼𝐻𝑆𝐻𝑃𝑊±Δ𝛼𝑆)𝐿𝐻𝑆𝐻𝑃𝑊

𝑃𝑖𝑛𝑅 + 𝑃𝑖𝑛𝑆. 𝜏𝐽1. 𝜏𝐽2. 𝑒−2(𝛼𝐻𝑆𝐻𝑃𝑊±Δ𝛼𝑆)𝐿𝐻𝑆𝐻𝑃𝑊
 (8) 

The 𝑃𝑖𝑛𝑅 and 𝑃𝑖𝑛𝑆 represent the unequally distributed input power at the reference and sensing 

arms, respectively. The 𝜏𝐽1 and 𝜏𝐽2 denote the transmittance at the waveguide discontinuities 𝐽1 

and 𝐽2, respectively and 𝛼𝐻𝑆𝐻𝑃𝑊 is the quasi-TM mode attenuation constant of the HSHPW. The 

frequency spectral range (FSR) of the MZI is calculated by 

 𝐹𝑆𝑅 =
𝜆2

[(𝑛𝑔,𝐷𝐻𝑆𝐿𝐷𝐻𝑆 + 𝑛𝑔,𝐻𝑆𝐻𝑃𝑊𝐿𝐻𝑆𝐻𝑃𝑊) − 𝑛𝑔,𝐷𝐻𝑆𝐿𝑅𝑒𝑓]
 (9) 

where 𝜆, 𝑛𝑔,𝐷𝐻𝑆 and 𝑛𝑔,𝐻𝑆𝐻𝑃𝑊 are the operating wavelength and group index of DHS and HSHPW, 

repectively. In our design, the key point is to achieve a highly sensitive temperature sensor design 
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to increase the differential phase change between the two arms. This is achieved by the light 

guiding through materials with negative and positive TOCs in sensing and reference arms, 

respectively. The temperature sensitivity (𝑆𝑇) of the MZI device i.e. the wavelength shift (Δ𝜆) of 

destructive fringes with respect to temperature (𝑇) is defined as [50] 

 
𝑆𝑇 =

𝐹𝑆𝑅. [{(
𝑑𝑛𝑒𝑓𝑓,𝐷𝐻𝑆

𝑑𝑇
) . 𝐿𝐷𝐻𝑆 + (

𝑑𝑛𝑒𝑓𝑓,𝐻𝑆𝐻𝑃𝑊

𝑑𝑇
) . 𝐿𝐻𝑆𝐻𝑃𝑊} − (

𝑑𝑛𝑒𝑓𝑓,𝐷𝐻𝑆

𝑑𝑇
) . 𝐿𝑅𝑒𝑓]

𝜆
 

(10) 

2.2 Waveguide materials 

    The wavelength and temperature dependent Si refractive indices are obtained from the Sellmeier 

equation [51], valid for the wavelength and temperature range of 1.2 to 14 𝜇m and -173 to 476 °C, 

respectively. 𝑆𝑖𝑂2 has positive TOC (𝑑𝑛/𝑑𝑇) of +1.1 × 10−5 /°C and its refractive indices have 

been calculated by the Sellmeier equation [52]. Besides, the liquid isopropanol has a high negative 

TOC of −4.5 × 10−4/°C and its refractive index as a function of wavelength is obtained from a 

least-squares approximation based Sellmeier equation [53] acceptable for the wavelength range of 

0.185 – 2.8 𝜇m. The temperature dependent complex refractive index of the metal (Ag) is 

evaluated by the Drude model [54], can be expressed as 

 𝜖(𝜆) = 𝜖𝑟 + 𝑗𝜖𝑖 = 𝜖∞ −
𝜔𝑝

2

𝜔(𝜔 + 𝑗𝜔𝑐)
 (11) 

here the parametric values of 𝜖∞ and collision frequency (𝜔𝑐) for Ag are taken as 3.1 and 

0.31 × 1014 rad/s. The plasma frequency (𝜔𝑝) has a strong temperature dependency and is given 

by, 𝜔𝑝 = 𝜔𝑝0. 𝑒−𝐴𝑉(𝑇0).(𝑇−𝑇0)/2 , where 𝜔𝑝0, 𝐴𝑉 are the plasma frequency at the ideal/room 

temperature, 𝑇0 and volume expansion coefficient (Α𝑉 = 3Α𝐿 = 5.7 × 10−5 /°C) of Ag, 

respectively.  

    By considering the TOC (𝑑𝑛/𝑑𝑇), the variation of isopropanol refractive index with 

temperature is obtained by, 𝑛𝑇 = 𝑛𝑇0
+ (𝑇 − 𝑇0)𝑑𝑛/𝑑𝑇, where 𝑛𝑇0

 and 𝑛𝑇  are the refractive 

indices of the isopropanol at a known and desired temperature 𝑇0 and 𝑇, respectively. Additionally, 

the refractive index variation of isopropanol/water solution depends on the volume concentration 

of isopropanol and is determined by using the Lorentz-Lorenz equation [44] for a binary solution. 

3. Analyses and results 

3.1 Optimization of waveguide parameters 

    The sensing slot in HSHPW is sandwiched between a thin metal (Ag) layer and another 

suspended high index Si slab bridged between two DHS waveguides at both the ends (Fig. 1). The 

thin Ag layer on 𝑆𝑖𝑂2 buffer not only provides the sub-wavelength confinement but also restricts 

penetration of evanescent field into buffer region. This restricted field that intends to expand into 

the dielectric substrate for the all-dielectric slot waveguide is now guided through the low index 
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slot above the metal. This in turn increases the power confinement in the slot and sensing region 

(slot + cover medium) compared to a conventional dielectric horizontal slot waveguide. The 

HSHPW dimensions, such as waveguide width (𝑊𝑆𝑖), metal thickness (𝐻𝐴𝑔), Si slab height (𝐻𝑆𝑖), 

and slot height (𝐻𝑠𝑙𝑜𝑡) are optimized to confine the maximum power inside the low index slot 

region at the operating wavelength of 1550 nm. In this case, the slot and cover medium are 

considered to be filled with 100% isopropanol. Throughout the FV-FEM simulations, existing one-

fold symmetry is exploited and only half of the waveguide is discretized with 1,280,000 non-

uniform triangular elements with a minimum element size of 0.2 nm close to the metal surface to 

resolve the sub-wavelength field confinement accurately. Figures 3(a) and (b) depict 𝐸𝑦 field 

distributions of the quasi-TM fundamental mode of DHS and HSHPW, respectively. The dominant 

𝐸𝑦 field is mostly confined in the low index horizontal slot region of the DHS and HSHPW. 

