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A B S T R A C T

A numerical framework has been developed to simulate supercritical Diesel injection using a compressible
density-based solver of the Navier-Stokes equations along with the conservative formulation of the energy
equation. Multi-component fuel-air mixing is simulated by considering a diffused interface approximation. The
thermodynamic properties are predicted using the Perturbed Chain Statistical Associating Fluid Theory (PC-
SAFT) real-fluid equation of state (EoS). This molecular-based EoS requires three empirically determined but
well-known parameters to model the properties of a specific component, and thus, there is no need for extensive
model calibration, as is typically the case when the NIST library is utilised. Moreover, PC-SAFT can handle
flexibly the thermodynamic properties of multi-component mixtures, which is an advantage compared to the
NIST library, where only limited component combinations are supported. This has allowed for the properties of
Diesel fuel to be modelled as surrogates comprising four, five, eight and nine components. The proposed nu-
merical approach improves the overall computational time and overcomes the previously observed spurious
pressure oscillations associated with the utilization of conservative schemes. In the absence of experimental data,
advection test cases and shock tube problems are included to validate the developed framework. Finally, two-
dimensional simulations of planar jets of n-dodecane and a four component Diesel surrogate are included to
demonstrate the capability of the developed methodology to predict supercritical Diesel fuel mixing into air.

1. Introduction

Diesel fuel injection at supercritical state in the combustion

chamber is known to improve fuel-air mixing as the fluid diffusivity is
much higher than that of molecules in liquid phase [1]. Moreover, the
studies of [1–4] have shown how injection at these conditions can
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reduce the emissions of particulate matter and nitrogen oxides. Building
upon these findings, the aim of the present research is to develop a
numerical framework to simulate supercritical Diesel-air mixing pro-
cesses where the liquid evaporation step is circumvented. A mixture or
a single-component reaches a supercritical state when both pressure
and temperature surpass its critical properties. In the critical region,
repulsive interactions overcome the surface tension resulting in the
existence of a single-phase that exhibits properties of both gases and
liquids. To simulate such cases of supercritical and transcritical jets,
commonly diffuse interface methods are employed [5–7]. Three main
difficulties are associated with the numerical simulation of such cases:
(i) the treatment of large density gradients, (ii) the need of using a real-
fluid EoS and (iii) the elimination of spurious pressure oscillations,
typically occurring in simulations when fully conservative (FC) schemes
are employed along with real-fluid EoS [8].

With regards to large density gradients, high order reconstruction
methods can be used to describe sharp changes. In [9] the authors
performed a two-dimensional large-eddy simulation (LES) of super-
critical mixing and combustion employing a fourth-order flux-differ-
encing scheme and a total-variation-diminishing (TVD) scheme in the
spatial discretization. Similarly, in [10] a fourth-order central differ-
encing scheme was applied together with a fourth-order scalar dis-
sipation; this was found to stabilize the simulation of a cryogenic fluid
injection and mixing under supercritical conditions. Moreover, in the
work of [11] an eighth-order finite differencing scheme was employed
in order to simulate homogeneous isotropic turbulence under super-
critical pressure conditions. Furthermore, in [12] a density-based
sensor was employed, which switches between a second-order ENO
(Essentially non- oscillatory) and first-order scheme to suppress the
oscillations. In the present study a fifth-order WENO (Weighted Es-
sentially Non-Oscillatory) scheme is applied in the 2D (two-dimen-
sional) simulations due to its high order accuracy and non-oscillatory
behaviour.

Moving to the second issue, typically cubic EoS models like the
Peng-Robinson (PR) [13] and Soave-Redlich-Kwong (SRK) [14] are
used in supercritical and transcritical simulations. For example, in
[7,15–17], the SRK EoS was employed to close the N–S equations and
compute the fluid properties under supercritical and transcritical con-
ditions. Similarly, in [6,8,12,18] the non-ideal fluid behavior was
modelled by applying the PR EoS. Nevertheless, cubic models com-
monly present low accuracy for computing the thermodynamic prop-
erties of hydrocarbons at high density ranges and temperatures that are

typical for today’s high pressure fuel injection systems [5]. To overcome
these difficulties, the Statistical Association Fluid Theory Equation of
State (SAFT EoS) can be employed. Several papers have been published
pointing out the advantages of the SAFT models with respect to cubic
EoS. For example [19], describes how the PC-SAFT model is better than
cubic EoS for predicting gas phase compressibility factors and oil phase
compressibilities. In [20] the superiority of the PC-SAFT performance is
demonstrated relative to the Cubic Plus Association (CPA) EoS in cor-
relating second order derivative properties, like speed of sound, dP/dV
and dP/dT derivatives, heat capacities and the Joule–Thomson coeffi-
cient in the alkanes investigated. Similarly [21], points out the super-
iority of the SAFT-BACK EoS over the PR EoS, particularly at high-
density conditions, for computing second order derivative properties
such as sound velocity and isobaric and isochoric properties. The study
of [22] states that cubic EoS predict a linear increase of the Z factor
(compressibility factor) with pressure, while the PC-SAFT EoS shows a
better pressure dependence. Finally [23], shows how the sPC-SAFT
(simplified PC-SAFT) is more precise than SRK and CPA to compute the
speed of sound of normal alkanes and methanol. The SAFT EoS is based
on the perturbation theory, as extensively studied in [24–27] by Wer-
theim. The authors of [28,29], developed this EoS by applying Wer-
theim’s theory and extending it to mixtures. In this method, each mo-
lecule is decomposed into spherical segments of equal size to form a
repulsive, hard sphere reference fluid. Next, the attractive interactions
between segments are added to the model. Finally, the segment-seg-
ment energy needed to form a chain between the hard-sphere fluid
segments is added to the model; if the segments exhibit associative
interactions such as hydrogen bonding, a term for this interaction is
also included. Among the different variants of the SAFT model, the PC-
SAFT is the one implemented here. In this model, hard chains are used
as the reference fluid instead of hard spheres. While the SAFT EoS
computes segment-segment attractive interactions, the PC-SAFT EoS
computes chain-chain interactions, which improves the thermodynamic
description of chain-like, fluid mixtures [30]. The main issues of using a
complex EoS are the difficult implementation and the high computa-
tional cost [6]. Some tabulation methods have been developed for
single-species cases [31] but these approaches cannot be utilised with
mixtures of more than two components. In this research, the Diesel
properties are modelled using surrogates of four, five, eight and nine
components so employing tables is not an option. The use of the double-
flux model of [6,8,32] can significantly reduce the required computa-
tional time as the complex EoS is employed only once in the hyperbolic

