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Abstract 
 
A new common mortality modeling structure is presented for analyzing mortality dynamics for a pool of 
countries, under the framework of generalized linear models (GLM). The countries are first classified by fuzzy 
c-means cluster analysis in order to construct the common sparse age-period model structure for the mortality 
experience. Next, we propose a method to create the common sex difference age-period model structure and 
then use this to produce the residual age-period model structure for each country and sex. The time related 
principal components are extrapolated using dynamic linear regression (DLR) models and coherent mortality 
forecasts are investigated. We make use of mortality data from the “Human Mortality Database”. 
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1. Introduction 
 
The aim of this paper is to construct common mortality trends from a pool of countries with similar mortality 
experiences, and accordingly to model and forecast mortality rates for each individual country in a coherent 
manner, allowing for age-period effects. Many authors have discussed the benefits of common mortality 
modeling and coherent forecasts. Li and Lee (2005) report that mortality patterns and trajectories in closely 
related populations are likely to be similar in some respects, and differences are unlikely to increase in the long 
run, and it should therefore be possible to improve the mortality forecasts for individual countries by taking into 
account the patterns in a larger group. It is apparent that the populations of the world are becoming more closely 
linked by communication, transportation, trade, technology, and disease. They state that it would be improper to 
prepare mortality forecasts for individual national populations in isolation from one another and still more so for 
the regions within a country. They further argue that it seems likely that forecasts for individual countries could 
be improved by exploiting the additional information contained in the experience of similar countries. Non-
divergent forecasts for sub-populations within a larger population have been labeled “coherent”. Lee (2003) 
reports that national mortality trends should be viewed in a larger international context rather than being 
analyzed and projected individually, and the approach of forecasting mortality for individual countries with 
reference to the international context is very appealing, and should be the natural route for future developments 
to take. Also, he believes that whether this approach is applied to life expectancy itself, or to a Lee- Carter type 
k  factor, or in some other way, will have to be settled by further research. Wilson (2001) has documented a 
global convergence in mortality levels, and states that, if we consider demographic transition in the light of a 
broader modernization theory, it is clear that social and demographic change has progressed far more rapidly 
than economic development, and that a large majority of the world’s population is (or soon will be) 
demographically “modern” by any definition. White (2002) has reported convergence in life expectancy among 
21 industrialized countries during the postwar period, and he mentions that the wealthy world is merely 
becoming more similar in its lifestyles, and globalization may be occurring among rich countries in practices 
affecting mortality, and this could lead to converging mortality patterns. Further, many authors discuss the 
processes of catch-up and convergence. Oeppen and Vaupel (2002) have noted that some countries converge 
toward the leader (e.g. Japan), some have moved away from it (e.g. the US in recent decades), and some move 
more or less parallel to it. White (2002) has found that nations experience more rapid life expectancy gains 
when they are farther below the international average, and conversely, and therefore tend to converge towards 
the average. 
 



The remainder of the paper is organised as follows. In section 2, utilizing mortality data from the “Human 
Mortality Database, we group 35 countries using fuzzy c-means cluster analysis. In this way, we form the West-
cluster and East-cluster countries, for both sexes, and we construct the common age-time mortality dynamics, 
using 19 males West-cluster countries. Next, we employ Sparse Principal Component Analysis (SPCA) to these 
common mortality rates, in order to derive the common age-period model structure, for both sexes. In section 3, 
we construct the sex difference mortality dynamics, and compare the mortality experience of males and 
females. In section 4, we analyze the residual particularities for each country, based on the common age-period 
model for males, and the common age-period and sex difference model structure for females. In section 5, we 
utilize dynamic linear regression (DLR) model structures, to implement coherent forecasts. Finally, in section 6, 
we discuss the results and offer some concluding comments. 
 
 
2. Common age-period mortality dynamics 
 
Initially, we need to choose which countries will be selected to describe the common patterns of mortality 
dynamics. We require the pooled countries to contain similar characteristics. Cluster analysis is a reasonable 
approach to separate the countries into clusters with similar mortality dynamics. Data clustering is the process 
of dividing data elements into classes or clusters so that items in the same class are as similar as possible, and 
items in different classes are as dissimilar as possible.  
 
Following Hatzopoulos and Haberman (2009)), the log-graduated central mortality rates, in age-period effects, 
can be decomposed as an age-period association model structure (see model 2, Hatzopoulos and Haberman 
(2009)). According to this model structure, the main time effects component,  values, is an index of the 
level of mortality that captures the overall time trend at all ages, and summarizes the overall mortality dynamics 
across time. Also, the main time trends are independent of the level of mortality (a zero centred vector, 
constructed by linear combinations of principal component scores). Therefore, we could base our cluster 
analysis on these main time trends. In classic cluster analysis, the data are divided into distinct clusters, where 
each data element belongs to exactly one cluster. Alternatively, in fuzzy clustering, data elements can belong to 
more than one cluster, each associated with a membership level. This indicates the strength of the association 
between that data element and a particular cluster. Utilizing Fuzzy C-Means cluster analysis on the main time 
effects, for each country, we can distinguish the similarities or the dissimilarities among the countries. One of 
the most widely used fuzzy clustering algorithms is the Fuzzy C-Means (FCM) Algorithm. This technique was 
originally introduced by Jim Bezdek as an improvement on earlier clustering methods (Bezdek, 1981). The 
FCM algorithm attempts to partition a finite collection of c elements 

( )b t

1 2 ,...,, cX X X X=   into a collection of  f  
fuzzy clusters. The algorithm returns a list of  f  cluster multidimensional centres 1 2, ,..., fC C C C

iju
= , and a 

partition matrix of membership grades [0, 1], i=1, . . .,c,  j=1, . . .,f, where each element  tells the 

degree to which element 
ijU u= ∈

iX  belongs to cluster jC .  
 
We utilise the mortality data from the “Human Mortality Database” (HMD) (www.mortality.org). The bulk of 
countries (35 countries), from the HMD, have a common time range 1960-2006, and hence we apply the FCM 
algorithm to those national mortality data. Experiments with different numbers of clusters, gives a distinctive 
separation with f=2 clusters. In Table 1, the  columns give the optimum number of GLM parameters for the 
graduated (or full) model structure, according to the Bayesian Information Criterion (BIC) (see Hatzopoulos 
and Haberman (2009) equation 2.1). The 

rk

rμ -values are the overall means for each country, according to the 
age-period association model structure, and equal to the average value of the logged central rates of mortality 
across age and time. The -values, give the fuzzy c-means membership levels for the first cluster (the 
membership value for the second cluster is complementary to the first one).  

1iu

 
According to the -values, in Table 1, we form the males and females first cluster countries, which consists of 
25 countries and 26 countries respectively. The common countries that belong to the first cluster, for both sexes, 
are the following 24 countries: Sweden, France, Denmark, E&W (England & Wales), Norway, Netherlands, 
Scotland, Italy, Switzerland, West Germany, Finland, Spain, Ireland, Belgium, Austria, Portugal, Luxembourg, 
Australia, New Zealand, Canada, USA, Japan, Czech and East Germany. The countries are sorted in decreasing 
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manner according to their fuzzy c-means -membership levels. White (2002) has observed that a group of 17 
countries with a real GNP per capita of at least half that of the United States in 1970 and continuously 
democratic government, show strong convergence on life expectancies, for the period 1955-96. The countries 
involved are: Australia, Austria, Belgium, Canada, Denmark, Finland, France, West Germany, Italy, Japan, 
Netherlands, New Zealand, Norway, Sweden, Switzerland, United Kingdom and USA. We note that all of these 
17 countries belong to the first West-cluster (Table 1,  values). Also, Wilson (2001), using data from the 
World Population Prospects (United Nations 1999), has discussed the fundamental differences in the respective 
histories of the First, Second, and Third Worlds over the last 50 years which justify the trichotomy: developed, 
developing and former Communist states of the Soviet Union and Eastern Europe. In that assessment, “former 
Communist” is defined as the Soviet Union and all European countries ruled by Communist parties in the Cold 
War era, and the “developed” category includes the other European countries, along with the United States, 
Canada, Australia, New Zealand, and Japan, and “developing” is the rest of the world. In Table 1, all of the 
countries with large  values belong to the “developed” countries, except for the Czech Republic and East 
Germany.  

1iu

r

1iu
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In addition, applying the FCM clustering algorithm to the remaining East-cluster countries (10 countries for 
males and 9 for females), gives another distinct pair of countries. The -values, in Table 1, give their fuzzy c-
means membership levels for the first East sub-cluster. We observe distinct -values for the countries: 
Belarus, Ukraine and Russia, for both sexes, which form the first sub-cluster of the East-countries.  

