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Learning Contextual Reward Expectations for
Value Adaptation

Francesco Rigoli1, Benjamin Chew1,2, Peter Dayan3, and Raymond J. Dolan1,2

Abstract

■ Substantial evidence indicates that subjective value is adapted
to the statistics of reward expected within a given temporal con-
text. However, how these contextual expectations are learnt is
poorly understood. To examine such learning, we exploited a
recent observation that participants performing a gambling task
adjust their preferences as a function of context. We show that,
in the absence of contextual cues providing reward information,
an average reward expectation was learned from recent past
experience. Learning dependent on contextual cues emerged
when two contexts alternated at a fast rate, whereas both cue-
independent and cue-dependent forms of learning were appar-
ent when two contexts alternated at a slower rate. Motivated by

these behavioral findings, we reanalyzed a previous fMRI data
set to probe the neural substrates of learning contextual reward
expectations. We observed a form of reward prediction error
related to average reward such that, at option presentation, activ-
ity in ventral tegmental area/substantia nigra and ventral striatum
correlated positively and negatively, respectively, with the actual
and predicted value of options. Moreover, an inverse correlation
between activity in ventral tegmental area/substantia nigra (but
not striatum) and predicted option value was greater in partici-
pants showing enhanced choice adaptation to context. The find-
ings help understanding the mechanisms underlying learning of
contextual reward expectation. ■

INTRODUCTION

Substantial evidence indicates that subjective values of
monetary outcomes are context-dependent. That is, in
order for these values to be consistent with the choices
participants make between those outcomes, they must be
adjusted according to the other rewards available either
immediately (Tsetsos et al., 2016; Louie, Glimcher, &
Webb, 2015; Louie, LoFaro, Webb, & Glimcher, 2014;
Louie, Khaw, & Glimcher, 2013; Soltani, De Martino, &
Camerer, 2012; Tsetsos, Chater, & Usher, 2012; Vlaev,
Chater, Stewart, & Brown, 2011; Tsetsos, Usher, & Chater,
2010; Stewart, 2009; Johnson & Busemeyer, 2005; Usher &
McClelland, 2004; Stewart, Chater, Stott, & Reimers, 2003;
Roe, Busemeyer, & Townsend, 2001; Simonson & Tversky,
1992; Huber, Payne, & Puto, 1982; Tversky, 1972) or ex-
pected before the options are presented (Rigoli, Friston,
& Dolan, 2016; Rigoli, Friston, Martinelli, et al., 2016; Rigoli,
Rutledge, Chew, et al., 2016; Rigoli, Rutledge, Dayan, &
Dolan, 2016; Louie et al., 2014, 2015; Ludvig, Madan, &
Spetch, 2014; Kobayashi, de Carvalho, & Schultz, 2010;
Rorie, Gao,McClelland,&Newsome, 2010; Padoa-Schioppa,
2009; Stewart, 2009). We recently investigated the latter
form of effect (Rigoli, Friston, & Dolan, 2016; Rigoli,
Rutledge, Chew, et al., 2016; Rigoli, Rutledge, Dayan, et al.,

2016) in a decision-making task involving blocks of trials
associated with either a low- or high-value context with
overlapping distributions. Here, choice behavior was
consistent with a hypothesis that the subjective value of
identical options was larger in a low-value context com-
pared with a high-value context. This and similar evidence
(Louie et al., 2014, 2015; Ludvig et al., 2014; Stewart, 2009)
suggests that subjective values are partially rescaled to the
reward expected within a given context.

However, in previous studies of temporal adaptation,
participants were explicitly informed before the task
about the distribution of contextual reward. Such designs
enable an analysis of the way that beliefs about contextual
reward impact choice but leave open the question of
how such beliefs are learned. Here, we investigate this
question by analyzing how beliefs about contextual re-
ward are shaped by experience within a context, includ-
ing learning when there are multiple (and cued) contexts
that alternate. One possibility is that participants might
ignore contextual cues and only learn a long-run expected
rate of reward (Niv, Daw, Joel, & Dayan, 2007). This aver-
age reward could then act as a baseline against which the
subjective value of an actual reward is adapted. Alter-
natively, participants might use contextual cues to learn
and maintain separate reward expectations for different
contexts and rely on these during value adaptation. A final
possibility is that reward expectations dependent and
independent of cues are both acquired and exert a com-
bined influence on value adaptation.
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Here, we implemented a study design that enabled us
to probe learning of contextual reward expectation and
its impact on subjective value attribution and choice.
First, in a novel behavioral experiment, we analyzed
how previous reward experience drives learning of con-
textual reward. In a second new behavioral experiment,
we considered the role of multiple alternating contexts
signaled by different cues. We adopted a choice task
similar to a previous study (Rigoli, Friston, & Dolan,
2016), but unlike this previous study, in this instance par-
ticipants were not explicitly instructed about contextual
reward distributions and could only learn these distribu-
tions observationally by playing the task. The results of
these two new experiments provided a motivation for us
to examine the neural substrates of learning contextual
reward expectations by reanalyzing a previously reported
data set (Rigoli, Rutledge, Dayan, et al., 2016) where we
used a similar paradigm in conjunction with acquiring
fMRI data.

It is well established that, when a reward outcome is
presented, neurophysiological and neuroimaging re-
sponses in ventral striatum and ventral tegmental area/
substantia nigra (VTA/SN) reflects a reward prediction
error (RPE) signal (Lak, Stauffer, & Schultz, 2014; Stauffer,
Lak, & Schultz, 2014; Niv, Edlund, Dayan, & O’Doherty,
2012; Park et al., 2012; D’Ardenne, McClure, Nystrom, &
Cohen, 2008; Tobler, Fiorillo, & Schultz, 2005; O’Doherty
et al., 2004; O’Doherty, Dayan, Friston, Critchley, & Dolan,
2003; Schultz, Dayan, & Montague, 1997). This is based on
the observation that response in these regions correlates
positively and negatively with the actual and expected
reward outcome, respectively (Niv et al., 2012; Niv &
Schoenbaum, 2008). However, the question remains as
to whether these regions also show an RPE signal at the
time of presentation of the options rather than the out-
comes. In this regard, at option presentation, research
has shown a correlation between brain activation and
actual option expected value (EV; Lak et al., 2014; Stauffer
et al., 2014; Niv et al., 2012; Park et al., 2012; D’Ardenne
et al., 2008; Tobler et al., 2005; O’Doherty et al., 2003,
2004; Schultz et al., 1997). However, it remains unknown
whether there is also an inverse correlation with the pre-
dicted option EV (which is the other component of an
RPE signal; Niv et al., 2012; Niv & Schoenbaum, 2008).

These findings motivated a proposal that there might
be a distinct effect of outcomes and options on activity in
ventral striatum and VTA/SN, corresponding to signaling
RPE and EV, respectively (Bartra et al., 2013). For exam-
ple, the possibility that option presentation elicits EV and
not RPE signaling is consistent with the idea that expec-
tations about options (which is a key component of the
RPE signal) may be fixed or may change over such a long
timescale that they would be undetectable within the
timescale of an fMRI experiment. However, other theoret-
ical models (Schultz et al., 1997) imply that the VTA/SN
(and, by extension, ventral striatum) reflects RPE also at
option presentation. This possibility is also consistent

with the idea explored here that the value of options is
adapted to the context learnt from experience, as such
context would determine the predicted option EV. Our
fMRI analysis aimed to clarify whether presenting options
elicits RPE or EV signaling in ventral striatum and VTA/SN
and, if RPE is signaled, whether this is related with the
effect of context on choice behavior.

METHODS

Participants

Twenty-four healthy, right-handed adults (13 female,
aged 20–40 years, mean age = 24 years) participated in
the first behavioral experiment. Twenty-eight healthy,
right-handed adults participated in the second behavioral
experiment. We discarded data from three participants in
the second experiment who did not attend properly to
the task, as evidenced by having more than 300 (i.e.,
one half of all) trials with RT shorter than 300 msec (for
the other participants, the maximum number of such trials
was 37). Therefore, the total sample for the second exper-
iment was 25 participants (15 female, aged 20–40 years,
mean age = 25 years). We also reanalyzed data from a pre-
viously reported fMRI study where the experimental sam-
ple included 21 participants (13 female, aged 20–40 years,
mean age = 27 years; for details, see Rigoli, Rutledge,
Dayan, et al., 2016). All studies were approved by the
University College London Research Ethics Committee.

Experimental Paradigm and Procedure

Participants were tested at the Wellcome Trust Centre for
Neuroimaging at University College London. Each exper-
iment involved a computer-based decision-making task
lasting approximately 40 min. Before the task, partici-
pants were fully instructed about task rules and the basis
of payment. Crucially, in Experiments 1 and 2, partici-
pants were not informed about the distribution of options
that would be encountered during the task (see below).
Note that this is a key difference from the tasks adopted
in previous studies where participants were instructed
about the distributions (Rigoli, Friston, & Dolan, 2016;
Rigoli, Rutledge, Dayan, et al., 2016). In the fMRI experi-
ment, before each block, information about the reward
distributions was provided (see below).