Nomenclature

List of abbreviations

CFD Computational Fluid Dynamics
CFL Courant–Friedrichs–Lewy
ENO Essentially Non-Oscillatory
EoS Equation of State
FC Fully Conservative
HLLC Harten-Lax-van Leer-Contact
LES Large Eddy Simulation
N–S Navier-Stokes
PR Peng-Robinson
PC-SAFT Perturbed Chain Statistical Associating Fluid Theory
QC Quasi-Conservative
RK2 Second-order Runge–Kutta
SRK Soave-Redlich-Kwong
SSP-RK3 Third-order strong-stability-preserving Runge–Kutta
TVD Total Variation Diminishing
VLE Vapor-Liquid Equilibrium
WENO Weighted Essentially Non-Oscillatory

List of Symbols

ãres Reduced Helmholtz free energy [-]
a Speed of sound [m s-1]
d Temperature-dependent segment diameter [Å]
g Radial distribution function [-]
I Integrals of the perturbation theory [-]
k Boltzmann constant [J/K]
m Number of segments per chain [-]
m̄ Mean segment number in the system [-]
p Pressure [Pa]
R Gas constant [J mol-1 K-1]
T Temperature [K]
xi Mole fraction of component i [-]
Z Compressibility factor [-]
U Conservative variable vector
F x-convective flux vector
G y-convective flux vector
FV x-diffusive flux vector
GV y-diffusive flux vector
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operator of the numerical model per time step [33]. However, recently
it has been reported that the large energy conservation error in quasi-
conservative (QC) schemes produces an unphysical quick heat-up of the
jet [5] and thus, making these schemes inadequate for Diesel injection
simulations where the temperature plays a significant role on de-
termining the ignition time. The FC formulation proposed in this paper
reduces the number of times the EoS is employed, making it possible to
use complex EoS in affordable CPU time.

Finally, referring to the third issue of the spurious pressure oscil-
lations, several papers have tried to address this problem. The work of
[7] utilised a QC formulation, which solves a pressure evolution
equation instead of the energy conservation equation. In [34] the au-
thors applied a QC framework where the artificial dissipation terms in
the mass, momentum and energy equations are related and the pressure
differential is zero. The authors of [35] developed the double flux
model to avoid spurious pressure oscillations in compressible multi-
component simulations where the perfect gas EoS is applied. In [36]
they extended it to reactive flows while in [6,8,32] it was extended to
real fluids and transcritical conditions. The current paper proposes a
modification to the calculation of the pressure and sonic fluid velocity
at the cell faces in FC formulations; this is found to smooth-out the
spurious pressure oscillations observed with previous methods. Ad-
ditionally, it reduces the overall computational time allowing simula-
tions of multicomponent Diesel surrogate fuels to be performed. The
composition of the Diesel surrogates employed here has been proposed
by [37]; they are divided into two types, depending on how closely the
surrogates match the composition of real Diesel.

To the best of the author’s knowledge, this is the first time that the
PC-SAFT EoS is used to simulate supercritical injections of Diesel
modeled as a multi-component surrogate. The structure of the paper is
as follows. Initially, the numerical method is presented, followed by 1D
(one-dimensional) verification test cases. Advection test cases and
shock tube problems are included to show the overall performance of
the developed framework and evaluate how the number of compounds
of the Diesel surrogate employed affects the accuracy of the results.
Then, two-dimensional simulations of planar jets of n-dodecane and a
four component Diesel surrogate are included to demonstrate the cap-
ability of the scheme to predict supercritical Diesel fuel mixing into air.

2. Numerical method

The Navier-Stokes equations for a non-reacting multi-component
mixture containing N species in a x–y 2D Cartesian system are given by:

+ + = +
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where ρ is the fluid density, u and v are the velocity components, p is
the pressure, E is the total energy, Ji is the mass diffusion flux of species
i, σ is the deviatoric stress tensor and q is the diffusion heat flux vector.
The finite volume method has been utilised for solving the above

equations on a Cartesian numerical grid. As mentioned, the PC-SAFT
EoS is utilised to approximate thermo-physical properties. Moreover,
operator splitting as described in [38] is employed to separate the hy-
perbolic and parabolic operators. The global time step is computed
using the CFL (Courant-Friedrichs-Lewy) criterion of the hyperbolic
part. The developed numerical framework considers a condition of
thermodynamic equilibrium in each cell. The way the PC-SAFT EoS has
been coupled with the Navier-Stokes equations is described in [33].
Phase separations or metastable thermodynamic states are beyond the
scope of this research and are not considered.