However, compared to 𝑆𝑖𝑂2 clad DHS waveguide, the HSHPW confined more power in the 

horizontal slot region containing isopropanol, as preferred. In Fig. 3(c), the solid blue and red 

dashed lines depict the normalized 1D filed plots of 𝐸𝑦 (top) and 𝐻𝑥 (bottom) fields along y-axis 

of HSHPW and DHS waveguide, respectively. The quasi-TM 𝐻𝑥 field of the DHS (red dashed 

line) is continuous, showing its two peaks in the top and bottom Si layers and a lower value in the 

low index 𝑆𝑖𝑂2 slot. The dominant 𝐸𝑦 field of the similar waveguide shows a symmetric 

distribution along y-axis with a maximum confinement in the slot. The quasi-TM 𝐻𝑥 field of the 

HSHPW shows a positive peak in the Si layer, and a small negative peak at the interface of thin 

Ag layer and low index slot region. On the other hand, the dominant 𝐸𝑦 field is confined maximally 

in the low index isopropanol contained slot, and moderately in the top clad region (blue solid line). 

This 𝐸𝑦 field is useful for the detection of a small refractometric change. Additionally, the 

Ag+𝑆𝑖𝑂2 buffer layer of HSHPW only confines a very low ~0.1% of light. Therefore, the rest of 

the guided light is considered to enhance the slot and sensing region confinement, and also 

sensitivity of the waveguide.  

    The variations of 𝑛𝑒𝑓𝑓, 𝛼′(dB/𝜇m), and slot confinement (Γ𝑠𝑙𝑜𝑡) of HSHPW with 𝐻𝐴𝑔 are shown 

in Fig. 4. The inset figure shows the confinement in the Ag layer (Γ𝐴𝑔) against 𝐻𝐴𝑔. Other 

parameters, 𝑊𝑆𝑖, 𝐻𝑆𝑖 and 𝐻𝑠𝑙𝑜𝑡 are kept fixed at 700, 150, and 100 nm, respectively. It can be 

observed that for the fixed values of 𝑊𝑆𝑖, 𝐻𝑆𝑖, and 𝐻𝑠𝑙𝑜𝑡, the 𝐻𝐴𝑔 variations within the range of 80 

to 1000 nm have no visible effect on 𝑛𝑒𝑓𝑓, 𝛼′, and Γ𝑠𝑙𝑜𝑡. But for any value of 𝐻𝐴𝑔 lower than 80 

nm, all four parameters increase rapidly. Γ𝑠𝑙𝑜𝑡 increases from its base value of 58.59% to 59% 

shows a very small change. Besides, the confinement in the lossy Ag layer (Γ𝐴𝑔) shows a rapid 

increment from its base value of 0.101% to a high 4.044%, which results in a larger change in 

mode attenuation from 0.037 dB/𝜇m to 0.12 dB/𝜇m, that may be unacceptable for some designs. 

With the variation of the temperature, Ag metal thickness may be expanded in the normal direction. 

Thus, over the complete range of temperature variation (20°C – 60°C), using the augmented 

thermal expansion coefficient expression Α𝐿
′ = Α𝐿

1+𝜇

1−𝜇
, shows only a 0.16% 𝐻𝐴𝑔 increment in its 

thickness, where 𝜇 = 0.37 is the Poisson number of Ag. Such a small thickness variation of the Ag 

metal film with temperature would have a negligible effect on the 𝑛𝑒𝑓𝑓, 𝛼 (Np/𝜇m) and Γ𝑠𝑙𝑜𝑡. The 

contour plots in Figs. 5(a) and (b) show a combined effect of 𝑊𝑆𝑖 and 𝐻𝑆𝑖 on the 𝑛𝑒𝑓𝑓 and Γ𝑠𝑙𝑜𝑡, 

respectively. Here, 𝐻𝐴𝑔 and 𝐻𝑠𝑙𝑜𝑡 are fixed at 150 and 100 nm, respectively. In this case, 𝑛𝑒𝑓𝑓 

increases faster with the 𝐻𝑆𝑖 for a fixed 𝑊𝑆𝑖 than that of the 𝑊𝑠𝑖 increases for a fixed 𝐻𝑠𝑖. The Γ𝑠𝑙𝑜𝑡 

contour distribution shows an enhanced slot confinement of more than 50% for the 𝑊𝑠𝑖 and 𝐻𝑆𝑖 
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range of 700 to 800 nm and 100 to 180 nm, respectively. An abrupt Γ𝑠𝑙𝑜𝑡 variation is observed 

when 𝑊𝑆𝑖 > 800 nm and 𝐻𝑆𝑖 is in the range of ~150 to 300 nm. This local change has been identified 

due to the occurrence of second order quasi-TE mode (more light confines in the Si slab) within a 

close proximity of quasi-TM fundamental mode. In this range, further investigations were carried 

out to identify the optimum values of these design parameters. Figure 6(a) shows the Γ𝑠𝑙𝑜𝑡, Γ𝑐𝑙𝑎𝑑 

and Γ𝑠𝑙𝑜𝑡+𝑐𝑙𝑎𝑑 variations against 𝑊𝑆𝑖 when the 𝐻𝑠𝑙𝑜𝑡 and 𝐻𝑆𝑖 = 𝐻𝐴𝑔 are fixed at 100 and 150 nm, 

respectively. The Γ𝑠𝑙𝑜𝑡 increases with 𝑊𝑆𝑖, reaches a maximum value of 59.24% for 𝑊𝑆𝑖= 740 nm 

and then decreases. On the other hand, Γ𝑐𝑙𝑎𝑑 shows a linear reduction with the increase of 𝑊𝑆𝑖. As 

a result, the resultant Γ𝑠𝑙𝑜𝑡+𝑐𝑙𝑎𝑑 also decreases with the increase of 𝑊𝑆𝑖. The optimum value of 𝑊𝑆𝑖 

is considered to be 740 nm which gives maximum slot confinement, Γ𝑠𝑙𝑜𝑡 = 59.24% and 

corresponding Γ𝑠𝑙𝑜𝑡+𝑐𝑙𝑎𝑑 = 82.04%. Similarly, these confinement variations with 𝐻𝑆𝑖 have been 

shown in Fig. 6(b). In this case, the Γ𝑠𝑙𝑜𝑡 increases with 𝐻𝑆𝑖 shows a maximum confinement of 