Experiment 1

On each trial, participants chose between a sure mone-
tary amount, which changed trial by trial (600 trials over-
all), and a gamble whose prospects were always either
zero or double the sure amount, each with equal (50–50)
probability (Figure 1A; during instructions, participants
were informed about this probability). This ensured that
both options always had equal (objective) EV. Trial EV
was randomly drawn from a uniform distribution (with
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50p steps) in the £1–£6 range. The certain and risky
options were presented pseudorandomly on two sides of
a screen; participants chose the left or right option by
pressing the corresponding button of a keypad. Imme-
diately after a choice was made, the chosen option was
underlined for 300 msec and the outcome of the choice
was then displayed for one second. Participants had 3 sec
to make their choices; otherwise, the statement “too late”
appeared, and they received a zero outcome amount.
The outcomes of the gamble were pseudorandomized.
At the end of the experiment, one trial outcome was
randomly selected and added to an initial participation
payment of £5. Compared with using the sum of payoffs
across all trials, using a single trial for payment minimizes
the influence of past outcomes and allowed us to use
choices characterized by larger monetary amounts.
Because participants do not know ahead of time which
trial will be selected, they should work equally hard on
each. This is a method of payment routinely used in ex-
perimental economics.
This task was used because it has some similarity to the

one we used in previous studies (Rigoli, Rutledge, Chew,
et al., 2016; Rigoli, Rutledge, Dayan, et al., 2016). These
studies showed that adaptation to context predisposes
participants who prefer to gamble for large EVs to gamble
more when EVs are larger relative to contextual expecta-
tions and participants who prefer to gamble for small EVs
to gamble more when EVs are smaller relative to con-
textual expectations. Crucially, in our previous studies,

contextual expectations were induced descriptively using
explicit instructions, whereas here we investigated whether
contextual expectations (and the ensuing adaptation
effects on choice) arise observationally from option EVs
presented on previous trials.

Experiment 2

On each trial, a monetary amount, changing trial by trial
(600 trials overall), was presented in the center of the
screen, and participants had to choose whether to accept
half of it for sure (pressing a left button) or select a gam-
ble whose outcomes were either zero or the amount pre-
sented on the screen (i.e., double the sure amount), each
with equal (50–50) probability (Figure 1B; during instruc-
tions, participants were informed about this probability).
As in Experiment 1, this ensured that on every trial the
sure option and the gamble always had the same EV. A
trial started with an intertrial interval lasting 1.5 sec where
the two options (i.e., half and gambling) were displayed
on the bottom of the screen (on the left and right side,
respectively). Next, the trial amount was displayed. Imme-
diately after a response, the chosen option was underlined
for 300 msec, and this was followed by the outcome of the
choice, which was shown for 1 sec. Participants had 3 sec to
make their choices; otherwise, the statement “too late”
appeared, and they received a zero outcome amount.

The task was organized in short blocks, each com-
prising five trials. Each block was associated with one of

Figure 1. (A) Experimental
paradigm for Experiment 1.
Participants repeatedly made
choices between a sure
monetary reward (on the
left in the example) and a
gamble (on the right in the
example) associated with a
50% probability of either double
the sure reward or zero. After
a decision was performed, the
chosen option was underlined,
and 300 msec later the trial
outcome was shown for 1 sec.
The intertrial interval (ITI) was
1.5 sec. At the end of the
experiment, a single randomly
chosen outcome was paid out to
participants. (B) Experimental
paradigm for Experiment 2. On
each trial, a monetary reward was
presented (£10 in the example),
and participants had to choose
between half of the amount for
sure (by pressing the left button) and a 50–50 gamble associated with either the full amount or a zero outcome. A trial started with an ITI lasting
1.5 sec where the two options (i.e., half and gambling) were displayed on the bottom of the screen (on the left and right side, respectively). Next,
the trial amount was displayed. Right after a response was performed, the chosen option was underlined for 300 msec, followed by the outcome of the
choice, shown for 1 sec. The task was organized in short blocks, each comprising five trials. Each block was associated with one of two contexts that
determined the possible EVs within the block. These EVs were £1, £3, and £5 for the low-value context and £3, £5, and £7 for the high-value context.
Contexts were signaled by the color of the text on the screen, with low-value context associated with green and high-value context with orange for half of
the participants and vice versa for the other half. At the end of the experiment, a single randomly chosen outcome was paid out to participants.
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two contexts (low value and high value) that determined
the possible EVs within the block. These EVs were £1,
£3, and £5 for the low-value context and £3, £5, and
£7 for the high-value context. Contexts were signaled
by the color of the text (green or orange) on the screen,
with low-value context associated with green and high-
value context with orange for half of the participants and
vice versa for the other half. Before a new block started,
the statement “New set” appeared for 2 sec. Crucially,
during instructions, participants were not told that colors
indicated two different reward distributions. The order
of blocks, trial amounts, and outcomes were pseudo-
randomized. At the end of the experiment, one trial was
randomly selected among those received, and the out-
come that accrued was added to an initial participation
payment of £5.

This task was used because it has some similarity to the
one we used in a previous study that was successful in
eliciting contextual adaptation with contexts that alter-
nated (Rigoli, Friston, & Dolan, 2016). Crucially, in our
previous study, contextual expectations were induced
descriptively using explicit instructions, whereas here
we investigated whether contextual expectations (and
the ensuing adaptation effects on choice) arise observa-
tionally from experience with cues and/or with option
EVs presented on previous trials.

fMRI Experiment

The task was performed inside the scanner (560 trials
overall). The design was similar to the task used in Exper-
iment 1, except for two differences (for details, see Rigoli,
Rutledge, Dayan, et al., 2016). First, immediately after the
choice was made, the chosen option was not underlined,
but the unchosen option disappeared for 300 msec. Sec-
ond, trials were arranged in four blocks (140 trials each).
In each block, the sure amount was randomly drawn
from a uniform distribution (with 10p steps) within a
£1–£5 range (for two blocks: low-value context) or within
the £2–£6 range (for the two other blocks: high-value
context). Blocks were interleaved with 10-sec breaks.
During the interblock interval, a panel showed the re-
ward range associated with the upcoming block. Block
order was counterbalanced across participants. At the
end of the experiment, one trial was randomly selected
among those received, and the outcome that accrued
was added to an initial participation payment of £17. Inside
the scanner, participants performed the task in two sepa-
rate sessions, followed by a 12-min structural scan. After
scanning, participants were debriefed and informed
about their total remuneration.

Please note that the tasks used in Experiments 1 and 2
and the fMRI experiment are different in certain details.
For example, the first experiment and the fMRI experi-
ment require choosing a sure monetary amount or a
gamble between double the amount or zero, whereas in
the second experiment, a monetary amount is presented

and participants are asked to choose half of the amount
or a gamble between the full amount and zero. However,
please note that the differences among experiments do
not affect our analyses and results, as our research ques-
tions were not based on comparisons between the exper-
iments (see below).

Behavioral Analysis

In all experiments, for analyses we discarded trials
where RTs were slower than 3 sec (because it was our
time limit followed by the statement “too late”) and fas-
ter than 300 msec (as this is a standard cutoff for deci-
sion tasks; e.g., Ratcliff, Thapar, & McKoon, 2001),
resulting in the following average number of trials ana-
lyzed per participant: 549 in Experiment 1, 535 in Exper-
iment 2, and 556 in the fMRI experiment. A two-tailed
p < .05 was employed as significance threshold in all
behavioral analyses.
Our main hypothesis was that contextual reward ex-

pectations are learned from previous trials and drive
choice adaptation. Learning implies that the expected
contextual reward at trial t is lower/higher when a
low/high EV is presented at trial t − 1. Following previ-
ous data (Rigoli, Rutledge, Chew, et al., 2016; Rigoli,
Rutledge, Dayan, et al., 2016), adaptation to context im-
plies that participants who prefer to gamble for large
EVs (at trial t) gamble more when EVs are larger relative
to contextual expectations, whereas participants who
prefer to gamble for small EVs gamble more when EVs
are smaller relative to contextual expectations. To assess
these predictions, for each participant, we built a logistic
regression model of choice (i.e., with dependent mea-
sure being choice of the gamble or of the sure option),
which included the EV at trial t and the EV at trial t − 1
as regressors. Our hypothesis that there would be adap-
tation to the context (where context is defined simply by
the previous trial) predicted an inverse correlation be-
tween the effect of EV at trial t and the effect of EV at
trial t − 1 on gambling percentage. This would indicate
that participants who gambled more with larger EVs at
trial t would also gamble more with smaller EVs at trial
t − 1, and participants who gambled more with smaller
EVs at trial t would also gamble more with larger EVs at
trial t − 1.
To probe the computational mechanisms underlying

choice behavior, we used computational modeling and
performed two distinct analyses. First, we analyzed the
influence of the EV at trial t (recall that the sure option
and the gamble had equivalent EV) together with the in-
fluence of EV at previous trials. To do this, we fitted an
exponential decay model to the gambling data, which
prescribed that the probability of gambling depends on
a sigmoidal function of an intercept parameter β0 plus
a weight parameter β1 multiplied by the EV at trial t, plus
the sum of j weight parameter β2, each multiplied by
the EV at trial t − j and by an exponential decay factor
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dependent on a parameter λ (which was bounded be-
tween 0 and 5 during estimation):

P gamblingð Þ ¼ σ β0 þ β1Rt þ β2

X4
j¼1

e−λ j−1ð ÞRt−j

 !
(1)

Our second modeling analysis consisted in using a
computational model that included a learning compo-
nent, an adaptation component, and a choice compo-
nent. The learning component establishes that, on
every trial, participants update a belief about the expected
(i.e., average) EV of options �r (i.e., contextual reward).
A first possibility is that this belief update is based on a delta
rule with a learning rate η, which remains constant
throughout the whole task (Rescorla & Wagner, 1972).
If the EV presented at trial t is Rt (remember that the
two options available have equivalent EV), then the EV of
options expected at trial t + 1 is