2.1. CFD code

2.1.1. Hyperbolic sub-step
The HLLC (Harten-Lax-van Leer-Contact) solver is applied to solve

the Riemann problem. In density based codes, once the spatial re-
construction scheme has been used to compute the left and right states
of the Riemann problem, the EoS is applied to compute the pressure and
sonic fluid velocity at both sides (considering that the conservative
variables have been reconstructed). Eq. 3 shows the pressure expressed
in a form equivalent to a general EoS [7]:

= +p e Y F Y e G Y( , , ) ( , ) ( , )i i i (3)

However, the computed pressure may present a large error if the
functions F or G depend on the interpolated conservative variables.
Even in single-species cases, if these functions are density-dependent
and consist of high-order density terms, a small change in the inter-
polated density can produce large variations in the calculated pressure.
The incorrect pressure introduces an error in the computation of the
fluxes, which finally generate spurious oscillations during the numer-
ical solution. In the present study, this is avoided by reconstructing the
primitive variables (or only the pressure) and the conservative variables
at the cell faces at the same time. This simple modification has been
found to smooth-out the spurious pressure oscillations generated by the
high-nonlinearity of the EoS.

By reconstructing the pressure, the only variable left to compute the
fluxes at the cell faces is the speed of sound. Instead of using the EoS to
calculate this variable, the sonic fluid velocity is interpolated using cell
centre values as well. Therefore, the PC-SAFT EoS is used only once per
cell in each RK sub-time step, thus reducing significantly the compu-
tational time. A detailed description of the spatial reconstruction
methods and temporal integration employed can be found in the
Appendix.

2.1.2. Parabolic sub-step
The method of [39] is used to calculate the dynamic viscosity and

the thermal conductivity. The diffusion coefficient is calculated em-
ploying the model developed by [40]. Linear interpolation is performed
for computing the conservative variables, temperature and enthalpy on
faces from cell centres. The viscous stress tensor is calculated as:
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where µ is the shear viscosity. Effects of bulk viscosity are not con-
sidered as, to the best of the author’s knowledge, accurate models are
not available.

The species mass diffusion flux of species i is calculated as:

= D YJi i i (5)

where D is the diffusion coefficient.
The heat flux vector is calculated as:
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= T h D Yq
i

N

i i i
(6)

where is the thermal conductivity and h is the enthalpy.

2.2. Diesel surrogates

Table 1 shows a comparison between the experimentally measured
surrogate densities computed at 293.15 K and 0.1MPa with the den-
sities calculated employing the EoS-based method developed at NIST
[41] and the PC-SAFT EoS. The composition of the Diesel surrogates
was proposed by [37]. They are divided into two accuracy types de-
pending on how close their composition is to real Diesel. More speci-
fically, V0a and V0b are two low-accuracy surrogates and V1 and V2
are the two high-accuracy surrogates. Their molar composition is
summarized in Table 6. The results obtained by the PC-SAFT EoS shows
the highest degree of agreement with the experimental values [42] in
comparison with the results obtained by [37] applying the method
developed at NIST.

2.3. Phase diagrams

The number of phases is solved by an isothermal flash calculation
after a stability analysis using the Tangent Plane Criterion Method
proposed by [43] and applied to the PC-SAFT EoS by [44] using the
code developed by [42]. This methodology has not been implemented
in the CFD code. It is used to obtain the phase diagrams employed to
check that the vapor-liquid equilibrium (VLE) state is not present in the
solution of the performed simulations (Fig. 1).

3. Results

Firstly, a comparison of the temperature, sonic fluid velocity and
internal energy of n-dodecane, V0a, V0B, V1 and V2 Diesel surrogates is
presented to point out the importance of an accurate fuel properties
modelling. Then, several advection test cases and shock tube problems
are solved to validate the hyperbolic part of the numerical framework
and show how the reconstruction technique explained in Section 2.1
smooths-out the spurious pressure oscillations. Finally, two-dimen-
sional simulations at high-load Diesel operation conditions of super-
critical n-dodecane and Diesel surrogate V0A are presented to demon-
strate the multicomponent and multidimensional capability of the
developed numerical solver.

3.1. Dodecane and diesel comparison

Fig. 2 shows a comparison of the thermodynamic properties of n-
dodecane and the Diesel surrogates V0A, V0B, V1 and V2 at 6MPa, as
calculated using the PC-SAFT EoS. The main differences between do-
decane and the Diesels can be found in the temperature and sonic fluid
velocity at high densities. The temperature is an important thermo-
dynamic property in transcritical simulations because it determines the
transition to a supercritical state. The sonic fluid velocity plays a key
role in the computation of the hyperbolic fluxes and in the time step
calculation. The effects that these variables have on the CFD results can
be seen later in the paper, in Fig. 12.