59.60% at 𝐻𝑆𝑖 = 140 nm and then decreases. However, 𝐻𝑆𝑖 = 140 nm has slightly higher loss (𝛼′ =
0.038 𝑑𝐵/𝜇m) compared to the 150 nm (𝛼′ = 0.036 𝑑𝐵/𝜇m). The Γ𝑐𝑙𝑎𝑑 decreases in a hyperbolic 

nature and shows Γ𝑐𝑙𝑎𝑑 = 22.80% when 𝐻𝑠𝑖 = 150 nm. Therefore, with the Γ𝑠𝑙𝑜𝑡+𝑐𝑙𝑎𝑑 = 82.04%, 

the optimum value of 𝐻𝑆𝑖 is considered to be 150 nm.   

    Figures 7(a) and (b) show the quasi-TM and TE power confinements (Γ𝑠𝑙𝑜𝑡, Γ𝑐𝑙𝑎𝑑, and Γ𝑠𝑙𝑜𝑡+𝑐𝑙𝑎𝑑) 

with 𝐻𝑠𝑙𝑜𝑡 when 𝑊𝑆𝑖, 𝐻𝑆𝑖 and 𝐻𝑠𝑙𝑜𝑡 are kept fixed at 740, 150 and 150 nm, respectively. Figure 

7(a) shows that with the increment of 𝐻𝑠𝑙𝑜𝑡, the Γ𝑠𝑙𝑜𝑡 of quasi-TM mode, shown by a black solid 

line, increases and reaches its maximum value of 59.38% at 𝐻𝑠𝑙𝑜𝑡 = 90 nm and then decreases 

gradually with further increase. The Γ𝑐𝑙𝑎𝑑 increases with the 𝐻𝑠𝑙𝑜𝑡 shown by a red dashed line and 

shows a 22.80% power confinement for 𝐻𝑠𝑙𝑜𝑡 = 100 nm. The resultant Γ𝑠𝑙𝑜𝑡+𝑐𝑙𝑎𝑑, shown by a blue 

dashed-dotted line, shows a bell-shaped variation with its peak value of Γ𝑠𝑙𝑜𝑡+𝑐𝑙𝑎𝑑 = 82.04% for 

100 nm slot height (shown by the right-hand side scale). On the other hand, the HSHPW with 𝐻𝑠𝑙𝑜𝑡 

= 90 nm has a comparatively higher loss (0.040 dB/𝜇m) than that of the 100 nm (0.036 dB/𝜇m). 

Likely, Fig. 7(b) shows a similar variation with the 𝐻𝑠𝑙𝑜𝑡 for the fundamental quasi-TE mode. 

Within the complete range (40 to 150 nm) of 𝐻𝑠𝑙𝑜𝑡, the slot and clad region confine a much lower 

power (Γ𝑠𝑙𝑜𝑡 and Γ𝑐𝑙𝑎𝑑) than that of the quasi-TM mode. As a result, the sensing region shows only 

~30 to 34% power confinement (Γ𝑠𝑙𝑜𝑡+𝑐𝑙𝑎𝑑) within the range of 𝐻𝑠𝑙𝑜𝑡. The lower power 

confinement in the low index slot makes the quasi-TE mode less sensitive to the small 

refractometric changes of liquid isopropanol. 

    Summarizing the above studies, we can conclude that the fundamental quasi-TM mode of 

HSHPW is highly sensitive to slot refractometric changes. With the optimizing design parameters, 

the metal strip loaded HSHPW has shown an enhanced performance in terms of the slot, sensing 

region power confinement (Γ𝑠𝑙𝑜𝑡 = 59.24%, Γ𝑠𝑙𝑜𝑡+𝑐𝑙𝑎𝑑 = 82.04%) and the mode power attenuation, 

𝛼𝐻𝑆𝐻𝑃𝑊
′ = 0.036 dB/𝜇m. Finally, all the optimized HSHPW dimensions with 100% isopropanol 

can be summarized as, Si slab/waveguide width (𝑊𝑆𝑖) = 740 nm, height (𝐻𝑆𝑖) = 150 nm, slot height 

(𝐻𝑠𝑙𝑜𝑡) = 100 nm and the thickness of Ag strip (𝐻𝐴𝑔) = 150 nm for the operating wavelength of 𝜆 

= 1550 nm.    

3.2 MZI design with HSHPW and DHS waveguide 

    The sensing arm of the MZI consists of active and optimized isopropanol filled HSHPW butt-

coupled with DHS waveguides at both the ends. The waveguide discontinuities at the HSHPW-

DHS junctions (𝐽1 and 𝐽2) incur additional coupling losses along with the inherent plasmonic 
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mode propagation loss of the HSHPW. These waveguide discontinuities have been analyzed by 

using the LSBR (Eq. 3) method and the result shows the transmission coefficient at the HSHPW-

DHS junction is 𝜌𝐽1 = 𝜌𝐽2 = 0.85339. Thus, the junction transmittance has the value of 𝜏𝐽1 =

𝜏𝐽2 =  |𝜌|2 = 0.73 which yields the insertion loss at each junction of 1.377 dB. For the MZI design 

purpose, we have considered three different HSHPW lengths (𝐿𝐻𝑆𝐻𝑃𝑊) such as 20, 30 and 40 𝜇m. 