�rtþ1 ¼ �rt þ η Rt−�rtð Þ (2)

A second possibility is that the contextual reward
expectation is updated following a decreasing learning
rate. This can be derived from a Bayesian learning
scheme (Bishop, 2006) in which the long-run mean is as-
sumed to be fixed across time (note that a constant learn-
ing rate implemented in the model above can be derived
from a Bayesian scheme too, in this case assuming a long-
run mean, which changes with a constant rate). A de-
creasing learning rate emerges if we assume, at every trial
t, a Gaussian prior distribution with mean �rt and precision
(i.e., inverse variance) πt and a new observation (of the
EV of options) Rt associated with precision πR. The pos-
terior (which will correspond to the prior for the next
trial) reward expectation corresponds to a prediction
error (Rt − �rt) multiplied by a learning rate ηt:

�rtþ1 ¼ �rt þ ηt Rt−�rtð Þ (3)

where the learning rate ηt varies on every trial and depends
on the two precisions πR and πt:

ηt ¼
πR

πt þ πR
(4)

The posterior precision (which will correspond to the
prior precision of the next trial) is equal to:

πtþ1 ¼ πt þ πR (5)

Assuming (as we did in our models with decreasing
learning rate) a prior precision at the first trial equal to
zero (i.e., π1 = 0), Equations 4 and 5 imply that ηt = 1/t
and hence ηt+1 < ηt. For instance, the learning rate will be
smaller than 0.05 after 20 trials only (formally: ηt>20 <
0.05). Note that, in models with decreasing learning rate,
the learning rate is not a free parameter. In addition, π1 =
0 and Equation 4 imply that the learning rates across trials
are independent of the value assigned to πR (hence, πR
is not a free parameter either, and we set πR = 1 in our
models).

In Experiment 2 and in the fMRI experiment, where
two contexts (signaled by distinct cues) alternate, we
analyzed models that considered separate cue-related
average reward expectations �rt;k (k = 1 and k = 2 for
the low- and high-value contexts, respectively; trials for
cue k are indexed by tk). Note that these models assume
one separate succession of trials per cue and not that
learning is restarted every time a cue appears again. As
above, learning could be realized either through a con-
stant or a decreasing learning rate. In addition, for these
experiments, we considered models where both a cue-
independent �rt and a cue-dependent �rt;k average reward
representation were learned in parallel, and both influ-
enced adaptation of incentive value.

The adaptation component of the models is derived
from our previous work on value normalization (Rigoli,
Rutledge, Chew, et al., 2016; Rigoli, Rutledge, Dayan,
et al., 2016). Here we extend this by comparing sub-
tractive versus divisive forms of normalization. The adap-
tation component prescribes that the objective EV of
options is transformed into a subjective value by being
rescaled to the prevailing average reward. If the objective
EV of options at trial t is Rt, then the corresponding
subjective value will be

Vt Rtð Þ ¼ Rt−τ�rt (6)

In models where �rt;k (instead of �rt) is learned, Equation 2
corresponds to Vt(Rt) = Rt − τ�rt;k. The context parameter
τ implements (subtractive) normalization of the objective
EV to a degree that is proportional to the average reward �r.
We compared this formulation based on subtractive nor-
malization with a model implementing divisive normali-
zation (as suggested, for instance, by some recent neural
accounts; Louie et al., 2013, 2014) where Rt is divided by
the context parameter τ and the average reward �r:

Vt Rtð Þ ¼ Rt= 1þ τ�rtð Þ (7)

In Experiment 2 and in the fMRI experiment, where
two contexts alternate, we considered models where
adaptation was implemented with respect to both a cue-
independent belief about average reward �rt and the
average reward expected for the current cue �rt;k:

Vt Rtð Þ ¼ Rt − τ
�rt þ �rt;k

2

� �
(8)

The context parameter τ implements (subtractive) nor-
malization associated with both the cue-independent
average reward �rt and the average reward �rt;k expected
for the current cue k. As above, we also considered a
formulation implementing divisive normalization where

Vt Rtð Þ ¼ Rt= 1þ τ
�rt þ �rt;k

2

� �� �
(9)

For some of the models that consider both �rt and �rt;k,
we implemented separate context parameters, rendering

Rigoli et al. 5



Equations 4 and 5 Vt(Rt) = Rt − (τ1�rt + τ2�rt;k) and Vt(Rt) =
Rt/(1 + τ1�rt + τ2�rt;k), respectively.

Finally, the choice component determines the proba-
bility of gambling as determined by a sigmoidal function:

P gamblingð Þ ¼ σ αVt Rtð Þ þ μð Þ
¼ 1= 1þ exp −αVt Rtð Þ−μð Þð Þ ð10Þ

where α is a value-function parameter, which determines
whether gambling is more likely with larger (α > 0) or
smaller (α < 0) subjective value V(R), and μ represents
a gambling bias parameter. This implementation of the
choice component is motivated by the fact that, in our
task and with a linear mapping from objective to subjec-
tive values assumed in our models, the sure option and
the gamble have equivalent EV, implying that the trial EV
is the only variable changing trial-by-trial. This entails that
a logistic regression model is sufficient to capture a wide
range of mechanistic models of choice (e.g., those based
on risk-return accounts; see Rigoli, Rutledge, Chew, et al.,
2016; Rigoli, Rutledge, Dayan, et al., 2016, for details).
The free parameters of the model are the value function
parameter α, the gambling bias parameter μ, the context
parameter τ, and the learning rate η. The effects postu-
lated by the model (assuming subtractive normalization)
in determining gambling probability as a function of dif-
ferent trial EV and different parameter sets are represented
in Figure 2A–B. This shows that (i) for positive and nega-
tive value function parameter α, the propensity to gamble

for larger EVs increases and decreases, respectively; (ii)
larger gambling bias parameter μ increases the overall
propensity to gamble; (iii) the context parameter τ deter-
mines whether, as the estimated average reward �r in-
creases, the subjective values attributed to EVs increase
(τ < 0) or, as predicted by a value normalization hypothe-
sis, decrease (τ > 0) and in so doing exert an impact on
gambling propensity; and (iv) the learning rate η deter-
mines the extent to which �r is revised with new experience.
The free parameters were fit to choice data using the

fminsearchbnd function of the Optimization toolbox in
Matlab (see Supplementary Figures S1, S2, and S3 for
distributions of parameters). The learning rate η was con-
strained between 0 and 1, which are the natural bound-
aries for this parameter. Starting values for parameter
estimation was 0 for all parameters. The full models
and nested models (where one or more parameters were
fixed to 0) were fitted to choice data. For each model, the
negative log-likelihood of choice data given the best fit-
ting parameters was computed participant by participant
and summed across participants, and the sum of negative
log-likelihood was used to compute the Bayesian Infor-
mation Criterion (BIC) scores (Daw, 2011). These were
considered for model comparison, which assigns a higher
posterior likelihood to a generative model with smaller
BIC.
The value of �rt and �rt;k at the start of the task was set to

the true overall average EV across trials (in Experiment 1:
£3.5; in Experiment 2: £4; in fMRI experiment: £3.5). To

Figure 2. (A) Plots of the
gambling probability as a
function of trial EV (remember
that the two options always had
equivalent EV) for agents with
specific parameters simulated
with the computational model
of behavior. Effect of varying
the value function parameter α
(from −0.2 to 0.2 with increases
in 0.05 steps, represented along
a bright-to-dark gradient) and
the gambling bias parameter μ
(green and red lines implement
μ = £0.5 and μ = −£0.5,
respectively). It is evident that
α determines the tendency to
gamble for large or small EVs
whereas μ is analogous to an
intercept parameter reflecting
the tendency to gamble for a
hypothetical EV of zero. Here,
the context parameter τ is set to
zero. (B) Effect of varying the
value function parameter α
and the context parameter τ
(is considered). Red lines
represent agents with a positive value function coefficient α (equal to 0.15), and green lines represent agents with a negative alpha (equal to −0.15).
Agents with different τ are plotted in which τ increases in £0.5 steps from −£2 to £2 along a bright-to-dark gradient. (C) Experiment 1: relationship
between the effect of EV at current trial t and effect of EV at previous trial t − 1 on gambling probability (r(24) = −.44, p = .033). (D) Same analysis
performed on data simulated with the computational model (r(24) = −.605, p = .002).
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ensure that this did not bias our analyses, for each exper-
iment we considered the winning model (see Results)
and compared it with an equivalent model, except that
the values of �rt and/or �rt;k at the start of the task were
set as free parameters. For all experiments, these more
complex models showed a larger BIC (Experiment 1:
13,310 vs. 13,381; Experiment 2: 14,330 vs. 14,415; fMRI
experiment: 12,711 vs. 12,789), indicating that models
with the values of �rt and/or �rt;k at the start of the task
set as free parameters were overparameterized.