1iv
1iv
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μ  1iu  1iv  Females rk  rμ  1iu  1iv  

1 Sweden 16 -5.452 99%  Canada 17 -5.859 99%  
2 E&W 23 -5.318 99%  Sweden 15 -5.986 98%  
3 France 23 -5.152 99%  Switzerland 15 -5.934 98%  
4 Belgium 16 -5.773 98%  France 17 -5.847 98%  
5 Netherlands 16 -5.397 98%  Belgium 16 -5.773 98%  
6 Switzerland 16 -5.310 98%  Australia 17 -5.844 96%  
7 Canada 17 -5.266 98%  Austria 16 -5.778 96%  
8 New Zealand 16 -5.181 98%  E&W 17 -5.837 95%  
9 Portugal 16 -4.934 98%  W.Germany 17 -5.787 95%  
10 Italy 18 -5.284 97%  Portugal 15 -5.584 95%  
11 Norway 16 -5.335 96%  Spain 17 -5.881 93%  
12 Australia 17 -5.249 96%  Italy 18 -5.901 92%  
13 Spain 17 -5.249 96%  Finland 15 -5.828 92%  
14 W.Germany 23 -5.199 96%  New Zealand 10 -5.714 90%  
15 Austria 16 -5.127 96%  E. Germany 16 -5.692 90%  
16 USA 24 -5.071 96%  Ireland 10 -5.764 88%  
17 Finland 16 -5.068 96%  Scotland 15 -5.677 83%  
18 Luxembourg 9 -5.009 96%  Netherlands 16 -5.921 82%  
19 Iceland 9 -5.287 93%  Japan 17 -5.930 80%  
20 Scotland 16 -5.126 93%  Luxembourg 8 -5.536 80%  
21 Ireland 10 -5.204 89%  Czech 16 -5.675 78%  
22 E. Germany 16 -5.101 88%  USA 24 -5.666 78%  
23 Japan 24 -5.360 87%  Denmark 11 -5.788 76%  
24 Czech 16 -5.004 87%  Poland 17 -5.629 73%  
25 Denmark 16 -5.269 81%  Norway 10 -5.973 70%  
26 Poland 22 -4.908 44% 9% Slovakia 15 -5.634 60%  
27 Slovakia 16 -4.935 42% 10% Hungary 16 -5.506 33% 13% 
28 Hungary 16 -4.889 18% 5% Iceland 6 -5.742 15% 34% 
29 Belarus 16 -4.730 7% 95% Russia 27 -5.280 12% 94% 
30 Ukraine 19 -4.643 7% 98% Ukraine 20 -5.386 9% 98% 
31 Russia 24 -4.445 7% 95% Belarus 16 -5.520 8% 95% 
32 Estonia 10 -4.654 5% 20% Estonia 10 -5.486 7% 14% 
33 Latvia 15 -4.604 4% 35% Bulgaria 16 -5.496 5% 15% 
34 Bulgaria 16 -4.954 3% 31% Latvia 10 -5.429 5% 15% 
35 Lithuania 15 -4.717 1% 56% Lithuania 14 -5.514 4% 6% 

Table 1: Number of optimum GLM parameters, grand means, and fuzzy c-means membership levels, for time period 1960-
2006, for both sexes, with countries in decreasing manner according to their fuzzy c-means membership levels. 
 



In panel 1.M.a of Figure 1, we display the fuzzy cluster centres, ( )1 2,C C , in time effects for the males West-
cluster countries (graph with decreasing trend) and the males East-cluster countries (graph with relative steady 
trend). Panel 1.F.a, similarly displays the cluster centres for the females West-cluster countries (graph with 
decreasing trend) and the females East-cluster countries (graph with slight decreasing trend). In panels 1.M.b & 
1.F.b, respectively, we display the cluster centres, ( )1 2,C C , for the two East sub-cluster countries for both 
sexes. We note the change in the trend of the cluster centres after 1990s, for each East sub-cluster, for both 
sexes. The increasing trend, particularly after the 1990s, for males refers mainly to Belarus, Lithuania, Ukraine 
and Russia and for females refers to Belarus, Ukraine and Russia (with larger  values, Table 1). For the 
remaining East-cluster countries, namely: Poland, Slovakia, Hungary, Estonia, Latvia and Bulgaria for males, 
and Hungary, Iceland, Estonia, Bulgaria, Latvia and Lithuania for females (with smaller  values, Table 1), 
the decreasing trend is noticeable after the 1990s, for both sexes. 
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Figure 1: Cluster centres in fuzzy c-means clustering. 1.M.a & 1.F.a graphs refer to all 35 countries, which form the West 
(graphs with decreasing trend) and East cluster countries, for males-females respectively. The 1.M.b & 1.F.b graphs refer 
to the sub-clusters of the East-cluster countries (the increasing trend, after the 1990s, refers mainly to Belarus, Ukraine and 
Russia), for males-females respectively. 
 
Although we could employ the West-cluster mortality experience for the time period 1960-2006 for fitting the 
models, we need to refer to as long a mortality history as possible, in order to produce viable long term 
forecasts. Many authors begin their mortality analyses after the second half of the 20th century, effectively after 
the end of World War II, for modelling and forecast purposes. For example, Lee (2003) comments that the 
mortality age schedule has changed shape between the first and second halves of the 20th century. These results 
indicate that any forecasts would better be based on the post-war mortality experience, when mortality patterns 
have changed, in comparison with earlier periods of time, on the assumption that these dynamics will continue 
into the future. Therefore, we utilize the post-war mortality experience to construct common mortality trends, 
including all of those countries which belong to the West-cluster countries, and have available mortality data 
from the HMD since 1947. As a result, the countries included are the following 19 countries: Sweden, France, 
Denmark, E&W, Norway, Netherlands, Scotland, Italy, Switzerland, Finland, Spain, Ireland, Belgium, 
Australia, Canada, USA, Portugal, Japan and Austria.  
 
We next proceed to construct a model for common mortality trends, based on the above mentioned 19 West-
cluster countries, for both sexes. In Hatzopoulos and Haberman (2009), the GLM parametric method for 
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modeling the age mortality effects is based on heteroscedastic Poisson error structures. In this context, the data 
for analysis, which are denoted by , , , ,( ,x t r x t rd R , comprise the observed number of deaths, , ,x t rd , with 

matching central exposures to the risk of death, , ,x t rR

1t nt
, defined over rectangular data grids (x,t), with t ranging 

over the individual calendar years range [ , ] and x ranging over the age range [ 1x , ax ], for each country 
. We model the response variates, the observed number of deaths as independent realizations of 

Poisson random variables, 
1 2, ,..., cr r r r=

, ,x t rD , conditional on the central exposures , ,x t rR , i.e. 

, , , , ,( ( ) )x t rD Poiss∼ x r x t ron m t R⋅  (Brillinger, 1986), for each calendar year independently:   

, , , , ,( ) ( )x t r x r x t rE D m t R= ⋅   and  , , , , ,( ) ( )x t r t r x t rVar D E Dϕ= ⋅  

where  denotes the central rate of mortality, for each age, calendar year and country. The over-dispersed 
parameter  is independent of the response variate, and is the theoretical equivalent of the empirical variance 
ratio r discussed by Forfar et al (1988) and can be estimated by the ratio of the quasi-deviance divided by the 
associated degrees of freedom. 

, ( )x rm t

,t rϕ

 
Under this approach, we need to construct pooled common number of deaths with matching central exposures 
in order to construct common central rates. We note that, if we were just to add up the actual number of deaths 

from all the countries together, say 
1

, ,. , ,

cr

x t
r r

d d
=

=∑ x t r , treating them as independent realizations of Poisson 

random variables, , ,.x tD , conditional on the central exposures 
1

, ,. , ,

cr

x t
r r

R R
=

=∑ x t r , i.e. 

, ,. , ,
ˆ( .)x tD Poisson D∼ x t , for each calendar year independently, then the countries with the biggest populations 

would dominate the overall mortality analysis. We need weighted deaths , ,
w
x t rd , and matching weighted central 

exposures , ,
w
x t rR , such that, each country will contribute equivalent to the pooled common mortality experience. 

Applying unweighted deaths, to the model structure proposed in this paper, results in reducing the coherent 
structure. We construct a set of weights under the assumption that, for each calendar year, the sum of the 
weighted deaths over all ages are equal for each country. For identification reasons, the sum of the weights, per 
calendar year, over all countries must sum up to the number of countries. The weights that satisfy the above two 

constraints for each country and calendar year are given by 

1

,

., ,
., ,

1c
t r r

t r
t rr r

cw
d

d=

= ⎡ ⎤
⎢ ⎥ ⋅⎢ ⎥⎢ ⎥⎣ ⎦
∑

, where  

denote the sum of deaths over all the ages, for each country and calendar year. The constructed weighted deaths 
are the product of the constructed weights and the observed deaths, i.e. 

1

., , , ,

ax

t r x t r
x x

d d
=

= ∑

, ,, , ,
w
x t r t r x= ⋅ t rdd w , with matching 

weighted central exposures , , , , ,
w
x t r t r x t rR w R= ⋅ . In the specific situation, where the sum of deaths over all the 

ages are equal for each country, then the weights are equal to one and the weighted deaths are equivalent to the 
observed deaths. We now model the weighted number of deaths, , ,

w
x t rd , as independent realizations of Poisson 

random variables, , ,
w
x t rD , conditional on the weighted central exposures , ,

w
x t rR , i.e. 

, , ,
w

, ,) )w( (x t r x rD Poisson m∼ x t rR⋅t , for each calendar year independently:  , ,( ) , , ,( )w w
x t rE D = x r x t rm t R⋅   and  

, , ,( )w
, , )w(x t r t rVar D Eϕ= ⋅ xD t r . Then, the sum of the independent Poisson random variables , ,

w
x t rD  from the 

pool of countries follows a Poisson process:  

1

, ,. , , , ,.( ( ) )
cr

w w w
x t x t r x

r r
D D Poisson m t R

=
= ⋅∑ ∼ x t  

per calendar year independently: , ,. , ,.( ) ( )w w
x t xE D m t R= ⋅ x t ) and , ,. , ,.( ) (w w

x t t xVar D E Dϕ= ⋅ t , where  
denotes the “common” central rate of mortality, for each age and calendar year.  