These three waveguide lengths provide the transmittance (𝜏𝐻𝑆𝐻𝑃𝑊  =  𝑒−2𝛼𝐻𝑆𝐻𝑃𝑊𝐿𝐻𝑆𝐻𝑃𝑊) values 

of 0.84, 0.78 and 0.71, respectively. Thus, the total transmittance values (𝜏𝑆𝑒𝑛 = 𝜏𝐽1. 𝜏𝐽2. 𝜏𝐻𝑆𝐻𝑃𝑊) 

of the HSHPW incorporated sensing arm for 𝐿𝐻𝑆𝐻𝑃𝑊 = 20, 30, and 40 𝜇m are 0.45, 0.41, and 0.38, 

respectively. An equal power division (50:50) at the reference and sensing arms of this type of 

plasmonic waveguide assisted MZI will result in an imbalance of light intensity at both the arms 

which in turn provides a poor interference fringe visibility (𝐹) at the output (𝑃𝑜𝑢𝑡). This 

shortcoming can be mitigated by using asymmetric power splitting in the sensing and reference 

arms. To obtain unequal power splitting, the coupling section (𝐿𝑥) of the input directional coupler 

can be adjusted depending on the power requirements in the sensing arm, 𝑃𝑖𝑛−𝑆𝑒𝑛 =  1/(1 + 𝜏𝑆𝑒𝑛) 

and reference arm, 𝑃𝑖𝑛−𝑅𝑒𝑓 = (1 − 𝑃𝑖𝑛−𝑆𝑒𝑛). Figure 8(a) shows a graphical representation of the 

𝑃𝑖𝑛−𝑆𝑒𝑛 and 𝑃𝑖𝑛−𝑅𝑒𝑓 requirement depending on the length of HSHPW used for sensing. As the 

junction (𝐽1 and 𝐽2) losses due to waveguide discontinuities are constant, so the only variable loss 

is considered for power fraction calculation is the modal loss due to different 𝐿𝐻𝑆𝐻𝑃𝑊.  With the 

increment of 𝐿𝐻𝑆𝐻𝑃𝑊 from 10 to 50 𝜇m, the mode propagation loss increases from 0.36 to 1.84 

dB. To counter that, the input power distribution ratio (𝑃𝑖𝑛−𝑆𝑒𝑛/𝑃𝑖𝑛−𝑅𝑒𝑓) needs to be changed from 

67% / 33% to 74% / 26%. The required 𝑃𝑖𝑛−𝑆𝑒𝑛 and 𝑃𝑖𝑛−𝑅𝑒𝑓 for 𝐿𝐻𝑆𝐻𝑃𝑊 = 20, 30, and 40 𝜇m are 

0.69, 0.71, 0.72, and 0.31, 0.29 and 0.28 respectively, shown by the red and blue lines. These 

unequal power distributions not only compensate for the losses in sensing arm but also improve 

the 𝑃𝑜𝑢𝑡 with a very high interference fringe visibility (𝐹′~1), which is highly required for an 

accurate measurement. The asymmetric power distribution demands an appropriate tuning of 

coupling section at the input directional coupler. Figure 8(b) represents the desired coupling 

section (𝐿𝑥) variations of 𝑆𝑖𝑂2 clad DHS waveguide based directional coupler (inset of Fig. 8(b)) 

as a function of gap (separation) between two DHS waveguides and the 𝐿𝐻𝑆𝐻𝑃𝑊. The desired 

length of the coupling section (𝐿𝑥) can be calculated from the original coupling length (𝐿𝑐) and the 

𝑃𝑖𝑛−𝑆𝑒𝑛 as, 𝐿𝑥 = (2𝐿𝑐/𝜋). cos−1 √𝑃𝑖𝑛−𝑆𝑒𝑛. The 𝐿𝑥 value increases as the gap increases form 250 

nm to 450 nm. Moreover, with the increase of 𝐿𝐻𝑆𝐻𝑃𝑊 the 𝐿𝑥 linearly decreases a constant gap. 

For a smaller gap, the 𝐿𝑥 has a smaller value than for a larger gap. Hence, depending on the user’s 

preferences, one can easily choose a suitable gap and the corresponding 𝐿𝑥 values for different 

𝐿𝐻𝑆𝐻𝑃𝑊. As an example, for the gaps of 350 and 400 nm, the 𝐿𝑥 values for 𝐿𝐻𝑆𝐻𝑃𝑊 = 20, 30 and 

40 𝜇m are 10.99, 10.64, 10.29 𝜇m and 13.98, 13.53 and 13.09 𝜇m, respectively, to achieve the 

required asymmetric power distributions.  

3.3 Device performance as a sensor 

    A well designed MZI sensor needs a significant attention on the calibration of free spectral range 

(FSR) and interference fringe visibility (𝐹′) of the output power, 𝑃𝑜𝑢𝑡. After setting up the 

optimized waveguide design parameters for the MZI arms, 𝐿𝐻𝑆𝐻𝑃𝑊 and 𝐿𝑥 for the input directional 

coupler, the FSR and 𝐹′ parameters are investigated and evaluated as a function of 𝐿𝑅𝑒𝑓 and 

𝐿𝐻𝑆𝐻𝑃𝑊, respectively. The fringe visibility will have the maximum value (𝐹 = 𝐹′ = 1) when the 

two MZI light beams have equal intensity. Inherent modal and junctional losses drop the sensing 
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arm light output thus degrade the interference fringe visibility. With the unequal power 

distributions, more power is launched at the sensing arm input which not only balance the losses 

but also provides an equal output at both MZI arms. Figure 9(a) depicts the advantages of using 

an unequal power distribution over the more traditional 50:50 power splitting. The black line 

indicates a significant reduction of the 𝐹 parameter with the increase of 𝐿𝐻𝑆𝐻𝑃𝑊. However, the 

unequal power splitting shows a significant improvement with almost an ideal value of 𝐹′ ≃ 1. 