fMRI Scanning and Analysis

Details of the methods employed for the fMRI experi-
ment have previously been reported (see also Rigoli,
Rutledge, Dayan, et al., 2016). Visual stimuli were back-
projected onto a translucent screen positioned behind
the bore of the magnet and viewed via an angled mirror.
BOLD contrast functional images were acquired with
echo-planar T2*-weighted (EPI) imaging using a Siemens
(Berlin, Germany) Trio 3-T MR system with a 32-channel
head coil. To maximize the signal in our ROIs, a partial
volume of the ventral part of the brain was recorded.
Each image volume consisted of 25 interleaved 3-mm-
thick sagittal slices (in-plane resolution = 3 × 3 mm, time
to echo = 30 msec, repetition time = 1.75 sec). The first
six volumes acquired were discarded to allow for T1
equilibration effects. T1-weighted structural images were
acquired at a 1 × 1 × 1 mm resolution. fMRI data were
analyzed using Statistical Parametric Mapping Version 8
(Wellcome Trust Centre for Neuroimaging). Data pre-
processing included spatial realignment, unwarping using
individual field maps, slice-timing correction, normali-
zation, and smoothing. Specifically, functional volumes
were realigned to the mean volume, were spatially normal-
ized to the standard Montreal Neurological Institute tem-
plate with a 3 × 3 × 3 voxel size, and were smoothed
with 8-mm Gaussian kernel. Such kernel was used follow-
ing previous studies from our lab, which used the same
kernel to maximize the statistical power in midbrain re-
gions (Rigoli, Chew, Dayan, & Dolan, 2016a; Rigoli, Friston,
& Dolan, 2016; Rigoli, Rutledge, Dayan, et al., 2016). High-
pass filtering with a cutoff of 128 sec and AR(1) model
were applied.
For our analyses, neural activity was estimated with

two general linear models (GLMs). Both GLMs were asso-
ciated with a canonical hemodynamic function and in-
cluded six nuisance motion regressors. The first GLM
included a stick function regressor at option presentation
modulated by a conventional RPE signal, corresponding
to the actual EV of options minus the predicted EV of
options. The predicted EV of options corresponds to the
expected contextual reward �rt estimated with the com-
putational model of choice behavior selected by model
comparison (see below). This was estimated trial-by-trial
using an equal learning rate η = 0.51 (i.e., the average
within the sample) for all participants. The use of a single

learning rate for all participants was motivated by con-
siderations in favor of this approach compared with using
participant-specific estimates in model-based fMRI (Wilson
& Niv, 2015). To ascertain that our findings were not
biased by the use of the same learning rate for all partici-
pants, we rerun the fMRI analyses below using individual
learning rates and obtained the same findings (results
not shown).

It has been pointed out that the separate components
of the RPE (in our study, actual and predicted option EV)
are correlated with the RPE, and so an area that is only
reporting actual EV might falsely be seen as reporting a
full RPE. Therefore, a better way to address our question
(Niv et al., 2012; Niv & Schoenbaum, 2008) is to test for
two findings: first, a negative correlation with the pre-
dicted EV and, second, a positive correlation with the
actual EV. We followed this approach estimating a second
GLM, which included a stick function regressor at option
presentation modulated by two separate variables, one
corresponding to the actual EV of options and the other
to the predicted EV of options. These two parametric
modulators were only mildly correlated (max Pearson co-
efficient across participants r = .2) and were included
symmetrically in the GLM model, allowing us to estimate
their impact on neural activation in an unbiased way.

The GLMs also included a stick function regressor at
outcome presentation modulated by an outcome predic-
tion error corresponding to the difference between the
choice outcome and the actual EV of options. The outcome
prediction error was equivalent to zero for choices of
sure options and was either positive (for reward outcomes)
or negative (for zero outcomes) for choices of gambles.

Note that, at the behavioral level, the predicted EV of
options could potentially depend on a cue-dependent
component (associated with explicit instructions) and a
cue-independent component (derived from learning).
Being our focus on learning, we aimed at isolating the
contribution of the latter. To this aim, we exploited the
fact that each block was associated with a single contex-
tual cue (including 140 trials), implying that the cue-
dependent component was constant within a blockwhereas
the cue-independent component varied. We estimated
the GLMs separately for each of the four blocks, a proce-
dure which allowed us to isolate the contribution of the
cue-independent component related with learning.

Contrasts of interest were computed participant by
participant and used for second-level one-sample t tests
and regressions across participants. Substantial literature
motivated us to restrict statistical testing to a priori ROIs:
VTA/SN and ventral striatum (Lak et al., 2014; Stauffer
et al., 2014; Niv et al., 2012; Park et al., 2012; D’Ardenne
et al., 2008; Tobler et al., 2005; O’Doherty et al., 2003,
2004; Schultz et al., 1997). For VTA/SN, we used bilateral
anatomical masks manually defined using the software
MRIcro and the mean structural image for the group,
similar to the approach used in Guitart-Masip et al. (2011).
For ventral striatum, we used an 8-mm sphere centered
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on coordinates from a recent meta-analysis on incentive
value processing (left striatum: −12, 12, −6; right stria-
tum: 12, 10, −6; Bartra et al., 2013). For hypothesis
testing, we adopted voxel-wise small volume correction
(SVC) with a p < .05 family-wise error as significance
threshold.

RESULTS

Experiment 1

The goal of this experiment was to assess whether par-
ticipants learn contextual reward expectation from pre-
vious experience and, if so, at what rate. The average
gambling percentage did not differ from 50% across par-
ticipants (mean = 46%, SD = 22%; t(23) = −0.95, p =
.35). The lack of risk aversion is consistent with prior
reports using a similar task (Rigoli, Friston, & Dolan,
2016; Rigoli, Friston, Martinelli, et al., 2016; Rigoli, Rutledge,
Chew, et al., 2016; Rigoli, Rutledge, Dayan, et al., 2016)
and may reflect the use of small monetary payoffs (Prelec
& Loewenstein, 1991). By design, the sure option and the
gamble had always equivalent EV and the EV at trial t was
uncorrelated with the EV at trial t − 1 (t(23) = 1; p = .5).
For each participant, we built a logistic regression model
of choice (i.e., with dependent measure being choice of
the gamble or of the sure option) which included the EV
at trial t and the EV at trial t − 1 as regressors. Across
participants, the slope coefficient associated with EV at
trial t did not differ from zero (mean = 0.11, SD = 0.95;
t(23) = 0.54, p = .59), whereas the slope coefficient asso-
ciated with EV at trial t − 1 was significantly less than zero
(mean = −0.04, SD = 0.01; t(23) = −2.28, p = .032),
indicating participants gambled more with smaller EVs at
trial t − 1. To investigate whether choice was influenced
more by the EV at trial t or by the EV at trial t − 1, we
computed the absolute value of the slope parameter
associated with the first and second variable in the logistic
regression. The absolute value of the slope coefficient
associated with EV at trial t was larger than the absolute
value of the slope coefficient associated with EV at trial
t − 1 (t(23) = 3.62, p = .002), indicating that the EV at
trial t exerted a greater influence than the EV at trial t − 1
on choice.

Our main hypothesis was that contextual reward ex-
pectations are learned from previous trials and drive
choice adaptation. Such learning implies that the ex-
pected contextual reward at trial t is lower/higher when
a low/high EV is presented at trial t − 1. We derived our
predictions about choice adaptation from previous data
(Rigoli, Rutledge, Chew, et al., 2016; Rigoli, Rutledge,
Dayan, et al., 2016), which show that, consistent with
adaptation to context, participants who prefer to gamble
for large EVs (at trial t) gamble more when EVs are larger
relative to contextual expectations, whereas participants
who prefer to gamble for small EVs gamble more when
EVs are smaller relative to contextual expectations. These

considerations led us to predict a relationship between
the effect of EV at trial t and the effect of EV at trial t − 1
on gambling percentage. Consistent with this prediction,
we observed an inverse correlation across individuals be-
tween the slope coefficient associated with EV at trial t
and the slope coefficient associated with EV at trial t − 1
(r(24) = −.44, p = .033; Figure 2C; this result is still
significant when using a Kendall correlation, which is less
affected by extreme values; t(24) = −0.29, p = .047). This
indicates that participants who gambled more with larger
EVs at trial t also gambled more with smaller EVs at trial
t − 1, and participants who gambled more with smaller
EVs at trial t also gambled more with larger EVs at trial
t − 1.
To consider the influence of previous EVs further, we

fitted to gambling data an exponential decay model (see
Methods and Equation 1). Consistent with an influence
exerted by previous trials, we found an inverse correla-
tion between the weight parameters β1 and β2 (Supple-
mentary Figure S4; r(24) = −.52, p = .009). The
median decay parameter λ was equal to 1.54, which
implies that a weight β2 at trial t − 1 will become β2/
4.5 at trial t − 2. To compare the impact on choice of
the EV at trial t against the overall impact of EVs at pre-
vious trials, we considered the absolute value of β1 and
of
X4

j¼1
β2e

−λ j−1ð Þ and found no difference between
these two quantities (t(23) = 1.08, p = .29).
Next, we compared different generative models of

choice behavior (see Methods). According to BIC scores
(see Table 1), in the selected model (i) an average re-
ward was learned from previous trials and exerted value
adaptation, (ii) a constant (and not decreasing) learning
rate was implemented, and (iii) normalization was sub-
tractive (and not divisive). Consistent with adaptation to
context, the context parameter τ of the selected model
(which is multiplied by the average reward, and the
total is subtracted to the EV) was significantly larger
than zero (Supplementary Figure S1; t(23) = 3.23, p =
.004). The median learning rate η of the selected model
was 0.68.
We used the full model and participant-specific param-

eter estimates of that model to generate simulated
choice behavioral data and perform behavioral analyses
on the ensuing data. The model replicated the main sta-
tistical result from the raw data, namely the correlation
between the effect on choice (i.e., the slope coefficient
of logistic regression of choice) of EV at trial t and of
EV at trial t − 1 (r(24) = −.605, p = .002; Figure 2D),
an effect not replicated using a model with a decreasing
learning rate (r(24) = −.08, p = .726).
Overall, these results show that reward expectations

about options can be learnt from recent experience and
that subjective values are adapted to these expectations
with an impact on choice behavior. In addition, data sug-
gest that this form of learning is based on a constant learn-
ing rate (and not a quickly decaying learning rate) and that
adaptation is subtractive (and not divisive).
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Table 1. Model Comparison Analysis for the Three Experiments