( )xm t



 
Similarly to the approach of Hatzopoulos and Haberman (2009), we can define the common graduated (or full) 
model structure:  

1 1
1

 ˆlog( ( ))= ( ) ( )
k

x j j
j

m t t L xβ − −
=

⋅∑      (1) 

where 1( )jL x−  denotes an orthonormal (Legendre) polynomial of degree j-1, the random variables 1( )j tβ −  are 

the GLM estimated parameters, for each calendar year independently, and  denotes the optimum number of 
parameters, determined by maximizing the Bayesian (or Schwarz) Information Criterion. 

k

 
Following the approach of Hatzopoulos & Haberman (2011), we apply sparse principal component analysis 
(SPCA) to the matrix B of the estimated GLM parameters. As discussed by Lansangan and Barrios (2009), in 
the case of a non-stationary time series, the simultaneous drifting of the series may register as correlations 
between the columns, and a single linear combination of all the time series can explain the variability existing in 
the input data and hence explain the failure to achieve dimension-reduction. SPCA improves this problematic 
feature by giving a better clustering of significant high factor loading values. Sparseness can be attained in 
constructing principal components of non-stationary time series by imposing constraints on the estimation of the 
component loadings. The SPCA approach can be differentiated from the Lee-Carter (LC) model, since it utilizes 
more than one (sparse) principal component (extracted from the GLM non-stationary time series parameter 
estimates of lower dimension). LC is based on the method of principal components (PC), which combines 
together, into the same component, variables with similar loadings, thus giving equal importance to most of the 
variables. The basic LC method requires that the mortality improvements at all ages will follow a fixed pattern, 
modelling (possible different) mortality dynamics with the same factor. This approach may lead to spurious 
interpretations and problems with forecasting (Hatzopoulos & Haberman (2011), section 3.5). We note, in 
passing, that the basic LC model has been enhanced by the inclusion of higher order terms – see, for example, 
Booth et al (2002) and Renshaw and Haberman (2003).  
 
In various mortality studies, substantial age-time interactions have been observed, which, under the SPCA 
approach, can be modelled by different SPCs. The common mortality trends, constructed for the 19 West-
cluster countries and for the 2 genders combined, reveal decreasing rate of mortality improvements for the 
childhood-early middle ages, relative stable mortality improvements for the middle ages, and accelerating rates 
for the old ages, during the last few decades. Many authors have described similar features of the mortality 
dynamics. Thus, Lee (2003) has commented that the mortality age schedule has changed shape between the first 
half of the 20th century, when the mortality decline was much more rapid for the young than for the old, and the 
second half of the century, when there has been little difference among the rates of decline above age 20 or so. 
Also, Horiuchi and Wilmoth (1998) have noted that, just when the age-specific death rates of the young have 
become very low, the rates of decline in mortality rates at the older ages have begun to accelerate, and Glei and 
Horiuchi (2007) conclude that, for the industrialized countries during recent decades, the gain in life expectancy 
is mainly due to changes in adult mortality.  
 
As a result, applying SPCA to the matrix B of the estimated GLM parameters, we extract the most important 
mortality dynamics in age-time effects, after keeping an optimum subset p (< ) of the SPCs which explains 
the “majority” of the variance, thereby giving the common age-period (sparse) model structure:  

k

1
ˆlog( ( ))= ( ) ( ) ( ) ( )

p

x i i
i

m t A x g x Y t tε
=

+ ⋅ +∑ x              (2) 

where ( )A x  is a set of age-specific constants, describing the relative pattern of mortality by age. The  
values describe the relative importance for age x of the responses to the variations and trends in the time 
variable. The  and  terms embody the interactions between age and time. The model structure (2) 
can be decomposed into a common age-period association model structure (Hatzopoulos and Haberman 
(2009)):  

( )ig x

( )ig x ( )iY t

1
 ˆlog( ( ))= + ( ) ( ) ( ) ( ) ( )

p

x i i x
i

m t x b t f x Y t tμ α ε
=

⋅+ + +∑        (3) 
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The component μ  is the overall mean, ( )xα  and are the main age and time effects respectively (zero 
centred independent components). The main time effect is an index of the level of mortality that captures the 
overall time trend at all ages. The main time effect is a linear combinations of the PCs with weights from the 
first row of the (sparse) eigenvector matrix. The shape of the (zero centred) 

( )b t

( )if x  profile indicates which age 
specific rates respond rapidly and which slowly over which period of time, in response to particular trends in 

. For negative ( )iY t ( )if x  values, increasing (decreasing) values of  represent a faster rate of 
improvement (deterioration) relative to the independent model, and for positive 

( )iY t
( )if x  values, increasing 

(decreasing) values of  represent a faster rate of deterioration (improvement) relative to the independent 
model, with the relative degree of deterioration (improvement) indicated by the first derivative of the ’s. 

( )iY t
( )iY t

 
Luss and Aspremont (2006) show that, given a covariance matrix kA S∈ , the (dual) problem of finding the 
sparse factors which explain the maximum amount of variance in the data can be written as follows (using 
semidefinite relaxation techniques to compute the approximate solutions):  Minimize max ( )A Xλ ⋅ +   subject to 

ijX s≤ , kX S∈  where s is a scalar which defines the sparsity (higher values of s gives more sparsity). In our 

case, the covariance matrix , is the covariance matrix of the estimated GLM parameters B. The (sparse) 
covariance matrix X is the solution of this problem. The sparse loadings are now calculated by the eigenvalue 
decomposition of the sparse covariance matrix X. According to the above (dual) problem, the sparse s-value is 
the maximum value we give to the sparse covariance matrix, with different s-values leading to different age-
time dynamics. The sparse s-value should, if possible, reflect the observed age-time interactions of the mortality 
dynamics in a parsimonious and convenient way.  In experiments with various national mortality experiences, 
we obtain interpretable results when the sparse s-value is equal to the variance of the first column vector 

kA S∈

0β  in 
matrix B, which is the biggest value of the covariance matrix Cov(B). This particular choice for the sparse s-
value, produces primarily two SPCs, which explain the majority of the total variance (usually above 97%). We 
find that the first age group corresponds to young-early middle ages mortality dynamics and the second age 
group corresponds to middle-senescent mortality (the exact definition, and hence separation, of the two age 
groups depend on the time period involved). The resulting first two sparse eigenvectors have a particular 
structure. The ratio of their first two row values, say 1,1 1,2/a e e= , is equal to the inverse of the remaining row 

ratios, i.e.  . This feature leads to a linear relationship between the first two age 
profiles in model (2), or equivalently a fixed ratio between the first two age profiles in model (3): 

, since , where 

,1 ,2i ie e

1/ ( )x f x

/ 1/ a=  1,i∀ =

1,( )g x e

...,

0i i L= ⋅

k

2( )a f= ( )if x+ ,
2

k

i j
j

1( )i j( )f x e
=

= ⋅∑

t

L −

( )

x  and L denotes the design 

GLM matrix (Hatzopoulos and Haberman (2009), model (2.3)). Therefore, the first two sparse interaction terms 
in model (2) can be rewritten as 1  ( ) ( )f x Y⋅b t′ + , where  and 1( ) ( )Y t a Y= − 2 ( )t⋅Y t

[ ]1( )a Y t⋅ 2( )Y t+( )b t l′ = ⋅ , for . We note that the 0l L= ⋅ 1,2e (b t)′  term is almost equal to the main time trend 
 in model (3), and that the difference between them is the contribution of the remaining SPCs to the main 

time trend. As a result, this structure defines a scaling factor, , which, under linear combinations, transforms 
the dependent first two main SPCs into two different mortality dynamics: the main time trend caused by the two 
age groups; and the time trend representing the relative difference between young and adult mortality. This 
particular structure is further investigated for forecast purposes in section 5.  

( )b t
a

 
In ordinary PC analysis, the PCs are uncorrelated and their loadings are orthogonal. In SPCA, the loadings are 
forced to be orthogonal but the uncorrelated components condition is not explicitly imposed. Thus, the total 
variance explained by the correlated SPCs cannot be represented by (tr Y Y )′ ⋅ , where Y denotes the SPCs. 
According to Zou et al (2006), using QR decomposition, the adjusted variance can be easily computed. Thus, if 

, where Q is orthonormal and R is upper triangular, then the explained total variance is equal to Y Q R= ⋅

2

1

k

jj
j

R
=
∑ , and the percentage variance explained by the j-component is 2 2

1
/

k

jj j
j

jR R
=
∑ . 
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Figure 2, displays the sparse components based on the common age-period (sparse) association model structure 
(3), for both sexes, from the pooled experience of the West-cluster 19 countries and time period 1947-2006. The 
optimum number of GLM parameters, by maximizing the Bayesian (or Schwarz) Information Criterion, for 
both sexes, is k=23. Concerning the graduation process (model structure (1)), the standardized deviance 
residuals (SDR) plotted against age, time and cohort effects, shows that the overall patterns of the total SDR 
indicate an appropriate fit, with R-squared statistics 99,92%. The first two (sparse) interaction terms describe 
the different dynamics of the two age groups. For the males experience, the first two SPCs account for 97.21% 
of the total adjusted variance explained and for females 98.61% the total adjusted variance explained (after QR 
decomposition). For males, the first interaction term accounts for 96.14% of the total adjusted variance and 
refers mainly to young ages 0-17, and for females it accounts for 98.41% and refers mainly to ages 0-35 
(positive 1( )f x  values, Figure 2). For males, the ages 18-35 have higher ( )xα  values than females (Figure 2, 
graph ( )xα ), and are grouped on the second SPC. Thus, for males, we separate the young 0-17 ages which 
belong to the most significant mortality dynamic, as described by the  graph (the steeper curve 
corresponds to females experience), and the remaining ages which are described by the  graph (the steeper 
curve corresponds to males experience).  