Under this condition, the 𝐹′ parameters are calculated with the augmented visibility equation (Eq. 

7) and the results show a very high fringe visibility (𝐹′ ≃ 1) for all 𝐿𝐻𝑆𝐻𝑃𝑊s in expenses with 

increasing insertion loss. For these three 𝐿𝐻𝑆𝐻𝑃𝑊s (20, 30 and 40 𝜇m) incorporating unequal power 

splitting the device insertion losses are 2.06, 2.32 and 2.56 dB, respectively when 100% 

isopropanol is used at temperature T = 20 °C. Beside the visibility, the FSR is another important 

parameter which indicates the frequency spacing of the MZI transmission peaks. A unit 

wavelength changes with very small power change results in a large FSR which may be 

unacceptable due to added difficulties in detection of the interference wavelength by optical 

spectrum analyzer (OSA). Thus, as a compromise, a relatively small FSR values of 10 and 15 nm 

have been considered and the arm lengths are calibrated accordingly. The FSR is calculated as a 

function of 𝐿𝑅𝑒𝑓 and 𝐿𝑆𝑒𝑛 (Eq. 8) and the results are shown in Fig. 9(b). The variations indicate 

that the lower FSR requires higher 𝐿𝑅𝑒𝑓 for a fixed 𝐿𝐻𝑆𝐻𝑃𝑊. The horizontal black dashed lines 

indicate the 10 and 15 nm FSR and its corresponding 𝐿𝑅𝑒𝑓 values for a fixed 𝐿𝐻𝑆𝐻𝑃𝑊. In our design, 

the 𝐿𝑅𝑒𝑓 calibration only demands the change in the straight waveguide sections (𝐿𝑅1, 𝐿𝑅2 and 

𝐿𝑅3) as the bending sections of radius 5 𝜇m cover a fixed length of 𝐿𝐵 = 31.42 𝜇m. For the three 

fixed 𝐿𝐻𝑆𝐻𝑃𝑊 values (20, 30 and 40 𝜇m) the reference arm length (𝐿𝑅𝑒𝑓 = 2𝜋𝑅𝐵+𝐿𝑅1 + 𝐿𝑅2 +

𝐿𝑅3 ) with different sections to obtain FSR = 10 and 15 nm are tabulated in Table 1. 

    Our aim is to design the MZI for the temperature and the volume concentration sensing of any 

liquid. In this study, we have considered liquid isopropanol for our investigations. The quasi-TM 

effective index difference (TM-Δ𝑛𝑒𝑓𝑓) of the optimized HSHPW and the DHS waveguide with 

the temperature for 100% isopropanol are shown in Fig. 10(a). The red line shows a positive and 

linear Δ𝑛𝑒𝑓𝑓 variation of 𝑆𝑖𝑂2 clad DHS waveguide, whereas, the blue dashed line shows the same 

Δ𝑛𝑒𝑓𝑓 variation of the HSHPW but in the negative direction. The positive and negative TM-Δ𝑛𝑒𝑓𝑓 

variations of the HSHPW and the DHS provides a temperature dependent opposite phase change 

in both arms which enhance the temperature sensitivity of the device. The quasi-TM effective 

index variation with temperature (𝑑𝑛𝑒𝑓𝑓/𝑑𝑇) of both the HSHPW and DHS are -4.61×10-4/°C and 

+6.62×10-5/°C, respectively. The black line in Fig. 9(b) represent a negative quasi-TM Δ𝑛𝑒𝑓𝑓 

variation of the optimized HSHPW with the volume fraction of isopropanol in the 

isopropanol/water solution at a fixed temperature, T = 20 °C. During volume concentration 

sensing, the temperature is kept fixed so that the only refractive index change occurs at the 

HSHPW due to the different concentration of isopropanol in the solution. The refractometric 

sensitivity of the HSHPW can be evaluated as, 𝑆𝐻𝑆𝐻𝑃𝑊 = Δ𝑛𝑒𝑓𝑓/Δ𝑛 = 1.13. The HSHPW shows 

a higher refractive index sensitivity compared to a recently published complex hollow hybrid 

plasmonic design scheme [39].    

   Figures 11(a), (b), and (c) on the left side show the transmitted 𝑃𝑜𝑢𝑡 spectra for the proposed 

MZI temperature sensor with 𝐿𝐻𝑆𝐻𝑃𝑊 = 20, 30, and 40 𝜇m, respectively for 10 nm FSR. Whereas, 

the figures in the right columns (Figs. 11(d), (e), and (f)) depict the MZI responses for the same 

three 𝐿𝐻𝑆𝐻𝑃𝑊 values, but for 15 nm FSR. Different colored curves signify different temperatures 
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(varied from 20°C to 60°C) of 100% isopropanol infiltrated in the sensing HSHPW region. It can 

be clearly observed that with the temperature increment the MZI transmission spectra show the 

red shift (towards the right) because of a larger TOC of isopropanol compared to other materials 

such as Si, Ag, and 𝑆𝑖𝑂2. It should be noted that the wavelength shifts (Δ𝜆𝑇) increase with the 

increment of 𝐿𝐻𝑆𝐻𝑃𝑊 and FSR. A temperature variation from 20°C to 60°C for the MZI design 

with 𝐿𝐻𝑆𝐻𝑃𝑊 = 20, 30, and 40 𝜇m shows the Δ𝜆𝑇 of 4.25, 5.66, and 6.87 nm red shift, respectively, 

for FSR = 10 nm. Similarly, for the same temperature variations with aforementioned 𝐿𝐻𝑆𝐻𝑃𝑊 

lengths the output transmission spectra are red shifted more by 5.48, 7.43, and 9.76 nm for FSR = 

15 nm. Device insertion losses for 20, 30, and 40 𝜇m long HSHPW have the values around 2.06, 

2.32, and 2.58 dB, respectively and the corresponding extinction ratios are larger than 25 dB. 