Model Free Param Neg LL BIC N Sub

Experiment 1

Random – 9132 18264 0

Slope only α 7314 14779 0

Intercept only μ 7601 15353 3

Slope and intercept μ, α 6509 13321 4

Subtractive; �rt; constant η μ, α, η, τ 6352 13310*** 17

Subtractive; �rt; decreasing η μ, α, τ 6499 13452 0

Divisive; �rt; constant η μ, α, η, τ 6409 13424 0

Divisive; �rt; decreasing η μ, α, τ 6500 13454 0

Experiment 2

Random – 9283 18567 0

Slope only α 7869 15895 0

Intercept only μ 7903 15965 7

Slope and intercept μ, α 7016 14345 3

Subtractive; �rt; constant η μ, α, η, τ 6990 14607 0

Subtractive; �rt; decreasing η μ, α, τ 6999 14468 0

Subtractive; �rt;k; constant η μ, α, η, τ 6919 14465 0

Subtractive; �rt;k; decreasing η μ, α, τ 6930 14330*** 16

Subtractive; �rt, �rt;k with single τ; constant η μ, α, η, τ 6927 14482 0

Subtractive; �rt, �rt;k with single τ; decreasing η μ, α, τ 6938 14346 2

Subtractive; �rt, �rt;k with single τ; constant η for �rt; decreasing η for �rt;k μ, α, η, τ 6908 14444 0

Subtractive; �rt, �rt;k with single τ; decreasing η for �rt; constant η for �rt;k μ, α, η, τ 6910 14448 0

Subtractive; �rt, �rt;k with multiple τ; constant η μ, α, η, τ1, τ2 6924 14633 0

Subtractive; �rt, �rt;k with multiple τ; decreasing η μ, α, τ1, τ2 6915 14457 0

Subtractive; �rt, �rt;k with multiple τ; constant η for �rt; decreasing η for �rt;k μ, α, η, τ1, τ2 6912 14609 0

Subtractive; �rt, �rt;k with multiple τ; decreasing η for �rt; constant η for �rt;k μ, α, η, τ1, τ2 6915 14616 0

Divisive; �rt; constant η μ, α, η, τ 6988 14603 0

Divisive; �rt; decreasing η μ, α, τ 6994 14460 0

Divisive; �rt;k; constant η μ, α, η, τ 6940 14509 0

Divisive; �rt;k; decreasing η μ, α, τ 6936 14342 0

Divisive; �rt, �rt;k with single τ; constant η μ, α, η, τ 6966 14559 0

Divisive; �rt, �rt;k with single τ; decreasing η μ, α, τ 6951 14373 0

Divisive; �rt, �rt;k with single τ; constant η for �rt; decreasing η for �rt;k μ, α, η, τ 6929 14484 0

Divisive; �rt, �rt;k with single τ; decreasing η for �rt; constant η for �rt;k μ, α, η, τ 6950 14528 0

Divisive; �rt, �rt;k with multiple τ; constant η μ, α, η, τ1, τ2 6952 14687 0

Divisive; �rt, �rt;k with multiple τ; decreasing η μ, α, τ1, τ2 6900 14427 0

Divisive; �rt, �rt;k with multiple τ; constant η for �rt; decreasing η for �rt;k μ, α, η, τ1, τ2 6909 14603 0

Divisive; �rt, �rt;k with multiple τ; decreasing η for �rt; constant η for �rt;k μ, α, η, τ1, τ2 6911 14607 0
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Experiment 2

The second experiment assessed whether learning an
average reward expectation takes account of an alter-
nation of context, which is signaled by distinct cues.
In principle, two forms of learning can be considered:
(i) first, participants might learn the reward available at
previous trials independent of any cue, similar to Exper-

iment 1, and (ii) second, participants might differentiate
between contexts and learn an average reward repre-
sentation specific for each cue.
We first investigated learning by ignoring changes in

cues. We analyzed the relationship between the EV at trial
t and the EV at trial t − 1 as in Experiment 1. The average
gambling percentage did not differ from 50% across

Table 1. (continued )

Model Free Param Neg LL BIC N Sub

fMRI Experiment

Random – 8122 16245 0

Slope only α 7091 14316 0

Intercept only μ 7033 14198 5

Slope and intercept μ, α 6279 12824 3

Subtractive; �rt; constant η μ, α, η, τ 6130 12792 0

Subtractive; �rt; decreasing η μ, α, τ 6229 12857 0

Subtractive; �rt;k; constant η μ, α, η, τ 6127 12785 0

Subtractive; �rt;k; decreasing η μ, α, τ 6199 12796 0

Subtractive; �rt, �rt;k with single τ; constant η μ, α, η, τ 6105 12742 0

Subtractive; �rt, �rt;k with single τ; decreasing η μ, α, τ 6177 12753 0

Subtractive; �rt, �rt;k with single τ; constant η for �rt; decreasing η for �rt;k μ, α, η, τ 6090 12711*** 13

Subtractive; �rt, �rt;k with single τ; decreasing η for �rt; constant η for �rt;k μ, α, η, τ 6099 12730 0

Subtractive; �rt, �rt;k with multiple τ; constant η μ, α, η, τ1, τ2 6099 12864 0

Subtractive; �rt, �rt;k with multiple τ; decreasing η μ, α, τ1, τ2 6116 12762 0

Subtractive; �rt, �rt;k with multiple τ; constant η for �rt; decreasing η for �rt;k μ, α, η, τ1, τ2 6098 12861 0

Subtractive; �rt, �rt;k with multiple τ; decreasing η for �rt; constant η for �rt;k μ, α, η, τ1, τ2 6088 12841 0

Divisive; �rt; constant η μ, α, η, τ 6157 12846 0

Divisive; �rt; decreasing η μ, α, τ 6237 12872 0

Divisive; �rt;k; constant η μ, α, η, τ 6154 12840 0

Divisive; �rt;k; decreasing η μ, α, τ 6208 12815 0

Divisive; �rt, �rt;k with single τ; constant η μ, α, η, τ 6155 12843 0

Divisive; �rt, �rt;k with single τ; decreasing η μ, α, τ 6192 12782 0

Divisive; �rt, �rt;k with single τ; constant η for �rt; decreasing η for �rt;k μ, α, η, τ 6154 12839 0

Divisive; �rt, �rt;k with single τ; decreasing η for �rt; constant η for �rt;k μ, α, η, τ 6170 12871 0

Divisive; �rt, �rt;k with multiple τ; constant η μ, α, η, τ1, τ2 6143 12950 0

Divisive; �rt, �rt;k with multiple τ; decreasing η μ, α, τ1, τ2 6157 12846 0

Divisive; �rt, �rt;k with multiple τ; constant η for �rt; decreasing η for �rt;k μ, α, η, τ1, τ2 6140 12943 0

Divisive; �rt, �rt;k with multiple τ; decreasing η for �rt; constant η for �rt;k μ, α, η, τ1, τ2 6114 12893 0

For models considered (organized in rows), columns report (from left to right) (i) model description, indicating whether divisive or subtractive
normalization is implemented, whether adaptation involves �rt , �rt;k , or both (and in the latter case whether a single or multiple context parameter
τ is implemented), and whether learning involves a constant of decreasing learning rate η; (ii) negative log-likelihood (Neg LL), estimated separately
for each individual’s choice data (excluding trials with RTs slower than 3 sec and faster than 300 msec) and summed across subjects; (iii) free
parameters (Free Param); (iv) BIC (models with the lowest BIC are marked with asterisks); and (v) number of subjects (N Sub) for which the model
shows the lowest BIC.

10 Journal of Cognitive Neuroscience Volume X, Number Y



participants (mean = 55, SD = 21; t(24) = 1.24, p = .23).
By design, the EV of options at trial t was correlated weak-
ly with the EV at trial t− 1 (max Pearson coefficient across
participants r = .19). We built a logistic regression model
of choice (having choice of the gamble or of the sure
option as dependent measure), which included the EVs
at trial t and trial t− 1 as regressors. The slope coefficient
associated with EV at trial t was not significantly different
from zero (mean =−0.02, SD= 0.54; t(24) =−0.21, p=
.83), whereas the slope coefficient associated with EV at
trial t − 1 was significantly smaller than zero (mean =
−0.07, SD = 0.17; t(24) = −3.09, p = .005), indicating
that participants overall gambled more with smaller EVs
at trial t − 1. To investigate whether choice was influ-
enced more by the EV at trial t or by the EV at trial t − 1,
we computed the absolute value of the slopes associated
with the EV at trial t and with the EV at trial t − 1 in the
logistic regression. The absolute value of the slope coeffi-
cient associated with EV at trial t was larger than the abso-
lute value of the slope coefficient associated with EV at
trial t − 1 (t(24) = 3.57, p = .002), indicating that the
EV at trial t exerted a greater influence than the EV at trial
t − 1 on choice. We performed a similar analysis as for
Experiment 1, which showed an inverse correlation be-
tween the slope coefficients associated with EV at trial t
and the slope coefficients associated with EV at trial t − 1
(r(25) = −.46, p = .021; Figure 3A). This indicates that

participants who gambled more with larger EVs at trial t
also gambled more with smaller EVs at trial t − 1, and
participants who gambled more with smaller EVs at trial t
also gambled more with larger EVs at trial t − 1.