3.2. Advection test cases

3.2.1. Single-species advection test case
Table 2 summarises the advection test cases simulated. Fig. 3 shows

the results of the Advection Test Case 1, where Nitrogen is used. The
initial conditions are the same as the ones used by [15] in the interface
advection problem. The computational domain is x ε [0,1] m. In
0.0 < x < 0.3m, the initial conditions are ρ= 450 kg/m3, p=4MPa,
and u= 10.0m/s; in the rest of the domain they are ρ= 45.0 kg/m3,

p=4MPa, and u= 10.0m/s. A uniform grid spacing of 0.01m is
employed; the simulated time is t= 0.04 s; the CFL is set to be 0.5.
Wave transmissive boundary conditions are implemented in the left and
right sides of the computational domain. The spatial reconstruction has
been performed in two different ways. In the first one, the PC-SAFT EoS
is used to compute the sonic fluid velocity and the pressure using the
reconstructed conservative variables. In the second one, the pressure
and sonic fluid velocity are interpolated onto the cell faces, as described
in Section 2.1.

Large wiggles appear in the velocity and pressure fields at 0.04 s
using the classic spatial reconstruction method, as can be seen in Fig. 3.
The start-up error is present for a long period of time in the simulation
and contaminate the solution. This can be observed in the Figs. 4 and 5,
which both reveal the maximum wiggles amplitude (calculated as the
maximum difference between the analytical solution and the computed
profile [15]) along time in the pressure and velocity fields. More spe-
cifically, Fig. 4 presents the results obtained using the second-order
MUSCL-Hancock scheme while in Fig. 5 the fifth-order WENO scheme
has been utilised. By applying the schemes proposed in Section 2.1. and
explained in the Appendix, once the oscillations generated by the start-
up error have travelled upstream and downstream with their char-
acteristic speeds and reach the boundaries of the computational do-
main, the solution shows no wiggles. A smooth initial interface can be
used for avoiding the initial start-up error [46]. When employing a
diffuse interface method, the interfaces are not sharp one-point jumps
but smooth as they are resolved. Then, a smooth initial profile is a
realistic initial condition. To initialize the simulation using a smooth
interface the primitive variables are calculated employing the following
formula [46]:

= +q q f q f(1 )L sm R sm (7)

= +f erf R(1 [ / ])
2sm (8)

where L and R refers to the left and right interface conditions and R is
the distance from the initial interface. = C x , where x is the grid
spacing and C is a free parameter to determine the interface smooth-
ness. Employing this formula, the number of grid points used in the
initial interface does not depend on the grid resolution. The interface
will be sharpened in space if the number of cells utilised is increased but
the number of points across the interface does not change. Fig. 4 and 5
show that for the spatial reconstruction methods proposed the start-up
error is not present in the obtained solution for values of C bigger than
2.

3.2.2. Multi-component advection test case
Fig. 7 shows the results of the advection of the Diesel surrogate V0A

in nitrogen (Table 2). The computational domain is x ε [0,1]m; the
initial conditions in 0.25m < x<0.75m are ρV0A= 450.0 kg/m3,
pV0A= 11.1MPa, and TV0A=782.2 K; in the rest of the domain
ρN2= 37.0 kg/m3, pN2= 11.1MPa, and TN2=972.9 K. The advection
velocity utilised is 10m/s; periodic boundary conditions are used; 500
cells are employed; the simulated time is t= 0.1 s; the fifth-order
WENO discretization scheme presented is used; and the CFL is set to be
0.5. A smooth interface is applied =C( 2).The oscillations in the ve-
locity and pressure field are lower than 1.0% and 0.3% respectively of

Table 1
Comparison between experimentally measured surrogate densities (kg/m3) at
293.15 K and 0.1MPa with the NIST and PC-SAFT predictions [42].

Surrogate Experiment NIST PC-SAFT

V0a 818 809.1 814.9
V0b 837.5 821.6 833.2
V1 828.4 814.1 825.2
V2 853 839.9 861.8
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the initial values. The vapor-liquid equilibrium (VLE) state is not pre-
sent in the solution, as can be seen in Fig. 6 where the maximum
temperature encountered by the Diesel surrogate V0A - nitrogen phase
boundary at 7MPa is 705 K (this value is lower at higher pressures).
The minimum temperature reached in the simulation is 782k.

3.3. Shock tube problems

The Euler equations are solved in this exercise, so direct comparison
with the exact solver can be performed in order to validate the hy-
perbolic part of the developed numerical framework. The exact solution
has been computed using the methodology described in [47].

3.3.1. Shock tube problem 1, 2, 3
Fig. 8–11 displays the results of three shock tube problems which

employs dodecane as working fluid. The domain is x ε [-0.5, 0.5] m;
1000 equally spaced cells were used. Wave transmissive boundary
conditions are implemented in the left and right sides. The initial

Fig. 1. Experimental [45] and calculated pressure-composition phase diagram for the N2 (1) + C12H26 (2) system. Solid lines: PC-SAFT EoS with kij= 0.1446 [33].

Fig. 2. Comparison of thermodynamic properties of n-dodecane and Diesel surrogates at 6MPa: (a) density, (b) sonic fluid velocity, (c) internal energy.

Table 2
Advection test cases.