Figures 11(g) and (h) illustrate a linear increasing relationship of Δ𝜆𝑇 with the temperature (T) 

with 100% isopropanol concentration for 10 and 15 nm FSR, respectively. For the temperature 

ranging from 20°C - 60°C, the Δ𝜆𝑇 increases linearly with the increment of the T for all MZI 

designs with 𝐿𝐻𝑆𝐻𝑃𝑊 = 20, 30, and 40 𝜇m are shown by black, red, and blue lines, respectively. 

Changes for FSR = 10 nm are shown in Fig. 11(g) and for FSR = 15 nm in Fig. 11(h) by dashed 

and dashed-dotted lines, respectively. The device sensitivities (𝑆𝑇) can be evaluated from the slope 

of the fitted curves with the 𝑅2 value of 0.999. Thus, for the MZI with 𝐿𝐻𝑆𝐻𝑃𝑊 = 20, 30, and 40 

𝜇m has the temperature sensitivity (𝑆𝑇) values of 105.2 pm/°C, 140.6 pm/°C, and 172 pm/°C for 

FSR = 10 nm, respectively and 138.1 pm/°C, 187 pm/°C, and 243.9 pm/°C, respectively for FSR 

= 15 nm which indicate much higher values compared to the recent published reports [27, 28]. 

Additionally, our proposed design works well in a wide temperature range from room temperature 

(~20°C) to the boiling point of isopropanol (82°C). Even other liquid chemicals with high boiling 

point could be used for temperature detection. Moreover, the sensing range (𝐹𝑆𝑅/𝑆𝑇) of the 

designed device with 𝐿𝐻𝑆𝐻𝑃𝑊 = 40 𝜇m can be derived for 10 and 15 nm FSR as ~58°C and ~61°C, 

respectively. Detection limit (𝐷𝐿𝑇) is another important characteristic of a sensor that illustrate the 

efficiency to resolve a smallest refractometric change of the target and it can be defined as the ratio 

of resolution of the transmission spectra (𝜆𝑅𝑒𝑠) to the device sensitivity (𝑆𝑇). The 𝜆𝑅𝑒𝑠 of a device 

depends not only on the resolution of the source and the measurement equipment (OSA) but also 

influenced by the extinction of the device and the noise present on the measured spectra. Thus, 

instead of using a specific 𝜆𝑅𝑒𝑠 value for a laser source and OSA, we have considered the device 

𝜆𝑅𝑒𝑠 as 1 pm (approx.) for our theoretical investigations and as a result, our design with 40 𝜇m 

HSHPW can have the temperature detection limit or resolution (𝐷𝐿𝑇) of 0.0058°C and 0.004°C 

for the 10 and 15 nm FSR, respectively.     

    Next, the feasibility of the same MZI senor for the detection of volume concentration of 

isopropanol in the isopropanol/water solution at a constant temperature is also studied. For this 

study, we kept the temperature fixed at 20°C. Figures 12 (a) – (c) show the MZI transmission 

responses of the 20, 30, and 40 𝜇m long HSHPW as a refractometric sensor with the FSR value of 

10 nm and Figs. 12 (d), (e), and (f) for FSR = 15 nm. The black spectrum represents the 

transmission output for 100% isopropanol at T = 20°C. Different colored spectra indicate different 

volume fraction of isopropanol and they also show a red shift of the wavelength (Δ𝜆𝐶) with the 

isopropanol volume concentration. These wavelength shifts (Δ𝜆𝐶) increase with the increment of 

both the 𝐿𝐻𝑆𝐻𝑃𝑊 and FSR. The extinction ratios for the device have the values larger than 20 dB 

and the insertion losses were almost similar to those calculated with 100% isopropanol at T = 

20°C. These Δ𝜆𝐶s with the refractometric changes of the isopropanol solution are plotted in the 

Figs. 12(g) and (h) for 10 and 15 nm FSR values, respectively. It can be observed that the Δ𝜆𝐶 
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linearly increases with the reduction of isopropanol volume concentration. The horizontal x-axis 

indicates the refractive indices of isopropanol/water solution depending on the volume 

concentration (100% to 0%) of isopropanol. Therefore, the concentration sensitivities (𝑆𝐶) are 

determined from the slope of the linearly fitted curves with 𝑅2 = 0.999. Thus, for the detection of 

isopropanol volume concentration, the sensitivity (𝑆𝐶) of the designed MZI with 𝐿𝐻𝑆𝐻𝑃𝑊 = 20, 30 

and 40 𝜇m reaches 144.6 nm/RIU, 222.2 nm/RIU, and 290.3 nm/RIU, respectively for FSR = 10 

nm and 218.1 nm/RIU, 327.6 nm/RIU, and 437.3 nm/RIU, respectively for FSR = 15 nm. It can 

be noted that the sensitivity increases linearly with the FSR and sensor length, 𝐿𝐻𝑆𝐻𝑃𝑊. For the 

same device wavelength resolution (𝜆𝑅𝑒𝑠 = 1 pm), our MZI sensor with 40 𝜇m long HSHPW shows 

a considerable potential to measure the refractometric changes as small as 3.44 × 10−6 and 

2.28 × 10−6 RIU for the 10 and 15 nm FSR, respectively. These results show an improved 

refractometric sensitivity compared to the hybrid plasmonic MZI design reported recently [39]. 

    The HSHPW incorporated MZI device can also be used for surface sensing applications. We 

considered an ultra-thin biolayer of different thickness (𝑡𝑏𝑖𝑜 = 5, 10, and 15 nm) having refractive 

index of 1.45 [34] on both the Si slab and slot region. The cover medium and the slot is filled with 

water solution. Figures 13(a) and (b) show the MZI output power spectra (𝑃𝑜𝑢𝑡) with 𝐿𝐻𝑆𝐻𝑃𝑊 = 40 

𝜇m for the FSR values of 10 and 15 nm, respectively. The black curve represents the output 

spectrum for 𝑡𝑏𝑖𝑜 = 0 nm. Different colored spectra for different biolayer thickness (𝑡𝑏𝑖𝑜 = 5, 10, 

and 15 nm) show blue shifts. These wavelength shifts (Δ𝜆𝑏𝑖𝑜) for two different FSR values (10 

and 15 nm) are plotted against biolayer thickness (𝑡𝑏𝑖𝑜) in Fig. 13(c), shown by the blue dashed 

and red dashed-dotted lines. The Δ𝜆𝑏𝑖𝑜 shows a linear decrement with 𝑡𝑏𝑖𝑜 for both the FSR values. 