We next considered the hypothesis that the two alter-
nating cues have an impact on learning and value adap-
tation independent of previous trials. To address this
question, we analyzed the second half of the task when
knowledge of context contingencies is likely to be more
secure. Here, we focused only on the very first trial of
each block, and among these trials, we considered those
associated with £3 and £5 EV, as these are common to
both the high- and low-value contexts. We predicted that,
for these trials, participants would exhibit different pref-
erences dependent on the context condition. Consistent
with this prediction, we found a correlation between the
effect on gambling of EV at trial t (i.e., the slope of a lo-
gistic regression model having EV at trial t as regressor)
and the difference in gambling between low- and high-
value contexts for EVs common to both contexts (r(25) =
.46, p = .020). In other words, participants who overall
gambled more with larger EVs also gambled more when
the common EVs were relatively larger in the context of
the new block, whereas participants who overall gambled
more with smaller EVs also gambled more when com-
mon EVs were relatively smaller in the context associated
with the new block. Here, the focus on first trials of

Figure 3. (A) Experiment 2:
relationship between the
effect of EV at current trial t
and effect of EV at previous
trial t − 1 on gambling
probability (r(25) = −.46,
p = .021). (B) Same analysis
performed on data simulated
with the computational model
(r(25) = −.48, p = .016).
(C) Experiment 2: analysis of
effect of context. Relationship
between the effect on gambling
of EV at trial t (i.e., the slope
of a logistic regression
model having EV at trial t as
regressor) and the difference
in gambling between low- and
high-value contexts for EVs
common to both contexts
(associated with £3 and £5 EV;
r(25) = .46, p = .020), only
considering first trials of blocks
and the second half of the task.
Since the slope of the logistic
regression is estimated from the
second half of the task only,
note that it is different from the
one estimated from the whole
task (shown in A). (D) Same
analysis performed on data
simulated with the computational
model (r(25) = .49, p = .01).
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blocks is crucial, because for these trials, the EVs present-
ed previously are orthogonal to the current context condi-
tion, allowing us to show a context effect independent
of previous trials.

To probe further the mechanisms underlying learning
and context sensitivity, we compared different generative
models of choice behavior (see Methods). According to
BIC scores (see Table 1), in the selected model (i) a cue-
dependent average reward was learned and exerted value
adaptation, whereas a cue-independent average reward
was not implemented; (ii) a decreasing (and not con-
stant) learning rate characterized learning; and (iii) nor-
malization was subtractive (and not divisive). In the
selected model, the context parameter τ is multiplied by
a cue-dependent reward representation (in turn acquired
following a decreasing learning rate), and the total is sub-
tracted to the option EV. Consistent with adaptation to
context, the context parameter τ of the selected model was
significantly larger than zero (Supplementary Figure S2;
t(24) = 2.11, p = .045).

We used the selected model and participant-specific
parameter estimates from that model to generate simu-
lated choice behavioral data and perform behavioral anal-
yses on the ensuing data. The selected model replicated
the correlation between the effect on choice (i.e., the
slope coefficient of logistic regression model of choice)
of EV at trial t and of EV at trial t − 1 (r(25) = −.48, p =
.016; Figure 3B), an effect not replicated with a model
without the context parameter τ (r(25) = −.17, p = .42).
The selected model also replicated the correlation be-
tween the effect on choice of EV at trial t and the differ-
ence in gambling for low- minus high-value context for
EVs common to both contexts, when considering first
trials of blocks (and focusing on the second half of the
task; r(25) = .58, p = .002; Figure 3D). This correlation
was not replicated with a model implementing an aver-
age reward independent of context and a constant learn-
ing rate (r(25) = .17, p = .41). These results indicate
that, when multiple contexts alternate, value and choice
adaptation can be driven by a representation of the two
context averages, without learning based on previous re-
ward experience independent of cues. In addition, data
suggest that learning of contextual reward representations
is based on a decreasing learning rate and that adaptation
is subtractive.

fMRI Experiment

The results of both experiments motivated us to reana-
lyze data from an fMRI experiment involving a similar task
(Rigoli, Rutledge, Dayan, et al., 2016). The paradigm was
similar to the task used in Experiment 2, since both com-
prise two different contexts characterized by distinct re-
ward distributions. However, the fMRI blocks were
longer (around 10 min rather than the 30 sec of Experi-
ment 2). We asked whether the presence of longer blocks
is uninfluential on the contextual learning processes in-

volved or whether it implies the recruitment of different
processes. Critically, the characteristics of the context were
presented to the participants explicitly before the start—so
learning would formally have been unnecessary. In addi-
tion, the use of simultaneous fMRI recording allowed us
to study the neural substrates of learning average reward
representations.
The average gambling percentage did not differ from

50% across participants (mean = 51.5, SD = 21.27; t(20) =
0.32, p = .75). By design, the EV at trial t was only mildly
correlated with the EV at trial t − 1 (max Pearson coeffi-
cient across participants r= .13). We built a logistic regres-
sion model of choice (having choice of the gamble or
of the sure option as dependent measure), which included
the EV at trial t and the EV at trial t − 1 as regressors. The
slope coefficient associated with EV at trial t did not differ
from zero (mean = 0.19, SD= 1.07; t(20) = 0.81, p= .43),
nor did the slope coefficient associated with EV at trial t− 1
(mean = −0.05, SD = 0.20; t(20) = −1.128, p = .27). To
investigate whether choice was influenced more by the EV
at trial t or by the EV at trial t − 1, we computed the abso-
lute value of the slopes associated with the EV at trial t and
with the EV at trial t − 1 in the logistic regression. The
absolute value of the slope coefficient associated with EV
at trial t was larger than the absolute value of the slope
coefficient associated with EV at trial t − 1 (t(20) = 3.63,
p = .002), indicating that the EV at trial t exerted a greater
influence than the EV at trial t − 1 on choice.
As for the previous experiments, we analyzed the effects

of previous EVs ignoring cues and found an inverse cor-
relation between the slope coefficient associated with
EV at trial t and the slope coefficient associated with EV
at trial t − 1 (r(21) = −.64, p = .002; Figure 4C). This
indicates that participants who gambled more with larger
EVs at trial t also gambled more with smaller EVs at trial
t − 1, and participants who gambled more with smaller
EVs at trial t also gambled more with larger EVs at trial
t − 1. To consider the influence of previous EVs further,
we fitted to gambling data an exponential decay model
(see Methods; Equation 1). Consistent with an influence
of previous trials, we found an inverse correlation between
the weight parameters β1 (linked with the influence of EV
at trial t) and β2 (linked with the exponentially decaying
influence of EV at trials before t; Supplementary Figure S4;
r(21) = −.82, p < .001). The median decay parameter λ
was equal to 0.31, which implies that a weight β2 at trial
t − 1 will become β2/1.4 at trial t − 2. We compared the
decay parameter λ found here with the decay parameter
λ found in Experiment 1, and the former was significantly
smaller than the latter (t(43) = 2.66, p = .011), indicating
that previous trials beyond t − 1 exerted a greater impact
in the fMRI experiment compared with Experiment 1. To
compare the impact on choice of the EV at trial t against
the overall impact of EVs at previous trials, we consid-
ered the absolute value of β1 and of

X4

j¼1
β2e

−λ j−1ð Þ and
found no difference between the two quantities (t(20) =
0.64, p = .53).
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In our previous study (Rigoli, Rutledge, Dayan, et al.,
2016), we assessed whether the two cues exert an influ-
ence on choice consistent with value adaptation. For
each participant, we computed the gambling proportion
with EVs common to both contexts (i.e., associated with
the £2–£5 range) for the low- minus high-value context
and found that this difference correlated with the effect
of EV on gambling (as estimated with the logistic regres-
sion above; r(21) = .56, p= .008; Figure 4A). This is con-
sistent with the idea that the two cues were considered
during value computation and choice, though it is also
compatible with an influence of previous reward experi-
ence independent of cues. Because the fMRI experiment
involved four blocks alone, the task did not allow us to
isolate effects on the very first trial of each block, as we
did for Experiment 2, an analysis that could potentially
have provided evidence of an independent role of cues.
To clarify further the relative impact of cue-dependent

and cue-independent learning, we compared different
generative models of choice behavior (see Methods).
According to BIC scores (see Table 1), in the selected
model (i) both a cue-independent and a cue-dependent
average reward were learned and exerted value adapta-
tion, (ii) a constant (and not decreasing) learning rate
characterized learning of an average reward independent
of cue, (iii) a decreasing (and not constant) learning rate
characterized learning of an average reward associated
with contextual cues, (iv) normalization was subtractive
(and not divisive), and (v) a single context parameter
was implemented for both a cue-independent and a
cue-dependent average reward. Consistent with adapta-
tion to context, the context parameter τ of the selected

model was significantly larger than zero (Supplementary
Figure S3; t(20) = 4.02, p < .001). The median learning
rate η of the selected model was 0.37 (η > 0.1 for 16 par-
ticipants). Notably, the model selected in the fMRI exper-
iment is different from themodel selected in Experiment 2;
possible reasons explaining why this difference was ob-
served are discussed below.