Advection test cases

CASE 1 Pressure [MPa] Density [kg/m3] Temperature [K]

0.25m < x N2, 4.0 N2, 450.0 N2, 126.6
0.25m > x N2, 4.0 N2, 45.0 N2, 302.0
CASE 2
0.25m < x Diesel V0A, 11.1 Diesel V0A, 450.0 Diesel V0A, 782.2
0.25m > x N2, 11.1 N2, 37.0 N2, 972.9
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conditions are summarized in Table 3. The simulated time is 5 10−4s in
the Shock Tube Problem 1 and 2, and 2.5 10−4s in the Shock Tube
Problem 3. The CFL is set to 0.3 to stabilize the cases with large spur-
ious pressure oscillations. The reconstruction step has been performed
in two different ways. In the first one, the PC-SAFT EoS is used to
compute the sonic fluid velocity and the pressure using the re-
constructed conservative variables. In the second one, the pressure and
sonic fluid velocity are interpolated onto the cell faces, as described in
Section 2.1.

In the Shock Tube Problem 1 (Figs. 8 and 9), the variation of the
thermodynamic properties between the right and left states is not large
enough to generate spurious pressure oscillations. However, spurious
pressure oscillations appear in the Shock Tube Problem 2 (Fig. 10)
because of the sharper jump in the thermodynamic conditions. When
employing the modified reconstruction, the spurious oscillations are
significantly reduced. In the Shock Tube Problem 3 the larger variation
in the thermodynamic properties between the left and right states
provoke the formation of large spurious pressure oscillations. Using the
modified reconstruction, the oscillations can be significantly reduced
(especially when the MUSCL- Hancock scheme is employed) like in the
Shock Tube Problem 2.

3.3.2. Shock tube problem 4
Fig. 12 displays the density, temperature, pressure, velocity, sonic

fluid velocity and internal energy results of a transcritical shock tube

problem, which employs dodecane and the V0A, V0B, V1 and V2 Diesel
surrogates as working fluids. The composition of the Diesel surrogates is
summarized in Table 6. The domain is x ε [0,1]m. 800 equally spaced
cells were used. Wave transmissive boundary conditions are im-
plemented in the left and right sides. The initial conditions in the left
state are ρL= 620 kg/m3, pL= 30MPa, uL= 0m/s; and in the right
state are ρR= 100 kg/m3, pR= 10MPa, uR=0m/s. The fifth-order
WENO discretization scheme presented in Section 2.1. is used. The CFL
is set to 0.8. The simulated time is 5 10−4s.

The obtained results suggest that there is a significant difference
between dodecane and the Diesel surrogates. The temperatures com-
puted using Diesel surrogates are higher than those obtained for do-
decane throughout the whole computational domain. The different
sonic fluid velocities in the high-density region forces the expansion
wave to move with different velocities. The larger variations in the
Diesel internal energy may be related to the different velocity profiles
computed. There is not a significant difference in the results obtained
using the different Diesels.

The PC-SAFT EoS is implemented using loops that depend on the
number of components solved, which means that it takes more time to
compute the properties of mixtures. This is the reason why the Diesel
surrogate V0A will be used in the 2D simulation, as the results obtained
using the two low accuracy surrogates (V0a and V0b) and the two high-
accuracy surrogates (V1 and V2) are practically the same. The Diesel
surrogate V0A is the one with less compounds.

Fig. 3. Advection Test Case 1 (N2), CFL=0.5, u= 10m/s, 100 cells, t= 0.04 s. Comparison of the (a–b) density, (c–d) pressure and (e–f) x-velocity between the
analytical and the numerical solutions. Numerical solution 1: Pressure and sonic fluid velocity computed at the faces using the EoS. Numerical solution 2: Pressure
and sonic fluid velocity interpolated at the faces.
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Fig. 4. Advection Test Case 1 (N2), CFL=0.5, u=10m/s, 100 cells. Maximum wiggles amplitude in the velocity (c-d) and pressure (a-b) fields. Analysis of smooth
and sharp initial interfaces using the second-order MUSCL-Hancock scheme.

Fig. 5. Advection Test Case 1 (N2), CFL=0.5, u=10m/s, 100 cells. Maximum wiggles amplitude in the velocity (c-d) and pressure (a-b) fields. Analysis of smooth
and sharp initial interfaces using the fifth-order WENO scheme.
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3.4. Two-dimensional cases

The results of planar two-dimensional injections are presented in
this section. As mentioned earlier, the fuels employed are n-dodecane
and the Diesel surrogate V0A. A structured mesh is applied with a
uniform cell distribution. The cell size is 5.5 μm×5.5 μm. The domain
used is 5mm×2.5mm. The parabolic sub-step is included into these
simulations, without sub-grid scale modelling for turbulence or heat/
species diffusion. The CFL number is set at 0.5. The fifth-order WENO
discretization scheme presented in Section 2.1. is used. Transmissive
boundary conditions are applied at the top, bottom and right bound-
aries while a wall condition is employed at the left boundary. A flat
velocity profile is imposed at the inlet. The velocity of the jet is 200m/s
and the diameter of the exit nozzle is 0.1 mm. 405,000 cells are em-
ployed.

3.4.1. Dodecane jet
A multicomponent simulation has been included to prove the multi-

species capability of the developed framework. According to the clas-
sification of [49], all binary N2+ hydrocarbon fluid mixtures are Type
III except for methane. Starting at the critical point of n-dodecane, the
critical pressure of a N2 + n-dodecane mixture grows by increasing the
nitrogen concentration [50]. It reaches higher pressures than the ones
observed in Diesel engine combustion chambers (Fig. 1). Thus, to avoid
the VLE state the dodecane is injected at a temperature higher than its
critical value in the performed simulation.