1( )Y t

2 ( )Y t

  
( )xα                                                                                  ( )b t

  
1( )f x                            1

( )Y t

  
2 ( )f x                               

2
( )Y t
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Figure 2:  Dynamics in age-time effects based on the common age-period (sparse) association model structure (3), with 
associated CIs, for both sexes. ( )xα  &  graphs, display the independent main age and time effects respectively. ( )b t

( )if x  &   graphs (for i=1,2), display the first two (sparse) interaction terms. The shape of the ( )iY t ( )if x  age profile 
indicates which age specific rates respond rapidly and which slowly over which period of time, in response to particular 
time trends in . (iY t)
 
 
3. Common Sex Difference mortality dynamics 
 
Figure 3, presents the time profile of the sex difference between the common main time trends plus the sex 
difference between their overall means, ( ( ))D b tμ + , and the sex difference between the life expectancies, 

0( ( ))D e t . In both graphs, we observe increasing differences up to 1980s and thereafter a decline (in a more 
accelerated way for life expectancies, in comparison with the main time trend).  

  

  
( ( ))D b tμ +        0( ( ))D e t

Figure 3:  Sex differences, in main common time trends and in common life expectancies, in time effects.  
 
Sex differentials in mortality are normally attributed to trends in behavioral and social risk factors such as 
cigarette smoking, heavy drinking, violence and occupational hazards (Preston 1970). Also, many authors have 
discussed the observed narrowing effect in life expectancies between the sexes. Mesle (2004) has stated that sex 
differences in life expectancies began to narrow, around the 1980s, in the industrialized countries of Northern 
Europe, Northern America and Oceania. Glei & Horiuchi (2007) have demonstrated that, more recently, the sex 
differential has begun to decline in Western Europe and appears to be leveling off among several countries in 
Southern Europe. Attempts to explain the recent narrowing have focused on causes of death, as well as 
behavioral and medical factors that would lead to reduced sex ratios in mortality rates. These factors include 
increased smoking among women while its prevalence has declined among men, and advances in medical 
treatments for cardiovascular disease that have benefited men more than women (Waldrom, 2005).  
 
In order to model the sex differentials and identify the ages which have contributed to the changes in the 
mortality gap between the sexes, both during the period when it widens (1947-1980) and during the period 
when it began to narrow (1980-2006), we construct the sex difference common age-period model structure. 
Based on the males common age-period graduated model structure (1), we produce a matrix of GLM parameter 
estimates, of order n by k, of   entries, say , for t=1,2,…n and j=1,2,…,k, and a 

matrix of graduated logged central mortality rates, of order n by x, of entries , say 

1( )j tβ − 1{ ( )M
j tB β −= }

ˆ ( )xm t ˆlog( ) M L′= ⋅M B , 
where L  denotes an orthonormal zero-centered polynomial. Let ( )tβ  denote the GLM estimated multivariate 
random variable at time t. From the properties of GLMs, each cross-sectional vector of the estimated parameters 
is a k-dimensional random variable, which follows asymptotically a multivariate k-dimensional normal 
distribution with associated covariance matrix, say , for each calendar year t. Constructing in an analogous 
manner the females common age-period graduated model structure, with the same 19 West-cluster countries, 
we produce another matrix of GLM parameter estimates, of order n by k, say B . The difference between these 
two matrices, i.e. the random matrix 

tΣ

F

D FB B= − MB , defines another cross-sectional k-dimensional random 
vector of parameters, which follows asymptotically a multivariate k-dimensional normal distribution, with mean 
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equal to the difference between the females and males mean, and covariance matrix equal to the sum of the 
females and males covariance matrices, for each calendar year t.  
 
Applying PCA to the DB  matrix, we construct the sex difference common age-period model: 

1
ˆlog( ( ))= ( ) ( ) ( ) ( )

x x

p
D D D D

i i
i

m t A x g x Y t tε
=

+ ⋅ +∑                (4) 

where the  is the sex ratio of the logged graduated common central mortality rates, i.e. ˆlog( ( ))
x

Dm t

ˆ ( )
) log

ˆ ( )
x

x

F

M

m t

m t
=ˆlog( ( )

x

Dm t , where  denotes the males graduated common central mortality rates, and 

 denotes the females graduated common central mortality rates. Under model (4), we are able to identify 

the most important components of the sex differential in mortality, in terms of age and time effects.  

ˆ ( )
x

Mm t

ˆ ( )
x

Fm t

 
In Figure 4, panels 4.1.a & 4.1.b, display the first interaction component for the time period 1947-1980, which 
explains 95% of the total variance. We note the widening effect in time trend (  graph), which is 

influenced by all of the ages, and especially the age groups 15-35 and 60-75 (  graph). We also note the 

curvature, and hence the diminishing rate of divergence, in the time trend. These results are similar to those of 
Glei & Horiuchi (2007), who have concluded that ages 40 and over were the biggest contributors to this 
increase, and especially ages 60-79 (based on their analysis of the sex differential effects, for 21 countries 
separately between the years 1950-54 to 1975-79 and 1975-79 to 2000-04, after pooling the data into 5-year 
time intervals and 5-year age groups).  

1
( )DY t

)x
1

(Dg

 
Panels 4.2.a, 4.2.b, 4.3.a and 4.3.b display the first two interaction components for the second time period 1980-
2006. The first interaction term (panels 4.2.a & 4.2.b), shows the narrowing effect for the age groups 0-20 and 
40-75, and the widening effect for ages 75+, and it explains 57% of the total variance. The age group 20-40 
refers to the second interaction term (panels 4.3.a & 4.3.b), which shows a widening effect until the 1990s and a 
narrowing thereafter; it explains the 20% of the total variance. These results are in accordance with the findings 
of Glei & Horiuchi (2007), where the biggest contributors to reducing the mortality gap were those aged 40-79, 
and in contrast, the mortality of those aged 80 and older continued to have a widening effect on the gap (for all 
countries execpt USA).  
 
Panels 4.4.a & 4.4.b display the first interaction component for the whole time period 1947-2006, which 
explains 88% of the total variance. We note the widening effect in the time trend until the 1980s, and the 
narrowing effect afterwards, which is influenced by all ages, and especially by the age groups 15-35 and 60-75. 
This is the overall effect from the two different time periods (1947-1980 & 1980-2006) which describe 
adequately the dynamics of the sex differential in mortality over the whole time period, since the widening 
effect before 1980s and the narrowing effect after 1980s refer mostly to the same age groups. Glei & Horiuchi 
(2007) confirm that the age groups which contributed to widening the gap in the earlier period also contributed 
to the narrowing in this more recent period (between the years 1950-54 to 1975-79 and 1975-79 to 2000-04 
respectively).  
 
The main reasoning for applying PCA instead of SPCA to the DB  matrix, comes from this result where only 
the first interaction term can effectively describe the major mortality sex differentials over time. Also, the 
observed stationarity for the  time series (Panel 4.4.b), enhances the use of the simpler PCA structure. 

1
( )DY t
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4.1.a  (1947-1980) 

   
4.1.b  (1947-1980) 

 1
( )Dg x

1
( )DY t

 

  
4.2.a  (1980-2006) 

   
4.2.b  (1980-2006) 

 1
( )Dg x

1
( )DY t

 

  
4.3.a  (1980-2006) 

   
4.3.b  (1980-2006)   

2
( )Dg x

2
( )DY t
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4.4.a  (1947-2006) 
   

4.4.b  (1947-2006)  
 1

( )Dg x
1

( )DY t



 
Figure 4:  Dynamics in age-time effects based on the sex difference common age-period model structure (4), for different 
time periods. Left graphs display the age profiles  in response to particular time trends  (with associated ( )

i

Dg x ( )
i

DY t
CIs). Graphs 4.1.a & 4.1.b display the first interaction component for the time period 1947-1980, graphs 4.2.a, 4.2.b, 4.3.a 
& 4.3.b display the first two interaction components for the time period 1980-2006, and graphs 4.4.a & 4.4.b display the 
first interaction component for the whole time period 1947-2006. 

  
In order to measure how well the common male two-factor model (model structure (2)) and the common male 
two-factor model plus the common sex difference factor model describes the common female mortality 
experience, we adopt similar explanation ratios with Li&Lee(2005). Thus, we define the females’ common 
explanation ratio for the common factor model, say 

C

FR , and the females’ common explanation ratio for the 

augmented common factor model, say 
AC

FR :  

( )
1 1

1 1

22

1

2

log( ( )) ( ) ( ) ( )
1

log( ( )) ( )

n a

x

C n a

x

t x
F F

i i
t t x x iF

t x
F F

t t x x

m t A x g x Y t
R

m t A x

= = =

= =

⎛ ⎞
− − ⋅⎜ ⎟

⎝ ⎠= −

−

∑∑ ∑

∑∑
=86.8% 

and  

( )
1 1

1 1

22

1 1
1

2

log( ( )) ( ) ( ) ( ) ( ) ( )
1

log( ( )) ( )

n a

x

AC n a

x

t x
F F D D

i i
t t x x iF

t x
F F

t t x x

m t A x g x Y t g x Y t
R

m t A x

= = =

= =

⎛ ⎞
− − ⋅ − ⋅⎜ ⎟

⎝ ⎠= −

−

∑∑ ∑

∑∑
=96.76% 

where  denote the females’ common crude central rates, and ( )
x

Fm t ( )FA x  denotes the females’ main age 

profile as constructed by the females’ common model structure. 
 
 
4. Residual analysis for each country 
 
In this section, we turn to the particularities of the mortality dynamics for each country and consider the 
residuals after subtracting the two common interaction terms from the pooled mortality model structure (2). 
This approach follows the suggestions of Lee (2003) and Cairns et al (2008, 2009). Preliminary experiments 
with the common mortality experience for females (as well as with the common mortality experience for the 2 
sexes combined), to model and forecast coherently the country specific experience has shown that the males 
mortality experience gives more distinct and better results in terms of goodness of fit and forecast performance. 
Consequently, we base the residual analysis, for both sexes, on the common mortality dynamics for males. 
Under this approach, we also need the common sex difference mortality dynamics (4) to model the female 
residuals.  
 