We used the selected model and participant-specific
parameter estimates from that model to generate simu-
lated choice behavioral data and perform behavioral anal-
yses on the ensuing data. The selected model replicated
the correlation between the gambling proportion with
EVs common to both contexts (i.e., associated with £3
and £5) for the low- minus high-value context and the
effect of EV on gambling (as estimated with the logistic
regression above; r(21) = .66, p < .001; Figure 4B). This
correlation was not replicated when using a model with-
out the context parameter τ (r(21) = −.14, p = .53). The
full model also replicated the correlation between the
effect on choice (i.e., the slope coefficient of logistic
regression model of choice) of EV at trial t and of EV at
trial t − 1 (r(21) = −.75, p < .001; Figure 4D), an effect
not replicated with a model without the context parameter
τ (r(21) = −.05, p = .82).

Overall, we found that cue-dependent and cue-
independent forms of learning could coexist with both
affecting value and choice adaptation. These mapped into
two distinct learning processes, with cue-dependent
learning driven by a decreasing learning rate and cue-
independent learning mediated via a constant learning
rate. In addition, cue-dependent and cue-independent
average rewards appeared to exert equal effects on value

Figure 4. (A) fMRI experiment:
relationship between the
effect of EV at current trial t
and effect of EV at previous
trial t − 1 on gambling
probability (r(21) = −.65,
p < .002). (B) Same analysis
performed on data simulated
with the computational model
(r(21) = −.75, p < .001). (C)
fMRI experiment: relationship
between the effect of EV at
current trial t and the number of
gambling trials when comparing
low-value context (LVC) and
high-value context (HVC) for
EVs common to both context
(r(21) = .56, p = .008). (D)
Same analysis performed
on data simulated with the
computational model
(r(21) = .66, p < .001).
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adaptation, which, as in previous experiments, was sub-
tractive rather than divisive.

Finally, we reanalyzed fMRI data acquired during task
performance. It is well established that, at outcome de-
livery, a response in ventral striatum and VTA/SN cor-
relates positively and negatively with the actual and
predicted reward, respectively, whereas in the same re-
gions, at option presentation, a correlation with actual
option EV is reported (Lak et al., 2014; Stauffer et al.,
2014; Niv et al., 2012; Park et al., 2012; D’Ardenne et al.,
2008; Tobler et al., 2005; O’Doherty et al., 2003, 2004;
Schultz et al., 1997). These findings motivated a proposal
of a distinct role of these regions at outcome delivery and
option presentation, corresponding to signaling RPE and
EV, respectively (Bartra et al., 2013). However, other theo-
retical models (Schultz et al., 1997) imply that dopa-
minergic regions reflect RPE also at option presentation.
The difference between the two hypotheses is that the
latter (Schultz et al., 1997), but not the former (Bartra
et al., 2013), predicts that at option presentation neural
activity inversely correlates with the predicted option EV,
corresponding to the contextual average reward. How-
ever, this prediction has never been formally tested, and
here we provide such test.

Neural response was first modeled using a GLM that
included, at option presentation, a stick function regres-
sor modulated by the actual EV of options minus the pre-
dicted EV of options (the latter corresponds to the average
reward �rt learnt from previous trials as prescribed by the
computational model of choice behavior—see Methods).
This parametric modulator, which represents a con-
ventional RPE signal, correlated with activation in VTA/SN
(3,−13,−14; Z= 3.16, p= .032 SVC) and ventral striatum
(left:−12, 11,−2; Z= 3.99, p= .002 SVC; right: 9, 11,−2;
Z = 4.48, p < .001 SVC).

Next, as a more stringent test, neural response was
modeled using a second GLM, which included, at option
presentation, a stick function regressor associated with
two separate parametric modulators, one for the actual
EV of options and the other for the predicted EV of op-
tions. A correlation with actual EV of options (Figure 4A–B)
was observed in VTA/SN (9, −13, −17; Z = 3.25, p = .028
SVC) and ventral striatum (left: −12, 8, −2; Z = 3.73, p =
.005 SVC; right: 9, 8,−2; Z= 4.25, p= .001 SVC), together
with an inverse correlation with the average reward �rt
(Figure 5A–B; VTA/SN: 12, −19, −11; Z = 3.26, p = .011
SVC; left ventral striatum: −12, 8, 1; Z = 3.14, p = .026
SVC; right ventral striatum: 18, 14, −2; Z = 2.98, p =
.039 SVC). These results are consistent with an encoding
of RPE signal after option presentation.
Encoding of a context-related RPE in VTA/SN and ven-

tral striatum may represent a neural substrate mediating
choice adaptation to context. If this was the case, we
would predict a stronger neural sensitivity to contextual
reward expectations in participants showing an increased
influence of context on choice behavior (captured by the
context parameter τ in our behavioral model). Consistent
with this prediction, we observed an inverse correlation
between the effect of predicted EV of options on neural
response and the individual context parameter τ (esti-
mated with the selected model of choice behavior) in
VTA/SN (Figure 5C; 6, −19, −8; Z = 2.90, p = .027
SVC), but not in ventral striatum (Figure 6).
Overall, these findings indicate that activity in VTA/SN

and ventral striatum increases with actual EV of options
and decreases with the EV of options predicted based
on recent trials, consistent with reflecting an RPE signal rel-
ative to average reward representations. In addition, re-
sponse adaptation in VTA/SN (but not in ventral striatum)
was linked with contextual adaptation in choice behavior.

Figure 5. Activity at option
presentation in our ROIs for
a positive correlation with the
actual EV of options. For display
purposes, we show activity
for voxels where the statistic
is significant when using
p < .005 uncorrected. (A)
Activity shown for VTA/SN
(9, −13, −17; Z = 3.25,
p = .028 SVC; Montreal
Neurological Institute
coordinate space is used).
(B) Activity shown for ventral
striatum (left: −12, 8, −2;
Z = 3.73, p = .005 SVC;
right: 9, 8, −2; Z = 4.25,
p = .001 SVC).
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DISCUSSION

Contextual effects on choice depend on adaptation of
incentive values to the average reward expected before
option presentation (Rigoli, Friston, & Dolan, 2016; Rigoli,
Friston, Martinelli, et al., 2016; Rigoli, Rutledge, Chew,
et al., 2016; Rigoli, Rutledge, Dayan, et al., 2016; Louie
et al., 2013, 2014, 2015; Summerfield & Tsetsos, 2015;
Cheadle et al., 2014; Ludvig et al., 2014; Summerfield &
Tsetsos, 2012; Carandini & Heeger, 2011; Stewart, 2009;
Stewart, Chater, & Brown, 2006; Stewart et al., 2003). How-
ever, as explicit information about context was provided in
previous studies, how contextual reward expectation is
learnt through experience remains poorly understood.
Our study builds upon previous research on how the
brain learns distributions of variables (Diederen, Spencer,
Vestergaard, Fletcher, & Schultz, 2016; Nassar et al., 2012;
Berniker, Voss, & Kording, 2010; Nassar, Wilson, Heasly, &
Gold, 2010; Behrens, Woolrich, Walton, & Rushworth,
2007). However, as far as we are aware, none of the existing
tasks have considered discrete choices (rather than estima-
tion). Thus, we used a task in which a contextual distribu-
tion is learnt from experience and adaptation to that
distribution is expressed via discrete choices. We show that
experience can drive learning of contextual reward expec-
tations that in turn impact on value adaptation. This form

of learning can be characterized using a model where,
after an option is presented, the belief about an average
reward is updated according to an RPE (i.e., the actual
minus the predicted option EV) multiplied by a learning
rate. The average reward expectation acquired through
learning in turn elicits subtractive (and not divisive) nor-
malization by setting a reference point to which option
values are rescaled, influencing choice behavior.

In Experiment 1, option EVs were drawn from a single
reward distribution. Consistent with some models (Niv
et al., 2007), participants learnt an average reward repre-
sentation from previous trials, which was updated follow-
ing a constant learning rate (Rescorla & Wagner, 1972).
However, contrary to predictions from these models
(Niv et al., 2007), we observed a large learning rate imply-
ing that recent (and not long-run) experience is relevant.
Data from Experiment 2, where two contexts character-
ized by distinct reward distributions alternated at a fast
rate, showed no evidence of cue-independent learning.
Instead, they highlight a cue-dependent learning whereby
different reward representations were acquired in asso-
ciation with contextual cues. This form of learning was
characterized by a decreasing learning rate, implying that
experience early in the task is weighted more than later
experience. This can be formally described with Bayesian
learning assuming fixed reward statistics of the context

Figure 6. Activity at option
presentation in our ROIs for
a negative correlation with
the predicted EV of options
(estimated with the
computational model of choice
behavior, corresponding to the
expected contextual reward).
For display purposes, we show
activity for voxels where the
statistic is significant when
using p < .005 uncorrected.
(A) Activity shown for VTA/SN
(VTA/SN: 12, −19, −11; Z =
3.26, p = .011 SVC). (B) Activity
shown for ventral striatum
(left ventral striatum: −12, 8, 1;
Z = 3.14, p = .026 SVC; right
ventral striatum: 18, 14, −2;
Z = 2.98, p = .039 SVC).
(C) Relationship between the
behavioral context parameter
τ (estimated with the
computational model for
each participant and
indicating the degree of
choice adaptation to the
average reward learnt from
previous trials independent
of context) and the beta
weight for the correlation
between VTA/SN activity and
expected contextual reward
(6, −19, −8; Z = 2.90,
p = .027 SVC).
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(Bishop, 2006) and is linked to previous associative learn-
ing theories (Dayan, Kakade, & Montague, 2000; Pearce &
Hall, 1980).