The case is initialized using a pressure in the chamber of 11.1MPa;
the density and the temperature of the nitrogen in the chamber are
37.0 kg/m3 and 973 K (high-load Diesel operation conditions [51]),
respectively. The density and temperature of the jet are 400.0 kg/m3

and 736.8 K, see Table 4.
The Kelvin Helmholtz instability is developing in the shear layer, as

it can be seen in Fig. 13. No pressure oscillations appear in the results.
The jet is quickly heated-up from a liquid-like supercritical state to a
gas-like supercritical state. A comparison of averaged scattered data of
composition and temperature and an isobaric-adiabatic mixing process
can be seen in Figs. 14 and 15. As [52] stated, fully conservative
schemes describe an isobaric-adiabatic mixing process. The isobaric-
adiabatic line was computed using Eqs. 9–10 and the initial conditions
of this case:

= +
=

m m m
m mass flow rate

3 1 2

(9)

= +
=

m h m h m h
h specific enthalpy

3 3 1 1 2 2

(10)

The number of times the PC-SAFT model is solved in the hyperbolic
operator per time step is lower than 20% the times it is employed using
a classic FC implementation. As already mentioned, by interpolating the
pressure and sonic fluid velocity at the cell faces, the EoS has to be
solved once per cell in each RK sub-time step instead of once per cell
face in the hyperbolic operator. Additionally, in many cells the EoS is

Fig. 6. Diesel surrogate V0A - nitrogen phase boundary from VLE at different
pressures.

Fig. 7. Advection Test Case 2 (Diesel surrogate V0A – N2), CFL= 0.5 u=10m/s, 500 cells, t= 0.1 s. Comparison of the (a) density, (b) temperature, (c) pressure and
(d) x-velocity between the analytical and the numerical solution.
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Fig. 8. Shock Tube Problem 1 (MUSCL-Hancock scheme, Dodecane). CFL=0.5, u= 10m/s, 1000 cells, t= 5 10−4 s. Comparisons of (a) density, (b) temperature,
(c) velocity and (d) pressure profiles: exact solution and numerical solutions. Numerical solution 1: Pressure and sonic fluid velocity computed at the faces using the
EoS. Numerical solution 2: Pressure and sonic fluid velocity interpolated at the faces.

Fig. 9. Shock Tube Problem 1 (Fifth-order WENO, Dodecane). CFL=0.3, 1000 cells, t= 5 10−4 s. Comparisons of (a) density, (b) temperature, (c) velocity and (d)
pressure profiles: exact solution and numerical solutions. Numerical solution 1: Pressure and sonic fluid velocity computed at the faces using the EoS. Numerical
solution 2: Pressure and sonic fluid velocity interpolated at the faces.
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not used to update the temperature, pressure, sonic fluid velocity and
enthalpy values as the sum of the fluxes is approximately 0 (Appendix).
This can be clearly observed in Fig. 16. The significant reduction on the
number of times the PC-SAFT model has to be solved allows to carry out
simulations at affordable CPU times using a FC formulation. In the cases
presented here, the time taken to solve 3.5×10−5s were 93.8 hours on
a single CPU.

3.4.2. Diesel surrogate V0A jet
This case is initialized using a pressure in the chamber of 11.1MPa;

the density and the temperature of the nitrogen in the chamber are
37.0 kg/m3 and 973 K (high-load Diesel operation conditions [51]),
respectively. The density and temperature of the jet are 490.0 kg/m3

and 742 K (Table 4). The temperatures encountered along the simula-
tion are higher than the temperatures at which VLE exists, as can be
seen in the previous Fig. 6. The binary interaction parameter used be-
tween the nitrogen and the Diesel compounds is the same one used in
the nitrogen-dodecane mixture (kij = 0.1446).

Fig. 17 shows the density, temperature and pressure at 3.4× 10−5

s. For this multi-component fuel simulations, the time taken to solve
3.5×10−5 s were 165 h on the same CPU utilised for the dodecane
simulation (∼75% longer). By knowing the mass fractions in each cell,
it is possible to determine how many components are present in a cell a
priori. The PC-SAFT is then only solved for that specific number of
components. Most cells along the simulation in the combustion
chamber contain only nitrogen. For this reason, this strategy sig-
nificantly reduces the computational time. Like in the dodecane injec-
tion case, no pressure oscillations appear in the solution.

Fig. 10. Shock Tube Problem 2 (Dodecane). CFL=0.3, 1000 cells, t= 5 10−4 s.
Comparison of pressure profiles: exact solution and numerical solutions. Numerical solution 1: Pressure and sonic fluid velocity computed at the faces using the EoS.
Numerical solution 2: Pressure and sonic fluid velocity interpolated at the faces. of (a) MUSCL- Hancock scheme, (b) Fifth-order WENO.

Fig. 11. Shock Tube Problem 3 (Dodecane). CFL=0.3, 1000 cells, t= 2.5 10−4 s.
Comparison of pressure profiles: exact solution and numerical solutions. Numerical solution 1: Pressure and sonic fluid velocity computed at the faces using the EoS.
Numerical solution 2: Pressure and sonic fluid velocity interpolated at the faces. of (a) MUSCL- Hancock scheme, (b) Fifth-order WENO.

Table 3
Shock tube problems.