Thus, for the males experience, we consider the residuals for each country, conditional on the main individual 
age profile, say  and conditional on the two common interaction terms for males: ( )rA x

1,

2

, , , , , , , 1
1 1

 log( ( )) log( ( )) log( ) ( ) ( ) ( ) ( ) ( )
res
r

j r

k
res

x t r x t r x r x t r r i i j
i j

E D R m t R A x g x Y t t L xβ
− −

= =
⋅= ⋅ = + + ⋅ +∑ ∑  

 
This defines the males residual age-period graduated model structure, for each country, where the 

2

, ,
1

log( ) ( ) ( ) ( )x t r r i i
i

R A x g x Y t
=

+ + ⋅∑  term is treated as an offset. The main age profiles, , are 

estimated separately for each country, since they do not cause mortality divergence. Then, we apply ordinary 

( )rA x
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PC analysis to the associated matrix of these conditional GLM estimates, , leading to the males 

residual age-period model structure:   
1,

( )
j r

res tβ
−

, ,( ) (x rt ε+

1 1
)

res
r

k

i j
t β

= =
+∑ ∑

 

, ,

2

1 1
ˆlog( ( ))= ( ) ( ) ( ) ( ) )

res
r

i r i r

p
res res

x r r i i
i i

m t A x g x Y t g x Y t
= =

+ ⋅ + ⋅∑ ∑    (5) 

 
Similarly, for the females experience, we consider the residuals conditional on the individual main age profile, 

, and conditional on the two common interaction terms for males, and conditional on the common sex 
difference interaction term under model structure (4): 

( )rA x

1,

2

, , , , 1 1 1 log( ( )) log( ) ( ) ( ) ( ) ( ) ( ( ) ( )
j r

D D res
x t r x t r r i i jE D R A x g x Y t g x Y t L x

− −⋅= + + ⋅ + ⋅  

 
This defines the females residual age-period graduated model structure, in which the 

2

, , 1 1
1

log( ) ( ) ( ) ( ) ( ) ( )D D
x t r r i i

i
R A x g x Y t g x Y t

=
+ + ⋅ + ⋅∑   term is treated as an offset, for each country. Then , 

we apply the eigenvalue decomposition to the associated covariance matrix of these conditional GLM estimates, 
leading to the females residual age-period model structure, for each country:   

 

, ,1 ( )
i r

res x Y⋅
2

, 1
1 1

ˆlog( ( ))= ( ) ( ) ( ) ( ) ( ) ( ) ( )
res
r

i r

p
D D res

x r r i i x r
i i

m t A x g x Y t g x Y t g t tε
= =

+ ⋅ + ⋅ + +∑ ∑ ,            (6) 

 
The percentage of the variance explained by each interaction term involved in the residual age-period model 
structures (5) & (6) (2+ res

rp  interaction terms for males and 3+ res
rp  interaction terms for females) can be 

evaluated by QR decomposition on the matrix of all the (S)PCs (2+ re
r

sp  PCs for males and 3+ res
rp  PCs for 

females).  
 
The criterion, which will define which residual interaction term will be included in the residual age-period 
model structures (5) & (6), is based on the following three conditions: a) if the residual variance explained is 
more than 0,5%, or b) if the confidence level (CL) value is more than 99% (see Hatzopoulos and Haberman 
(2011), section 2.1) or c) if the residual variance explained is more than 0,1% and the confidence level (CL) 
value is more than 95%.  
 
In Tables 2 &3, we give the results obtained according to the residual age-period model structures (5) & (6), for 
males and females respectively. For each of the 35 countries, we give the first calendar year with available 
mortality data (after 1947) as provided by the HMD, the number of optimum residual parameters (  values), 

and the optimum number of residual interaction terms (

res
rk

res
rp  values). Also, we present the common adjusted 

variances (CV) as explained by the two common interaction terms for males, the common sex difference 
variance (CDV) for females as explained by the common sex difference interaction term, and the total common 
variances (TCV) for both sexes. For the female case, the TCV explained is equal to the sum of the adjusted 
common variance explained plus the adjusted common sex difference variance. The Tables are sorted according 
to the TCV. Finally, we give the first three adjusted residual variances explained (RV), and the total variance 
(TV) explained as defined by the sum of the adjusted TCV plus the RVs explained.  
 
We note that the second common variances explained (2nd CV), which refer to adult ages, show relative values 
which are remarkably steady, for almost all the countries. This result is in accordance with Glei and Horiuchi 
(2007), who state that, for industrialized countries during recent decades, the rate of mortality decline does not 
vary markedly across adult ages and thus adult mortality changes can be approximated well by parallel vertical 
shifts.  
 

 13



Males First 
year 

res
rk  

1st  
CV 

2nd  
CV 

 
TCV 

res
rp  

1st  
RV 

2nd 
RV 

3rd 
RV 

 
TV 

Luxembourg 1960 1 97.1% 1.2% 98.3% 1  1.7% 0.0% 0.0% 100.0% 
Sweden 1947 4 97.1% 1.1% 98.2% 3  0.8% 0.7% 0.3% 99.9% 
Denmark 1947 4 97.1% 1.1% 98.2% 1  0.8% 0.4% 0.5% 99.0% 
USA 1947 16 96.7% 1.1% 97.8% 4  0.5% 1.0% 0.2% 99.8% 
Norway 1947 4 96.4% 1.1% 97.5% 3  1.0% 1.2% 0.2% 99.8% 
N. Zealand 1948 4 96.3% 1.2% 97.5% 2  1.0% 1.1% 0.3% 99.6% 
Netherlands 1947 7 96.1% 1.1% 97.2% 3  1.2% 0.6% 0.8% 99.8% 
W. Germany 1956 12 96.1% 1.3% 97.5% 1  1.4% 0.3% 0.3% 98.9% 
Switzerland 1947 5 96.0% 1.1% 97.1% 3  1.9% 0.6% 0.3% 99.9% 
Iceland 1947 1 96.0% 1.1% 97.0% 1  3.0% 0.0% 0.0% 100.0% 
E&W 1947 11 95.8% 1.1% 96.9% 3  2.0% 0.3% 0.2% 99.4% 
Canada 1947 7 95.6% 1.1% 96.6% 2  2.5% 0.4% 0.3% 99.5% 
Belgium 1947 7 95.5% 1.1% 96.5% 3  0.5% 2.1% 0.7% 99.8% 
France 1947 15 95.3% 1.1% 96.4% 4  0.9% 1.9% 0.2% 99.5% 
Austria 1947 9 95.3% 1.1% 96.3% 3  1.2% 1.1% 0.6% 99.2% 
Czech 1950 7 95.2% 1.3% 96.4% 3  1.8% 0.8% 0.4% 99.4% 
Australia 1947 9 94.7% 1.1% 95.8% 3  2.5% 0.7% 0.6% 99.4% 
Poland 1958 8 94.1% 1.3% 95.4% 2  3.3% 0.4% 0.3% 99.2% 
Scotland 1947 5 94.0% 1.1% 95.0% 3  4.3% 0.2% 0.2% 99.8% 
Italy 1947 17 93.1% 1.0% 94.1% 4  3.9% 0.5% 0.3% 99.1% 
Slovakia 1950 7 92.9% 1.3% 94.2% 2  3.5% 1.2% 0.4% 98.9% 
E. Germany 1956 12 92.3% 1.3% 93.6% 5  3.3% 0.3% 1.0% 99.4% 
Japan 1947 21 92.0% 1.0% 93.0% 3  4.2% 1.3% 0.7% 99.2% 
Ukraine 1959 13 91.2% 1.2% 92.4% 2  5.4% 1.0% 0.5% 98.8% 
Ireland 1947 4 90.8% 1.0% 91.8% 3  6.3% 1.3% 0.3% 99.8% 
Portugal 1947 14 90.2% 1.0% 91.2% 3  5.4% 1.5% 0.7% 98.8% 
Finland 1947 7 90.0% 1.0% 91.0% 2  6.8% 1.2% 0.5% 99.1% 
Lithuania 1959 7 89.2% 1.2% 90.3% 4  5.5% 2.1% 1.1% 99.6% 
Belarus 1959 10 88.9% 1.2% 90.1% 3  5.2% 3.2% 0.6% 99.0% 
Estonia 1959 5 88.2% 1.2% 89.4% 3  8.0% 0.9% 1.2% 99.6% 
Latvia 1959 7 87.2% 1.2% 88.4% 3  6.9% 3.2% 0.6% 99.1% 
Hungary 1950 9 86.9% 1.2% 88.0% 3  9.1% 1.1% 0.4% 98.7% 
Russia 1959 23 86.1% 1.2% 87.2% 3  9.7% 1.7% 0.5% 99.2% 
Bulgaria 1947 12 83.8% 0.9% 84.8% 3  13.0% 0.6% 0.8% 99.1% 
Spain 1947 15 83.6% 0.9% 84.5% 3  13.1% 0.5% 1.1% 99.2% 

Table 2: Males starting calendar year, number of optimum GLM residual parameters, common and total common variance 
explained, optimum number of residual interaction terms, residual variance explained for each residual interaction term and 
total variance explained, for each country.  
 