The MZI sensitivities (𝑆𝑏𝑖𝑜) for the detection of surface binding biomolecules are evaluated from 

the slope of the linear fitted curves with 𝑅2 = 0.999. The surface sensitivity (𝑆𝑏𝑖𝑜) of the device 

for the FSR values of 10 and 15 nm are -605.10 pm/nm and -920.30 pm/nm, respectively. It is also 

worth to notice that the extinction ratio of the proposed during surface sensing is larger than -25 

dB. 

4. Conclusion 

    In conclusion, we report here the design of a novel metal strip loaded HSHPW which with its 

optimized designed parameters shows an enhanced power confinement of 59.24% and 82.04% in 

the low-index slot and possible total sensing region along with a low and acceptable loss. By 

integrating this HSHPW with the 𝑆𝑖𝑂2 clad DHS waveguide results in a compact on-chip MZI 

sensing system, which not only shows a high sensitivity to the liquid temperature but also have a 

great potential in the detection of the liquid concentration. Waveguide optimizations, junction 

analyses and device performance have been studied theoretically with our in-house accurate FV-

FEM and the LSBR methods. Our optimized HSHPW design shows a much higher refractometric 

sensitivity of 1.13. The MZI temperature sensitivity (𝑆𝑇) are 105.2 pm/°C and 138.1 pm/°C for 20 

𝜇m long HSHPW in the sensing arm for the FSR values of 10 and 15 nm, respectively, and it can 

be increased to 172 pm/°C and 243.9 pm/°C with the 40 𝜇m 𝐿𝐻𝑆𝐻𝑃𝑊. The same device is also 

sensitive to the changes of liquid volume concentrations. The device sensitivity (𝑆𝐶) for 

concentration detection shows a high value of 144.6 nm/RIU and 218.1 nm/RIU for the 20 𝜇m 

HSHPW and it shows a great enhancement to 290.3 nm/RIU and 437.3 nm/RIU for the higher 

value of HSHPW length (40 𝜇m). Additionally, the proposed MZI sensor is also suitable for the 

detection of binding biomolecules in the sensing region. The MZI design with 𝐿𝐻𝑆𝐻𝑃𝑊 = 40 𝜇m 
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exhibits the surface sensitivities of -605.10 pm/nm and -920.30 pm/nm for the FSR values of 10 

and 15 nm, respectively. The effect of HSHPW modal loss and the junction losses are mitigated 

by using unequal power splitting at the MZI input which results in very high interference fringe 

visibility i.e. 𝐹′ ≃ 1. The low insertion loss, high fringe visibility, high extinction ratio, and most 

importantly enhanced sensitivities make the design attractive for bio-sensing and chemical 

analyses. On the other hand, the waveguide materials such as Si, 𝑆𝑖𝑂2, and noble metal (Ag) have 

high melting points and also nonreactive to biofluids, oils, and common liquid chemicals. 

Therefore, a broad range of liquids with enough high temperature could be tested by the HSHPW 

incorporated MZI sensor. Thus, our proposal serves the successful demonstration of an on-chip 

compact MZI sensor that can be realized with the help of well-matured state-of-the-art CMOS 

fabrication technologies. Both temperature and concentration sensors can be integrated in an on-

chip arrayed design for simultaneous detection of both. Based on the preliminary results, this MZI 

sensor shows a great potential to be employed as a refractometric based temperature, liquid 

concentration, and surface sensing device. 
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Figure captions 

 

Fig. 1 3D schematic of metal (Ag) strip loaded horizontal slot hybrid plasmonic waveguide 
(HSHPW) butt-coupled with 𝑆𝑖𝑂2 clad horizontal slot waveguide (DHS) at both ends. Inset 
shows the cross-section of the HSHPW which works as an active sensing region. The red 
dashed lines indicate the waveguide discontinuities at the HSHPW and DHS waveguide 
junctions.  

 

Fig. 2 Optical characterization set-up (a) and schematic top view (b) of the metal strip loaded 
HSHPW incorporated asymmetric MZI. The HSHPW is butt-coupled with 𝑆𝑖𝑂2 clad dielectric 
horizontal slot (DHS) waveguide at both ends in the sensing arm of length, 𝐿𝑅𝑒𝑓 = 2𝐿𝐷𝐻𝑆 +

𝐿𝐻𝑆𝐻𝑃𝑊 . Only DHS is employed in the reference arm having four bending sections of radius, 
𝑅𝐵 = 5 𝜇m and three straight sections, 𝐿𝑅1, 𝐿𝑅2, and 𝐿𝑅3. Thus, total length of the reference 
arm is 𝐿𝑅𝑒𝑓 = 2𝜋𝑅𝐵 + 𝐿𝑅1 + 𝐿𝑅2 + 𝐿𝑅3.   

 

Fig. 3 (a) and (b) depict FV-FEM simulated 𝐸𝑦 field distributions of the quasi-TM 

fundamental mode of 𝑆𝑖𝑂2 clad DHS waveguide and HSHPW, respectively. Distribution of 
left-sided colour bars exhibit higher slot power confinement in HSHPW (b) compared to DHS 
waveguide (a). Blue solid and red dashed lines in top and bottom figure of (c) represent line 
plots of dominant 𝐸𝑦 and 𝐻𝑥 fields, respectively along y-axis for both waveguides. Maximum 

𝐸𝑦 field confines in the slot region and the peaks of 𝐻𝑥 field distributions show the position 

of metal and high index dielectric materials in DHS and HSHPW.   