CASE 1 Pressure [MPa] Density [kg/m3] Velocity [m/s]

x < 0.5m 30.0 438.0 0.0
x > 0.5m 10.0 100.0 0.0
CASE 2
x < 0.5m 30.0 620.0 0.0
x > 0.5m 10.0 100.0 0.0
CASE 3
x < 0.5m 30.0 710.0 0.0
x > 0.5m 10.0 100.0 0.0
CASE 4
x < 0.5m 30.0 620.0 0.0
x > 0.5m 10.0 100.0 0.0
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4. Conclusions

A numerical framework was developed to simulate supercritical
Diesel fuel injection by solving the compressible formulation of the
Navier-Stokes equations with a diffused interface density-based solver.
Four different Diesel surrogates have been tested and the thermo-
dynamic properties have been modelled using the PC-SAFT EoS. This
molecular-based EoS shows an accuracy similar to NIST, but without
the need of an extensive model calibration; this is because only three

Fig. 12. Shock Tube Problem 4. CFL=0.8, 800 cells, t= 2.5 10−4 s. Comparison of the (a) density, (b) temperature, (c) pressure, (d) x-velocity, (e) sonic fluid
velocity, (f) internal using as working fluids dodecane and the surrogate Diesels (Table 5).

Table 4
2D Test Cases.

CASE A Pressure [MPa] Density [kg/m3] Temperature [K]

JET (n-dodecane) n-dodecane, 11.1 n-dodecane, 400.0 n-dodecane, 736.8
CHAMBER (N2) N2, 11.1 N2, 37.0 N2, 972.9
CASE B
JET (V0A) V0A, 11.1 V0A, 490.0 V0A, 742.2
CHAMBER (N2) N2, 11.1 N2, 37.0 N2, 972.9

Table 5
PC-SAFT pure component parameters [48].

Compound m σ[Å] k K/ [ ]

n-hexadecane 6.669 3.944 253.59
n-octadecane 7.438 3.948 254.90
n-eicosane 8.207 3.952 255.96
heptamethylnonane 5.603 4.164 266.46
2-methylheptadecane 7.374 3.959 254.83
n-butylcyclohexane 3.682 4.036 282.41
1,3,5-triisopropylcyclohexane 4.959 4.177 297.48
trans-decalin 3.291 4.067 307.98
perhydrophenanthrene 4.211 3.851 337.52
1,2,4-trimethylbenzene 3.610 3.749 284.25
1,3,5-triisopropylbenzene 5.178 4.029 296.68
tetralin 3.088 3.996 337.46
1-methylnaphthalene 3.422 3.901 337.14
nitrogen 1.2053 3.3130 90.96
dodecane 5.3060 3.8959 249.21
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Table 6
Molar composition for the four Diesel fuel surrogates (V0a, V0b, V1, V2) [37].

Compound V0a V0b V1 V2

n-hexadecane 27.8 – 2.70 –
n-octadecane – 23.5 20.2 10.8
n-eicosane – – – 0.80
heptamethylnonane 36.3 27.0 29.2 –
2-methylheptadecane – – – 7.3
n-butylcyclohexane – – 5.10 19.1
triisopropylcyclohexane – – – 11.0
trans-decalin 14.8 – 5.50 –
perhydrophenanthrene – – – 6.00
1,2,4-trimethylbenzene – 12.5 7.5 –
1,3,5-triisopropylbenzene – – – 14.7
tetralin – 20.9 15.4 16.4
1-methylnaphthalene 21.1 16.1 14.4 13.9

Fig. 13. CFL= 0.5, 405000 cells. Results of the simulation of the supercritical dodecane jet at t= 3.4×10−5 s: (a) density, (b) temperature, (c) pressure.

Fig. 14. Scattered data of composition and temperature of the planar dodecane
jet, dodecane-nitrogen phase boundary from VLE at 4.5MPa and isobaric-
adiabatic mixing line.
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parameters are needed to model a specific component. Moreover, it can
easily compute the thermodynamic properties of multi-component
mixtures, which is an additional advantage compared to NIST that
supports only limited mixture combination. The Diesel surrogates uti-
lised can be divided into two types, depending on how closely they
match the composition of Diesel fuel. All the multi-component surro-
gates tested show different properties than dodecane. Simulations at
affordable CPU times can be carried out by reducing the number of
times the PC-SAFT EoS is solved, by computing the pressure and sonic
fluid velocity in the cell centers and performing a reconstruction of
these variables at each cell face. This technique has been found to
smooth-out the spurious pressure oscillations associated with con-
servative schemes when used along with real-fluid EoS. Additionally, if
the updated conservative variables do not change with respect to the
values obtained in the previous sub-time step, there is no need to use
the EoS in order to update the values of the temperature, sonic fluid
velocity, pressure and enthalpy stored at the cell centres. This strategy
further reduces the overall simulation time. Advection test cases and
shock tube problems have demonstrated the validity of the hyperbolic
operator of the developed framework. Moreover, two-dimensional si-
mulations of planar jets of dodecane and a four component Diesel
surrogate (V0A) are included to demonstrate the capability of the
scheme to predict supercritical Diesel fuel injection and mixing into air.

Fig. 15. Percentage number of times the PC-SAFT model is solved in the hy-
perbolic operator respect a classic implementation of a FC formulation.