A reanalysis of a previous data set (Rigoli, Rutledge,
Dayan, et al., 2016) shows cue-independent learning
based on recent past reward experience (similar to Exper-
iment 1) combined with learning based on contextual
cues (similar to Experiment 2). Here, value and choice
adaptation were affected by reward representations aris-
ing from both forms of learning. Why the coexistence of
these two learning components emerged here, but not
in Experiment 2, remains to be fully understood. One
important difference between the two tasks is in block
length, with Experiment 2 having short (30-sec) blocks
and the fMRI experiment long (10-min) blocks. Further-
more, explicit information regarding contextual reward
distribution was provided in the fMRI experiment, entail-
ing that participants did not need to learn the distribution.
One possibility is that learning from recent reward expe-
rience and attending to fast-changing contextual cues (as
in Experiment 2) are demanding cognitive processes that
compete against each other, leading to reliance on the
latter process alone (which is more informative about up-
coming reward). By contrast, attending to slow-changing
contextual cues or knowing explicitly the contextual
reward distributions (as in the fMRI experiment) might
make fewer demands on cognitive resources, allowing
participants to attend to both contextual cues and past
reward experience. Investigating this hypothesis requires
an assessment of the relative amount of cognitive re-
sources necessary to attend fast- and slow-changing con-
textual cues, respectively.

An important question arising from our findings is on
the link between the learning mechanisms identified
here and cognitive functions such working memory. A
possibility is that cue-dependent learning recruits work-
ing memory, at least when contexts alternate rapidly. This
is supported by our observation that cue-dependent
learning suppresses cue-independent learning when cues
alternate rapidly, suggesting the involvement of high-
demanding cognitive functions including working mem-
ory. Under such conditions, fast and flexible working
memory mechanisms would be most useful. Moreover,
the observation of a decreasing learning rate characterizing
cue-dependent learning may be consistent with the in-
volvement of working memory, whereby during the initial
stage beliefs update quickly and are retrieved flexibly there-
after. Although these aspects support the involvement of
working memory during cue-dependent learning (at least
when cues alternate quickly), we note that another funda-
mental feature of working memory is limited capacity,
which implies a loss of information if the cognitive load
increases. We did not manipulate the cognitive load (as,
for instance, did Collins & Frank, 2012). Research that
assesses the impact of cognitive load on the learningmech-
anism studied here would be necessary to establish the
involvement of working memory.

The coexistence (at least in some conditions) of cue-
dependent and cue-independent learning (with an impact
on value adaptation) leads to questions about their rela-
tionship. One possibility is that a unique brain system is
responsible for computing both representations. Alter-
natively, different brain systems may be involved. For in-
stance, the VTA/SN may mediate learning from recent
reward experience independent of any cue-related informa-
tion, whereas hippocampus may mediate cue-dependent
learning (Rigoli, Friston, & Dolan, 2016; Wimmer &
Shohamy, 2012; Rudy, 2009; Shohamy, Myers, Hopkins,
Sage, & Gluck, 2009; Doeller, King, & Burgess, 2008;
Fanselow, 2000; Holland & Bouton, 1999). This possibility
is indirectly supported by our findings that cue-independent
learning is guided by a constant learning rate whereas cue-
dependent learning is driven by a decaying learning rate.
There is a parallel between the difference in learning rate
found here and differences in neural processing observed
in VTA/SN, striatum, and amygdala on the one hand and
the hippocampus on the other (Rudy, 2009; Marschner,
Kalisch, Vervliet, Vansteenwegen, & Büchel, 2008; Matus-
Amat et al., 2004; Fanselow, 2000; Holland & Bouton,
1999). Though our task does not imply any hierarchical or-
der between the two forms of learning that emerged here,
one possibility is that they map to different hierarchical
levels in the participants’ model of the world, as described
formally by hierarchical Dirichlet process and hierarchical
reinforcement learning models (Teh et al., 2012; Botvinick,
Niv, & Barto, 2009; Barto & Mahadevan, 2003).
Previous research has left open the question of whether

presenting options elicits a response in VTA/SN and ventral
striatum that reflects the average EV of options (Bartra
et al., 2013) or an RPE signal (Schultz et al., 1997). One
important previous study did analyze RPE signaling at the
time of option presentation (Hare, O’Doherty, Camerer,
Schultz, & Rangel, 2008). However, in that study, at the
time of option presentation participants received also a
monetary outcome that was independent of choice, and
that outcome was included in the analysis as a component
of the RPE signal. In other words, in the study of Hare et al.
(2008), the effects of outcome and option are combined, as
they occur simultaneously and are analyzed together. We
sought to examine an unconfounded case in which there
are only options and no outcome. We address this question
showing that, consistent with an RPE signal dependent on
presenting options, activity in ventral striatum and VTA/SN
was characterized by a positive and negative correlation
with actual and predicted option EV, respectively. These re-
sults indicate that activity in the striatum and VTA/SN re-
flects predictions about option EV that correspond to the
contextual reward. This indicates that neural representa-
tions of EV predictions are not fixed but evolve on the basis
of previous experience. In addition, these findings show
that the temporal dynamics of this form of learning in
the brain reflect the dynamics observed in choice behavior,
as both indicate that EV predictions depend on recent—
and not long-run—experience.
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The activity of dopaminergic neurons in VTA/SN and
the release of this neuromodulator in the ventral striatum
play a central role in signaling RPE during learning with
single rewards (Lak et al., 2014; Stauffer et al., 2014;
Pessiglione, Seymour, Flandin, Dolan, & Frith, 2006;
Tobler et al., 2005; Schultz et al., 1997). An influential
model proposes that phasic dopamine responses encode
RPE signals whereas tonic dopamine activity reflects be-
liefs about average reward (Niv et al., 2007). Our data
support the idea that dopaminergic regions process in-
formation about average reward, though they highlight
a phasic (i.e., RPE signaling), rather than tonic, response
associated with average reward (see also Diuk, Tsai,
Wallis, Botvinick, & Niv, 2013). Although fMRI does not
allow us to make neurochemical inferences, one possibil-
ity is that the context-related RPE signal found here is me-
diated by some aspect of dopaminergic functioning. We
emphasize also that our analyses are uninformative re-
garding the role of tonic neural activity (e.g., linked with
dopamine). Further research is necessary to elucidate the
role of the latter in contextual reward representations
formed during choice behavior, though links have been
reported between tonic activity in dopaminergic regions
and representations of average reward in other domains
(Hamid et al., 2016; Rigoli et al., 2016a). Influential views
propose a motivational role for dopamine and average re-
ward in energizing behavior (Niv et al., 2007; Salamone &
Correa, 2002; Dickinson, Smith, & Mirenowicz, 2000;
Berridge & Robinson, 1998). The link between motiva-
tional vigor and average reward in the context of choice
is potentially interesting but remains to be investigated.
In VTA/SN (but not in ventral striatum), the degree of

correlation between average reward and brain activity
was associated with choice adaptation to context. In
other words, for participants whose choice behavior
was affected more by expectations about option EVs,
VTA/SN response was also affected more by reward
expectations, consistent with the possibility that signaling
in VTA/SN might mediate learning and value adaptation
as expressed in behavior. The finding of a correlation
between adaptation in VTA/SN and adaptation in choice
is consistent with previous reports (Rigoli, Friston, &
Dolan, 2016; Rigoli, Rutledge, Dayan, et al., 2016). Here
we extend on these previous findings by showing that the
relationship between VTA/SN and behavioral adaptation
emerges also when average reward expectation is learnt
from previous trials.
The current data suggest various directions for future

studies. It is promising to take advantage of the richer
picture of contexts provided by forms of nonparametric
Bayesian generative modeling (Collins & Frank, 2013;
Gershman, Blei, & Niv, 2010; Gershman & Niv, 2010;
Redish, Jensen, Johnson, & Kurth-Nelson, 2007; Courville,
Daw, & Touretzky, 2006; Daw, Courville, & Touretzky,
2006), possibly hierarchically (Teh et al., 2012), whereby
participants can generate their own notion of context. An-
other direction is inspired by evidence that, in addition to

adapting to the mean of rewards, response in many brain
regions adapts to reward variability (Cox & Kable, 2014;
Park et al., 2012; Bermudez & Schultz, 2010; Kobayashi
et al., 2010; Rorie et al., 2010; Padoa-Schioppa, 2009;
Padoa-Schioppa & Assad, 2008; Tobler et al., 2005). An
open question is whether adaptation to variability charac-
terizes subjective value and choice and, if so, how repre-
sentations of reward variability are learnt. A third direction
is to examine the intricate complexities of temporal adap-
tation apparent in sensory systems (Panzeri, Brunel,
Logothetis, & Kayser, 2010; Wark, Fairhall, & Rieke,
2009; Kording, Tenenbaum, & Shadmehr, 2007; Fairhall,
Lewen, Bialek, & van Steveninck, 2001) or the second or-
der effects of alternating volatilities (Behrens et al., 2007).
A fourth direction would be to consider avoidance of pun-
ishments as well as the acquisition of rewards (Rigoli,
Chew, Dayan, & Dolan, 2016b; Rigoli, Pezzulo, & Dolan,
2016; Rigoli, Pavone, & Pezzulo, 2012).

In summary, we show that experience drives learning
of contextual reward expectations to which subjective
values are adapted. Learning supports the acquisition of
both cue-related and cue-unrelated reward expectations.
We clarify the neural substrates of learning contextual re-
ward representations highlighting an encoding of con-
text-related RPE in VTA/SN and ventral striatum, with
activity in the former region linked with choice adapta-
tion to context. These findings are relevant for under-
standing the connection between reward learning and
context sensitivity.
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