Females res
rk  

1st  
CV 

2nd  
CV 

  
CDV 

 
TCV 

res
rp  

1st  
RV 

2nd 
RV 

3rd 
RV 

 
TV 

Canada 6 97.0% 1.1% 0.8% 98.9% 2 0.7% 0.2% 0.1% 99.8% 
Australia 5 96.9% 1.1% 0.8% 98.8% 2 0.5% 0.4% 0.2% 99.7% 
Netherlands 5 96.7% 1.1% 0.8% 98.6% 4 0.7% 0.4% 0.1% 100.0% 
USA 18 96.7% 1.1% 0.8% 98.6% 3 0.5% 0.3% 0.3% 99.7% 
N. Zealand 2 96.6% 1.2% 0.8% 98.5% 2 1.2% 0.3% 0.0% 100.0% 
Sweden 5 96.5% 1.1% 0.8% 98.3% 3 0.9% 0.3% 0.3% 99.8% 
E&W 10 96.4% 1.1% 0.8% 98.3% 2 0.4% 0.7% 0.2% 99.4% 
Belgium 5 96.3% 1.1% 0.8% 98.2% 2 1.4% 0.2% 0.1% 99.8% 
W. Germany 12 96.5% 1.3% 0.3% 98.1% 2 0.8% 0.2% 0.3% 99.1% 
Austria 5 96.2% 1.1% 0.8% 98.0% 2 1.3% 0.4% 0.2% 99.7% 
France 9 96.0% 1.1% 0.8% 97.9% 5 1.3% 0.2% 0.3% 99.9% 
Luxembourg 1 96.3% 1.2% 0.3% 97.8% 1 2.3% 0.0% 0.0% 100.0% 
Iceland 1 95.7% 1.1% 0.8% 97.5% 1 2.5% 0.0% 0.0% 100.0% 
Norway 4 95.6% 1.1% 0.8% 97.5% 3 1.6% 0.7% 0.2% 99.9% 
Switzerland 5 95.5% 1.1% 0.8% 97.4% 3 1.8% 0.1% 0.2% 99.5% 
Czech 4 95.3% 1.3% 0.6% 97.2% 1 2.2% 0.5% 0.2% 99.4% 
Japan 19 95.3% 1.1% 0.8% 97.1% 3 0.9% 0.9% 0.6% 99.5% 
Italy 16 94.8% 1.1% 0.8% 96.6% 4 1.7% 0.7% 0.4% 99.5% 
Denmark 6 94.6% 1.1% 0.8% 96.4% 3 1.2% 1.2% 0.9% 99.6% 
Scotland 6 94.1% 1.1% 0.8% 95.9% 4 2.9% 0.3% 0.6% 99.8% 
Finland 5 94.0% 1.1% 0.8% 95.8% 2 2.6% 1.2% 0.1% 99.6% 
Poland 9 94.2% 1.3% 0.2% 95.8% 3 3.1% 0.3% 0.6% 99.6% 
Spain 13 93.8% 1.1% 0.8% 95.7% 3 2.1% 1.0% 0.6% 99.3% 
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E. Germany 6 94.0% 1.3% 0.3% 95.6% 2 3.2% 0.7% 0.2% 99.5% 
Portugal 13 93.7% 1.1% 0.8% 95.5% 3 1.4% 1.7% 0.4% 99.0% 
Slovakia 4 93.5% 1.3% 0.6% 95.3% 3 3.7% 0.6% 0.3% 99.9% 
Ireland 4 93.4% 1.0% 0.8% 95.2% 4 3.6% 0.5% 0.6% 100.0% 
Ukraine 14 93.3% 1.3% 0.2% 94.8% 2 3.1% 0.5% 0.8% 98.3% 
Belarus 5 93.2% 1.2% 0.2% 94.7% 2 3.7% 1.0% 0.4% 99.4% 
Hungary 8 92.3% 1.2% 0.6% 94.2% 3 4.2% 0.5% 0.6% 99.5% 
Lithuania 5 91.0% 1.2% 0.2% 92.5% 3 5.5% 1.0% 0.7% 99.6% 
Bulgaria 10 90.2% 1.0% 0.7% 92.0% 3 5.8% 0.6% 0.9% 99.2% 
Russia 25 90.5% 1.2% 0.2% 92.0% 3 5.3% 1.2% 0.7% 99.1% 
Latvia 5 90.3% 1.2% 0.2% 91.8% 3 6.1% 1.2% 0.6% 99.6% 
Estonia 2 88.8% 1.2% 0.2% 90.2% 2 9.4% 0.4% 0.0% 100.0% 

Table 3: Females starting calendar year, number of optimum GLM residual parameters, common and total common 
variance explained, optimum number of residual interaction terms, residual variance explained for each residual interaction 
term and total variance explained, for each country.  
 
 
5. Coherent Forecasts 
 
As described in section 4, for the construction of the residual age-period model structures (5) & (6), we treat the 

term  as an offset in the GLM structure. According to the discussion in section 2, the offset 

term can be rewritten: , where 

2

1
( ) ( )i i

i
g x Y t
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⋅∑

1  ( ) ( ) ( )b t f x Y t⋅′ + 1 2( ) ( ) ( )Y t Y t a Y t= − ⋅  and [ ]1 2( ) ( ) ( )b t l a Y t Y t′ = ⋅ ⋅ + , for 

. As a result, the offset term consists of two different mortality dynamics: the main time trend, which 
encapsulates the overall mortality dynamics for both age ranges (the first age range refers to young ages 0-17, 
and the second age range refers to adult ages 18+), and a second time trend, which describes the relative 
divergent trend from the main time trend between the two age groups.  

0 1,2e= ⋅l L

 
Figure 5 displays the offset component according to the males common age-period (sparse) association model 
structure (3), from the common experience of the West-cluster 19 countries, for time period 1947-2006. The 
main time trend (Figure 5, panel 5.1.b) exhibits a linear trend since the 1970s. The  term  (Figure 5, panel 
5.2.b) describes the relative divergent trend from the main time trend between mortality rates for the young and 
for adults. With reference to the 

( )Y t

1( )f x
( )Y t

 age profile (positive values for the young ages and negative values for 
the adult ages, Figure 2), the  trend indicates a faster mortality improvement for the young (and slower  
mortality improvement for the adults) than the main time trend. Meanwhile, the concave shape of the  
trend reveals that the faster mortality improvement for the young (than the main time trend) decreases with time 
and at the same time the relative slower mortality improvement for the adults increases with time.     

( )Y t

 
Similarly to the approach of  Hatzopoulos and Haberman (2009, 2011), we utilize dynamic linear regression 
(DLR) model structures. The DLR time series models are simply regression models in which the explanatory 
variables are functions of time and the parameters are time-varying. State space models employ the Kalman 
filter technique through which smoothed estimates of the stochastic parameters and predicted future values 
(Harvey, 1991) can be derived. The computations have been implemented in Matlab using the Captain Toolbox 
(Taylor, 2007).  
 
We model the common main time trend with a specific class of DLR models:  1 1, 1,( ) tb t b t e tα′ = + ⋅ + , for each 
calendar year t, with the slope being a stochastic time variable parameter that follows a smoothed random walk 
process: 1, 1 1, 1 1, 1t tb b tϕ ζ− −Δ = ⋅Δ +  and 10 1ϕ< < , where 1, 1, 1, 1t t tb b b −Δ = −  denotes the difference operation 
(similar DLR models are defined in Captain Toolbox, by Pedregal, D., Taylor C., and Young P., 2007).  
Smoothed  rates are given in panel 5.1.a of Figure 5, with an associated estimated value 1,

ˆ
tb 1̂ϕ =0.91 (0.057)). 

The innovations  and 1,te 1,tζ  are assumed to be white noises random variables, with associated standard 
deviations 0.0209 and 0.00016 respectively. The coefficient of determination is 99.8%. Under this model 
structure, the main time trend is being modelled finally as a linear stochastic time variable (panel 5.1.b), giving 
it a slightly tilted S-shape to the short-medium forecasts and also a smooth progression to the mortality 
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dynamics. The  represents the overall rate of mortality improvements, which has a (smoothed) rate of 
mortality improvements of 0.0212 at calendar year 2006 and an extrapolated rate of mortality improvements of 
0.0222 at calendar year 2050. Experiments with the males common central mortality trends, as described in 
section 2, show decreasing rate of mortality improvements for the young ages and accelerating rates for the old 
ages. The observed main time trend, which summarizes the mortality movements from all the ages, displays an 
almost linear trend since the 1970s, and an extrapolation of this feature seems to be a plausible choice. Panels 
5.1.a & 5.1.b describe the dynamics and the forecasts of the main time trend. The ACF and the PACF indicate 
an acceptable residual structure and the Lillilifors test has a 3.9% p-value.  

1,tb

( )Y t

 
Next, we model the  time trend, which describes the relative deviations from the main time trend. We use a 
DLR structure: 

( )Y t

2 2, 2,tb t eα= + ⋅ + , with the slope being a stochastic time variable parameter that follows a 

first order autoregressive (AR(1)) process: 2, 2 2, 1 2, 1t tb b tϕ ζ− −= ⋅ +  (smoothed  rates are shown at graph 

5.2.a, with associated estimated value 
2,

ˆ
tb

2ϕ̂ =0.99 (0.06)). The innovations  and 2,te 2,tζ  are assumed to be white 
noises random variables, with associated standard deviations 0.16 and 0.0035 respectively. The coefficient of 
determination is 99.7%. Under this structure, the  tends to a constant level, which causes ultimately 
identical rate of mortality improvements, for each age group. The ACF and the PACF indicate an acceptable 
residual structure, the Lillilifors test has a 50% p-value, and the Jarque-Bera test has a 93% p-value.  