 

Fig. 4 Effective index (𝑛𝑒𝑓𝑓), mode power attenuation (𝛼′), and slot confinement (Γ𝑠𝑙𝑜𝑡) 

variations with thickness (𝐻𝐴𝑔) of silver metal film deposited on top of 𝑆𝑖𝑂2 buffer layer. The 

inset figure shows the power confinement (Γ𝐴𝑔) variation of the Ag layer against 𝐻𝐴𝑔. Other 

parameters such as, Si slab width (𝑊𝑆𝑖), height (𝐻𝑆𝑖), and slot height (𝐻𝑠𝑙𝑜𝑡) are kept fixed at 
700, 150, and 100 nm, respectively. 

 

Fig. 5 The 2D contour plots in (a) and (b) show the variations of 𝑛𝑒𝑓𝑓 and Γ𝑠𝑙𝑜𝑡, respectively 

as a function of 𝑊𝑆𝑖 and 𝐻𝑠𝑙𝑜𝑡. The 𝐻𝑠𝑙𝑜𝑡 and 𝐻𝐴𝑔 are kept fixed at 100 and 150 nm, 

respectively. A noticeable abrupt Γ𝑠𝑙𝑜𝑡 variation occurred when 𝑊𝑆𝑖 > 800 nm and 𝐻𝑆𝑖  is 
within ∼150 to 300 nm. 

 

Fig. 6 Variations of power confinement in slot (Γ𝑠𝑙𝑜𝑡), clad (Γ𝑐𝑙𝑎𝑑), and sensing region 
(Γ𝑠𝑙𝑜𝑡+𝑐𝑙𝑎𝑑) with 𝑊𝑠𝑖 and 𝐻𝑆𝑖  are shown in (a) and (b), respectively. The solid black, red 
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dashed, and blue dashed-dotted curves represent the Γ𝑠𝑙𝑜𝑡, Γ𝑐𝑙𝑎𝑑, and Γ𝑠𝑙𝑜𝑡+𝑐𝑙𝑎𝑑 variations, 
respectively. 𝑊𝑆𝑖, 𝐻𝑠𝑙𝑜𝑡, and 𝐻𝑆𝑖  are kept fixed at 740, 100, and 150 nm, respectively. 

 

Fig. 7 (a) and (b) show the power confinement variations in the horizontal slot, clad, and 
sensing region (slot + clad) of the quasi-TM and TE modes, respectively against slot height 
(𝐻𝑠𝑙𝑜𝑡). Other parameters such as 𝑊𝑆𝑖, 𝐻𝑆𝑖 , and 𝐻𝐴𝑔 are kept fixed at 740, 150, and 150 nm, 

respectively. 

 

Fig. 8 (a) depicts the input power requirements in the sensing and the reference arms 
depending on the HSHPW length in the MZI sensing arm. (b) shows desired coupling section 
(𝐿𝑥) variations of the input directional coupler as a function of HSHPW length and gap. 

 

Fig. 9 (a) shows the fringe visibility (𝐹 and 𝐹′) of the MZI interference output with equal and 
unequal power splitting schemes. For the 50:50 equal and unequal power splitting, the fringe 
visibility parameters are calculated using Eqs. 6 and 8, respectively. (b) illustrates FSR 
variations as a function of reference arm length (𝐿𝑅𝑒𝑓) for fixed 𝐿𝐻𝑆𝐻𝑃𝑊𝑠. 

 

Fig. 10 (a) Blue dashed and red solid lines represent the variation of quasi-TM effective index 
change (TM-Δ𝑛𝑒𝑓𝑓) of HSHPW and DHS waveguides, respectively with the surrounding 

temperature. Positive and negative linear variations with slopes +6.62×10-5/°C and -4.61×10-

4/°C are obtained for DHS and HSHPW, respectively. (b) depicts a negative linear TM-Δ𝑛𝑒𝑓𝑓 

variation of the HSHPW with isopropanol volume concentration for a fixed temperature 
(20°C). The slope of the curve gives the waveguide refractive index sensitivity of 1.13. 

 

Fig. 11 (a) – (f) MZI transmitted output responses for the temperature sensing of 100% liquid 
isopropanol. Figures (a), (b), and (c) on the left column indicate the transmission spectra 
with an FSR value of 10 nm. The right-sided figures (d), (e), and (f) indicate the same with an 
FSR value of 15 nm. Figures in each row (a, d), (b, e), and (c, f) depict the MZI output 
responses for 20, 30, and 40 𝜇m long HSHPW, respectively. (g) and (h) represent the 
wavelength shift (Δ𝜆𝑇) variations with the changing temperature of isopropanol for 10 and 
15 nm FSR values, respectively. Slope of each linear curve represents MZI sensitivity (𝑆𝑇) as 
a temperature sensor. 

 

Fig. 12 (a) – (f) indicate the MZI transmitted spectra for the volume concentration sensing of 
isopropanol-water solution at a fixed temperature of 20°C. The figures (a), (b), and (c) on the 
left column indicate the output transmission spectra with an FSR value of 10 nm. The right-
sided figures (d), (e), and (f) indicate the same with an FSR value of 15 nm. Figures in each 
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row (a, d), (b, e) and (c, f) depict the output responses of the MZI with 𝐿𝐻𝑆𝐻𝑃𝑊  = 20, 30, and 
40 𝜇m, respectively. (g) and (h) represent the linear variations of wavelength shift (Δ𝜆𝐶) with 
the volume concentration of isopropanol for 10 and 15 nm FSR values, respectively. Slope of 
each linear curve represents the MZI sensitivity (𝑆𝐶) as a chemical concentration sensor. 

 

Fig. 13 Surface sensing by asymmetric MZI sensor. (a) and (b) show the MZI transmitted 
output power spectra for the FSR values of 10 and 15 nm, respectively for 𝐿𝐻𝑆𝐻𝑃𝑊  = 40 𝜇m. 
5, 10, and 15 nm ultra-thin biolayers having refractive index of 1.45 are considered for 
surface sensing. (c) represents linear variations of wavelength shift (Δ𝜆𝑏𝑖𝑜) against biolayer 
thickness (𝑡𝑏𝑖𝑜). Slope of each linear curve denotes device sensitivity (𝑆𝑏𝑖𝑜) to detect binding 
of biomolecules at the sensing region.   
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Fig. 11 



31 
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