Fig. 16. Number of times the PC-SAFT is solved per cell in the first RK sub-time-step (RK1), the second RK sub-time-step (RK2), and the parabolic operator at
1.24×10−5s and 3.43× 10−5s.
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Appendix A. Spatial reconstruction methods, Riemann solver and temporal integration

Second-order spatial reconstruction and Riemann solver

A variation of the MUSCL-Hancock scheme [53] is applied. The fluxes are computed in the following way:

Step 1: Data reconstruction

The one-dimensional vector of conservative variables stored in each cell centre is:

= u EU ( , , )i

Data cell averages of the conservative variables are replaced by piece-wise linear functions in each cell:

Fig. 17. CFL= 0.5, 405000 cells. Results of the simulation of the supercritical Diesel surrogate V0A jet at t= 3.4× 10−5 s: (a) density, (b) temperature, (c) pressure.
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where i
C is the slope vector of the conservative variables. The Minmod slope limiter is applied:

= +q q q qmin mod ( , )i
C
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<
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The boundary extrapolated values of the conservative variables in global coordinates are computed using Eq. 13:

= +

=

x

x

U U

U U

( )

( )
i
L

i
n

i
C

i
R

i
n

i
C

1
2
1
2 (13)

Once the conservative variables are updated after each Runge-Kutta sub-time step, the primitive variables and the sonic fluid velocity are
computed and stored at the cell centres. The one-dimensional vector of primitive variables stored in each cell centre is:

= u pW ( , , )i

Data cell averages of the primitive variables are replaced by piece-wise linear functions in each cell:

= +x x x
x

x xW W( ) ( ) , [0, ]i i
n i

i
P

(14)

Where i
P is the slope vector of the primitive variables; the Minmod slope limiter is employed again.

The boundary extrapolated values of the primitive variables in global coordinates are computed using Eq. 15:
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The boundary extrapolated values of the sonic fluid velocity are computed as well:
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where i
a is the slope scalar of the speed of sound. The Minmod slope limiter is applied as well.

Step 2: Evolution

The boundary extrapolated values of the primitive variables are evolved by a time t1/2 using Eq. 17 [53]:

= + t
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L R
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L R

i
n

i
L
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where A is computed using the data cell average Wi
n.
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The boundary extrapolated values of the conservative variables are evolved by a time t1/2 using Eq. 18:
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The fluxes F U( )i
L R, are computed as:

= +
+

u
u p

E p u
F

( )
2

were u, and E are obtained from the evolved conservative variables U( )i and p is obtained from the evolved primitive variables W( )i .

Step 3: The Riemann Problem

The Riemann problem is solved to compute the intercell flux using the evolved conservative variables, the evolved primitive variables and the
interpolated speed of sound.

+

+
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Within the variables needed to solve the Riemann problem, u, E, are obtained from the reconstructed conservative variables, p is obtained from
the evolved primitive variables and a is the interpolated speed of sound. There is no need to use the EoS at the cell faces as the speed of sound and the
pressure are already known from the previous operation. The HLLC solver is employed to solve the Riemann problem. The HLLC flux are given by:

= = +
= +

S
S

if
if
if
if

S
S S

S S
S

F

F
F F U U
F F U U
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* ( * )

* ( * )

0 ,
0 *,
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L
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R

L
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The star states are computed as:

=
+ +( )

S u
S S

S

S u S
U*

*

1
*

( * ) *
K K

K K

K E
K

p
S u( )

K
K

K
K K K (20)

where K=R,L
The speed in the middle wave is:

=
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( ) ( )

( ) ( )
R L L L L L R R R R
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The left and right wave speeds are computed as:

=
= + +

S u a u a
S u a u a

min( , ),
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L L L R R

R L L R R (22)

Fifth-order WENO spatial reconstruction and Riemann solver

The conservative variables, primitive variables and speed of sound are reconstructed at the cell faces using a fifth-order WENO scheme [54]. The
interpolation of the variable Q to the cell edge i + 1/2 from the left is:
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k i
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2 0
, 2
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(23)

where r is the number of points used in each stencil, k is the individual stencil number and k
r is the weighting factor of the kth stencil. The

interpolation on each candidate stencil is:
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The candidate stencil weights are calculated as:
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where:
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is a parameter used to avoid division by 0.
The smoothness coefficients are given by:
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The coefficients akj
r , Ck

r , dklj
r can be obtained from [54].

Following the work of [38], the limiter developed by [55] is employed. Defining the slope limited interpolation as:

= ++Q Q Q Q0.5( )i i i i TVD1
2

1 (28)

where is the TVD slope limiter:
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being +Q̂i 1/2 the interpolated variable using the WENO scheme and a constant set to two [38]. Once the primitive variables, the conservative
variables and the speed of sound have been interpolated at the cell faces, the HLLC solver is employed to compute the fluxes in the same way as in the
second-order reconstruction scheme.
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Temporal integration

The system of ordinary differential equations (ODEs) obtained from the spatial discretization of the operator Hxy by applying the method of lines
is:

= =
t x y

U F G Hxy (30)

The temporal integration is performed either using a second-order Runge–Kutta (RK2):
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or a third order strong-stability-preserving Runge–Kutta (SSP-RK3) [56]:
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In many cells the sum of the fluxes is practically 0. Applying a SSP-RK3 scheme, this means that in these cells:

=U Ui i
n(1) , or ,

which can be translated into:

=W Wi i
n(1) , or

and

=a ai i
n(1) , or .

Therefore, there is no need to employ the EoSin all these cases to update the pressure, speed of sound, temperature and enthalpy, which values
are all stored at the cell centres.
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