( )Y t

 
The above DLR model structures cause particular trends to the associated SPCs (  & ), as displayed 
in panel 5.3.a. For the 1st SPC, which describes mostly the mortality experience of the young, we forecast 
(slightly) decreasing rates of mortality decline, with the rate of improvement equal to 0.22 at calendar year 2006 
and a forecast rate of improvement of 0.16 at calendar year 2050. Lee (2005) and Wilmoth (1998), Oeppen and 
Vaupel (2002) and White (2002), discuss the processes of catch-up and convergence. They argue that some 
countries converge toward the leader (e.g. Japan), and in preparing mortality forecasts for a given country, the 
extrapolated trend for the leader country should form the basis for a long-run scenario. As defined by Wilmoth 
(1998), the leader country at any given point in history is the country whose overall level of mortality equals the 
minimum achieved at that time by any national population. If we represent the overall level of mortality with 
the overall means (Table 1, 

1( )Y t 2 ( )Y t

rμ -values), then the most important leader countries, for the time period 1960-
2006, are Sweden, Netherlands, Japan and Norway, for both sexes. The (sex combined) common mortality 
trends, constructed from these 4 leader countries, show a decreasing rate of mortality improvements for the very 
young ages (we obtain the same results from the construction of the common mortality trends, utilizing 19 
West-cluster countries). Therefore, if we base the future mortality dynamics on the decreasing rate of  mortality 
progress from the leader countries, then we are in accordance with the forecast 1st SPC trend. For the 2nd SPC, 
the above modelling produces almost steady rates of mortality improvements, with the rate of mortality 
improvement equal to 0.135 at calendar year 2006 and a forecast rate of mortality improvement of 0.137 at 
calendar year 2050. This leads to a forecast that adult mortality rates follow an almost linear trend, which 
follows the dynamics since 1990s (panel 5.3.a). White (2002) has noted that the predominant types of mortality 
reduction has shifted from curing infectious diseases, that heavily affect the young, to degenerative diseases that 
largely affect the elderly, and noted that this transition was neither instantaneous nor absolute. He has concluded 
that the major targets for mortality decline in the near future will probably be the same as over the past four 
decades. Experiments with the sex combined, common mortality trends, constructed from the 4 leader countries, 
show a steady rate of mortality improvement for the adult ages and an increasing rate of mortality 
improvements for the old ages. This remark is in accordance with the forecast 2nd SPC (panel 5.3.a), which 
describes the dynamics of adult mortality.   
 
The (bootstrap) forecast males common life expectancy shows that life expectancy rises at a decreasing rate 
(panel 5.3.b.). As noted by White (2002), based on the analysis of mortality rates over time for 21 countries, if 
the age-specific death rates decline at constant exponential rates, then life expectancy will rise at a declining 
rate, and, if life expectancy changes linearly, then the rate of decline of the underlying death rates must be 
nonlinear, and in particular must be accelerating for at least some ages. Thus, the near linearity in the 
extrapolated mortality rates for adults and the extrapolated declining rates of improvement for mortality among 
the very young is associated with the declining rate of improvement extrapolated for life expectancy, which are 
key features of the males common mortality experience. 
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For the females experience, according to the females residual age-period model structure (5), we model the 
common sex difference PC, with a DLR model: 

1
( )D D D

tY t b t eα= + ⋅ + , with the slope being a stochastic time 

variable parameter that follows a first order autoregressive process. In panel 5.4.a, we show the smoothed ˆ
t

Db  

estimated values, from the common sex difference PC, which follow a first order autoregressive process with 
ϕ̂ =

1̂ (DY
0.9819 (0.029). Under this DLR model structure, we achieve coherent forecasts for both sexes, since the 

 trend reaches a constant value (panel 5.4.b). The ACF and the PACF indicate an acceptable residual 
structure: Lillilifors test has a 50% p-value, and the Jarque-Bera test has a 93% p-value. 
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Figure 5:  Dynamics and forecasts, in time effects, for the males common time trend ( ˆ ( )b t′ and  forecast values and 

resulting ,  and bootstrap males common life expectancy forecast values) based on the common age-period 

(sparse) association model structure (3), and the common sex difference time trend (  forecast values) based on the 
sex difference common age-period model structure (4), with associated CIs. 
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According to the residual age-period model structures (5) & (6), the residual PCs for both sexes are modeled by 
dynamic linear regression (DLR) models: , for each calendar year t and country r, 

with the slope being a stochastic time variable parameter that follows either a first order autoregressive process 
for stationary residual PCs, or a random walk process for non-stationary residual PCs: 

, , , , ,( )
i r

res
i r i r t i r tY t b t eα= + ⋅ + ,

, , , , , 1 , , 1i r t i r i r t i r tb bϕ ζ−= ⋅ + − , where ,0 1i rϕ< ≤ res
r, for  i=1,2,..., p  and  r=1,2,...,c. The innovations  and , ,i r te

, , 1i r tζ −  are assumed to be white noise random variables. If the estimated parameters ,ˆ 1i rϕ <  then the residual 
PC is stationary and the experience for r-country can be forecasted coherently by the common time trends, and 
if ,ˆ 1i rϕ =  then the residual PC is non-stationary and the r-country experience diverges from the common time 
trends. Under this forecast structure, in the case of  stationarity, the forecasts allow divergent patterns to 
continue for a while until they become negligible (see Appendix A, for selective countries). Therefore, in 
projecting individual country trends in the short or medium term, individual country mortality differences in 
mortality trends may be conserved, but ultimately age-specific central mortality rates are constrained to 
maintain a constant ratio to one another. This is similar with the approach of Lee (2003), where the trends 
relative to the common factor are projected to continue for a while in the future, although eventually their 
position relative to the common factor stabilizes.  
 
Table 4 gives the estimated DLR ,ˆi rϕ -values, according to the DLR residual age-period model structures (5) & 

(6), for both sexes. From the estimated DLR ,ˆi rϕ variance, we can define the probability of , 1i rϕ = , i.e. the 

probability of non-coherence. If we assume that the ,i rϕ  random variables follow the Normal distribution if 

,0 i r 1ϕ< < , and has a mass probability if , 1i rϕ = , then Pr( , 1i rϕ = )=1 (0) (1F F )+ − , where F denotes the 

Normal cumulative distribution with mean equal to the estimated ,ˆi rϕ  value and variance equal to the DLR 
estimated variance. Table 4 is sorted according to the inner product of the adjusted residual variances (RV) 
explained (Table 3) by the associated DLR estimated probabilities of non-coherence, multiplied by the 
membership level of not belong to the West-cluster countries  (Table 1). The resulting values define the 
dissimilarity between a particular country and the common mortality experience (independently from the level 
of mortality), in terms of clustering, modelling and coherence. Small membership values imply a strong 
correlation with the (fuzzy) main time trend (Figure 1) and similarity in the mortality dynamics. Small values 
for the residual variances indicate sufficient modeling and a minor non-coherent effect in the case of divergence 
(i.e. if ,i r 1ϕ = ) and small coherent probability values gives more confidence to forecasting coherently the 
country’s experience . Thus, the overall effect of these products can quantify the significant level of coherence, 
for each country.   
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From Table 4, we note that, for both sexes, all of the West-cluster countries can be modelled in a coherent way, 
except for E&W females, according to the estimated DLR ,ˆi rϕ -value. For the case of E&W females, the 
significant level of coherence is well above that of the other West-cluster countries, and therefore we can 
produce forecast values with minor divergence. The countries which exhibit strong divergent trends (i.e. where 

,ˆ 1i rϕ = ) are Lithuania, Latvia, Slovakia, Belarus, Russia and Ukraine for males, and Latvia, Belarus, Russia 
and Ukraine for females. For males: Poland, Bulgaria, Hungary and Estonia, and for females: Iceland, Bulgaria, 
Hungary, Lithuania and Estonia, have estimated DLR ,ˆi rϕ -values less than 1, and they do not belong to the 
West-cluster (Table 1). Based on the DLR model structure, the above countries could be modelled and 
forecasted coherently in accordance with the common structure. As discussed by Lee (2003), sometimes a 
population may not have been regarded as belonging to a certain group in the past, but its mortality may be 
expected to follow and may catch up to and join the group trend in the future, and he argues that the mortality 
experience of the group’s is a better guide to their future than the individual population histories would be.  
 

                        ,ˆi rϕ    Pr( , 1i rϕ = )                                    ,ˆi rϕ  Pr( , 1i rϕ = ) 
Males i=1 i=2 i=3 i=1 i=2 i=3 Females i=1 i=2 i=3 i=1 i=2 i=3 
E&W 0.93 0.99   0.92 1% 57% 0% Belgium 0.91 0.97  0% 17%  
France 0.89 0.95 0.92 0% 17% 0% Switzerland 0.90 0.87 0.97 0% 0% 35% 
Scotland 0.93 0.96 0.91 0% 10% 2% France 0.91 0.98 0.94 0% 49% 6% 
Luxembourg 0.91   7%   Canada 0.98 0.94  56% 0%  
Belgium 0.98 0.93 0.86 29% 0% 11% Austria 0.93 0.95  11% 0%  
Sweden 0.97 0.94 0.94 31% 13% 29% Australia 0.98 0.95  33% 4%  
Austria 0.86 0.93 0.96 2% 10% 14% Sweden 0.99 0.92 0.95 58% 1% 3% 
Switzerland 0.89 0.96 0.95 2% 47% 11% Finland 0.95 0.92  3% 7%  
Netherlands 0.97 0.98 0.92 17% 47% 0% E&W 1.00 0.94  100% 0%  
USA 0.98 0.95 0.95 42% 3% 39% W. Germany 0.97 0.98  44% 45%  
Canada 0.95 0.92  23% 1%  Slovakia 0.93 0.94 0.83 0% 2% 13% 
N. Zealand 0.97 0.96  42% 13%  Norway 0.90 0.96 0.79 2% 3% 9% 
Italy 0.94 0.93 0.97 8% 5% 43% Czech 0.92   5%   
Portugal 0.93 0.98 0.95 0% 39% 39% Scotland 0.94 0.96 0.92 0% 12% 26% 
Australia 0.94 0.94 0.95 10% 8% 15% Italy 0.96 0.94 0.91 26% 0% 1% 
Norway 0.98 0.94 0.92 44% 12% 3% Spain 0.97 0.94 0.87 27% 0% 1% 
W. Germany 0.97   47%   Portugal 0.99 0.95 0.92 48% 0% 24% 
Finland 0.95 0.95  4% 35%  N. Zealand 0.97 0.95  36% 4%  
Spain 0.96 0.88 0.94 10% 0% 10% Luxembourg 0.90   11%   
Iceland 0.97   32%   Japan 0.98 0.95 0.92 32% 0% 0% 
Denmark 0.99   49%   USA 0.99 0.94 0.92 45% 8% 0% 
Ireland 0.91 0.96 0.96 14% 11% 37% Poland 0.90 0.96 0.92 3% 33% 9% 
Japan 0.98 0.95 0.91 24% 0% 0% Ireland 0.94 0.97 0.95 7% 38% 37% 
Czech 0.99 0.91 0.91 78% 15% 0% Netherlands 0.99 0.90 0.95 64% 0% 2% 
E. Germany 0.98 0.98 0.97 48% 77% 45% E. Germany 0.97 0.91 0.00 45% 12% 0% 
Poland 0.99 0.94  62% 15%  Denmark 0.99 0.91 0.87 51% 0% 5% 
Slovakia 1.00 0.92  100% 0%  Lithuania 0.88 0.91 0.94 4% 13% 13% 
Bulgaria 0.95 0.97 0.92 29% 7% 1% Iceland 0.97   40%   
Estonia 0.98 0.90 0.73 50% 12% 0% Bulgaria 0.96 0.97 0.92 19% 17% 2% 
Hungary 0.99 0.95 0.93 50% 16% 22% Hungary 0.97 0.95 0.95 46% 11% 14% 
Belarus 1.00 0.93 0.87 93% 22% 5% Ukraine 1.00 0.94  100% 14%  
Ukraine 1.00 0.92  100% 33%  Belarus 1.00 0.93  100% 4%  
Lithuania 1.00 0.96 0.88 97% 41% 16% Estonia 0.97 0.95  47% 34%  
Latvia 1.00 0.92 0.84 100% 30% 2% Russia 1.00 0.90 0.95 100% 30% 18% 
Russia 1.00 0.93 0.92 100% 26% 27% Latvia 1.00 0.83 0.37 100% 17% 1% 

Table 4: Estimated DLR ,ˆi rϕ -values and associated probability of non-coherence, sorted according to the significant level 
of coherence, for each country, and both sexes. 
 
According to Li & Lee (2005), the residuals are modeled by a simpler model structure. In order to achieve a 
trend that moves toward a constant value, they assume a first order autoregressive model with a coefficient that 
yields a bounded short term trend: , where 

, ,, , , ,( ) ( 1)
i r i r

res res
i r i r i r i r tY t b Y t eα σ= + ⋅ − + ⋅ , ,i rα  and  are 

coefficients and 
,i rb

,i rσ  is the standard deviation of the AR(1) model. The innovations  are assumed to be , ,i r te
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white noise random variables. If the estimated coefficient ,
ˆ 1i rb < , then the r-country can be forecasted 

coherently by the common time trends, otherwise the r-country experience diverges from the common time 
trends. Utilizing the Li & Lee(2005) approach, the countries which exhibit strong divergent trends (i.e. where 

) are E&W, Scotland, Australia, Bulgaria, Hungary, Lithuania, Slovakia, Belarus, Russia and Ukraine 
for males, and USA, Netherlands, Lithuania, Belarus, Russia, Ukraine for females. The DLR approach seems to 
be more consistent, in terms of coherence, with the countries’ West-East classification, than the Li & Lee(2005) 
approach. 

,
ˆ 1i rb ≥

 
 
6. Discussion 
 
In section 2, we classify 35 countries by fuzzy c-means cluster analysis, for the time period 1960-2006. We 
construct the males West-cluster which consists of 25 countries and the females West-cluster of 26 countries. 
Further, another distinct pair of clusters is detected from the remaining East-cluster countries, which gives a 
sub-cluster consisting mainly of Russia, Ukraine and Belarus. For these countries, the mortality dynamics are 
distinguishable from the rest of the East-cluster countries (Estonia, Hungary, Lithuania, Latvia, Bulgaria), and 
their life expectancies decrease after 1990’s.  
 
The clustering method is based on the main time trends. The main time trends are a linear combination of the 
normally distributed GLM parameter estimates. In comparison with the life expectancy index, Lee (2003) 
comments that the age specific force of mortality or death rate are the fundamental measures of mortality which 
we should model and interpret. He concludes that period life expectancy is just a very particular and highly 
nonlinear summary measure, with little or no causal significance, and that risks of death are fundamental and 
the age at death is derivative. Our modeling and forecasts are based on (S)PCs, which are linear combinations of 
the (asymptotic) normally distributed GLM parameter estimates and characterize the logged central mortality 
dynamics. The (S)PCs sum to zero across time, with a rate of improvement that does not depend on the level of 
mortality, in contrast with the life expectancy. A weighted combination of the (S)PCs is used to construct the 
main time trend, which summarizes the logged central mortality dynamics in time effects, for all of the ages 
combined.    
 
For the post-war time period (1947-2006), 19 male countries, namely Sweden, France, Denmark, E&W, 
Norway, Netherlands, Scotland, Italy, Switzerland, Finland, Spain, Ireland, Belgium, Australia, Canada, USA, 
Portugal, Japan and Austria, are pooled to construct the common age-period model structure (2), giving equal 
weight to each country’s mortality dynamics. To avoid the problems arise, if we were just to add up the actual 
number of deaths from all the countries together, where in this case the biggest populations would dominate the 
overall mortality analysis, we introduce weighted deaths and matching weighted central exposures. This 
particular structure for the weights treats equally the countries mortality trends and enhances coherence. 
Experiments with unweighted deaths, produced more non-coherent countries. 
 
Similar to Hatzopoulos and Haberman (2011), we employ SPCA to the estimated common GLM parameter 
estimates, and for a particular choice for the sparse s-value, we derive two interaction terms which summarize 
the basic common mortality dynamics in age-time effects. These two common interaction terms split the age 
range in two age groups, young and adults. By exploiting the correlated structure of these two age profiles, 
based on a linear combinations of the two SPCs, we construct two different mortality dynamics, the main time 
trend and the young-adults relative differential time trends, in a smoothed way. These trends appear to be very 
informative for the description of the mortality dynamics, giving an improved confidence to forecast those 
mortality dynamics, in a compacted way. The two common SPCs are forecasted according to these time trends. 
 
The method described for the comparison of two mortality experiences in section 3, is based on (graduated) 
logged central mortality ratios. The method is applied to investigate the sex differentials and to extract the main 
sex difference mortality dynamics in age-time effects. The sex difference model structure shows divergence 
until the 1980s and convergence thereafter, referring to similar age groups, and hence the dynamics in these 
mortality trends are modeled by a single structure. The most significant, first sex difference PC, over the whole 
time period (1947-2006), is modeled by a stationary process, providing a coherent structure between the sexes.   
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For males, the analysis of the residual particularities for each country is based on the residuals after subtracting  
(by offsetting GLM techniques) the two males common interaction terms, and for females the analysis is based 
on the residuals after subtracting the two males common interaction terms plus the common sex-difference 
interaction term. The results are very satisfactory, in terms of the common variance explained for the majority 
of the countries. Further, the common sex difference age-period model structure (4) describes effectively the 
females differential experience, in age-time effects. Experiments with various countries, show that the mortality 
dynamics are better described after embedding the two common interaction terms rather than modeling them 
independently. Under the common structure, the residual interaction terms, based on model structures (5) & (6), 
for each country are more easy to interpret and distinguish in a more comprehensible manner the remaining age-
time interactions. When using more than one interaction term, country independently analysis often gives 
ambiguous age-time interaction trends, especially in cases where the related time period is restricted or when 
the reliability of the corresponded national crude mortality data is poor. 
 
In the dynamic linear regression (DLR) model structure, the results are very supportive. For males, all of the 
males West-cluster 25 countries can be modelled in a coherent way, and also for females where all of the 
females West-cluster 26 countries can also be modelled in a coherent way. Finally, countries which do not 
belong to the West-cluster can also be modelled and forecasted coherently under the common structure.  
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Appendix A 
   
Figure A displays the first residual interaction terms ( left graphs, and  right graphs), and the 

forecast residual PCs (  estimates), for calendar years 2007-2050, with associated confidence intervals, 

according to the residual age-period model structures (5) & (6), for both sexes, and for selected countries.  
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For E&W males, the first residual interaction term refers mainly to age group 25-35 with positive values and to 
the age group 50-70 with negative values, indicating a relative deterioration for the first age group and a relative 
improvement for the second age group after the 1980s; and after the 2000s these trends become steady. For 
E&W females, the first residual interaction term refers mainly to the age groups 0-15 and 60-70 with positive 
values, indicating a relative deterioration for these age groups, with diverging forecast values.  
 
For USA, for both sexes, the first residual interaction term refers mainly to the ages 20-40, indicating a relative 
deterioration, with relative improvement forecast values for males and with forecast values reaching a constant 
level for females.  
 
For Japan, for both sexes, the first residual interaction term refers especially to the age group 20-40, indicating a 
relative improvement until the 1980s, and thereafter a deterioration with forecast values supporting this last 
trend.  
 
For Hungary, for both sexes, the first residual interaction term refers especially to the age group 40-70, 
indicating a relative deterioration until the 1990s which thereafter becomes almost stable, with forecast values 
supporting this steadiness after the 1990s for males, and forecast values with a relative improvement for 
females. 
 
For Russia, for both sexes, the first residual interaction term, refers especially to the age group 30-60, indicating 
a relative deterioration for all the time range, with diverging forecast values. 
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Figure A:  First residual interaction terms,  and  values, according to the residual age-period model 

structures (5) & (6), for both sexes and selective countries. 
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